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Study on the Impressions of Robot Bodily

Expressions on the Human Observer*

Khiat, Abdelaziz

Abstract

Recently, robotics research has investigated issues surrounding the interaction
modalities with robots, how these robots should look and how their behavior
should adjust while interacting with humans. It is believed that in the near future
robots will be more prevalent in human environments. Thus it is important to
understand accurately our reactions and dispositions toward robots in different
circumstances. Moreover, the robot’s correct production and perception of social
cues is very important. Humans have developed advanced skills in interpreting
the intentions and bodily expressions of other human beings. If similar skills were
possessed by robots, it would allow them to generate behaviors that are familiar
to us and thus increase their chances of being accepted as partners in our daily
lives.

This dissertation deals with the assessment, using brain activity, of the kind
of impression an individual has when observing a particular type of robot bodily
expressions.  Using brain signals or electroencephalogram (EEG) to control
devices is one form of Brain-Machine Interfacing (BMI). A BMI system is usually
targeted for applications intended for handicapped and/or aged people. In our
case, we used brain activity for evaluation purposes to characterize specific
properties of bodily expressions that have a noticeable impact on an observer.

First, a number of bodily expressions were generated and executed by a humanoid

*Doctoral Dissertation, Department of Information Systems, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DD0361216, March 23, 2007.



robot. Using quantitative descriptions of Laban features of Shape and Effort, the
generated bodily expressions were classified into two categories. The classification
was confirmed statistically with the results of a self-reporting experiment. In
another experiment, the impact on brain activity of each category of bodily
expressions was confirmed using spectral analysis by showing that the power
level of low-alpha (8-11Hz) frequency band changes according to the category.
The most reactive electrode positions were found to be those covering activity
above the superior temporal sulcus (STS) and the prefrontal cortex (PFC). This
supports previous research findings about the activation of mirror neurons and
the STS during the perception of biological motions, learning and imitation. The
repeatability of this reaction was proven with the results of a third experiment,
where a subject was asked to observe the same bodily expression several times.
Finally, we proposed a method that uses self-organizing maps to represent and
generalize carefully selected features of brain activity in order to assess the
impression of robot bodily expressions on an observer. The recognition rate
achieved with this method was close to 80% when using data from a single subject.
However, this rate decreased significantly when data from several subjects were
used, suggesting the existence of differences in brain activity between individuals.
To overcome this problem an improvement of the method was proposed, allowing
an almost constant recognition rate of about 85% regardless of the number of
data sources considered. To complete this study, brain activity measured during
the observation of bodily expressions of a human was used to assess the observer’s

impression using the same method.

Keywords:

Robot Bodily Expressions, Impressions, Human-Robot Interaction, Electroen-

cephalogram, Laban Features
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Chapter 1

Introduction

1.1. Motivations

Human face-to-face interaction is complex and involves understanding the
interchanges and synchronizations across multiple communication channels and
time scales. Speech, gaze, facial expressions and gestures are all taking part in
the interaction in a parallel and interdependent way. The form of each of these
modalities is very crucial in conveying a meaning despite the differences in their
manifested information. Also of great importance is the tight synchrony between
modalities and the choice of the right one to use, at a certain time, for certain
duration. It is known that the semantic of a message is distributed over the
modalities such that the communicative intentions of the person are interpreted
by combining them together.

Porting these abilities into machines has turned out to be a very difficult
task. A great effort is made in this direction to provide computers and robots
with the ability to engage a human in an interesting, relevant conversation with
appropriate speech and meaningful gestures. The need for this ability to be
integrated in machines is justified by the prediction of the prevalence of machines
in our daily lives in the future. The properties or abilities that should be

considered include but are not limited to:



e embodiment, whether virtual or physical.

e recognition of verbal and non-verbal input.

e generation of verbal and non-verbal output.
e use of turn-taking and feedback mechanisms.

The embodiment of intelligence has always been a superior goal in artificial
intelligence research, since it is more natural and intuitive to interact with agents
that can be seen and touched. From a communicative point of view, as important
as the ability to recognize speech may seem, the ability to recognize non-verbal
behavior is equally so. Being able to interpret the human behavior will open
channels of useful information. On the other hand, the feedback and the way to
present information to the user should include the ability to synthesize speech and
to gesture like humans while making purposeful facial expressions. Finally, being
able to understand the effect of each feedback modality on the interacting human
partner is of particular interest. Because, it is often difficult to interpret and infer
intentions of living creatures who might have different ways of conveying and
interpreting social signals. Most such misinterpretations have no consequences,
but in the interaction they could be disastrous. Humans and many other animals
depend heavily on the correct production and perception of facial and bodily
expressions to signal threat, submission and other information. This type of
interaction is unidirectional and commonly known as monad interaction.

Each of the mentioned requirements represents a challenging problem and
much has to be done before realizing communicative agents that rise to the
expected level of performance. There is a great deal of research work on many
of them; however the perception by humans of non-verbal information and
particularly bodily expressions did not have the attention that it deserves in
the context of human-robot interaction.

Figure 1.1 shows the internal parts involved during a monad interaction
between a human and a robot in both directions. The monad interaction going

from the robot to the human is particularly interesting. Although it represents
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Figure 1.1. The internal parts involved during a monad interaction between a
human and a robot in both directions. The highlighted monad interaction from

a robot to a human is thoroughly studied in this thesis.

half of a normal bidirectional interaction (dyad interaction) it has not been
considered and studied in the past. The monad interaction in the other direction,
from the human to the robot is the one that has attracted the attention of most
of the researchers in human-robot interaction. In order to study the considered
monad interaction, there is a need to estimate the perception and interpretation
processes taking place on the human side because there is no way to observe
them directly. Moreover, these two processes are thought to be taking place
within the human’s brain, so it becomes necessary to interpret brain activity in

this investigation.

1.2. Research goal

In this dissertation, I propose to explore the last issue about the effect of feedback
modalities on humans. More precisely, I investigate the impression a human
gets when observing certain types of robot bodily expressions and I identify
the relation that exists between bodily expressions and their impressions. Since
impression is by nature a subjective factor, its evaluation or assessment needs
to rely on objective empirical data. I chose to reveal credible features from the

observer’s brain activity. This choice is motivated by the fact that all cognitive



processes take part within the human brain, thus monitoring brain activity is a
reasonable decision for this investigation.

This work deals with the assessment, using brain activity, of the kind of
impression an individual gets when observing a certain type of robot bodily
expressions. I use brain activity for evaluation purposes to characterize specific
properties of bodily expressions that have a noticeable impact on the observer.
This study has clear implications for the neural basis of robot action perception
and for a better understanding of critical features necessary to improve the

successful development of interactive robots.

1.3. Dissertation layout

This chapter presents the motivations of this research work, along with an
overview of the approach and the main goal. It explains where this work is
situated within the field of human-machine interaction and its necessity.

The second chapter presents robot bodily expressions, their modeling, their
generation and the quantification of their expressiveness. An experimental study
that explains the relation between bodily expressions and their impressions on
the observer is described and important features that reflect such impressions on
the observer’s brain activity are identified.

The third chapter introduces the principal technique adopted for the assess-
ment, from brain signals, of the impressions of bodily expressions on the observer,
regardless of whether they were performed by robots or humans. An improvement
of this technique is presented and its performance is evaluated thoroughly. This
opens the door for reflections about the types of bodily expressions and how they
should be chosen to improve the interaction between robots and humans.

Finally, a conclusion terminates this dissertation by summarizing the main

contributions and giving directions for future developments.



Chapter 2

Robot Bodily Expressions

2.1. Introduction

In recent years, robotics research has investigated issues surrounding the
interaction modalities with robots, how these robots should look and how their
behavior should adjust while interacting with humans. It is believed that in the
near future robots will be more prevalent in human environments. Thus it is
necessary to understand accurately our reactions and dispositions toward robots
in different circumstances [43]. Moreover, the robot’s correct production and
perception of social cues is very important. Humans have developed advanced
skills in interpreting the intentions and the bodily expressions of other human
beings. If similar interpretations were possible while interacting with robots, it
would allow these robots to generate behaviors that are familiar to us and thus
increase their chances of being accepted as partners in our daily lives.

In this chapter, I report a study on the relation between expressions and their
impacts on the observer. I also attempt to understand the effect that expressions
have on the observer’s brain activity. Its sensitivity to bodily expressions can
be used during an interaction task since it is the center of every cognitive and
emotional effort. I conducted an experimental study where several users were
asked to observe different robot bodily expressions while their brain activity was

recorded. The results suggest the existence of an association between the type



of bodily expressions and the change in the power level of a particular frequency

band of brain activity.

2.2. Related research

The approach adopted in this study is related to three apparently distinct fields

but are very much interdependent:
e human-robot interaction,
e decoding of brain activity (brain-machine interfaces),
e and social perception from the cognitive science perspective.

Each one of these fields has developed independently from the other ones.
However, in recent years it became apparent that there is a need to combine
these scattered individual efforts to take advantage of their complementarity.

In the following, I will introduce a short overview and the recent achievements
of each of these fields in the context of this study. After that, I will explain how
this study relates to these fields, and how it takes advantage of their respective

accomplishments.

2.2.1 Human-robot interaction

The expressiveness of a gesture is of great significance during an interaction
process. We are often required to give special attention to these signs in order
to keep track of an interaction. Humans have learned to adapt their behavior
and to react to positive and negative bodily expressions [5]. Although there has
been remarkable work on the design issues of sociable robots [7] and affective
autonomous machines [44], there has not been much work on investigating the
real impact of robots bodily expressions on the human user in the context of robot-
human interaction. Moreover, computer-animated characters have been used to

evaluate human perception of the significance of gestures. However, animated



characters and embodied ones should be treated differently since the latter are
tangible entities [54]. Knowing the effect of a generated gesture, a robot can select
more accurately the most appropriate action to take in a given situation. The
most direct approach to study the effect on an observer that watches a bodily
expression is to use reliable physiological measurements. The brain happens to be
the organ most involved in the interpretation of observed events. Thus, analyzing
measured brain activity is necessary for this study.

A new research field that tries to interpret brain activity in relation to different
external stimuli is called Brain-Machine Interface, an overview is presented in the

next section.

2.2.2 Decoding of brain activity

Brain-machine interfaces detect brain activity and translate it into forms that are
human understandable and thus could be used to produce actions of some kind,
such as moving a robotics arm, moving a cursor on a screen or controlling a TV
set. This technology is motivated by its potential application for handicapped
people who cannot use their arms normally. However, it can also be used in reverse
direction such that it inputs a specific signal in the human’s brain, to enhance
perceptual or motor capabilities. This is widely used with patients suffering
movement disorders (Parkinson disease) to allow the motor cortex in their brains
to regain their normal metabolic rhythms. It has also been successfully used
to allow blind people to regain a certain capability to see the outside world
by connecting the simplified output of a camera directly to the visual cortex.
Another kind of BMIs is the one that only tracks brain activity without giving
any feedback. This type of BMIs is used in medical diagnosis to monitor the
functioning of patient brains and is also used in research investigations to study
the cognitive properties of humans. There are two categories of techniques which
are used in BMIs: invasive techniques that implant electrodes directly in the
brain and non-invasive techniques that use sensors to scan the brain activity.

Figure 2.1 presents the mostly used techniques plotted on a two dimensional
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Figure 2.1. Different techniques to measure brain activity (ECoG:

ElectroCortecography, fMRI: functional magnetic resonance imaging, fNIR:
functional near infrared imaging, EEG: Electroencephalography, MEG:
Magnetoencephalography).

space according to their spatial and temporal resolutions. It can be noticed that
invasive techniques have better spatial resolution. However, they require surgery
and carry the risk of infection or brain damage. On the other hand non-invasive
techniques are less intrusive. However, they have a coarse spatial resolution and
thus measure brain activity less precisely.

In the past, a lot of research work investigating brain activity was done
on monkeys. Nicoleilis team at Duke University [63] developed a system that
allowed a monkey to control a robotic arm to achieve the task of reaching a
tray and carry food to its mouth. They used the very invasive technique of
local field potentials to measure the activity of the motor cortex and use it to
estimate the 3D trajectory of the robotic arm. In order to replace the electrodes,
surgery was necessary every one or two weeks, making this technique only useful
for research investigations. Wolpaw team at New York state university [66]
developed a method that allowed users to control movements of a cursor on a

screen. They used non-invasive EEG caps to acquire the signals of brain activity.



The drawback of this method is that the users had to go through long training
sessions to achieve an acceptable level of control and learning speed differed from
one user to another. Leuthhardth at the same university [38] used invasive ECoG
measurements to record signal patterns corresponding to simple tasks such as
hand opening and word pronouncing. These actions are recognized later on by
an online comparison of the measured brain activity with the previously recorded
patterns. In this work, they could also get the same result when the patient
only imagined doing one of the actions previously cited, suggesting that it is
possible to use this method in prosthesis for handicapped people. Probably
the most successful BMI so far is the BrainGate developed by Donoghue team
[20] at Brown university. They implanted a tiny micro-electrode array in the
motor cortex of a handicapped patient. This one was able to control a TV set,
to move a cursor on a screen, to write emails and to control a robotic arm.
However, this approach requires surgery and the replacement of the electrode
array regularly after that. It also needs a training for several days before achieving
the required performance. Another non-invasive BMI uses NIRS measurements of
train driver’s brain activity [56]. This method allowed the estimation of whether
the driver was using the manual or the automatic driving modes. The goal is
to estimate when the driver is more prone to error, since train driving is more
monotonous than car driving, thus the human error risk is higher.

Several BMIs have been designed for different reasons. In my case, I want to
study the effect of bodily expressions on the brain, so I am more interested in

brain activity reaction to these particular expressions and social cues in general.

2.2.3 Social perception and brain activity

Neuroimaging and neurophysiological studies in humans, suggest that early stages
in the analysis of bodily movement are instantiated in specific brain regions near
the superior temporal sulcus of both hemispheres [1] and near the sensory-motor
cortex [45]. Figure 2.2 illustrates the perception path during observation of

biological motions. From the visual cortex the posture and the motion are treated
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Figure 2.2. Perception path during the observation of biological motions (STS:
Superior temporal sulcus, PFC: Prefrontal cortex, PMC: Primary motor cortex)
(Adapted from [1])

separately on the dorsal and ventral parts of the brain. After that, the information
goes to the superior temporal sulcus (STS), which sends this information to the
orbito-frontal cortex (OFC) through the amygdala. The OFC then sends the
information to the prefrontal cortex (PFC), which is connected to the primary
motor cortex (PMC) and the basal ganglia, thus closing the loop from perception
to action.

Within this path, some specific parts are activated when observing social cues
and during imitation and learning tasks. More specifically, there were reports
about the reaction of specific brain regions to eye gaze [65, 48, 21], hand action
[15, 6], hand movement [16], hand grasp [50, 13], mouth movement [48, 47], and
finally body movement [6, 23, 36, 17].

It is then conceivable to study the effect of social cues and particularly bodily
expressions on the brain activity of humans. Cognitive science tells us which parts
of the human brain to observe. Brain activity decoding techniques would help
us to find the proper methods to use for brain signal interpretation, the result
of which would open new application opportunities in the field of human-robot

interaction.

10
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impression.

2.3. Bodily expressions and their impressions

The considered scenario for this study is depicted in Figure 2.3. First, we have
a robot that is executing a series of movements. It transmits to the observer
a meaningful expression which is called bodily expression @. Second, we have a
human observer that perceives the expression and interprets it using his/her a
priort knowledge @. Then, the observer gets an impression, which means that
bodily expression affects him/her to a certain level, depending on its strength,
his/her awareness or attention and his/her state of mind or mentality ®.

It is important to emphasize the difference between how the observer perceives
and interprets a bodily expression, and what impact this expression evokes in the
observer. It is expected that the two are related, but there is no information
about the nature of this relation or how it evolves and changes over time. One
of the goals of this work is to clarify and explain some aspects of this relation to

open the possibility of generating an adaptive robot behavior.

11
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Happiness Surprise Anger Sadness

Figure 2.4. The subset of Shaver’s classification of emotions [53] used in the

categorization of Bodily Expressions.

2.3.1 Classification of bodily expressions

There is a need to classify bodily expressions generated by a robot in order to
investigate their effects on the user. For this reason, salient differences among
motions should be implemented. During an interaction process, humans go
through different affective states, depending on several conditions such as degree
of engagement, degree of awareness, and degree of interest among others. It is thus
possible to classify every action taking place during an interaction process into the
emotional effect that it would have on the observer. I adopted a simplified version
of Whissel’s wheel of activation-evaluation space described in [64]. T used the fact
that we have two primary states for emotions: positive and negative, also known
as pleasant and unpleasant emotions. The considered emotions are the following:
happiness, surprise, sadness, and anger. In order to categorize these emotions I
used a subset of Shaver’s classification (see Figure 2.4), where happiness and
surprise represent pleasant emotions while sadness and anger represent unpleasant
emotions [53]. Bodily expressions were classified using one of the specified four

emotions and as either pleasant or unpleasant.

2.3.2 Laban features of robot bodily expressions

The humanoid robot ASKA [25] used in this study is shown in Figure 2.5. The

body has a mobile platform and two arms and is based on the commercial robot

12
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Figure 2.5. Overview of the used robot and its link model.

TMSUK-4'. The head is a replica of the Infanoid robot [37]. This humanoid robot
with its mobile platform has the advantage of being able to generate relatively
fast motions compared to the currently available biped humanoid robots.

Since the pioneering work of Johannson [30] on visual perception of motion,
it has been known that humans can perceive a lot of information from body
movements including the emotional state of the performer [1, 46]. Recently,
there is a growing interest in mathematically modeling emotion-based motion
generation for real-world agents such as robots [39] and for virtual agents such as
animated characters [3]. To be able to generate bodily expressions that reflect the
selected emotions I rely on Laban features of movements [5]. It has been shown
in [57] that the qualitative Laban features of Effort and Shape correlate with the
four basic emotions [ have considered in section 2.3.1. Based on the mathematical
description of Laban features hereafter, it is relatively easy to classify bodily

expressions that reflect a certain emotion.

Y TMSUK-} is a trademark of tmsuk Co. Ltd, Kitakyushu.
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Movements

Effort [dynamic] Shape [geometric]
Space Door plane
indirect vs. direct descending vs. ascending
Weight Table plane
light vs. strong enclosing vs. spreading
Time Wheel plane
sustained vs. sudden advance vs. retreat

Figure 2.6. Laban features of Shape and Effort have several parameters that

describe the geometrical and dynamic aspect of movements.

The mathematical definition of Laban features (Shape and Effort) using the
robot’s kinematic and dynamic information is given such that larger values
describe fighting movement forms and smaller values describe indulging ones[57].
Bartenieff and Lewis[5] stated that the Shape feature describes the geometrical
aspect of the movement using three parameters: table plane, door plane, and wheel
plane. They also reported that the Effort feature describes the dynamic aspect
of the movement using three parameters: weight, space, and time (see Figure
2.6). The robot’s link information which will be used in the features definitions
is given in Figure 2.5. In order to simplify the mathematical description, a
limited number of joint parameters were considered in this definition, namely:
the left arm 6,1, the right arm 6,1, the neck d,, the face d,, the left wheel w;, and
the right wheel w,. The remaining parameters were fixed to default values during
movement execution.

Using the diagram shown in Figure 2.7, the table parameter of feature Shape
represents the spread of silhouette as seen from above. It is defined as the scaled
reciprocal of the summation of mutual distances between the tips of the left and

the right hands along with a focus point:

Shapetae = S/(TLF + Trr + Tir) (2.1)
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Figure 2.7. Diagram of table plane superposed on a top view of the robot.

where,
[(LF cos 8y cos 0y — L cosbyy)? +

ijIT =
(Shfy — L cos d; sin (52)2] i

Y

[(LF cos 0y cos 0y — L4 cosb,q)” +

Trr =
(Shfy — L cos d; sin 62)2] i

’

and Trp = [Sh2 + (LacosBy — Ly cos 9r1)2]1/2.

The point of focus is set at the fixed distance Ly = 44[cm] in the gaze line of the
robot’s head. Sh = 33[em] is the distance between the shoulders, L, = 44[cm] is
the arm’s length during movement execution and s is a scaling factor.
The door parameter of feature Shape represents the spread of the silhouette as
seen from the front. It is defined as the weighted sum of the elevation angles of
both arms and the head as shown in (2.2). The sine is used to reflect how upward
or downward each joint angle is. The weights d;, d,., d,, were fixed empirically to
1.

Shapegoor = dy sin by + d,. sin 6,1 + d,, sin 0,1 (2.2)

The wheel parameter of feature Shape represents the lengthwise shift of the

silhouette in the sagittal plane. It is defined as the weighted sum of the velocities

15



of the robot and the velocities of the arm extremities as shown in (2.3). Weights
were set empirically to -8 for w; and -1 for w; and w,.

Shapeyneer = wiver + wiLagy cos O+ (2.3)

w, L A% cos 6,1

The weight parameter of feature Effort represents the strength of the

movement. It is defined in (2.4) as the weighed sum of the energies exhibited

during movement per unit time at each part of the body. Weights were adjusted

with respect of to the saliency of body parts. Relatively large weights e,; = e;. =5

were given to the movement of the trunk and smaller weights were given to the

movements of the arms e¢; = e, = 2 and the neck ¢, = 1.

Effa’rtweight - eléfl + erézl + 6,16.72“4—

(2.4)
e V2. + €402

where v, = w; + w, is the translation velocity and v,; = w; — w, is the rotation
velocity.

The space parameter of feature Effort represents the degree of conformity in the
movement. It is defined in (2.5) as the weighed sum of the directional differences
between elevation angles of the arms and the neck as well as the body orientation.
Weights are also defined empirically by giving advantage to the arms’ bilateral
symmetry s;. = —5 and body orientation s,; = —5 over the other combinations

Sin = Syn = —1.

Effortspace = Srt |wrt| + Sir |9l1 - 0r1| +

(2.5)
Sin |9l1 - 5n1| + Srn |0r1 - 5n1|

The time parameter of feature Effort represents the briskness in the movement
execution and covers all the span from sudden to sustained movements. It is
defined in (2.6) as the ratio indicating the number of generated commands per

time unit.
number of generated commands

Efforttime = (26)

time span

16



2.3.3 Considered bodily expressions

Although there is no unique solution to this problem, the goal is to be able to

generate a representative bodily expression for each of the selected emotions.
The generated bodily expressions (BE) which are shown in Figure 2.8 and

Figure 2.9 reflect one of the basic emotions of happiness, surprise, sadness, anger

or none. These bodily expressions are the following:

e BE1 : The robot raises both arms and turns its body to the left, then to

the right, twice. The goal is to show an expression of happiness.

e BE2 : The robot raises its right hand and moves it in an arc toward the
right side, then goes back to its initial position and lowers its right arm, the

goal is to show an expression of no particular emotion.

e BE3 : The robot raises both arms and its head, then moves backward for

some distance, the goal is to show an expression of amazement or surprise.

e BE4 : The robot lowers both arms and its head, and then moves backward

at low speed for some distance, the goal is to show an expression of sadness.

e BE5 : The robot raises both arms gradually while advancing before
stopping, then it lowers and raises its arms progressively for two cycles;

the goal is to show an expression of happiness.

e BEG : The robot advances quickly, then goes back and raises its right arm
while turning its head a bit to the right. It then lowers its arm and returns

its head to the original position; the goal is to show an expression of anger.

The duration of each of these BE was about 14[sec|. Their appropriateness and

their expressiveness was tested experimentally using questionnaires (see section
2.4.1).
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(a) BEL (b) BE3 (c) BE5

Figure 2.8. The three bodily expressions generated to represent pleasant
expressions (happiness, surprise, and happiness respectively) at different time

frames.
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(a) BE2 (b) BE4 (c) BE6

Figure 2.9. The three bodily expressions generated to represent unpleasant

expressions (neutral, sadness, and anger respectively) at different time frames.
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2.3.4 Assessment methods of impression and expressive-

ness of bodily expressions

There are mainly two types of methods to assess the effects of a particular
action on a human. The classic self-reporting approach is widely used, while
the assessment of collected physiological data is still an open problem. The first
type gives a generally subjective evaluation result; the second type is deemed
to be more objective but suffers from inaccuracies. For this case, in order to
assess ezrpressiveness, I adopted a self-reporting approach and asked the subjects
to answer questionnaires. However, in order to assess impression the subjects
answered questionnaires and their brain activity was recorded.

Subject’s answers to questionnaires were summarized and used in order to
assess expressiveness. Every subject has to select from: expression of happiness,
expression of surprise, expression of sadness, expression of anger, or no meaningful
expression. Moreover, the subject had to specify the degree of the expression in
a scale of five: 1 for impertinent, 2 for slight, 3 for medium, 4 for strong and 5 for
very strong. This selection of the degree of the expression is a redundancy that
was meant to confirm the subject’s choice and assess the degree of confidence in
his/her answer. These answers were then categorized into pleasant or unpleasant
expressions using the subset of Shaver’s classification shown in Figure 2.4.

As for impression assessment, spectral analysis method of electroencephalo-
gram (EEG) data was used. A short EEG segment can be considered as a
stationary process, which can be characterized by an autoregressive(AR) model.
Let us denote s(n) as a sample of EEG data of N points. I calculate r¢(n) and

ry(n), respectively the forward and backward prediction errors, as follows:

rf(n):i:a(k)s(n—i—p—k) (2.7)
ry (n) = kZi: a(k)s(n+k), (2.8)

where a(k) are the AR parameters and p is the order of the model. The order p is

based on the ”"goodness of fit” criterion. I use the relative error variance (REV)
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Figure 2.10. Relative error variance (REV) calculated for different orders of AR
parameters. Highlighted are the two most optimal choices for the considered
data.

criterion[51], defined as:

MSE (p
REV (p) = Wé)

MSE(p) is the mean square error or variance of the error process of order p, and

(2.9)

MSY is the variance of the total power of the signal sample. The optimal p is
the one that minimizes REV (p). In my case, I take p = 15 or 14 as shown in
Figure 2.10.

[ apply (2.7) and (2.8) to calculate an approximate estimation of the power

spectrum PS(f) of the signal s as follows:

PS(f)= Lk > (2.10)

p .
‘1 + 3 alk) e-d2nfkT
k=0

N+p—1
1 +p

Vo=5 > (I )+ (0)]), (2.11)

n=0
where V), is the averaged sum of the forward and backward prediction error
energies, and 7T is the sampling period.

Research in cognitive neuroscience has shown that the low-alpha frequency
band is the most reactive band to social cues such as movements [1]. I suppose

that this frequency band is going to react in a similar way to robot bodily
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| = F3 Observation Task power spectrum |
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Figure 2.11. An example illustrating the calculation of the power of predefined
frequency band, in this case low-alpha band, for a 2[sec] length of raw EEG
data taken from electrode placement F3. The graph to the left shows the raw
EEG signal for the baseline period and the observation period. The graph to
the right shows the power spectrum of the EEG signals, where low-alpha band is
highlighted.

expressions [34]. The next step in assessing impression is to observe the amount
of change in the power of low-alpha frequency band compared to the whole

spectrum. The power L of a band between frequencies a and b is defined by:

_ L PS(f)df
J5* PS(f)df’

Using (2.12), T calculate the power of low-alpha band frequency L, for the data

L (a,b) (2.12)

taken during the baseline period and L,, for the data taken during the period of
the execution of a bodily expression. An example illustrating this calculation is
shown in Figure 2.11, where raw 2 seconds EEG signals collected from placement
F3 during the baseline period and the observation period is shown on the left.
The power spectrum of these signals is shown to the right, and the low-alpha
band is highlighted. A comparison between L, and L,, will indicate the effect of
a particular bodily expression on the user. This is used as the main evaluation

criterion for impression.

22



Table 2.1. Users’ evaluations of the expression of each generated robot bodily

expression (BE)

BEs | Pleasant Unpleasant Neither
BE1 100% 0% 0%
BE2 6 % 35 % 59%
BE3 94% 6 % 0%
BE4 0% 94% 6 %
BE5 65% 12 % 23 %
BE6 0% 82% 18 %

2.4. Experimental study

2.4.1 Expressiveness of robot bodily expressions

The goal of this experiment is to evaluate the expressiveness of each generated
robot bodily expression. Since this quality is highly subjective, the self-reporting

approach was used.

Subjects

Seventeen (17) participants (two females and fifteen males aged between 20 and
50 years old) volunteered to take part in this experiment. They were either
students or faculty members. They were all familiar with robots and had previous

experiences of dealing with robots similar to the one used in the experiment.

Procedure

Every subject was shown a total of six bodily expressions, which were described
in 2.3.3. The execution of each of the bodily expressions by the humanoid robot
ASKA lasted 14 seconds. After observing each robot bodily expression, enough
time was given to the subject to answer two questions about the expressiveness of

that robot bodily expression, and one more question about their impression after
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Table 2.2. Users’ evaluations of their impressions after observing each robot

bodily expression (BE)

BEs | Pleased Unpleased Neither
BE1 65% 35 % 0%
BE2 30 % 70% 0%
BE3 68% 32 % 0%
BE4 19 % 81% 0%
BE5 100% 0% 0%
BE6 47 % 53 % 0%

the observation. These answers were then summarized to assess the expressiveness

as explained in 2.3.4.

Results

Table 2.1 shows the results about bodily expressions after categorization into
pleasant expression, unpleasant erpression, or neither, clearly indicating the
expressiveness as evaluated by the observers. The result about impressions is
presented in Table 2.2 after categorizing the answers into pleased or unpleased.
These results demonstrate the existence of a strong correlation between the
expressiveness of the robot bodily expressions as seen by the subjects and the
target expression when these bodily expressions were generated (see 2.3.3). BEL,
which was created to express happiness, was classified as having a 100% pleasant
expression. BE2, which was created to express a neutral emotion, was classified
by 59% as neither pleasant nor unpleasant, and by 35% as unpleasant, suggesting
that neutral bodily expressions tend to have a negative connotation. BE3, which
was created to express surprise, was classified by 94% as a pleasant expression.
BE4, which was generated to express sadness, was classified by 94% as being an
unpleasant expression. Similarly, BE6 which was created to express anger was
also classified by 82% as an unpleasant expression. The special case of BE5 was

classified to a great extent as a pleasant expression by up to 65%. However, 23%
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: Impression experiment
: Repeatability experiment

: Both experiments

: Fz position used as ground

Figure 2.12. The experimental setup where brain activity was measured according
to the 10-20 international standard[29].

said it did not express anything in particular and 12% claimed it was unpleasant.

The expensiveness of the generated BEs is confirmed to be in accordance
with the target expressions for which they were created. BEs generated to
express happiness and surprise expressions were classified as pleasant, and the BEs
generated to express sadness and anger expressions were classified as unpleasant.
Among the generated BEs I choose one that is representative of each category in

order to use it in the evaluation of its impressions on the observer.

2.4.2 Impressions of robot bodily expressions

The goal of this experiment is to evaluate the impression on the observer of the
generated motions using a hybrid approach that combines the results of self-

reporting and analysis of brain activity.
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Subjects

Seven (7) participants (one female and six males, 23~43 years old) volunteered
to take part in this experiment. They were all students or faculty members, and
only two of them had the experience of using electroencephalography to collect
brain signals. Before starting the experiment each participant was fitted with the
electrodes while allowing him /her to spend more than 20 minutes reading books

of interest to become familiarized to the electrodes’ presence.

Procedure

During each session, 12 EEG channels (using sintered Ag/AgCl electrodes) were
recorded by the 5200 Series DigitalAmp System?. The recording was performed
from 10 placements, namely: Fpl, Fp2, F3, F4, T3, T4, P3, P4, O1, O2 according
to the international 10-20 standard (see Figure 2.12). The placement Fz was
used as the ground, and the signal from the left ear placement Al was used as
the reference signal. The contact impedance between all electrodes and the skin
was kept below 5[kQ]. The subjects were shown a total of six motions lasting
14 seconds each by the humanoid robot ASKA while their brain activity was
recorded with 16-bit quantization at a sampling frequency of 200[H z].

The subjects were asked to relax as much as possible and not to think of
anything in particular when recording the baseline period, which lasted for 14[sec].
They were also told that they would be asked about the robot’s movements and
that they had to watch carefully when the robot was moving. This is important
because I need to make sure that the subjects attended to the task. After the
observation of each bodily expression, the subjects described their impression in
their own words. Having no constraint to express themselves, the subjects gave
more details about their impression. These answers were used in categorizing the
impressions into pleased or unpleased based on Shaver’s original classification of

emotions [53].

2The 5200 Series DigitalAmp System is a trademark of NF Corporation, Yokohama.
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Table 2.3. Significant change in low-alpha power according to observed motion
categories at every electrode and for each subject. (+: significant change p < .05;

—: no significant change)

Subject | Category Electrodes

Fpl Fp2 F3 F4 T3 T4 P3 P4 O1 O2

Pleasant - - - + - - - - + -

! Unpleasant - + - +  + - - - + -

Pleasant - - + - - - - - - -

2 Unpleasant - - - - - _ + + _ _

Pleasant - - - - +  + - + - -

; Unpleasant - - - - - - - - - -

Pleasant - - - - - + + + - -

! Unpleasant - - - - - - + +  + -

Pleasant - - - - - + - - - -

° Unpleasant - - - - + + + + - -

Pleasant + + - - + 4+ - - - -

0 Unpleasant - - - - + 4+ - - - -
Pleasant - - + - + + - - - +

! Unpleasant - - + - - - - + - -
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Results

Table 2.2 shows the self-reporting result about the subjects’ impressions after
observing every robot bodily expression. There is a strong correlation between
these results and the expression results, reported previously in 2.4.1, with a
coincidence level of 71%. For example, BE4 impression was considered to be
unpleasant by up to 81% and its expressiveness was considered unpleasant by
94%. This is also the case for BE1 where its impression of being pleasant is 65%,
and it expression of being pleasant is 100%. The same could be said for BE3, with
a pleasant impression of 68% and a pleasant expression of 94%. The case of BEG6 is
different from the previous ones. While its expression was considered unpleasant
by 82%, its impression shows the small rate of 53% for being unpleasant and
47% for being pleasant. It is still inclined to the unpleasant side. However,
its pleasant effect cannot be explained knowing that this bodily expression was
created to express anger. The last case of BE2 shows a big difference between
its 59% neutral expression and its 70% unpleasant impression. This suggests
that bodily expressions with a neutral expression can be perceived negatively
and generate an unpleasant impression.

The analysis of EEG data using the method described in 2.3.4 allowed the
calculation of the power L,, of low-alpha band in each electrode channel and
for each bodily expression. It also allowed the calculation of the power L; of
the same band for the baseline period. Comparing L,, and L, reveals the effect
of observing a bodily expression in the change in the power of low-alpha band
for each electrode channel. Table 2.3 summarizes the results of this change in
power, where only statistically significant change is indicated with the symbol
+. It can be seen that significant effect is mostly present at locations T3 and
T4, then at P3 and P4, and finally at F3 and F4. Knowing that these positions
are located above the superior temporal sulcus (STS) and above some specific
parts of the prefrontal cortex (PFC) confirms previous research findings about
the activation of STS in the perception of social cues [8, 1], and the activation

of the mirror neurons located in the PFC during learning and imitation tasks
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[49]. Some reaction can also be seen at other locations, for instance O1 and Fp2
for subject 1, O2 for subject 7, Fpl and Fp2 for subject 6. The reaction at
locations Fpl and Fp2 are thought to be the result of blinking activity during
the recording process, since these electrode positions are the closest to the eyes.
It is important to assert that no preprocessing was done to avoid data with eye
blinking artifacts. This approach was adopted because the goal is to conduct
this investigation in natural conditions, where blinking activity is normal and
unavoidable. The reaction at locations O1 and O2 could be explained by the fact
that during the vision process the visual cortex gets activated and this activation
is usually captured at locations O1 and O2.

Nevertheless, the reactive locations were not always the same among different
observers, suggesting high individual differences. A generalization cannot be
derived at this point about the reaction of brain locations according to the
category of the bodily expression that is being observed. However, the presence
of a reaction is confirmed and another approach is necessary to achieve a
more comprehensive result. On the other hand, there is a need to assess the
repeatability of similar reactions from the same observer when he/she is shown

the same bodily expression.

2.4.3 Repeatability of reaction in brain activity

The goal of this experiment is to confirm that the results obtained in the
impression experiment (see 2.4.2) are consistent over time. In other words, to
make sure that brain reaction does happen all the time and in the same way if a

subject observes the same bodily expression several times.

Subject

One (1) student (male, 32 years old) volunteered to take part in this experiment.
The subject was fitted with an electro-cap® and was given about 30 minutes to

familiarize him to the presence of the cap.

3Electro-Cap is a trademark of Electro-Cap International Inc., USA.
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Procedure

The subject participated in ten recording sessions. In each session, he was shown
two bodily expressions, one for each category of bodily expressions, executed
by the humanoid robot ASKA. Showing only representative bodily expressions
is sufficient since the goal is to confirm the repeatability of brain reaction.
Each bodily expression lasted for 14[sec], and the baseline period was recorded
during the 14[sec|] before the execution of each bodily expression. BE1 was
chosen as a representative of pleasant bodily expressions, and BE4 was chosen as
representative of unpleasant bodily expressions. On one hand, BE1 was chosen
because its expressiveness evaluation as pleasant (100%) was the highest among
all the bodily expressions. Its impression evaluation (65%) was high enough
to make sure it will have the desired effect on the observer, even though its
impression was evaluated as the lowest among all the pleasant bodily expressions.
In this case, the advantage was given to the expressiveness evaluation over
the impression evaluation. On the other hand, BE4 was chosen because its
expressiveness evaluation as unpleasant (94%) was the highest among all the
bodily expressions. Its impression evaluation (81%) was also the highest among
all the bodily expressions, making it the perfect candidate to represent unpleasant
bodily expressions.

The recording was performed from 12 placements of an electro-cap, namely:
F3, F4, C3, C4, P3, P4, F7, F8, T3, T4, T5, and T6 (see Figure 2.12), using
the Polymate AP1132* EEG recording device. The sampling frequency was set
to 200[Hz] and the impedance was kept below 5k€2. As a result of the experiment
in 2.4.2, the placements Fpl, Fp2, O1, and O2 were omitted, since they were
shown to have an insignificant reaction. On the other hand, new placements were
introduced, namely: F7, F8 C3, C4, T5, and T6, in order to get a more detailed
coverage of the sensory-motor cortex as well as uncovered regions in the previous

experiment.

4Polymate AP1132 was developed by Digitex Lab. Co. Ltd, and is commercialized by TEAC
Corporation, Tokyo.
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Bodily Expressions

Figure 2.13. Mean alpha power calculated for the ten trials and for electrodes C3
and C4. (x: p < .05)

During the recording of the baseline period, the subject was asked to relax
as much as possible and to think of nothing in particular. To confirm that the
subject attended to the task, he was told that he would be asked about the robot’s
movements and that he had to observe carefully. After the observation of each
bodily expression, the subject was asked to explain the difference between the

recently observed bodily expression and the one just before it.

Results

Analysis of the collected data, using the method described in 2.3.4, resulted in
identifying the electrode channels of placements C3 and C4 as the most reacting
for this subject. Figure 2.13 shows the mean power of low-alpha frequency band
calculated from the 10 trials for the electrode placements C3 and C4: where C3
reacted significantly to the pleasant bodily expression and C4 reacted significantly
to the unpleasant bodily expression.

Figure 2.14 shows the overall result for the two bodily expressions by
averaging the power change for all the electrodes over the 10 trials. The difference

in means is significant between BE1 and BE4. Since BE1 is representative of

31



4 ................................................................
g Bl
e} *
a3 b R T
o & I 1
5—8 LT
© =
23 o —t—=
o ®
C'Q I N e
.G_JE
oL
2& I N e
8
O B s
Y
-5
BE1 BE4

Bodily Expressions

Figure 2.14. Change in alpha power from the baseline using all electrodes, for

each of the considered unpleasant and pleasant motions. (x : p < .05)

pleasant bodily expressions and BE4 is representative of unpleasant ones, this
result suggests an overall significant decrease in the power of low-alpha frequency
band for pleasant motions, and a significant increase in power of low-alpha
frequency band for unpleasant ones. This confirms that the change in low-alpha
power happens every time the observer watches a bodily expression, and that this

change is inversely proportional to the category of the observed bodily expression.

2.4.4 Discussion

The results presented in Table 2.1 confirmed the appropriateness of the
expressiveness of the generated bodily expressions used in the experimental study.
These show the unpleasant bodily expressions were classified as such, and pleasant
bodily expressions were also classified as such. During every experiment, the order
of which the bodily expressions were shown was random so as not to allow the
user to predict the nature of the next bodily expression. Although the subjects
were not told anything about the bodily expressions, their answers agreed with
the hypothesis. This implies that people tend to see bodily expressions in similar

ways, which facilitates their interpretations and use in interactions. It can be
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thought that there exist a basic knowledge that is shared among us to allow proper
interpretation of similar expressions, although this knowledge is highly affected
by the environment factors of culture and ethnics. The bodily expressions were
treated by the users as if they were performed by a human even though it was the
robot ASKA which actually performed them. It would be interesting to compare
the interpretation of the same bodily expressions executed by both humans and
robots to evaluate the existence of interpretation differences.

On the other hand, Table 2.2 correlates to a high extent with the results
of Table 2.1. Here I can infer that observing a pleasant bodily expression will
result in a pleasant impression on the observer and vice versa. This means that
the observer is affected by what he sees even though the actor is just a robot.
This effect on the observer is shown to be present in his/her brain activity with
the result presented in 2.4.2. Although, a generalization could not be concluded
from these results, the presence of a reaction in brain activity was proven. It is
important to acknowledge that the most reactive electrode position were F3, F4,
T3, T4, P3 and P4, which are located above the STS and PFC. This supports
the claims that STS and mirror neurons get activated during the perception of
social cues and the observation of movements [1, 8], and that this can be used
effectively in the implementation of Brain-Machine Interfaces [42, 63].

Finally, it was necessary to confirm the repeatability or the reproducibility of
the same reaction in similar conditions. The results showed that the low-alpha
power level over all brain activity decreased or increased in accordance to the
category of the observed bodily expression. Particularly the most significant
reaction was present at electrode positions C3 and C4. These positions are
close to the premotor and motor cortices. Due to the low spatial resolution
of EEG, it is difficult to assert precisely which part of the brain is responsible for
these reactions. However, current research findings confirm that the STS has an
important role in the interpretation of social cues [1], and that mirror neurons

are important during learning and imitation tasks [49].
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2.5. Conclusion

In this chapter, I investigated the relation between bodily expressions and their
impressions on an observer. I showed that this problem is necessary to advance the
current status of human-robot interaction. The necessity comes from the fact that
tacit information has been neglected in previous research work. For this reason, I
showed that this study is related to and can benefit from the achievements of two
fields: brain-machine interfaces and cognitive science. I started by generating
six bodily expressions, then I classified them into two categories according to
their expressiveness, namely: pleasant and unpleasant. Their expressiveness
was confirmed statistically with the result of a self-reporting experiment where
a number of volunteers answered questionnaires about the bodily expressions.
Afterwards, I conducted an experiment to assess the impressions on the observers
while watching the considered bodily expressions by measuring their brain
activities using electroencephalogram (EEG). The method adopted for spectral
analysis revealed a correlation between the power level of low-alpha band (8-
11[H z]) and the category of the observed bodily expression. The reproducibility
or repeatability of this band’s reaction was confirmed with a third experiment
where a subject observed candidate bodily expressions for each category.

These results have opened the opportunity to utilize the change in the power
level of low-alpha frequency band to examine the capacity of a humanoid robot
in activating the social perception system in a human observer. A challenging
problem that rises from this result is about the degree to which such reaction
appears when observing robots with different human-like physical and behavioral
characteristics. The understanding of which robot properties are necessary or
sufficient to activate the social perception system in an observer is of particular
interest.  Another important direction is to define computational methods
which can assess and recognize the impression category from the observer’s
brain activity, and this is the issue considered in the next chapter. Potential
applications include customized interface adaptation to the user, interface

evaluation, or simple user monitoring.
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Chapter 3

Recognition of Impression from

Brain Activity

3.1. Introduction

Extracting useful information and recognizing specific mental states from brain
activity is a challenging research problem. This is mainly due to the high presence
of noise in the treated data, especially EEG measurements. This problem is
generally viewed as the problem of reduction of the high-dimensionality present
in the EEG data. Research on the development of Brain-Machine Interfaces
(BMI) has grown toward the classification of user’s intents from EEG patterns
[66]. A major problem with BMI implementations is the adaptive training of
classifiers. There are mainly two reasons for using adaptive training processes.
The first one is that the subjects cannot maintain exactly the same mental states
for a long time. EEG patterns recorded at different times vary to a big extent
even if the subject performs the same task. The second reason is that it is hard
to provide sufficiently large data sets for the training of classifiers. This can only
be solved by adopting an adaptive and unsupervised training policy [58].
Unsupervised training methods are important, as their training does not
require prior knowledge, for instance labeled data segments. They can also

adapt to the variability of EEG patterns by adopting a continuous learning
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approach. In the following sections I will start by an overview of existing methods
for data exploration. Then I will explain about human bodily expressions in
contrast to robot bodily expressions. After that, I will introduce an unsupervised
classification method that can help in the recognition of the impressions on an
observer of bodily expressions of robots and humans alike. Finally, an improved
version of this method is explained and shown to be more robust against noise,

variance in EEG patterns and individual differences.

3.2. Related research

Several graphical means have been proposed to visualize high-dimensional data
item directly, by linking each dimension to an aspect of the visualization and
integrating the result into a single figure [59, 27]. These methods can be used to
visualize any kind of data by viewing the data items themselves or vectors formed
of some descriptors of the data set [62].

The simplest way to visualize data sets is to plot a descriptor of each item, i.e.
a two dimensional graph in which the dimensions are enumerated on the x-axis
and the corresponding values on the y-axis (the histogram is a good example
of such a representation). An alternative is a scatter plot where two original
dimensions of the data are chosen to be portrayed as the location of an icon, and
the rest of the dimensions are depicted as properties of the icon (the pie diagram
is a good example of such a representation).

The major drawback of these methods when dealing with high-dimensional
data is that they do not reduce the amount of data. If the data set is large, then
the display consisting of all data items will be incomprehensible. Fortunately,
there exist other kinds of methods which try to reduce the amount of data using
some sophisticated calculations. Representative examples of these methods will

be described in the following.
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3.2.1 Clustering methods

The goal of clustering is to reduce the amount of data by grouping or categorizing
similar data items together. The main motivation for using these methods is to
provide automated tools to help making taxonomies [4, 18, 28, 55, 61]. These
methods may also be used to minimize the effects of human errors during the
process. Clustering methods can be divided into two basic types: hierarchical
and partitional clustering. Within each type there exist several subtypes and

different algorithms for cluster extraction.

Hierarchical clustering proceeds successively by either merging smaller
clusters into larger ones, or by splitting larger clusters. The clustering methods
differ in the rule by which it is decided which two small clusters to merge or which
large cluster to split. The final result of the algorithm is a tree of clusters which

shows how they are related to each other.

Partitional clustering attempts to directly decompose the data into a set
of disjoint clusters. The criterion function that needs to be minimized may
emphasize local structure of the data, for instance by assigning clusters to
peaks in the probability density function. The global criteria involve minimizing
dissimilarity between items belonging to the same cluster, while maximizing
dissimilarity between different clusters.

A commonly used partitional clustering method is the K-means clustering
[40]. In this method, the criterion function is the average squared distance of
data items x;, from their nearest centroids,

Ex = Ek: [k — Mg i

: (3.1)

where ¢ (xj) is the index of the centroid that is the closest to x;. One of the
algorithms for minimizing the cost function begins by initializing a set of K
cluster centroids denoted by m;,¢ = 1,..., K. The positions of m; are then
adjusted iteratively by first assigning the data samples to the nearest clusters

and then re-computing the centroids. The iteration is stopped when Ej does not
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change significantly anymore. Equation (3.1) is also used in a related method
called vector quantization [12, 14, 41]. This method’s goal is to minimize the
average quantization error, which is the distance between a sample x and its
representation me,).

Two major problems exist with the clustering methods. First, the interpreta-
tion of the clusters may be difficult. Most algorithms prefer certain cluster shapes,
so they assign data to clusters of such shapes even if there were no clusters in
the data. It is essential to analyze whether the data set exhibits a clustering
tendency and the result of cluster analysis needs to be validated as well [27]. The
second problem is that the choice of the number of clusters is critical; different
kinds of clusters may emerge when K is changed. Proper initialization of the
cluster centroids may also be crucial; some clusters may even be left empty if
their centroids were initialized far from the distribution of data.

Clustering can be used to reduce the amount of data and to induce categoriza-
tion. However, the generated categories would need another simplification since

their representation is still high-dimensional.

3.2.2 Projection methods

Projection methods are meant to reduce the dimensionality in the data. Their
goal is to represent the input data items in a lower-dimensional space in such a
way that certain properties of the structure of the data set are preserved as best

as possible.

Linear projection methods use linear transformations to project the input
data into a lower-dimensionality space. This category of methods include the
principal component analysis (PCA) and the projection pursuit method.

PCA [22] can be used to display the data as a linear projection on a subspace
of the original data space that best preserves the variance in the data. It is a
standard method in data analysis; it is well understood and effective algorithms

exist to compute the projection.
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In projection pursuit [10, 11], the data is projected linearly with a projection
that reveals as much as possible the non-normally distributed structure of the data
set. This is done by assigning a numerical ”interestingness” index to each possible
projection and by maximizing this index. The definition of interestingness is
based on how much the projected data deviates from normally distributed data

in the main body of its distribution.

Nonlinear projection methods give a representation for each data point in
the lower-dimensional space and try to optimize these representations so that the
distances between them would be as similar as possible to the original distances of
the corresponding data items. The methods differ in how the different distances
are weighted and how the representations are optimized.

Multidimensional scaling (MDS) [60, 67, 32] refers to a group of methods that
is widely used especially in behavioral, econometric, and social sciences to analyze
subjective evaluations of pairwise similarities of entities, such as commercial
products in a market survey. The starting point of MDS is a matrix consisting
of the pairwise dissimilarities of the entities. It is most often used to create a
space where the entities can be represented as vectors, based on some evaluation
of the dissimilarities of the entities. Often linear projection onto a subspace
obtained with PCA is used. The key idea is to approximate, using a nonlinear
projection method, the original set of dissimilarities with distances corresponding
to a configuration of points in an Euclidean space.

Principal curves [19] are a generalization of PCA to form nonlinear curves.
They are smooth curves defined with the property that each point of the curve
is the average of all data points that project to it, i.e., for which that point is
the closest point on the curve. Intuitively speaking, the curves pass through the

”center” of the data set.
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3.2.3 Hybrid methods

These methods are a special case that tries to combine the properties of the
previously introduced two categories. They can be used at the same time to
reduce the amount of data by clustering and to reduce their dimensionality by
a nonlinear mapping onto a lower-dimensional space. This category of hybrid
methods includes the self-organizing maps (SOM) [35] and its variants. A detailed
description of SOM and one particular variant will be given in the following
sections.

Before that, a description of an additional data set used in my study is given in
the next section. This data set will extend the conclusion drawn in the previous
chapter that brain activity reacts to robot bodily expressions. A comparison
between brain reaction to robots and humans would cover the span of possibilities
considered for physical characteristics that activates the social perception circuits

in the observer’s brain.

3.3. Human bodily expressions

There is little knowledge of the difference in the effect left on a person when
observing humans and when observing robots [26, 1, 52]. Most of the literature
report either cases and there is, to my knowledge, no previous work that tried
to draw on the parallels between the two cases. Therefore, it is interesting to
investigate similarities and differences in the recognition of the category of the
impression left on the observer for both cases.

In order to collect brain activity data when subjects are observing human
bodily expressions, I conducted an experiment similar to the one for the
expressiveness of robot bodily expressions (see 2.4.2). The goal is to evaluate

the impression on the observer of the bodily expressions described in 2.3.3.
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Figure 3.1. Overview of the experiment where a subject observes human bodily

expressions.

3.3.1 Data acquisition
Subjects

Seven (7) participants (males aged between 21 and 23) volunteered to take part
in this experiment. They were student at the Graduate School of Information
Science. They were all familiar with the experiment since they did participate
in the previous one about impressions of robot bodily expressions. Their
brain activity was collected with an EEG measurement device and they were
familiarized with the presence of the electrodes by letting them spend about 20
minutes reading books or surfing the Internet. An overview of the experiment

where the subjects observed human bodily expressions is shown in Figure 3.1.
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(a) BE1 (b) BE3 (c) BE5

Figure 3.2. The three human bodily expressions generated to represent pleasant
expressions (happiness, surprise, and happiness respectively) at successive time

frames.
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(a) BE2 (b) BE4 (c) BE6

Figure 3.3. The three human bodily expressions generated to represent
unpleasant expressions (neutral, sadness, and anger respectively) at successive

time frames.
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Procedure

The human bodily expressions that were shown to the subjects were prepared
beforehand. A volunteer in a black tight suit performed these bodily expressions.
He had a black cover on his head to make sure that no facial expressions get to
the observer (see Figure 3.2 and Figure 3.3). These bodily expressions were
a reproduction of the bodily expressions described in 2.3.3 and were recorded
on HDTV! video tapes. During the experiment, the bodily expressions were
projected on a display big enough to ensure that the projected images of the
human performer was as close as possible to real size.

Similar to the experiment in section 2.4.2, the recording was obtained from
12 electrode locations, namely: F3, F4, F7, F8, C3, C4, P3, P4, T3, T4, T5,
T6, using the Polymate AP1132 EEG recording device. The sampling frequency
was 200[H z] and the impedance was kept below 5[k€2]. The subjects were shown
a total of six bodily expressions lasting 10[sec| each. During the recording of
the baseline period, the subjects were asked to relax as much as possible and to
think of nothing in particular. To help them achieve this state of mind, they
were shown for 10[sec] the empty space of the room where the recording of the
bodily expressions was performed. Moreover, in order to confirm that the subjects
attended to the task they were told that they would be asked about the bodily
expressions and that they had to observe carefully. After each observation, they
were asked to explain the difference between the bodily expressions they just
observed and the previous ones.

The collected data were to be used, along with the data for robot bodily
expressions, in the recognition of the impressions using computational methods

described in the next sections.

'HDTV stands for High Definition television a.k.a High-Vision which allows the recording

of a high resolution video stream.
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3.4. Recognition with Self-Organizing Maps

3.4.1 Self-Organizing Maps (SOM)

The Self-Organizing Map or Kohonen Network is a neural network algorithm well
suited to represent and generalize input data with an underlying structure that is
not easily grasped [35]. Its main characteristic is that it can be used at the same
time to reduce the amount of data by clustering and to project the non-linear
data into a lower-dimensional, usually 2D, map.

The unsupervised and competitive learning process tries to represent the high-
dimensional data rather than classify them. It is an adaptive process where the
neurons of the map gradually try to become sensitive to different categories of
input data [2]. Different neurons specialize in representing different types of
inputs. This specialization is enforced by competition among neurons. When
a d-dimensional input vector x = (z1,...,x4) arrives, the neuron m,. that best

represents it wins the competition and is adapted to represent it even better:
m, = argmin (D (x, m;)), (3.2)
(3

where D is some measure of similarity or distance between the input vector x and
a neuron m. The winner neuron’s neighbors also adapt and gradually specialize to
represent similar inputs. Both the metric relation and the probability density of
the input data is approximated during this process, allowing the classification of
newly collected data. Each neuron in the map is represented by a d-dimensional
vector m = (my,...,my) called a prototype vector (a.k.a. weight vector or
codebook vector). During the learning process, an arbitrary prototype vector,

m;, is updated at time ¢ by:
Am; (t) = o () he; (8) [x (t) —my (1], (3.3)

where « () is a decreasing learning rate factor, and h.; () is a decreasing neigh-
borhood function between m,, the prototype vector winning the competition, and

the prototype vector m,;.
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Distance Matrix Labeled Map

00 0e@

0.0

B : baseline

@ hits level M : motion observation

Figure 3.4. Example of the distance matrix and the labeled map of a SOM
trained with data representing two categories, one recorded during the baseline,
and the other when a subject was observing BE2. The labeling of the map using
representative data revealed the clusters where the input data of each category

is mapped.
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Once the learning process has terminated, a labeling of the map can be done by
using a relatively small set of data samples previously labeled. An example of
a trained and labeled SOM is shown in Figure 3.4. The resulting map could
be used to monitor the topographic patterns related to specific events [31], or it
could be used in the recognition of newly obtained data. The similarity between
a d-dimensional feature vector x and a prototype vector m in the learned map is

calculated using a variant of Minkowski metric defined by:

P

Dp (x,m) = (z_:l wj |z; — mj|P) , (3.4)

where w; is a weighting factor which can be used to give preference for certain
features over others (0 < w; < 1). This proved helpful and important in the
semi-assisted learning of the data structure that was necessary for the EEG
data. When P = 1, equation (3.4) becomes a weighted Manhattan metric, and
when P = 2, it becomes a weighted Euclidean distance. The latter is selected
as a similarity measure to use in SOMs. The usual approach in using SOM
starts by preprocessing the selected data. Then, a feature extraction method is
specified and used. After that, the map is calculated using competitive learning.
Finally, the resulting map is used for recognition. It is important to note that
in practical applications the selection and preprocessing of data is extremely
important, because unsupervised methods only illustrate the structure in the data
set; and the structure is highly influenced by the features chosen to represent data
items [33]. In the following section, I will show how I used SOM in the recognition

of bodily expressions executed by a humanoid robot and by a human.

3.4.2 Feature selection

In the recognition of the impressions of robot bodily expressions I use the same
data as in 2.4.2. The data consists of all signals collected at a sampling rate
of 200[H z| from 10 EEG placements for 2x14 seconds and for each one of the
seven subjects. For the recognition of human bodily expressions I use the data

described in 3.3. This data consists of all signals collected at a sampling rate of
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Figure 3.5. Preprocessing EEG data for feature extraction is done by calculating

a moving average of overlapping windows of predefined length (3[sec]).

200[H 2| from 12 EEG placements for 2x10 seconds and for each one of the three
subjects.

To prepare the collected data for the training of the map, I calculate the
moving averaged power spectra of 10x2x7=140 signal sources for the first case
and 12x2x3=168 signal sources for the second case. As shown in Figure 3.5,
[ apply a 3[sec|(600-point) Hanning window on the signal with a 1[sec](200-
point) overlap. The windowed 3[sec| epochs are further subdivided into several
1[sec](200-point) sub-windows using the Hanning window again with 1/2[sec](100-
point) overlap, each extended to 256 points by zero padding for a 256-point
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fast Fourier transform(FFT). A moving median filter is then applied to average
and minimize the presence of artifacts in all the sub-windows. The resulting
moving averaged power spectrum is then reduced to six (6) features by integrating
the spectral values weighted by six raised-sine shaped windows with an area
normalized to unity. Consequently, the feature components do not need to be
normalized. In a similar way to the work of Joutsiniemi et al., the weighting
windows are overlapping to ensure a smooth change of the features in accordance
with the change in power spectrum [31]. These windows cover the following

frequency bands:

e Delta: 0 — 4[HZ]

Theta : 4 — 8[H z]

Low-Alpha : 8 — 11[H?z]

High-Alpha: 11 — 13[Hz|

Beta : 13 — 30[H 2]

Gamma : 30 — 50[H 2]

Notice that the alpha band is divided into low and high band. This will allow us to
give a different importance coefficient to each frequency band feature, according to
its contribution in recognizing the effect of bodily expressions. The resulting time
series of EEG power spectrum features consisted of a vector of 10 x6 = 60 features
every 2[sec| time intervals for the robot bodily expression case, and a vector of
12 x 6 = 72 features every 2[sec] time intervals for the human bodily expression.
In each training run, 80% of the resulting feature vectors was randomly chosen.

The remaining 20% was used to test the recognition performance.

3.4.3 Training parameters

The 2D map to be learned using the collected features is arranged as a 2D lattice,

with each location containing a 60 or 72 dimensional prototype vector. During
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Table 3.1. Recognition rates for the case of robot bodily expressions when using
data from different sources (subjects)
Number of sources 1 2 3 4 5 6 7
Recognition rate (%) | 79.5 742 708 712 702 686 65.2

the learning process or the self-organization, the importance coefficient w;, used
in the similarity metric (3.4), were taken as 0.5, 0.5, 1.0, 0.9, 0.5, and 0.3 for
the features delta, theta, low-alpha, high-alpha, beta, and gamma, respectively.
Higher importance was given to the alpha-band feature with an emphasis on the
low-alpha band feature, as a result of its sensitivity to the category of bodily
expression observed by subjects (see Chapter 2). On the other hand, the higher
frequency gamma band feature was given the lowest importance coefficient, since
it was not explicitly proven to react to social cues [8].

After training the map, an approximation of the probability density of the
input data is reached, generating clusters which can be identified as associated
to any of these experimental condition: observing unpleasant bodily expression,

observing pleasant bodily expression, or baseline condition.

3.4.4 Recognition when observing Robot bodily expres-

sions

Eighty percent (80%) of the data was used for map training and the remaining
20% was used for evaluation. The resulting recognition rate was of 65.2%, divided
into 62.8% for data associated to the observation of unpleasant bodily expressions,
59.3% for data associated to the observation of pleasant bodily expressions, and
73.5% for data associated to the baseline. Clearly, the rate of 65.2% is not
satisfactory since this is a low rate to rely on when making a decision. However,
when data from a single subject was used in the learning process the recognition
jumped to the high rate of 79.5%. The previously obtained low rate of 65.2% is
explained by the existence of conflicting data collected from different subjects.

In order to understand the effect of using data from different sources or
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Table 3.2. Recognition rates for the case of human bodily expressions when using
data from different sources (subjects)
Number of sources 1 2 3 4 5 6 7
Recognition rate (%) | 78.9 741 716 708 70.1 69.7 66.5

subjects on the recognition rate, all possible combinations of data sources were
used to learn several maps and the recognition rates were calculated. The change
in recognition rates is summarized in Table 3.1. It can be noticed that the
addition of a new source of data decreases the recognition rate by about 5% for
the first two additions. However, the rate is almost constant when the number of
data sources was 3, 4 and 5. But again the rate decreased by a lower factor when
adding more sources to reach the value of 65.2%. This decline is explained by
the existence of individual differences in the reaction to bodily expressions and
probably even the interpretation. The influence of individual differences is also
observed in the previous experiment about impressions (see 2.4.2). To cope with
this problem, it is recommended to train several SOMs with a small number of

data sources and use them all in the recognition process.

3.4.5 Recognition when observing Human bodily expres-

sions

For this case also, 80% of the data was used for training and the remaining 20%
was used for evaluation. The resulting recognition rate was 66.5%, divided into
62.2% for data associated to the observation of unpleasant bodily expressions,
60.8% for data associated to the observation of pleasant bodily expressions, and
76.5% for data associated to the baseline. This rate is better than the 65.2%
rate achieved with the data of robot bodily expressions as shown in Table 3.2.
However, the general figure does not differ much between the two cases suggesting
a similar reaction of brain activity.

Using data from different sources showed degradation of the recognition rate,

similar to the result of the robot, see Table 3.2. The addition of one source
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Figure 3.6. Difference in the recognition rates when using different data sources

for the robot and the human cases.

resulted in a decrease of 4.8%, then a decrease of 2.5% after adding a third
source. The change was somehow stable for the next three additions, but then
decreased by 3.2% after the last addition. This result supports the fact that
individual differences remain present even though the observed bodily expressions

were performed by a human.

3.4.6 Discussion

The recognition rates of the category of the observed bodily expression, regardless
of the performer, was about 80% when using data from only one subject. However,
this rate decreased significantly when additional data from other subjects was
used in the training process. To cope with this problem it would be interesting to
train one SOM for each data source, and then combine the resulting SOMs into a
bigger structure for the recognition task. Adopting this approach could result in
keeping a high recognition rate while taking into consideration all the data that
was collected so as not to loose the generality of the solution.

It is interesting to note that the average difference between the recognition

rates for robot and human cases is relatively small as shown in Figure 3.6. This
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proves that SOMs are suitable to the generalization of the effect in the input EEG
signals regardless of whether this effect is generated by a human or a robot. Even
if differences appear clearly when analyzing raw EEG data, the SOMs succeed in
eliminating these differences and keeping only the important information. From
this result we can also say that regardless of whether the performer is a robot or

a human the brain reaction is similar and so is the recognition rate.

3.5. Recognition with Growing Hierarchical Self-

Organizing Maps

3.5.1 Growing Hierarchical Self-Organizing Maps (GH-
SOM)

The GHSOM[9] enhances the capacity of the basic SOM in two ways. It adopts an
incrementally growing version of SOM, which does not require the user to specify
the size beforehand, and it adapts to the hierarchical structure in the data by
creating a tree-like hierarchy of independent SOMs. The growing capability is
meant to represent the data in a homogeneous way on the horizontal plane, while
the hierarchy building capability is meant to represent, in more details, data that
is cluttered in specific parts of the map. Figure 3.7 shows an example of a
SOM that was trained and labelled using data of subject! in experiment 2.4.2.
The existence of clusters is emphasized by the gray-scale representation of the
distance matrix of the SOM. The labeling sheds some light on the nature of these
clusters but it is very complicated to understand the structure of the represented
data. It can be noticed also that in some parts of Figure 3.7 (for instance
the upper right part) there is a concentration of big amounts of data, making it
almost impossible to grasp the details of the structure at these places. Figure
3.8 on the other hand, represents a GHSOM trained and labeled using the same
data. The resulting GHSOM gives a much better insight into the structure of the

data, where specialized clusters are well indicated and deeper levels give more
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Figure 3.7. SOM trained and labelled using data of subject 1 in experiment 2.4.2,
where the distance matrix values are highlighted with gray-scale graduations. The
BL label represents baseline units, the NG label represents units associated with
unpleasant bodily expressions, and the PL label represents units associated with

pleasant bodily expressions.
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Figure 3.8. GHSOM trained and labeled using data from of subjectl in
experiment 2.4.2, where similar gray-scales represents SOMs at the same
hierarchical level. The BL label represents baseline clusters, the NG label
represents clusters associated with unpleasant bodily expressions, and the PL

label represents clusters associated with pleasant bodily expressions.
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details to big data clusters, for instance the upper right part.

The basic idea is to create a first layer (root layer) of the hierarchy with
one SOM. This SOM is trained with the conventional training algorithm for A
steps. Then, a decision is made if a new row or column needs to be inserted
on this level (the growing step). After that, a decision is made if the quality of
the map needs to be refined on the next hierarchical level (the expansion step).
So, a new 2x2 SOM is added if necessary for every unit on this first layer. The
newly created SOMs are trained with the input vectors that were mapped on the
parent unit. The prototype vectors of the newly created SOMs are initialized to
mirror prototype vectors of neighboring units of the parent unit. When neither
the growing step nor the expansion step is necessary then the training process is
terminated for the GHSOM.

Size adaptation

The growing step is decided based on the evaluation of whether the current SOM
represents the input data properly. The quantization error is used to measure the
current representation level or the dissimilarity of all input data mapped onto a
particular unit. For each unit 7 the mean quantization error is calculated by:

1

A > Dy (my,xy), (3.5)

keU;

myge; =

where D is the Euclidean distance measure defined by (3.4), U; is the set of all
input vectors mapped to the unit i and |U;| # 0. The starting point is to calculate
the overall dissimilarity of the input data with the single unit SOM layer 0. This
unit is assigned a prototype vector my computed as the average of all the input

data using:
1
my = ] > Ox; (3.6)

i€
where 7 is the input data set. The dissimilarity level is then calculated by:
1

|I| Z D2 (mg, Xi) (37)

1€l

mqgep =

56



The minimum quality of data representation of each SOM will be specified as
a fraction of mgey indicated by parameter 7,. All SOMs must represent their
respective data subsets at a mean quantization error smaller than the fraction 7,

of mqey, i.e. every unit ¢ should satisfy the following criterion:
MQE,, <1, -mqeg (3.8)
where MQFE,, is the mean quantization error for the SOM m, calculated by:

_ L > mge;, (3.9)

MQE,, =
M| i

and M is the set of all the units of the map m. If the inequality 3.8 is not fulfilled
for the map m then a new row or column is inserted. The unit e with the largest

mgqe; is called the error unit, while its most dissimilar unit d has the smallest

mqe; among all the neighbors of e; i.e.:

e = arg max ( > D, (mi,xj)) , Cn#0 (3.10)
‘ JECm
and
d = argmax (D; (m, —m;)), m; €N, (3.11)

where C,, C Z is a subset of input data associated to the map m, and N, is a
set, of the neighboring units of unit e. The new row or column is then inserted
between the units e and d. The prototype vectors of the newly inserted units are
initialized as the average of their corresponding neighbors.
Alternatively, the quantization error QFE defined by:
QEnm = qei, (3.12)
ieM

may be used to evaluate the quality of data representation of a map m. Where
qe; is defined by:

qe; = Z Dy (m;, xg) (3.13)

keU;

In this case, the map growing criterion becomes:

QFE,, < T14-qeg (3.14)
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Hierarchy adaptation

The expansion step consists of checking for every unit whether the input data
mapped to it is inhomogeneous or showing dissimilarities. Therefore, new units
are needed to provide more space for better data representation. Sometimes high
dissimilarities are not present but rather a big amount of data is concentrated in
one unit, resulting in a low level of representation. This step starts by testing the

fulfillment of one of the following criterion:
mqe,, < T, - mqegy (3.15)

or

qem < Te - g€ (3.16)

depending on which evaluation criteria is adopted for the representativity of input
data. Each unit ¢ not fulfilling the criterion will be subject to expansion by
creating a new SOM belonging to a sub-layer that will receive as training input the
data subset that was mapped to the parent unit :. The prototype vectors of the
newly created 2x2 SOM are initialized to mirror the average of the neighboring
units of the parent unit. This can be thought of as moving the parent vector in
the data space by a fraction toward the selected neighbors; three neighbors for
each of the four corner units.

The training is repeated again for all the SOMs on the new layer, followed by

an evaluation for growing and expansion until no further action is necessary.

3.5.2 Feature selection

Similar to feature selection in the SOM case (see section 3.4.2) the same approach
is adopted for the preprocessing of EEG data in order to prepare enough data
points for both the training and the testing steps. For the recognition of the
impressions of robot bodily expressions I used the data described in 2.4.2, which
was recorded from 10 electrode placements for twice 14 seconds and for each of
the seven subjects. As for the recognition of the impressions of human bodily

expressions [ used the data described in 3.3, which was recorded from 12 electrode
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Table 3.3. Recognition rates with GHSOM for the case of robot bodily expressions
when using data from different sources (subjects)
Number of sources 1 2 3 4 5 6 7
Recognition rate (%) | 83.65 84.95 83.84 83.30 82.68 82.65 82.06

placements for twice 10 seconds and for each of the three subjects. The resulting
time series of EEG power spectrum features consisted of a vector of 60 features
every 2[sec| time interval for the robot bodily expressions case, and a vector of 72
features every 2[sec] time interval for the human bodily expressions case. In each
training run, 80% of the resulting feature vectors were randomly chosen; while

the remaining 20% were used to test the recognition performance.

3.5.3 Training parameters

The dimensions of the prototype vectors associated to each unit in the learned
GHSOM were 60 and 72 for the robot and the human case respectively. During
the learning process, the importance coefficient w;, used in the similarity measure
(3.4), were kept similar to the ones used for SOM training (see 3.4.3). Their values
were 0.5, 0.5, 1.0, 0.9, 0.5, and 0.3 for the features delta, theta, low-alpha, high-
alpha, beta, and gamma, respectively. Giving higher importance to the alpha
frequency bands due to their proven reaction to bodily expressions; while other
frequency bands were given lower importance coefficients.

Once the training is finished, clusters appeared on the resulting GHSOMs.
These ones were labeled using a small amount of data previously labeled by hand.
The resulting clusters were associated with one of the experimental conditions:
observing pleasant bodily expression, observing unpleasant bodily expressions, or

baseline condition.
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Table 3.4. Recognition rates with GHSOM for the case of human bodily
expressions when using data from different sources (subjects)

Number of sources 1 2 3 4 5 6 7
Recognition rate (%) | 83.20 83.95 83.90 83.76 83.43 83.19 82.87

3.5.4 Recognition when observing Robot bodily expres-

sions

Eighty percent (80%) of the data was used for training and the remaining 20%
was used for evaluation. The resulting recognition rate was of 82.06%, divided
into 85.24% for data associated to the observation of pleasant bodily expressions,
64.29% for data associated to the observation of unpleasant bodily expressions,
and 96.65% for data associated to the baseline. The rate of 82.06% is satisfactory
since the data used for training and recognition was not cleaned of artifacts. This
is very important because in order to adapt the robot’s behavior there is a need to
identify correctly the mental activity and to take into consideration the existence
of noisy data.

In order to understand the effect of using data from different sources or
subjects on the recognition rate, all possible combinations of data source were
used to learn several GHSOM maps and the recognition rates were calculated.
The change in recognition rates is summarized in Table 3.3. It can be noticed
that the gradual addition of new sources decreases the recognition rate by a very
small amount. There is a small change in the recognition rate with an average
variation of about 0.37%. The individual differences in the reaction to bodily
expressions are believed to be the cause of this variation in the recognition rate,

but their effect is very small.
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3.5.5 Recognition when observing Human bodily expres-

sions

In this case also 80% of the data was used for training and the remaining 20%
was used for evaluation. The resulting recognition rate was of 82.87%, divided
into 81.4% for data associated to the observation of pleasant bodily expressions,
78.2% for data associated to the observation of unpleasant bodily expressions,
and 89.0% for data associated to the baseline. This is slightly better than the
82.06% rate achieved with the data of robot bodily expressions as shown in Table
3.3. However, the general figure is still similar between the two cases suggesting
the similarity in brain activity reaction.

Using data from different sources showed no big change in the recognition
rate, similar to the result for the robot case (see Table 3.4). The addition of one
source resulted in an increase of the recognition rate by 0.75%, then a decrease by
0.05% resulted after adding a third source, and this goes on in almost a constant
value. The first increase is explained as the effect of having more data for the
training. This results in a better representation of the input data and thus a
better recognition rate. It can be concluded that the amount of data used when
considering only one source was not enough to represent properly the underlying
structure in the input data. However, after adding a third source the recognition
rate decreased as expected due to individual differences. Nevertheless, this rate
was still higher than the rate of one data source, confirming again the under

representativity of the amount of data extracted from only one source.

3.5.6 Discussion

It is interesting to notice that the average difference between the recognition rates
of robot and human cases is relatively small as shown in Figure 3.9. It is even
smaller than the same result obtained with SOM. This proves that GHSOMs are
suitable for the generalization of the effect in the input EEG signals regardless
of whether this effect is generated by the observation of a human or a robot

performer. Even if differences appear clearly when analyzing raw EEG data,
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Figure 3.9. Difference in the recognition rates with GHSOM when using different

data sources for the robot and the human cases.

the GHSOMs succeeded in eliminating these differences and keeping only the
important information.

The recognition rates of the category of the observed bodily expression,
without considering the performer, were of about 83% when using data from
only one subject. This rate remained relatively stable when additional data from
other subjects was used in the training process. Compared to the results obtained
with the conventional SOM, the results obtained with GHSOM are more robust
to individual differences (see Figure 3.10). This is a characteristic of prime
importance that could lead to a user-free recognition of brain reactions to similar
stimuli. The hierarchization of several SOMs into a bigger structure allowed the
handling of inherent differences in the input data due to individual differences,

while keeping the recognition rate at its highest level.

3.6. Conclusion

In this chapter, I presented two computational methods to use for the recognition
of the impressions of bodily expressions. Both the self-organizing maps (SOM)
and the growing hierarchical self-organizing maps (GHSOM) were used for the
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recognition. It was shown that SOM achieved relatively high recognition rates
considering that the data which was used was not filtered for noise elimination.
However, the GHSOM gave better results and improved the recognition rate by
almost 5%, while giving an insight about the underlying structure of the data.
Its growing characteristic gave it the ability to spread and smooth data on one
layer of the hierarchy; whereas, its expansion characteristic gave it the ability
to represent details about the complicated parts of the data. The result is that
GHSOM can cope perfectly with the individual differences present in the reaction
of the data collected from different subjects, while maintaining an almost constant
recognition rate.

To complete the results of the previous chapter about brain reaction to robot
bodily expressions, an additional experiment was conducted to collect data when
subjects observed human bodily expressions. This data was also used for the
recognition task and gave similar results to the data collected for robot bodily
expressions. This confirms that an observer gets impressed in a similar way when
observing bodily expressions regardless of the whether the performer is a human
or a robot. Although this result is different from previous research results which
state that the studied parts of the human brain react only to biological motions,
it suggests that robots are close enough to humans such that they generate the

same effect. This brings up an interesting interrogation about the characteristics
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in a performer that activate the social perception mechanism in humans.

Future research directions should focus on improving the recognition rate to a
higher degree and to try to recognize a refined classification of bodily expressions.
A link with human motion styles [24] would be interesting to provide more details
about the bodily expressions. Another direction would be to link the bodily
expressions to emotions or affect[46]. There is an extensive work on generating

emotional motions [3, 39] that could be incorporated in this research.
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Chapter 4
Conclusion and future work

The goal of this research work is to investigate the relation between bodily expres-
sions executed by a robot and their impression on an observer. Understanding this
relation and being able to assess its state would allow the creation of an adaptive
behavior for robots; and thus maximize their probability of being accepted within
society. The most direct approach to study this problem is to use reliable
physiological measurements that react to the observation of bodily expressions.
The brain happens to be the organ involved in the interpretation of observed
events. Thus analyzing measured brain activity was necessary for this study.
I adopted the relatively new but well established framework of brain-machine
interface (BMI) to tackle this problem. This involved answering the following
key questions: What kind of visual stimuli to generate? What measurement
technique to use? Which features to select? Where to record from in the brain?
and finally, How to infer the internal state of the brain?

In chapter two, I investigated the relation between bodily expressions and
their impressions on an observer. I started by generating six bodily expressions,
then I classified them into to two categories according to their expressiveness
(pleasant and unpleasant). Their expressiveness was confirmed statistically with
a self-reporting experiment where a number of volunteers answered questionnaires
about the bodily expressions. Afterwards, I conducted an experiment to assess

the impressions on the observers while watching the considered bodily expressions

65



by collecting the observer’s brain activity using electroencephalogram (EEG).
Previous research findings in the field of cognitive science were used to determine
the brain regions that needed to be monitored. The superior temporal sulcus
(STS), which reacts to social cues, and the mirror neurons located in the
prefrontal cortex (PFC) that get activated during imitation and learning tasks,
were the regions of interest in this study. The method adopted for spectral
analysis revealed a correlation between the power level of low-alpha (8-11[H z])
frequency band and the category of the observed bodily expression. The
reproducibility or repeatability of this band’s reaction was confirmed with a
third experiment where a subject observed candidate bodily expressions for each
category. Also, the reaction of the power level of low-alpha frequency band proved
to be inversely proportional to the category of the observed bodily expression.

In chapter three, I presented two computational methods to use for the
recognition of the impression of bodily expressions. Both the self-organizing maps
(SOM) and the growing hierarchical self-organizing maps (GHSOM) were used
for the recognition. It was shown that SOM achieves relatively high recognition
rates considering that the data used is not filtered for noise elimination. However,
the GHSOM gives better results and improves the recognition rate by almost
5%, while giving an insight about the underlying structure of the data. Its
growing characteristic gives it the ability to spread and smooth data on one
layer of the hierarchy; whereas, its expansion characteristic gives it the ability
to represent details about the complicated parts of the data. The major result
is that GHSOM can cope perfectly with the individual differences present in the
reaction of the data collected from different subjects, while maintaining an almost
constant recognition rate. Also, the non-artifact-free data, which were used in the
training as well as the recognition, showed the effectiveness of this method when
planning to close the BMI loop and give a biofeedback to the observer according
to his/her estimated state of mind.

To complete the results of chapter two about brain reaction to robot bodily
expressions, an additional experiment was conducted to collect data when

subjects observed human bodily expressions. This data was also used for the
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recognition task and gave similar results to the data collected for robot bodily
expressions. This confirms that an observer gets impressed in a similar way when
observing bodily expressions regardless of the whether the performer is a human
or a robot.

Future research directions should focus on the degree to which brain reaction
appears when observing robots with different human-like physical and behavioral
characteristics. The reaction of the power level of low alpha frequency band
has opened the opportunity to utilize this feature to examine the capacity
of a humanoid robot in activating the social perception system in a human
observer. Furthermore, the understanding of which robot properties are necessary
or sufficient to activate the social perception system in an observer is of particular
interest, since regardless of the performer of the chosen bodily expressions, the
robot or the human, there was no significant difference between the recognition
rates for both cases.

Moreover, there is a need to focus on improving the recognition to a bigger rate
and to try to recognize a refined classification of bodily expressions. Depending
on the requirements of the considered application the number of the bodily
expression categories will vary and thus influence the overall recognition rate. A
link with human motion styles [24] would be interesting to provide more details
about the bodily expressions. Another direction would be to link the bodily
expressions to affect[46]. There is an extensive work on generating emotional

motions [3, 39] that could also extend this research work.
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