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Studies on Intra-domain Routing Instability∗

Shu Zhang

Abstract

Routing instability means the route change or disappearance due to unex-

pected network trouble. When routing instability happens, IP packets are either

forwarded to the wrong direction or simply discarded, and sometimes it leads to

routing loops, which seriously waste network resources. As it greatly degrades the

efficiency of data transmission over the Internet when occurring frequently and

persistently, there are great demands to explore this pathological phenomenon

and reduce the bad influence that it brings to the Internet.

In this thesis we first present the result of a routing instability investigation on

WIDE Internet, the largest academy network in Japan, to show how frequently

routing instability can occur on a daily-used network. We collect the data of

OSPF, the intra-domain routing protocol used on the backbone of WIDE Internet,

for a period of about two years and analyze the data. The result tells us that

although most end-users do not notice, routing instability can occur frequently.

We characterize the instability and also present some reasons that lead to such

frequent instability.

In the next part of this thesis, we discuss how to minimize the influence of

routing instability. Currently, as most of Internet Service Providers(ISP) use link-

state routing protocols to do intra-domain routing and link-state routing protocols

calculate routes using Dijkstra algorithm, which suffers scalability problem, it is

often the case that implementors introduce artificial delay to reduce the number

of route calculation. When routing instability occurs frequently and persistently,

this delay can lead to complete loss of IP reachability for the affected network

prefixes during the unstable period. In order to ameliorate this situation, we
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propose Cached Shortest-path Tree (CST) approach which quickens intra-domain

routing convergence without extra execution of Dijkstra algorithm even if the

routing for a network is quite unstable. The basic idea of CST is to cache the

Shortest-Path Tree (SPT) of network topology that appears frequently, and use

the cached SPTs to instantly create routing table when the topology changes to

one of the cache. At the end of this thesis, we show CST’s effectiveness by a trace

driven simulation.

Keywords:

intra-domain, routing instability, convergence time, link-state routing protocol,

OSPF, Dijkstra algorithm.
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ドメイン内経路の不安定性に関する研究∗

張 舒

内容梗概

現在、インターネットの信頼性を損なう問題の一つとして経路の不安定性が
ある。経路の不安定性とは、何らかのネットワーク障害が原因で頻繁に経路が変
更し、または消滅する現象を指す。これによりパケット破棄、ルーティングルー
プが発生し、さらにルータの負荷が増加し、ネットワークの信頼性が著しく低下
し問題となる。インターネットが将来の人間社会において主な通信手段になると
予想それているだけに、このようにインターネットの基盤を直接に影響する問題
の実態を解明し、対策を講じることが重要である。
本論文ではまず日本国内最大な学術ネットワークである WIDE Internet にお

ける経路の不安定性の調査結果を示す。WIDE Internet のバックボーンで経路制
御に使われている経路制御プロトコル OSPF のデータを二年間に渡って収集し、
データの解析を通じ、WIDE Internet において経路の不安定性の発生頻度を定量
的に評価し、その不安定性を起こす原因について分析する。これにより、エンド
ユーザが普段ほとんど気づいていないにも関わらず、経路の不安定性が日常的に
生じていることを示す。また、経路の不安定性が頻繁かつ持続に起きている場合、
経路情報のインスタンスの数が限られていることも示す。それによって全体的で
みたネットワークのトポロジの数も限られていることがわかった。
経路の不安定性が頻繁に起こりうる以上、その悪影響を最小限に抑える必要が

ある。本論文の後半ではキャッシュ型最短木によって、経路の不安定性による悪影
響を最小限に抑える Cached Shortest-path Tree (CST) 手法を提案する。CST の
基本的な考え方は、ルーティングが不安定な状態において、頻繁に出現するネット
ワークトポロジおよびその最短木をキャッシュし、ネットワークトポロジがキャッ
シュされたものと同一になった時、保存された最短木を使って経路表作成時間を
短縮することである。これによって経路の収束時間を短縮することできる上、計
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算負荷の大きい Dijkstra アルゴリズムの実行回数を大幅に削減できる。CST は
上記の調査で得られた、経路が不安定の場合、全体的でみるネットワークトポロ
ジの数が限られているという調査結果に基づいている。WIDE Internetで計測し
た経路制御情報の履歴データを用いたシミュレーション評価により、CST の有効
性を明らかにする。

キーワード

ドメイン内、経路、不安定性、収束時間、リンクステート経路制御プロトコル、
OSPF、Dijkstraアルゴリズム
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1. Introduction

1.1 Background

The Internet has greatly increased its influence during the last decade. According

to NielsenNetRatings ([1]), till the end of year 2001, users of the Internet has al-

most reached 500 million all over the world. With persistent economical develop-

ment and education, it is expected that the users will continue to increase. Nowa-

days, in addition to getting information through the WWW, exchanging e-mails,

transferring file, etc., people began to use the Internet on business, medicine, etc.,

and it is becoming an indispensable tool for our daily lives.

Although there is so much expectation on the Internet, currently the Internet

is not perfect. Compared with the traditional Public Switched Telephone Network

(PSTN), the Internet excels at its ability to provide a variety of services but

lacks reliability. End users often find that sometimes they get extremely poor

performance, if not none, during their use of the Internet. There are many factors

that lead to poor performance such as the bandwidth of links, the efficiency of

application software and the robustness of protocol. In this paper, we focus on

the influence of routing instability because it directly affects the efficiency of IP

packet forwarding.

The instability of data transmission derives from the complexity of the In-

ternet. Different with traditional telephone system, which tends to be under the

control of telephone companies of limited number, the Internet consists of thou-

sands of Internet Service Providers (ISP). On the network of each ISP, different

hardware and software are used. The utilization policies inside or outside the

network are diverse. All of these can lead to routing instability. As the Internet

is still on its process to expand at a high rate, this complexity is expected to keep

on increasing.

In this thesis, we first present the result of a routing instability investigation

on WIDE Internet, the largest academy network in Japan, to show how frequently

routing instability can occur on a daily-used network. We then propose Cached

Shortest-path Tree (CST) approach which not only quickens intra-domain routing

convergence but also reduce routers’ load. The thesis is organized as follows: in

the remainder of this section, we explain what routing instability is and present
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the related work on it. In Sect. 2, we introduce the current routing architecture of

the Internet and the transition of the intra-domain routing protocols. In Sect. 3,

we show the result of an intra-domain routing instability investigation on WIDE

Internet and analyze the origin of the instability. In Sect. 4, we detail the proposed

CST approach and show its effectiveness through a simulation. In Sect. 5, we

conclude our work and introduce the future directions of our research.

1.2 Routing Instability

Routing instability, also called route flap, means the route change or disappear-

ance due to unexpected network trouble. As generally routers use their routing

tables to decide the next hop to which they should send a packet while forward-

ing it, when routing information for a network changes or disappears by some

network trouble, routing table is recalculated with the wrong information and

the next hop for the network is mistakenly decided. Packets for that network will

be either sent to the wrong direction or simply dropped. What is worse, when

the mistakenly decided next hop happens to be the router from which the packet

was received and which has not recalculate the routing table yet, routing loop

will occur. The packet will be repeatedly transfered between these two routers

until its TTL becomes zero or the route for this packet converges on these two

routers. When the number of packets that involved in the same routing loop

reaches certain level, the bandwidth of links will be seriously wasted and the load

of routers will increase,thus making other oscillation of routing information more

likely to happen.

Although in most cases, when a packet is lost, TCP (in the case that the

application uses TCP as the transport protocol) will retransmit the packet after

its retransmission timer expires without receiving proper acknowledgment, it is

explicit that the efficiency of the data transmission will be seriously degraded.

Furthermore, when this route change persists, TCP connection will be timed out

and disconnected, thus directly affecting end users.

2



1.3 Route Calculation for Link-state Routing Protocols

As a category of intra-domain routing protocol, link-state routing protocols have

been used for years because of its capability to achieve relatively fast routing con-

vergence and flexible routing. Generally, link-state routing protocols use Dijkstra

algorithm to calculate shortest-path tree (SPT). Dijkstra algorithm is classified

into O(n2) algorithm and costs much CPU cycle when used on large scale net-

works (usually with hundreds of nodes). For this reason, implementors often

introduce artificial delay to reduce the number of route calculations. However,

because all routers schedule their route calculation in different timing, such delay

may lead to packet loss and routing loop due to the inconsistent routing tables. If

the change of network topology does not happens frequently, for example, it only

happens several times a day, generally thinking, the bad influence it brings can be

considered acceptable because the consistency lasts only for the order of seconds.

But when the network topology changes frequently and persistently, the total

time of inconsistent routing table will amount to the order of minutes or even

hours. Under such condition, applications will get extremely poor performance

on data transmission and there are great demands to ameliorate this situation.

One resolution for this problem is to reduce the number of routers in one area

by splitting the whole routing domain into more areas and reduce the interval

time of route calculation to the order of millisecond. However, as the Internet is

still on its process to expand at a great rate, it is difficult to keep the number of

routers of an area small in all time. In addition, using more areas for a routing

domain will lead to extra network operation cost, thus makes it difficult to be

adopted by most ISPs.

1.4 Related Work

Routing instability has been a hot research topic for years and a quantity of work

on it has been done so far. [2] is an early work on routing instability. In this

paper, the author measured the instability of NSFNET by analyzing the routing

information of 12 hours logged from NSFNET backbone on Tuesday, Aug. 18th,

1992, and showed the unequal distribution of fluctuation cluster sizes and cycle

intervals. They showed that most of the fluctuations involved small numbers of

3



networks and cycle intervals were on the order of 10 minutes and most networks

experienced only a few transitions while a very small number of nets showed a

high degree of volatility. They also showed that the NSFNET backbone update

process was sensitive to the size of the update as well as the hop distance between

source and destination and larger updates may take many minutes to permeate

through the backbone, which caused a high update latency to user packet latency

ratio.

A more recent research on routing instability measurement was presented in

[3]. In this paper, the authors showed the number of Border Gateway Protocol

(BGP) updates exchanged per day was one or more order of magnitude larger

than expected and characterized some pathological routing information based on

the data collected from the five major Internet exchanges (IX).

In [4], the authors identified the origins of several kinds of pathological Internet

routing observed in [3] and showed how their suggest to specific router vendor

software changes greatly decreased the volume of Internet routing updates. They

also gave a discussion on the trends in the evolution of Internet architecture and

policy that may lead to a rise in Internet routing instability.

In [5], the authors examined the latency in Internet path failure, failover and

repair due to the convergence properties of inter-domain routing. The measure-

ment showed that inter-domain routers in the packet switched Internet may take

tens of minutes to reach a consistent view of the network topology after a fault.

In [6], the author explored routing instability from the aspect of end systems.

By the analysis of about 40000 end-to-end route measurements conducted using

repeated “traceroute”1, the author analyzed the routing behavior for pathological

conditions, routing stability and route symmetry. In addition, the author char-

acterized the prevalence of routing loops erroneous routing, infrastructure failure

and temporary outages.

In [7], the authors described an enhancement to OSPF, which is called “I’ll

Be Back” (IBB) capability and enables other routers to use a router whose OSPF

process is inactive for forwarding traffic for a certain period of time. The IBB

capability is designed to avoid route flaps that occur when the OSPF process

is brought down for the purpose of protocol software upgrade, operating system

1A tool used to list all necessary routers to forward a packet.
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upgrade, router ID change, AS and interface renumbering, etc. The authors

provided an analysis of how and when loops or the inconsistency of the routing

table and the forwarding table are formed and proposed solutions to prevent them.

In addition, the authors developed an IBB extension to OSPF incorporating these

solutions using the GateD platform.

In [8], the authors presented some methods to investigate the behavior of

OSPF. By the proposed methods, they measured the time of a router to process

LSAs, perform SPF calculations, update FIB and flood LSAs for a variety of

routers of Cisco Inc. In addition, they validated the methodology by comparing

the measurement with GateD.

In [9], the results of a simulation on the election and the flooding protocols are

presented. The authors showed that for the election Protocol: (a) The DR can

be elected in constant time. (b) If a router has a limited number of input buffers,

a competition for buffers between the election time and causes an oscillatory be-

havior. (c) At each router, the Router-ID of the DR continuously changes causing

instability. (d) In the worst case, when the DR and the BDR fail at the same

time, the DR-agreement-time is bounded above by twice the HelloInterval. The

authors simulated OSPF flooding protocol by using 20, 50 and 80 router point-to-

point networks and showed: (a) For the 50 router network, as link speed exceeds

4000 Kbps, the probability of overflowing the input buffers increases causing re-

transmissions. The increase in bootup-convergence-time from retransmissions is

bounded by two and three times the RxmtInterval for link speeds of 4000 to 6000

Kbps and above 50 Mbps respectively. (b) For 20 and 50 router networks, the

input buffer size has little impact on the bootup-convergence-time. For the 80

router network, a small change in the input buffer size drastically change the

bootup-convergence-time. (c) Reducing the value of the RxmtInterval lowers the

bootup-convergence-time at high link speeds.

In [10], the authors studied the effects of traffic overload on routing protocols

by quantifying the stability and robustness properties of OSPF and BGP. They

developed analytical models to quantify the effect of congestion on the robustness

of OSPF and BGP as a function of the traffic overload factor, queuing delays and

packet sizes. Then they use the analytical framework to investigate the effect

of factors that are difficult to incorporate into an experimental setup, such as a
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wide range of link propagation delays and packet dropping policies. The authors

demonstrated the importance of selective treatment of routing protocol messages

from other traffic by using scheduling and utilizing buffer management policies

in the routers to achieve stable and robust network operation.

In [11], the authors argued that it is possible for link state routing protocols

to converge in the order of tens of milliseconds. They presented some analysis of

IS-IS convergence by showing its behavior upon link/router failures and repairs,

and its scaling properties to large networks both in terms of number of nodes

and links. They then explored changes needed in the IS-IS specification and

implementation in order to reach IGP convergence in milliseconds.

In [12], the author provided a case study on the characteristics and dynamics

of LSA traffic for a large enterprise network. For this network, they focused

on LSA traffic and analyzed: (a) the class of LSAs triggered by OSPF’s soft-

state refresh, (b) the class of LSAs triggered by events that change the status

of the network, and (c) a class of duplicate LSAs received due to redundancy in

OSPF’s reliable LSA flooding mechanism. They also derived the baseline rate

of refresh-triggered LSAs automatically from network configuration information

and investigated finer time scale statistical properties of this traffic, including

burstness, periodicity, and synchronization. In addition, the authors discussed

root causes of event-triggered and duplicate LSA traffic, as well as steps identified

to reduce this traffic.

In [13], a mechanism is proposed to achieve faster routing convergence by

counting the changing frequency of advertised routing information for each net-

work node. The authors suggest: (a) When the routing information for one

network node does not change frequently, calculate routes without delay to re-

duce the time of inconsistent routing. (b) When the node’s routing information

changes frequently, calculate routes with longer delay to reduce router’s workload.

This approach works fine with cases in which only one node’s routing informa-

tion changes but has difficulty to deal with cases in which routing information of

several nodes change at the same time.

As currently each route calculation of OSPF needs a full execution of Dijkstra

algorithm from scratch, several dynamic SPF algorithms are proposed to generate

the new SPT from a precalculated one in order to reduce CPU cycle needed. In

6



[14], the authors provided an output bounded resolution to compute the SPT of

a directed or an undirected graph with positive real edge weights. They conclude

that with their proposition, the computation needs O(
√

mlogn) amortized time

per vertex update for a general graph, where n is the number of the vertices and

m is the number of edges.

In [15], the authors proposed an algorithmic framework that yields dynamic

versions of some well-known static SPT algorithm such as Dijkstra, Bellman-Ford

and D’Esopo-Pape. In particular, they proposed two different incremental meth-

ods to transform static algorithms into new dynamic algorithm. They argued

that with the two methods, the resulting dynamic algorithm will make the mini-

mum number of changes to the SPT topology following a link state update, thus

improving routing stability.

In [16], they authors gave an experimental analysis on the dynamic algorithms

in [14] and [17]. They compared the result of these algorithms with Dijkstra

algorithm and argue that dynamic algorithm is more efficient than static SPT

algorithms.

Although the proposed dynamic algorithms has less complexity than running

Dijkstra algorithm each time from scratch, it is difficult for the manufacture to

adopt them. We show the reason in Sect. 3.5.

There are also some other research on routing instability. In [18], an algo-

rithm is proposed to conduct BGP route flap damping. This algorithm uses the

change frequency of a route to decide whether or not to advertise a route through

BGP. [19] focuses on the synchronization of periodic routing messages and offer

guidelines on how to avoid inadvertent synchronization. In [20], the result of an

intra-domain routing instability investigation on a IX of Japan is presented and

a method of selecting unstable AS is proposed.
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2. Internet Routing

Internet routing has been a hot topic ever since the beginning of the interconnec-

tion of different networks. Throughout the 40 years’ development of the Internet,

new routing technology has been deployed and obsoleted one by one. In this

section, in addition to giving a review to the history of the routing technology

of the Internet, we introduce the current routing architecture. We describe the

overall routing architecture of the Internet in Sect 2.1, introduce the transition

of IGP in Sect. 2.2 and explain link state routing protocol in Sect. 2.3. We then

introduce the two most widely used link state routing protocols: OSPF and IS-IS

respectively in Sect. 2.4 and Sect. 2.5.

2.1 The Transition of Internet Routing Architecture

The global Internet’s progenitor was the Advanced Research Projects Agency

Network (ARPANET) of the U.S. Department of Defense. From 1969 through

1983, the routing protocol used on the Internet was Gateway Gateway Protocol

(GGP). GGP uses Bellman-Ford algorithm and was first implemented by BBN

[21] and COMSAT [22] in tiny PDP11 computers.

As the ARPANET kept growing, it became necessary to adopt a hierarchical

structure for routing. The Internet was thus split into a set of Autonomous

Systems (AS). The concept of AS is very loose and commonly it can be considered

as a set of routers and networks under the same administration.

The first routing protocol that was used for the purpose of inter-AS rout-

ing was Exterior Gateway Protocol (EGP). EGP is composed of three separate

procedures:

• The “neighbor acquisition” procedure determines whether two adjacent

gateways agree to become neighbors.

• The “neighbor reachability” procedure monitors the link between the neigh-

bors.

• The “network reachability” procedure organizes the exchange of reachability

information.
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Although EGP can conduct basic inter-AS routing, it is not capable of avoid-

ing false information, conducting policy routing or avoiding topology and routing

loops. With the Internet keeps growing, there came a strong user demand for

more robust and flexible routing. This led to the standardization of the Border

Gateway Protocol (BGP) by the BGP working group of the IETF.

The design of BGP underwent several stages. BGP1 [23], BGP2 [24], BGP3

[25] were published respectively in June 1989, June 1990 and October 1991. BGP4

[26] [27] [28] [29] was published in March 1995 and currently it is the most widely

deployed inter-domain routing protocol.

The most outstanding characteristic of BGP is that it is a path vector rout-

ing protocol. In BGP, each routing update carries the full list of transit ASes

traversed between the source and the destination. As routing loop occurs only

if one AS was listed twice in the update, it can be simply detected and avoided.

When receiving a route advertisement, the exterior router will check whether or

not its own AS is not already listed in the path. If it is, the router can refuse to

use the advertised path.

In BGP, the advertised paths in a route update are described by a set of

attributes. These attributes help a router to choose a better route when multiple

paths exist. Currently, following attributes are defined in BGP4:

• ORIGIN

ORIGIN is a well-known mandatory attribute that defines the origin of the

path information.

• AS PATH

AS PATH is a well-known mandatory attribute that is composed of a se-

quence of AS path segments.

• NEXT HOP

NEXT HOP is a well-known mandatory attribute that defines the IP ad-

dress of the border router that should be used as the next hop to the

destinations listed in the Network Layer Reachability field of the UPDATE

message.
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• MULTI EXIT DISC

MULTI EXIT DISC is an optional non-transitive attribute that is a four

octet non-negative integer. The value of this attribute may be used by a

BGP speaker’s decision process to discriminate among multiple exit points

to a neighboring autonomous system.

• LOCAL PREF

LOCAL PREF is a well-known discretionary attribute that is a four octet

non-negative integer. It is used by a BGP speaker to inform other BGP

speakers in its own autonomous system of the originating speaker’s degree

of preference for an advertised route.

• ATOMIC AGGREGATE

ATOMIC AGGREGATE is a well-known discretionary attribute of length

0. It is used by a BGP speaker to inform other BGP speakers that the local

system selected a less specific route without selecting a more specific route

which is included in it.

• AGGREGATOR

AGGREGATOR is an optional transitive attribute of length 6. The at-

tribute contains the last AS number that formed the aggregate route (en-

coded as 2 octets), followed by the IP address of the BGP speaker that

formed the aggregate route (encoded as 4 octets).

BGP is still being improved by the Inter-Domain Routing working group of

IETF.

2.2 The Transition of IGP

In the early time of the Internet, mostly the Routing Information Protocol version

1 (RIPv1) [30] was used as IGP. RIPv1 is a kind of hop count routing protocol

and is very simple. With the advent of Classless Inter-Domain Routing (CIDR)

[31], RIPv1 was gradually replaced by RIPv2, which was based on RIPv1 and

can be used for classless routing. Although RIPv2 is just as simple as RIPv1,
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network researchers begin to prefer link state routing protocol which provides

more flexible routing and faster routing convergence.

2.3 Link State Routing Protocol

Link state routing protocols are based on the “distributed map” concept: all

nodes have a copy of the network map, which is regularly updated. Each node

generates its routing table based on the network map, thus avoiding routing

inconsistency.

2.3.1 The Characteristics of Link State Routing Protocols

All link state routing protocols consist of the following components:

• The Link State Database

For link state routing protocols, all routers maintain a same link state

database. This database holds the link status of all routers in the rout-

ing domain. As all routers generate their routing tables based on the link

state database, generally routing tables of all these routers are consistent.

• The Flooding Protocol

The flooding protocol is used to distribute the link state of routers through-

out the network. In order not to install old routing information into the

link state database, all routing information flooded is marked with sequence

number so that routers can determine whether the received information is

fresh.

• Bringing Up Adjacencies

Link state routing protocol uses adjacency to maintain reachability infor-

mation with neighbors. When a router loses or recovers its connection to

the Internet, the information is flooded throughout the routing domain.

• Securing the Map Updates

Link state routing protocol periodically floods the routing information of

all routers so that corrupt information will be detected.
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2.3.2 The Advantages of Link State Routing Protocol

Compared with RIP, the link state routing protocol has following advantages:

• Fast, loopless convergency

Unlike RIP which executes a distributed computation using the Bellman-

Ford algorithm, the link state routing protocol uses a rapid transmission

of the new information through the flooding protocol and creates routing

table by a local computation. This makes routing convergence of the link

state routing protocol much faster. In addition, in the case of link state

routing protocol, after successful flooding and computation, all routes in

the network are consistent, thus assure that there is not persistent routing

loop and counting to infinity.

• Support of multiple metrics

In modern Internet, network topology tends to be complex and network

operators may want to decide which link should be used with higher priority.

As the concept of link cost is introduced into link state routing protocol, it

becomes possible to set a lower cost for the favorable link.

In addition, the link state routing protocol supports TOS routing. Each

routing record can contain a set of metrics so that the route can be selected

by the following criteria:

– The largest throughput

– The lowest delay

– The lowest cost

– The best reliability

• Multiple path

In complex networks, several equivalent routes may exist toward a same

destination. In the case of RIP, only one route can be selected. But with

the link state routing protocol, it is possible to split the traffic over the

equivalent paths so that data transmission becomes more efficient.
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2.3.3 Dijkstra Algorithm

Currently, the link state routing protocol uses Dijkstra algorithm (named after its

discover, E.W. Dijkstra) to compute SPT. Dijkstra algorithm solves the problem

of finding the shortest path from a point (the source) in a graph to a destination.

As one node can find the shortest paths from a given source to all points in a

graph in the same time, this problem is sometimes called the single-source shortest

paths problem.

Here we describe this famous algorithm. For a graph

G = (V,E)

where

• V is a set of vertices and

• E is a set of edges.

Dijkstra’s algorithm keeps two sets of vertices:

• S: the set of vertices whose shortest paths from the source have already

been determined and

• V -S: the remaining vertices.

The other data structures needed are:

• d: an array of best estimates of shortest path to each vertex.

• pi: an array of predecessors for each vertex.

The basic mode of operation is:

1. Initialize d and pi.

2. Set S to empty.

3. While there are still vertices in V -S,
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(a) Sort the vertices in V -S according to the current best estimate of their

distance from the source.

(b) Add u, the closest vertex in V -S, to S.

(c) Relax all the vertices still in V -S connected to u.

The relaxation process updates the costs of all the vertices, v, connected to

a vertex, u, if we could improve the best estimate of the shortest path to v by

including (u, v) in the path to v. This sets up the graph so that each node has

no predecessor (pi[v] = nil) and the estimates of the cost (distance) of each node

from the source (d[v]) are infinite, except for the source node itself (d[s] = 0).

The relaxation procedure checks whether the current best estimate of the shortest

distance to v (d[v]) can be improved by going through u (i.e. by making u the

predecessor of v) as follows:

relax( Node u, Node v, double w[][] )

if d[v] > d[u] + w[u,v] then

d[v] := d[u] + w[u,v]

pi[v] := u

The algorithm itself is now:

shortest_paths( Graph g, Node s )

initialise_single_source( g, s )

S := { 0 } /* Make S empty */

Q := Vertices( g ) /* Put the vertices in a PQ */

while not Empty(Q)

u := ExtractCheapest( Q );

AddNode( S, u ); /* Add u to S */

for each vertex v in Adjacent( u )

relax( u, v, w )
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The complexity of Dijkstra algorithm is O(n2) and it can be reduced to O(n∗
log(n)) with the use of a binary heap.

2.4 OSPF

OSPF is a kind of link state routing protocols developed by IETF to run over IP. It

consists of the Hello Protocol, the Exchange Protocol and the Flooding Protocol.

At present, OSPF is the most widely deployed link state routing protocol.

2.4.1 The Three Consistent Protocols

• The Hello Protocol

In OSPF, the Hello Protocol is used to check whether or not other routers

are operational. It ensures that the communication between neighbors is

bidirectional. On broadcast or NBMA network, it is also used to select

designated router (DR). DR is responsible for maintaining reachability in-

formation of all routers on the same link. Backup DR is also selected by the

Hello Protocol to play the role of DR when the DR becomes unreachable.

The Hello Protocol works differently on broadcast networks, NBMA net-

works and Point-to-MultiPoint networks. On broadcast networks, each

router advertises itself by periodically multicasting Hello Packets. This

allows neighbors to be discovered dynamically. These Hello Packets con-

tain the router’s view of the Designated Router’s identity, and the list of

routers whose Hello Packets have been seen recently.

On NBMA networks some configuration information may be necessary for

the operation of the Hello Protocol. Each router that may potentially be-

come Designated Router has a list of all other routers attached to the net-

work. A router, having Designated Router potential, sends Hello Packets to

all other potential Designated Routers when its interface to the NBMA net-

work first becomes operational. This is an attempt to find the Designated

Router for the network. If the router itself is elected Designated Router, it

begins sending Hello Packets to all other routers attached to the network.

On Point-to-MultiPoint networks, a router sends Hello Packets to all neigh-
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bors with which it can communicate directly. These neighbors may be

discovered dynamically through a protocol such as Inverse ARP [33], or

they may be manually configured.

After a neighbor has been discovered, bidirectional communication ensured,

and (if on a broadcast or NBMA network) a Designated Router elected, a

decision is made regarding whether or not an adjacency should be formed

with the neighbor. If an adjacency is to be formed, the first step is to

synchronize the neighbors’ link state databases.

• The Exchange Protocol

The Exchange Protocol is used to synchronize link state databases of two

routers which have established two-way connectivity. By the Exchange Pro-

tocol, the two routers exchange the description of their link state databases

first, and then exchange the detailed information that one of the routers

does not hold. After the exchange procedure, the two routers will get the

same link state database of the routing domain.

• The Flooding Protocol

The Flooding Protocol is used to disseminate routing information through-

out the routing domain. In OSPF, the Flooding Protocol is a reliable one,

which means all received routing information must be acknowledged. The

acknowledgment can be conducted in either explicit or implicit way.

Link State Update packets are used for flooding LSAs. A Link State Update

packet may contain several distinct LSAs, and floods each LSA one hop

further from its point of origination.

When a router encounters two instances of an LSA, it must determine which

one is more recent. As an LSA is identified by its LS type, Link State ID

and Advertising Router, for two instances of a same LSA, the LS sequence

number, LS age, and LS checksum fields are used for the determination.

The comparison must also be done during the Database Exchange procedure

which occurs during adjacency bring-up.
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2.4.2 Hierarchical Routing

OSPF allows collections of contiguous networks and hosts to be grouped together.

Such a group, together with the routers having interfaces to any one of the in-

cluded networks, is called an area. Each area has its own link state database and

runs a separate copy of the basic link state routing algorithm.

The topology of an area is invisible from the outside of the area. Conversely,

routers internal to a given area know nothing of the detailed topology external

to the area. This isolation of knowledge enables the protocol to effect a marked

reduction in routing traffic as compared to treating the entire Autonomous System

as a single link state domain.

Routing in the Autonomous System takes place on two levels, depending on

whether the source and destination of a packet reside in the same area (intra-

area routing is used) or different areas (inter-area routing is used). In intra-area

routing, the packet is routed solely on information obtained within the area; no

routing information obtained from outside the area can be used. This protects

intra-area routing from the injection of bad routing information.

The areas in OSPF can often be classified into two categories by its func-

tion: backbone area and non-backbone area. The backbone area is a special

OSPF area(often referred to as Area 0.0.0.0 or Area 0, since OSPF Area ID’s

are typically formatted as IP addresses). The OSPF backbone always contains

all area border routers and is responsible for distributing routing information be-

tween non-backbone areas. In addition, the backbone must be contiguous(with

the exception in which the Virtual Link is used).

2.4.3 OSPF Messages

The following five kinds of packets are defined in the OSPF specification [34] [35]

[36] [37]:

• Hello packet: Hello packets are sent periodically on all interfaces in order to

establish and maintain neighbor relationships. In addition, Hello Packets

are multicast on those physical networks having a multicast or broadcast

capability, enabling dynamic discovery of neighboring routers.
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All routers connected to a common network must agree on certain param-

eters (network mask, HelloInterval and RouterDeadInterval). These pa-

rameters are included in Hello packets, so that differences can inhibit the

forming of neighbor relationships.

• Database Description packet: Database Description packets are exchanged

when an adjacency is being initialized. They describe the contents of the

link state database. Multiple packets may be used to describe the database.

For this purpose a poll-response procedure is used. One of the routers

is designated to be the master, the other the slave. The master sends

Database Description packets (polls) which are acknowledged by Database

Description packets sent by the slave (responses). The responses are linked

to the polls via the packets’ DD sequence numbers.

• Link State Request packet: Link State Request packets are used to request

the pieces of the neighbor’s database that are more up-to-date. A router

that sends a Link State Request packet has in mind the precise instance

of the database pieces it is requesting. Each instance is defined by its LS

sequence number, LS checksum, and LS age, although these fields are not

specified in the Link State Request Packet itself. The router may receive

even more recent instances in response.

• Link State Update (LSU) packet: Link State Update packets are used to

flood Link State Advertisement (LSA). Each Link State Update packet

carries a collection of LSAs one hop further from their origin. Several LSAs

may be included in a single packet.

Link State Update packets are multicast on those physical networks that

support multicast/broadcast. In order to make the flooding procedure reli-

able, flooded LSAs are acknowledged in Link State Acknowledgment pack-

ets. If retransmission of certain LSAs is necessary, the retransmitted LSAs

are always sent directly to the neighbor.

• Link State Acknowledgment packet: Link State Acknowledgment packets

are used to explicitly acknowledge the received LSAs in order to make the

flooding of LSAs reliable. This acknowledgment is accomplished through
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LS age Options LS type

Link State ID

Advertising router

LS sequence number

LS checksum Length

0 1 2 3

Figure 1. LSA common header

the sending and receiving of Link State Acknowledgment packets. Multiple

LSAs can be acknowledged in a single Link State Acknowledgment packet.

Depending on the state of the sending interface and the sender of the corre-

sponding Link State Update packet, a Link State Acknowledgment packet

is sent either to the multicast address AllSPFRouters, to the multicast ad-

dress AllDRouters, or as a unicast.

2.4.4 LSA

LSA is used to disseminate the routing information of each network node. In the

OSPF specification, five kinds of LSAs are defined. All of the five kinds of LSA

uses a common header showed in Fig. 1.

The five kinds of LSA are:

• Router-LSA: Router-LSA is the Type 1 LSA. In an OSPF routing domain,

each router originates a router-LSA for the area that it belongs to. Router-

LSA describes the collected states of the router’s links attached to the area

and is flooded throughout the specific area.

The router-LSA then describes the router’s working connections (i.e., in-

terfaces or links) to the area. Each link is typed according to the kind of

attached network. Each link is also labeled with its Link ID. This Link ID

gives a name to the entity that is on the other end of the link. Table 1

summarizes the values used for the Type and Link ID fields.
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Table 1. The link ID description

Link type Description Link ID

1 Point-to-point link Neighbor Router ID

2 Link to transit network Interface address of DR

3 Link to stub network IP network number

4 Virtual link Neighbor Router ID

In addition, the Link Data field is specified for each link. This field gives

32 bits of extra information for the link. For links to transit networks,

numbered point-to-point links and virtual links, this field specifies the IP

interface address of the associated router interface (this is needed by the

routing table calculation). For links to stub networks, this field specifies

the stub network’s IP address mask. For unnumbered point-to-point links,

the Link Data field should be set to the unnumbered interface’s MIB-II [38]

ifIndex value. Finally, the cost of using the link for output is specified. The

output cost of a link is configurable. With the exception of links to stub

networks, the output cost must always be non-zero.

• Network-LSA: Network-LSA is the Type 2 LSA. Network-LSA is used to de-

scribe states of broadcast network or non-broadcast multi-access networks.

It is originated by designated router of the network. As same as the router-

LSA, a network-LSA is specific to one area. So by analyzing network-LSAs,

we can monitor routers that form OSPF adjacency or break it on a network.

A network-LSA is generated for every transit broadcast or NBMA network

(A transit network is a network having two or more attached routers). The

network-LSA describes all the routers that are attached to the network.

The Designated Router for the network originates the network-LSA. The

Designated Router originates the LSA only if it is fully adjacent to at least

one other router on the network. The network-LSA is flooded throughout

the area that contains the transit network, and no further. The network-

LSA lists those routers that are fully adjacent to the Designated Router;

each fully adjacent router is identified by its OSPF Router ID. The Desig-
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nated Router includes itself in this list.

The Link State ID for a network-LSA is the IP interface address of the Des-

ignated Router. This value, masked by the network’s address mask (which

is also contained in the network-LSA) yields the network’s IP address.

• Summary-LSA: Summary-LSAs are the Type 3 and 4 LSAs. They are orig-

inated by area border routers and used to describe inter-area destinations.

Type 3 Summary-LSA is used when the destination is an IP network and

Type 4 Summary-LSA is used for the destination of AS boundary router.

The destination described by a summary-LSA is either an IP network, an

AS boundary router or a range of IP addresses. Summary-LSAs are flooded

throughout a single area only. The destination described is one that is

external to the area, yet still belongs to the Autonomous System.

Summary-LSAs are originated by area border routers. The precise summary

routes to advertise into an area are determined by examining the routing

table structure. Only intra-area routes are advertised into the backbone,

while both intra-area and inter-area routes are advertised into the other

areas.

• AS-external-LSA: AS-external-LSA is the Type 5 LSA. This LSA is origi-

nated by AS boundary routers and used to describe destinations external

to the AS.

AS-external-LSAs describe routes to destinations external to the Autonomous

System. Most AS-external-LSAs describe routes to specific external desti-

nations; in these cases the LSA’s Link State ID is set to the destination

network’s IP address (if necessary, the Link State ID can also have one or

more of the network’s “host” bits set). However, a default route for the Au-

tonomous System can be described in an AS-external-LSA by setting the

LSA’s Link State ID to DefaultDestination (0.0.0.0). AS-external-LSAs are

originated by AS boundary routers. An AS boundary router originates a

single AS-external-LSA for each external route that it has learned, either

through another routing protocol (such as BGP), or through configuration

information.
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AS-external-LSAs are the only type of LSAs that are flooded throughout

the entire Autonomous System; all other types of LSAs are specific to a

single area. However, AS-external-LSAs are not flooded into/throughout

stub areas. This enables a reduction in link state database size for routers

internal to stub areas.

The metric that is advertised for an external route can be one of two types.

Type 1 metrics are comparable to the link state metric. Type 2 metrics are

assumed to be larger than the cost of any intra-AS path.

If a router advertises an AS-external-LSA for a destination which then

becomes unreachable, the router must then flush the LSA from the routing

domain by setting its age to MaxAge and reflooding.

2.4.5 Route Calculation of OSPF

Here we detail the OSPF routing table calculation. Using its attached areas’

link state databases as input, a router runs the following algorithm, building its

routing table step by step. At each step, the router must access individual pieces

of the link state databases (e.g., a router-LSA originated by a certain router).

The routing table build process can be broken into the following steps:

1. The present routing table is invalidated. The routing table is built again

from scratch. The old routing table is saved so that changes in routing table

entries can be identified.

2. The intra-area routes are calculated by building the shortest-path tree for

each attached area. In particular, all routing table entries whose Destina-

tion Type is ”area border router” are calculated in this step. This step is

described in two parts. At first the tree is constructed by only considering

those links between routers and transit networks. Then the stub networks

are incorporated into the tree. During the area’s shortest-path tree calcu-

lation, the area’s TransitCapability is also calculated for later use in Step

4.

3. The inter-area routes are calculated, through examination of summary-

LSAs. If the router is attached to multiple areas (i.e., it is an area border
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router), only backbone summary-LSAs are examined.

4. In area border routers connecting to one or more transit areas (i.e, non-

backbone areas whose TransitCapability is found to be TRUE), the transit

areas’ summary-LSAs are examined to see whether better paths exist using

the transit areas than the ones found in Steps 2-3 above.

5. Routes to external destinations are calculated, through examination of AS-

external-LSAs. The locations of the AS boundary routers (which originate

the AS-external-LSAs) have been determined in steps 2-4.

2.4.6 SPT calculation

This calculation yields the set of intra-area routes associated with an area. A

router calculates the shortest-path tree using itself as the root. The formation of

the shortest path tree is done here in two stages. In the first stage, only links be-

tween routers and transit networks are considered. Using the Dijkstra algorithm,

a tree is formed from this subset of the link state database. In the second stage,

leaves are added to the tree by considering the links to stub networks.

The first stage of the procedure (i.e., the Dijkstra algorithm) concerns only

the transit vertices (routers and transit networks) and their connecting links. It

can be summarized as follows. At each iteration of the algorithm, there is a list

of candidate vertices. Paths from the root to these vertices have been found, but

not necessarily the shortest ones. However, the paths to the candidate vertex

that is closest to the root are guaranteed to be shortest; this vertex is added to

the shortest-path tree, removed from the candidate list, and its adjacent vertices

are examined for possible addition to/modification of the candidate list. The

algorithm then iterates again. It terminates when the candidate list becomes

empty.

The stub networks are added to the tree in the procedure’s second stage.

2.5 IS-IS

IS-IS is another link state routing protocol developed by OSI to facilitate the

connection between open systems. It is similar to OSPF and can be used over
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many network layer protocols such as IP and ATM. As same as OSPF, the IS-IS

protocol also contains several subprotocols such as the Hello Protocol and the

Flooding Protocol.
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3. An Investigation on Intra-domain Routing

In this section, we present the result of an intra-domain routing investigation

that we conducted on WIDE Internet, the largest academic network in Japan.

After introducing some related information of OSPF, we show how frequently

intra-domain routing instability occurs on WIDE Internet by analyzing OSPF

data we collected from WIDE Internet during the investigation. In the end, we

discuss problems of route calculation for link state routing protocols.

3.1 Related Information

We choose WIDE Internet, the largest academic network in Japan, as the target

network of our measurement. WIDE Internet consists of about 300 routers (in

the routing domain) and connects hundreds of organizations. As WIDE Internet

uses OSPF as its main routing protocol, OSPF routing messages become our

target to analyze. We collected raw data from the network being utilized by

many organizations but not from experimental networks because we think the

result of real workload is more persuasive.

Although we collected all of the five kinds of OSPF packets, we only analyze

Link State Update packets in this thesis because it is the only kind of packets

which includes routing information concerning route calculation.

As OSPF uses LSAs to calculates intra-domain routes, by monitoring the

LSAs carried by Link State Update packets we can figure out to what extent

routing instability is occurring.

As we introduced in Sect. 2.4.2, OSPF divides the whole network into several

areas to achieve hierarchical routing. Because generally the backbone area is the

most crucial part of a network, we mainly focus on the analysis of the backbone

area of WIDE Internet which consists of about 50 backbone routers.

The place we collect OSPF routing messages is NARA-NOC (Fig. 2) of the

WIDE Internet, located in Nara Institute of Science and Technology, Ikoma-city

of Japan. We placed two FreeBSD boxes on the two 100Base-T ethernet segments

respectively. Although we collect OSPF routing messages only from NARA-NOC,

we think it is sufficient to get most routing information of the whole network

because the WIDE Internet is well designed and it is not likely to happen that
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Figure 2. The topology of NARA-NOC network

the NARA-NOC is completely separated. To further indicate this argument, we

show the statistics result of the data collected by another research group from

the SFC-NOC in the appendix.

The tool we use to collect data is tcpdump [39], a widely used program for

collecting traffic over shared links such as Ethernet and FDDI. In order to ease

the analysis, we changed the tool a little so that it can record the data at daily

basis.

The data collection begins on August 2000 and it is still being conducted. The

result we are going to show is based on the data from October 2001 to September

2002 (the data of 13 days is lost due to disk failure).

We analyzed all the data by ospfanaly, a tool we wrote in C language. Ospf-

analy uses libpcap [39] to read data recorded by tcpdump and output the changes

of each LSA. Some other self-made Perl scripts are also used in the data process-

ing.
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Figure 3. Number of router-LSA and their instance changes in backbone area

3.2 Statistics Result of the Investigation

Here we show the statistics results of OSPF LSAs.

3.2.1 Router-LSA

The number of router-LSAs that appeared in the backbone area each day ranges

from 43 to 54. In general, as there should not be much change of network

topology, we had thought that these routers would not originate many changing

router-LSAs. However, during our investigation, we find the fact is just opposite.

Figure 3 and Fig. 4 show the number of total router-LSAs and their changes.

From this graph we can see although in most days the number of total changes is

not big, there did exist days in which a lot of changes occur and sometimes the

number of changes in a single day reaches 2,000 times.

If these changes are originated by most of the backbone routers, we may

consider them as normal topology changes due to network maintenance. But

after our analysis, we find it is not the case: the changes tend to be originated by

only a few routers in relatively short period, such as a few hours. For example, on

27



 0

 5

 10

 15

 20

01/10 11 12 02/1 2 3 4 5 6 7 8 9
 0

 200

 400

 600

 800

N
u
m
b
e
r
 
o
f
 
r
o
u
t
e
r
-
L
S
A
s

N
u
m
b
e
r
 
o
f
 
r
o
u
t
e
r
-
L
S
A
 
i
n
s
t
a
n
c
e
 
c
h
a
n
g
e
s

Date(year/month)

number of router-LSAs
number of router-LSA instance changes

Figure 4. Number of router-LSA and their instance changes in non-backbone

area

20th November 2000 a total of 11,380 changes occurred, but 98.6% of the changes

were due to two router-LSAs. On 22nd April 2001, 1093 of total 1097 changes

were caused by only one router-LSA.

Figure 4 is the statistics result of router-LSAs in non-backbone area. We can

see that although in most of the days there are not many changes, there did exist

days in which the changes frequently occurred.

3.2.2 Network-LSA

Figure 5 shows the number of network-LSAs and their changes everyday. In total,

there are 8-17 network-LSAs that appeared in the backbone area of the WIDE

Internet during the 12-month period. Although network-LSAs do not change as

frequently as router-LSAs, we still find in some days a network-LSA can oscillate

for hundreds of times.

Figure 6 is the statistics result of network-LSAs in non-backbone area. Com-

pared with network-LSAs in backbone area, the ones in non-backbone area are
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Figure 5. Number of network-LSAs and their instance changes in backbone area

more stable because the number of networks in non-backbone area is relatively

small.

3.2.3 Summary-LSA

Summary-LSAs are originated by area border routers in order to let one area know

the routing information specific to other areas. They describe destinations of ei-

ther IP networks, AS boundary routers or range of IP addresses. Summary-LSAs

are generated by examining the routing table structure of area border routers.

According to the destination they describe, summary-LSAs are grouped into net-

work summary-LSAs and ASBR summary-LSAs.

Figure 7 and Fig. 8 respectively show the numbers of network summary-LSAs

and ASBR summary-LSAs that appeared in the backbone area along with the

numbers of their changes. Although these two kinds of summary-LSAs show

relatively high instability sometimes, the number of changes is low for the most

time.

But things get a little different with Fig. 9 and Fig. 10, in which non-backbone

29



 0

 2

 4

 6

 8

 10

01/10 11 12 02/1 2 3 4 5 6 7 8 9
 0

 60

 120

 180

 240

 300

nu
m

be
r 

of
 n

et
w

or
k-

LS
A

s

nu
m

be
r 

of
 n

et
w

or
k-

LS
A

 in
st

an
ce

 c
ha

ng
es

date(year/month)

number of network-LSAs
number of network-LSA instance changes

Figure 6. Number of router-LSA and their instance changes in non-backbone

area

area statistics results of network summary-LSAs and ASBR summary-LSAs are

showed. We can see the two kinds of LSAs in our target non-backbone area

showed very high instability and sometimes it goes over 10,000 times a day.

3.2.4 AS-external-LSA

AS-external-LSAs describe routes to destinations external to the Autonomous

System. They are the only kind of LSAs flooded throughout the whole routing

domain (except the stub area). Usually, AS-external-LSAs are generated by go-

ing through all external routes in the routing table. Generally thinking, most of

the routes should be quite stable and there should not be much oscillating LSAs.

But to our surprise, we find more than half of the AS-external-LSA showed insta-

bility to some extent in our investigation. We show the number and the rate of

oscillating AS-external-LSAs in Fig. 11 and Fig. 12 respectively. As AS-external-

LSA is flooded through the whole routing domain, the results of backbone and

non-backbone area are similar. So we only present the statistics result of data
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bone area
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bone area
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Figure 10. Number of ASBR summary-LSAs and their changes in non-backbone

area
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collected in the backbone area here.
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Figure 11. Number of total AS-external-LSAs and oscillating ones

3.3 Oscillation Pattern

We classify the observed LSA changes into two main categories by the character-

istic of the change.

1. Changes of broadcast and NBMA network interface

When a router on a broadcast or NBMA network finds that there exist

other OSPF routers on the same link it describes this network as a transit

network (type 2) in its router-LSA. Otherwise, this network will be treated

as a stub network (type 3). In our investigation of oscillating router-LSA

links, most cases are repeated changes between transit network and stub

network. Many of this kind of change occurs several times per minute.

We show typical changes of a broadcast interface of 10-minute period in

Fig. 13 . During this period, the router-LSA has changed for 32 times in

total and 3-4 times per minute.
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Figure 12. Rate of oscillating AS-external-LSAs

Figure 14 is part of the output generated by ospfanaly for the 10-minute

period. ’+’ means the addition of a link and ’-’ means the opposite.

2. Changes of point-to-point network interface

In the current Internet, point-to-point connection is often used to connect

distant places. When the interface of such connection detects link-down

or does not receive its peer’s hello packet in certain time (RouterDeadIn-

terval), it originates a new LSA in which the point-to-point link is erased

and floods this new LSA to tell other routers (in the same area) that the

link has become unavailable. This kind of change is different with the one

of broadcast or NBMA network in that the router in the other side will

detect the failure and originate a new LSA either. Thus, when point-to-

point connection fails, we can see two LSA changes originated by the two

endpoints at about the same time. In our investigation, this kind of change

was frequently observed too.

Figure 15 shows an example of the typical changes of point-to-point interface

in 30-minute period. Figure 16 is the output of ospfanaly for that period.
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Figure 13. Typical changes of broadcast and NBMA network interface

3.4 Analysis

By presenting the statistics results of oscillating LSAs in Sect. 3.2 we showed

that although most network administrators did not notice, route flaps did occur

frequently on WIDE Internet, which has been thought quite stable because it

is under the operation of many network experts. Here we analyze the oscilla-

tion of the intra-domain routing messages. We discuss causes of the oscillation

in Sect. 3.4.1 and argue how to improve the robustness of routing protocols in

Sect. 3.4.3.

3.4.1 Causes of the Oscillation

We summarize the causes of observed oscillations as network congestion, miscon-

figurations and bugs of the routing software.

First we consider network congestion as the most factor that accounts for

the oscillations. As we described in Sect. 3.2, most changes that have been

observed in our investigation are the ones of forming and/or breaking OSPF

adjacency. Usually adjacency breaks when link failure occurs or a router does not
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Figure 14. Changes of broadcast and NBMA network interface

receive hello message from its adjacent peer in period of RouterDeadInterval(40

seconds normally) because of network congestion. At first, we had thought link

failure may be the most factor but meanwhile we found when we detected unusual

oscillation reports of congestion came either at almost the same time. The second

reason that convince us is that we find oscillation of different LSAs tend to happen

at the same time. It is well-known that link failures tend to occur accidentally.

The second factor that we consider to affect LSA stability is the misconfigu-

rations due to network operators. In fact, we observed persistent LSA oscillation

caused by a mistaken Router-ID configuration.

The bug of routing software is another factor. During our investigation on

the non-backbone area, we found for two times a router running zebra[40] sent

all of its link state database every five seconds to another router which did not

form adjacency relationship with it. Fortunately the receiving router was awake

to the fact and ignored all of the received OSPF LSU packets.
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Figure 15. Typical changes of point-to-point network interface

3.4.2 The Similarity of WIDE Internet with Commercial Networks

Although we conducted the investigation only on WIDE Internet, we consider

similar phenomena can also be observed on commercial networks. Compared

with commercial networks, the WIDE Internet has the following similarity:

• The WIDE Internet is well administrated.

Although the WIDE Internet is an academic network, it is under the oper-

ation of many network experts. These experts include network researchers,

network engineers and graduate students who are doing research on net-

work. So we considered the WIDE Internet is administrated as well as

commercial networks.

• The WIDE Internet is a large-scale network.

As we introduced in Sect. 3.1, the WIDE Internet connects hundreds of

organizations and the number of users is near a million. So, we consider it

has similar scale with commercial networks.

37



10:01:52 -link=203.178.136.22 type=1

10:02:07 +link=203.178.136.22 type=1

10:03:10 -link=203.178.136.22 type=1

10:03:27 +link=203.178.136.22 type=1

10:04:30 -link=203.178.136.22 type=1

10:04:42 +link=203.178.136.22 type=1

10:05:45 -link=203.178.136.22 type=1

10:06:00 +link=203.178.136.22 type=1

10:07:00 -link=203.178.136.22 type=1

10:07:16 +link=203.178.136.22 type=1

10:08:14 -link=203.178.136.22 type=1

Figure 16. Changes of point-to-point network interface

3.4.3 Toward Faster Routing Convergence

As we saw in the previous sections, routing failures can occur on a daily-used

network frequently. When such failures occur, new LSAs are generated and

flooded, and all routers in the routing domain need to recalculate their rout-

ing tables. However, as all these calculations are conducted in different timing,

routing inconsistency will happen. The more routing failure occurs, the longer

the inconsistency will last. During the inconsistent period, packets sent to the

affected networks are either sent to the wrong direction or simply dropped. As

such phenomena directly affect the efficiency of data transmission and have neg-

ative impact on the reliability of Internet, there are great demands to reduce the

bad influence that routing instability brings to the data transmission.

3.5 The Problem of Route Calculation for Link-state Rout-

ing Protocols

As we introduced in Sect. 2.4.5, currently, the route calculation procedure of

OSPF can be divided into following steps:

1. Calculating SPT
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Table 2. The two kinds of delay used on some popular implementation for OSPF

Implementation SPF Delay (second) SPF Hold-Time (second)
Cisco 5 10

Foundry 5 10
Fujitsu 5 10

Extreme Unknown 3
River Stone Unknown 5

Hitachi (Gated [41]) 0-5 5
Zebra 5 10
Gated 0 5

2. Calculating inter-area routes

3. Calculating AS external routes

In all these three steps, the calculation of SPT for an area is the most com-

plex part. At present, most link state routing protocols use Dijkstra algorithm to

calculate SPT. As Dijkstra algorithm is a O(n2) (O(n ∗ log(n)) for heap Dijkstra

algorithm) procedure and has scalability problem when used on large-scale net-

works, most implementation of the protocol introduces artificial delay to avoid

using too much CPU cycle to perform it. To our knowledge the following two

kinds of delay are being used:

• SPF Delay: The time that a router needs to wait after receiving an LSA

with different content until next calculation.

• SPF Hold-Time: The time that a router needs to wait after previous cal-

culation until next calculation.

Table 2 lists the value of SPF Delay and SPF Hold-Time being used by some

most popular OSPF implementations [13].

Because of the introduced delay of route calculation, when receiving a changed

LSA, usually routers have to wait for several seconds before they get right routing

tables and start forwarding packets based on it. During this period, routers

either simply drop packets sent to the affected network prefixes or send them in
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wrong direction. When the topology of a network is relatively stable and there

is not much LSA change, this can be considered acceptable because the time of

inconsistent routing will not be very long. However, through the statistical result

we got in Sect. 3.2, we know that sometimes the network tends to be unstable and

the network topology changes frequently and persistently. Under such condition,

the time of route inconsistency totals up to an unacceptable level and we need to

reduce such time for further improving the reliability of a network.

Several dynamic SPF algorithms [42] [43] are proposed to quicken the calcu-

lation of SPT. However, it is difficult for the vendors to adopt these algorithms

because:

• Each dynamic algorithm needs to determine how the network topology

changed before computing the updated SPT. In OSPF, as the attached

links in Router-LSA or the attached routers in Network-LSA is not sorted,

when comparing a newer LSA instance to the previous one, it can be a

heavy task when the number of attached links or routers is relatively large.

• The efficiency of the dynamic algorithms depends on the change of the

topology. For example, if a large number of nodes or links changed their

states, the execution of dynamic algorithms could be very inefficient.

• The dynamic algorithms tend to be very complex and are difficult for the

manufacturer to implement.

To the best of our knowledge, none of these algorithms are implemented in

any commercial or non-commercial routing software so far.
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4. CST Algorithm

In this section, we detail CST algorithm which can not only quicken intra-domain

routing convergence but also reduce routers’ load even under unstable routing

condition. After that, we describe the procedures of implementation, discuss is-

sues that need to be considered when implementing CST and show the evaluation

result.

4.1 Design

The basic idea of CST can be divided into 2 steps:

• Cache a calculated SPT and its LSA set (Type 1 and 2 LSAs, which decides

the network topology).

• When the present LSA set changes to one of the caches, instantly create

new routing table based on the cached SPT.

Through the typical changes of LSA we listed in Sect. 3.3, we can see that

although an LSA can change frequently, it tends to vary in limited instances. For

the most time it just repeats declaring the up/down of a single link. Further

study tells us that this characteristic is especially outstanding when the LSAs

change frequently and persistently.

As the SPT is determined by the set of type 1 and 2 LSAs, it is not difficult

to imagine that the instances of all SPTs are also limited. So by caching all

frequently appearing SPTs, it is possible to bypass most execution of Dijkstra

algorithm by simply using the cached SPT when doing route calculation.

Figure 17 shows the percentage of the top-20 frequently appearing SPTs in all

SPTs each day. Here we only show days in which the SPF was calculated more

than 50 times. We can see that for most days, the top-20 instances occupy more

than 70% of the whole number. In total, 20,213 out of 23,810 (about 85%) are

the 20 most frequently appearing instances.

Consequently, we do not need to record all SPTs because it consumes too

much memory, but only cache SPTs of frequently appearing LSA sets. To decide

whether an LSA set is a frequently appearing one, the following two factors are

considered separately:
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Figure 17. Percentage of the top-20 frequently appearing instances of SPT

• The cache’s age: If an LSA set has appeared at least once in the last 12

hours, its SPT has higher priority to be continued caching than those which

did not appear in the same period.

• The cache’s hit number: If the SPT of an LSA set has higher hit number

than another one, it has higher priority to be continued caching.

In our design, the factor of age is considered before the hit number because

we find the frequently appearing LSA set tends to change in different days. The

hit number is used to compare two LSA sets both of which have appeared at least

once in the last 12 hours.

To implement CST, two kinds of change should be made to the current style

of route calculation: the cache and the search of an SPT.

4.1.1 The Cache of an SPT

When a normal calculation of SPT by Dijkstra algorithm is finished, check

whether the present LSA set is one that appeared frequently in recent time (the
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default is 12 hours). If it is, cache the calculated SPT and the corresponding LSA

set.

4.1.2 The Search of an SPT

When receiving an OSPF LSU packet, compare all included LSAs with the ones

in the LS database.

• If there are new LSAs, obsolete LSAs or LSAs whose content are different

with the ones in LS database, update the content of LSAs in LS database.

Check whether the present LSA set is the same with any one in the cache.

– If the LSA set and its SPT are already cached, instantly generate new

routing table based on the cached SPT.

– If the present topology is not cached, wait for the next LSU packet.

• If there is not any changed LSA (including new LSAs and obsolete ones) in

the LSU packet, wait for the next LSU packet.

4.2 Implementation Issues

As one of our goals is to replace the redundant execution of Dijkstra algorithm

with the switching of SPT, we must make sure that the procedure of finding right

SPT is much more simple than Dijkstra algorithm. The following three issues

need to be considered during the implementation of CST:

• Cache the LSA set efficiently

As we need to compare the LSA sets when looking up the cache of an SPT ,

recording the LSA set for an SPT is necessary. However, recording all LSAs

of an LSA set as well as their contents will not only cost much memory but

also make the comparison of LSA sets a heavy task when searching a cache.

We recommend to save a relatively stable LSA set and only record the

different part of every changed LSA set for an SPT. We call this relatively

stable LSA set as stable LSA set (SLS) and define it as follows:
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1. (For router that boots up) The LSA set immediately after link state

database exchange.

2. (For router in operation) The LSA set which does not change in certain

time (the default is 10 minutes).

The difference between an LSA set and the SLS can be stored with the

following three lists:

– New list: List to record new LSAs which are not included in SLS.

– Change list: List to record LSAs which are included in SLS but the

contents have changed.

– Obsolete list: List to record LSAs which are included in SLS but de-

clared as obsolete.

• Search SPT caches quickly

When looking up for an SPT in the caches, comparison between the present

LSA set and the ones in cache can become a heavy task if there are many

LSAs in the three lists (new list, change list, obsolete list). For this reason,

we recommend to use a hash number for each LSA set. The hash number

should be generated when the SPT is cached. Thus we can quicken the

search by first comparing the hash number of the two LSA sets and only

doing further comparing when their hash numbers are identical.

• Restructure the cache efficiently when SLS changes

As all LSA sets are saved in the difference with SLS, when SLS changes, the

LSA set difference of each cache needs to be restructured. We recommend

to divide this procedure into the following two steps:

1. Compare the present SLS with the previous one

2. Apply the difference of the two SLSes to each saved LSA set.

As the first step needs to compare all LSAs in the two SLSes and the number

of recorded LSA can be a relatively large one, we recommend to record all

LSAs in sorted order in advance so that we can limit the complexity of
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this step to O(n), where n is the number of all LSAs in an SLS. For the

second step, the respective comparison of all LSAs in New List, Changed

List and Obsolete List is necessary. As the number of LSAs in the three

list is relatively small, both sorted LSA set and unsorted one are fine.

4.3 A Sample Implementation

Here we show a sample implementation.

4.3.1 New Data Structure

To enable CST we introduce following new structures.

struct _sp {

void *sp_table; /* the pointer to the shortest tree */

struct slsa *new_lsa_head;

struct slsa *old_lsa_head;

struct slsa *chg_lsa_head;

u_int addlist_num, oldlist_num, chglist_num;

u_int hash;

int hit_num;

struct _sp *next;

struct timeval last_time;

};

struct slsa

{

struct in_addr ls_id, adv_rtr;

u_short type, len;

u_int hash;

void* data;

struct slsa *next;
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} *ssp_lsa_head=NULL;

The structure of sp is used to store SPT cache and the structure of slsa is

used to maintain the LSAs in the three LSA lists of sp structure.

4.3.2 Initiation

The step of initiation comes after the first SPT calculation. It includes the

initiation of SLS and some other related variables.

It can proceed as follows:

struct _sp sls;

int sls_flag = 0;

cst_init()

{

for (lsa = ospf->router_lsa; lsa; lsa = lsa->next)

copy_lsa();/* copy each Router-LSA to SLS */

for (lsa = ospf->network_lsa; lsa; lsa = lsa->next)

copy_lsa();/* copy each Network-LSA to SLS */

sls_flag = 1;/* to indicate that SLS has been initiated */

sls->spt = ospf->spt; /* set the SPT pointer of SLS to the first

calculated SPT */

}

4.3.3 Processing LSU packet

The procedure of processing LSU packet can be implemented as follows:
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int any_lsa_changed = 0;

while (new_lsu_packet){

foreach (new_received_lsa){

if (has_changed(new_received_lsa)){

install(new_received_lsa);

calculate_hash(current_lsa_set);

any_lsa_changed = 1;

}

}

foreach (spf_cache){

if (spf_cache->hash == current_lsa_set->hash){

switch_spf(spf_cache->spf);

generate_routing_table();

any_lsa_changed = 0;

}

}

}

4.3.4 Caching SPT

The procedure of caching SPT can be implemented in the route calculation pro-

cedure as follows:

calculate_spt()

{

u_int min_hit_num = -1;

struct _sp spf_cache, temp_cache

if (!any_lsa_changed)

return;
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execute_dijkstra();

generate_routing_table();

if (spf_cache_num >= max_spf_cache_num){

foreach (spf_cache){ /* to decide which cache should be deleted */

if (spf_cache->last_access_time - current_time > 12 * 60 * 60){

temp_cache = spf_cache;

break;

}

if (spf_cache->hit_num < min_hit_num){

min_hit_num = spf_cache->hit_num;

temp_cache = spf_cache;

}

}

delete_cache(temp_cache);

install_cache();

}

}

4.4 Evaluation

We evaluate CST by ospfsim, a tool we wrote in C language.

4.4.1 The Effectiveness of CST

In Fig. 18, we show the execution number of Dijkstra algorithm needed by a

router in the case of traditional and CST enabled implementation along with the

total hit number of the cached SPT. To make things more simple, we assume

SPF Delay is 0 and SPF Hold-Time is 10 seconds. The number of cache used in

this simulation is 20.

We can see from this figure that for most months the execution number of

Dijkstra algorithm with CST are greatly reduced compared with the traditional

implementation. This trend is especially outstanding in the months when there
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Figure 18. Execution number of Dijkstra algorithm in traditional and CST-

enabled route calculation

are frequent LSA changes, such as January 2001 and August 2002. The hit

number of the cached SPT in these months are very high either. This indicates

that while CST works fine with normal networks, it is especially effective under

unstable routing condition. There are also months in which CST algorithm does

not show as much effect as other months, such as December 2001. This is because

the instance number of network topology in these months are more than other

months. But in total, we can say CST is an effective approach.

4.4.2 Convergence Time

Figure 19 shows the monthly convergence time of traditional case and CST-

enabled case. The cache number used in this simulation is 20. We can see that

the convergence time is largely reduced in the months when the routing tends to

be unstable.

Figure 20 shows the daily convergence time in August 2002. We can see that

while in some days the convergence time is largely reduced, there are also days
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Figure 19. Monthly convergence time of traditional case and CST-enabled case

in which the convergence time of CST approach does not change much compared

with the traditional approach. This derives from the diversity of SPTs in those

days.

4.4.3 Cache Number

Cache number is the number of SPT cache for which a router enabling CST needs

to allocate memory. In essence, when the cache number increases the hit number

also increases. However, as the memory of a router is limited, it is not realistic to

select a big number as the maximum cache number. We need to find a number

with which we can maximize the effect of CST while it does not use too much

memory.

In Fig. 21 and Fig. 22 we show how the number of SPT caches affects the

efficiency of CST. We can see from these two figures that when the cache number

is around 4 or 5, the number of SPT calculation decreases most steeply and the

cache hit number increases most sharply in January 2001 and August 2001. We

can also see that when the cache number is more than 30, the effect of increasing
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Figure 20. Daily convergence time of traditional case and CST-enabled case

cache number becomes less clear. While in December 2001, the effect is little all

along.

4.4.4 SLS

The criterion we use to define SLS is: while every LSA set of the cache should not

differ much from SLS, we must also make sure that the SLS is one that does not

change often so that there will not be much restructure work. Figure 23 shows

the change number of SLS in each month from October 2001 through September

2002. We can see that with our definition in Sect. 4.2 SLS does not change often.

4.4.5 Memory

Here we evaluate the amount of memory that SPT caches need. In Zebra, the

structure of an route entry in the routing table is defined as following:

struct route_node
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{

/* Actual prefix of this radix. */

struct prefix p;

/* Tree link. */

struct route_table *table;

struct route_node *parent;

struct route_node *link[2];

#define l_left link[0]

#define l_right link[1]

/* Lock of this radix */

unsigned int lock;

/* Each node of route. */

void *info;
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Figure 22. The number of SPT cache and the number of route calculation

/* Aggregation. */

void *aggregate;

};

and the structure of network prefixes is defined as:

struct prefix

{

u_char family;

u_char safi;

u_char prefixlen;

u_char padding;

union

{

u_char prefix;

struct in_addr prefix4;
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#ifdef HAVE_IPV6

struct in6_addr prefix6;

#endif /* HAVE_IPV6 */

struct

{

struct in_addr id;

struct in_addr adv_router;

} lp;

u_char val[8];

} u;

};

Consequently a route entry in the SPT costs 40 bytes for IPv4 and 52 bytes

for IPv6. So, for a router running OSPF on IPv4, the needed memory can be

calculated by

M = n ∗ (40 ∗ (r + s)) bytes
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where n is the number of SPT cache, and r, s are the number of Router-LSA

and Network-LSA respectively.

For the WIDE Internet, if we use 5 as the maximum SPT cache number, CST

will cost 5 ∗ (40 ∗ (48 + 12) = 12, 000 bytes. If we uses 100 as the maximum SPT

cache number for a routing domain with 500 nodes and 200 networks, it costs

100 ∗ (40 ∗ (500 + 200)) = 2.8 Mbytes, which is not very much for a router used

in a large-scale network.

4.5 Applying CST to Other Link State Routing Protocols

As all link state routing protocols have the following two characteristics:

1. In an area, each router has the same link state database.

2. The router uses Dijkstra algorithm to compute the SPT.

It is possible to apply CST to other link state routing protocols. Here we

show how to enable CST on IS-IS [44] [45] [46], another widely used intra-domain

routing protocol.

IS-IS is developed by OSI to facilitate the interconnection of open systems.

Different with OSPF, IS-IS uses link state protocol data unit (LSP) to constitute

its link state database. So, by caching LSP sets that appears frequently along with

SPTs of these LSP sets, it is possible to quickly construct routing tables when

the network topology changes to one of the cached LSP sets just in a similar way

with OSPF.
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5. Conclusion and Future Work

Nowadays, no one doubts that the Internet will greatly influence our daily lives in

the near future. In addition to gathering information from the WWW, exchanging

emails and getting all kinds of digital files, people will use Internet for shopping,

education and so on. Other utility of the Internet may also be brought to us.

There are every demand of a stable and reliable Internet for all users.

In this thesis, we first presented the result of an investigation on WIDE Inter-

net to show how frequently routing instability can occur on a daily-used network.

We found although most of the users do not notice, routing instability can hap-

pen frequently on our daily-used network. Such instability not only directly does

harm to IP reachability but also increase routers’ load, thus make other instabil-

ity more likely to happen. We summarized some patterns of the LSA oscillation

and presented some reason that led to the instability such as traffic congestion.

We then proposed CST approach which can quicken intra-domain routing

convergence by bypassing redundant executions of Dijkstra algorithm. The basic

idea of CST is to cache SPTs that appears frequently, and instantly generate new

routing table based on the cached SPT when the LSA set of the network switches

to one of the caches. From our evaluation, we can see CST is effective in most

time on WIDE Internet and the effect is especially outstanding when the routing

tends to be unstable.

CST depends on a characteristic of networks under unstable routing condition.

That is, although the LSAs change frequently, most of the resulting LSA sets are

limited to some frequently appearing ones. We confirmed this characteristic on

WIDE Internet and believe it should also apply to other commercial networks.

As the essence of our approach is to replace the redundant execution of Dijk-

stra algorithm through cached SPTs, it is important to make sure that the work

of finding and switching to a cached SPT do not need as much CPU cycle as the

execution of Dijkstra algorithm does. We discussed all main issues that need to

be considered when implementing CST and showed the overhead of implementing

CST can be minimized with the introduction of SLS and the use of hash algo-

rithm. Although the discuss in this paper was mainly focused on OSPF, CST

can also be applied to other link state routing protocols such as IS-IS.

To further indicate the effectiveness of CST, we are going to implement CST
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on existing routing software such as Zebra and evaluate it on a daily-used network.
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Appendix

The Statistics Result of Data Collected from SFC-

NOC

Here we show the statistics result of OSPF routing message collected from SFC-

NOC of WIDE Internet. Figure 24 and Fig. 25 show the number of LSA and

LSA changes of Router-LSA and Network-LSA respectively. Compared with the

figures of NARA-NOC, we can see there are not many major differences.
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