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GA and Application to Routing Problem

in Mobile Ad Hoc Network ∗

Eiichi Takashima

Abstract

In the real world, there are various combinatorial optimization problems (called

COPs, hereafter) which belong to NP-hard class. Therefore, if the problem size be-

comes large, it is difficult to find an optimal solution in practical time. Then, as one of

the approximation methods, genetic algorithm (called GA, hereafter) has been studied.

GA is an approximation method for COPs, imitating evolution mechanism in nature.

However, it is known that GA still requires large computation cost. Therefore, parallel

GA has been studied. Parallel GA is a technique to compute a semi-optimal solution

at high speed by parallel computation on multiple computers.

This study focuses on island model GA (called IGA, hereafter) which is a kind of

parallel GA, and treats two main topics. The first topic treats design and implementa-

tion of the self-adaptive mechanism for IGA to improve its exploration efficiency. The

second topic treats a method to apply IGA to a multicast routing problem in mobile

ad-hoc network (called MANET, hereafter).

In the first topic, we propose a new method which can automatically adjust optimal

parameters for IGA such as mutation rate, population size (i.e., the number of candidate

solutions) and so on. In order to reduce labor required to adjust parameters, adaptive

GAs (called AGA, hereafter) which automatically adjust parameters have been pro-

posed. Most of the existing AGAs adjust only a few parameters at one time. Although

several AGAs can adjust many parameters simultaneously, these algorithms need large

computation cost. In this thesis, we propose a new adaptive method. The proposed
∗Doctoral Dissertation, Department of Information Processing, Graduate School of Information
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method has following features: adjustment for multiple parameters, reasonable com-

putation cost and easy parallelization. The proposed method adopts a mechanism to

simultaneously adjust parameter values while IGA is searching a solution, by dividing

the whole search process to multiple phases and alternately executing meta-GA for

deriving parameter values and IGA for searching a solution with the derived values, in

each phase. When multiple computers with different performances synchronize, faster

computer may have to wait until slower computer finishes its task. To avoid this prob-

lem, we have developed a mechanism to allow different computers (corresponding to

islands of IGA) to proceed asynchronously so that search efficiency is improved by

reducing idle time. Through experiments, we confirmed that performance of the pro-

posed method outperforms simple GA with standard parameter values, and is close to

simple GA with manually adjusted optimal parameter values. Also we confirmed that

the proposed method can reduce idle time on computers which have different compu-

tation powers.

In the second topic, we propose a method which efficiently constructs a semi-

optimal multicast tree in consideration of QoS using IGA in MANET. Generally, it

is known that the problem to compute the optimal multicast tree satisfying multiple

QoS constraints belongs to NP-hard class. Therefore, approximation methods to find

QoS multicast tree using GA have been proposed. However, there is a problem that the

computation and communication resources on a mobile terminal are too restrictive on

MANET. Since existing methods are based on centralized control, it is difficult to ap-

ply them to MANET environments. In this thesis, we propose a new multicast routing

method for MANET. The proposed method constructs the semi-optimal multicast tree

satisfying QoS constraints for any given objective using IGA. In order to increase scal-

ability, the proposed method first divides the whole MANET to multiple clusters, and

computes a tree for each cluster and a tree connecting all clusters. Each tree is com-

puted by IGA in some of the mobile terminals. Through experiments using network

simulator, we confirmed that the proposed method outperforms existing on-demand

multicast routing protocol in terms of some useful objectives on power consumption

and tree stability.

Keywords:

island model GA, self-adaptation, mobile ad hoc network, multicast routing, QoS,

distributed computation
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1. Introduction

In the real world, there are various combinatorial optimization problems (called COPs,

hereafter) such as parcel pickup and delivery problem, processor allocation problem

for multiple concurrent tasks with deadlines and computation problem for optimal data

delivery path in network, etc. It is known that most of these COPs belong to NP-hard

class. In problems of NP-hard class, computation time for finding optimal solution

increases exponentially with the problem size. Therefore, if the problem size becomes

large, it is difficult to find an optimal solution in practical time. Then, as one of the ap-

proximation methods, genetic algorithm (called GA, hereafter) has been studied. GA

is an approximation method for COPs, imitating evolution mechanism in nature. In

GA, one point of the search space for the target problem is represented by a charac-

ter string called a chromosome. An individual has a chromosome and a fitness value

(which indicates how good solution it is) with a given evaluation function. First, GA

randomly generates a set of individuals (called population, hereafter). The population

is evolved by repeating evaluation, selection, crossover and mutation. Consequently,

a semi-optimal solution is obtained. However, it is known that GA still requires large

computation cost until obtaining a good solution. Therefore, parallel GA has been

studied. Parallel GA is a technique to compute a semi-optimal solution at high speed

by parallel computation on multiple computers. Parallel GA is classified into an is-

land model, a cellular model, etc [28]. In island model GA (called IGA, hereafter), it

prepares multiple populations, and they are assigned to different computers. In each

computer, GA applies GA operations to population, and searches for a semi-optimal

solution within the population. Since some individuals are exchanged between com-

puters periodically, those computers share information of superior individual as well as

individuals with diverse chromosomes, and can search for a better solution efficiently.

In this thesis, we focus on IGA and deal with two main topics. The first topic

treats design and implementation of the self-adaptive mechanism for IGA to improve

its exploration efficiency, which simultaneously searches for a solution and adapts pa-

rameters required for GA such as population size (i.e., the number of individuals),

mutation rate and so on. The second topic treats a method to apply IGA to a prob-

lem in the real world. The problem is a multicast routing problem in mobile ad-hoc

network (called MANET, hereafter).

First, in Chapter 2, we describe a new method which can automatically adjust op-
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timal parameters for IGA [32, 33, 34].

For efficient execution of GA, many parameter values (e.g., crossover rate, muta-

tion rate and so on) have to be set appropriately. However, optimal parameter values

depend on a target problem and genetic operators. Also, the optimal value for each

parameter depends on the other parameter values. Accordingly, adjusting these values

tends to be tedious and time-consuming. In order to address this problem, several stud-

ies about setting of suitable parameter values have been proposed [9, 14]. However,

the existing studies are targeting some specific problems, and in order to apply these

studies to a new problem with different characteristics, analysis for the problem is re-

quired. To cope with the above problems, many adaptive GAs (called AGAs, hereafter)

which automatically adjust parameter values have been proposed. Most of the existing

AGAs adjust only a few parameters at one time [3, 16, 39].

Meanwhile, some of AGAs such as meta GA [40] and agent-oriented self-adaptive

GA (A-SAGA, hereafter) which is the direct ancestor of the proposed method [24] can

adjust many parameter values simultaneously. Meta-GA is traditional method. Meta-

GA is a GA which searches the optimal parameter values for other GA (i.e., GA for

solving the target problem). A-SAGA is a method which applies meta-GA to IGA.

Since A-SAGA has the mechanism of island model GA and can evaluate as many pa-

rameters as the number of islands in parallel, A-SAGA can adapt parameters more

efficiently than Meta-GA. Since these algorithms solve a problem repeatedly, they are

effective in the case of solving many mutually similar instances in the same problem

continuously. However, since meta-GA and A-SAGA solve a problem repeatedly in

order to adjust parameter values, they still need large computation cost and are unsuit-

able in the case of solving only one instance of a problem.

In Chapter 2, we propose self adaptive island model GA (called SAIGA, hereafter).

SAIGA has following features: simultaneous adjustment for multiple parameters, rea-

sonable computation cost and easy parallelization. SAIGA adopts a mechanism to

simultaneously adjust parameter values while IGA is searching a solution, by dividing

the whole search process to multiple phases and alternately executing meta-GA for

deriving parameter values and IGA for searching a solution with the derived values,

in each phase. With this improvement, SAIGA solves a problem without repeating

searches from scratch as in meta-GA. SAIGA can efficiently find a solution with au-

tomatic parameter adjustment, even when solving only one instance of a problem (For
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example, it is helpful when a circuit layout is designed by trial and error.).

When multiple computers with different performances synchronize, faster com-

puter may have to wait until slower computer finishes its task. To avoid this problem,

we propose asynchronous SAIGA (called A-SAIGA, hereafter) which has a mecha-

nism to allow different computers (corresponding to islands of IGA) to proceed asyn-

chronously so that search efficiency is improved by reducing idle time. In order to eval-

uate effectiveness of the proposed method, we measured search efficiency for various

problems. The results showed that performance of the proposed method outperforms

simple GA with standard parameter values, and is close to simple GA with manually

adjusted optimal parameter values. Also, we confirmed that the proposed method can

reduce idle time on computers which have different computation powers.

Second, in Chapter 3, we describe an application of IGA to solving a multicast rout-

ing problem in MANET [35, 36]. Recent progress of wireless communication tech-

nology and small but powerful computing devices has enabled important and useful

applications of MANET, such as information dissemination to pedestrians and vehi-

cles in urban areas or disaster areas even without infrastructure. Among many types of

information for dissemination, video and other streaming data would be most impor-

tant. For this purpose, several multicast protocols for MANET have been proposed, to

dynamically construct multicast tree. In order to realize multimedia communication on

MANET, a lot of QoS routing protocols have been proposed so far. As unicast routing

methods which treat a single QoS constraint, [7, 22, 23, 30, 41] have been proposed.

Several QoS multicast routing methods on MANET have also been proposed [6, 31].

However, these existing methods are not designed to compute multicast tree satisfy-

ing two or more QoS constraints at the same time or optimized for a given objective

such as minimization/maximization of power consumption, stability, the number of

receivers, and so on. Generally, it is known that the problem to compute the optimal

multicast tree satisfying two or more QoS constraints is NP-hard. Since, in MANET,

topology dynamically changes as node moves, it is necessary to reconstruct a multi-

cast tree in accordance with topology change. Moreover, it is necessary to consider

that computation and communication capabilities of mobile terminals in MANET are

limited. So, it is hard to solve the problem to construct/maintain the optimal multicast

tree in MANET.

There is a study on routing techniques to construct a multicast tree which simulta-
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neously satisfies two or more QoS constraints and is semi-optimal for a given objective

[21]. However, this existing method supposes a single computation node which knows

topology information of the whole MANET and computes multicast tree in a central-

ized manner. So, they do not scale against the number of nodes due to communication

cost for gathering the topology information and computation cost. Therefore, if the

number of nodes of MANET increases, it becomes difficult to compute a tree on mo-

bile node in scarce computation resources.

In Chapter 3, we propose a new QoS multicast routing method for MANET called

HQMGA (hierarchical QoS multicast routing using GA in MANET). HQMGA allows

MANET nodes to dynamically construct a semi-optimal multicast tree satisfying sev-

eral QoS constraints at the same time for any given objective. HQMGA is scalable

against the number of nodes and can treat arbitrary objective for optimization such

as minimization of total power consumption in MANET, maximization of tree stabil-

ity, and so on. HQMGA reduces the cost for constructing multicast trees consisting

of many mobile nodes so that the computation and communication can be executed

within capability of each mobile node. To do so, it divides MANET into multiple

clusters, and makes them construct sub-trees covering their clusters in parallel, and

computes a tree which connects the sub-trees of all clusters. Consequently, one semi-

optimal multicast tree is constructed with them. Here, HQMGA abstracts the topology

information spanning all clusters so that a node can compute the tree connecting all

clusters within small computation power and communication amount. For compu-

tation of semi-optimal trees, we developed IGA-based algorithm which can run on

mobile terminals. We also designed and developed protocols for gathering topology

information and for distributing the computed tree. Through experiments, we show

that our algorithm can compute the multicast tree by mobile computer in reasonable

time, and the computation time of the sub-tree for each cluster and the tree connecting

all clusters was within 3.3 seconds by laptop PCs when MANET includes one thou-

sand of nodes. We confirmed that the control traffic required for gathering topology

information is small enough. We also implemented HQMGA on a network simulator

GTNetS [27] and compared the superiority of the computed trees with one of existing

QoS multicast routing protocols, AQM [6]. Consequently, we confirmed that HQMGA

outperforms AQM in terms of some useful objectives on power consumption and tree

stability.
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2. Improvement of Exploration Efficiency of Island Model

GA

2.1 Introduction

Genetic Algorithm (called GA, hereafter) is a combinatorial optimization method im-

itating natural evolution of creatures. For efficient execution of GA, many parameter

values such as mutation rate and crossover rate have to be set appropriately. How-

ever, the optimal parameter values depend on the target problem and genetic operators.

Also, the optimal value for each parameter depends on the other parameter values. Ac-

cordingly, adjusting these values tends to be tedious and time-consuming. In order to

address this problem, adaptive GAs (called AGA, hereafter) which automatically ad-

just parameters have been proposed. However, most of the existing AGAs adjust only

a few parameters at one time. Although several AGAs can adjust many parameters

simultaneously, these algorithms need large computation cost.

In this Chapter, we propose self adaptive island model GA (called SAIGA, here-

after) which adjusts multiple parameter values while searching for the solution of the

given problem so that the total computation cost is reduced.

We also propose asynchronous SAIGA (called A-SAIGA, hereafter) which elimi-

nates waiting time for synchronization among islands so that search efficiency is im-

proved by reducing idle processor time.
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2.2 Related works

De Jong has found appropriate parameter values for five test functions by experiments

[9]. The values are 50 to 100 for population size, 0.6 for crossover rate, and 0.001 for

mutation rate per bit. This set of values is called the rational parameters, and is widely

used for GAs.

In order to find the effective range of parameter values, Goldberg et al. have pro-

posed the control map [14]. The control map indicates the range of parameter values in

which search is conducted effectively. In [14], Goldberg et al. proposed and analyzed

the control map using the one max problem. But, these analyses are based on some

specific problems, and thus a new control map must be made when applied to other

problem with different characteristics.

Several self AGAs which automatically adjust the parameter values while searching

for the solution have been proposed. Meta-GA is a GA which searches for the optimal

parameter values using the results of ordinary GA execution as fitness values [40]. The

advantage of meta-GA is that it can adapt any combination of parameter values. But,

it requires huge computation power, since repeated searches are needed for the same

problem.

Hinterding et al. have proposed an AGA which runs three GAs with the different

numbers of individuals in parallel [17]. The process of search is divided into epochs.

At each epoch, fitness values of elite individuals are compared, and the number of

individuals is changed according to the result. For example, if the GA with the largest

number of individuals yielded the best result, all GAs will use a larger number of

individuals in the next epoch.

Bäck has proposed an AGA [4] whose individual has its own mutation rate encoded

in its gene. Individuals with good mutation rates are expected to survive. However,

since individuals with high mutation rates die in high probability, only individuals with

low mutation rates tend to survive in the last phase of search. Actually, literature [13]

points out that this algorithm shows only low performance in the last phase of search.

Espinoza, et al. have proposed another AGA [11] whose individuals can indepen-

dently search solutions using local search. In this algorithm, search efficiency per unit

number of evaluations has been improved by adapting a ratio between computation

costs of crossover/mutation and local search.

An AGA proposed by Krink, et al.[19] determines crossover rate and mutation
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rate of each individual by its location in 2-dimensional lattice space. Individuals are

expected to move toward a location with better parameters. The algorithm keeps di-

versity of these parameter values by limiting the number of individuals in each lattice.

Kee, et al. has improved meta-GA so that it performs a presearch before performing

the main search [18]. After the presearch, the population are classified into several

categories. Each subpopulation is investigated using several tens of parameter sets. In

the main search, the algorithm classifies the population, and uses a parameter set which

was effective in the investigation after presearch.

Tongchim et al. have proposed an AGA which adapts mutation rate and crossover

rate [39]. This GA is based on IGA. As the search progresses, increases in average

fitness of each island are compared to those of neighbor islands. If an increase of a

neighbor island is larger, parameter values are changed according to that of the neigh-

bor island.

Alba et al. measured search efficiencies of synchronous IGA and asynchronous

IGA [1]. The results showed that asynchronous IGA is always more efficient than

synchronous IGA. Berntsson et al. investigated convergence of population on asyn-

chronous IGA [5]. They revealed that convergence can be sped up by making immi-

gration more frequent. In these studies, parameter values are not adapted.

7



Figure 1. Evolution of set of parameter values in A-SAGA

2.3 Proposed Algorithm

In this section, we first outline the proposed algorithm. Then we explain the notations

used in this Chapter. After that, we describe the details of SAIGA and A-SAIGA.

2.3.1 Outline

As described earlier, meta-GA contains two types of GAs. We call the GA which

solves a given problemthe low level GA, and the GA which searches the optimal set

of parameter values for low level GAthe high level GA.

Once a set of parameter values is obtained with meta-GA, similar problems can be

efficiently solved using the parameter values. But, if there is only one problem to solve

at one time, meta-GA requires a larger computation power to solve the problem.

We previously proposed agent-oriented self-adaptive GA (A-SAGA, hereafter) [24].

The structure of A-SAGA is similar to meta-GA, but its low level GAs are replaced

with islands of IGA. A-SAGA assigns different sets of parameters to each island in

order to evaluate them. With this mechanism, A-SAGA can evaluate as many param-

eters as the number of islands in parallel, and thus it is more efficient than meta-GA.

But, since A-SAGA requires repeated searches for a given problem, it requires larger

computation power if there is only one problem to solve.

A-SAGA divides the whole search into several eras. Each era is a predefined num-

8



Figure 2. Evolution of set of parameter values in SAIGA

ber of consecutive generations. The high level GA of A-SAGA has different popu-

lations for each era, and it searches for an efficient set of parameter values for each

era, as shown on Fig. 1. This means that even if a good set of parameter values is

found in an era, it is not handed to other eras. On the other hand, SAIGA starts the

search of each era using populations of the previous era, as shown in Fig. 2. With this

improvement, SAIGA solves a problem without repeating searches from the start.

SAIGA can be executed on a single computer, but it can also be executed on multi-

ple computers by assigning each island to a computer. But, SAIGA requires synchro-

nization between all islands when it generates new sets of parameter values. Thus, if

some computers have lower processing power than others, the faster computers have

to wait for slow computers during synchronization (see Fig. 3). Asynchronous SAIGA

eliminates this synchronization wait so that it reduces idle time of computers and thus

search efficiency is improved (see Fig. 4).

2.3.2 Notation

In this Chapter, we use the following notations.

The number of evaluation per era, the number of islands, the maximum population

size for high level GA, and the number of generations for the high level GA are denoted

asevaluation count per era, island max, high pop maxandhigh generation max,

respectively. The number of islands is assumed to be the same as the number of avail-

able processors.

These constant values and the parameter values for the high level GA have to be

9



Figure 3. Behavior of SAIGA on computers with deferent performance

Figure 4. Behavior of A-SAIGA on computers with deferent performance
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specified by the user. But once appropriate values for the low level GA are obtained,

these values can be used when applied to other problems, as in meta-GA. In the evalu-

ation experiments, we obtained one set of values using a certain problem, and used the

same values for other problems.

An individual consists of a chromosome and a fitness value. The chromosome and

fitness value for a high level GA individualp are denoted asp.x⃗ andp.fit, respectively.

When adaptingl parameter values,p.x⃗ is an l-dimensional vector. The population

and population size for a high level GA att-th generation is denoted asPt and |Pt|,
respectively. The set of parameter values for a high level GA is denoted asw⃗. The

states of immigration and communication to islandi are denoted asE[i] and R[i],

respectively.

A low level individual q consists of a chromosomeq.x⃗ and a fitness valueq.fit.

The population on islandi at g-th generation is denoted asQi
g. Note thatg is different

on each island. The set of parameter values assigned to islandi is denoted as⃗vi. Im-

migration to and fromi are denoted asqi
immig andqi

emig, respectively.f i is a variable

expressing the elite fitness value for islandi.

f is a function which projects a chromosomep.x⃗ for a high level GA to a set⃗vi of

parameter values. Its inverse function is denotedf−1.

2.3.3 SAIGA

SAIGA is a combination of a high level GA, which is a Simple GA, and a low level GA,

which is an IGA. The parameter values which can be adapted by SAIGA are limited

to values which can be evaluated within each island (such as population size, mutation

rate, choice of crossover method and choice of selection type), and parameters which

cannot be evaluated within an island (such as the number of islands or immigration

rate) cannot be adapted.

The pseudo code for the high level GA and low level GA of SAIGA are shown on

Algo. 1 and Algo. 2, respectively.

11



Figure 5. Overview of SAIGA
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Algorithm HighLevelGA()
1 t :=0; //t: Generation counter for high level GA

2 j:=0; //j: The number of islands which finished search for the era

3 For i := 1 to island max Do

4 Island(i) start the process

Substituteqi
immig for a dummy value

5 Generate a set⃗vi of parameter values using random values

6 Island(i) Send (⃗vi, qi
immig) to the process

7 Next

8 While t < high generation max Do

9 t := t + 1; Pt := ∅;

10 For i := 1 to island max Do

11 R[i] := 0; //R[i] is set 1 iff both a fitness value and a set of parameter values are

received from islandi, and set 0 otherwise.

12 Next

13 While trueDo

14 If (v⃗i, fit, qi
emig, i) are received fromIsland(i) and R[i] = 0 Then

// qi
emig: an immigrated individual from islandi

15 j := j + 1;R[i] := 1;

16 p.x⃗ := f−1(v⃗i); // a set of parameter values is converted to a chromosome

17 p.fit := fit; Pt := Pt ∪ {p};

18 If i = island max Then

19 q0
immig := qi

emig;

// qi
immig: retains immigrating individual to islandi

20 Elseqi+1
immig := qi

emig;
21 EndIf

22 EndIf

23 If j:=island max Then Break ; EndIf

24 EndWhile

25 P ′
t := HighPopGeneticOperation(Pt, w⃗);

//Mutation, crossover and selection operators are applied based on the set of parameter

w⃗, and substituteP ′
t for the result.

26 For i:=1 to island max Do

27 Choose an element ofP ′
t randomly, and substitutep for it. P ′

t := P ′
t - {p};
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28 v⃗i := f(p.x⃗); //Convert to a set of parameter values

29 Send (⃗vi, qi
immig) to processIsland(i).

30 Next

31 EndWhile

32 Terminate all processes

End /*HighLevelGA*/

Algorithm 1. Pseudo code of high level GA in SAIGA

Algorithm Island(i)
1 f i := 0; // The highest fitness value in islandi

2 g:= 0; // g:The number of generations for islandi

3 Initialize all individualsq ∈ Qi
g in islandi

4 While trueDo

5 While trueDo

6 If (v⃗i, qi
immig) are received fromHighLevelGA() Then Break ; EndIf

// qi
immig retains immigrating individual to islandi

7 EndWhile

8 (Qi
g+1, fit, f i, qi

emig) :=

ExecuteIsland( Qi
g, v⃗i, f i, qi

immig, i);

// EvolveQi
g usingevaluation count per era of evaluations

// fit: fitness value of set⃗vi of parameter values

// qi
emig:Immigration individual to other island

9 Send(v⃗i, fit, qi
emig, i) to HighLevelGA() process

10 g:= g + 1;

11 EndWhile

End /* Island*/

Algorithm 2. Pseudo code of low level GA

First, SAIGA generates random sets of parameter values for each island (lines 5–6

on Algo. 1). Each island performs GA operations using a predetermined number of

14



Figure 6. Overview of A-SAIGA

evaluations (lines 6–8 on Algo. 2). Then, the search efficiencies are observed for each

island, and are returned as the fitness value of the set of parameter values for the island.

The high level GA evolves the set of parameter values using the obtained fitness values

(lines 14–25 on Algo. 1). Newly generated sets of parameter values are assigned to

each island (lines 29 on Algo. 1). Each island continues search without initializing

its population. The search is performed using a predetermined number of evaluations,

again. Each of such cycle is called an era.

2.3.4 A-SAIGA

The pseudo code for the high level GA of A-SAIGA is shown on Algo. 3.

Introducing the generation model of the Steady-state GA

The high level GA for SAIGA uses the mechanism of SGA. We introduced the
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mechanism of the Steady-state GA in order to make SAIGA asynchronous (lines 11–

31 in Algo. 3). The Steady-state GA replaces individuals partially at every generation.

In the proposed method, every time the high level GA receives data from one island, it

generates one new set of parameter values.

Algorithm HighLevelGA()
1 P0 := ∅;t := 0; //t retains the number of generations for high level GA

2 For i := 1 to island max Do

3 Start processIsland(i)

4 Substituteqi
immig for a dummy value

5 Generate a set⃗vi of parameter values using random values

6 E[i] := 0; //E[i] retains state of immigration to islandi

7 Next

8 While t < high generation max Do

9 t := t + 1;

10 While trueDo

11 If (v⃗i, fit, qi
emig, i) is given fromIsland (i) processThen Break ; EndIf

12 // qi
emig: an immigrated individual from islandi

13 EndWhile

14 If |Pt−1| > high pop max Then

15 Pt−1 := Pt−1 − {oldest of(Ph)};

// Remove the oldest individual

16 EndIf

17 p.x⃗ := f−1(v⃗i); // // a set of parameter values is converted to a chromosome

18 p.fit := fit; Pt := Pt−1 ∪ {p};

19 If i = island max Then

20 q0
immig := qi

emig; E[0] := 1;
// qi

immig: retains immigrating individual to islandi

21 Else

22 qi+1
immig := qi

emig; E[i + 1] := 1;
23 EndIf

24 pparent1 := HighIndivSelection(Pt, w⃗);
// A parent individual is obtained by selection

25 pparent2 := HighIndivSelection(Pt, w⃗);
26 poffspring := HighIndivGeneticOperation( pparent1 ,pparent2, w⃗);
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// A child individual is obtained by crossover and mutation

27 v⃗i := f(poffspring.x⃗); // Convert to a set of parameter values

28 If E[i] = 1 Then E[i] := 0;
29 ElseSubstituteqi

immig for a random value

30 EndIf

31 Send (⃗vi, qi
immig) to processIsland(i)

32 EndWhile

33 Terminate all processes

End /*HighLevelGA*/

Algorithm 3. Pseudo code of high level GA in A-SAIGA

Introducing FIFO deletion

Introducing the generation model of the Steady-state GA leads to mixed individ-

uals, some recently evaluated and some evaluated many generations before, in the

population. This is unfavorable, since individuals evaluated long before may survive

for many generations even though the evaluation criteria for the high level GA change

as the search proceeds. Accordingly, we also introduced FIFO deletion proposed by

De Jong [10] into the proposed method (line 15 in Algo. 3). This is a method which

deletes the oldest individual if the population size exceeds a predefined limit.

Evolution of individuals in asynchronous SAIGA

Whether a search can be performed efficiently using a set of parameter values de-

pends on the state of the individuals. If we can make the populations of the islands

similar to each other, similar search performance should be obtained using one same

set of parameter values. In SAIGA, the populations of the islands are made similar by

the immigration mechanism. Also, the number of evaluations for each island is made

identical by synchronization. But, A-SAIGA does not synchronize between islands,

and this may somewhat affect to the search performance. But, it is known that if im-

migration is frequent, the populations of the islands becomes similar in asynchronous

IGA with different number of evaluations for each island [5]. Thus, the influence of

eliminating synchronization can be minimized by making immigration frequent.
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2.4 Experiment

2.4.1 Experimental Conditions

In order to evaluate the proposed method, we conducted experiments under the follow-

ing conditions.

For the high level GA, we used a mutation operator using the Gauss distribution,

crossover between each parameter, and roulette selection. The parameter settings for

the high level GA are as follows: crossover rate, mutation rate, scaling rate and the

number of islands are 0.8, 0.6, 1:5 and 10, respectively. In the experiments, we used

Simple GA as the low level GA of the proposed method for simplicity of analysis.

The adapted parameters for the low level GA are the crossover rate, mutation rate, the

number of individuals in an island, and tournament size. De Jong’s standard parameter

values include the crossover rate, mutation rate, and population size. We added the

tournament size, which adjusts the selection pressure, to these parameters.

The individuals in the high level GA are coded as follows. Since the number of

parameters in the experiment is four, the number of elements in chromosomea.x⃗ for

the high level GA individuala is four. Each elementa.xi in a.x⃗ is expressed in 16-bit

fixed point decimal number between 0 and 1(0 < a.xi < 1, a.xi ∈ ℜ).

Eacha.xi is transformed into the parameter value space by using following func-

tion:

ni = ⌊2 · exp(8 · a.x1 · log(2))⌋.

si =

{
⌊a.x2 · 8 + 2⌋ if ni > ⌊a.x2 · 8 + 2⌋,
2 if ni ≤ ⌊a.x2 · 8 + 2⌋.

ci = a.x3.

mi = 0.00005 · exp(a.x4 · log(1/0.0001)).

whereni, si, ci, andmi denote population size, tournament size, crossover rate, and

mutation rate respectively, after transformation.

We used the following problems to evaluate the proposed method: the minimization

problem of the Rastrigin function, lin105 [26] of Traveling Salesman Problem (TSP),

the deception problem, and la38 [20] of Job-Shop Scheduling Problem.

The results are average values of 300 times of executions. The number of evalua-

tions for each problem is6.4×106. We compared the proposed method with following

18



GAs: a SGA with De Jong’s standard parameter values, a SGA with manually op-

timized parameter values, an IGA with De Jong’s standard parameter values, and an

IGA with manually optimized parameter values. Since De Jong’s rational parameter

values do not include values for selection, we used tournament selection with a size of

2.

We also measured processing time for one generation of execution for SAIGA and

A-SAIGA.

Under the experimental conditions, we executed GAs on 10 computers with 400

MHz to 2.6 GHz processor speed.

2.4.2 Considerations

In this subsection, we describe our considerations about the experiments.

The results of our experiments are shown in Table 1. Hereafter, SGA with De

Jong’s standard parameter values, SGA with manually tuned parameter values, IGA

with De Jong’s standard parameter values, and IGA with manually tuned parameter

values are denoted as SGA (DeJong), SGA (tuned), IGA (DeJong), and IGA (tuned),

respectively.

Comparison between the proposed method and A-SAGA

The proposed method gives better results than A-SAGA when the proposed method

and A-SAGA are applied to either problem.

In this experiment, A-SAGA executes 100 sets of population initialization and

other genetic operations using6.4 × 104 evaluations. On the other hand, the proposed

method executes population initialization only one time and continues the explorations

using6.4× 104 evaluations. Because of this difference, the proposed method seems to

have given better results in these problems.

Comparison between SGA and IGA

A-SAIGA gives better results than SGA (DeJong) and IGA (DeJong) when A-

SAIGA and SGA are applied to TSP and JSP. However, SGA (DeJong) and IGA (De-

Jong) have given better results than the proposed method when applied to the problem

of Rastrigin function. These results show that De Jong’s rational parameter values

are suitable for benchmark problems such as the problem of the Rastrigin function.

The proposed method is not effective if the suitable parameter values for a problem are
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Rastrigin deception

optimal 0 optimal 0

best mean best mean

SGA(Dejong) 0 0 1 3.5

SGA(tuned) 0 0 2 3.3

IGA(Dejong) 0 0 0 2.26

IGA(tuned) 0 0 0 0.25

A-SAGA 10 20.52 0 0.66

SAIGA 0 0 0 0.47

A-SAIGA 0 0.02 0 0.53

TSP(lin105) JSP(la38)

optimal 14379 optimal 1196

best mean best mean

SGA(Dejong) 14434 15705 1216 1289

SGA(tuned) 14475 15175 1203 1227

IGA(Dejong) 14483 15489 1226 1261

IGA(tuned) 14401 14932 1205 1218

A-SAGA 25197 28366 1228 1249

SAIGA 14464 15391 1205 1242

A-SAIGA 14486 15336 1207 1234

Table 1. Evaluation results

known in advance. However, A-SAIGA gives better results for more realistic problems

like TSP and JSP which use more complex encoding and operators.

In the Deception problem, IGA (tuned) gives far better results than SGA (tuned).

This seems to be because good chromosome fragments found on islands are assem-

bled to make a good result in IGA (tuned). But, the result of IGA (DeJong) for the

Deception problem is about 2, which is not close to the optimal value. This seems to

be because De Jong’s standard parameter values are not suitable for solving the De-

ception problem. A-SAIGA gives results close to 0 in this problem, which are better

than the results with IGA (DeJong). This shows that the A-SAIGA acquires parameter

values better than IGA (DeJong). In TSP, JSP and the Rastrigin function problem, the
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results of our method were close to those of SGA (tuned) and IGA (tuned).

The results confirmed that A-SAIGA gives better results than the use of De Jong’s

rational parameter values. Also, the performance of A-SAIGA is close to that of SGA

with manually tuned parameter values for various problems,

Comparison between SAIGA and A-SAIGA

There were no large differences in performance between SAIGA and A-SAIGA,

except TSP and JSP. For TSP and JSP, A-SAIGA showed better performance than

SAIGA. This seems to be for the following reasons. SAIGA gives evaluation counts to

islands equally, though A-SAIGA does not. Thus, in A-SAIGA, the islands executed

on higher performance computers are given evaluation counts much larger than the

other islands. This leads to prominent local search on such islands. Since local search

is effective for TSP and JSP, A-SAIGA has given better results in these problems.

2.4.3 Comparison of processing time

We measured processing time of one generation in SAIGA and A-SAIGA. The results

are shown on Table 2.

SAIGA A-SAIGA

Rastrigin 6.6 2.3

deception 1.4 0.9

TSP 16.4 4.1

JSP 111.6 37.2

Table 2. Comparison of processing time in one era (milliseconds)

These results show that the processing time of A-SAIGA is always shorter than

those of SAIGA, and this also means that A-SAIGA has a reduced waiting time for

synchronization between islands.

The results show that the processing time of A-SAIGA is one-third that of SAIGA

for the Deception problem, while the processing time of A-SAIGA is two third that

of SAIGA on other problems. This seems to be because the evaluation time in the

Deception problem is much shorter than in the other problems.
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In order to examine this hypothesis, we added dummy processing time to the eval-

uation process of the Deception problem, and measured the overall processing time

while varying the amount of dummy processing time. The results are shown in Table

3.

Function calls 0 1 10 100 1000 10000 100000

Processing time 0.47 0.37 0.35 0.38 0.38 0.26 0.24

Table 3. Number of function calls and ratio of processing time

The result show that the more we increase the dummy processing load, the greater

the difference in processing time between A-SAIGA and SAIGA becomes. Therefore

difference in processing time of the evaluation function causes the difference in the

processing time ratio for the Deception problem and other problems.

This result shows that the processing time of A-SAIGA is always shorter than that

of SAIGA. But table 1 shows that the search efficiency of SAIGA gives better than A-

SAIGA on a part of the result of Rastrigin function. We believe this is because SAIGA

gives evaluation counts to islands equally, but A-SAIGA does not. We are planning to

examine this in the future works,

2.4.4 Number of adapted parameter value

We increased the number of adapted parameter values for the low level GA to six, and

performed experiments using the Rastrigin function in SAIGA. The increased param-

eter values are related to the selection method (choice either Roulette method or Tour-

nament method) and the parameter which relates to selection pressure when Roulette

method is chosen. Hereafter, this is denoted asTR6. We comparedTR6 to SAIGA

with the Tournament method (T4, hereafter). We also comparedTR6 to SAIGA with

the Roulette method (R6, hereafter).T4 andR4 are adapted in four parameter values,

respectively. The results are the averages of 30 executions.

The search efficiency results are as follows:T4, R4, andTR6 are 0.033, 0.565,

and 0.133, respectively. In this case,T4 performs better thanR4. This result shows

that the Tournament method is suitable for the Rastrigin function.TR6 gives better

performance thanR6, and the performance ofTR6 is close to that ofT4. This is a

result of the adjustment of the parameter value for selection when six parameter values
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are adapted. But, if the number of parameter values is increased, parameter values

search efficiency is expected to decline, since the search space of the parameter values

extends. It seems that this is the reason whyTR6 did not perform as well asT4.

2.4.5 Obtained Parameter Values Using The Proposed Method

To evaluate the parameter values obtained using SAIGA and A-SAIGA, we compared

the parameter values after the algorithms converged, De Jong’s rational parameter val-

ues, the manually tuned parameter values, and Grefenstette’s parameter values [15].

The results are averages of 300 executions. The results of this experiment are shown

in Table 4. where, the mutation rate, crossover rate, tournament size, and population

size are denoted as mu, cr, sc, and po.

mu cr sc po mu cr sc po

DeJong 0.001 0.6 2 50

Grefenstette – 0.5 - 50

Rastrigin TSP

tuned 0.003 0.58 4 4 0.01 0.55 4 16

SAIGA 0.014 0.59 3 12 0.016 0.53 5 49

A-SAIGA 0.009 0.62 4 40 0.014 0.50 4 46

deception JSP

tuned 0.2 0.5 2 256 0.02 0.55 4 256

SAIGA 0.064 0.50 5 58 0.029 0.49 5 45

A-SAIGA 0.062 0.53 5 62 0.051 0.47 5 49

Table 4. Parameter obtained using the proposed method

This Table 4 shows that the parameter values obtained using SAIGA and A-SAIGA

are close to the manually tuned parameter values. Also, the population size obtained

is 50 and the crossover rate obtained is close to the crossover rate of Grefenstette’s

parameter values. Therefore, we believe SAIGA and A-SAIGA successfully adapt

parameter values to these problems.
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2.4.6 Number of islands

To evaluate the scalability of the proposed method, we determined the search efficien-

cies of the proposed methods with the number of islands varied. By adjusting the

computation time in each experiment, we allocated computation power to computers

in accordance with the number of islands for the execution of the methods. The results

are shown in Table 5. SAIGA and A-SAIGA achieve high search efficiency when the

number of islands is increased.

Number of islands 10 20 50 100

Calculation time (min.) 1 2 5 10

SAIGA Rastrigin 1.067 0.433 0.167 0.133

A-SAIGA Rastrigin 0.400 0.133 0.067 0.067

SAIGA deception 1.406 0.173 0.000 0.000

A-SAIGA deception 0.000 0.000 0.000 0.000

SAIGA TSP 15618 15283 14754 14627

A-SAIGA TSP 15254 15092 14662 14532

SAIGA JSP 1294 1287 1267 1256

A-SAIGA JSP 1248 1242 1238 1237

Table 5. Number of islands and search efficiency
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2.5 Conclusion

In this chapter, we proposed self adaptive island model GA (SAIGA) which can ad-

just multiple parameter value. By reducing the number of iterations in our previous

work called A-SAGA (proposed agent-oriented self-adaptive GA), Computation cost

with SAIGA can be lowered than that with A-SAGA. We also proposed asynchronous

SAIGA (A-SAIGA) which eliminates waiting time for synchronization among islands

in SAIGA. In order to evaluate effectiveness of the proposed method, we applied the

proposed method to various problems and measured search efficiencies. Our exper-

iments showed that the proposed method can find appropriate parameter values for

various problems, and the performance of the proposed method was close to that of

simple GA with manually optimized parameter values. Also, A-SAIGA reduced wait-

ing time for synchronize among islands to a great extent.
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3. Application of Island Model GA to Routing Problem

in Mobile Ad Hoc Network

3.1 Introduction

Video and other streaming data are important applications of mobile ad hoc network

(MANET). In construction of a multicast tree, it is desirable to minimize relaying costs

and maximize the number of nodes which receive the data, satisfying QoS constraints

such as bandwidth and delay. There is a study on routing techniques to construct

a multicast tree which simultaneously satisfies two or more QoS constraints and is

semi-optimal for a given objective [21]. However, this method supposes a single com-

putation node which knows topology information of the whole MANET and computes

multicast tree in a centralized manner.

In this chapter, we propose a new QoS multicast routing method for MANET called

HQMGA (hierarchical QoS multicast routing using GA in MANET). HQMGA allows

MANET nodes to dynamically construct a semi-optimal multicast tree satisfying sev-

eral QoS constraints at the same time for any given objectives (e.g. power consumption

and tree stability, etc). We designed and developed protocols to run on mobile termi-

nals in MANET. We suppose that mobile terminals, such as PDA and cell phone, are

used in MANET. The computation capability of these mobile terminals is scarce com-

pared with a fixed terminal. Thus, HQMGA reduces the cost for constructing multicast

trees consisting of many mobile nodes so that the computation and communication can

be executed within capability of each mobile node. To do so, it divides MANET into

multiple clusters, and makes them construct sub-trees covering their clusters in parallel

and computes a tree which connects the sub-trees of all clusters. Consequently, one

semi-optimal multicast tree is constructed with them. Moreover HQMGA abstracts

the topology information spanning all clusters so that a node can compute the tree

connecting all clusters within small computation power and communication amount.
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3.2 Related works

In order to realize multimedia communication on MANET, the many QoS routing pro-

tocols have been proposed so far. As unicast routing methods which treat a single QoS

constraint, [7, 22, 23, 30, 41] have been proposed. [7] is a method of QoS unicast rout-

ing for discovering the path to satisfy the specified bandwidth (or delay). This method

floods route request messages including a fixed number of logical tickets, and investi-

gates whether paths satisfying given constraints exist. This method can suppress flood-

ing range is limited since logical tickets in a message are divided when an intermediate

node forwards the message to its neighbors. [23, 41] are methods which discover paths

satisfying specified bandwidth. The former method adopts pro-active routing, and the

latter does reactive routing based on AODV [25]1. These methods divide the available

bandwidth by time slots using TDMA. The method in [23] assigns unused time slots

to a requested data stream until constraints are satisfied. On the other hand, in [41],

information on available bandwidth to the next hop is added to messages at every relay

node so that the destination nodes can check available bandwidth in paths by the in-

formation in received messages, and reply to the messages whose available bandwidth

information satisfy given constraints. CEDAR [30] is a unicast routing method, where

a set of nodes is divided into several areas, and paths satisfying QoS constraints are

computed area by area like OSPF [8]2. In CEDAR, a network core satisfying required

bandwidth is dynamically constructed and maintained. A source node and destination

node can efficiently compute a path with required bandwidth through the core. [22] is

a QoS multipath routing method using two or more path simultaneously. This method

first investigates available bandwidth on various paths by limited flooding using logical

tickets like [7]. The required bandwidth is reserved by combining two or more paths

by summing up their available bandwidths.

Several QoS multicast routing methods on MANET have been proposed [6, 31].

MCEDAR [31] is an enhanced version of CEDAR to treat multicast routing. In MCEDAR

[31], a mesh network consisting of nodes belonging to multicast groups is constructed

1AODV is reactive routing protocol. In AODV, route request message is flooded toward the destina-

tion node. The destination node replies to the message by sending the route reply message back to the

sender node. Relay nodes create routing table by this message exchange.
2OSPF is a link-state routing protocol. An OSPF network is divided into areas. OSPF executes rout-

ing at two levels : inside area and backbone area. This makes routers reduce the amount of information

which they need to maintain.
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and used as a network core. By distributing data via the mesh, multicast tree is com-

puted efficiently. AQM [6] is a method of multicast routing which satisfies bandwidth

constraint. AQM constructs a multicast tree with specified bandwidth on demand by

three phases (Demand – Response – Reservation). Here, each node exchanges the

reservation information on bandwidth with adjacent nodes at regular time intervals. By

inserting this information in route request messages, each node can find paths which

have required bandwidth.

As mentioned above, various QoS routing protocols for MANET have been pro-

posed. However, these existing methods are not designed to compute multicast tree

satisfying two or more QoS constraints at the same time or optimized for a given objec-

tive such as minimization/maximization of power consumption, stability, the number

of receivers, and so on.
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3.3 Proposed Method

In this section, after describing overview and assumptions of the proposed method,

we define the target problem for deriving multicast tree and give details to solve the

problem.

3.3.1 Overview and Assumptions

The proposed method uses a genetic algorithm (GA) to compute semi-optimal multi-

cast tree. The merits using GA are as follows: (1) GA can quickly recompute a new

multicast tree for slightly changed topology of MANET by using solution candidates

used for the last computation; and (2) GA can solve combinatorial optimization prob-

lem for an arbitrary objective function in a short time. However, GA requires large

computation power in general.

Moreover, in order to correspond to change of topology, a multicast tree is recon-

structed periodically.

However, in large-scale MANET, it is difficult for even GA to compute the semi-

optimal multicast tree in a centralized manner due to costs of computation and com-

munication. So, in the proposed method, nodes in MANET are divided into multiple

clusters like OSPF and sub-trees are computed for those clusters (we call each sub-

tree local tree, hereafter), in order to reduce costs of gathering topology information

and computation of trees. A tree connecting sub-trees of clusters (hereafter, we call it

global tree) is also computed. The tree consisting of local trees of all clusters and the

global tree is used as the multicast tree. Since the isolated node etc. exists in MANET,

the node which cannot be connected exists. So, by removing the node which does not

satisfied criteria from multicast tree, the proposed method constructs the multicast tree

consisting of nodes which are satisfied criteria. We define problems for constructing

local trees and global tree in Section 3.3.2.

The proposed method targets MANET with the following assumptions.

Mobile nodes are pedestrians, and thus they move at speed of around 4 km/hour.

Nodes transmit and receive small video and/or voice data. Each node can send and

receive packets through wireless network interface, where we suppose to use IEEE

802.11 as MAC protocol. Each node can perform a career sense, but does not exchange

RTS/CTS packets. Communication is done by broadcast, that is, when each node
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broadcasts a packet to its radio range, nodes in its radio range receive the packet. Here,

each upper-stream node transmits the packets to its downstream nodes at once (not

separately). The protocol as MAC layer protocol is the IEEE802.11. Each node can

know its own moving speed and a rough distance to other nodes from the strength of

their radio wave signals.

3.3.2 Problem Definition

We use the following notation.

G = (V,E) denotes a weighted undirected graph which expresses topology of

MANET at a certain point. Here,V andE denote the set of nodes and the set of links,

respectively. Unique ID (integer value) is given to each node. Only when two nodes

vi, vj ∈ V exist in their common radio range, we suppose that a linkeij ∈ E exists

between them.s ∈ V denotes a source node (a node transmitting multimedia data).

U ⊆ V denotes a set ofuser nodeswhich require reception of multimedia data. Each

user nodeu ∈ U sends a request messagerequ(c, Br,Dr) wherec, Br andDr denote

a content ID, required bandwidth and allowable delay time, respectively. We suppose

that the values ofBr andDr are integer and determined depending on the contentc

so that one multicast tree can be constructed for each content.T = (V ′, E ′) denotes a

multicast tree which connects a source nodes and user nodes ofU , although all nodes

in U may not be contained in the tree. We treat the problem of finding the multicast

tree which satisfies the constraints about bandwidth and delay time, and maximizes

a given evaluation functionf(T ). However, as explained in the next sub-section, we

use different evaluation functions for global tree and local tree. Below, we use an

evaluation function taking into account three criteria: the number of user nodes which

can receive data stream, tree stability, and latency. However, note that we can define

any evaluation function suitable for a target environment.

Problem of Finding Global Tree

The purpose of this problem is to find the global treeT ′ which maximizes the eval-

uation functionf Global(T ′) defined below (see Fig. 7). We assume that the whole

network is divided to clusters, and two representative nodes calledcluster headand

sub cluster headare selected for each cluster, and a node calledtop cluster headis se-

lected from all cluster heads, in advance. These nodes are responsible for computation
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of global/local trees. Techniques for cluster division and node selection are explained

later.

f Global(T ′) = α · Satisfied User Global(T ′)

− β · Delay Global(T ′) − γ · Instability Global(T ′)

Here,Satisfied User Global(T ′) is the function representing the number of user nodes

included in the tree satisfying the constraints,Delay Global(T ′) is the penalty function

on delay constraint3, andInstability Global(T ′) is the function on tree’s instability.

α, β andγ are positive weighting coefficients.

The delay constraint must be satisfied for the sum of a global tree’s delay and local

tree’s delay. So, we use a coefficientδ(0 < δ < 1) so that the global tree satisfies the

delay constraint ofδDr. In the evaluation function, the bandwidth constraint is not

used (as described in Section 3.3.4).

Satisfied User Global(T ′) is defined as

Satisfied User Global(T ′) =
∑
Ci∈C

deliverc(Ci, T
′)

where

deliverc(Ci, T
′) ={

1 if pathc(Ci) ̸= ∅ ∧ Delayc(pathc(Ci)) ≤ δDr,

0 otherwise.

C is a set of the cluster on the network,pathc(Ci) is a path from cluster head of

the cluster including source nodes to cluster head of clusterCi via some intermediate

nodes. If such a path does not exist, thenpathc(Ci) = ∅. Delayc(path) is an estimated

delay onpath (we assume that delay can be estimated by the path length and so on).

The functionDelay Global(T ′) is a criterion for delay and expressed as ratio of

the number of hops from the top cluster head to the corresponding cluster head, over

the number of all nodes, and is defined as follows.
3In order to enhance the search efficiency of GA, the penalty function (function which reduces it

somewhat, instead of setting an evaluation value to 0 when not satisfied condition) about each con-

strained condition and the instability of a multicast tree is used.
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Delay Global(T ′) = maxCi∈C |pathc(Ci)|/|V |

Here,|pathc(Ci)| represents the number of hops inpathc(Ci). pathc(Ci) is the route

between the cluster head of a cluster whichs belongs to, and the cluster head of the

clusterCi, by way of several intermediate nodes. If there is no such path,hopcount(Ci)

is defined as 0.

The functionInstability Global(T′) is a criterion for tree instability and defined

as the ratio of highest speed of nodes on treeT ′ over the maximum speedSPEED, as

follows.

Instability Global(T ′) = maxCi∈C (maxv∈pathc(Ci)
speed(v)

SPEED
)

3.3.3 Problem of Optimizing Local Tree

For local treeT ′′
i of clusterCi with user nodesUi, we maximize evaluation function

f Local(T ′′
i , Ui) (see Fig. 8) defined below.

f Local(T ′′
i , Ui) = Satisfied User Local(T ′′

i , Ui) − ϵ · Instability Local(T ′′
i , Ui)
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Here,Satisfied User Local(T ′′
i , Ui) is a criterion regarding to the number of user nodes,

andInstability Local(T ′′
i , Ui) is a criterion for tree instability.ϵ is a weighted coeffi-

cient.

FunctionSatisfied User Local(T ′′
i , Ui) represents the number of user nodes which

satisfy the following constraints.

Band(hi, u, T ′′
i ) ≥ Br

Delay(hi, u, T ′′
i ) ≤ (1 − δ)Dr

Here, Band(hi, u, T ′′
i ) is the minimum bandwidth in the path from cluster headhi

to nodeu on multicast treeT ′′
i , Delay(hi, u, T ′′

i ) is the total delay on this path, and

(1 − δ)Dr is allowable delay in the cluster.

Instability Local(T ′′
i , Ui) is a criterion for instability of treeT ′′

i , and is defined as

follows.

Instability Local(T ′′
i , Ui) = maxe∈T ′′

i
(instability(e))

instability(e) = distance(v1(e), v2(e))

· (speed(v1(e)) + speed(v2(e)))

wherev1(e) andv2(e) denote endpoints of edgee, distance(u, v) denotes the esti-

mated distance between nodesu andv, andspeed(v) denotes moving speed of node
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v.

3.3.4 Detailed Description of The Proposed Method

The proposed method repeats the following three steps.

1. Divide all nodes in the network into clusters.

2. Compute global tree, which will be used as a backbone.

3. Compute local tree for each cluster.

The whole multicast tree is constructed as a concatenation of local trees and a

global tree. Each local tree is constructed using IGA [37] in corresponding cluster (see

Fig. 9). In each cluster, a cluster head and sub cluster heads correspond to islands of

IGA for computing the local tree of the cluster. Global tree is constructed using IGA

in the cluster to which the top cluster head belongs. In the cluster, a top cluster head

and sub cluster heads correspond to islands of IGA for computing the global tree.

IGA is a kind of parallel GA. It is a technique to find a solution using several GAs

with independent groups of candidate solutions where they cooperate by exchanging a

few candidate solutions between adjacent groups (arrows of Fig. 9). The IGA has some
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Figure 10. Computation Procedure of Multicast Tree

advantages such that (i) it does not require frequent communications between compu-

tation nodes, and that (ii) it is effective to maintain diversity of candidate solutions and

thus there is relatively small chance to fall into local optima during computation.

According to node movements, the multicast tree has to be reconstructed. The

proposed method reconstructs the tree by repeating the three steps periodically.

Furthermore, step 2 and step 3 are divided into an information gathering phase

and a tree computation phase, respectively. According to the above discussion, the

proposed method is carries out by six phases, as listed below. (A)cluster division, (B-

global) information gathering between clusters, (C-global)construction of a global

tree, (B-local) information gathering in a cluster, (C-local) construction of a local

tree, and (D)reconstruction of all clusters and trees. The whole procedure is shown in

Fig. 10. If the change of inter-cluster topology is smaller than change of intra-cluster

topology, phase (B-local) and phase (C-local) are repeated more frequently than other

phases.

Hereafter, we explain the details of each phase.

(A) Cluster Division

In this phase, nodes are divided into clusters. Also, a cluster head and sub cluster

heads are selected for each cluster. The IGA is executed on the cluster head and sub

cluster heads. A cluster head of the cluster with a source nodes is selected as the top

cluster head. The top cluster head governs the information regarding to all clusters.

There are some algorithms for clustering and deciding cluster heads. [38] is an

algorithm to re-construct clusters with relatively small load. MAX-MIN D-cluster

algorithm [2] is an algorithm which constructs clusters withinD radius by exchanging

information 3D times between adjacent nodes.
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In the proposed method, each node generates a random number, and the nodes

generated highestk numbers are chosen as a cluster head andk − 1 sub cluster heads.

This can be realized by a flooding withD/2 of TTL. Here,k andD are integer numbers

given in advance.

(B-local) Information Gathering in a Cluster

In this phase, topology information of each cluster is gathered to the cluster head.

The following information is gathered.

• Path from each node in the cluster to the cluster head.

• IDs of user nodes requesting data stream in the cluster.

• State of each link in the cluster (unused bandwidth, delay, estimated distance

between nodes)

• Moving speed of each node

• Paths between the cluster head and cluster heads of adjacent clusters.

First, all nodes in the clusterCi and paths between the cluster headhi and cluster

heads of adjacent clusters are searched by flooding messages (shown as REQ Message

Ma in Fig. 11). Each node which received a message sends a reply packet (REP

MessageMb in Fig. 11) toward the cluster headhi. The reply packet is delivered to

hi by traversing the backward path. The reply packet contains ID of a node requesting

data stream and information regarding to states of links to its neighbor nodes.

If a node receives a REQ message originated from the cluster headhj of an adjacent

clusterCj, it sends the path betweenhi andhj towardhi andhj (the path is called an

adjacent path, hereafter).

(B-global) Gathering Information between Clusters

In this phase, information regarding to bandwidth and delay of the adjacent path

is gathered to a cluster head (see Fig. 12). This information and the number of data

delivery requests from user nodes are gathered to a top cluster head from all cluster

heads.

Nodes on each adjacent path send information on delay and bandwidth of its links

to the cluster head. The information of adjacent paths (including available bandwidth
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Figure 12. Gathering Information between Clusters

and delay) is sent from each cluster head to the top cluster head. In the proposed

method, the information about bandwidth and delay on path between cluster heads

are gathered in the top cluster head while this phase. Here, information of adjacent

paths which do not satisfy the constraints regarding to required bandwidth and delay

is not sent to the top cluster head. Therefore, all the gathered adjacent paths satisfy the

constraint of bandwidth (for delay, each adjacent path satisfies the delay constraintDr,

but concatenation of paths may not satisfy it). Each cluster head can transmit a packet

to the next hop nodes of the global tree and the first child nodes of the local tree by

one broadcast. So, bandwidth competition between local tree and global tree does not
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occur, and thus the constraint regarding to bandwidth is not needed when constructing

global tree.

(C-global) Computation of Global Tree

In this phase, the top cluster head and sub cluster heads of the same cluster compute

a global tree (see Fig. 7) by solving the problem defined in Section 3.3.2 using the IGA.

Then, the information on global tree is sent to each cluster head in the tree. When each

cluster head receives this information, it maintains only information regarding to the

paths to the next (downstream) cluster heads in the tree. The global tree is a multicast

tree of cluster heads and its root is the top cluster head (cluster head of the cluster with

s). The genetic operators used in GA are described in Section 3.3.5.

(C-local) Computation of local tree

In this phase, cluster head and sub-cluster heads of each cluster compute a local

tree for the cluster by solving the problem defined in Section 3.3.3. The local tree is

a multicast tree whose root is the cluster headhi. IGA is used to compute the tree as

shown in Fig. 9. The genetic operators used in GA are described in Section 3.3.5.

The information on the computed local tree is sent to each node in the tree, and when

each node receives this information, it maintains only information regarding to the next

(downstream) nodes on the tree.

Delivery of Computed local tree:

We describe how the information of local tree is delivered to nodes in the cluster.

First, a cluster head broadcasts a transmission packet. The node which receives the

packet confirms the sender of the packet. Only if the sender node is the upstream node

of the local tree, the packet is broadcasted further. By repeating this process, a packet

can be transmitted to the nodes of lower stream in a tree.

(D) Cluster Reconstruction

In phase (D), in order to cope with topology change according to node movement,

clusters are reconstructed. A new node or a disconnected node broadcasts a data de-

livery request to neighboring nodes. The node which received the request message

forwards the message toward the cluster head.

The cluster head which received this message reconstructs the cluster using the

same method as the phase (A).
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3.3.5 Genetic Operator

Here, we describe a method to code and decode a candidate solution, and genetic op-

erators used in the proposed method. When solving tree optimization problems using

GA, a general coding method which can represent any trees may be used. However,

when we use a general coding scheme, solution space tends to be large, and thus longer

computation time may be required until the candidate solutions converge. On the other

hand, if we use a coding scheme with narrow solution space, it would be difficult to

maintain diversity of the candidate solutions. In the proposed method, we devised an

efficient coding scheme with appropriate size of solution space. In this coding scheme,

a tree is encoded as a sequence of nodes. A tree is decoded from a sequence of nodes

so that nodes near the cluster head or the top cluster head are added to the tree in prior

to other nodes. Therefore, the number of hops in the tree tends to become small.

Genetic Operators for Global Tree

First, we give ID numbers to clusters, where ID 0 is given to a cluster with a

source node.|C | denotes the number of clusters in the network. A candidate solution

(chromosome) of a multicast tree is encoded as a sequence< g1, ..., gi, ..., g|C |−1 >,

wheregi represents the ID number of cluster adjacent to clusterCi if such a cluster

exists (gi becomes -1 if no such cluster exists).

The decoding scheme is shown in Algo. 4. Here,T ′ = (V ′, E ′) denotes a global

tree.

1. Let the initial value of the vertex setV ′ of T ′ be an empty set. Add the cluster

(to whichs belongs) toV ′. Let the initial value of the edge setE ′ of T ′ be an

empty set.

2. Assign 1 toj. Assignfalse to flag.

3. If gj is -1, go to step 7. Otherwise go to step 4.

4. If clustergj is not inV ′, go to step 7.

5. If clusterj is in V ′, go to step 7.

6. Add j to V ′. Add the edge connecting clusterj and clustergj to E ′. Assigntrue

to flag.
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7. Add 1 toj. If j is |C | − 1 or less, go to step 3.

8. if flag is false, the algorithm terminates. Otherwise go to step 2.

Algorithm 4. Pseudo code of Genetic Operators for Global Tree

As genetic operators for global tree, we use the uniform crossover and a mutation

method which randomly replaces a gene (node) by another one in chromosome of a

candidate solution.

Genetic Operators for Local Tree

For local tree construction, we use the same coding scheme, crossover method, and

mutation method as the global tree construction. A candidate solution (chromosome)

of clusterC ’s local tree is a sequence< n1, ..., ni, ..., n|C|−1 >, where|C| represents

the number of nodes inC. We give integer ID numbers to all nodes inC, where a

cluster head has ID of 0.ni denotes the ID of a node adjacent to nodei. If there is no

adjacent node to nodei, ni becomes -1.

The decoding scheme is shown in Algo. 5. Here,T ′′ = (V ′′, E ′′) denotes a global

tree.

1. Let the initial value of the vertex setV ′′ of T ′′ be an empty set. Add 0 (cluster

head) toV ′′.

2. Assign 1 toj. Assignfalse to flag.

3. If nj is -1, then go to step 7. Otherwise go to step 4.

4. If nj is in V ′′, then go to step 5. Otherwise go to step 7.

5. If nodej is not inV ′′, then go to step 6. Otherwise go to step 7.

6. Add j to V ′′. Add the edge connecting nodej with nodenj to E ′′. Assigntrue

to flag.

7. Add 1 toj. If j is |C| − 1 or less, then go to step 3. Otherwise go to step 8.
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8. if flag is false, the algorithm terminates. Otherwise go to step 2.

Algorithm 5. Pseudo code of Genetic Operators for Local Tree
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3.4 Evaluation Experiment

We conducted experiments to investigate the performance of the proposed method in

following terms.

(1) computation time of a multicast tree

(2) communication cost

(3) efficiency of multicast tree

Here, each experiment is explained.

3.4.1 Computation Time of Multicast Tree

In order to investigate the scalability of the proposed method, we measured compu-

tation time of a tree, changing the number of nodes in MANET. We also measured

the recomputation time to investigate whether GA can quickly recompute a new mul-

ticast tree by using solution candidates used for the last computation. We assumed

that candidate solutions converge when the best candidate solution is not updated for

30-generations. In each trial, we measured computation time until convergence. Here,

we suppose that all nodes belong to a local tree. Assuming the operation on a portable

terminal, we used a note book PC as a mobile terminal for computation4.

The specification of the PC and other experimental environment are as follows:

CPU Intel(R) Pentium(R) M processor 1500MHz, Windows XP Pro, cygwin 1.5.18,

and gcc version 3.4.4.

The experimental result is shown in Table 6. This result is the average value of 30

trials. According to Table 6, we see that the proposed method can compute a multicast

tree with 30 nodes (for a cluster) in 0.02 seconds. Since the number of nodes of each

cluster is less than 15 when we use 5 hops as maximum radius of clusters, this result

is short enough for practical use. In addition, the computation time for global tree was

similar to that of local tree as long as the number of nodes is same.

Moreover, we see that computation time could be shortened to 60% by using solu-

tion candidates used for the last computation. Therefore, we confirmed that in order to

4Here, we run several IGAs in one machine for simplicity of experiment. If we use several PCs

which run IGAs in parallel, the performance will be improved.
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Table 6. Computation time of local tree
Time (sec.) Fitness

node computation recomputation computation recomputation

10 0.010400 0.006867 0.800000 0.800000

30 0.022300 0.009200 1.000000 0.993750

50 0.040467 0.018533 0.989409 0.942153

68 0.053100 0.032600 0.953586 0.986990

100 0.104100 0.087500 0.894136 0.957880

113 0.129533 0.077867 0.914843 0.908532

225 0.600333 0.326400 0.858166 0.845311

270 0.865200 0.446333 0.835762 0.902104

450 2.417233 1.374933 0.729587 0.843629

900 6.822000 4.999367 0.561283 0.627084

1000 9.097533 6.095467 0.583697 0.643176

reduce computation time, it was effective to reuse solution candidates used for the last

computation.

Table 6 suggests that the computation time of a multicast tree is almost proportional

to the square of the number of nodes. Since the computation time of local tree is

almost the same as that of global tree, the total computation time for entire MANET

is minimized when the number of nodes in each cluster and the number of clusters

are
√

N , whereN is the number of nodes in MANET. However, since global tree is

constructed using aggregated information, it is thought that the size of the local tree is

necessary to some extent if there are few total nodes.

3.4.2 Communication Cost

To investigate the communication cost of the proposed method, we measured per-node

control traffic required for the proposed method by simulation.

In the experiment, we used GTNetS [27] as a network simulator. The simulation

configuration is as follows: simulation space is 3000× 3000 m2; the number of nodes

is 1000; MAC layer protocol is IEEE802.11 (maximum transmission speed is 2Mbps);
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the radio range of all nodes is 160m; all nodes do not move; clustering algorithm is

Max-Min D-Cluster [2]; and the maximum radius of cluster is changed among 3, 5 and

10 hops.

The experimental results are shown in Table 7 and Table 8. Here, each value is the

sum of incoming and outgoing traffic per node (or per cluster head), and is calculated

as an average of 10 trials. From these tables, we see that control traffic of clustering is

the largest. For the traffic of information gathering in a cluster, the traffic of a cluster

head is higher than that of a normal node, since all the information in a cluster is

gathered to a cluster head. The traffic for clustering of a cluster head is lower than

that of a normal node. The reason is that there are some cluster heads isolated from

other nodes and they reduce average values. From Table 8, the control traffic becomes

larger as cluster radius increases. However, the entire control traffic is only 4.4K byte

even if cluster radius is 10 (average number of nodes in a cluster is 36). According

to the above results, even when reconstructing a tree with 36 nodes once every 20

seconds, the required control traffic at a normal node and a cluster head are 1.8Kbps

and 1.7Kbps, respectively. As for these values, this traffic is small enough to be used

at mobile terminals. On the other hand, as shown in Table 8, along with the increase of

the number of nodes in a cluster (or the number of clusters), the amount of computation

increases.

Therefore, as for MANET with the number ofN nodes, under the consideration of

communication traffic and the amount of computation, required resource for a mobile

terminal can be minimized, by dividing MANET so that the number of nodes contained

in each cluster is closer to
√

N , and the number of clusters contained in the whole is

closer to
√

N clusters in the whole.

From the experimental results of computation cost and communication cost, the

proposed method can compute a multicast tree for 1000 nodes in 0.004 seconds and the

required traffic is about 1.8Kbps per node, by dividing them into about 30 clusters with

about 30 nodes. We think that this result is practical enough. In this case, the proposed

method can hold down the communications traffic of each cluster head in order to

compute the local tree to about 4.2 K bytes. This result shows that if reconstruction

of a multicast tree is performed every 20-30 seconds, the proposed method can be

realized in an actual environment by assigning the terminal which has a performance

comparable to note PC and can use the radio communications complying with 802.11
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Table 7. Required control traffic per node (Bytes)
Cluster radius ( the num.

of nodes in a cluster) 3(7.7) 5 (15.2) 10(36.0)

Comm. traffic in a clustering 910.2 1603.6 3640.2

Comm. traffic of info.

gathering between clusters 341.8 291.6 259.8

Comm. traffic of info.

gathering between clusters 161.8 187.3 291.0

Comm. traffic of delivery

of global tree 2.9 1.72 0.59

Comm. traffic of delivery

of local tree 30.2 70.25 185.8

Sum of comm. traffic 1446.9 2154.5 4377.4

to a cluster head.

3.4.3 Efficiency of Multicast Tree

In order to evaluate the stability of the multicast tree constructed by the proposed

method, we measured the transition of the packet arrival rate at user nodes in the tree

as time passes. We defined the packet arrival rate to be the ratio of the number of

received packets over the number of packets which were transmitted from the source

node. The average packet arrival rate decreases as time passes since the multicast tree

was computed based on the past topology and some links in the tree are broken as the

network topology changes.

In this experiment, we used the same configuration as the previous section except

bellow:

(1) we used two kinds of moving speed of each node: 0 Km/hour and 4 Km/hour

(2) the random waypoint (RWP) was used as mobility model

(3) data stream of 64Kbps is transmitted through multicast tree5

5It corresponds to 320Kbps when we use IEEE802.11b
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Table 8. communications traffic per one cluster head (Bytes)
Cluster radius ( the num.

of nodes in a cluster) 3(7.7) 5 (15.2) 10(36.0)

Comm. traffic in a clustering 804.8 1416.2 2787.9

Comm. traffic of info.

gathering between clusters 302.8 236.7 185.6

Comm. traffic of info.

gathering between clusters 410.9 624.9 1208.1

Sum of comm. traffic 1518.5 2277.8 4181.6

(4) each node can change the radius of radio range for power saving when transmitting

a packet

In order to show the applicability of the proposed method, we measured the packet

arrival rate for the following three different objective functions:

(1) objective functions in Sect. 2 with largerγ and largerϵ values to regard tree sta-

bility more important (hereafter referred to asstable)

(2) objective functions with smallerγ and smallerϵ values (hereafter referred to as

non-stable)

(3) objective functions with new terms for power consumption6 (referred to aspower-

saving)

The following setting was used as the power consumption minimization technique.

Since most of mobile terminals drive with battery in the MANET, it is an important

topic to save power consumption. In the experiment, the power consumption of packet

transmission in the terminal is proportionate to the square of transmission distance of

the radio wave, and the term which minimizes total of this power consumption was

added to the evaluation function. For the objective function (3), we allow each node to

adjust the strength of the transmission power so that radius of radio range will be 1.1

6In these terms, power consumption of a packet transmission is defined to be proportional to the

square of the distance between nodes.
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Figure 13. Transition of The Packet Arrival Rate over Time:0km/h

times larger than the minimum distance required reaching the destination to keep the

tree stability7. This is because the stability of the path at the time of node movement

was taken into consideration.

Since there does not exist the protocol which constructs semi-optimal multicast

tree to the specified arbitrary evaluation metrics such as the proposed method, also, we

compared our method with AQM [6]. AQM is an on-demand multicast routing method

which satisfies bandwidth constraint by efficiently investigating the bandwidth usage

of adjacent nodes. In order to evaluate the stability of the constructed multicast tree,

the reconstruction function of the delivery tree was not used. In Fig. 13 and Fig. 14, we

show experimental results when the maximum speed of nodes are 0km/h and 4km/h,

respectively. Here, note that the initial tree was not re-constructed during simulation

to see the stability of the computed tree.

The packet arrival rate of our experimental results is less than 50 % throughout

simulation time, and it may look inefficient. This is because some of the nodes in

7We suppose that each node can guess the distance to other nodes from the strength of radio wave

signal.
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Figure 14. Transition of The Packet Arrival Rate over Time:4km/h

MANET are geographically separated off the radio ranges of the nodes included in the

multicast tree, and packets cannot reach them at all. Fig. 13 shows that the proposed

method with any objective function is superior to AQM in terms of packet arrival rate

when nodes do not move. There is no big difference of performance among three

objective functions of our method. On the other hand, as shown in Fig. 14, when a

node moves, the packet arrival rate decreases as time passes. We see that the method

stableconstructed the most stable multicast tree.

Next, we compared the power consumption for data streaming through the multi-

cast trees constructed by our methods (power-savingandstable) and AQM. The ratio of

the power consumption among those methods was thatstable: AQM : power-saving=

1 : 0.67 : 0.61. Furthermore, we compared the total power consumption in reconstruc-

tion interval of multicast tree (for 20 seconds). The transmission power consumption

in the interval among those methods was thatstable: AQM : power-saving= 10.095

Watt-second : 6.7639 Watt-second : 6.04317 Watt-second8. However, the proposed

8We suppose that transmitted power is 0.28183 Watt and the number of the transmitting nodes of

AQM is 750.
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method need the power consumption of CPU to recompute a tree by using solution

candidates used for the last computation. When Note PC (CPU Intel(R) Pentium(R)

M processor 1500MHz, Thermal Design Power 24.5 Watt) is used, computation time

is required for 0.009200 seconds, and power consumption is 7.66360 Watt-second.

When PDA (Intel XScale (R) PXA270 (624MHz), Thermal Design Power 0.747 Watt)

is used, computation time is required for 0.0038 seconds9, and power consumption is

0.56168 Watt-second. Added these, total power consumption in reconstruction inter-

val of multicast tree (for 20 seconds) between AQM andpower-savingwas that AQM

: power-saving(note PC):power-saving(PDA)= 6.7639 Watt-second : 13.70677 Watt-

second : 6.60485 Watt-second. Consequently, the result of the power-saving method

showed power consumption smaller than AQM and the stable method.

As mentioned above, we conformed that according to various objects (such as sta-

bility and lower power consumption, etc), the proposed method was able to construct

the semi-optimal trees for each object, respectively.

As a demerit of the proposed method, high calculation cost and shortage of readi-

ness is raised. Since, in the proposed method, the computation power of a cluster head

is assumed about note PC, it is difficult to apply at present when MANET environment

is constituted with terminals with lower computation ability, such as PDA and a cell

phone unit. Moreover, multicast tree need to be re-compute even if a path is cut. It

is considered that this can be improved using hybrid technique which combined the

on-demand routing technique.

9We suppose that computation time is proportional to clock frequency.
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3.5 Conclusion

In this chapter, in order to realize multimedia streaming on MANET, we proposed

a new multicast routing method for MANET. The proposed method constructs the

semi-optimal multicast tree satisfying QoS constraints for any given objective. The

proposed method constructs tree by two or more nodes on MANET. The features of

our method are that it can treat arbitrary objective such as minimization of total power

consumption for constructing optimized multicast tree, and that it is scalable to the

number of nodes by distributed computation of the multicast tree based on clustering

and IGA. Through simulation, we showed that the proposed method can compute more

superior multicast trees than an existing on-demand multicast routing method AQM in

terms of tree stability and power consumption.

50



4. Conclusion and Future work

4.1 Summary of This Thesis

In this thesis, focusing on island model GA, the following two research topics on im-

provement of exploration efficiency of island model GA and application to routing

problem in mobile ad hoc network have been studied.

In Chapter 2, we proposed self adaptive island model GA (SAIGA) which can ad-

just multiple parameter value. By reducing the number of iterations in our previous

work called A-SAGA (proposed agent-oriented self-adaptive GA), Computation cost

with SAIGA can be lowered than that with A-SAGA. SAIGA can efficiently find a

solution with automatic parameter adjustment, when solving only one instance in a

problem. We also propose asynchronous SAIGA (called A-SAIGA, hereafter) which

eliminates waiting time for synchronization among islands so that search efficiency is

improved by reducing idle processor time. In order to evaluate effectiveness of the

proposed method, we applied the proposed method to various problems and measured

search efficiencies. Through experiments, we showed that the proposed method can

find appropriate parameter values for various problems. We also showed that perfor-

mance of the proposed method outperforms simple GA with standard parameter values,

and is close to simple GA with manually adjusted optimal parameter values. Also, the

processing time of A-SAIGA is able to be reduced to 35-75 percent compared with

that of SAIGA. This means that A-SAIGA has reduced waiting time for synchronize

among islands.

In Chapter 3, in order to realize multimedia streaming on MANET, we proposed a

new multicast routing method for MANET. The proposed method constructs the semi-

optimal multicast tree satisfying QoS constraints for any given objective. The proposed

method constructs tree by two or more nodes on MANET. The features of our method

are that it can treat arbitrary objective such as minimization of total power consump-

tion for constructing optimized multicast tree, and that it is scalable to the number of

nodes by distributed computation of the multicast tree based on clustering and IGA. To

do so, it divides MANET into multiple clusters, and makes them construct sub-trees

covering their clusters in parallel and computes a tree which connects the sub-trees of

all clusters. Consequently, one semi-optimal multicast tree is constructed with them.

Moreover HQMGA abstracts the topology information spanning all clusters so that a
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node can compute the tree connecting all clusters within small computation power and

communication amount. Through simulation, we showed that the proposed method

can compute more superior multicast trees than an existing on-demand multicast rout-

ing method AQM in terms of tree stability and power consumption.

4.2 Future work

The proposed method in Chapter2 might be extended toward the following three direc-

tions.

1. Automatically optimizing distribution of processor resource in each island

Our experiments showed that A-SAIGA has better performance than SAIGA.

This implies that distributing processor performance equally to islands does not

always give the best result. We are going to investigate influences of distributing

performance non-equally to islands, and make a method to optimize distribution.

2. Introducing age model adopted in aGA [12] instead of FIFO deletion

The model considers both evaluation value and age of each individual to make

selection. This should improve results in dynamic environment.

3. Introducing other generation model (ex. MGG [29]) in low level GA of the

proposed method.

In this experiment, SGA was used for low level GA, but generation model such

as MGG model is able to be introduced to low level GA.

The proposed method in Chapter3 might be extended toward the following two direc-

tions.

1. The improvement of the multicast tree

In the proposed method, computation of the global tree and local tree are per-

formed independently. We can obtain the better multicast tree in shorter time by

sharing the computation results of the global tree and local trees.

2. The correspondence to two or more streams

In the proposed method, the single stream is assumed. When delivering two or

more streams at same time, it is thought that load concentrates on a cluster head.
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In order to avoid this problem, a technique of changing a cluster head for every

stream should be examined.
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