
NAIST-IS-DD0461021

Doctoral Dissertation

Studies on Utilization Schemes for

Reconfigurable Computing Systems

Mitsuru Tomono

March 23, 2007

Department of Information Systems

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Mitsuru Tomono

Thesis Committee:

Professor Yasuhiko Nakashima (Supervisor)

Professor Hideo Fujiwara (Co-supervisor)

Associate Professor Shigeru Yamashita (Co-supervisor)

Studies on Utilization Schemes for

Reconfigurable Computing Systems∗

Mitsuru Tomono

Abstract

Reconfigurable computing has now become a promising way to improve perfor-

mance of a computer system, whereby solution algorithms of target applications

are mapped to reconfigurable components of a system. Overall system perfor-

mance is significantly improved by processing critical parts of algorithms using

hardware resources. Reconfigurable computing systems provide the benefits of

the flexibility of general-purpose processors and the high performance of dedi-

cated systems. They have shown their effectiveness in applications such as image

processing, data encryption, and pattern matching. However, various problems

such as their rudimentary application areas and insufficient design environment

still limit their utilization.

In this dissertation, utilization schemes for reconfigurable computing systems

are proposed. First, an exploitation method for a system that is composed of

a general-purpose processor and reconfigurable logics is presented by applying

Event-Oriented Computing (EOC). One characteristic of EOC is that it is suit-

able for such a reconfigurable hybrid system. An architecture model for EOC is

proposed, with experimental results demonstrating its performance-improvement

capabilities.

Second, a new approach to online task placement is presented. In partially

reconfigurable Field Programmable Gate Arrays (FPGAs), multiple tasks can

be executed in parallel by hardware. In such systems, effective FPGA resource

management is necessary to process incoming tasks efficiently. The proposed

∗ Doctoral Dissertation, Department of Information Systems, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DD0461021, March 23, 2007.

i

online task placement algorithm leverages I/O routing information of tasks for

its placement process. The effectiveness of the placement engine is also shown in

comparison with conventional methods.

Third, a placement and routing algorithm for a reconfigurable 1-bit processor

array (1-bit RPA) is proposed. The 1-bit RPA employs a bit-serial data path

and a unique wiring structure. The architectural difference between a 1-bit RPA

and an FPGA is that the former does not allow a simple application of mapping

techniques of FPGAs. The dedicated placement and routing algorithm for the

1-bit RPA is proposed. In the algorithm, empty processor elements are placed de-

liberately in the initial placement stage and used in the initial routing stage. The

subsequent optimization stages utilize these empty cells to improve the placement

quality.

Keywords:

algorithm, reconfigurable computing, reconfigurable hardware, FPGA, online task

placement, placement and routing

ii

Contents

1 Introduction 1

1.1. Overview . 1

1.2. Reconfigurable Computing Systems 4

2 The Possibility of Utilizing a Reconfigurable Computing System 7

2.1. Introduction . 7

2.2. Related Work . 9

2.3. Possible Application for a Reconfigurable Computing System . . . 10

2.3.1 Event-Oriented Computing as an Application Model . . . 10

2.3.2 Applicable Applications of Event-Oriented Computing . . 13

2.4. Proposed Architecture Model . 14

2.4.1 Overview of Proposed System 14

2.4.2 Evaluation of Conditional Expressions 14

2.4.3 Result Transferring Tree 15

2.5. Evaluation of the Proposed System 17

2.5.1 Application of Artificial Life to the System 18

2.5.2 Implementation of Artificial Life 20

2.5.3 Experimental Results . 21

2.6. Conclusions . 23

3 An Efficient and Effective Algorithm for Online Task Placement

with I/O Communications in Partially Reconfigurable FPGAs 26

3.1. Introduction . 26

3.2. Previous Work on Task Placement 28

3.3. Model of a Reconfigurable Computing System 29

iii

3.3.1 System Model . 29

3.3.2 FPGA Model . 30

3.3.3 Task Model . 32

3.3.4 Problem Modeling . 33

3.3.5 Constraints on I/O Communications 34

3.3.6 Evaluation Methods . 35

3.4. Task Placement Algorithm . 37

3.4.1 Management of FPGA Surface 38

3.4.2 I/O Routing Algorithm . 41

3.4.3 Management of MERs . 43

3.4.4 Fitting Strategies and Cost Functions 44

3.5. Evaluation of The Placement Engine 47

3.5.1 Small Task Set . 49

3.5.2 Medium Task Set . 49

3.5.3 Large Task Set . 50

3.5.4 Performance Comparisons with Different Unit Time Values 51

3.5.5 Overhead of the Placement Engine 52

3.6. Conclusions . 54

4 A Placement and Routing Algorithm for a Reconfigurable 1-bit

Processor Array 55

4.1. Introduction . 55

4.2. Architecture of a Reconfigurable 1-bit Processor Array 56

4.2.1 Overview of a Reconfigurable 1-bit Processor Array 56

4.2.2 Wiring Structure of a Reconfigurable 1-bit Processor Array 57

4.3. Placement and Routing Algorithm for a Reconfigurable 1-bit Pro-

cessor Array . 59

4.3.1 Overview of Mapping Algorithm 60

4.3.2 Optimization Schemes of Placement and Routing Engine . 62

4.4. Experimental Results . 64

4.4.1 Experimental Results of Initial Placement and Routing . . 65

4.4.2 Experimental Results of Optimization of Placement and

Routing . 66

4.5. Conclusions and Future Work . 69

iv

5 Conclusion 77

References . 80

v

List of Figures

1.1 A block diagram of an FPGA . 5

1.2 A block diagram of a dynamically reconfigurable processor 6

2.1 A block diagram of proposed architecture 11

2.2 Variable register file . 15

2.3 Result transferring tree . 17

2.4 An image of artificial life simulation 18

2.5 Comparator module of artificial life 20

3.1 System model . 30

3.2 Flow of processing . 31

3.3 Communication delay . 32

3.4 Task boundary = path . 34

3.5 Task boundary 6= path . 35

3.6 Execution process of a task . 36

3.7 Independent tasks . 36

3.8 Dependent tasks . 37

3.9 Overlapping maximal empty rectangles 39

3.10 Area matrix . 40

3.11 Staircase . 40

3.12 Partitioning of Staircases . 41

3.13 Search for an I/O communication path 43

3.14 Hash matrix . 44

3.15 Performance summary for small task set 50

3.16 Performance summary for medium task set 51

3.17 Performance summary for large task set 52

vi

3.18 Performance for different unit time values 53

4.1 Block diagram of a 1-bit RPA . 57

4.2 Structure of short wires . 58

4.3 Structure of a long wire . 59

4.4 Insertion of PEs for delay . 60

4.5 Flow of mapping algorithm . 61

4.6 Adjustment of CPEs . 64

4.7 Utilizing empty PEs . 64

4.8 CDFG example 1 . 71

4.9 CDFG example 2 . 72

4.10 CDFG example 3 . 73

vii

List of Tables

2.1 Evaluation of each module . 23

2.2 Latency between the core processor and the result-transferring Tree 24

2.3 Performance evaluation . 24

3.1 Total execution time and placement overhead 54

4.1 Maximal number of various parameter setting 66

4.2 Experimental result of P 0 placement and R 0 routing 67

4.3 Experimental result of P 0 placement and R 1 routing 67

4.4 Experimental result of P 0 placement and R 2 routing 68

4.5 Experimental result of P 1 placement and R 0 routing 68

4.6 Experimental result of P 1 placement and R 1 routing 69

4.7 Experimental result of P 1 placement and R 2 routing 69

4.8 Comparison between offset = 1 and offset = 2 70

4.9 Property of each CDFG . 70

4.10 Experimental results of optimization of CDFG 1 74

4.11 Experimental results of optimization of CDFG 2 74

4.12 Experimental results of optimization of CDFG 3 75

4.13 Summary of optimized placement and routing (CPE) 75

4.14 Summary of optimized placement and routing (Area) 75

4.15 Reduction of area and CPEs of optimized placement and routing . 76

viii

Chapter 1

Introduction

1.1. Overview

In recent years, researches on reconfigurable computing has extended [7], [10],

[42] and many computer architectures utilizing reconfigurable logics have been

proposed [11], [25], [36]. They improve system performance by directly mapping

solution algorithms to reconfigurable components of systems. The architectures

have shown their effectiveness in some applications such as multimedia appli-

cations, data encryptions, and so on [2], [41]. Reconfigurable devices can also

meet the needs of changes to the specification after fabrication by utilizing their

flexibility.

Among many architectures proposed, Field Programmable Gate Arrays (FP-

GAs) [6] are widely used due to their flexibility, cost, and well-developed design

environment [5]. Many recent digital appliances such as digital television or auto-

motive navigation equipment employ FPGAs in their system. In particular, they

establish a presence in prototyping or debugging of large scale integrated circuits

(LSIs) since it is difficult for LSIs to change their functions and fix bugs after fab-

rication. The architectural features of FPGAs are a fine-grained structure and

static reconfiguration. In addition to the FPGAs, dynamically reconfigurable

coarse-grained architectures have also been researched extensively [3].

Reconfigurability of hardware aims to realize flexibility and high performance

of a system simultaneously. General-purpose processors (GPPs) have more flex-

ibility since they can execute various processes by changing software programs.

1

On the other hand, application specific integrated circuits (ASICs) have the ad-

vantage in performance due to their hardware implementation of applications.

Reconfigurable devices exists between GPPs and ASICs. They attempt to realize

the performance of ASICs using their hardware functions by mapping algorithms

of target applications and, at the same time, make the flexibility of GPPs possi-

ble by reconfiguring their logic functions. There are, however, various problems

about reconfigurable devices. Their problems include a killer application, con-

figuration time, a tradeoff of their granularity and its associated issues, and so

on.

A killer application is a major issue of researches on reconfigurable computing.

There is no inevitability of using reconfigurable devices for a certain application

since they lie between GPPs and ASICs and, therefore, there are many other

suitable solutions for the application [2]. Although some reconfigurable devices

show their performance in some application fields such as image processing and

communications, their application fields are still limited. Therefore, it is necessary

to seek the potentiality of reconfigurable computing systems.

Management of hardware resources is also one of the issues of reconfigurable

computing systems in order to hide reconfiguration time of their components.

In particular, static reconfigurable devices such as FPGAs require considerable

time and reconfiguration during operation is not realistic. Therefore, as the

solution for FPGA’s slow reconfiguration time, partially reconfigurable FPGAs

or dynamically reconfigurable devices have been proposed. However, if the size of

target applications exceeds that of their configuration memory, they are required

to replace their configuration data. In such a case, proper techniques to manage

hardware resources and control configuration data are necessary to make more

effective use of such systems.

Granularity is a significant issue posed to reconfigurable computing systems.

Fine-grained architectures have the high flexibility since their function units are

composed of small portion logics such as look-up tables. However, their area

efficiency is low since interconnection wiring dominates their die area. On the

other hand, coarse-grained architectures have advantages in performance since

their basic unit comprises of arithmetical logic units. However, if the data width

of basic units is different from that of applications’ demands, their utilization

2

efficiency becomes low. A reconfigurable 1-bit processor array [33] has been pro-

posed as one of the answers to the granularity issue. However, it has not had its

own design environment yet. Therefore, a mapping method is required to make

clear the effectiveness of its approach.

In this dissertation, an utilization methodology of a reconfigurable computing

system and two computer aided design algorithms for new appearing architectures

whose function unit employs the reconfigurability are provided. First, reconfig-

urable computing systems are introduced in the following section. Then, an uti-

lization scheme is presented for a reconfigurable platform using Event-Oriented

Computing (EOC) as one of the possible solutions for application problems of

reconfigurable hardware. Next, a new approach of online task placement for a

partially reconfigurable FPGA is proposed for more utilization of hardware re-

sources. A placement and routing algorithm for a reconfigurable 1-bit processor

array is suggested. In the algorithm, the granularity issue is tackled and, there-

fore, its effectiveness should be cleared with mapping tools.

In Chapter 2, the possibility of utilizing a reconfigurable computing system

is proposed. The performance improvement resulting from parallelism of appli-

cations is often spoiled due to a bottleneck of data communication between a

core processor and reconfigurable logics. Therefore, the following conditions are

indispensable for effective utilization of a reconfigurable hybrid system. First, ap-

plications need to be computation-intensive and highly parallel to extract their

parallelism by reconfigurable logics. Second, the amount of data communication

between a core processor and reconfigurable logics is small since it can become the

bottleneck of the system. Event-Oriented Computing is a good candidate that

meets these conditions due to its characteristics. By using EOC, a method for

exploiting such a hybrid system is proposed to harness the reconfigurable logics

effectively by avoiding the bottleneck. The system architecture is also presented

and an evaluation of it is reported through an experiment. In the experiment,

performance improvement results from the fact that the amount of data commu-

nication is small.

In Chapter 3, an efficient and effective algorithm is presented for online task

placement with I/O communications in partially reconfigurable FPGAs. In a

partially reconfigurable FPGA of the future, arbitrary portions of its logic re-

3

sources and interconnection networks will be reconfigured without affecting the

other parts. Multiple tasks will be mapped and executed concurrently in such an

FPGA. Efficient execution of the tasks using the limited resources of the FPGA

will necessitate effective resource management. A number of online FPGA place-

ment methods have recently been proposed for such an FPGA. However, they

cannot handle I/O communications of the tasks. Taking such I/O communica-

tions into consideration, a new approach to online FPGA placement is introduced.

An algorithm is presented for placing each arriving task in an empty area so as

to complete all the tasks efficiently. Two fitting strategies are developed to effec-

tively handle I/O communications of the tasks. The experimental results show

that properly weighted combinations of these and two other previously proposed

strategies enable this algorithm to run very fast and make an effective placement

of the tasks. In fact, the result shows that the overhead associated with the use of

this algorithm is negligible as compared to the total execution time of the tasks.

In Chapter 4, a placement and routing algorithm for a reconfigurable 1-bit

processor array is focused. A reconfigurable 1-bit processor array (1-bit RPA) has

been proposed as an outcome of researches on reconfigurable devices. Its archi-

tecture is mainly composed of processor elements (PEs) that have bit-serial data

paths. The interconnection networks among PEs are determined according to

certain parameters, and its structure makes flexible mapping of applications pos-

sible. However, due to its unique wiring structure, a dedicated method is required

to place and route target applications for the architecture. An efficient and effec-

tive placement and routing algorithm for a 1-bit RPA is presented. Preliminary

experimental results using the algorithm are promising.

In Chapter 5, this dissertation is concluded and future work is described.

1.2. Reconfigurable Computing Systems

In this section, general ideas and some taxonomies of reconfigurable computing

systems are introduced. According to granularity, there are two types of architec-

tures: fine-grained and coarse-grained architecture. In addition, according to the

configuration time, these architectures are further classified: static and dynamic.

Here, typical architectures in each category are explained. An FPGA is one of

4

LCLC CC LCLC

CC

CC

LCLCLCLC CCCC

SS

SS

CC CC

SSCC

SS

Figure 1.1. A block diagram of an FPGA

the typical reconfigurable devices that employ static fine-grained structure [6]. In

Figure 1.1 shows a block diagram of the FPGA. In the figure, LC represents Logic

Cluster (LC) that has multiple basic logic elements (BLEs). BLEs are mainly

composed of look-up tables and registers that realize any logical functions. Switch

blocks (SB) provide controls of intersection of buses and are shown as S. C is a

connection block (CB) to connect LC and buses. Various functions are realized

by controlling connections of SBs and CBs.

A design flow of FPGAs is also mentioned. FPGA’s design flow is mainly

composed of register transfer level (RTL) design, logic design, and placement and

routing [41]. Logic design and placement and routing steps are automatically

performed using a dedicated design tool that FPGA vendors provide such as

ALTERA Quartus II [1] and Xilinx ISE foundation [49]. The design tool of

FPGAs is well developed and many effective optimization schemes are proposed

[5]. This promotes the wide use of FPGAs in the market [2].

Dynamically reconfigurable processor (DRP) [30] is the reconfigurable hard-

ware that has a coarse-grained data path and supports dynamic reconfiguration

during operation. Figure 1.2 shows a block diagram of a DRP and this basic

structure is called tile. DRP is composed of DRP’s tiles that are arranged in the

form of array. The main components of DRP’s tile are processor elements, state

transition controller (STC), and memory array. PEs are basic arithmetic units

whose bit width is 8 bits. STC is a simple sequencer to control the configuration

data of a DRP. A PE has instruction memory for various operations. STC sends

5

MEMMEM PEPE

State Transition ControllerState Transition Controller

PEPE PEPE PEPE PEPE PEPE PEPE PEPE

PEPE PEPE PEPE PEPE PEPE PEPE PEPE PEPE

PEPE PEPE PEPE PEPE PEPE PEPE PEPE PEPE

PEPE PEPE PEPE PEPE PEPE PEPE PEPE PEPE

PEPE PEPE PEPE PEPE PEPE PEPE PEPE PEPE

PEPE PEPE PEPE PEPE PEPE PEPE PEPE PEPE

PEPE PEPE PEPE PEPE PEPE PEPE PEPE PEPE

PEPE PEPE PEPE PEPE PEPE PEPE PEPE PEPE

MEMMEM MEMMEM MEMMEM MEMMEM

MEMMEM

MEMMEM

MEMMEM

MEMMEM

MEMMEM

MEMMEM

MEMMEM

MEMMEM MEMMEM MEMMEM MEMMEM

MEMMEM

MEMMEM

MEMMEM

MEMMEM

MEMMEM

MEMMEM

MEMMEM

MEMMEM

Figure 1.2. A block diagram of a dynamically reconfigurable processor

instruction pointer to each PE and DRP can change its configuration dynamically

by changing this instruction pointer.

Integrated design environment for a DRP has been provided [41]. Behavior

design is described using C language and, if required, RTL design is done. The C

description is converted to RTL design that is composed of finite state machine

for STC and data path circuit for PE arrays. Then, placement and routing is

performed and the compiler outputs object code for a DRP.

6

Chapter 2

The Possibility of Utilizing a

Reconfigurable Computing

System

2.1. Introduction

During the past decade, reconfigurable computing has been researched extensively

as a new method to improve processor performance [11], [25]. In particular,

reconfigurable hardware coexisting with a core processor is considered a good

candidate for speeding up processor performance.

Such a hybrid system demonstrates its effectiveness in multimedia applica-

tions, data encryption, signal processing, communication fields and so on. The

main idea behind improving the performance of such a solution is that reconfig-

urable logics process compute-intensive tasks of a target application instead of

a general-purpose processor. Among proposed systems, dynamic reconfigurable

processors, which can reconfigure their functions during operations, have received

considerable attention.

One of the critical issues in a hybrid system composed of a core processor

and reconfigurable logics is the communication between them. In many cases,

the communication becomes the bottleneck of the system. Therefore, to utilize a

reconfigurable computing system effectively, we need to avoid this communication

bottleneck problem.

7

In this chapter, the exploitation method of such a hybrid system is worked

on to harness the reconfigurable logics effectively. Effective utilization of recon-

figurable logics is considered to need the following attributes. First, applications

for reconfigurable computing are computation-intensive and highly parallel since

this parallelism is exploited by reconfigurable logics. Second, data communica-

tion between a core processor and reconfigurable logics is relatively low, since in

many cases it becomes the bottleneck of the system.

These attributes are conditions of tasks that should be assigned to reconfig-

urable logics. Through an actual application, a significant performance improve-

ment will be shown. It results from the fact that the amount of data commu-

nication is small. Specifically, a performance improvement using Event-Oriented

Computing that meets the conditions described above is demonstrated through

the experiment. In the experiment, that small amounts of data communication

lead to direct performance improvement is also shown in parallel with conducting

an experiment on an unlikely situation in which the quantity of data communi-

cation is very large.

Among many applications, EOC is a good candidate that has the attributes

required for the reconfigurable hybrid system. The processing of EOC includes

many simple conditional evaluations that are frequently invoked and processed

in parallel, and this parallelism can be extracted with relative ease. If the condi-

tions become true, the corresponding actions are invoked in the process of EOC.

However, cases where the conditions become true are quite infrequent due to

the attributes of EOC. As a result, the number of processes invoked is small.

It is therefore possible to reduce the necessary data communications between a

core processor and reconfigurable logics; the extracted parallelism of EOC is not

spoiled by the system’s bottleneck.

A suitable architecture is also proposed to utilize a reconfigurable hybrid sys-

tem in which EOC is leveraged to efficiently avoid communication bottleneck

problems. In the processing of EOC, since the conditions vary according to the

application implemented, effective use of dynamic reconfigurable systems is re-

quired for EOC to be successfully implemented. In fact, the experimental results

reveal the potential of the method in comparison to software implementation.

The remainder of this chapter is organized as follows. Related work is covered

8

in Section 2.2. Section 2.3 contains an explanation of the application model

for utilization of a reconfigurable computing system. In Section 2.4, the system

architecture is proposed, and then in Section 2.5, the system is evaluated. In

Section 2.6, the conclusions and future work are described.

2.2. Related Work

In this section, work related to reconfigurable computing is discussed, focusing

in particular on models of a core processor coexisting with reconfigurable logics,

as with the model. In the field of reconfigurable computing [7], [10], [23], [26],

[36], [42], many reconfigurable-hardware-based architectures and their applica-

tions have been proposed.

PRISC [37], [38] and Chimaera [21], [50] have a similar structure: each of

them integrates a small number of reconfigurable units into its host processor’s

data path. In particular, Chimaera has a reconfigurable array consisting of 32

rows, and each row has the same number of logic cells as its host processor’s bit

width. By using nine shadow registers that are partial copies of its host proces-

sor’s registers, it reduces the amount of data transfer between the reconfigurable

array and its host processors, as the model does. However, since it improves

the processor performance by the collapsing of instructions, it does not achieve a

significant performance improvement.

OneChip [47], Garp [8], [22], REMARK [27], [28] and MorphoSys [39] also

consist of a core processor and reconfigurable logics, though integration of both

components is less tightly coupled. These reconfigurable architectures harness

their reconfigurable resources to map long-running nested loops present in target

applications. Therefore, these systems show good performance improvement with

some applications. Although these proposed architectures have the capability to

speed up processor performance in processing stream data like the encoding of

motion pictures or communications processing, the bottleneck of the data com-

munication between a core processor and reconfigurable logics still remains a key

issue. Therefore, applications that need frequent communication between a core

processor and reconfigurable logics are not suited for this purpose, since integra-

tion of a core processor and reconfigurable logics of those systems is weak.

9

On the other hand, in the architecture and application model, the unnec-

essary part of data communication is filtered out while a core processor and

reconfigurable logics communicate with each other at every step. The system is

suitable for applications that have the attributes of EOC. As mentioned earlier,

extracting their parallelism is relatively easy, and the necessary amount of data

communication between a core processor and reconfigurable logics is small due

to application’s characteristics. As a result, a reconfigurable computing system

can be taken advantage of without spoiling its performance gain.

2.3. Possible Application for a Reconfigurable Com-

puting System

As already stated, the following conditions as indispensable for possible applica-

tion areas of the reconfigurable hybrid system.

1. Compute-intensive and highly parallel

2. Data communication quantity is small

EOC meets these conditions since its processing includes parallel conditional eval-

uations and only a small amount of data communications between a core processor

and reconfigurable logics is necessary.

Figure 2.1 shows a block diagram of the proposed system architecture. In the

figure, data communications between a core processor and the other components

can become the bottleneck of the system. The amount of data communication

between them is relatively small due to the attributes of EOC, making EOC

a promising model for applications that effectively utilize a reconfigurable com-

puting system. In the following sections, EOC is described in detail and some

suitable applications are also mentioned.

2.3.1 Event-Oriented Computing as an Application Model

Here, EOC and its advantage are described. EOC is ruled by the ECA (Event

Condition Action) model [40], [45], which is a sequence of processes derived from

10

Core ProcessorCore Processor Reconfigurable
Logics

Reconfigurable
Logics

Result Transferring TreeResult Transferring Tree

Variable Register FileVariable Register File

Figure 2.1. A block diagram of proposed architecture

the emergence of events (Event), the acceptance conditions (Condition), and the

associated actions (Action).

The Event is a set of triggering occurrences that cause new events, the Con-

dition is a set of expressions that have to be checked or evaluated when the event

occurs, and the Action is a set of operations that are executed if the condition

becomes true and, as a result, updates the Event.

The features of EOC are as follows.

• Flexibility

– We can add new components to the flow with relative ease since ap-

plication flow is controlled not in a sequential fashion but in an event-

triggered fashion.

• Simplicity

– Tasks are more understandable since each event and condition domi-

nates target tasks.

• Robustness

– In EOC, since strict ECA rules govern all of the components in appli-

cation programs, application programs adopting this method become

robust as indicated by the new programming paradigm called Active

Software [24], [44].

11

The process of EOC requires parallel and frequently invoked evaluations of

the conditions, and the ECA model governs this process. As a whole process,

when events occur, the corresponding conditions are evaluated. If the conditions

become true, the corresponding actions are executed. To process this ECA model

of EOC by utilizing a core processor and reconfigurable logics, the following

variables are associated with the system.

• Associated Variables Ni

• Triggering Events Ei

• Conditional Expressions Ci

• Updating Actions Ai

Each event features associated variables Ni . Triggering events Ei represent the

occurrence of events, and Conditional expressions Ci represent conditions to be

evaluated when events occur. Updating actions Ai denote functions to be ac-

tivated when corresponding conditions become true. The basic flow of EOS is

described as follows.

1. If associated variables Ni receive a change in value, the system treats them

as the occurrence of events Ei .

2. Associated conditional expressions Ci are evaluated based on Ni .

3. If the conditional expressions Ci become true, the system processes the

corresponding actions Ai that may update the associated variables Ni .

4. Associated variables Ni that are updated lead to triggering events Ei of the

next step.

The process of EOC consists of these iteration steps, and each of the above

steps is mapped to the system. Generally, conditional expressions Ci are relatively

simple, and their number is large; furthermore, many of them do not become

true. In such a case, as shown later, the reconfigurable logics of the system can

be leveraged without any spoilage of performance gain due to the communication

bottleneck. Although there is a case where many of the conditional expressions

Ci become true, such cases are not dealt with here. To illustrate the model in

more depth, an actual example is given in the evaluation in Section 2.5.

12

2.3.2 Applicable Applications of Event-Oriented Comput-

ing

In this section, suitable applications are outlined for the system dealing with

EOC.

Active Software, originally proposed by R. Laddaga [24], is one of the applica-

tions that has the property of EOC. Watanabe et al. pushed forward the research

on Active Software and proposed some practical methods and execution models

in their paper [44]. According to their methodology, Active Software consists of

Active Functions, and each Active Function has an activation condition that is

dominated by the ECA model. The execution of Active Software is suited to the

system because there are frequent evaluations of conditions occurring during its

execution process.

Event detection is another potential application for the system. Here, event

detection means detecting changes in an environment or exceptions from normal

situations. An example is postural control in the field of robot engineering. When

a robot walks, forces such as gravity or its own inertial forces act on it. In addition,

the robot also receives ground reactions as counteractions from the land surface.

Most commonly, event detection calculates ideal gait patterns with computers

while considering these forces, thus following these patterns. However, the ground

surface may not always be smooth; there may be irregularities such as pebbles.

Therefore, postural control systems require devices such as an angle meter or an

articular angle controller. In such a system, the architecture can be applied to

detect events by use of reconfigurable logics.

Computerized simulations such as physical or biological simulations are other

potential applications for the system. Generally, simulations that involve changes

in the environment include many evaluations of conditions. The system is capable

of running such types of processing efficiently. In fact, in the following section

the effectiveness of the model is demonstrated through simulations of Artificial

Life.

13

2.4. Proposed Architecture Model

In this section, the system architecture is explained in detail.

2.4.1 Overview of Proposed System

A block diagram of the proposed system is shown in Figure 2.1. The system

consists of four modules: a Core Processor (CP), a Variable Register File (VRF),

a Reconfigurable Logics (RLs), and a Result-Transferring Tree (RTT). The CP

is a central processing element that mainly performs application programs. The

VRF is a module that stores variables associated with events. RLs are reconfig-

urable hardware parts. This module evaluates conditional expressions. RTT is a

component that consists of tree-based buffer registers, transferring the results of

evaluations from the RLs to the CP. In the following subsections, each module is

described in detail.

2.4.2 Evaluation of Conditional Expressions

In this section, how to process Event-Oriented programs on the architecture is

presented.

As mentioned in Section 2.1, in EOC, parallel and frequent evaluations of

conditional expressions are inevitable.

Conditional expressions are evaluated in parallel based on associated vari-

ables. Each register of the VRF corresponds to the associated variable, and the

CP transfers updated associated variables to the VRF. In general, reconfigurable

hardware coexisting with a core processor has the crucial problem of communi-

cation between the core processor and the reconfigurable component. Therefore,

in the system, the VRF runs independently of the RLs. That is, since the VRF

only fetches associated variables from the CP and feeds the data to the RLs,

it operates with a high-speed clock that is different from that of other modules.

This permits fast data transfer between the CP and VRF. Figure 2.2 illustrates

the communication between the CP and VRF.

RLs are processing elements that consist of reconfigurable hardware. The

structure of the RLs is not critical here, and the optimal structure should be

14

Core ProcessorCore Processor

SelectorSelector

N1N1 N2N2 N2N2NiNi

Updated Associated Variables

Event Index

To Reconfigurable Logics

: Register

Variable Register File

Figure 2.2. Variable register file

chosen based on the requirements of each application. In the example, a field

programmable gate array is used for evaluation because of its flexibility. The

conditional expressions are mapped to this module. If not all of the condi-

tional expressions fit into resources, the RLs implement all of the conditional

expressions by using context switches of virtual hardware. This module eval-

uates the conditional expressions in parallel with the associated variables from

VRF. If the conditional expressions become true, it sets the corresponding flags

to 1 and sends additional data to RTT. Here, a flag denotes the occurrence

of updating action Ai . Namely, “the conditional expression = true′′ means

“the corresponding flag bit = 1′′. Also, the additional data are the information

that the CP uses to execute updating actions Ai .

2.4.3 Result Transferring Tree

Here, the structure of the RTT is explained. The RTT is used to achieve fast

data transfer. In the EOC model, the events that become “flag = 1′′ are

relatively few as compared to all of the events to be evaluated. Therefore, in

terms of parallelism, it is more efficient for the buffer registers of the RTT to

receive all the flags at once than to receive the flags that are 1 sequentially after

the processor checks all of them. In terms of data communication, it is efficient

for the specific component to put the flags through a sieve and transfer only the

15

flags of 1 to the CP.

The RTT is the component that realizes efficient data transfer between the

CP and RLs. This component fetches issued flags and additional data to a queue,

and then transfers them to the CP one by one. To fetch issued flags and data,

the RTT propagates them on a tree-formed data path, reducing the number of

steps needed to fetch flags and data to log(#Events) rather than #Events, where

#Events is the number of events.

Figure 2.3 shows the architecture of the RTT, which consists of buffer registers

and the control logic block. Buffer registers comprise the registers that store flags

(flag registers) and the registers that store additional data (data registers). Flag

registers store the flag bit to which the RLs output, while data registers store the

additional data that the CP needs.

The control logic block consists of queue registers and a simple control circuit.

The queue registers are also buffers for a flag bit and additional data, and the

control circuit controls the transfer of them from the queue registers to the CP.

The structure of the RTT has the form of a binary tree, where data are

propagated from leaves to the root. The RTT transfers flags and data to the CP

according to the following steps.

1. The RLs set the results to the corresponding flag registers in parallel.

2. Buffer registers at the bottom level in the binary tree fetch the values of

the flag register and the data register if the value of the corresponding flag

is 1. A pair comprising a flag and the corresponding additional data are

regarded as a data unit.

A buffer register fetches such a pair from one of the two leaves. If both of

the flag values are 1, the pair that has the smaller index is given priority.

3. The pairs in the buffer registers of each level are transferred to the next

level’s buffer registers if they are not occupied by other data. Each data set

flows in the buffer registers from leaves to the top in such a way.

4. Finally, the values go into the queue registers in the control logic block.

5. The CP receives the data from the queue registers and executes the corre-

sponding update action.

16

R
ec

on
fig

ur
ab

le
 L

og
ic

s
R

ec
on

fig
ur

ab
le

 L
og

ic
s

Bottom Level Top Level

Queue Register

Control Logic

N× 2
N× 4

N× 4×
2×

: Buffer Register

Figure 2.3. Result transferring tree

For example, let us consider the case where there are 32 conditional expres-

sions. When the system sends the results of the 32 conditional expressions to the

CP, it takes 32 clock cycles if the system sequentially checks which conditional

expressions are true, and then sends the flags that are true. However, as repeat-

edly mentioned, the case where only a small number of conditional expressions

become true is considered. If there are only four conditional expressions that

become true, this can be handled more efficiently by using the RTT’s tree-based

architecture. After the latency of log32 = 5 and a few clocks, the necessary

data can be sent to the CP.

2.5. Evaluation of the Proposed System

In this section, the architecture is evaluated, applying Artificial Life to the archi-

tecture as a typical example of EOC.

17

Figure 2.4. An image of artificial life simulation

2.5.1 Application of Artificial Life to the System

Artificial Life is an approach that simulates the world of life by using a com-

puter to observe the behavior of living matter or its evolution and inheritance

mechanism. In artificial life, each individual organism acts under various action

rules and organisms interact with each other. The world of artificial life begins

to change in mass as the result of this interaction. Since by following the pro-

cess we can obtain a close-up view of the phenomenon of life, this approach has

recently received attention as a new research method. In Figure 2.4, an image

of an artificial life simulation is shown. In the figure, each triangular object is a

unit of artificial life that interacts with the others. In this instance, the number

of individual organisms is 32, half of which them are male and the others, female.

As noted earlier, in artificial life, each individual organism acts on its own

accord, thus influencing the others. Accordingly, artificial life fits well with the

ECA models of EOC. Simple artificial life is implemented in the architecture for

evaluation. The details of artificial life are as follows.

• Individual Organisms

– Each individual organism has only its location and the attribute of

18

“male” or “female.”

– The number of total individual organisms is 32.

• Interaction

– Basically, each individual organism moves around at random.

– If there is another individual organism within a certain distance, the

two individual organisms interact with each other.

– If they have opposite sexuality, the male individual chases the female

one. In this regard, however, if they get too close to each other, they

move in the opposite direction.

– If each of them has the same sexuality, they move in the opposite

direction.

The artificial life described above corresponds to the architecture model as

follows. Here, i is each individual’s index: (0 <= i <= 31).

• Associated Variables Ni

– Associated variables Ni store each individual organism’s index and its

location.

• Triggering Events Ei

– Triggering events Ei correspond to the updating of the individual or-

ganism’s position.

• Conditional Expressions Ci

– Conditional expressions Ci are the conditions that represent whether

other individual organisms exist within a certain distance.

• Updating Actions Ai

– If other individual organisms exist within a certain distance, condi-

tional expressions Ci become true. Then, the flag bit corresponding to

the Ci is set to 1, which will invoke Ai. Ai updates Ni, i.e., the location

19

MUXMUX

ALUALU

CMPCMP

MUXMUX MUXMUX MUXMUX

AL0

AL1
AL7

AL8

AL9
AL15

AL16

AL17
AL23

AL24

AL25
AL31

ALi

CMPCMP

Flag, Index and Additional Data

ALUALU

CMPCMP

ALUALU

CMPCMP

ALUALU

CMPCMP

: Register

Figure 2.5. Comparator module of artificial life

of the corresponding organism. To update the location of each individ-

ual, the information on the closest organism is needed. Therefore, the

index of the closest organism, which is called “additional data” in the

model, is transferred to the CP with the flag bit. The corresponding

updating action Ai is then processed in the CP according to distance

and sexuality.

2.5.2 Implementation of Artificial Life

In this section, how artificial life is implemented in the architecture is explained.

In the implementation, the CP and the other components are connected with a

general communication protocol, say, PCI [35]. For the evaluation, an FPGA,

ALTERA Stratix EP1S80F1508C6, is used as the RLs’ structure. However, since

the CP and the communication bus between the processor and the other com-

ponents are not implemented, the communication latency is estimated from the

specifications of the PCI, and use this latency for the evaluation.

At the beginning, the CP gives start positions to each unit of artificial life

at random. Next, it sequentially transfers the data for the artificial life to the

VRF, which feeds these data to the RLs. The RLs has 32 copies of a comparator

20

module to manipulate these data in parallel. Each comparator module consists

of some arithmetic logical units as shown in Figure 2.5.

In Figure 2.5, AL represents the artificial life data in the register of the VRF,

where ALU represents the calculation of the Manhattan distance of each artifi-

cial life unit, and CMP represents the operation that compares the Manhattan

distances and takes the lower one. Each comparator module executes the calcu-

lation of the Manhattan distances between one and the other 31 artificial lives

and detects the closest artificial life unit.

Because the comparator module has four calculation blocks, it can calculate

the Manhattan distance of up to four other artificial lives in parallel. For example,

the first step is to compare ALi with AL0, AL8, AL16 and AL24. The second

step is to compare ALi with AL1, AL9, AL17 and AL25. The module iterates

operations like this up to eight times. After an iteration, it narrows the results

down four and selects the lowest one. As a result, the positional relationships of

all of the artificial life units can be obtained.

After that, the RLs check whether the Manhattan distance is within a certain

threshold by using this positional relationship and, if so, issues a flag and out-

puts the corresponding additional data. These data are transferred through the

RTT to the CP. After the processor receives the data, it updates the correspond-

ing artificial life unit’s position and transfers the updated data to the VRF. By

iterating this process, the appearance of Artificial Life can be observed.

2.5.3 Experimental Results

In this section the experimental results obtained with the architecture are shown.

Table 2.1 shows the number of logic cells and the clock frequency of each module.

However, it should be noted that the values of clock frequency of the VRF and

RTT are estimations. With continued advances in technology, these values are

expected to be able to be implemented and, therefore, it can be considered that

using these values is reasonable. The other values of the table are observed ones.

The latency between CP and RTT depends on how many conditions become true.

For reference, the cases where 8, 16, and 32 conditions become true are shown

in Table 2.2. Table 2.3 shows the time needed to process the aforementioned

operations.

21

For comparison, the same process is implemented using C language on the

systems of an Intel Pentium III processor running at 1.4 GHz and an Intel Xeon

processor running at 2.4 GHz. Their operating system is GNU Linux OS.

In the architecture, data flow is as follows.

• CP→V RF→RLs→RTT→CP

To estimate the total processing time on the architecture, it is necessary to know

the communication time between the CP and VRF and between the RTT and

CP. The execution time on the RLs and the RTT is also needed. Furthermore,

the time used to update variables on the CP is needed and, next, this value is

estimated.

In software implementation, the total processing time of an iteration is 31240 ns

in the Pentium III system and 23766 ns in the Xeon system, respectively. In the

Pentium III system, the time used to update variables in the iteration is about

965 ns. Here, that the CP’s clock frequency is the same as the Pentium III sys-

tem’s is assumed. Therefore, the time used to update variables on the architecture

is about 965 ns.

Next, the communication time between CP and RTT is estimated. That the

VRF and RTT are connected to the CP by general communication protocols is

assumed. One example of them is the peripheral component interconnect (PCI).

According to the specifications of the PCI, its bus width is 32 bits and its clock

frequency is 33 MHz. Therefore, the data latency per data unit is about 30 ns

ideally. However, considering the overhead of protocol communication, three

patterns of the data latency are used. The first case is the ideal one: Its data

latency is about 30 ns. The next case is five times slower than the ideal case. Its

data latency is about 150 ns. The last case is the ten times slower than the ideal

case. Its data latency is about 300 ns. These figures are summarized in Table

2.2.

Here, the communication time between the CP and VRF is estimated. The

VRF receives the updated variables and there are 32 data that need to be trans-

ferred. From the above three patterns, the latency between the CP and VRF is

960 ns, 4800 ns, and 9600 ns in each case.

Next, the execution time on the RLs is shown. The VRF, RLs, and RTT are

implemented in a single chip. The RLs run at 61.5 MHz and their clock cycle is

22

Module Clock Frequency Number of Logic Cells

VRF 200 MHz 902 Cells

RLs 61.5 MHz 24370 Cells

RTT 80 MHz 1104 Cells

Table 2.1. Evaluation of each module

16.26 ns. They needs one clock cycle for acknowledgment and eight clock cycles

to calculate the Manhattan distance, plus one more clock cycle to narrow down

the four results. Therefore, its processing time is about 162.6 ns.

Here, the execution time on the RTT is shown. The RTT runs at 80 MHz

and its clock cycle is 12.5 ns. In this implementation, because the RTT has four

queue registers, it needs one clock cycle to receive the acknowledgment from the

RLs and eight clock cycles to transfer the first result from the top leaves to the

end of the queue registers. Its processing time is about 112.5 ns.

Next, The total execution time on the architecture is presented. It is obtained

as a summary of the above-mentioned processing time. The summary is shown in

Table 2.3, but it should be noted that the latency of updating the queue registers

of the RTT may overlap the CP’s processing time.

As a result, in the eight-hit ideal case, the model achieves a processing time

about 14.39 times faster than software implementation when using a Pentium

III processor. In this implementation, the average hit rate is about 16.7 hits;

therefore, in the 16-hit ×5 case, the model is about 3.70 times faster than a

Pentium III system. In the worst case (32-hit ×10), the model’s processing time

is about 1.16 times faster than software implementation when using the Xeon

processor. These results show that the communication time greatly affects the

total processing time, and the method produces the intended effect.

2.6. Conclusions

In this chapter, a utilization method for a reconfigurable computing system has

been shown by taking advantage of Event-Oriented Computing. A system archi-

23

Event Hits ×1 ×5 ×10

8 hits 240 ns 1200 ns 2400 ns

16 hits 480 ns 2400 ns 4800 ns

32 hits 960 ns 4800 ns 9600 ns

Table 2.2. Latency between the core processor and the result-transferring Tree

Model ×1 ×5 ×10

8 hits 2170 ns 7240 ns 13240 ns

16 hits 2410 ns 8440 ns 15640 ns

32 hits 2890 ns 10840 ns 20440 ns

Pentium III 31240 ns

Xeon 23766 ns

Table 2.3. Performance evaluation

tecture suited for the model has also been proposed.

As is often the case with reconfigurable logics that are combined with a core

processor, the communication between them can become the bottleneck of the

system. As a result, the parallelism extracted to the reconfigurable logics is not

fully exploited.

On the other hand, EOC is an application model that is not affected by this

problem due to its specific characteristics. First, in the EOC processing, there are

many simple conditional evaluations and they are parallel and frequently invoked.

As a result, the performance gain can be derived from the parallel processing

of the conditional expressions by using the reconfigurable logics. Second, this

performance gain would not be spoiled by the communication bottleneck problem

when the number of conditional expressions that become true is small.

In the architecture for dealing with EOC, the processing and the data com-

munication are overlapped to reduce the communication bottleneck. In addition,

tree-based transferring buffers of the architecture reduces the latency to trans-

fer the results of conditional evaluations. Also, through the experiment using

24

Artificial Life, the conditions have been revealed for utilizing a reconfigurable

computing system effectively and demonstrated the potential capability of the

system.

As future work, the architecture need to be implemented at greater depth and

investigate other applications for the system.

25

Chapter 3

An Efficient and Effective

Algorithm for Online Task

Placement with I/O

Communications in Partially

Reconfigurable FPGAs

3.1. Introduction

In the late 1990’s, research efforts exploded in the area of dynamically recon-

figurable computing systems. Notable among them were the projects centered

around Dynamically Programmable Gate Arrays (DPGAs) [12] of MIT and Plas-

tic Cell Architecture (PCA) [31], [32] of NTT. Influenced by the results in these

and other research projects, the technology of Field Programmable Gate Arrays

has rapidly advanced and some type of partially reconfigurable devices such as

Xilinx Virtex II Pro [48] are now available on the market.

With continued advances in technology, partially reconfigurable FPGAs of

the future are expected to be able to dynamically reconfigure arbitrary portions

of their logic resources and interconnection networks without affecting the other

parts of the system to be implemented. This allows multiple tasks to be executed

26

in parallel by hardware. For such systems an application is first divided into a set

of small tasks. Each of them is then placed in an area of a sufficient size when the

system requests its execution. When the task is completed, the system deletes it

and its assigned area is freed, reformed, and reused by other tasks.

The partial reconfigurability may increase the FPGA resource utilization. On

the other hand, the FPGA surface would be fragmented [17], unless proper man-

agement of the device resources is provided. As a result, the area utilization of the

FPGA may decrease and a newly arrived task may not be placed although a lot of

empty areas exist. This necessitates effective FPGA resource management. Such

placement management is provided by a so-called reconfigurable operating system

(ROS) [17], [29], [46]. In particular, a special module, called task placement mod-

ule, of the ROS provides a set of system services such as task scheduling, task

loading, and task addition and deletion.

The task placement in FPGAs may be classified into two categories: offline

and online. In the offline placement, the flow of tasks is known in advance. Vari-

ous optimization algorithms such as simulated annealing and genetic algorithms

have been applied to obtain good quality placements [13], [15].

On the other hand, in the online placement, the sequence of the task flow is

known only at run time. Thus, the system needs to quickly find an empty area

for each arriving task to reduce the overhead time. Consequently, the balance

between time and quality becomes more important. Several online task placement

algorithms have recently been developed for a simple model of rectangular tasks

[4], [19], [20], [43]. However, this task model ignored the impact of the use of

communication channels between the tasks and the I/O elements located on the

periphery of the FPGA.

In this chapter, a new model for online task placement in partially reconfig-

urable FPGAs is introduced. Although it is based on the rectangular task model,

the model considers I/O communications of the tasks. An online task placement

algorithm which uses a weighted combination of four fitting strategies presented.

to find a most preferable empty area for each task. Two of the strategies are new

and explicitly reflect on I/O communication information of each empty area. The

experimental results show performance improvements over the conventional ap-

proach. In addition, the running time of this algorithm is shown to be extremely

27

short.

In the next section, some of the earlier work on reconfigurable computing sys-

tems and their task placement methods are reviewed. The model for a reconfig-

urable computing system is described in Section 3.3. In Section 3.4, the two new

fitting strategies and the online task placement algorithm are explained. Then,

a set of evaluation criteria is presented and the simulation results are shown in

Section 3.5. Section 3.6 summerizes this chapter and describes some future work.

3.2. Previous Work on Task Placement

To the best knowledge, Bazargan, et al. [4] was the first to introduce an approach

to online task placement. They proposed a rectangular task model, developed

several online placement algorithms, and did simulations with a few fitting strate-

gies. Their empty area partitioning algorithm was a heuristic and did not produce

optimal solutions. Walder, et al. [43] presented an improved version of this parti-

tioning algorithm and a method of locating feasible empty areas for a task. They

introduced an array called Hash Matrix to store pointers to lists of empty areas

of different sizes.

Handa and Vemuri [18], [19], [20] developed several algorithms for online place-

ment and task scheduling. They took a computational geometry based approach

and used algorithms for finding and maintaining empty areas on an FPGA surface

in the development of their online placement algorithm. Their method maintains

such empty areas as so-called maximal empty rectangles (MER) [4], which may

overlap with each other [20].

All of the algorithms mentioned above are based on the rectangular task

placement model [4]. However, this model ignored the impact of the use of

communication channels between the tasks and the I/O elements located on the

periphery of the FPGA. In the next section, a new model for online task placement

on partially reconfigurable FPGAs is introduced. Although it is based on the

rectangular task model, the model considers I/O communications of the tasks. It

should be noted that although the PCA model mentioned earlier, used a different

architecture than ours, communications between the tasks and the I/O elements

as well as among the tasks were important aspects of their reconfigurable systems

28

[31], [32].

Before proceeding to the presentation of the model, some other task place-

ment work based on models other than the rectangular task model is described.

Gericota, et al. [16] proposed a configurable logic block (CLB) based manage-

ment of logic resources. Their method rearranges CLBs on an FPGA surface at

run time so as to make an empty area sufficiently large to accommodate a task.

Compton, et al. [9] proposed a different approach in which task relocations and

transformations are applied to overcome the fragmentation problem.

3.3. Model of a Reconfigurable Computing Sys-

tem

The model for a reconfigurable computing system is described in detail. Each

aspect of the model is presented in a separate subsection.

3.3.1 System Model

Figure 3.1 depicts the system model consisting mainly of a host CPU, a shared

memory, a ROS, and a partially reconfigurable FPGA. The basic units of the

FPGA resources are CLBs arranged in the form of a two dimensional array. The

ROS runs on the host CPU and has the placement module that manages the

FPGA resources. It is composed of a scheduler, a loader, and a placer, which

provide a system service of task scheduling, task loading, and task addition and

deletion, respectively. The shared memory is used to provide configuration data

of each task and stores the results of task execution.

The flow of processing of the online FPGA placement is shown in Figure 3.2.

The ROS requests a task execution to its placement module when a new task

arrives. The scheduler receives the request and places it in its queue. It then

finds a task in the queue to be placed. In the online placement, scheduling is

done basically in the order of arrivals of the tasks, or, at best, by exploiting

their priorities in some measures. For example, a smaller task may be scheduled

for execution before the other larger tasks when there are no empty areas of

sufficient sizes. After that, the placer searches the list of empty rectangular areas

29

Host CPUHost CPU Shared
Memory
Shared

Memory

SchedulerScheduler
LoaderLoader

PlacerPlacer

Reconfigurable Operating System

T1

T2 T4T3

Placement Module

Ti : Task : CLB
Partially Reconfigurable FPGA

Figure 3.1. System model

for the task to be placed next. If an area large enough for the task is found, the

loader loads its configuration data into the FPGA. Then, the loaded task starts

its execution. At its completion, the loader writes the results into the shared

memory.

3.3.2 FPGA Model

As mentioned earlier, the FPGA consists of CLBs uniformly arranged in the form

of a two dimensional array. They are used as basic logic elements in such FPGA

products from Xilinx as its Vertex series [48]. By reconfiguring CLBs, digital

circuits are implemented by an FPGA. In the FPGA model, that each CLB can

be reconfigured independently is assumed. In other words, each CLB can change

its configuration at run time without affecting the other CLBs. This ability of

the FPGA is called Partial Reconfigurability.

Note that so-called “partially reconfigurable” devices currently available on

the market do not yet have the capability of configuring any single CLB at any-

time. With proper technological advancement, an enhancement of this capability

in the future is expected. With this in mind, much work has already been done

[4], [20], [43].

30

Place TaskPlace Task

Execute TaskExecute Task

ROS

Placer

FPGA

Results

Request Task
Execution

Schedule TaskSchedule Task

Scheduler

Load TaskLoad Task

Loader

Shared Memory

Store Results

Figure 3.2. Flow of processing

As depicted in Figure 3.3, communication channels are provided along every

side of each CLB. Each CLB can freely access to its neighboring communication

channels. So any pair of tasks can communicate with each other in theory. How-

ever, in the model, that communications take place between a task and an I/O

element located on the periphery of the FPGA is assumed. The I/O elements

then manage communications to external components such as the host CPU and

the shared memory. In other words, no direct communication between a pair

of tasks takes place. If a task communicates with another task frequently, they

are merged to form a larger task. In the case of infrequent communications be-

tween tasks, communication messages are to be exchanged by way of the shared

memory.

The FPGA model further assumes the existence of unlimited numbers of com-

munication channels so that communications between any pair of a task and an

I/O element may be realized. Therefore, all of the communications are done

through communication channels and I/O elements. Note that communication

resources occupied by a task are not used for I/O communications of the tasks

since each task is a hardware macro. The usage of communication resources out-

side the tasks are expected to be much lower than that inside each task. Thus,

even if unlimited numbers of communication channels are available, the amount

of communication resources actually used is to remain within a limit of a practical

31

1 unit time/1 step

: CLB

: communication
channel

Figure 3.3. Communication delay

value.

In the model, communication costs are considered in the following manner.

As shown in Figure 3.3 a unit time delay of communication is associated with the

single step traversal of a signal, where a single step is measured as the length of a

channel along a single side of each square CLB. For example, if a communication

path is represented by the gray arrow of Figure 3.3, it takes 4 units of time to

propagate the signal.

3.3.3 Task Model

Now the assumptions on some features of a task in the model are described. The

shape of a task is rectangular. An actual shape of logic circuits to implement each

task may not always be rectangular. However, for ease of management, all tasks

are regarded as being of a rectangular shape, granted that some areas might be

wasted.

In the FPGA model, that different clocks may propagate to each CLB is

assumed. Thus, each task may operate at a different clock frequency, and may

also require multiple cycles to execute the function of the task. Therefore, the

actual execution time of each task is obtained by (its required number of cycles)

× (its clock frequency).

Each task communicates its data through an I/O element asynchronously.

32

Thus, it has the amount of input and output data communication bits.

The I/O port of each task is placed at a corner of its rectangle. Empty areas

of the FPGA are also managed in a rectangular shape. Each empty area has

routing information to an I/O element. Such information includes the number of

steps and channel information to the I/O element. A port to the I/O element of

each empty area is placed at one of the four corners of the rectangle. Therefore,

to fit the I/O port of the task into that of an empty area, four types of hardware

macros are prepared for each task. Each type of the macros has the I/O port at

a different corner of a rectangle.

The parameters of each task are summarized as follows.

• Task Width

• Task Height

• The Number of CLBs

• Required Cycles

• Clock Frequency

• Data Communication Bits

3.3.4 Problem Modeling

In the online FPGA placement, the most important issue is the way in which the

placer of the placement module handles newly arrived tasks. The placer receives

a sequence of tasks from the scheduler as inputs. Outputs of the placer are

feasible empty areas for those upcoming tasks. The placer takes some conditions

into consideration when it searches for feasible areas for a task. The size of the

task is such a main condition and, clearly, the placer cannot place the task in

an area which is smaller in size than the task. It also looks for areas to avoid

fragmentation of the FPGA resources as much as possible. Additionally, in the

model, the placer handles I/O communications of the tasks, which may become

a tradeoff to fragmentation of the FPGA surface. Thus, the objective of the

placer is to place tasks online in the FPGA in such a way that the degree of

fragmentation and the speed of I/O communications are balanced.

33

Z

T

Task

MER

A

Figure 3.4. Task boundary = path

3.3.5 Constraints on I/O Communications

In order to make an I/O communication path from an empty area of the FPGA

to an I/O element, the boundaries of the tasks is used as much as possible. In

Figure 3.4, dark and light gray rectangles represent, respectively, tasks and empty

areas. For illustrative purposes, only the intended empty areas are shown in this

and the following figures. Figure 3.4 depicts a case in which task boundaries

constitute a communication path. In this figure, the empty area designated by Z

has a path from vertex A to the I/O element through the boundary of Task T.

The communication path of the empty area Z does not affect other empty areas

since it passes through task boundaries only.

On the other hands, Figure 3.5 shows a case in which no task boundary is

part of a communication path. The figure illustrates the task placement right

after Task T of Figure 3.4 finishes and is deleted from the FPGA. There are

three overlapping empty areas, X, Y and Z in the area where Task T was placed

and the empty area Z has a straight path from vertex A to the upper edge of the

FPGA through the empty area X. As a result, the empty area X is split into two

empty areas L and M, and the empty area L is then merged with the empty area

Y. In this way The empty area X has been lost due to the path of the empty

area Z through the empty area X. Therefore, the model uses task boundaries for

a communication path of each empty area as much as possible.

34

X

Y

Z

X

Y

Z

X

ML

M

Y

A

Figure 3.5. Task boundary 6= path

3.3.6 Evaluation Methods

Two methods of evaluation of an FPGA task placement are presented, depending

on whether the tasks are independent or dependent. An execution process of a

task is depicted in Figure 3.6, where the parameters denote the following.

ta : arrival time

ts : start time

tf : finish time

tw : waiting time

te : execution time

tc : communication time

tall : te + tc

Independent Task Environment

When the tasks come from different applications, their executions do not depend

on each other. Figure 3.7 shows an example. The term average waiting time is

35

Time
ta ts tf

tw tall

Figure 3.6. Execution process of a task

T35 T27 T10 T5

QueueROS

FPGAIndependent of Each Other

Figure 3.7. Independent tasks

defined for n independent tasks as

tw =
1

n

n∑
i=1

twi
(3.1)

The value of tw measures how quickly the tasks are accepted by the placement

algorithm. In order to measure the efficiency of task communications including

waiting time, The term average overhead time is defined as

toh =
1

n

n∑
i=1

(
tci

+ twi

tei

)
(3.2)

For n independent tasks, if tw is small, it means that each task can start its

execution without waiting for a long time. If toh is small, the processing of tasks

is done efficiently in terms of task communications.

Dependent Task Environment

When the tasks come from the same application, some tasks may not be able

to start their execution until other tasks finish. For n such dependent tasks in

36

T1

T2

T3

T5 T6T4

T7 T8

T9 max(fi)

min(ai)

ttotal

Data

Data

Figure 3.8. Dependent tasks

the same application, max(tfj
) represents the finish time at which the last task

finishes, and min(tai
) the arrival time at which the first task arrives. The total

execution time of the application is given by

ttotal = max
j

(tfj
) − min

i
(tai

) (3.3)

Figure 3.8 shows an example of the data flow of an application. In the figure,

tasks T1 and T9 are the first and the last task, respectively, in the application.

The difference between the arrival time of task T1 and the finish time of T9 is the

total execution time of the application. Therefore, the smaller ttotal is, the faster

the system can execute an application.

3.4. Task Placement Algorithm

This section starts with an overview of the task placement method that handles

I/O communications of the tasks. The main modules of the placement engine

are a scheduler, a loader, and a placer. Among them, the placer plays a major

role. Thus the four components of the placer: an FPGA surface manager, an

I/O routing engine, an empty area manager, and a fitter are focused on. The

surface manager provides a way to obtain empty areas on the FPGA surface

37

and is described in Section 3.4.1. The routing engine provides an algorithm for

creation of routing information for the empty areas obtained and is presented in

Section 3.4.2. The empty area manager gives a method of management of the

empty areas and is explained in Section 3.4.3. The fitter selects a suitable area

from a group of empty areas by use of fitting strategies that are given in Section

3.4.4.

The relationship among these components is briefly described. At the time of

task addition and deletion, the FPGA surface manager updates a data structure

that represents a state of the FPGA surface. When it extracts an empty area

from the data structure, the surface manager sends the extracted empty areas to

the empty area manager for storage. The routing engine creates a communication

path for each stored empty area. When a new task arrives, the fitter examines the

empty areas and finds a suitable area for the task based on the fitting strategies.

3.4.1 Management of FPGA Surface

The first component of the task placer is presented. An efficient management of

the FPGA surface is needed for full utilization of partially reconfigurable FPGAs.

For this, a modified version of the method proposed by Handa, et al. [20] is used.

A brief explanation of their method follows.

This part starts with the following definition [20].

Definition 1 A maximal empty rectangle (MER) is the empty rectangle that can

not be fully covered by any other empty rectangle.

MERs are used to manage the empty areas on an FPGA surface. Examples of

MERs are depicted in Figure 3.9, where dark and light gray rectangles represent

tasks and MERs, respectively, and some of the MERs overlap with each other.

Now how to find an MER on an FPGA surface is explained. A data structure,

called area matrix, is used to store MERs. As shown in Figure 3.10, each cell

in the area matrix corresponds to a CLB in the FPGA. Each cell stores a value,

called the weight of the cell. The polarity of a weight indicates the state of the

corresponding cell. A positive and a negative weight, respectively, corresponds to

an empty and occupied cell. The value of a positive weight of a cell P gives the

number of contiguous empty cells located at and above the cell P in the column

38

: Task

: MER

Overlapping MERs on the FPGA Surface

Figure 3.9. Overlapping maximal empty rectangles

in which P resides. The value of a negative weight in a cell N shows the number

of contiguous cells such that (1) they are located to the right of the cell N in

the row in which N resides and (2) they accommodate the corresponding part of

the task that also occupies N. In the new model, the routing information from

each task to an I/O element is handled. Hence the state of the communication

channels around each CLB is added to its corresponding cell of the area matrix

as depicted in Figure 3.10.

The following definitions are needed in order to describe a way to find an

MER.

Definition 2 A staircase (x, y) is defined as a collection of all empty rectangles

with point (x, y) as their lowest right vertex. The point (x, y) is called the origin

of the staircase.

Rows of the area matrix are scanned and a staircase is made as shown in Figure

3.11. Since each cell P of the area matrix keeps the number of empty cells at

and above P in its column, A staircase can be constructed by scanning rows. For

example, in Figure 3.11, staircase S with the origin O can be obtained by scanning

the row just above the top horizontal boundary of task T. In this way, MERs OB,

39

11119
-1-2-3-48
-1-2-3-47
-1-2-3-46
115

-3 -2 -1-4-54
-3 -2 -1-4-53
-3 -2 -1-4-52
-3 -2 -1-4-51

9
8
7
6
5
4
3
2
1

9
8
7
6
5
4
3
2
1

5
4
3
2
1

5
4
3
2
1

5
4
3
2
1

5
4
3
2
1

5
4
3
2
1 CLB

State

Figure 3.10. Area matrix

O(x, y)A
B

C
D E

: Task : MER

T

S

Figure 3.11. Staircase

OC,and OD are obtained. It has been proven that each staircase always rests on

the top horizontal boundary of an already placed task [20]. Therefore, to update

the state of the FPGA, it is sufficient for the placer to scan only the rows just

above the top horizontal boundaries of the tasks already placed.

In the conventional model, no I/O communication is considered and hence

a staircase of the type shown in the left half of Figure 3.12 is obtained. In the

model, however, the existence of such an I/O communication path for a task may

necessitate the partitioning of a staircase into two as depicted in the right half of

the figure. Note that after the partitioning, the left part of the original staircase

will be expanded to be an MER in that region.

40

T1

T2

T1

T2

Figure 3.12. Partitioning of Staircases

As the example of this figure shows, the status of each communication channel

need to be checked when staircases are created by scanning rows of the area

matrix. If a vertical communication channel is occupied, the CLB just to the

left of this channel becomes the origin of a staircase. The construction of a new

staircase begins from the CLB just to the right of the occupied channel. Likewise

horizontal communication paths affect the number of rows to be scanned. Rows

just above each of such paths need to be scanned.

3.4.2 I/O Routing Algorithm

The second component of the task placer is an I/O routing engine. A greedy

algorithm of construction of a communication path from a task to an I/O element

located on the periphery of an FPGA is presented. It also determines the length

of the path denoted by L. Vertex A is used to represent a base point of the path

and letter E to denote one of the four boundary edges of an FPGA core that is

closest from this vertex A. Initially, this base point A is selected as a vertex such

that the sum of the shorter distances from it to a horizontal and a vertical edge,

respectively, of the FPGA core.

1. Among the four vertices of an MER, find an initial base point A and an

edge E as described above.

2. if A is already on E then output L = 0 and terminate.

3. while A is not on E

begin perform the following operations:

41

4. case 1: (A is border on a task in the direction to E and A is not any of

the four corner vertices of the task.)

if E is a horizontal edge of the FPGA

then begin

if A is closer to the right vertical edge of the FPGA

then find the right vertex of the task and name it a.

else find the left vertex of the task and name it a.

Add to L the distance from vertex A to a and move A to a.

end

else perform similar operations for the case of a vertical edge E of the

FPGA.

5. case 2: (A is border on a task in the direction to E and A is a vertex of

the task.)

Find the other end of the task in the direction to E and name it a. Add to

L the distance from vertex A to a and move A to a.

6. case 3: (A is border on two tasks in the direction to E.)

Determine the task out of two that has a shorter edge in the direction to

E. Find the other end of the shorter edge and name it a. Add to L the

distance from vertex A to a and move A to a.

7. case 4: (A is not border on any task in the direction to E.)

Find a point on the MER’s edge or on the task’s edge which is the closest

to E such that it is border on a task. Name it a. Add to L the distance

from vertex A to a and move A to a.

if there is no point that is border on any task in the direction to E.

then make a path to E until the point where there is a task. Name the

point on the task’s edge a. Add to L the distance from vertex A to a and

move A to a.

8. end

9. Output L and terminate.

Note that in the above method only four case statements are needed since A is

not border on more than two tasks. It should also be noted that in its execution,

42

A

FPGA

A

A

Task

MER

E

Figure 3.13. Search for an I/O communication path

if a path reaches an edge of the FPGA, the algorithm terminates at that point.

Using an example from Figure 3.13, how the routing algorithm works is ex-

plained. At the beginning the algorithm selects as A the vertex at the upper-right

corner of the MER and as E the upper horizontal edge of the FPGA. A is border

on the task immediately above (see Case 1). Since A is closer to the right vertical

edge of the FPGA, the algorithm finds as a the lower-right end of the task and

adds to L the distance from A to a, which becomes a new vertex for A. This

makes L = 2. The new A is closer to the upper edge of the FPGA, which is

kept as E. Now A is border on the same task in the direction to E (see Case 2).

The algorithm selects the other end of the vertical edge of the task as the new A

and adds the distance from the old vertex for A to this end vertex to L. Thus,

L = 5 is obtained. The algorithm will terminate with the outputs of the reverse

L-shape path and its length of L = 5.

3.4.3 Management of MERs

This part turns the attention to the third component, an empty area manager,

which also plays an important role in the delivery of good task placement. It

starts with the following definition of the data structure introduced by Walder,

et al. [43].

Definition 3 A hash matrix is an array of size h × w, where the parameters h

and w denote the numbers of rows and columns, respectively, of the CLBs in an

43

1 2 3 ……….. b…………………..W1 2 3 …
…

a …
…

H

Typedef struct hash_matrix_entry {
list of Maximal_Empty_Rectangles (a b);
Maximal_Empty_Rectangle* free_mer_pointer;

} Hash_matrix_entry;

Hash_matrix_entry Hash_Matrix[Height][Width];

×

Figure 3.14. Hash matrix

FPGA.

Figure 3.14 shows an example of this data structure in detail. Entry[a][b] of a

hash matrix is associated with MERs of size a × b. Namely, a pointer to a list

of all such MERs is stored in the location of array[a][b]. As described below, an

additional entry is needed in the same location. This entry points to a list of

MERs of size a′ × b′ such that a′ ≥ a, b′ ≥ b, a′ × b′ > a× b, and a′ × b′ is closest

in value to a× b.

When it attempts to place a task of size a×b, the system may need to examine

all rectangles of size greater than or equal to a × b, depending on the strategies

used in the fitter that is to be explained in the next section. In this case, the

MER manager checks out only at the entries Entry[a′][b′] with a′ ≥ a and b′ ≥ b

in the hash matrix.

3.4.4 Fitting Strategies and Cost Functions

Finally the fourth component, the fitter, of the task placer is described. When

multiple MER candidates for a newly arrived task are available, the selection of a

particular MER is determined by a combination of four strategies: (1) Best Fit,

(2) I/O Oriented, (3) Path Duration, and (4) Fragmentation Aware. The first

44

strategy, Best Fit has been used as the main strategy in the conventional model,

while the fourth one, Fragmentation Aware was proposed by Handa et al. [17].

Strategies (2) I/O Oriented and (3) Path Duration are introduced to deal with

I/O communications of tasks in the model. For each strategy its associated cost

function is defined.

Strategy 1: Best Fit

Under this strategy, from the pool of MERs, a smallest MER that can accom-

modate the arrived task is selected. Let SMER and Stask denote the numbers of

CLBs that an MER contains and the task needs, respectively. The cost function

for Best Fit is given as follows.

CostBF =
SMER

Stask

(3.4)

The smaller CostBF is, the smaller number of CLBs of the MER is wasted.

Strategy 2: I/O Oriented

Under this strategy, an MER that can provide faster communication of data for

the arrived task is selected. Each task has a parameter bcom that indicates the

amount of its communication bits. Each MER holds a parameter dpath which

denotes the number of steps of its communication path to an I/O element. Let

tunit be the delay time for a task to route its data through a 1 step communication

channel. Let wband denote the number of communication channels available per

task. The cost function for the I/O Oriented strategy is now defined as.

CostIO = dpath × tunit
bcom

wband

(3.5)

Strategy 3: Path Duration

Suppose that some of the communication channels between two neighboring tasks

are used as the I/O communication path for data of a third task. When the two

neighboring tasks are completed, two fragmented MERs may reside, rather than

a combined one, if the channels are still used for the third task. In order to avoid

this type of fragmentation caused by communication paths as much as possible,

a new fitting strategy in the model is needed. The duration of path of an MER

is defined as the average over the durations of all tasks that are border on the

path of the MER. Under the new strategy, an MER whose duration of path is as

close to the duration of the arrived task as possible is selected.

45

An I/O communication path of an MER passes along task boundaries. So a

parameter tpath is defined as the average over the finish times of the tasks that are

border on the path. Let tcurrent denote the system time when the task arrived.

Note that tf is the finish time of the arrived task. The cost function for Path

Duration is defined as follows.

CostPD =

0 (tf ≤ tpath)
tf − tcurrent

tpath − tcurrent
(tf > tpath)

(3.6)

If tf ≤ tpath, the newly arrived task and its communication path disappear

before all of the tasks border on the path are completed and hence CostPD is

set to 0. If tf > tpath, however, some of the tasks that are border on the path of

an MER finish earlier than the arrived task. As a result, this path still remains

on the FPGA surface and may create fragmentation of the surface. Thus, it is

preferable to select an MER whose tpath is closest to tf of the arrived task.

Strategy 4: Fragmentation Aware

Under this strategy a selection of an MER from areas with more tasks allocated

is tried so as to prevent other less crowded areas from being fragmented. Handa,

et al. [17] introduced a parameter to quantify the fragmentation of an FPGA

surface and provided detailed discussions on this strategy. For completeness,

their definition of the cost function for Fragmentation Aware is simply given.

Let TFCC and TF , respectively, denote what they call Total Fragmentation

Contribution of a Cell or a CLB and Total Fragmentation for an MER. A larger

TF means that its MER is more fragmented.

TF =

∑
C TFCC

SMER

× 100 (3.7)

CostFA =
1

TF
(3.8)

In order to reduce the fragmentation of the FPGA surface, the placer selects an

MER with a smaller CostFA.

Now the total cost function is defined as a weighted sum of the above four cost

functions. Let α, β, γ, and δ be user-defined parameters. By proper selections

of values for these parameters, the placer will be able to place different levels of

46

emphasis on the strategies.

CostALL = α · CostBF + β · CostIO

+ γ · CostPD + δ · CostFA (3.9)

When a task arrives, the placer calculates this value for all MERs of feasible sizes.

It then selects an MER with minimum CostALL for the task.

3.5. Evaluation of The Placement Engine

In order to evaluate the effectiveness of the four fitting strategies described above

and their combinations, Simulations are conducted for the case of an FPGA

with 96 × 64 CLBs. There is no intention to claim that future FPGAs with

partial reconfigurability will be of this size. It is adopted simply because (1)

one of Xilinx’s current FPGAs, Virtex XCV-1000 is of this size, and (2) the

previous studies most relevant to the work used FPGAs of the same size for their

simulations [17], [18], [43]. Ten sets of 500 tasks each are randomly generated for

each experimental environment and the results to be shown below are the average

over these 10 sets. The uniform distribution in task size from a maximum to a

minimum for each of the ten sets is observed.

By setting appropriate parameter values, three different task sets, called a

small, medium, and large task set, are created. Note that the sizes of the tasks

affect fragmentation of the FPGA surface. With these task sets of different sizes,

the effect of each of the fitting strategies will be observed. Communication bits

for the tasks are randomly produced between 1 and 128. The execution time of

each task and intervals between two consecutive task arrivals are also randomly

generated. The values of wband and tunit are set to 8 and 1, respectively.

Before proceeding to the simulation results, the reader is reminded again of

the use of randomly generated data for evaluation of the algorithm. This has

always been done in the past simply because it is impossible to generate real

data for future technological advancement [4], [20], [43].

Most of the previously proposed algorithms in the conventional model mainly

used Strategy 1, Best Fit. Thus, the case in which only Strategy 1 is used, namely,

α = 1 and β = γ = δ = 0 corresponds to the conventional method is assumed.

47

This case is designated as Case 1. Likewise, the case in which a single strategy

i is used, is called Case i for i = 2, 3, 4. More precisely, the parameter values for

each case are set as follows:

Case 2:α = 0, β = 1, γ = δ = 0

Case 3:α = β = 0, γ = 1, δ = 0

Case 4:α = β = γ = 0, δ = 1

In each experiment with 10 sets of tasks, the online placement algorithm

is run with certain strategies emphasized over the others. The total execution

time, average waiting time, and average overhead time are measured. In order to

observe the performance of the new fitting strategies proposed for the model with

I/O communications, the values obtained in these three measures are divided by

their corresponding values for Case 1 (i.e., the conventional method). In each

figure to follow, These fractional values for these four cases are shown. Note that

those values for Case 1 are always 100%.

After having observed the results for each of Cases 2, 3, and 4 as compared

with those for Case 1 for the task sets of three different sizes, The values for

parameters α, β, γ, and δ are carefully selected. In particular, the simulation

results indicated a good performance improvement by Strategy 2 of I/O Oriented

for each of the task set categories. The case of these new parameter values for

the total cost function is designated as Case 5.

For each of these three different task sets, the placement algorithm is run and

the three values are obtained again. The fractions of these measured values over

those of Case 1 are provided as the Case 5 data in each figure.

In addition, a default case in which the parameters are set as α = 1, β =

5, γ = 1 and δ = 5 is considered. As noted earlier, the I/O Oriented strategy

always plays an important role. Likewise, as noted later, the Fragmentation

Aware strategy has an impact, in particular, on the small task set. When the

characteristics of tasks are not known in advance, this parameter setting enters

into play. This case is denoted as Case 6. For completeness of the presentation

of the experimental results, the results for Case 6 are added to each figure.

48

From here, the experimental results for each task set category are presented.

Note that the designation of each category, small, medium, and large, means that

the largest task in each set is small, medium, and large, respectively, in size.

3.5.1 Small Task Set

The tasks in a small task set are of height between 1 and 16 and width between 1

and 24. Note that the largest values in task height and width, respectively, are a

quarter of those for the FPGA. The experimental results are shown in Figure 3.15.

The data for Cases 2 and 4 clearly indicated performance improvements by their

corresponding strategies, I/O Oriented and Fragmentation Aware. Therefore the

parameter values for Case 5 are set as α = 5, β = 40, γ = 1, and δ = 30.

In this small task set, area fragmentation would most likely to occur since there

are a lot of small tasks placed in the FPGA. Therefore, a value of 30 is assigned

to the parameter δ to incorporate a relatively high impact by the Fragmentation

Aware fitting strategy. As mentioned earlier, the I/O Oriented strategy always

improves the results in any task set category. So β = 40 for Case 5 is set. It

should be noted that this case further improved the results.

3.5.2 Medium Task Set

In the medium task set category, task heights and widths are between 1 and 21

and between 1 and 32, respectively. Note that the maximum height and width

each are set to be a third of the FPGA height and width. Figure 3.16 depicts the

experimental results.

By comparing the results for Case 4 in this and the previous figures, that

Fragmentation Aware has less impact in the medium task set than in the small

task set is observed. This is because a greater number of larger tasks would likely

to reduce area fragmentation. Note also that in both the small and medium task

sets, the Path Duration strategy did not produce good results. This is most likely

due to the facts that a lot of tasks are placed in the FPGA and that the finish

times of the tasks vary very much. Therefore, the parameters of Case 5 are set

as α = 1, β = 10, γ = 0, and δ = 1.

49

���
���
���
���
���
���
���
���
���
���

	
���
	
���
	
���
	�	��
	�	��
	����

��������	��

��� ����� � !�"#!�$&%'!�� ��(�)+*,����-�� � !�".%&� /0�

�,�
�,�
�,�
�,�
�,�
���
���
���
���
���

	
���
	
���
	
���
	�	��
	�	��
	��,�

���,��	1���

��� ���,� � !�"#!�$'2&3���� ��4��.5#�,� � � ",46%&� /0�

�,�
�,�
�,�
�,�
�,�
���
���
���
���
���

	
���
	
���
	
���
	�	��
	�	��
	��,�

��������	��

��� ����� � !�"#!�$'2&3���� ��4��87�3���� 9,����:.%;� /0�

Task Width Range:
Between 1 and 24

Task Height Range:
Between 1 and 16

Unit Time: 1
Band Width: 8

Figure 3.15. Performance summary for small task set

3.5.3 Large Task Set

In the large task set, the tasks have heights between 1 and 32 and widths between

1 and 48. Note that the largest task height and width are set to a half of the

FPGA height and width, respectively. The experimental results are provided in

Figure 3.17.

The figure shows that the Path Duration strategy now has a positive effect on

the results. Since more relatively large tasks exist in the set, there are a smaller

number of tasks being executed simultaneously in the FPGA, as compared to the

small and medium task sets. Furthermore, the large task sizes would most likely

not to produce many small fragmentations. Thus, the effect of the Fragmentation

Aware strategy becomes low as indicated in the figure. Therefore, the values of

parameters of Case 5 are set as α = 1, β = 100, γ = 10, and δ = 5.

50

���
���
���
���
���
���
���
���
���
���
	
���
	
���
	
���
	�	��
	�	��
	����

�

�������	���

��� ����� !�"#!�$&%('���� ��)��+*#�� � "�)-,(./�

���
���
���
���
���
���
���
���
���
���
	
���
	
���
	
���
	�	��
	�	��
	����

�

�������	���

��� ����� !�"#!�$&%('���� ��)��10�'���� 2�����3+,4 ./�

Task Width Range:
Between 1 and 32

Task Height Range:
Between 1 and 21

Unit Time: 1
Band Width: 8

���
���
���
���
���
���
���
���
���
���
	
���
	
���
	
���
	�	��
	�	��
	����

�

�������	���

��� ����� !�"#!�$&,(!�� ��5�687�����9�� !�"+,(.-�

Figure 3.16. Performance summary for medium task set

3.5.4 Performance Comparisons with Different Unit Time

Values

In order to observe the effect of I/O communications on the execution of the

tasks, Additional experiments are conducted for the small task set with different

values set for unit time tunit. The parameter values of Case 5 are used and the

three variations in value of 0.1, 1 and 10 for tunit are considered. The results are

shown in Figure 3.18.

The first case of tunit = 0.1 means a low communication cost scenario. In this

case, not much performance impact is observed. On the other hand, for the third

case of tunit = 10, the method shows a remarkable performance improvement over

the conventional method. This would lead us to conclude that the new model

and new online task placement algorithm play an important role when high I/O

communication costs are incurred.

51

���
���
���
���
���
���
���
���
���
���

	
���
	
���
	
���
	�	��
	�	��
	����

��������	��

��� ����� � !�"#!�$&%'!�� ��(�)+*,����-�� � !�".%&� /0�

1,2
1,3
1,4
5,6
5,1
4�2
4�3
4�4
7�6
7�1

8
2�2
8
2�3
8
2�4
8�8�6
8�8�1
8�6,2

9

:�;�<�=�8>:�;,<�=�6>:�;�<�=�?�:�;�<�=�3�:�;�<�=�@A:�;,<�=�1

B�C ;�D,E F G�H#G�I'JLK�=�C ;�M�=.N#;,F E F H,MPO&F Q0=

�,�
�,�
�,�
�,�
�,�
���
���
���
���
���

	
���
	
���
	
���
	�	��
	�	��
	��,�

��������	>���������>���������������������������������������

��� ����� � !�"#!�$'R&S���� ��T��VU�S���� W,����X.%L� /0�

Task Width Range:
Between 1 and 48

Task Height Range:
Between 1 and 32

Unit Time: 1
Band Width: 8

Figure 3.17. Performance summary for large task set

3.5.5 Overhead of the Placement Engine

As mentioned earlier, the use of an online task placement algorithm should not

incur a large overhead in order to achieve an overall efficiency in the entire pro-

cess of concurrent task execution and task placement. In order to measure the

magnitude of overhead, the algorithm is run on the three different task sets with

the Case 5 parameter values again. The task execution times range from 0.1 to

38.4 seconds for the small task set, from 0.1 to 67.2 seconds for the medium task

set, and from 0.1 to 153.6 seconds for the large task set.

The total execution time was measured from the arrival time of the first task

to the finish time of the task completed last. As for the overhead, first the

times required for the execution of the placement algorithm including updating

operations of all data structures used is summed up. Then the sum is divided by

500 to derive the average overhead time per task. Table 3.1 summarizes the total

52

Unit Time: 0.1, 1, 10
Band Width: 8

Task Width Range:
Between 1 and 24

Task Height Range:
Between 1 and 16

������
������
������
������
������
	
���	
���	
���	�	��	�	��	����

��������	 ��� 	 	 	
�
����� ����� ����� ��!��"�#$� "�� %'&(�!)

*�+ ��,�� � -��.-!/10�2���+ ��3��'#$�!� �4� ��35��� �5�

�!��!�
�!��!�
�!����
������
������
	����	����	����	�	��	�	��	��!�

�������1	 ��� 	 	 	
�
����� ����� �5��� �����"�#(� "��4%'&(�!)

*�+ ��,��4� -6�.-�/��7-�� ��8�9;:!��,6<�� � -6�'��� �5�

=!>=!?
=!@A!B
A!=@�>
@�?@�@
C�BC�=
D�>�>D�>�?D�>�@D�D�BD�D�=D�B!>

E

F�G�H�I1D >�J D D D�>
K�L�M N�O�M P5I�Q R�G�L�S�T(M S�N4U'V(@!W

X�Y G�Z!N M [6L.[�\7]�^!I�Y G�_�I(`�^�I�Y U�I�G!S'O�M P�I

Figure 3.18. Performance for different unit time values

execution time and placement overhead time thus obtained for each of the three

task sets.

From the table, that the placement algorithm ran very fast and thus the

overhead was very small is observed. Note that after each task is placed, the

algorithm updates the data stored in the data structures such as the area and

hash Matrices. These updating operations are being performed while the tasks

that have been placed in the FPGA are being executed. Therefore, the times

involved in these operations are in fact not part of the overhead. Therefore, the

real overhead time is much smaller than those shown in the table. Thus that the

overhead time of the placement engine is negligible is safely concluded.

53

Task Set Total Placement Overhead

Execution Time Per Task

Small 3985.1 8.2543× 10−2

Medium 4774.3 8.5166× 10−2

Large 9103.9 11.638× 10−2

Table 3.1. Total execution time and placement overhead

3.6. Conclusions

In this chapter, a new model for online FPGA placement was introduced. Unlike

the conventional model, the model considers the effect of communications between

the tasks and the I/O elements on the periphery of a partially reconfigurable

FPGA. Two fitting strategies were proposed for task placement in the model.

An online task placement algorithm was developed. It selects an empty area

for each task using a properly weighted combination of these two and two other

previously used fitting strategies. By simulations performance improvements of

the algorithm over the conventional method were shown. That the overhead time

incurred by running this algorithm was negligible was further shown.

The model assumes an unlimited amount of resources for communication chan-

nels. There is a plan to expand the work for partially reconfigurable FPGAs with

a limited number of communication channels. In such a system, it would make

more sense to place tasks in such a way that certain portions of rows/columns

of CLBs between neighboring tasks are kept unused. Therefore a new place-

ment method that incorporates this intentional insertion of unused space to fully

accommodate I/O communications of the tasks is needed.

54

Chapter 4

A Placement and Routing

Algorithm for a Reconfigurable

1-bit Processor Array

4.1. Introduction

Recent advances in reconfigurable devices such as Field Programmable Gate Ar-

rays (FPGAs) and Complex Programmable Logic Devices [6] has promoted their

use in many computing systems to improve their performance. In particular,

FPGAs are widely used due to the flexibility of reconfiguring their functionality

as well as their enhanced development environment.

However, some flaws of FPGAs limit the fields to which they can be applied.

First, since wiring areas are dominant in chip areas of FPGAs, causing their logic

density to decrease, an implementation of a target application might not fit into

their logic areas. Second, the clock frequency of FPGAs is relatively low due to

their fine-grained structure. As a result, desired performance cannot be obtained.

To overcome these drawbacks, some devices have been proposed. For exam-

ple, Ohta et al. proposed an FPGA architecture with bit-serial pipeline data

paths [34]. However, the base of their architecture is still similar to conventional

FPGAs. Among devices proposed, a reconfigurable 1-bit processor array (1-bit

RPA) [33] is considered to be one of the most significant results. A 1-bit RPA has

the structure of a bit-serial data path, but its features are reduced wiring areas,

55

flexible routability, high logic density, and high clock frequency.

A well developed design environment is an essential factor for a new type of

architecture, since it is impossible for a large-scale design to be implemented by

hand. In this field, commercial FPGAs have arisen in an advanced development

environment, and many effective methods have been proposed such as versatile

place and route [5]. On the other hand, there has been no design environment for

a 1-bit RPA yet proposed. However, existing methods of FPGAs cannot simply

be applied to a 1-bit RPA since the structures of 1-bit RPAs and FPGAs are

substantially different. In the architecture, a processor element can be used to

bridge wires for more flexible mapping, making placement and routing integrated

and complicated. Therefore, an efficient way to map target applications to the

architecture is needed.

In this chapter, an efficient and effective placement and routing algorithm for

a reconfigurable 1-bit processor array is proposed. A 1-bit RPA features a unique

wiring structure that makes possible flexible mapping of applications. A proposed

placement and routing algorithm achieves compact implementation through var-

ious optimization steps by taking advantage of the 1-bit RPA’s characteristic

routing structure.

In the next section, a brief explanation of the architecture of a reconfigurable

1-bit RPA is described. In Section 4.3, the placement and routing algorithm

for a reconfigurable 1-bit PA is explained. Then, experimental results of an

implementation of the proposed algorithm are presented in Section 4.4. Section

4.5 summerizes this chapter and describes some future work.

4.2. Architecture of a Reconfigurable 1-bit Pro-

cessor Array

In this section, an explanation of the 1-bit RPA’s architecture is presented.

4.2.1 Overview of a Reconfigurable 1-bit Processor Array

As mentioned earlier, the 1-bit RPA has the features of a bit-serial data path

and a unique wiring network. The wiring areas have been reduced compared

56

PE ArrayPE Array

I/O ControllerI/O Controller

Host
Processor

Host
Processor

External InterfaceExternal Interface

Figure 4.1. Block diagram of a 1-bit RPA

to conventional FPGAs due to its structure, and its performance is superior,

demonstrated by an example application such as a discrete cosine transform [33].

However, owing to these features, the mapping process of a 1-bit RPA is different

from that of conventional methods.

Figure 4.1 shows a block diagram of a 1-bit RPA. In the figure, a processor

element array is the main component of the architecture and I/O controllers

are functional units for controlling input and output data from and to external

components. The processor element array is composed of processor elements

(PEs) and I/O elements (IOEs) that are primal processing units and controllers

to feed and receive data to and from PEs, respectively. PEs are capable of basic

arithmetic operations such as addition, subtraction, and shift. IOEs are arranged

at the periphery of PEs.

4.2.2 Wiring Structure of a Reconfigurable 1-bit Processor

Array

Next, the details of the 1-bit RPA’s interconnection network are described. The

architecture’s wiring structure has two types of wiring resources (short wires and

long wires), and PEs can be used to bridge wires. Short wires are used to transfer

data between neighboring PEs, with Figure 4.2 showing the structure of short

57

PEPEPEPE

PEPE PEPE

IOEIOE IOEIOEIOEIOE

IOEIOE

IOEIOE

Figure 4.2. Structure of short wires

wires. A PE has four input and output short wires, respectively. Long wires are

used to transfer data among distant PEs. The structure of long wires is depicted

in Figure 4.3. The architecture also includes two static parameters, distance

and step, which determine the configuration of long wires and are set before

fabrication. Distance denotes the farthest PE that a PE can access through a

long wire, and step represents intervals of long wires. In Figure 4.3, the left-hand

figure depicts the case where distance is 3 and step is 1. This means a PE can

access PEs within a distance of 3 and wires with a distance of 3 are arranged

between every side of PEs. Here, only wires in rows are shown for clarity. The

figure shows that PEa has access to PEb and PEc using a long wire. The right

side of the figure shows an example of the case where distance is 2 and step is 2.

In the right-hand figure, PEa uses PEd as a bridge to connect to PEc due to the

shortness of long wires. As these examples indicate, the parameters of long wires

affect the mapping flexibility.

Before proceeding further, one more feature of the architecture must be de-

scribed. Because a 1-bit RPA employs the bit-serial data path structure, delays

may occur due to certain operations such as multiplication or shift. Using a PE

for bridging wires also leads to a delay. Here, a delay means extra clock cycles

and a PE can support up to delays of 32 clock cycles. Therefore, it is necessary

to adjust the data timings. The 1-bit RPA has two ways to deal with adjustment

of data timings. One is a way to insert a PE for bridging wires to delay data

58

PEPE PEbPEb

IOEIOE IOEIOEIOEIOE

IOEIOE

PEPEPEaPEaIOEIOE PEPE

PEcPEc

IOEIOE

Distance = 3, Step = 1

PEdPEd

PEPE

IOEIOE IOEIOEIOEIOE

IOEIOE

IOEIOE PEPE

IOEIOE

Distance = 2, Step = 2

PEaPEa

PEbPEb PEcPEc

Figure 4.3. Structure of a long wire

transfers. A demonstrative example of this is depicted in Figure 4.4. In the figure,

PEg can have direct access to PEh using a long wire located immediately above

PEh and PEi. PEh’s input from PEe has a delay through PEf . Therefore, it

is necessary for PEh’s input from PEg to have the same number of delays and,

here, it has a delay through PEi. However, this method leads to more compli-

cated placement and routing and impedes the placement and routing output to

shrink. The other way to handle this problem is a method in which a PE has

input and output buffers for adjusting data timings. This method leads to an

increase of the PE area. However, in terms of placement and routing quality, this

method is better since it does not increase the number of PEs used. Therefore,

in this dissertation, the way to use input and output buffers is employed and the

number of buffers needed is dealt with architectural parameter as is the case with

step and distance.

4.3. Placement and Routing Algorithm for a Re-

configurable 1-bit Processor Array

In this section the processes of the placement and routing algorithm is explained

in detail. This part starts with an overview of the mapping processes.

59

PEfPEfPEPE

PEPE PEhPEh

PEgPEg

PEiPEi

PEPEPEePEe PEPE

PEPE

PEPE

PEPE

Figure 4.4. Insertion of PEs for delay

4.3.1 Overview of Mapping Algorithm

Figure 4.5 shows the whole process of the proposed placement and routing al-

gorithm. The process of the mapping algorithm comprises three steps: initial

placement, initial routing, and iterative optimizations. A control data flow graph

(CDFG) is employed as an input of the algorithm. That input CDFGs include de-

lay elements to adjust the data timings caused by certain operations is assumed.

The current algorithm deals with delay elements of CDFGs as a node. An output

is placement and routing information for the 1-bit RPA’s configuration data. In

the strategy, empty PEs that are used to route nodes are purposely inserted.

Here, empty PEs mean PEs that are reserved for bridging wires and these PEs

are called connection PEs (CPEs). Consequently, in the initial placement, the

algorithm does not use these empty PEs to place nodes of CDFGs. The number

of empty PEs is dealt with as a parameter that can be changed according to need.

This scheme is one of the techniques of this placement and routing algorithm.

The first step of the algorithm is the initial placement stage. Before proceeding

to the placement stage, the number of empty PEs reserved for CPEs is determined

in the initial setting stage and these empty PEs are placed between each node.

Initial placement with no empty cells might lead to unsuccessful mapping outputs;

therefore, the possibility of producing successful mapping results is raised by

placing these empty PEs between each node.

In the placement stage, there are following two strategies.

60

Input CDFGInput CDFG

Initial SettingInitial Setting

R_0R_0 R_1R_1 R_2R_2

Adjustment of CPEsAdjustment of CPEs

Utilizing empty PEsUtilizing empty PEs

Moving IO nodesMoving IO nodes

Result?Result?

Output mapping dataOutput mapping data

P_0P_0 P_1P_1

Figure 4.5. Flow of mapping algorithm

• P 0, No Backtrack

• P 1, Square

In the first strategy, (P 0), nodes of a CDFG are arranged in the form in which no

backward flows are structured and this is the same form as an output of the task

graph for free (TGFF) [14]. The first strategy, (P 1), is the placement whereby

nodes are placed in the square-shaped form. Both strategies employ the scheme

in which each node is swapped to minimize the average Manhattan distance (MD)

between two nodes. However, in P 0 strategy, each node is swapped only in a

lateral direction. In P 1 strategy, nodes are swapped in a lateral and longitudinal

direction. By iterating swapping of nodes, both methods aim to minimize total

MD between each node.

The next step is the initial routing stage. In this stage, there are following

three strategies.

• R 0, Degree

• R 1, Manhattan distance

• R 2, Degree + Manhattan distance

61

In the first strategy (R 0), the routing begins with the node that has the largest

input and output degrees. The routing of the second one (R 1) is done in de-

scending order from the node that has the longest MD. The last one, (R 2), is

the combined method of R 0 and R 1. The routing of R 2 starts with the node

whose sum of degree and MD is the largest.

In every routing step, the algorithm searches for the longest long wires for

wiring two connected nodes and the selection of directions is decided at ran-

dom when it routes two connected nodes. If there are no long wires available,

routing engine searches for long wires at the other direction. If the long wires

of both directions are not available, routing algorithm tries to use short wires

and neighboring empty nodes to bridge wires. If none of the long wires, short

wires and empty nodes are available, the algorithm stops at that point and start

routing from the initial state by changing pseudorandom seeds. In the initial

routing stage, empty PEs that were placed between nodes in the previous stage

are utilized as CPEs, which makes possible various routings among nodes.

In the initial placement and routing stage, the algorithm employs one of the

above-described strategies, and the strategy selection is performed in the initial

setting stage before entering placement and routing processes. Since strategies of

these stages are naive ones, the placement quality needs to be improved by the

following optimization stages described in the next section.

4.3.2 Optimization Schemes of Placement and Routing En-

gine

Here, optimization schemes of the mapping algorithm are presented. They are

composed of three steps. The following cost function is evaluated in each step.

Cost = α ·#CPEs + β ·
∑

i

center(Pi) (4.1)

The first term represents the total number of CPEs, and the second represents the

sum of nodei’s Manhattan Distance to the central point; α and β are user-defined

parameters. The central point is the center-most position of the most congested

area, which is determined before entering the optimization steps. If this cost

function becomes smaller at each optimization step, the algorithm takes the result

62

of the optimization as a new state of the placement and routing. Iterating the

following three optimization steps an arbitrary number of times, the placement

and routing engine attempts to improve the quality of the mapping result.

Optimization 1: Adjustment of CPEs

In this optimization step, the algorithm attempts to perform swapping between

each node and CPEs that are connected to the node. If it is possible to re-route

the nodes and the cost function decreases, swapping of nodes is performed. This

step is illustrated using an example. In the following figures, the architectures

on the left side show the unoptimized state while those on the right side show

the optimized state. Dark gray, light gray, and white squares respectively denote

occupied, connection, and empty PEs. That the central point exists in the lower

part of each figure is assumed. For illustrative purposes, only the intended figures

are shown.

Let us focus on node 23 and the CPE that is placed between node 23 and

node 25 in the left side of Figure 4.6. If node 23 is moved to where the CPE

is placed and can be re-routed there, the cost function is evaluated. If the cost

becomes smaller, swapping between the node and the CPE is performed. Al-

though the number of CPEs increases in this example, node 23 comes closer to

the central point. Therefore, it depends on the parameters whether the result of

this optimization is used.

Optimization 2: Utilizing empty PEs

The second optimization is an approach to utilizing empty PEs. In this step,

the algorithm investigates whether each node can be moved to empty PEs. If it

is possible to displace a node and, as a result, the cost decreases, the swapping

between a node and an empty node is performed. In Figure 4.7, node 1 can be

moved to the bottom-left PEs, leading to node 1’s proximity to the central point.

Optimization 3: Moving input and output nodes

Moving input and output nodes is the last optimization step. In this optimization

step, the algorithm does swaps between input and output nodes and empty IOEs.

If the swapping can be done and the input and output nodes are placed at an

inner place, the result of this optimization step is taken as a new status of the

placement and routing. When all PEs at the outermost lines of the PE area

become empty, the line is changed to IO node area and is used as the swapping

63

2222

23231818

2525

202019191717

2424

2121

2222

1818

2323

2525

202019191717

2424

2121

Figure 4.6. Adjustment of CPEs

77

5533

11

44

00

88

66

22 77

5533

44

00

88

11 66

22

Figure 4.7. Utilizing empty PEs

point of already placed input and output nodes. This optimization step aims to

shrink the total area of the placement and routing output by moving IO nodes

to inner spaces.

4.4. Experimental Results

In this section, experimental results of the placement and routing engine are

shown.

64

4.4.1 Experimental Results of Initial Placement and Rout-

ing

Here, experimental results of initial placement and routing are described. Table

4.2, 4.3, 4.4, 4.5, 4.6, and 4.7 show the results of initial placement and routing

using CDFG example 1 of Figure 4.8 with placemat and routing strategies and

parameter setting changed. The CDFG example 1 has 40 nodes, in-degree limits

are 3, and out-degree limits are 2. Table 4.1 shows the maximal number of

long wires between neighboring two nodes with various parameter setting. The

maximal number of long wires is obtained from Equation 4.2.

The number of the successful placement and routing is shown in Table 4.2,

4.3, 4.4, 4.5, 4.6, and 4.7 when a hundred times of placement and routing is

executed with pseudorandom seeds varied. In each table, − represents none

of the placement and routing executions are successful. As for the successful

placement and routing, right-hand values of each table represent the number of

the successful placement and routing and left-hand values represent the number

of average CPEs used to routing nodes. In this initial placement and routing

experiment, an empty node is inserted between neighboring two nodes at the

initial placement stage and this is shown in each table as offset = 1.

From the experimental results of 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7, when the pa-

rameter, step, is 1, many of the placement and routing are successfully performed.

On the other hand, when step is 3, all of the placement and routing failed. A 1-bit

RPA with step 3 has few long wires as shown in Figure 4.1. Therefore, resource

conflicts could occur and this leads to the unsuccessful placement and routing.

As a result, the parameter, step, has a more dominant influence on the success

and failure of the placement and routing, although there is a certain influence of

the parameter, distance.

Next, the effect of placement and routing strategies is focused. From the

experimental results of 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7, P 1 placement leads to

more successful placement and routing compared to P 0 placement. It can be

considered that in the P 0 placement relatively long MDs between two connected

nodes still remain after swapping nodes due to no backtracking strategy and the

long distance between two nodes could lead to unsuccessful mapping results. On

the contrary, the differences between routing strategies do not have a significant

65

PPPPPPPPPPPStep

Distance
1 2 3 4 5

1 2 3 4 5 6

2 1 2 2 3 3

3 1 1 2 2 2

Table 4.1. Maximal number of various parameter setting

Lmax = ddistance + 1

step
e (4.2)

impact on the number of successful mapping.

Table 4.8 shows the effect of the number of empty nodes initially inserted

between neighboring two nodes. In the table, ePEs represents the number of

empty nodes inserted at the initial placement stage. From the table, it is clear

that the number of the successful placement and routing increases when two

empty nodes are inserted between each node. Especially, the successful initial

mapping with step = 1 and distance = 2 appeared only using two empty nodes

(offset = 2). However, the cases with offset = 2 need much more CPEs than

the cases with offset = 1 and this should lead to the difficulty of optimization

stages.

4.4.2 Experimental Results of Optimization of Placement

and Routing

Next, the effectiveness of optimization steps is shown. Here, CDFG example 1,

CDFG example 2, and CDFG example 3 are used to evaluate the optimization

steps. These CDFGs are obtained from TGFF’s output and shown in Figure

4.8, 4.9, and 4.10, respectively. The property of each CDFG is shown in Table

4.9. The parameters of distance and step are set to 5 and 1, respectively. The

placement strategy is P 1 and the routing strategy is R 2.

66

offset = 1, P 0(No Backtrack), R 0(Degree)
PPPPPPPPPPPStep

Distance
1 2 3 4 5

1 − − 77.0 1 60.0 44 50.3 77

2 − − − − −
3 − − − − −

Table 4.2. Experimental result of P 0 placement and R 0 routing

offset = 1, P 0(No Backtrack), R 1(MD)
PPPPPPPPPPPStep

Distance
1 2 3 4 5

1 − − 72.0 2 57.8 49 49.4 70

2 − − − − −
3 − − − − −

Table 4.3. Experimental result of P 0 placement and R 1 routing

Table 4.10, 4.11, and 4.12 show the experimental results of ten optimized

mapping outputs of each CDFG. In this experiment, five times iterations of op-

timization steps are applied to the results of the successful initial placement and

routing of each CDFG. Table 4.13 and 4.14 also show the summary of the exper-

imental results in which each value shows the averages over the values of Table

4.10, 4.11, and 4.12. Table 4.15 shows the rate of reduction between the initial

state and the optimized state.

The averages of maximal delay are described in Table 4.13. These values of

the table represent the number of CPEs for bridging wires to route connected

nodes. As previously mentioned, using these CPEs causes the data transfer to

delay. Therefore, input and output buffers of PEs are used to adjust data timings.

From the experimental result, in the case of CDFG 1 and the case of CDFG 2

and 3, three and four buffers are needed respectively to deal with the data timing

adjustment. The number of nodes of CDFG 2 and 3 is larger than that of CDFG

67

offset = 1, P 0(No Backtrack), R 2(MD + Degree)
PPPPPPPPPPPStep

Distance
1 2 3 4 5

1 − − 74.3 3 58.9 40 49.9 69

2 − − − − 62.0 2

3 − − − − −
Table 4.4. Experimental result of P 0 placement and R 2 routing

offset = 1, P 1(Square), R 0(Degree)
PPPPPPPPPPPStep

Distance
1 2 3 4 5

1 − − 53.6 27 42.5 83 34.4 93

2 − − − − 42.0 3

3 − − − − −
Table 4.5. Experimental result of P 1 placement and R 0 routing

1. Therefore, the CDFGs need more CPEs to route nodes and this leads to more

input and output buffers.

In the result of CDFG 1 of Figure 4.15, the average size of the mapping output

has shrunk to 51.3% from that of the initial state, and the average number of

CPEs has decreased to 34.3% of the initial state. Also, in the CDFG 2 result, the

average size of the placement output has become 62.1% from that of the initial

state, and the average number of CPEs has decreased to 52.2% of the initial state.

From the results of experiment of CDFG 3, the average area of its placement has

shrunk to 74.9% from that of the initial state, and the average number of CPEs

has decreased to 67.0% of the initial state. From these experimental results, it can

be observed that the output of smaller CDFG is better than the other outputs. It

can be considered that the parameter, distance, is large enough for the placement

and routing of CDFG 1. On the contrary, for CDFG 2 and 3, distance of 5 is

not enough to connect their nodes since the MD between each node of CDFG 2

68

offset = 1, P 1(Square), R 1(MD)
PPPPPPPPPPPStep

Distance
1 2 3 4 5

1 − − 53.3 38 41.6 80 34.3 92

2 − − − 46.7 3 48.8 5

3 − − − − −
Table 4.6. Experimental result of P 1 placement and R 1 routing

offset = 1, P 1(Square), R 2(MD + Degree)
PPPPPPPPPPPStep

Distance
1 2 3 4 5

1 − − 52.7 30 42.1 74 34.2 93

2 − − − 50.0 2 50.0 1

3 − − − − −
Table 4.7. Experimental result of P 1 placement and R 2 routing

and CDFG 3 is more distant than that of CDFG 1. Therefore, long wires with

larger distance are needed to optimize the results of the placement and routing of

CDFG 2 and 3. However, long wires with too large distance leads to the increase

of the area of a PE since PE’s multiplexers to select many long wires become

large. As a result, the balance between the size of a CDFG and the length of a

long wire is considered to be more important.

4.5. Conclusions and Future Work

In this chapter, an efficient and effective placement and routing algorithm for a

reconfigurable 1-bit processor array was proposed. Since the existing placement

and routing methods cannot simply be utilized due to the 1-bit RPA’s unique

architecture, a dedicated and effective way to map target applications automat-

69

P 1(Square), R 2(MD + Degree)
PPPPPPPPPPPStep

Distance
ePEs 1 2 3 4 5

1
1 − − − 52.7 30 42.1 74 34.2 93

2 − 178 6 114.5 74 87.3 97 70.7 99

2
1 − − − 50.0 2 50.0 1

2 − − − 106.1 18 86.4 53

3
1 − − − − −
2 − − − − −

Table 4.8. Comparison between offset = 1 and offset = 2

Number of Nodes Number of Arcs

CDFG 1 41 53

CDFG 2 56 72

CDFG 3 70 90

Table 4.9. Property of each CDFG

ically is needed. In the mapping algorithm, initial placement and routing stages

employ a naive method, but the proposed algorithm attempts to achieve compact

mapping of applications through various iterative optimization steps.

As future work, more detailed experiments using parameters of larger dis-

tance should be conducted. Through the experiments, attempts will be made to

improve the placement and routing engine and to derive the optimal parameter

setting for wide-ranging applications.

70

00 11 22 33 44

55 66 77 1212 1515

88 1010 1111 1313 1818

99 1414 1616 2020 2121

1717 2222 2323 2727

1919 2424 3030 3131

2525 2626 2929 3333 3535

38382828 3232 3434 3636 3737

3939 4040

Figure 4.8. CDFG example 1

71

00 11 22 33 44 55 66 77

1212 1515

88 1010 1111

1313

1818

99 1414

1616

2020 2121

1717

2222 2323

2727

1919

2424 3030 31312525 2626 2929

3333

3535

5454

2828 3232

3434

3636

3737 3939

4040

5050

4141

49494646 4747

44444242

4848

4343 45453838

535352525151

5555

Figure 4.9. CDFG example 2

72

00 11 22 33 44 55 66 77

1212

151588 1010

1111 1313

181899

1414

1616 2020

2121

1717

2222

2323

2727

1919

2424

3030 3131

2525

2626

2929

3333

3535

5454

2828

3232

3434 3636 3737

3939 4040 50504141

5959

4646 6868

4747

4444

4242 48484343

4545

3838

5353

5656

5151

5555

58584949

6969

6363

6161

5252 6060 6262

666665655757

67676464

Figure 4.10. CDFG example 3

73

CPE(Initial) CPE(Optimized) Area Max Delay

1 40 11 12× 11 2

2 33 20 11× 10 3

3 28 9 10× 11 2

4 38 6 10× 8 1

5 37 15 11× 11 2

6 32 13 10× 11 4

7 35 15 11× 12 3

8 40 9 13× 11 2

9 38 7 10× 9 1

10 32 16 12× 11 3

Table 4.10. Experimental results of optimization of CDFG 1

CPE(Initial) CPE(Optimized) Area Max Delay

1 57 27 14× 14 3

2 56 20 15× 14 2

3 50 27 12× 12 2

4 54 38 13× 14 3

5 56 24 12× 13 4

6 55 23 11× 13 4

7 61 31 14× 14 3

8 53 32 12× 14 5

9 56 40 14× 14 4

10 60 29 14× 15 4

Table 4.11. Experimental results of optimization of CDFG 2

74

CPE(Initial) CPE(Optimized) Area Max Delay

1 77 68 18× 17 3

2 76 38 16× 14 4

3 79 76 18× 17 4

4 75 38 15× 16 4

5 72 25 16× 15 2

6 70 45 18× 15 3

7 75 72 18× 18 5

8 77 37 16× 15 2

9 80 72 18× 17 4

10 79 38 16× 16 3

Table 4.12. Experimental results of optimization of CDFG 3

CPE(Initial) CPE(Optimized) Maximal Delay

CDFG 1 35.3 12.1 2.3

CDFG 2 55.8 29.1 3.4

CDFG 3 76 50.9 3.4

Table 4.13. Summary of optimized placement and routing (CPE)

Area(Initial) Area(Optimized)

CDFG 1 15× 15 11.0× 10.5

CDFG 2 17× 17 13.1× 13.7

CDFG 3 19× 19 16.9× 16.0

Table 4.14. Summary of optimized placement and routing (Area)

75

Reduction(Area) Reduction(CPE)

CDFG 1 51.3% 34.3%

CDFG 2 62.1% 52.2%

CDFG 3 74.9% 67.0%

Table 4.15. Reduction of area and CPEs of optimized placement and routing

76

Chapter 5

Conclusion

Reconfigurable computing is now one of the promising techniques to boost up the

total system performance. Therefore, further utilization methods of the systems

are needed. In this dissertation, some design environments for reconfigurable

computing systems have been proposed.

In Chapter 2, the method of utilizing the hybrid system is presented. In the

system, a general-purpose processor and reconfigurable logics are combined. In

such hybrid systems, the extracted parallelism can be spoiled by the communi-

cation bottleneck of the system. A characteristic of Event-Oriented Computing

can avoid the bottleneck and, therefore, the applications’ parallelism can not be

spoiled. An architecture model for Event-Oriented Computing was proposed and

the effectiveness of the system was evaluated using an artificial life program. The

model achieved a processing time about 3.70 times faster than software implemen-

tation in the average case. As future work, the system need to be implemented

at a greater depth to make the effectiveness of the solution more clear and it is

necessary for further applications to be investigated.

In Chapter 3, the effective online task placement algorithm for a partially

reconfigurable FPGA was proposed. The task placement method employs task’s

I/O routing information for efficient processing of the incoming tasks. Fitting

strategies that were proposed and previously proposed strategies are combined

and properly weighted to make an effective placement of the tasks. Experimental

results have demonstrated the effectiveness of the online task placement engine

compared to the conventional method. An unlimited amount of resources for

77

communication channels are assumed in the model. Therefore, as future work,

the algorithm needs to be improved for partially reconfigurable FPGAs with

limited number of communication channels.

In Chapter 4, a placement and routing algorithm for a reconfigurable 1-bit

processor array was proposed. The unique wiring structure of a 1-bit RPA avoids

the simple use of existing placement and routing method. So, an innovative

mapping method was developed. The placement and routing engine places empty

PEs between nodes. In the optimization stage, the algorithm attempts to achieve

compact placement by utilizing the empty PEs. In the small CDFG example,

experimental results showed that the size of the mapping output shrunk to 51.3%

from that of the initial state, and the number of CPEs decreased to 34.2% of the

initial state. As future work, detailed and wide experiments using parameters of

larger distance need to be conducted to show that the proposed placement and

routing algorithm is an effective method to larger CDFGs.

78

Acknowledgement

I would like to express my genuine appreciation to Professor Yasuhiko Nakashima

of Nara Institute of Science and Technology for his helpful suggestions, accurate

criticisms, and invaluable support for this research.

I would like to show my appreciation to Professor Hideo Fujiwara of Nara In-

stitute of Science and Technology for his invaluable comments and careful review

concerning this dissertation.

I am heartily grateful to Associate Professor Shigeru Yamashita of Nara In-

stitute of Science and Technology for his continuous guidance, patient supports,

and pertinent remarks.

I wish to appreciate Emeritus Professor Katsumasa Watanabe of Nara Insti-

tute of Science and Technology for his helpful suggestions, generous supports,

and accurate criticisms.

I would like to express my deep gratitude to Professor Kazuo Nakajima of Uni-

versity of Maryland, College Park for his helpful suggestions, accurate remarks,

and invaluable supports for my research activity in the United States.

I would like to thank Assistant Professor Masaki Nakanishi of Nara Institute

of Science and Technology for his constructive discussions, helpful advice, and

continuous encouragement.

I am obliged to all of my friends and colleagues of Nakashima Laboratory for

their discussions and helpful comments.

Lastly, I thank my family for their patience, continuous supports, and contin-

uous encouragement.

79

References

[1] Altera Corporation, “Quartus II Software,”

http://www.altera.com/products/software/products/quartus2/qts-

index.html

[2] H. Amano, “Recent trends on Reconfigurable/Dynamically Reconfigurable

Systems,” In Proc. of IEICE Technical Report of SR2005-5, Vol. 105, No.

36, May 2005, pp. 31–36, (In Japanese).

[3] H. Amano, “A Survey on Dynamically Reconfigurable Processors,” In Proc.

of IEICE Technical Report of ICD2003-130, Vol. 103, No. 382, Oct. 2003,

pp. 47–52, (In Japanese).

[4] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast Template Placement for

Reconfigurable Computing Systems,” IEEE Design and Test of Computers,

Vol. 17, No. 1, pp. 68–83, 2000.

[5] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool

for FPGA Research,” In Proc. of the 7th International Workshop on Field-

Programmable Logic and Applications, London, UK, 1997, pp. 213–222.

[6] S. Brown and J. Rose, “Architecture of FPGAs and CPLDs: A Tutorial,”

IEEE Design and Test of Computers, Vol. 13, No. 2, pp. 42–57, 1996.

[7] D. A. Buell and K. L. Pocek, “Custom Computing Machines: An Introduc-

tion,” The Journal of Supercomputing, Vol. 9, No. 3, pp. 219–230, 1995.

[8] T. Callahan, J. R. Hauser and J. Wawrzynek, “The GARP Architecture and

C Compiler,” IEEE Computer, Vol. 33, No. 4, pp. 62–69, Apr. 2000.

[9] K. Compton, Z. Li, J. Cooley, S. Knol and S. Hauck, “Configuration Reloca-

tion and Defragmentation for Run-Time Reconfigurable Computing,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 10, No.

3, pp. 209–220, 2002.

[10] K. Compton and S. Hauck, “Reconfigurable Computing: A Survey of Sys-

tems and Software,” ACM Computing Surveys, Vo. 34, No. 2, pp. 171–210,

2002.

80

[11] A. DeHon, “Reconfigurable Architectures for General-Purpose Computing,”

Ph. D. Thesis, Massachusetts Institute of Technology, Artificial Intelligence

Laboratory, 1996.

[12] A. DeHon, “Dynamically Programmable Gate Arrays: A Step Toward In-

creased Computational Density,” In Proc. of the Fourth Canadian Workshop

on Field-Programmable Devices, Toronto, Canada, May, 1996, pp. 47–54.

[13] R. P. Dick and N. K.Jha, “CORDS: Hardware-Software Co-Synthesis of Re-

configurable Real-Time Distributed Embedded Systems,” In Proc. of Inter-

national Conference on Computer-Aided Design, San Jose, CA, Nov. 1998,

pp. 62–68.

[14] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: task graphs for free,”

In Proc. of the 6th international workshop on Hardware/software codesign,

Seattle, WA, Mar. 1998, pp. 97–101.

[15] S. Fekete, E. Köhler, and J. Teich, “Optimal FPGA Module Placement with

Temporal Precedence Constraints,” In Proc. of Design, Automation and Test

in Europe Conference and Exhibition, Munich, Germany, Mar. 2001, pp.

658–665.

[16] M. G. Gericota, G. R. Alves, M. L. Silva and J. M. Ferreira, “Run-Time

Management of Logic Resources on Reconfigurable Systems,” In Proc. of

Design, Automation and Test in Europe Conference and Exhibition, Munich,

Germany, Mar. 2003, pp. 974–979.

[17] M. Handa and R. Vemuri, “Area Fragmentation in Reconfigurable Operating

Systems,” In Proc. of International Conference on Engineering of Reconfig-

urable Systems and Algorithms, Las Vegas, NV, Jun. 2004, pp. 77–83.

[18] M. Handa and R. Vemuri, “An Integrated Online Scheduling and Placement

Methodology,” In Proc. of International Conference on Field Programmable

Logic and Application, Leuven, Belgium, Aug./Sept. 2004, pp. 444–453.

[19] M. Handa and R. Vemuri, “A Fast Algorithm for Finding Maximal Empty

Rectangles for Dynamic FPGA Placement,” In Proc. of Design, Automation

and Test in Europe Conference and Exhibition, Feb. 2004, pp. 744–745.

81

[20] M. Handa and R. Vemuri, “An Efficient Algorithm for Finding Empty Space

for Online FPGA Placement,” In Proc. of The 41st Design Automation Con-

ference, San Diego, CA, Jun. 2004, pp. 960–965.

[21] S. Huack, T. W. Fry, M. M. Hosler and J. P. Kao, “The Chimaera Recon-

figurable Functional Unit,” In Proc. of IEEE Symposium on FPGA-Based

Custom Computing Machines, Napa Valley, CA, Apr. 1997, pp. 87–97.

[22] J. R. Hauser and J. Wawrzynek, “GARP: A MIPS processor with a recon-

figurable coprocessor,” In Proc. of the 5th IEEE Symposium on FPGAs for

Custom Computing Machines, Napa Valley, CA, Apr. 1997, pp. 24–33.

[23] B. Kastrup, J. V. Meerbergen, and K. Nowak, “Seeking (the right) Problems

for the Solutions of Reconfigurable Computing,” In Proc. of the 9th Interna-

tional Workshop on Field Programmable Logic and Applications, Glasgow,

UK, Sep. 1999, pp. 520–525.

[24] R. Laddaga, “Active Software,” In Proc. of The First International Workshop

on Self-Adaptive Software, IWSAS 2000, Oxford, UK, Apr. 2000, pp. 11–19.

[25] W. H. Mangione-Smith and B. Hutchings, “Reconfigurable Architectures:

The Road Ahead,” In Proc. of The 4th Reconfigurable Architectures Work-

shop, Geneva, Switzerland, Apr. 1997, pp. 81–96.

[26] W. H. Mangione-Smith et al., “Seeking Solutions in Configurable Comput-

ing,” IEEE Computer, Vol. 30, No. 12, pp. 38–43, Dec. 1997.

[27] T. Miyamori and K. Olukotun, “REMARC: Reconfigurable multimedia array

coprocessor,” In Proc. of the 1998 ACM/SIGDA sixth international sympo-

sium on Field programmable gate arrays, Monterey, CA, Feb. 1998, pp. 261.

[28] T. Miyamori and K. Olukotun, “A Quantitative Analysis of Reconfigurable

Coprocessors for Multimedia Applications,” In Proc. of the 6th IEEE Sympo-

sium on Field-Programmable Custom Computing Machines, Los Alamitos,

CA, Apr. 1998, pp. 2–11.

[29] P. Merino, J. C. Lopez, and M. Jacome, “A Hardware Operating System for

Dynamic Reconfiguration of FPGAs,” In Proc. of International Workshop

82

on Field Programmable Gate Arrays, Tallinn, Estonia, Aug./Sept. 1998, pp.

431–435.

[30] M. Motomura, “A Dynamically Reconfigurable Processor Architecture,” Mi-

croprocessor Forum, San Jose, CA, Oct. 2002.

[31] K. Nagami, K. Oguri, T. Shiozawa, H. Ito, and R. Konishi, “Plastic cell ar-

chitecture: towards reconfigurable computing for general-purpose,” In Proc.

of FPGAs for Custom Computing Machines, Napa Valley, CA, Apr. 1998,

pp. 68–77.

[32] K. Nagami, K. Oguri, T. Shiozawa, H. Ito, and R. Konishi, “Plastic cell ar-

chitecture: A scalable device architecture for general-purpose reconfigurable

computing,” IEICE Transactions on Electronics, Vol. E81-C, No. 9, pp. 1431-

1437. Sep. 1998.

[33] N. Nakai, M. Nakanishi, S. Yamashita, and K. Watanabe, “Reconfigurable

1-Bit Processor Array with Reduced Wiring Area,” In Proc. of International

Conference on Engineering of Reconfigurable Systems and Algorithms, Las

Vegas, NV, Jun. 2005, pp. 225–231.

[34] A. Ohta, T. Isshiki, and H. Kunieda, “New FPGA architecture for bit-serial

pipeline datapath,” In Proc. of IEEE Symp. on FPGAs for Custom Com-

puting Machines, Napa Valley, CA, Apr. 1998, pp. 58–67.

[35] PCI-SIG,

http://www.pcisig.com/

[36] B. Radunović and V. Milutinović, “A Survey of Reconfigurable Computing

Architectures,” In Proc. of the 8th International Workshop on Field Pro-

grammable Logic and Applications, Tallin, Estonia, Aug./Sep. 1998, pp.

376–385.

[37] R. Razdan and M. D. Smith, “PRISC: Programmable Reduced Instruction

Set Computers,” Ph. D. Thesis, Harvard University, Division of Applied

Science, Cambridge, MA, 1994.

83

[38] R. Razdan and M. D. Smith, “High-performance Microarchitectures with

Hardware programmable Functional Units,” In Proc. of the 27th Annual

IEEE/ACM International Symposium on Microarchitecture, Nov./Dec. San

Jose, CA, 1994, pp. 172–180.

[39] H. Singh, M. H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M. C.

Filho, “MorphoSys: An Integrated Reconfigurable System for Data-Parallel

Computation-Intensive Applications,” IEEE Transactions on Computers,

vol. 49, No. 5, pp. 465–481, 2000.

[40] Y. Shoham, “Agent-Oriented Programming,” Artificial Intelligence, Vol. 60,

No.1, pp. 51–92, 1993.

[41] T. Sueyoshi and H. Amano ed., “Reconfigurable System,” Ohmsha, 2005,

(In Japanese).

[42] J. Villasenor and W. H. Mangione-Smith, “Configurable Computing,” Sci-

entific American, Vol. 276, No. 6, pp. 54–59 Jun. 1997.

[43] H. Walder, C. Steiger, and M. Platzner, “Fast Online Task Placement on

FPGAs: Free Space Partitioning and 2D-Hashing, ” In Proc. of International

Parallel and Distributed Processing Symposium, Nice, France, Apr. 2003, pp.

178.

[44] K. Watanabe, A. Inoue, M. Tomono, K. Kurakawa, M. Nakanishi, and S. Ya-

mashita, “Assertion Verification Design by Active Function,” JSSST Journal

on Computer Software, Vol. 22, No. 3, pp.76–91, Jul. 2005, (In Japanese).

[45] G. Weiss ed., “Multiagent systems, A Modern Approach to Distributed Ar-

tificial Intelligence,” The MIT Press, 1999.

[46] G. Wigley and D. Kearney, “The First Real Operating System for Reconfig-

urable Computers,” In Proc. of the 6th Australasian Computer Systems

Architecture Conference, Gold Coast, Queensland, Australia, Jan. 2001,

pp.130–137.

84

[47] R. Wittig and P. Chow, “OneChip: An FPGA Processor With Reconfig-

urable Logic,” In Proc. of IEEE Symposium on FPGAs for Custom Com-

puting Machines, Los Alamitos, CA, Apr. 1996, pp. 126–135.

[48] Xilinx, Inc. “Virtex-II Pro FPGAs,”

http://www.xilinx.com/products/silicon solutions/fpgas/virtex/

virtex ii pro fpgas/index.htm

[49] Xilinx Inc. “ISE foundation,”

http://www.xilinx.com/ise/logic design prod/foundation.htm

[50] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee, “CHIMAERA: A High-

Performance Architecture with a Tightly Coupled Reconfigurable Functional

Unit,” In Proc. of the 27th Annual International Symposium on Computer

Architecture, Jun. 2000, pp. 225–235.

85

List of Publications

Journal Papers

• M. Tomono, M. Nakanishi, S. Yamashita, K. Nakajima and K. Watan-

abe, “An Efficient and Effective Algorithm for Online Task Placement

with I/O Communications in Partially Reconfigurable FPGAs,” IEICE

TRANSACTIONS on Fundamentals of Electronics, Communications

and Computer Sciences, Vol. E89-A, No. 12, pp. 3416-3426, Dec.

2006.

International Conference

• M. Tomono, M. Nakanishi, S. Yamashita, K. Nakajima and K. Watan-

abe, “Online Task Placement for Partially Reconfigurable FPGAs Us-

ing I/O Routing Information,” In Proc. of the 13th Workshop on

Synthesis And System Integration of Mixed Information technologies,

Nagoya, Japan, Apr. 2006, pp. 342–349.

• M. Tomono, M. Nakanishi, S. Yamashita, K. Nakajima and K. Watan-

abe, “A New Approach to Online FPGA Placement,” In Proc. of

Conference on Information Science and Systems, Princeton, NJ, Mar.

2006, CD-ROM.

• M. Tomono, M. Nakanishi, S. Yamashita, and K. Watanabe, “Event-

Oriented Computing with Reconfigurable Platform,” In Proc. of the

10th Asia and South Pacific Design Automation Conference (ASP-

DAC 2005), Shanghai, Chian, Jan. 2005, pp. 1248-1251.

Workshops and Technical Reports

• Mitsuru Tomono, Masaki Nakanishi, Shigeru Yamashita, and Yasuhiko

Nakashima, “A Placement and Routing Algorithm for a Reconfig-

urable 1- bit Processor Array,” NAIST Technical Report, NAIST-IS-

TR2007004, March 2007.

• M. Tomono, M. Nakanishi, S. Yamashita, K. Nakajima and K. Watan-

abe, “Online FPGA Placement Using I/O Routing Information,” In

86

Proc. of IEICE Technical Report of VLSI Design Technologies, Ehime,

Japan, May 2006, pp. 1–6.

• M. Tomono, M. Nakanishi, S. Yamashita, and K. Watanabe, “Online

FPGA Placement under I/O Timing Constraints,” In Proc. of IEICE

Technical Report of VLSI Design Technologies, (DesignGaia 2005),

Kyushu, Japan, Nov./Dec. 2005, pp. 7–12.

• M. Tomono, M. Nakanishi, S. Yamashita, and K. Watanabe, “Event-

Oriented Computing with Reconfigurable Platform and its Applica-

tion,” In Proc. of IEICE Technical Report of 4th Reconfigurable Com-

puting Systems Workshop, Nagasaki, Japan, Sep. 2004, pp.103–109.

• M. Tomono, M. Nakanishi, S. Yamashita, and K. Watanabe, “Dy-

namically Reconfigurable Coprocessors for Exception Detection,” In

Proc. of IEICE Technical Report of VLSI Design Technologies, Os-

aka, Japan, May 2004, pp. 13–18.

• M. Tomono, M. Nakanishi, S. Yamashita, and K. Watanabe, “Archi-

tecture for Active Software that can Rearrange Active Functions, ”

In Proc. of IEICE Technical Report of VLSI Design Technologies,

(DesignGaia 2003), Kyushu, Japan, Nov. 2003, pp. 151–155.

Other Publications

Journal Papers

• K. Watanabe, A. Inoue, M. Tomono, K. Kurakawa, M. Nakanishi,

and S. Yamashita, “Assertion Verification Design by Active Function,”

JSSST Journal on Computer Software, Vol. 22, No. 3, pp.76–91, Jul.

2005, (In Japanese).

Workshops

• K. Watanabe, A. Inoue, M. Toshiaki, M. Tomono, M. Nakanishi, and

S. Yamashita, “Design of Active Software with Safety,” In Proc. of

AIST Programming Science Group Technical Report, Osaka, Japan,

Feb. 2004, pp. 115–125.

87

