
NAIST-IS-DT0161038

Doctor’s Thesis

Efficient Indexing Techniques for XML Data

DAO DINH KHA

February 6, 2004

Department of Information Systems

Graduate School of Information Science

Nara Institute of Science and Technology

Doctor’s Thesis

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

DOCTOR of ENGINEERING

DAO DINH KHA

Thesis committee: Prof. Shunsuke Uemura

Prof. Yuji Matsumoto

Prof. Hiroyuki Seki

Prof. Masatoshi Yoshikawa (Nagoya University)

Efficient Indexing Techniques for XML Data∗

DAO DINH KHA

Abstract

In today’s just-in-time information paradigm, the ability to communicate efficiently

is vital. In this context, Extensible Markup Language (XML) has been invented as a

standard for data exchange among a variety of data sources and applications. Since

its invention, the popularity of the XML has been dramatically increased thanks to the

ability of XML to provide a simple but standardized, extensible means to express se-

mantic information within documents. This property makes XML possible to address

the shortcomings of existing markup languages and become a key technology that fa-

cilitates information exchange for science, technology, and industries, as well as many

aspects of society. XML also has been selected as the data exchange standard in newly

arising business domains, such as e-business.

The semantics of XML data is richer than the one of relational data by including

both of its content and metadata, the information that describes the structure of the

data. Therefore, XML requires new techniques that are different from the relational

databases technologies for data management. The aim of this thesis is to design effi-

cient indexing techniques for XML data. The structural characteristics of XML data

raises several challenges to design of indexing structures. In this thesis, we investigate

three critical issues of XML data management as follows.

The first issue isto cope with intensively content-updated XML data. Among sev-

eral methods of storing XML documents, a straightforward yet efficient method is to

store a string representation of the XML document. An XML node is usually rep-

resented by a region coordinate, which is a pair of integers expressing the start and

end positions of the substring corresponding to the node. This approach, however,

has the drawback that a change of a node’s region coordinate causes change of the

∗Doctor’s Thesis, Department of Information Systems, Graduate School of Information Science,

Nara Institute of Science and Technology, NAIST-IS-DT0161038, February 6, 2004.

i

region coordinates of many other elements that normally degrades the performance of

XML applications. To deal with the issue, we propose the Relative Region Coordinate

(RRC) technique to effectively reduce the cost of recomputation by expressing the co-

ordinate of an XML element in the region of its parent element. We present a method

to integrate the RRC information into XML systems and provide experimental results.

The second issue isto cope with structure-update of XML data. XML queries in-

volve both content search and structure search. For structure search, the structural

information of XML data is essential to determine the structural relationships in XML

documents. Several numbering schemes have been proposed so far to express the struc-

tural information using the identifiers of XML nodes. However, since the structure of

XML documents can be changed, the robustness of these numbering schemes is vital

for the whole indexing structure. For this purpose, we introduce a new numbering

scheme calledrecursive UID(rUID) that has been designed to be robust in structural

update and applicable to arbitrarily large XML documents. We investigate the applica-

tions ofrUID to XML query processing in a system called SKEYRUS, which enables

the integrated structure-keyword searches on XML data.

The third issue considered in this thesis isto exploit the schematic information to

improve XML query processing efficiency. Although most of XML documents have

associated DTD or XML schema, the prior query processing techniques have not uti-

lized the document structure information efficiently. We propose a novel XML query

processing method that uses DTD or XML schema to improve the I/O complexity

of XML query processing. We design a Structure-based Coding for XML data (SCX)

that incorporates both structure and tag name information extracted from the document

structure descriptions. This property of SCX provides a Virtual Join mechanism that

greatly reduces I/O workload for processing XML queries. Our experimental results

indicate that SCX accelerates the processing of XML queries significantly.

XML is a new technology and its invention follows an industrial concept, where

societies and industries are creating artifacts for researchers to study. Therefore, the

XML-related techniques are subjects of a long development and improvement. The

study presented in this thesis is an effort toward efficient XML data management.

Keywords:

Web database, XML, indexing technique, storage, query processing, numbering scheme.

ii

Acknowledgements

This doctoral thesis describes the research results that I have achieved during my study

at Database Laboratory, NAIST. I am glad to express my appreciation here to every-

body who has helped me to complete the work.

I am especially indebted to Professor Shunsuke Uemura, who kindly helped me

to get the scholarship of Japanese government for my graduate study in Japan and

accepted me to his laboratory. During my stay at NAIST, he provides me with a great

support and advices. The freedom he gave me when he allowed me to choose the

subject of my research by myself made it possible for me to explore the areas which I

found most appealing. I highly appreciate his kindness and cordial help.

I particularly would like to thank Professor Masatoshi Yoshikawa for introducing

me to the database research topics of XML. He has provided me very useful sugges-

tions about my research and is a critical reader of my manuscripts. I have benefited

greatly from the technical discussions with him, his academic point of view and re-

search experience. Both before and after leaving NAIST to be with Nagoya University,

he has provided me with a valuable support to complete the thesis.

I also thank Doctors Toshiyuki Amasaga and Kenji Hatano for their technical help

and discussions. Thanks to all members and friends of the Database laboratory for a

friendly but working atmosphere. I wish them every success in their study and career.

It is a honor for me to study in such innovative university like NAIST. I want to

thank the faculty and administrative staff of NAIST and Graduate School of Infor-

mation Science for the excellent academic environment and research facilities. Espe-

cially, I would like to thank other members of the Thesis Committee, Professor Yuji

Matsumoto and Professor Hiroyuki Seki, who spent their valuable time to referee this

thesis. In the final version of this thesis, most of comments that I have received from

the thesis committee have been addressed. Some of these suggestions that require a

comprehensive investigation will be addressed in my future research.

Finally, I want to thank my parents and family, who always support and expect me

to achieve a doctoral degree. Especially, I want to thank my wife, Ngoc Doan, and

my little daughter, Ngoc Trang, who make me a happy husband and father. With their

love, I managed to overcome the difficulties to complete the work. Thank you!

Dao Dinh Kha, February 2004

iii

Contents

Acknowledgements . iii

1 Introduction 1

1.1 Information Exchange in the Internet Era 1

1.2 Markup Languages and XML’s Originality 3

1.3 The Significance and Research’s Objectives 4

1.4 Thesis Outline and Contribution . 6

2 Preliminaries 9

2.1 Extensible Markup Language . 9

2.1.1 XML document specification 10

2.1.2 XML Document Types and Schemas 12

2.2 Main XML-related standards . 15

2.2.1 XML Namespaces . 15

2.2.2 XML Information Set . 16

2.2.3 XML Path Language . 17

2.2.4 XSL and XSL Transformations 18

2.2.5 XML Linking Language . 20

2.2.6 Document Object Model and Simple API 21

2.3 XML Data Management . 21

2.3.1 XML and database products 23

2.3.2 XQuery for XML query processing 23

2.4 Data Model and Notation used in this thesis 24

3 XML Content Update using Relative Region Coordinates 27

3.1 Introduction . 27

v

3.1.1 Contribution . 28

3.1.2 Related work . 28

3.2 Region Coordinate of XML Data . 29

3.3 Relative Region Coordinate . 31

3.3.1 RRC Description – the Byte Version 32

3.3.2 RRC Description – the Word-Tag Version 32

3.3.3 RRC with Content Update Problem 33

3.3.4 Theoretical Evaluation of RRC 34

3.3.5 The ARC-RRC Hybrid Technique 36

3.4 Applications of RRC . 37

3.5 Tree Structural Coding and Query Processing Framework for RRC . . 39

3.5.1 Tree Structural Coding . 39

3.5.2 Query Processing Framework with RRC 40

3.6 An Adaptation Approach: Storing XML Data with RRC using an

RDBMS . 40

3.6.1 The Basic Scheme . 41

3.6.2 RRC-supported Scheme . 41

3.6.3 SQL Statements for RSS . 42

3.7 Experiment . 43

3.7.1 Experimental Platform . 43

3.7.2 Queries of ARC and RRC 44

3.7.3 Update of RRC and ARC . 48

3.8 Summary of Chapter 3 . 48

4 A Structural Numbering Scheme for Processing Queries by Structure and

Keyword on XML Data 51

4.1 Introduction . 51

4.1.1 Contribution . 52

4.1.2 Related work . 53

4.2 Recursive UID . 55

4.2.1 Description of 2-levelrUID 56

4.2.2 Parent-Child Relationship in 2-levelrUID 61

4.2.3 Description ofn-level rUID 63

4.2.4 Properties ofn-level rUID 65

vi

4.3 SKEYRUS - a System of 2-levelrUID 66

4.3.1 System Design . 66

4.3.2 Data Structure in Secondary Memory 68

4.3.3 Main Structural Joining Mechanism 69

4.3.4 Auxiliary Join Mechanisms 70

4.3.5 Content Processing . 72

4.3.6 Database Table Decomposition 72

4.3.7 Frame selection . 73

4.4 Experiment . 73

4.4.1 Scalability and Robustness ofrUID 74

4.4.2 rUID and XML Query Processing 75

4.5 Summary of Chapter 4 . 80

5 XML Query Processing using Virtual Joins 83

5.1 Introduction . 83

5.1.1 Contribution . 85

5.1.2 Related work . 86

5.2 Structure information in DTD and XML schema 88

5.3 SCX: a structure coding . 91

5.3.1 The description of SCX . 92

5.3.2 Generating SCX . 94

5.3.3 Index functions . 99

5.3.4 Other features of SCX . 102

5.4 Virtual Joins with SCX . 103

5.4.1 Basicpath-predicatequeries 105

5.4.2 Complexpath-predicatequeries 107

5.4.3 Processing twig queries . 108

5.5 Experiment . 110

5.5.1 Experiment setup . 110

5.5.2 Experimental platform and Data sets 111

5.5.3 Experimental results . 111

5.6 Summary of Chapter 5 . 117

vii

6 Summary and Future Research 118

6.1 Conclusion . 118

6.2 Future Research . 119

References . 121

Appendix . 128

A B+-tree: an example . 128

B R-tree: an example . 128

C The DTD of the datasetsI . 130

D The DTD of XMark datasets . 130

viii

List of Figures

3.1 XML tree of the XML document in Example 1 31

3.2 ARC and RRC-updated nodes distribution 34

3.3 Update node reduction ratio of RRC to ARC 37

3.4 Hybrid technique and its advantage 38

3.5 The query processing framework . 40

3.6 SQL statement of Query 1 for RRC on XRel 46

3.7 Ratio of query times of RSS to XRel 47

3.8 Ratio of update times of RSS and XRel 47

4.1 Original UID before and after a node insertion. 55

4.2 Frame and UID-local area. 57

4.3 Original UID and its 2-levelrUID counterpart. 60

4.4 n-level rUID architecture. 64

4.5 System design of SKEYRUS. 67

4.6 Join mechanisms used in SKEYRUS. 71

4.7 Elapsed times for the queries P1-6 on dataset II. 77

4.8 Elapsed times for the queries X1-6 on the dataset III. 77

4.9 Elapsed times for the queries X7-12 on the dataset III. 81

4.10 Elapsed times for the queriesP5, P6, andX13. 81

5.1 The prior and new approaches for processing the queryS1 86

5.2 An XML example . 90

5.3 Element hierarchy . 90

5.4 c-groups and structural identifiers 93

5.5 sid of the document in Figure 5.2. 100

5.6 Processing a twig query. 109

ix

5.7 Query processing of the short queries Q1 and Q2. 114

5.8 Query processing of the short query Q3 and the medium query Q4 . . 115

5.9 Query processing of the medium query Q5 and the complex query Q6 116

6.1 Example of a B+ Tree, Order is equal 2. 128

6.2 Example of a R-Tree and its spacial objects. 129

6.3 The sketch of theauction.dtd for XMark dataset. 130

x

List of Tables

3.1 Specification of data set . 44

3.2 Instance of the STRURRC table . 44

3.3 Test query set for RRC on XRel . 45

3.4 Query time in XRel and RSS inmsec. 45

4.1 The tableK for the 2-levelrUID in Figure 4.3. 61

4.2 A query plan for the query (2). 68

4.3 Specification of the data sets. 74

4.4 Query set A for the data setII . 76

4.5 Query set B for the data setIII . 78

4.6 Query set for the comparison with IKS[13] 79

5.1 The specification of some DTDs . 89

5.2 A tableStruDTD . 98

5.3 Specifications of the data sets . 109

5.4 Query set for testing Virtual Joins 112

5.5 Numbers of hits of the test queries 113

xi

Chapter 1

Introduction

1.1 Information Exchange in the Internet Era

An exciting domain of computer science isinformation interchangethat is the col-

laboration and sharing of information among individuals, systems and applications.

Unlike in the most of the 20th Century, when the task was performed mostly manually,

the widespread adoption of computers in the last several decades have precipitated a

paradigm shift of information interchange.

The rise of the Internet in the last decade was a big stimulus to research in this very

important area by providing an excellent means for information sharing. An impor-

tant fraction of the worlds computers were connected through Internet, not only by a

physical network but also by a common protocol used for exchanging information. A

huge amount of data has been located to be accessible by Internet and the data vol-

ume is increasing every year. With the introduction of World Wide Web, which is an

application of hypertext enabling the links to documents, images, etc. anywhere on

the global network, the Internet has been described as avirtual library. Through In-

ternet, one can access to libraries of various disciplines, such as economy, science and

technology, education, etc., to get the information used for their own purpose.

However, the massive amount of data in Internet is generated by the application

of various types in different data formats. The heterogeneity poses a challenge how

to interchange and integrate information from various Web sources resided in a large

number of computers and information processing devices over the world. Making in-

formation truly ubiquitous over the Internet requires a common information organizing

1

principle. Due to the variety of the Web resources, this principle had to be application-

independent and easily extensible to new and unanticipated kinds of information.

For this purpose, Extensible Markup Language (XML) [47] has been designed

and adopted by the World Wide Web Consortium (W3C)1 that is the organization es-

tablished to control the standardization of many WWW related formats and proto-

cols. XML is an effort to combine the power of Standard General Markup Language

(SGML)[43] and the simplicity of implementation of HyperText Markup Language

(HTML)[44]. XML is a subset of SGML which is formulated by simply removing

the features which are rarely used or cause problems in terms of processing speed.

Although some simplifications have been made, XML still provides an enriched data

expressiveness for presenting various kinds of information.

XML is perceived as a standard with the potential of replacing HTML, which is

the format for rendering most of current web pages. Today’s search engines are mostly

based on keywords appearing in the content pages rather than on the meaning of the

search query. A search on specific words returns documents that may include the

information that is not of interest. To solve this problem, XML allows user-defined

tags to add semantics to the Web content page. In addition, XML allows the separation

of data and presentation in a document. As a result, the same data can be presented in

different formats according to particular demands.

XML enables computer systems to work together through the exchange of informa-

tion items, from a number to complex data structures. To be cross-platform compatible,

XML provides aneutralnotation for labeling the parts of information and represent-

ing the relationships among these parts. Therefore, the applications that agree on a

common XML vocabulary can perform data interchange. For instance, Web browsers

can be compatible with drawing tools like Corel Draw and Acrobat Illustrator using an

XML-based language called the Scalable Vector Graphics Language[45]. Similarly,

XML is also a metalanguage, i.e. a set of tags and the rules connecting the tags and

their contents, for defining other markup languages such as Real Estate Listing Markup

Language2, Wireless Markup Language3, or Open Financial Exchange4.

Furthermore, XML is used as the core for development platforms of an entire appli-

1http://www.w3.org/
2http://xml.coverpages.org/openMLS.html
3http://www.oasis-open.org/cover/wap-wml.html
4http://xml.coverpages.org/ofx.html

2

cation such as Microsoft.NET, where XML serves as a means to model data-integrated

components of information systems. Since XML does not mandate any particular stor-

age technique, it enables the information interchange among systems that store data in

various formats, such as file systems, relational databases, object repositories, etc.

1.2 Markup Languages and XML’s Originality

XML comes from a rich history of markup languages used for text processing. Text

processing is a sub-discipline of computer science dedicated to creating computer sys-

tems that can automate parts of the document creation and publishing process. A

markup language specifies what markup is allowed, how markup is distinguished from

data, and what markup means. Markup text added to the data content of a document in

order to convey information about data to computers. There are several requirements

imposed on markup languages. First, various computer programs and systems should

be able to read and write markup data. Second, the markup language must be exten-

sible to support different types of information. Third, there must be a mechanism for

formally describing the rules shared by documents of a common type or class.

Normally, a markup language aims at a specific application, such as document

publishing, document’s information interchanging, or document rendering. There are

a number of markup languages as follows:

Portable Document Format(PDF). This is a format proposed by Adobe Systems, Inc.5

for publishing works. PDF enables a consistent look of published documents across

different platforms. PDF is the most preferable format for storing and submitting a

vast number of documents. However, PDF does not preserve structure and contextual

information about a document. Since PDF does not separate rendering and content,

the language is unsuitable for many data-driven application scenarios. In addition,

PDF requires a proprietary reader, hence indexing and querying are ruled out.

Standard Generalized Markup Language. SGML is a text-based data format adopted

as an international standard (ISO 8879) for the markup of electronic structured docu-

ments. SGML has been accepted in the professional publishing industry and used suc-

cessfully in many large-scale systems. SGML enables the creation of documents with

5http://www.adobe.com/

3

varying degrees of structure and contextual information. The problem with SGML is

that it iscomplex. SGML based Internet publishing requires that all participating par-

ties use SGML systems in their existing infrastructure. The complexity of SGML and

the effort it takes to build SGML systems makes the use of SGML very costly.

Hypertext Markup Language. HTML is an application of SGML that was specifi-

cally designed for rendering data in documents to be published on the World Wide

Web. The success of HTML can be attributed to its restricted and easy understandable

vocabulary that makes it supported by numerous tools. However, HTML rendering

information is limited and there is very little opportunity to include information about

the document and its hierarchy. A document in SGML format can be translated to

HTML for publishing on the Internet with the cost of its semantic richness.

XML’s originality . Due to its complexity, SGML is not widely used and was broken

down on the acceptance criteria to design XML. The work was initially developed by

an XML Working Group formed in 1996 under W3C, which received input from an

XML Special Interest Group. XML is an essential core of SGML and optimized for

the processing and information exchanging by Internet by removing some features of

SGML. For instance, the content model minimization parameters, markup delimiters

and name characters definition, char-set declaration, and optimal features turning of

SGML are all eliminated in XML to reduce the parsing workload. Whereas SGML

allows many situations where it is difficult for the parser to understand the separation

between markup and other types of characters, XML’s errors of the parsing a docu-

ment is more understandable. The declarations that modify the allowed subtree of an

element type in SGML are eliminated in XML to make the document type declaration

simpler. The AND (&) content model groups, that generates factorial of the number

of elements combinations of OR operations in SGML is eliminated in XML, etc. The

changes enable XML data to be processed more efficiently. The simplification in XML

specification is probably one of the main reasons behind the wide support of XML.

1.3 The Significance and Research’s Objectives

Since the semantics of XML data is represented by both of its content and metadata,

there are differences between XML data and relational data in terms of data model and

usages, as briefly described bellow:

4

• Flat relational data and nested XML data, and the depth of nesting can be irreg-

ular. Nested data structures can be represented by using tables with foreign keys

in relational databases, but it requires a costly recursive operation to search these

structures for objects at an unknown depth of nesting. In XML, such a search

is very common. For example, the query “Find all materials published or pro-

duced in 2003” on the XML data describing the library properties of a company

can be represented by the expression//*[@year = "2003"] . This query in a

relational query language requires a more complex expression due to the lack of

the type of material and the explicit hierarchical information.

• Homogeneous relational data and heterogeneous XML data. Relational data is

organized in the form of a table of tuples, each of them has the same attributes,

with the same names and types. This allows metadata to be defined using fixed

schemes and removed from the data itself to a separate catalog. In contrast,

XML’s metadata is distributed throughout the data in the form of tags. Each

instance of an XML element can have a different structure that can be changed.

Therefore, XML queries can naturally involve both data and metadata, where in

a relational language such queries would require a join of several data tables and

system catalogs.

• Data-derived order and document order. In a relational database, the order of

the rows of a table, if exists, is determined using their values. XML documents,

on the other hand, have an intrinsic document order that can be important to their

meaning and is independent from data values.

In data management, a query language is a set of rules that specifies the way data

is selected and reorganized on demands whereas indexing structures are the way data

is organized physically in order to perform queries efficiently. The role of indexing

structure is increasing when the amount of data to be queried is large. The traditional

indexing structures such as B+-tree and R-tree have been designed to deal with the data

represented by the relational data model. As briefly presented in Appendixes A and

B, the order of data in these structures is not considered and derived artificially based

on the value of data items. From the above-mentioned differences between relational

data and XML data, it is natural that we need to extend the traditional techniques and

develop new ones specific for XML data management.

5

Research Objectives. This thesis aims at proposing the indexing structures that are

efficient for XML query processing. A big challenge to an XML indexing structure

is that it must encompass the semantics feature of XML data, i.e. it must keep the

original order of XML elements that may be possibly established at several hierarchical

levels. However, the order may not be derived from the data value. Therefore, an XML

indexing structure must keep information of both data value and document hierarchy

of XML documents. The efficient integration of these features is not trivial task if we

take into account all problems that may emerge. In this thesis, we investigate three

specific issues for XML data indexing, namely:

Coping with intensively content-updated XML data

XML data items have various lengths tailored in a tree structure, hence content updates

to XML data may change the position of data items in their original XML documents

and the change may affect the structure of indexes on the updated data. We investigate

how to reduce the cost of the content updates.

Making indexing structure robust on structure-update of XML data

Since indexing structures are based on the identifiers of XML elements but the structure

of XML documents can be changed by node insertion or deletion. We propose an

indexing structure that is robust on structural updates of any type.

Using schematic information for improvement of XML query processing

Schematic information, or document structure information, normally is expressed in

document type definition associated with most of XML documents. We investigate

how to exploit the information to establish the hierarchical order among the XML

elements efficiently to improve XML query processing.

1.4 Thesis Outline and Contribution

The thesis has six chapters and appendixes. After this introductory chapter, in Chapter

2 we review the specification of XML in order to make the thesis self-contained. The

XML-related languages that have been referred in our research are also reviewed here.

6

Chapter 2 is concluded by the description of the data model and the common notation

used in the thesis.

The main result of our research that answer the above mentioned objective issues

is presented in Chapters 3, 4, and 5. In Chapter 3, we describe an approach using

relative region coordinate for the applications that have to deal with heavily content

updated XML data. In Chapter 4, we present an indexing structure based on a recur-

sive numbering scheme that is robust on structural update. In Chapter 5, we describe

an indexing structure that significantly improves the I/O workload of XML query pro-

cessing. In order to make the document easy to be read, in each chapter we review the

work related to the issue addressed in the chapter.

Finally, Chapter 6 concludes the main content of the thesis by a summary of the

main results and a discussion about the future development of our current research.

Some auxiliary information related to the research can be found in the Appendix.

7

Chapter 2

Preliminaries

This chapter introduces the essential part of the XML specification in order to make

the thesis self-contained. Besides the most important notions of XML, we but also

describe the relation of the material reviewed here and the research issues addressed

in the following chapters. The details of the XML concept is covered in depth in

the home pages of W3C. The first section of the chapter describes the basic of XML

specification. The second section reviews XML-related standards that are directly or

indirectly used in our research. The third section gives an overview of issues relating

to XML data management. The last section presents the notation commonly used in

the next chapters of the thesis.

2.1 Extensible Markup Language

The invention of XML follows the industrial concept, where societies and industries

are creating artifacts as standards based on demands. The main features of XML are

the usability over the Internet, the ability to support a wide variety of applications, the

compatibility with SGML, and the simplicity for processing and creating.

XML has been designed taking into account the existing data formating standards

such as SGML and HTML. Consider, for instance, the simple HTML document in

Listing HE.1 bellow. The data contained in the document describes some information

about a person and how the information will appear to the viewers through the format-

ting tags, namely HTML tags, in a web page. There is no semantic information that

the data represents a person’s name and e-mail address.

9

Listing HE.1: a HTML document

<html>

<head>

<title>Personal Information</title>

</head>

<body>

<p> Name: Branson Richard</p>

<p> Email: branson@domain.com</p>

</body>

</html>

XML can address the above problem, as the data in an XML document is self-

describing. XML allows defining custom tags describing the data enclosed by them.

An example XML document containing data about the same person is shown in Listing

XE.1.

Listing XE.1: an XML document

<?xml version="1.0"?>

<!DOCTYPE person SYSTEM ‘‘person.dtd’’>

<person status = ‘‘manager’’>

<name>

<family>Branson</family>

<given>Richard</given>

</name>

<email>branson@domain.com</email>

</person>

Unlike in HE.1, in XE.1 the data’s semantics can be interpreted from the document

through the tags<person> , <name>, etc, where the names of these tags are chosen in

the understanding of the document’s creator to interpret the document’s content.

2.1.1 XML document specification

The specification of XML is descriptively identified in theXML 1.0 W3C Recom-

mendation. An XML document is composed ofdeclarations, elements, comments,

character references, andprocessing instructions, all of which are indicated in the

10

document by explicitmarkup. The function of the markup in an XML document is to

describe its storage layout and logical structure and to associate attribute-value pairs

with its logical structures. The markups are defined flexibly, that makes XML an ideal

basis for defining arbitrary languages. For example, the XML schema language, which

will be presented in Section 2.1.2, used to describe the structure of XML documents is

based on XML itself.

A software module called anXML processoris used to read XML documents and

provide access to their content and structure. An XML processor is doing its work on

behalf of another module, called the application, according to the XML specification.

The Logical and Physical Structures of XML

Each XML document has both a logical and a physical structures that are presented by

the concepts ofelementandentity, respectively.

Logical structure. Each XML document contains one or more elements, the bound-

aries of which are either delimited bystart-tags andend-tags, or, for empty elements,

by anempty-element tag. Each element has a type that is identified by name. In the

XML document in Listing XE.1,<family>Branson</family> is an element and

<family> and</family> are start-tag and end-tag of the element, respectively.

An element may have a set ofattributes that occur inside element start tag, after

element type name. Element can contain only one occurrence of each attribute. Each

attribute specification has a name and a value. For example, the attributestatus is

specified in the elementperson like <person status = ‘‘manage’’> .

All text that is not markup constitutes the character data of the document. The

text between the start-tag and end-tag is called the element’s content. The notion of

content of an element will be explained in details in Section 3.2 to describe the issue

of content update of XML data. An element with no content is said to be empty. The

representation of an empty element is either a start-tag immediately followed by an

end-tag, or an empty-element tag.

XML documents should begin with anXML declaration, which must appear before

the first element in the document. The document type declaration specifies the version

of XML being used. For example, the XML document in Listing XE.1 starts with the

declaration<?xml version=‘‘1.0’’?> .

11

Well-formedness. XML syntax is constrained by a grammar that governs the permitted

tag names, attachment of attributes to tags, and so on. All XML documents must con-

form to these basic grammar rules. A textual object is awell-formedXML document

if it contains one or more elements and there is exactly one element, called theroot, or

document element, no part of which appears in the content of any other element. For

all other elements, if the start-tag is in the content of another element, the end-tag is in

the content of the same element. More simply stated, the elements, delimited by start-

and end-tags, nest properly within each other. As a consequence of this, each non-root

element has the unique parent element. Such conformed documents can be interpreted

by a common XML processor.

Physical structure. An XML document is defined as a series of characters that can

be organizednon-linearand potentially in multiple pieces of text. Thepiece-of-text

construct is called anentity. An XML document may consist of one or many storage

units called entities. Whereas XML elements describe the logical structure of XML

document, entities keep track of location of chunk of bytes that make up an XML

document. Therefore, entities are calledphysical structureof the document.

An entity may refer to other entities to cause their inclusion in the document. A

document begins in aroot or document entity, which serves as the starting point for the

XML processor and may contain the whole document. An entity contains eitherparsed

or unparseddata. Parsed data is made up of characters, some of which form character

data, and some of which form markup. A parsed entity’s contents are referred to as its

replacement text; this text is considered an integral part of the document. An unparsed

entity is a resource whose contents may or may not be text, and if text, may be other

than XML. Each unparsed entity has an associated notation, identified by name.

The XML parser programs, including that ones used in our experiments, must un-

derstand the physical structure of XML documents in order to establish correctly their

hierarchy. The presentation of the hierarchy in main memory and to users is discussed

in section 2.2.6.

2.1.2 XML Document Types and Schemas

Both Document Type Definition (DTD) and XML schema are mechanisms used to de-

fine the structure of XML documents. They determine what elements can be contained

12

within the XML document, how they are to be used, what default values their attributes

can have, and so on. Given a DTD or XML schema and its corresponding XML docu-

ment, a parser can validate whether the document conforms to the desired structure and

constraints. This is particularly useful in data exchange scenarios as DTDs and XML

schemas provide and enforce a common vocabulary for the data to be exchanged.

Document Type Definition. A markup declarationis an element type declaration, an

attribute-list declaration, an entity declaration, or a notation declaration. For example,

<!ELEMENT person (name, email?, person*)> is a markup declaration.

The XML document type declaration contains a list of markup declarations of ele-

ments and attributes that provide a grammar, called Document Type Definition or DTD,

for a class of documents. The document type declaration also can point to an external

subset (a special kind of external entity of its physical structure) containing markup

declarations, or can contain the markup declarations directly in an internal subset, or

can do both. The DTD for a document consists of both subsets taken together.

Listing XD.1 shows a DTD for the XML document in Listing XE.1. It describes

which primitive elements form valid components for the three composite ones:person ,

name, andemail . The keyword#PCDATAsignifies that the element does not contain

any tags or child elements and only parsed character data.

Listing XD.1: a DTD

<!ELEMENT person (name, email?, person*)>

<!ATTLIST person status CDATA #IMPLIED>

<!ELEMENT name (family, given)>

<!ELEMENT family (#PCDATA)>

<!ELEMENT given (#PCDATA)>

<!ELEMENT email (#PCDATA)>

Suppose that the DTD is contained in the file named “person.dtd”, in the XML
document XE.1, the DTD is declared by the following:

<!DOCTYPE person SYSTEM ‘‘person.dtd’’>

XML Schema. XML schemas differ from DTDs in that the XML schema definition

language is based on XML itself. As a result, the set of constructs available for defining

an XML document is extensible. XML schemas support more complex structures

13

than DTDs. In addition, stronger typing constraints on the data enclosed by a tag

can be described because primitive data types such as string, decimal, and integer are

supported. This makes XML schemas suitable for defining data-centric documents.

Listing XS.1: an XML schema

<?xml version="1.0"?>

<xs:schema xmlns:xs=’http://www.w3.org/2001/XMLSchema’>

<xs:element name=’email’ type="xs:string"/>

<xs:element name=’family’ type="xs:string"/>

<xs:element name=’given’ type="xs:string"/>

<xs:element name=’name’>

<xs:complexType>

<xs:sequence>

<xs:element ref=’family’/>

<xs:element ref=’given’/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name=’person’>

<xs:complexType>

<xs:sequence>

<xs:element ref=’name’/>

<xs:element ref=’email’ minOccurs=’0’/>

<xs:element ref=’person’ minOccurs=’0’ maxOccurs=’unbounded’/>

</xs:sequence>

<xs:attribute name=’status’/>

</xs:complexType>

</xs:element>

</xs:schema>

Listing XS.1 shows an XML schema for the XML document in Listing XE.1. The

sequence tagis a compositor indicating an ordered sequence of subelements. There are

other compositors forchoiceandall. As shown for theperson element, it is possible

to constrain the minimum and maximum instances of an element within a document.

XML schema definitions can exploit the same data management mechanisms as

designed for XML because an XML schema is an XML document itself, whereas

DTDs require specific support to be built into an XML data management system.

14

Validation. In addition to being well formed, the structure of a particular XML docu-

ment can be validated against a Document Type Definition (DTD) or an XML schema.

An XML document isvalid if it has an associated document type declaration and if the

document complies with the constraints expressed in it. XML document type defini-

tion are used to describe constraints on the logical structure and to support the use of

predefined storage units.

2.2 Main XML-related standards

There is a large set of XML-related standards presented in the form of W3C recommen-

dations. A review of all of them is out of the scope of this thesis. In this part, we review

briefly the standards, the concepts of which are used in our research, such as XML

Namespaces, XML Information Set, XML Path Language, Extensible Stylesheet Lan-

guage and Extensive Stylesheet Language Transformation, XML Linking Language,

Document Object Model and Simple API for XML.

2.2.1 XML Namespaces

There is a problem that arises when XML allows anybody to choose the tag name

of XML elements and attributes, since the same name may be used with different

meanings. This makes it very difficult to work with documents from independent

sources. There is a standard calledXML Namespacesto solve the problem.

A namespace is an area within which a name have the same meaning whenever it is

used. Formally, an XML namespace is a collection of names, identified by a URI refer-

ence, which are used in XML documents as element types and attribute names. Names

from XML namespaces arequalified names consisting of anamespace prefixand a

local part separated by a single colon, where the prefix mapped to a URI reference se-

lects a namespace. The combination of the universally managed URI namespace and

the document’s own namespace produces identifiers that are universally unique.

A namespace is declared using a family of reserved attributes. Such an attribute’s

name must either bexmlns or havexmlns: as a prefix. Bellow is an example of

namespace declaration, which associates the namespace prefixedi with the names-

pace namehttp://ecommerce.org/schema . Theedi prefix is bound to the names-

15

pace within thex element. The qualified nameedi:price serves as an element type.

<x xmlns:edi=’http://ecommerce.org/schema’>

<edi:price units=’Euro’>32.18</edi:price>

</x>

2.2.2 XML Information Set

XML Information Set (Infoset) is an abstract data set, the purpose of which is to pro-

videa consistent set of definitionsfor use in other specifications that need to refer to the

information in a well-formed XML document. An XML document has an information

set if it is well-formed and satisfies the namespace constraints.

The information set for any well-formed XML document contains exactly one a

document information item and several other information items of the types: Docu-

ment, Element, Attribute, Processing Instruction, Unexpanded Entity Reference, Char-

acter, Comment, Document Type Declaration, Unparsed Entity, Notation, Namespace.

An information item is an abstract description of some part of an XML document

and has a set of associated named properties. Information items are directly accessi-

ble from the properties of the document information item or through the properties of

other information items. For example, the description of a document information item

may have the following properties.

children A document-ordered list of child information items including exactly one element

information item, processing instruction and comment information items.

document elementThe element information item corresponding to the document element.

notations A set of notation information items, one for each notation declared in DTD.

unparsed entities A set of unparsed entity information items, one for each unparsed entity

declared in DTD.

base URI The base URI of the document entity.

character encoding schemeThe name of the character encoding scheme in which the docu-

ment entity is expressed.

standalone An indication of the standalone status of the document that is derived from the

optionalstandalonedocument declaration at the beginning of the document entity.

16

version A string representing the XML version of the document.

2.2.3 XML Path Language

Information within an XML document can be located through a language called XML

Path Language (XPath)[48], the primary purpose of which is to address parts of an

XML document. The notion of XPath will be used extensively in chapters 4 and 5.

XPath can refer to textual data, elements, attributes, and other information in an

XML document in two ways: Ahierarchical fashion based on the ordering of ele-

ments in a document tree, and anarbitrary manner relying on elements having unique

identifiers. In addition, XPath has a subset that can be used for testing whether or not

a node matches a pattern. It also provides basic facilities for manipulation of strings,

numbers and boolean in the logical structure of an XML document.

XPath operates on the abstract, logical structure of an XML document. XPath

models an XML document as a tree of nodes of different types, including element,

attribute, and text nodes. The primary syntactic construct in XPath is theexpression

that is evaluated with respect to a context to yield an object, which has one of the

following four basic types: 1) node-set; 2) boolean; 3) number; and 4) string.

One important kind of XPath expression islocation path. A location path selects

a set of nodes relative to a context node. The result of evaluating a location path is

the node-set containing the nodes selected by the location path. Location paths can

recursively contain expressions that are used to filter sets of nodes. The core rules of

XPath are follows:

[1] LocationPath ::= RelativeLocationPath | AbsoluteLocationPath

[2] AbsoluteLocationPath ::=’/’RelativeLocationPath?

[3] RelativeLocationPath ::= Step | RelativeLocationPath ’/’ Step

A location step has three parts: 1) an axis, which specifies the hierarchical rela-

tionship between the nodes considered in the location step and the context node; 2) a

node test, which specifies the node type and expanded-name of the nodes selected by

the location step, and 3) zero or more predicates to further refine the set of nodes. An

initial node-set is generated from the axis and node test, and then filtered by each of

the predicates in turn. A predicate filters a node-set with respect to an axis to produce

a new node-set. The available XPath axes are:ancestor, ancestor-or-self, attribute,

17

child, descendant, descendant-or-self, following, following-sibling, namespace, par-

ent, preceding, preceding-sibling, andself. Here are some examples of location paths:

• child::para selects the para element children of the context node.

• child::* selects all element children of the context node.

• /child::doc/child::chapter[position()=5] selects the fifth chapter of

the doc document element.

• child::*[self::chapter or self::appendix][position()=last()]

selects the last chapter or appendix child of the context node.

Location path also can be described using abbreviated syntax. For example,para

selects the ‘para’ element children of the context node, or* selects all element children

of the context node.

Note that from XPath specification, it is clear that a typical operation of querying

XML data is looking for elements or attributes having a given type, i.e. a name. This

is probably one of a primary reason behind the introduction of the conceptstructural

join that will be discussed in chapter 5.

2.2.4 XSL and XSL Transformations

Since XML documents do not contain any rendering information, they can be format-

ted in a flexible manner. A standard approach to formatting XML documents is using

XSL, the eXtensible Stylesheet Language [49]. XSL specification is composed of two

parts:XSL Formatting Objects(XSL FO) andXSL Transformations(XSLT). XSL FO

provides formatting and flow semantics for rendering an XML document . A render-

ing agent is responsible for interpreting the abstract constructs provided by XSL FO

in order to instantiate the representation for a particular medium. XSLT is a language

that can transform XML documents into other XML documents. A transformation in

the XSLT language is expressed as a well-formed XML document called astylesheet

describing template rules for transforming.

A template rule has a pattern which is matched against nodes in the source XML

tree and a template which can be instantiated to form part of the result XML tree. A

template can contain elements that specify literal result element structure. A template

can also contain elements from the XSLT namespace that are instructions for creating

result tree fragments. When a template is instantiated, each instruction is executed

and replaced by the result tree fragment that it creates. Instructions can select and

18

process descendant source elements. Processing a descendant element creates a result

tree fragment by finding the applicable template rule and instantiating its template. The

result tree is constructed by finding the template rule for the root node and instantiating

its template. In constructing the result tree, elements from the source tree can be filtered

and reordered, and arbitrary structure can be added.

Listing XT.1: an XML transformation

<?xml version=‘‘1.0’’?>

<xsl:stylesheet xmlns:xsl= ‘‘http://www.w3.org/1999/XSL/Transform’’

version=‘‘1.0’’>

<xsl:template match="/">

<html>

<head><title>Personal Information</title></head>

<body>

<xsl:apply-templates select=‘‘person/name’’/>

</body>

</html>

</xsl:template>

<xsl:template match="name">

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="family">

<p><xsl:text>Family name: </xsl:text>

<xsl:value-of select="."/></p>

</xsl:template>

<xsl:template match="given">

<p><xsl:text>First name: </xsl:text>

<xsl:value-of select="."/></p>

</xsl:template>

</xsl:stylesheet>

Although designed to transform an XML vocabulary to an XSL FO vocabulary,

XSLT can be used for a range of transformations including those to HTML. The ex-

ample stylesheet that uses a set of simple XSLT templates and XPath expressions to

transform a part of the XML document XE.1 to HTML is shown in Listing XT.1 and

the resulted HTML document is shown in Listing HE.2.

19

Listing HE.2: the resulted HTML document

<html>

<head>

<title>Personal Information</title>

</head>

<body>

<p>Family name: Branson</p>

<p>First name: Richard</p>

</body>

</html>

In XT.1, the declarations</xsl:template> and </xsl:template> indicate

the start and end of the application of a template. The elementfamily in Listing

XE.1 is checked by the declaration<xsl:template match=‘‘family’’> . The

code<xsl:text>Family name: </xsl:text> provides a format and

the code<xsl:value-of select=‘‘.’’/> determines the content of the output.

2.2.5 XML Linking Language

The notion ofresources, which are addressable units of information or service, is uni-

versal to the World Wide Web. A resource is addressed by a Uniform Resource Iden-

tifier (URI) reference. XML Linking Language (XLink)[50] is an explicit relationship

between resources or portions of resources. The relationship is expressed by an XLink

linking element, which is an XLink-conforming XML element that asserts the exis-

tence of a link. Even though XLink links must appear in XML documents, they are

able to associate all kinds of resources including files, images, documents, programs,

and query results. It is possible to address a portion of a resource, for example, a

particular element inside an XML document.

A common use of XLink is to create a hyperlink, which is a link used primarily for

presentation to a human user. A simple XLink link is shown in the listing bellow:

...for more information, consult:

<citation xlink:type "simple"

xlink:href="http://www.uw.ca/paper.html"

Biesman (1977)

</citation>

20

2.2.6 Document Object Model and Simple API

For interoperability and modularity, an XML processor must represent XML data in

common rules called API that can be understood by other program modules. There are

two main APIs for manipulating XML documents in an application. They are now part

of the Java API for XML Processing (JAXP version 1.1).

Document Object Model (DOM)is a W3C’s standard operating system and program-

ming language–independent model for manipulating hierarchical documents in mem-

ory. A DOM parser parses an XML document and builds a DOM tree, which can then

be used to traverse the various nodes. However, the whole tree has to be constructed

before traversal can commence. As a result, memory management is an issue when

manipulating large XML documents. This highly resource intensive feature is visible

especially in cases where only a small section of the document is to be manipulated.

Simple API for XML (SAX) bases on an event-driven model. Each time a start or end

tag, or processing instruction is encountered, the program is notified. As a result, the

whole document does not need to be parsed before it is manipulated. In fact, sections

of the document can be manipulated as they are parsed. Therefore, SAX is better suited

to manipulating large documents as compared to DOM.

XML parser tools. Among a number of freeware programs written to promote the

popularity of XM usage, the most popular are XML parsers. For example, Apache

XML Project from the Apache Software Foundation[4] offers both DOM and SAX

parsers called Xerces that provides highly modular and configurable XML parsing and

generation. Fully-validating parsers are available for both Java and C++, implementing

the W3C XML and DOM standards, as well as the SAX standard. In our experiments

performed in this study, both Xerces DOM and SAX parsers are used.

2.3 XML Data Management

To give a broader picture of the XML technology’s development, we review the cur-

rent trends and issues of XML data management. As more and more organizations

and systems employ XML for their information management and exchange activities,

the issues related to XML’s efficient and effective storage, retrieval, querying, index-

ing, and manipulation emerge. In a higher level, organizations and system developers

21

concerning with XML data management have to answer the questions like that what

are the efficient XML data management solutions? What are the features, services,

and tools XML data management systems must have? Which XML data management

system or approach is the best in terms of performance and efficiency for a particular

application? Are there any good practice and domain or application-specific guidelines

for information modeling with XML, and so on.

Database vendors have responded to these new data and information management

requests. Most commercial database systems offer extensions and plug-ins to support

the management of XML data. In addition to extending existing database management

systems to support XML, native XML databases have been invented.

There are several approaches to implement a system to manage XML data. XML

documents fall into two broad categories:data-centricanddocument-centric. Data-

centric documents are those where XML is used as a data transport. They include

sales orders, patient records, and scientific data. Their physical structure, for instance,

the order of sibling elements, is often unimportant. A special case of data-centric

documents is dynamic Web pages, such as online catalogs and address lists, which are

constructed from known, regular sets of data. Document-centric documents are those

in which XML is used for its SGML-like capabilities, such as in user’s manuals, static

Web pages, and marketing brochures. They are characterized by irregular structure and

mixed content and their hierarchical structure is important.

To store and retrieve the data in data-centric documents, the kind of need software

depends on how well structured your data is. For highly structured data, such as the

white pages in a telephone book, an XML-enabled database, such as a relational or

object-oriented database together with some sort of data transfer software, is suitable.

This may be built in to the databases, called XML-enabled, or might be third-party

software, such as middleware or an XML server. If the data is semi-structured, such

as the yellow pages in a telephone book or health data, both of relational databases or

native XML databases are choices.

To store and retrieve document-centric XML documents, a native XML database or

content management system is suitable. Some XML-enabled databases provide native

storage as well such as Oracle 9i[28] or DB2 Extender[23]. These are designed to store

content fragments, such as procedures, chapters, and glossary entries, and may include

document metadata, such as author names, revision dates, and document numbers.

22

Content management systems, the core of which is a native XML database, normally

have additional functionality, such as editors, version control, and workflow control.

2.3.1 XML and database products

The XML products can be divided into the following categories, the boundaries be-
tween some of these categories are somewhat fuzzy.

1. Middleware: Software you call from your application to transfer data between XML

documents and databases.

2. XML-Enabled Databases: Databases with extensions for transferring data between XML

documents and themselves. An approach is to use object-oriented databases presenting

components of an XML document as objects. Another approach is to use RDBMS with

extended XML-supporting functions.

3. Native XML Databases: Databases that store XML innative form, generally as some

variant of the DOM mapped to an underlying data store.

4. XML Servers: XML-aware J2EE servers, Web application servers, integration engines,

and custom servers. For data- and document-centric applications.

5. Wrappers: Software that treats XML documents as a source of relational data and uses

SQL to query XML data.

6. Content Management Systems: Applications built on top of native XML databases and/or

the file system for content/document management. Include features such as check-

in/check-out, versioning, and editors.

7. XML Query Engines: Standalone engines that can query XML documents.

8. XML Data Binding: Products that can bind XML documents to objects. Some of these

can also store/retrieve objects from the database.

2.3.2 XQuery for XML query processing

Since XML is emerging as a standard format for data interchange among applications,

there is increasing amounts of information of many different stored using the XML

23

format. Therefore, the ability to efficiently query XML data sources across applica-

tion boundaries and diverse sources becomes increasingly important. The application-

independence of query processing means if an application is viewed as a source of

information in XML format, queries must be formed based on that XML format only,

not on the application itself.

XQuery[51] is designed to meet the requirements identified by the W3C XML

Query Working Group stated inXML Query 1.0 Requirementsand the use cases stated

in XML Query Use Cases. XQuery provides a flexible facility to extract information

from real and virtual XML information sources, including both databases and docu-

ments. XQuery operates on the logical structure of an XML document as the Query

data model, which represents XML data in the form of nodes and values. XQuery is

closed under the Query data model, which means that the result of any valid XQuery

expression can be represented in this model. XQuery is derived from an XML query

language called Quilt, which in turn borrowed features from several other languages,

including XPath 1.0, XQL, XML-QL, SQL, and OQL. Currently, XQuery is a working

draft submitted to W3C to be approved.

2.4 Data Model and Notation used in this thesis

This work’s notation and terminology are supposed to be standard. However, here are

a few conventions that hold throughout the following chapters.

Data Model. In this thesis, we present an XML document as a labeled rooted tree,

called theXML treeof the document. The tree is abstracted out from the DOM data

model [46] and similar to the data model used in XPath specification. A node may

be one of different node types:root, element, attribute, text, etc. [47]. A node is the

parent of another node if the element corresponding to the former node contains the

element, or attribute, or text corresponding to the latter node.

Common Notation. In this thesis, hereafter, we use the following common notation to

describe the investigated issues:

• T denotes an XML tree rooted at the root noder ,

• m, n, p, q, etc, are nodes ofT,

24

• P ≡ (r = n0, n1, n2,...,nk = n) is the simple node path forn from r . Thelevelof

a node is the length of the node path for the node. For example, the level ofn is

the length ofP, i.e.,k.

• the parent node of a noden is determined byparent(n),

• the tag name ofn is determined byn.tag

Since XQuery is a work in progress to be approved by W3C, its design is a subject

to change. On the other hand, XPath has been approved and published as a W3C

recommendation. Therefore, in this thesis our discussion on indexing techniques will

be based on the XPath notion.

Finally, to make the material easy to read, XML documents used in the examples

presented in this thesis conform the same DTD. However, for simplicity, a part or the

entire of the DTD may be used depending on the context. Specifically, the DTD used

in the examples in Chapter 3 is a part of the DTD used in Chapter 5.

25

Chapter 3

XML Content Update using Relative

Region Coordinates

3.1 Introduction

An important feature of the XML is the ability to manage data items having various

lengths tailored in a tree structure. XML documents can be viewed in two ways: a

tree and a character string. Several methods to store and index XML data have been

proposed so far [33][24][12][26][6][14][5]. A simple yet efficient approach is to store

a string representation of the XML document, e.g. [26][6][14]. A node in an XML

tree corresponds to a substring of the entire string of the XML document. Such sub-

strings can be naturally identified by aregion coordinate, which is a pair of integers

representing the start and end positions of the substring counting from the start of the

XML document.

An important role of region coordinates is fast extraction of substrings representing

an XML subtree. Because substrings of answers for a query can be retrieved directly

from the original documents, the use of region coordinates supports low-cost publish-

ing of XML data. Typical XML queries search tree nodes satisfying a given structural

condition and returns substrings for the XML documents. The approach of storing

string representation of XML documents and region coordinates is suitable for pro-

cessing such typical XML queries.

However, a major drawback of this approach is that it is not robust against content

updating. Since absolute region coordinates are used to represent node positions, a

27

simple update, such as an insertion (or deletion) of a word, causes a change in the

region coordinate values of the successive nodes in the document. If the insertion (or

deletion) is made near the start of the document, the region coordinates of almost all

nodes need to be updated. If the update frequency is high and the size of XML data is

large, the recomputation of the region coordinates of nodes in the index data degrades

system performance. The robustness of region coordinates in XML updating has not

been adequately addressed in the previous works.

3.1.1 Contribution

In this chapter, we present a technique, calledRelative Region Coordinate(RRC), that

efficiently deals with the content update problem. The main idea of this technique is to

express the region coordinate of XML elements based on their parent or the appropri-

ately selected ancestor elements. Using RRC, the workload needed to recompute the

region coordinates in the indexing data when content updates occur is greatly reduced.

We also show that query processing time with RRC is comparable to that with normal

region coordinates.

In principle, the idea of RRC is applicable to any method employing region coordi-

nates. Therefore, there are several approaches to implementing the RRC technique in

XML databases. In this chapter, we demonstrate the applicability of RRC to relational

database systems storing XML documents. A native XML indexing structure based

on the RRC technique can be found in [9]. This research’s result can be applied in

the applications categorized into theXML-Enabled Databasesgroup, as discussed in

Section 2.3.1, page 23 of this thesis.

3.1.2 Related work

There is a number of works on indexing and storing structured documents or XML data

related to the issue of data coordinate. Position-based Indexing and Path-based Index-

ing have been proposed in [33] to indicate the location of data in XML documents.

Position-based Indexing contains the positions of words and XML tag names repre-

sented by the absolute address. Path-based Indexing encodes all paths leading to each

word. NATIX [6] manages tree-structured large objects, preferably XML documents.

Data is stored in flat records, which are mapped into logical trees by a tree storage

28

manager. A hybrid model [14] stores XML attributes in a database system, whereas

the content of XML elements and their indices are saved in files. Storing XML data

using an RDBMS in combination with the flat files have been proposed in XRel [26],

where XML data is indexed by using an XML node type scheme and the query result

returns the coordinate that is used to retrieve the request data from the original XML

documents. Data coordinate also has been used in the system introduced by [13].

XML content updating has not been adequately investigated. The related works

mainly focused on the development of query mechanisms and storage schemes. How-

ever, the problem attracted more effort when XML became the data format of appli-

cations where data is extensively changeable. In [22], a set of instructions has been

proposed for expressing the updates using the syntax of XQuery language. Our re-

search investigates the content update robustness in terms of the storage structure and

proposes a data structure suitable for the problem. Although XML documents can be

decomposed into relational tables, storing XML documents in their entirety is still rele-

vant. For example, this approach has been applied in [26][6] to store large data objects

in the flat part of data, which may contain a number of XML elements. Oracle 9i [28]

and DB2 XML extender of IBM [23] also support the storage of composed XML in

CLOBs. In many other database systems, LOB (Large OBject) fields are supported

to store long character strings [39][1][25]. Using coordinates is the certain choice to

address data in these cases, and such designs can benefit from the application of this

study.

The content of the chapter is as follows. Section 3.2 introduces the preliminaries of

this study. Section 3.3 defines the Relative Region Coordinate. Section 3.4 discusses

the application scope of the technique. Section 3.5 presents the general framework for

implementing the technique. Section 3.6 discusses an application in detail using the

case-study with XRel. Section 3.7 describes the experimental results, and Section 3.8

concludes the chapter with a discussion.

3.2 Region Coordinate of XML Data

For simplicity, let us regard a collection of XML documents as aconcatenatedXML

document with an artificial root element, and we will omit the document index in the

rest of the chapter. A simple XML document is presented in Example 1.

29

Example 1 A simple XML document describes the relationship between Richard Bran-

son, as a manager, and his subordinate employees.

<person>

<name>

<family>Branson</family>

<given>Richard</given>

</name>

<email>branson@domain.com</email>

<person>

<name>

<family>Soros</family>

<given>George</given>

</name>

</person>

<person>

<name>

<family>Leeson</family>

<given>Nick</given>

</name>

</person>

</person>

The XML tree corresponding to the XML document listed in Example 1 is depicted

in Figure 3.1. The root node or an internal node is depicted by a cycle. A text node is

marked by its text content.

By content updatewe mean a change in the data stored in a leaf node. It is equiv-

alent to the change of the text between the start-tag and end-tag of the element cor-

responding to the node. For example, in Example 1, the e-mail address of Branson

may be changed from “branson@domain.com” to “bransonrichard@yahoo.com”. The

child text node of the correspondingemail node must be changed accordingly.

Since XML elements have changeable lengths, the locations of elements in an

XML document cannot be expressed by a fixed scheme. Therefore, we use a region

coordinate, which is a pair of integers equal to the absolute distances from the start of

the document to the start and the end bytes of the piece of text corresponding to the

element. Let us call the addressAbsolute Region Coordinate(ARC).

Despite of the convenience of directly locating the data items in an XML docu-

ment, the integrity of ARC is difficult to maintain. When an update changes the length

30

Branson Richard

person

name

family given

personemail

Soros George

name

given

Leeson Nick

name

given

person

family family

branson@do
main.com

Figure 3.1. XML tree of the XML document in Example 1

of the content of an element, the ARC of the element and of all of its successive el-

ements must be changed. In the XPath terminology, theancestor-or-selfnodes and

the following nodes of the updated node are affected. In general, the ARC of a large

number of elements have to be recomputed.

Example 2 The ARCs of the elements, listed in preorder traverse,person , name,

family , given , email , person , name, family , given , person , name, family , and

given in Example 1 are [0, 253], [8, 66], [14, 37], [38, 59], [67, 99], [100, 172], [108,

163], [114, 135], [136, 156], [173, 244], [181, 235], [187, 209], and [210, 228], re-

spectively. If the content of the elementemail is changed from “branson@domain.com”

to “bransonrichard@yahoo.com”, then the data length of the element is increased by

6 bytes. In consequence, the ARCs of these elements become [0, 259], [8, 66], [14,

37], [38, 59], [67, 105], [106, 179], [114, 169], [120, 141], [142, 152], [179, 250],

[187, 241], [193, 215], and [216, 234], respectively.

For simplicity, in this chapter, we assume that the type of an internal node of XML

trees in the data model is Element and that of a leaf node is Text.

3.3 Relative Region Coordinate

In this section, we present the Relative Region Coordinate technique. We first present

two versions of RRC – the byte version and the word-tag version. We describe the

31

distribution of the nodes, the ARC and RRC of which are affected by an update at a

given node. The theoretical evaluation of our technique and its hybrid version are also

discussed.

3.3.1 RRC Description – the Byte Version

RRC shows the location, expressed in bytes, of element within the space of its parent

element.

Definition 1 The byte version of Relative Region Coordinate of an element is a pair

of integer numbers [r1, r2], wherer1 (respectively,r2) is the number of bytes from the

start of the parent element to the start byte (respectively, the end byte) of the element.

Valuesr1 andr2 are called the first and the second RRC coordinates.

Example 3 The RRCs of the elements, listed in preorder traverse,person , name,

family , given , email , person , name, family , given , person , name, family , and

given in Example 1 are [0, 253], [8, 66], [6, 29], [30, 51], [67, 99], [100, 172], [8,

63], [6, 27], [28, 48], [173, 244], [8, 62], [6, 28], and [29, 49], respectively.

For convenience, when we refer to the ARC (RRC) of a node in an XML tree, we

imply this is the ARC (RRC) of the element corresponding to the node in the rest of

the chapter. Given the ARCs of a node and its parent node, the RRC of the child node

can be computed. Inversely, the ARC of a node can be computed if the RRCs of its

ancestor nodes are all known.

In an XML treeT, if the RRC of the nodeni (i = 0, 1,. . ., k) in the node pathP ≡
(r = n0, n1, n2,...,nk = n) for a noden is denoted by [ai , bi], then the ARC ofn is equal

to [(∑k
i=0ai),(∑k−1

i=0 ai)+bk].

3.3.2 RRC Description – the Word-Tag Version

In a number of applications, the notion ‘word’ is of interest rather than ‘byte’. A word

is considered to be a sequence of characters or digits and bounded by delimitation char-

acters, such as dots, commas, blanks, etc. The word-tag address of a tag is represented

by a pair of integers [w.t]. In the absoluteword-tag address [33],w is the number of

words preceding the tag in the document. In therelative word-tag address,w is the

32

number of words preceding the tag in the region of the parent element of the tag. In

both cases,t is the number of open tags preceding the tag, counting from the nearest

preceding word. The Word-Tag Region Coordinate of an element is a pair of word-tag

addresses of its start and end tags.

Let {[w.t], [w′.t ′]} denote the absolute word-tag coordinate ofn, and {[wi .ti],

[w′i.t
′
i]} denote the relative word-tag coordinate ofni , (i = 0, 1,. . ., k), in P. Since

the w component of the first relative word-tag address of a node equals to the total

number of words in the sibling nodes to the left of the node,w = ∑k
i=0wi . The equal-

ities w′ = ∑k−1
i=0 wi + w′k, t = tk, andt ′ = t ′k are deduced from the definition of relative

word-tag address.

Example 4 In Example 1, the absolute and relative word-tag addresses of the tag

<given> of the element<given>George</given> are [6.1] and [1.1], respectively.

Note that the properties described in Sections 3.3.3, 3.3.4, and 3.3.5 are applicable

not only to the byte version but also to the word-tag version of RRC.

3.3.3 RRC with Content Update Problem

In this part, we describe how the nodes, ARC and RRC of which are affected by an

update at a given node, are distributed in an XML tree.

Definition 2 For a leaf noden, the nodes, RRC of which have to be updated when an

update occurs atn, are called RRC-updated nodes ofn. The nodes, ARC of which have

to be updated when an update occurs atn, are called ARC-updated nodes ofn.

The following observation shows the distribution of the RRC-updated nodes of a

node.

Observation 1 Given a noden having the node pathP ≡ (n0, n1, n2,...,nk), the RRC-

updated nodes ofn are ni and the siblings to the right ofni (i = 0, 1,. . ., k). In terms of

XPath, the RRC-updated nodes are the ancestor-or-self nodes ofn and the siblings to

the right of these nodes, as depicted in Figure 3.2.

Let us illustrate Observation 1 using the byte version of RRC in the following

example.

33

root

updated

ARC and RRC-updated

ARC not RRC-updated

Figure 3.2. ARC and RRC-updated nodes distribution

Example 5 Using RRC, if the content of the elementemail is changed from “bran-

son@domain.com” to “bransonrichard@yahoo.com”, the RRCs of the only element

email and three elementsperson are changed.

3.3.4 Theoretical Evaluation of RRC

In this part, we evaluate the effectiveness of the RRC method over ARC in content

update. We use the number of updated nodes as an evaluation criterion.

The numbers of ARC- and RRC-updated nodes of a node in an XML tree depend

on the shape of the tree and on the position of the node within the tree. Therefore, it is

not realistic to evaluate the effectiveness of RRC over ARC in the general tree shape.

We choose a simplified context when the XML treeT is balanced, all the nodes of the

level j (j = 0, 1,. . ., k-1) have sj+1 child nodes, and the data in each leaf node ofT is

changed once.

Hereafter, letrUpd(n), rUpd(T), aUpd(n), andaUpd(T) denote the number of

RRC-updated nodes ofn, the total number of RRC-updated nodes of all leaf nodes

of T, the number of ARC-updated nodes ofn, and the total number of ARC-updated

nodes of all leaf nodes ofT, respectively.

34

We numerate the child nodes of each parent node from right to left starting at 1.

Given a leaf noden, since the node pathP for n is represented as (r , n1, n2,· · ·, nk =

n), the noden can be in correspondence with a sequence (1,i1, i2,· · ·, ik), wherei j is

the order ofn j (j = 1, 2,· · ·, k) among its siblings counting from right to left.

Proposition 1 rUpd(n) = ∑k
j=1 i j +1

Proof. Travel from the noden upward to the rootr alongP. From Observation 1,

among the siblings ofn j there arei j nodes, includingn j and the siblings to the right of

n j , that belong torUpd(n). 2

Proposition 2

rUpd(T) =
1
2

k

∏
j=1

sj(
k

∑
j=1

sj +k+2) (3.1)

Proof. From Proposition 1, the total number of RRC-updated nodes of all leaf nodes

of T is ∑Leaves set(∑k
j=1 i j + 1). We decompose the value into two components:A =

∑Leaves set1 = ∏k
j=1sj and B = ∑Leaves set∑k

j=1 i j . The sum B is a matrix havingk

rows, where every value ranging from 1 tosi appears in thei-th row totally∏i−1
j=1sj ×

∏k
j=i+1sj or ∏k

j=1sj /si times. Therefore, all of the elements corresponding to thei-th

row have a sub-sum equal to∏k
j 6=i sj(1+2+ ..+si) = 1

2 ∏k
j=1sj(si +1). Summing up

for i, we haveB = 1
2 ∏k

j=1sj(∑k
j=1sj +k) or A+B = 1

2 ∏k
j=1sj(∑k

j=1sj +k+2). 2

Now we will evaluateaUpd(T). For a given leaf noden, let Ord(n) denote the

order ofn in the sequence of leaf nodes starting from right to left in the set of all leaf

nodes. Since the coordinates are expressed by ARC, any length-update in a leaf node

will result in the update of coordinates in not only the parent node but also in all leaf

nodes following the node.

Observation 2 If n is a leaf node, thenaUpd(n) is equal to the sum ofaUpd(v) and

Ord(n), wherev is the parent node ofn.

Let Pj denote the value ofaUpd() of the tree constructed fromT by removing all

nodes having the node paths longer thanj. According to this notation, Pk is equal to

aUpd(T).

35

Proposition 3

aUpd(T) =
1
2

k

∏
j=1

sj(
k

∑
m=1

m

∏
j=1

sj +k+2) (3.2)

Proof. Each leaf node of Pk−1 is the parent node ofsk child leaf nodes ofPk. There are

∏k
j=1sj leaf nodes in the tree ofPk. From Observation 2,Pk can be computed as

Pk = skPk−1 + 1
2(∏k

j=1sj +1)∏k
j=1sj

Recursively apply the formula for Pk−1 and so on:

Pk = sksk−1Pk−2 +sk
1
2(∏k−1

j=1 sj +1)∏k−1
j=1 sj

+ 1
2(∏k

j=1sj +1)∏k
j=1sj

Pk = sksk−1Pk−2 + 1
2(∏k−1

j=1 sj +1)∏k
j=1sj

+ 1
2(∏k

j=1sj +1)∏k
j=1sj

...

Pk = ∏k
j=1sjP0 + 1

2 ∏k
j=1sj(∏k

j=1sj +∏k−1
j=1 sj + ...+s1 +k)

SinceP0 = 1 andaUpd(T) = Pk, the proposition holds. 2

From Equations (3.1) and (3.2), the update node reduction ratio of RRC to ARC is

equal to:
∑k

m=1∏m
j=1sj +k+2

∑k
j=1sj +k+2

In practice, this ratio is greater than one whenk and most of si are equal to or

greater than two. Figure 3.3 depicts the increasing trend of the ratio in the exponential

scale.

3.3.5 The ARC-RRC Hybrid Technique

ARC and RRC can be used in hybrid mode. Given an XML tree, we select a set of

representativenodes, denoted byr-node, as illustrated in Figure 3.4(a). In the hybrid

mode, the RRC of a node is computed in the region of the node’s lowest ancestor r-

node, instead of the parent node. The hybrid technique reduces the scope of the content

update as RRC does. Moreover, the computation of the ARC of a node involves only

the r-nodes, bypassing other intermediate nodes, in its node path. For example, in

Figure 3.4(b), the computation of the ARC ofn involvesr1 andr2, the only r-nodes in

the node path from the rootr for n.

36

1

100

10 ,0 00

1,0 00 ,0 00

100 ,0 00 ,0 00

1 2 3 4 5 6

fa n-o ut

k=2 k=4

k=6 k=8

k=10 k=12

`

Figure 3.3. Update node reduction ratio of RRC to ARC

The set of r-nodes can be adjusted as following: “If the query frequency is high or

the update frequency is low, then ARC should applied. The r-node of this part should

bepromotedto be a node near to the root of the XML tree. Otherwise, the r-node of

this part should bedemoted.”

3.4 Applications of RRC

The theoretical evaluation of the effectiveness of RRC presented in Section 3.3.4 does

not depend on any specific implementation. This theoretical result shows the superi-

ority of RRC over ARC as a general tendency. However, for the following reasons,

this result by itself is not sufficient to demonstrate the usefulness of RRC in real XML

database systems:

• The result in Section 3.3.4 is based on a completely balanced XML tree.

• Many aspects affect the performance in real XML database systems.

Also, we need to verify that query processing time is not sacrificed for the sake of

efficient update processing. Therefore, it is necessary to implement the concept of

37

15

28

5

25 26 27

23

24

2213

8

20

18

2

6 7 9 10

12 14

17

21

1

16

19

11

4

3

(a) representative nodes (b) RRC dependence

r

r1

r2

n

Figure 3.4. Hybrid technique and its advantage

RRC in real XML database systems and to evaluate the performance of query and

update processing using practical XML data.

There are several possible approaches to the implementation of RRC in XML stor-

age or indexing. A fundamental approach is developing a native XML index structure

based on RRC. In [9], we developed a tree index structure in which XML nodes, up-

dated together at high probability, are clustered together. However, performance was

not evaluated in [9]. Another important approach is storing a string representation of

the XML document and then representing the position of XML nodes by the RRC val-

ues. In principle, the idea of RRC is applicable to any method employing ARC. The

focus of the rest of the chapter is to demonstrate the usefulness of RRC in the latter

approach.

38

3.5 Tree Structural Coding and Query Processing Frame-

work for RRC

3.5.1 Tree Structural Coding

RRC shows the position of an element in the region of its parent node, not in the entire

XML document. To identify the elements in an XML document, besides RRC we

need additional information about the structure of the XML tree, calledtree structural

coding. The coding is also used to compute ARC from RRC, hence it is desirable that

coding have a small size.

There are simple tree codings such as theAncestor-Listingand Parent-Listing.

However, these codings cannot present ordered trees. In this research, we adopt the

orders of the start and end tagscoding, which assigns a pair of numbers [pre , post]

to every XML element wherepre andpost satisfy theregion containmentcondition:

if a nodep is the parent node of the nodeq thenpre p < pre q ≤ post q < post p. We

also consider variants of the coding as follows:

1. Sparse node enumeration: The nodes are enumerated in preorder and postorder

traversals in an XML tree. However, the enumerations are generated in the sparse

mode, hence the coding is robust in the structural change to the XML document,

e.g. a node insertion.

2. Preorder and rightmost leaf: In an XML tree, if the nodes are enumerated in

preorder, therighmostleaf of a nodep is a leaf node, i) which isp itself or a

descendant ofp; and ii) which has the largest preorder identifier among the leaf

nodes satisfying the condition i). For a given nodep, let pre p be the preorder

of p, and letpost p be the preorder of the rightmost leaf ofp. Then, for a child

nodeq of p, the inequalitiespre p < pre q ≤ post q ≤ post p holds.

To make the coding convenient to determine the hierarchical level, we extend it

by adding thenode levelinformation, i.e. [pre , post , nlevel]. The introduction of

structure coding enables the computation of ARC from RRC.

39

3.5.2 Query Processing Framework with RRC

Query processing with RRC has three steps, as shown in Figure 3.5(a). The structure

of the program code is illustrated in Figure 3.5(b). First, element IDs qualifying the

query condition is determined. Then, their ARCs are computed from RRC values.

Finally, the result data is retrieved from the text representation of the XML document

using the ARC values.

querying
compute the

address of data
data retrieval

using RRC

Sub-statement for data retrieval

Sub-statement for data address computation

…
Sub-statement for evaluating query

Sub-statement for evaluating query element ID

element ID

data address

(b) Structure of program code

(a) Query processing steps

Figure 3.5. The query processing framework

Querying on structure with XML queries is performed using the tree structure cod-

ing without the involvement of the element coordinates.

3.6 An Adaptation Approach: Storing XML Data with

RRC using an RDBMS

There have been many methods for storing XML data proposed so far[3]. Although the

idea of RRC is generally applicable to any XML database system that employs ARC,

40

it is not feasible to implement RRC on every such database systems to verify the ef-

fectiveness of RRC. One of the important approaches to exploiting the RRC technique

is to integrate RRC in XML databases using an RDBMS. In this section, we describe

how RRC can be incorporated into XRel[26], an XML database system built on top of

RDBMSs. We have chosen XRel as a testbed because the system was developed by the

authors’ group, hence it is easy to modify the source code and implement the concept

of RRC.

3.6.1 The Basic Scheme

In XRel, a relation is created for each node typeElement , Attribute , andText .

Each instance of a node is stored by a tuple in the corresponding relation. The fourth

relation stores the list of enumerated path expressions. A path expression in this re-

lation is a concatenation of element names in a path from the root node to a node in

an XML tree. The fifth relation stores entire XML documents using LOB, the Large

Object type of the database attribute. The schemas for these relations are as follows.

ELEMENT (did, pid, start, end, ind, reind)

ATTRIBUTE (did, pid, start, end, avalue)

TEXT (did, pid, start, end, tvalue)

PATH (pid, pathexp)

DOCUMENT (did, dvalue)

where the database attributesdid , pid , start , end , ind , reind , avalue , tvalue ,

pathexp , anddvalue represent a document identifier, a path expression identifier,

the start and end positions of a region, the occurrence order of an element among

its siblings and that in reverse order, an attribute string value, a text value, a path

expression, and the content of a document, respectively.

3.6.2 RRC-supported Scheme

To apply RRC, the basic scheme is transformed as follows: (1) each element, attribute

and text node is stored with itspre and post from the tree structural coding, (2)

the ARCstart andend are removed from the relationsELEMENT, ATTRIBUTE and

TEXT, and (3) a new relationSTRURRC stores RRC,pre , post , andnlevel of all

41

element, attribute and text nodes. The new RRC-supported relational scheme, denoted

by RSS, is the following:

ELEMENT (did, pid, pre, post, ind, reind)

ATTRIBUTE (did, pid, pre, post, avalue)

TEXT (did, pid, pre, post, tvalue)

PATH (pid, pathexp)

DOCUMENT (did, dvalue)

STRURRC (did, pre, post, sr, er, nlevel)

where the database attributespre , post , andnlevel are the components of the tree

structural coding described in Section 3.5.1 andsr ander are components of RRC.

Other attributes are the same as those in the basic scheme.

3.6.3 SQL Statements for RSS

In RSS, the SQL statements have to be transformed to incorporate the RRC values.

The query processing has three steps, as shown in Figure 3.5(a), and SQL statements

of RSS have a three-loop structure in correspondence to the steps in Figure 3.5(b).

In XRel, the ARC valuesstart andend are used to determine the hierarchical

order of nodes and to address the nodes. In the RSS scheme, the hierarchical order is

established by the tree structural coding while RRC is only used to compute the address

of data. We replace the parts of the SQL statement on structure that are expressed using

ARC in XRel by rewriting them based on the tree structural coding. The replacement

results in a new SQL statement that is equivalent to the original one of XRel in terms

of the query output. We summarize the main transformation steps for XPath axes as

follows. Note that the list below covers all major XPath axes.

• ancestor -descendant : In XRel, the relationship is guaranteed by the condi-

tion “a.start < b.start AND a.end > b.end ”. In RSS, the correspond-

ing condition is “a.pre < b.pre AND b.post < a.post ”.

Forancestor-or-self anddescendant-or-self axes, the inequality< in

the above condition is replaced by≤.

• parent-child : This can be determined fromancestor -descendant rela-

tionship andnlevel . Thenlevel of the parent element is equal to thenlevel

42

of the child element minus one.

• following-preceding : In XRel, the relationship is guaranteed by the condi-

tion “a.start < b.start AND a.end < b.end ”. In RSS, the correspond-

ing condition is “a.pre < b.pre AND a.post < b.post ”.

• sibling : Two nodes in a tree are siblings if they have the same parent node.

Thepreceding andfollowing orders of the siblings, i.e.preceding-sibling

and following-sibling axes, are determined based on theirpre andpost

values.

In the new scheme we separated the data used for querying on structure (using the

structural presentation) and the data used for the content retrieval. The ARC of a node

is computed based on the RRC of all of its ancestor-or-self nodes. In SQL, the ARC of

an element identified by [vPre, vPost] is computed based on the tableSTRURRC such

as:

SELECT sum(p.sr), sum(p.sr) + min(p.er-p.sr)

FROM ppl p

WHERE p.pre <= vPre AND vPost <= p.post

The tableSTRURRC is used every time the actual address of data is computed.

3.7 Experiment

In this section, we present the results of our experiment to evaluate the effect of RRC

on query processing and content update for XML data.

3.7.1 Experimental Platform

The experiments were conducted on a workstation running Windows XP Professional

with two 2-GHz CPUs, 2 GB of RAM, and a hard disk. The parser for XML data is

the DOM/SAX parsers available from the Xerces project [4]. Other programs were

written in Java. We used several modules borrowed from [26] to transform the XML

data into a relational database.

43

Parameter Value

Size of data 5700KB

Number of elements 83533

Number of attributes 19249

Text size 3935KB

Table 3.1. Specification of data set

did pre post sr er nlevel

1 40 5873330 40 5873338 0

1 45 2909100 8 2909066 1

1 50 98350 11 98309 2

1 60 1720 10 1661 3

1 80 120 19 52 4

1 120 140 55 76 4

1 140 180 79 113 4

Table 3.2. Instance of the STRURRC table

To create the data set for our experiments, we used the freeware provided by

XMark[2] to generate a synthetic XML document based on the DTD “auction.dtd”.

The specification of the data set is shown in Table 3.1. A portion of an instance of the

tableSTRURRC is shown in Table 3.2.

3.7.2 Queries of ARC and RRC

The goal of this experiment is to compare the time for query processing of the basic

scheme of XRel and the new RSS scheme. We utilize a sample query set shown in

Table 3.3, which contains various kinds of queries: a simple path expression, a long

path expression, a path expression with one ancestor-descendant relationship (one ’//’),

a path expression with one ancestor-descendant relationship and one parent-child re-

lationship (one ’//’ and one ’/’), and a path expression with two ancestor-descendant

44

relationship (two ’//’) with text matching. To avoid the effect of buffering, we run each

test several times and compute the average of results as the time for the test. The SQL

statements of the queries are written using the structure depicted in Figure 3.5(a)(b).

As an example, the SQL statement for Query 1 is shown in Figure 3.6.

Queries XPath expressions

Q1 /site/regions

Q2 /site/categories/category/description/parlist/

listitem/text

Q3 //edge

Q4 //person/profile[education = ‘Graduate School’]

Q5 //people//person[creditcard = ‘5400 1632 3033 7747’]

Table 3.3. Test query set for RRC on XRel

The result of this test is shown in Table 3.4, where the columnsQueries, XRel, RSS,

RSS/20, Output represent the query index, the query times for the query in XRel, in

RSS, in RSS if the number of output elements is limited by 20, and the actual number

of output elements, respectively.

Queries XRel RSS RSS/20 Output

Q1 1305 1150 - 1

Q2 578 875 820 32

Q3 3001 3563 1406 50

Q4 10019 10082 5019 85

Q5 19804 6445 - 1

Table 3.4. Query time in XRel and RSS inmsec

Figure 3.7 shows the graphical comparison of query processing time in XRel and

RSS. From Figure 3.7, we can observe that the query processing time in RSS is compa-

rable with that in XRel. It is worth noting that RSS performs better than XRel for pro-

45

SELECT substr(d.dvalue, c.x, c.y-1)

FROM document d,

(SELECT sum(p.sr) AS x, min(p.er-p.sr) AS y, p.did

FROM (SELECT p1.sr, p1.er, p1.did, p2.pre

FROM ppl p1,

(SELECT e0.did, e0.pre, e0.post

FROM element e0, path p0

WHERE p0.pathexp LIKE ’#/site#/regions’

AND e0.pid = p0.pid) p2

WHERE p1.pre <= p2.pre AND p2.post <= p1.post

AND p1.did = p2.did) p

GROUP BY p.did, p.pre) c

WHERE d.did = c.did

Figure 3.6. SQL statement of Query 1 for RRC on XRel

cessing some queries. A part of the extra time is paid for the interconnection between

Java and RDBMS and to compute the actual address of data. The query processing in

RSS can be done either entirely in one-statement-SQL mode or in an interactive-SQL-

Java mode. In the latter mode, we first find the identifiers of the result data and the

documents that contain the data, then use the tableSTRURRC to compute the actual

address of the data, and finally load the data from the documents.

We also consider variants of the implementation:

Pre-compute ARC. If we can anticipate a heavy query load, the large cardinalities

of query results, and the areas in the XML documents where the results will be

located, then the ARC value can be computed from the RRC in advance.

Threshold for the number of output. We set a threshold for the cardinality of the

output. For example, in processing the query Q3, if the threshold is set to be 20,

then the query time is only 1406. The setting can be applied when the users seek

only the most relevant output of queries, not for listing purposes.

46

0.00

1.00

2.00

3.00

4.00

Query 1 Query 2 Query 3 Query 4 Query 5

RSS/XRel

Figure 3.7. Ratio of query times of RSS to XRel

0.00

0.20

0.40

0.60

0.80

1.00

start middle end

RSS / XRel

Figure 3.8. Ratio of update times of RSS and XRel

47

3.7.3 Update of RRC and ARC

We performed several simple content updates using ARC and RSS configurations.

Specifically, we selected a sample set of three nodes and performed a content update

in these nodes. The test nodes are distributed in different parts of the XML data: at

the beginning, the middle and the end of the data file. Each content update operation

is stated as follows: “Change the content of a text node identified by [pre, post] from

string1 to string2, wherel = len(string2) - len(string1), in the document having the

identifier equal todid”.

In XRel and RSS, the content update operation consists of the following steps

(grouped by the tables accessed):

In both schemes: 1) update thedvalue column of the corresponding tuple in the

tableDOCUMENT

In XRel only: 2) updatepre andpost in ELEMENT, 3) updatetvalue , pre , and

post in TEXT, and 4) updatepre , post in ATTRIBUTE

In RSS only: 3.1) updatetvalue in TEXT, and 5) updatesr ander in STRURRC

The results of this test are illustrated in Figure 3.8. The update time in RSS is

5 to 10 times faster than in XRel. Despite the dependence on the internal system

architecture and the data structure, the RRC application still provides efficiency in

content update processing. It is worth noting that the total of the data loading times

for the database in both schemes is much longer than the update time. Therefore,

the possibility of a simple and naive approach for updating that performs total data

reconstruction is eliminated.

3.8 Summary of Chapter 3

In this chapter, we investigated the problem of how to maintain the coordinate integrity

for XML data in the content update. This function is important in XML information

systems, where data is changed frequently. We found that expressing the location of

XML elements by the absolute region coordinates causes a heavy workload for the re-

construction of index files when a content update occurs. We proposed a new method,

48

called Relative Region Coordinate, that deals effectively with this problem. In our

method, the coordinate of an XML element is expressed based on the region of its par-

ent element or an appropriately selected ancestor element. Consequently, if an update

occurs, the workload for recomputation of the coordinates is reduced. We demon-

strated a procedure to integrate the Relative Region Coordinate technique into XML

systems to enhance their robustness in content update through a case-study with XRel.

The experimental result showed that the Relative Region Coordinate technique can sig-

nificantly improve the content update performance of the target system. This technique

is applicable to any XML systems that employ the character string representation for

XML data.

49

Chapter 4

A Structural Numbering Scheme for

Processing Queries by Structure and

Keyword on XML Data

4.1 Introduction

In Chapter 3, we presented a technique for making XML indexing techniques more

robust on the content update problem of XML data. In this chapter we are going to

investigate another problem that is related to the hierarchical feature of XML data and

its structural update.

The main components of an XML document are elements, which can have extra in-

formation attached to them called attributes. XML elements may have various lengths

and locate in a hierarchy that is the structure of the XML document. The structure of

an XML document may change when elements are inserted or deleted. Therefore, a

presentation of the structure of XML documents is essential for processing the queries

on these documents. A number of studies have discussed the methods to present the

structure of XML data in a concise manner. An effective presentation must be compact

such that it requires small amount of I/O and CPU workload to be manipulated.

In addition, in order to distinguish an XML element or attribute from others, unique

identifiers are assigned to them as the key used in the relational data model. Generating

identifiers for the XML elements and attributes is a common but crucial task in XML

applications. The method of generating identifiers normally determines the structure

51

of indexes as well as the query processing mechanism.

A number of numbering schemes for XML data have been proposed in previous

stuties [52][31][34][20] that meet two above requirements: generating the identifiers

of XML elements and expressing the structural information. Normally, a numbering

scheme assigns identifiers to elements such that the hierarchical orders of the elements

can be re-established based on their identifiers. Since hierarchical orders are used

extensively in processing XML queries, the reduction of the computing workload for

the hierarchy re-establishment is desirable.

4.1.1 Contribution

In this chapter, we present a novel numbering scheme called therecursive UID(rUID)

[10][11] that is an extended version of the UID technique [52]. The basic idea ofrUID,

which is represented in Section 4.2 through 2-level UID and its general version, is that

the nodes of an XML tree are enumerated in a number of levels. In each level, the

nodes are clustered and represented by a combination of an area number and the node

number inside the area. The main features of therUID technique are:

1. Parent-child relationship determination:given the identifier of a node, the par-

ent node’s identifier can be efficiently computed. Using small-size global infor-

mation stored in main memory,rUID technique allows the ancestor-descendant

relationship to be determined without any I/O.

2. Robustness for structural change:the scope of element identifier amendment

when a structural update occurs is effectively reduced.

3. Scalability: rUID can overcome the identifier limitation of the original UID

technique and can be applied to large XML documents.

rUID is efficient in representing the main axes of XPath expressions. In Section

4.3, we describe an implementation ofrUID in SKEYRUS (Structure andKEYword

search based onRecursiveU id System), which integrates structure and keyword searches

on XML data. The input of SKEYRUS is a simplified XPath expression with word-

containment predicates. We have developed a structural join mechanism forrUID to

process structural part of XPath expressions. Structural joins select the pairs of XML

52

elements or attributes from the candidate sets such that a given hierarchical order holds.

The experimental results presented in Section 4.4 using datasets of various sizes have

shown the effectiveness of SKEYRUS in processing the queries on both XML structure

and keywords.

This research’s result can be applied in the applications categorized into theNative

XML Databasesand Content Management Systemsgroups, as discussed in Section

2.3.1, page 23 of this thesis.

4.1.2 Related work

Due to the hierarchical structure of XML data, structural joins for determining the

ancestor-descendant relationship is essential. The approach to determine the relation-

ship usingpreorder and postorderhas been introduced in [30]. Extensions of the

method by using thepreorderand rangeor positionanddepthhave been presented

in [31][37][8]. The issue of minimizing the size of the node labeling for a tree has

been addressed in [34][20]. The prefix-based interval labeling for general trees has

been introduced in [34], whereas the prefix-base bit string labeling suitable to XML

documents has been presented in [20]. The proposed labeling techniques support the

ancestor-descendant relationship determination.

Although independently developed, it is interesting that our approach, which has

been originally introduced in [10] and [11], to assign identifiers to nodes in levels is

similar to the approach adopted in [34]. The space-efficiency is not the primary goal of

the design ofrUID. However, our solution supports not only the ancestor-descendant

but also the parent-child relationship that is essential in XML queries. In addition,

the ability to compute the identifiers of the parent and ancestor nodes of a child node

accelerates processing the structural joins. It is not clear which join mechanisms are

suitable for the proposals in [34] and [20]. The manipulation of our numbering scheme

can be done by simple arithmetic operations supported by all of RDBMSs.

Our proposal is spirited by the UID technique, another type of numbering scheme,

applications of which have been described in [52][18][14]. The technique enumerates

nodes of an XML tree using ak-ary tree wherek is the maximal fan-out of the nodes.

Each of internal nodes supposedly has the same fan-outk by assigning a number of

virtual children if needed. Consecutive integers starting from 1 are assigned to the

nodes, including the virtual nodes, in order from top to bottom and from left to right

53

in each level. In Figure 4.1(a),k is equal to 3, the root node is enumerated as 1 and

the nodes 4, 10, 11, 12, and 13 are virtual nodes. Whereas other numbering schemes

only manages to compare two already known identifiers to determine the parent-child

relationship, the UID has an interesting property whereby the parent node identifier

can be computed using the formula:

parent(i) = b(i−2)/k+1c (4.1)

wherei is the identifier of the child node.

However, in the previous studies related to the UID technique, the problems of

structural update and the capacity of the numbering scheme have not been discussed.

When a new node is inserted, the identifiers of all sibling nodes to the right of the

inserted node are increased by one. In addition, the identifiers of the descendant nodes

of the moved sibling nodes also will be changed. If the number of children nodes

of a node becomes larger than the pre-defined valuek, then there is no space for a

new child node. The modification ofk results in an overhaul of the identifier system

in which the identifiers of all nodes are to be recomputed. For example, if a node is

inserted between nodes 2 and 3 in Figure 4.1(a), then the previous nodes 3, 8, 9, 23,

26 and 27 are re-numerated to be the nodes 4, 11, 12, 32, 35, and 36, respectively, as

shown in Figure 4.1(b). If another node is inserted behind the node 4 in Figure 4.1(b),

then the entire tree must be re-numerated.

In addition, the original UID enumerates not only the real nodes but also the vir-

tual nodes of a tree. For an XML tree with the maximal fanoutm and the depthd, the

required number of identifiers areO(md). Therefore, in practice, additional purpose-

specific libraries are required to deal with the identifiers that exceed the maximal in-

teger value. As illustrated in Section 4.4, the original UID technique even fails to

numerate entirely a sample unbalanced XML document of 7.6KB.

The issues of integrating keyword search into XML query processing was ad-

dressed in [13], where the evaluation of structural part of a query is performed by

joining tables, into which XML data is decomposed. In our approach, we use our

numbering scheme to do the evaluation task.

54

1

2

5 7

(a) before insertion

6

3

8 109

4

11 1312

(b) after insertion

23 272617 18

1

2

5 76

4

11 12

32 363517 18

3

Figure 4.1. Original UID before and after a node insertion.

4.2 Recursive UID

In this section, we describe the recursive UID numbering scheme using the notation of

XML tree. An XML document can be expressed by an ordered tree. For example, Doc-

ument Object Model [46] presents an XML document as a hierarchy of Node objects

of different node types. For the purpose of the study, we only consider the element and

attribute nodes. TherUID technique has been designed to generate identifiers for the

nodes of such ordered XML trees. Hereafter, the terminologies ‘element’ and ‘element

node’, ‘ attribute’ and ‘attribute node’, are used interchangeably.

The basic idea ofrUID is that rUID clusters the nodes of an XML tree into con-

nected subgraphs, and represents the nodes by a combination of an area number and

node number inside the area, thereby it overcomes the drawback of the original UID

technique. If the size of a subgraph is still too large, this technique can be applied

recursively; i.e. an area can be further decomposed into subareas. We call therUID

technique recursively appliedn times,n-level rUID.

In the rest of this section, we first introduce 2-levelrUID, then present more general

n-level rUID. Finally, we present features of therUID technique.

55

4.2.1 Description of 2-levelrUID

The 2-levelrUID assigns the identifiers to the nodes of an XML tree in two levels.

Firstly, the nodes of the XML tree are partitioned into areas calledUID-local area.

Next, the newly created areas are enumerated by theglobal indexes. Finally, the nodes

of each area are enumerated by thelocal indexes.

We first present a definition offrame nodesbefore presenting a formal definition of

UID-local areas. Frame nodes are a collection ofrepresentativenodes, each of which

represents the nodes in an UID-local area. In other words, frame nodes play a role for

bounding UID-local areas.

Definition 3 (frame nodes) Given an XML treeT rooted atr , a set of frame nodes

NF of T is a subset of the nodes ofT such thatr ∈ NF .

For example, in Figure 4.2(a),{a, b, c, d, e, f} is a set of frame nodes of the entire

tree.

Next we give a formal definition of UID-local area. A connected subgraph of a

tree can be regarded as a smaller tree. We will use terminologies of trees (such as root,

internal node and leaf) also for a connected subgraph of a tree.

Definition 4 (UID-local area) LetT be an XML tree. Also, letNF be a set of frame

nodes ofT . The UID-local areaLn of n (∈ NF) is a connected subgraph ofT such

that:

1. n is the root ofLn;

2. the internal nodes ofLn other thann are not members ofNF ; and

3. the leaves ofLn are leaf nodes ofT or members ofNF .

Proposition 4 For a set of frame nodesNF of T , and a noden (∈NF), the UID-local

area ofn is uniquely obtained.

The tree in Figure 4.2(b) is a UID-local area ofc of the tree in Figure 4.2(a). It is

easy to see that an XML tree is covered by UID-local areas such that two areas have at

most one common frame node.

Next, we defineframewhich is a tree consisting of frame nodes. A frame is used

to numerate UID-local areas.

56

a

b c d e

f
a

b c d e

f

c

f

(a)
(c)

(b)

Figure 4.2. Frame and UID-local area.

Definition 5 (A frame) Given an XML treeT rooted atr and a set of frame nodes

NF , a frameF is a tree such that: (1) the root node isr , (2) the node set ofF is NF ;

and (3) for any two nodesu andv in F , an edge (u, v) exists inF iff no frame node

(other thanu andv) appears in the path (u, v) in T .

For example, the tree shown in Figure 4.2(c) with the nodesa, b, c, d, e, andf is

a frame of the tree in Figure 4.2(a). There exists no edge connecting the nodea andf

because the nodec, which belongs toF , lies betweena andf in T .

Let κ denote the maximal fan-out of nodes in a frameF . We use aκ-ary tree to

enumerate the nodes ofF and let the number assigned to each node inF be the index

of the UID-local area rooted at the node. The 2-level UID based onF is defined as

follows:

Definition 6 (2-levelrUID) The 2-levelrUID of a noden is a triple<g, l , r>, where

g, l , andr are called the global index, local index, and root indicator, respectively. If

n is a non-root node of an UID-local area, theng is the index of the UID-local area

containingn, l is the index ofn inside the area, andr is f alse. If n is the root node

57

of an UID-local area, theng is the index of the area,l is the index ofn as a leaf node

in the upper UID-local area, andr is true. The identifier of the root of the main XML

tree is<1, 1,true>.

Theglobal parameters, which are loaded into the main memory during query pro-

cessing, consists ofκ and the tableK , each row of which corresponds to an UID-local

area and contains theglobal indexof the area, thelocal indexof the root of the area in

the upper area, and the maximalfan-outof nodes in the area.

Note that 2-levelrUID is a clean, but not straightforward generalization of the

original UID technique. The key technique of 2-levelrUID is the introduction of the

enumeration of root nodes of a UID-local area. By using frames and UID-local areas,

rUID reduces the number of virtual child nodes since subtrees are enumerated by the

local fan-outs.

58

Algorithm 1: Computation of 2-level rUID

Input: An XML tree T

Output: The 2-levelrUID identifiers of nodes inT

// Global enumeration

1. Partition T into UID-local areas

and build the frame F upon the roots

2. Find the maximal fan-out κ of F

3. Compute the global index gi of F

// Local enumerations

4. foreach ith UID-local area

5. find the local maximal fan-out denoted by ki

6. compute the local indices l i j
of nodes in the area via a ki-ary tree

7. if l i j = 1 then

8. recompute l i j in the upper UID-local area

9. r i j := true

10. update K using (gi , l i j , ki)

11. else r i j := f alse endif

12. Generate rUID of the nodes from (gi , l i j , r i j)

13. end

e. Save κ and K

59

1

2 3 4 5

7 10 11 14 15 18 196 20

26 27 42 4443 74 75

678 682

170 171

(2,2,t) (3,3,t) (4,4,t) (5,5,t)

(2,2,f) (2,3,f)

(3,2,f)

(1,1,t)

(2,6,f) (2,7,f)
(3,8,f) (10,9,t) (3,10,f)

(10,2,f)
(10,3,f)

(10,4,f) (10,6,f)

(3,3,f)
(4,2,f) (4,3,f)

(5,3,f)
(5,2,f) (5,4,f)

(5,8,f) (5,9,f)

Figure 4.3. Original UID and its 2-levelrUID counterpart.

The numbering forrUIDs depends on the selected frame. TherUID of a node in

an XML tree is determined uniquely if the frame is fixed. The computation of 2-level

rUID is briefly described in Algorithm 1. In the step 1 of the algorithm, an area can

become an UID-local area if the number of nodes, including the virtual ones, in the

area does not exceed a high threshold. In the frame construction, there is a trade-off

between the robustness in structural update and the efficiency in processing structural

joins. The small size of the UID-local areas will narrow the scope of the identifier

change when a new node is inserted. However, since the XML tree is divided into

small areas, the size of the tableK , which is proportional to the the number of such

areas, is larger. In the experiments presented in Section 4.4, the high threshold of the

size of an UID-local area is the maximal value of an integer.

Example 6 Figure 4.3 depicts the original UID, shown inside each node, and the 2-

level rUID, as the triple shown next to each node, of a tree. The frame consists of 6

nodes 1, 2, 3, 4, 5, and 43 encircled by bold circles. The UID-local area rooted at the

node 3 has the nodes 3, 10, 11, 42, 43, and 44. The global fan-outκ is 4 and the table

K is shown in Figure 4.1.

60

Global index Local index Local fan-out

1 1 4

2 2 2

3 3 3

4 4 2

5 5 3

10 9 2

Table 4.1. The tableK for the 2-levelrUID in Figure 4.3.

For some UID-local areas, the local maximal fan-outs are equal to the maximum

fan-out of the original XML tree. However, in contrast to the UID method where the

identifiers of nodes increase exponentially to the depth of the XML tree, usingrUID,

we can restrict the depth of such local areas.

4.2.2 Parent-Child Relationship in 2-levelrUID

Formula (4.1) is used to check if a node is the parent node of another node by their

UIDs. To determine the parent’s 2-levelrUID of a node, we need a more sophisticated

function shown in Algorithm 2. Suppose that an XML treeT , a noden in T , and

the parent nodep of n are given. Ifn is the root of an UID-local area, then the global

index ofp is computed from the global indices ofn using the formula (4.1). Otherwise,

the global indices ofn andp are equal (steps 1-4). Knowing the UID-local area that

p belongs to, the maximal fan-out of the area can be found from the tableK (step

5). Initially, the local index ofp is computed from the local index ofn (step 6). If

the result is equal to 1, then the nodep is the root of the UID-local area containing

n and the local index ofp, which shows the order of the node in the upper area, can

be obtained from the tableK (steps 7-9). Otherwise,p is not an UID-local root node

(step 10). We illustrate this algorithm through Example 7.

61

Algorithm 2: rUID computation of the parent node

Input: T , κ andK , and therUID (gi , l i , r i) of a node

Output: The 2-levelrUID (g, l , r) of the parent node

1. if (gi == 1 && l i == 1) then return null

2. if (r i == true) then

3. g := max(b(gi−2)/κ +1c, 1)

4. else g := gi endif

5. get the fan-out k j from the row with

the global index g in K

6. l := b(l i−2)/k j +1c
7. if (l == 1) then

8. set l equal to the local index

of the row with the global index g in K

9. r := true

10. else r := f alse endif

e. return (g, l , r)

Example 7 Suppose thatκ equals 4 and the tableK is given in Table 4.1. Letn and

p denote a node and its parent node, respectively. We consider several possibilities of

then:

• n is the non-root node (2, 7,f alse): From the second line ofK , the local fan-out

of the UID-local area containingn is found to be two. The local index ofp is

equal tob(7−2)/2+1c, or 3. Hence,p is (2, 3, f alse).

• n is the root node (10, 9,true): The identifier of the upper UID-local area con-

taining p is equal tob(10− 2)/4+ 1c, or 3. From the third line ofK , the

local fan-out of the UID-local area is found to be three. The local index ofp is

b(9−2)/3+1c, or 3, greater than one, hencep is (3, 3, f alse).

Note that if the valueκ together with the tableK are loaded into the main memory,

then Algorithm 2 can be performed completely inside the main memory without any

disk I/O.

62

4.2.3 Description ofn-level rUID

Then-level rUID is the generalized concept of the 2-levelrUID. The idea is that the

frame in the 2-levelrUID is to be considered as an “original tree”, and a new frame

of this tree will be constructed in order to establish the 3-levelrUID, and so on. The

n-level rUID is useful when the size of the frame is large. Let us referT and the

frames recursively built one upon the other as the data levels. We enumerate the levels

such that the originalT is the level one, its frame is the level two, and so on.

Definition 7 (n-level rUID) Given an XML treeT , the m-levelrUID of a noden in

T is defined as< g,(lm−1, rm−1), · · · ,(l2, r2),(l1, r1) > where:

• for j = 1 · · ·m-1: l j is the local index andr j is the root indicator ofn in its UID-

local area identified by< g,(lm−1, rm−1), · · · ,(l j+1, r j+1) > in the level j+1.

• g is the original UID in the level m.

Theg, l i , andr i (i=1· · ·m-1) are similar to the first, second, and third components of

2-levelrUID.

The global parameters of then-level rUID is comprised of the global parameters

of all levels.

63

Level 4

n <8, a, t>

Level 3

Level 1&2

n <2,(4, f),(a, t)>

m

Figure 4.4.n-level rUID architecture.

64

Example 8 In Figure 4.4, each polygon denotes an UID-local area. Suppose using

2-level rUID the noden has the identifier<8, (a, true)>, where the boolean value

true indicates thatn is the root of an UID-local area, 8 is the global index ofn in the

second level’s frame, and the integer numbera is the index ofn in the UID-local area

rooted atm of the same frame. In 3-levelrUID, the index 8 is decomposed into (2, 4,

f alse) and the 3-levelrUID of n is <2,(4, f alse),(a, true)>.

Construction of n-level rUID: For a large XML tree, the UID levels are constructed

consecutively, each created on the top of the previous level. First, the 2-levelrUID

of the form <x1,(l1, r1)> is constructed. If needed, the 3-levelrUID of the form

<x2,(l2, r2),(l1, r1)> is constructed, and so on. The process stops when the top level

becomes small enough. In practice, encoding a large XML tree requires only a few

levels.

4.2.4 Properties ofn-level rUID

Then-level rUID has several properties, which are crucial for a numbering scheme to

be applicable to the management of a large amount of XML data.

Scalability

Theoretically, the proposedrUID can present the identifiers of nodes for any tree since

this technique can be applied recursively. In our experiments in Section 4.4, it is suffi-

cient to use 2-levelrUID to enumerate the XML data sets.

Robustness in Structural Update

In rUID, the scope of identifier update resulted from a node insertion is reduced in

comparison with UID. If a node is inserted, at first only the nodes in the UID-local

area where the update occurs need to be considered. If a free space is available for the

new node, then among the descendants of the sibling nodes to the right of the inserted

node, only those which belong to the same UID-local area will have their identifiers

modified. The nodes in the descendant areas are not affected because the frameF

is unchanged. Otherwise, if such a space does not exist then the fan-out of the tree

used in enumerating the UID-local area must be enlarged. Rather than modifying the

65

identifiers of every XML component, the enlargement changes only the identifiers of

the nodes in this area. In both cases, since the size of an UID-local area is much

smaller than the size of the entire data set tree, the scope of the identifier update is

greatly reduced.

Structural Relationship Determination

TherUID preserves an important property of the original UID whereby given the iden-

tifier of a node the parent node’s identifier can be computed entirely in the main mem-

ory without any I/O. Therefore, the ancestor and parent axes of a given node can be

constructed. Note that the construction is available only with the numbering schemes

that enable the computation of the identifier of the parent node of a node. This property

facilitates the evaluation of the structural joins in XML queries and is also useful for

the fast reconstruction of a portion of an XML document from a set of elements.

4.3 SKEYRUS - a System of 2-levelrUID

There are many possible approaches to implementing the idea ofrUID. In this sec-

tion, we present a prototype system named SKEYRUS that appliesrUID to extend the

search operation by keywords on XML data, a common request to Web applications,

by integrating the hierarchical order of the data items. The features of our implementa-

tion are the simplicity and the efficiency. All modules of the systems are built in Java,

including the key/data search engine using the B-tree data structure, and run in the

same address space in the main memory. Therefore, no inter-process communication

between processes is required.

4.3.1 System Design

The system design of SKEYRUS is depicted in Figure 4.5. SKEYRUS has been built

based on Java technology and freewares. The SAX parser from Xerces software foun-

dation [4] is used for XML data parsing. The indexes of data in B-tree structure are

built using BerkeleyDB database engine [41] that is an embedded database library

linked directly into the application. Since the library runs in the same address space,

no inter-process communication is required for database operations. Berkeley DB uses

66

key/data pairs to identify elements in the database. Berkeley DB supports hash tables,

B-trees, simple record-number-based storage, and persistent queues. Key and data

items can be arbitrary binary data of practically any length. There is a single data item

for each key item, by default, but databases can be configured to support multiple data

items for each key item. In SKEYRUS, we used the B-tree indexing structure and set

the mode of multiple data items for each key item.

multilevel UID
+ invert file
generator

Content query

XML
documents

Content/Structure
decomposition

Final result

queries Extended
Inverted

Word-File

B-trees

Numbered
Element

index

Integration

Query plan

Global
parameters

Lists of
identifiers

Figure 4.5. System design of SKEYRUS.

The input queries of SKEYRUS are expressed by XPath [48] expressions hav-

ing word-containment predicates. XPath is a language that provides basic facilities

for manipulation of strings, numbers and boolean in the logical structure of an XML

document. One important kind of XPath expression islocation path, which selects

a set of nodes relative to a context node. A location path has a number of location

steps, where an initial node-set is generated from an axis and a node test, and then

filtered by each of the predicates in turn. The input queries of SKEYRUS are those

expressions that contain axes specifying the node position in XML documents and the

predicate of word-containment (i.e thecontains() function). An example of the queries

for SKEYRUS is:

/child::doc/child::chapter/descendant

::figure[contains(child::title, ‘genetic ’)] (2)

67

which selects the figure, the title of which contains the keyword ‘genetic’, of a chapter

of a document.

Processing the structural part of the queries is performed based on 2-levelrUID.

Evaluating a location step of a query involves determination of the candidate sets,

which contain either elements or attributes, using a data structure that supports key-

word search, and joining the sets via the axis of the location step.

An initial query planis generated by parsing the input into location steps described

by the attributes: the step identifierID , the candidate node sets to be joinedns-I and

ns-II , the axis of the joiningaxis, the function to filter the second candidate node set

qf, and an output indicator (O). A query plan of the XPath expression (2) is shown in

Table 4.2.

ID ns-I axis ns-II qf O

1 root child doc

2 doc child chapter

3 chapter descendant figure yes

4 figure child title contains

‘genetic’

Table 4.2. A query plan for the query (2).

4.3.2 Data Structure in Secondary Memory

We used three tables namedglobalPara, codeName, andcodeWord in SKEYRUS. The

input XML documents are parsed and the tree nodes are numbered usingrUID. The

global parametersκ andK generated in the process are stored in the tableglobalPara.

For each element and attribute, a tuple:

<rUID, EleAttrName, descr>

is generated and saved in the tablescodeName, whererUID field consists of the global

index, local index, and root indicator. TherUID is the identifier of the element or

68

attributeEleAttrName , anddescr contains the node type ofEleAttrName and its

position, which is the address where data resides, in XML documents.

For each leaf node, an inverted file structure for the words in the node content is

created and consists of a number of tuples:

<rUID, word, descr>

stored in the tablescodeWord. The rUID is the identifier of the element or attribute

containing the wordword . In SKEYRUS, since the hierarchical level can be computed

usingrUID, we can discard thedepthparameter that has been introduced in [13]. For

a given word, the inverted file structure allows to list the identifiers of all the elements

or attributes containing the word.

For both element and word, the data is indexed such as given an element name or

a word, the list of therUID of elements corresponding can be found fast. The data is

indexed by B-tree access method that supports the creation of multiple data items for

a single key item (i.e. element name or word). The duplicate records are maintained

in sorted order not only by the key field but also by the data field. The Berkeley DB

engine can be configured to sort duplicate data items by setting the corresponding flags

like:

table.set flags(Db.DB DUP);

table.set flags(Db.DB DUPSORT);

In such manner, for a given element name or word, the related tuples are maintained

sorted byrUID.

4.3.3 Main Structural Joining Mechanism

This module joins, usingrUID as the key, the tables in main memory according to

given axes. Thejoin mechanismconsists of three main steps as follows:

Axis construction: The nodes that belong to a specific axis of any node in a given set

are determined by their identifier. The axis construction is performed in main

memory without any disk I/O.

Sorting: The nodes of a given list are sorted based on therUID components.

69

Matching: The pairs of identical nodes from two lists are extracted. If the lists are

sorted then only an one-scanning for each list is needed to select the pairs from

the lists.

Let us explain how these steps are used in processing a query by an example.

Let A and B denote lists of elements of the namesa and b. To process the query

“a/child::b ”, A and B are loaded from the second memory. We maintain the data

in DB files sorted, hence A and B are sorted byrUID. Then, rather than checking all

possible pairs from tables A and B, we generateparentAxis(B) and store the finding

in an buffer C. Next, we sort C byrUID and then match A with C. The mechanism is

depicted in Figure 4.6(a), whereai is the last element that matchesb j in the considered

axis.

This join mechanism can be applied to both ancestor and parent axes. Intuitively,

if a query contains the predicates on keyword then these predicates will be evaluated

first to reduce the cardinalities of A and B.

The technique can produce the qualified elements either from A and B. Normally,

the matching A with C can output the qualified elements from A. With auxiliary point-

ers added to the buffer containingparentAxis(B) that point back to B, the output is

the qualified elements from B, instead of from A. In both cases, the number of buffer

arrays is at most four. For example, the list A is stored in the buffer 1, B in the buffer

2, parentAxis(B) before and after sorting in the buffer 3. The output from the buffer 2

produced by the matching buffers 1 and 3 is stored in the buffer 4.

4.3.4 Auxiliary Join Mechanisms

The ability to construct the parent and ancestor axes supports the main join mechanism

discussed in Section 4.3.3. In this part, we present other join mechanisms used in

SKEYRUS that do not require the axis construction ability ofrUID.

In a well-formed XML document, a node is an ancestor of another node if the

region, bounded by the start tags and the end tags, of the former covers the region of

the latter. The ancestors of a node consist of its parent and its parent’s parent and so

on. A node is a preceding node of another node if the end tag of the former is located

before the start tag of the latter.

Given two nodesp andq, let us denotep ≺a q iff p is an ancestor ofq, p ≺a+ q iff

70

…
ai1

…
ai2

…
ait

…
ai

ai+1

…
al

ai1

ai2

ait

b1

…
bj

bj+1

…
…
bm

ai

(b) Ancestor scan with current
ancestor buffering

a1

…
…
…
…
ait

ai

ai+1

…
…
al

c1

…
cj

cj+1

…
…
cm’

(a) Axis construction with
backward pointer

a1

…
…
…
…
ait

ai

ai+1

…
…
al

b1

…
bj

bj+1

…
…
bm

(c) Preceding scan with
sorting by <<<<preorder

b1

…
bj

bj+1

…
…
bm

Axis
ai1

ai2

ait

ai

Figure 4.6. Join mechanisms used in SKEYRUS.

p is an ancestor ofq or q itself, p ≺p q iff p is a preceding node ofq, p ≺preorder q iff

p is an ancestor or preceding node ofq.

Note that the relationship≺preorder is a total order. The following lemmas can be

used to improve the efficiency of≺a and≺p joins for two lists of nodes sorted by

≺preorder:

Lemma 1 For two nodesn1 andn2 of an XML tree such thatn1 ≺preorder n2, if a ≺a

n2 then eithera≺a+ n1 or n1≺preorder a.

Proof: Becausen1 ≺preorder n2, eithern1 ≺a n2 or n1 ≺p n2. In the first case, the

ancestor nodes ofn2 include the ancestor nodes ofn1, the noden1 itself, and the nodes

in the path connectingn1 andn2, exclusively. In the second case, letl is the lowest

common ancestor ofn1 andn2. The ancestor nodes ofn2 include nodes in the path

connecting the root node andl, the nodel, and the nodes in the path connectingl and

n2, exclusively. Because in a tree, there is unique path connecting two nodes, the nodes

exclusively belonging to the path connectingl andn2 also are following nodes ofn1.

In both cases, the Lemma holds. 2

From Lemma 1, if lists A and B are sorted by≺preorder andai is the last node in A

such thatai ≺preorder b j then for looking for the ancestors of the nodeb j+1, we have to

71

look at the ancestor ofb j (i.e. ai1,· · ·, ait , ai), and the nodes afterai in A (i.e. ai+1,· · ·,
al), Figure 4.6(b).

Given two nodesn1 andn2 of an XML tree such thatn1 ≺preorder n2, if n ≺preorder

n1 thenn ≺preorder n2. Therefore, if lists A and B are sorted by≺preorder, we need

to scan once the lists to select the pairs{a, b} from the lists such thata ≺preorder b.

In Figure 4.6(c), the preceding nodes ofb j (i.e. ai1,· · ·, ait , ai) are also the preceding

nodes ofb j+1.

4.3.5 Content Processing

In SKEYRUS, the content processing module loads the identifiers of elements or at-

tributes having a given name string and containing a given keyword. Specifically, from

the tablescodeName andcodeWord, therUID s of the tuples whereEleAttrName =

‘nameString’ and word = ‘keyword’ are retrieved. The output of the content process-

ing module is stored in buffer tables in main memory.

Given an element list A and a keyword list W, the matching of A and W onrUID

produces the list of elements that contain a word from W. The matching is used to

process the predicate on keywords in the input query for SKEYRUS.

4.3.6 Database Table Decomposition

When the data is large, we have to distribute the tuples into smaller tables to speed

up query processing, each table has a name that reflects its content. Specifically, the

tablecodeName can be decomposed into the tables, the elements in each of them have

the same tag name that also is the name of the table itself. Since the number of word

string values in an XML data set may be much larger than the number of tag names

of the elements and attributes in the data set, in order to keep the number of tables

manageable, the tablecodeWord can be decomposed by acommon prefixof words

rather than by the word values themselves, where the common prefix means a shared

prefix of words. For example, using 2-character common prefix decomposition, the

tuples of the tablecodeWord that correspond to the words ‘computer’ and ‘control’ are

stored in the table of thecodeWord type that has the name “CO”. In this chapter, we

run the experiments in 4.4.2 (4.4.2) without (with) table decomposition.

72

4.3.7 Frame selection

In our experiments, we use Algorithm 3 to select the frame for an XML tree. The

high threshold guarantees the expression of the local index in an UID-local area by an

integer value. The low threshold is used to avoid unnecessary creation of small areas

whereas these areas can be grouped together. The grouping accelerates the determina-

tion of ancestor-descendant relationship.

Algorithm 3: Frame selection

Input: An XML tree T , a high thresholdh, a low thresholdo,
Output: A frame ofT

1. cNode := root node

2. while the root node is not marked

3. compute the size of area rooted at cNode

and the number of the nodes in the area

4. if the size <= h && the number => o

5. mark cNode

6. else

7. run the procedure with child nodes of cNode

endif

9. if (not found any area)

10. reduce the low threshold

11. else reset default the low threshold endif

endwhile

In the step 3 of Algorithm 3, by the size of an area we mean the largest UID possibly

needed to enumerate the nodes of the area.

4.4 Experiment

In this section, we describe several performance experiments with SKEYRUS to eval-

uate the scalability and the effectiveness ofrUID in XML query processing. For these

73

purposes, we generated three synthetic datasets. The specification of the synthetic

datasets is shown in Table 4.3. The first two datasets supposedly describe the per-

sonnel organization of a company using the DTD called “personnel.dtd” described in

Appendix C. The datasetI has a small size but an unbalanced structure and a high

degree of recursion. In addition, we generated the third data sets using XMark [2], the

core DTD of which is shown in Appendix D, Figure 6.3. The second and third datasets

are used as the main dataset for query processing test. We believe that an appropriate

decomposition of XML data, the investigation of which is out of the scope of the re-

search, will save the unnecessary comparisons for structural joins. An example of such

comparison is the check for the hierarchical orders of two elements belonging to two

unrelated data parts. Therefore, the size and the number of element and attributes of

the second and third datasets is regarded to be sufficient for our experiments.

Data set Size # elem&attr DTD

I 7.6Kb 201 personnel.dtd

II 3172Kb 50052 personnel.dtd

III 23.4Mb 413111 auction.dtd

Table 4.3. Specification of the data sets.

The experiments in our study were conducted on a workstation running on Win-

dows XP Professional with 2GHz CPU, 2GB of RAM and a hard disk to store data.

4.4.1 Scalability and Robustness ofrUID

The original UID technique failed to numerate entirely the data setsI andII , e.g. the

identifier value exceeded the maximal value of integer supported by programing lan-

guages. For example, Java provides the 8-byte integer type ranging from

−9223372036854775808L to 9223372036854775807L. While can deal with Shake-

speare’s plays1, the UID technique was overflowed when the plays were grouped in

a collection, for example by adding a DTD declaration<!ELEMENT collection

(play+) >. Meanwhile, the 2-levelrUID succeeded in enumeration of all of these

1Available at http://sunsite.unc.edu/pub/sun-info/xml/eg/shakespeare.1.10.xml.zip

74

cases since 2-levelrUID can use the nearly double number of bytes to present the

identifiers of nodes in an XML document.

In our method, it is desirable to use maximally the possible value of local index

to reduce the number of UID-local areas. To represent therUIDs of the data setIII ,

the maximal global and local indices are equal to 27843 and16379869450275314L,

respectively.

In addition, as discussed in Section 4.2.4, the design by levels ofrUID reduces the

scope of the identifier change due to a structural update. For example, when a new

employeeperson is inserted, it is likely that only the identifiers of the nodes in the

UID-local area containing the managerperson , who manages the new employee, are

altered.

4.4.2 rUID and XML Query Processing

We compared query processing of SKEYRUS with Xalan [4] and the method in [13],

denoted by IKS[13].

Comparison with Xalan

In this experiment, the tablescodeName andcodeWord have not been decomposed.

On the data setII , we conducted the experiments using the input XPath expressions

that are shown in the abbreviated syntax in Table 4.4 of the following categories:

simple: XPath expressions having one or two parent and ancestor axes without any

keyword, e.g.P1 andP2.

wildcard XPath expressions having parent and ancestor axes and require the hierar-

chical level, e.g.P3 andP4.

complex XPath expressions having both structural search and keyword search, e.g.P5

andP6.

The performance test on the data setII with the query set A is shown in Figure

4.7, where Sq denotes the time needed for processing the structural joins in the main

memory of SKEYRUS,Skeyrusdenotes the total elapsed time (i.e. including the time

75

Queries XPath expressions

P1 //person

P2 //person/email

P3 //person/*/person

P4 //person/*/*/person

P5 //person[contains(note,’Academic’)]

P6 //person/name[contains(given,’Michael’)]

Table 4.4. Query set A for the data setII

for loading data) of SKEYRUS, Xq denotes the time needed for processing the struc-

tural joins in the main memory of Xalan, andXalandenotes the total elapsed time (i.e.

including the time for loading data) of Xalan.

XMark benchmark is provided with a set of test queries. For the purpose of the

research, we consider only the structural part of these queries as shown in Table 4.5 as

follows:

76

0

500

1000

1500

2000

2500

3000

P1 P2 P3 P4 P5 P6

Queries

(m
s)

Sq

Skeyrus

Xq

Xalan

Figure 4.7. Elapsed times for the queries P1-6 on dataset II.

0

2000

4000

6000

8000

10000

12000

14000

X1 X2 X3 X4 X5 X6

Queries

(m
s)

Sq

Skeyrus

Xq

Xalan

Figure 4.8. Elapsed times for the queries X1-6 on the dataset III.

77

Queries XPath expressions

X1 /site/regions

X2 /site/regions/europe/item

X3 /site/regions/australia/item

X4 //open auction//description

X5 /site/people/person

X6 /site/people/person/profile

X7 /site/people/person/profile/interest

X8 /site/open auctions/open auction

X9 /site/open auctions/open auction/initial

X10 /site/closed auctions/closed auction

X11 /site/closed auctions/closed auction/annotation/description

/parlist/listitem/parlist/listitem/text/emph/keyword

X12 //annotation/description/parlist/listitem/parlist/

listitem/text/emph/keyword/

Table 4.5. Query set B for the data setIII

These queries ranges from simple to extremely long queries, including both parent

and ancestor axes. The performance test on the data setIII of the query set B is shown

in Figs. 4.8 and 4.9.

From the experiments on both datasetsII andIII using “personnel.dtd” and “auc-

tion.dtd” DTDs, it is clear that SKEYRUS is effective in processing the queries. For

most of queries evaluated, the processing time required by SKEYRUS is 20-30% of

the time required by Xalan. For the query with a large number of structural joins, for

exampleX11 andX12, query processing of SKEYRUS remains satisfied.

In general, the time for loading the data used in processing a query of SKEYRUS is

small in comparison with XALAN because SKEYRUS loads only the portion of data

needed for the query. It does not require that the whole data must reside in the main

memory.

SKEYRUS deals well with the queries where the names of several elements par-

ticipating in the axes of the queries are unknown by using the ability ofrUID for

78

hierarchical level determination. The required time for processing such queries is not

increased sharply since considering all of possibilities of the elements is not necessary.

The main contribution to the effectiveness of the SKEYRUS is the ability ofrUID

to perform the structural joins efficiently. As shown in Figs. 4.7, 4.8, and 4.9, the time

for processing in the main memory, Sq, are small parts of the total elapsed times.

Comparison with IKS[13]

To compare SKEYRUS with the method proposed in IKS[13], we use the queriesP5

andP6, that have both structural search and keyword search, in Query set A for the the

data set II and the queriesX13 andX14 in Query set B for the data set III. These queries

are listed in Table4.6. In this experiment, the data have been decomposed using the

element and attribute tag names and the 1-character prefix of words, as discussed in

Section 4.3.6.

Queries XPath expressions

P5 //person[contains(note,’Academic’)]

P6 //person/name[contains(given,’Michael’)]

X13 //description[contains(text,’house’)]

X14 //categories//listitem[contains(text,’discover’)]

Table 4.6. Query set for the comparison with IKS[13]

According to the method described in [13], for each tag name that appears in the

XML data, a binary table of the structuretag name(tag nameID , child elementID ,

value) is used to represent the relationship of the elements having the tag name and

their child elements. The collection of these binary tables represent the structure of

an XML document. In addition, the inverted filesword type (elementID , depth ,

location) are used to express the occurrence of words in XML elements. All these

tables are stored in Oracle 9i Personal Edition for Windows.

The total inverted file can be decomposed into smaller files clustering by the el-

ements (or attribute) name and the words (a prefix or the entire) that appear in the

elements (or attributes). The decomposition can speed up keyword searching. How-

79

ever, the method can produce a large number, thousands or tens thousands, of tables

and the number of table may be a concern. In addition, to deal with the keyword

search, where the containing element (or attribute) is not specified explicitly, e.g.

“ //*[contain...] ”, the tables corresponding to the word have to be concatenated

before further processing. In this section, SKEYRUS and IKS[13] are treated equally,

without the above decomposition.

Note that the approach proposed by IKS[13] to store the elements of an XML docu-

ment in binary tables is not efficient to process the queries with the ancestor-descendant

relationship, i.e. ’//’. For example, to process a query like//categories//listitem ,

we have to join the tables that correspond to the edges along all possible paths con-

nectingcategories and listitem . The number of such paths can be large and it is

hard to find all of them. Therefore, we cannot include the performance test of the [13]

method for the queryX14 in our experiment.

The performance test for the queriesP5, P6 in the data setII , andX13 in the data

set III is shown in Figure 4.10, whereSkeyrusand IKS denote the times needed for

processing and the total elapsed time (i.e. including the time for loading data, the

intercommunication among processes) of SKEYRUS and IKS[13], respectively.

4.5 Summary of Chapter 4

Queries on keywords are common user requests whereas XML makes the queries on

document structure available. Therefore, it is natural to integrate these tasks to enrich

the search selectivity of users. In this study, our approach to achieve the goal is appli-

cation of a numbering scheme. We proposed the novel recursive numbering scheme

rUID that is robust in structural update, scalable for coding arbitrarily large XML doc-

uments, and expressive in presenting the main XPath axes. Note thatrUID is robust

in the terms of structural update withoutclue, i.e. without the DTD or XML Schema.

In the next chapter, we will discuss another technique that takes into account of the

schematic information from DTD or XML schema.

The proposedrUID has been implemented in SKEYRUS, a system enables the

searches on both keyword and structure on XML data. The performance experimental

results have shown the effectiveness ofrUID.

80

0

2000

4000

6000

8000

10000

12000

14000

X7 X8 X9 X10 X11 X12

Queries

(m
s)

Sq

Skeyrus

Xq

Xalan

Figure 4.9. Elapsed times for the queries X7-12 on the dataset III.

0

500

1000

1500

2000

2500

3000

3500

P5 P6 X13

Queries

(m
s
) Skeyrus

IKS

Figure 4.10. Elapsed times for the queriesP5, P6, andX13.

81

Chapter 5

XML Query Processing using Virtual

Joins

5.1 Introduction

In this chapter, we investigate the role of DTD and XML Schema in XML query pro-

cessing. Originally, DTD and XML schema have been designed to serve as a mean

to validate XML documents. However, we found that the structural information ex-

tracted from the document definitions can be used to improve the efficiency of XML

query processing.

XML [47] data has a recursive tree structure, which can be represented by a rooted

label tree. The structure of XML documents in a class can be described by a gram-

mar that is a set of rules of the hierarchical relationship among XML elements in the

instance documents of this class. The hierarchical order of elements in an XML doc-

ument physically depends on their location in the physical storage structure of the

document. On the other hand, the elements have to obey theschematicorder described

in the grammar associated with the class containing the document.

Queries on XML data typically specify elements by selection predicates and their

tree structure relationship. There are a number of proposed methods for verifying the

structure relationship of XML elements. An enumeration that allows the identifier

of the parent element to be computed from the identifier of a child element has been

presented in [52], hence the “parent -child ” relationship can be determined using a

calculation on the identifiers. The oversize length of identifier and the lack of ability

83

to determine the tag name of the parent element limit the efficiency of this numbering

scheme in query processing. The pattern of node paths has been used in [26] to select

the elements having the similar hierarchical order. In [40, 31, 35, 27], the 3-tuple

(startPos , endPos , level) and equivalent tuples have been used to present the

hierarchical order of XML elements in an XML document. The recent approaches to

the problem use the structural joins, which select the pairs of XML elements from the

candidate sets such that a given hierarchical order holds.

Note that most of XML documents in use are associated with a DTD or XML

schema. Since the descriptions integrate the document structure with data types and

define the relation of schemata to XML document instances, the XML documents ex-

changed over the web can share their grammars efficiently. However, the prior tech-

niques to process XML queries have not utilized the information about the schematic

structure of XML documents expressed in the descriptions. For example, the enu-

meration in [52] has been designed for a general tree without any restriction on its

structure. Similarly, the presentation (startPos , endPos , level) in [40, 31, 35, 27]

is extracted from an XML instance document with the assumption that the XML tree

can be in any shape.

In structural joins, the indexing data of the candidate sets, a portion of which is only

used to produce the partial answers, has to be provided before joining, normally by I/O

access to the secondary memory. However, the previous studies have not sufficiently

investigated the I/O workload needed to get the candidate sets. This study aims at the

improvement of the I/O complexity for XML query processing. The issue is important

since the I/O speed is much slower than the computation speed in the main memory.

We observe that the schematic structure of XML documents can be used to verify the

structural requirement of the elements in an XML query, without the knowledge of

their actual position in the physical storage structure. Based on this observation, we

propose a new approach to interpret XML queries. For example, to process the XML

query “a/b ”, the prior joining techniques require the indexing data of the candidate

sets{a} and{b} to be loaded then join these sets to find the pairs{ai , b j} such that

ai is the parent element ofb j . Actually, the elements{ai} are not of the interest in the

final answer of the query, which consists only of the elementsb j . The indexing data

of {a} is used just for checking the parent-child relationship ofai andb j . Using the

new approach, rather than joining the elements sets{a} and{b}, for eachb j we seek

84

a method to check if there existsai that is the parent element ofb j using the indexing

data ofb j only. Therefore, we can save the I/O workload for loading the indexing data

of the set{a}. Figure 5.1 illustrates the difference of the prior approaches and our

approach in processing the XQuery expression:

FOR $b IN /site/people/person/[address=’Japan’]

RETURN $b/city/text() (S1)

The prior approaches require the indexing data of six elementssite , people ,

person , address , name, and text . Using the new approach, the indexing data of

only two elementsaddress andtext is required.

5.1.1 Contribution

This study aims at the improvement of the I/O complexity for XML query processing.

The issue is important since the I/O speed is much slower than the computation clock

in the main memory. We propose a mechanism called Virtual Join for XML query pro-

cessing that utilizes the information about the schematic structure extracted from the

DTD or XML schema of XML documents. The core of the mechanism is a Structure

Coding for XML data, SCX, that compactly expresses the schematic structure of XML

elements. The SCX has the following property:

If the tag name and the structural code of an element are known, the tag name and

the structural code of the parent element can be determined without any I/O.

Therefore, for a given element, the tag names of all of its ancestor elements can be

determined recursively. Note that the tag names of elements are essential for evaluating

XML path expressions. Our study provides evidence that the information about the

schematic structure of XML documents declared in DTD or XML schema can be used

effectively in the indexes for XML data. In addition, it shows that different indexing

techniques can be integrated to complement each other to improve the XML query

processing.

We present the preliminaries of our study in Section 5.2. Our main contribution is

presented the next three sections. In Section 5.3, we give the definition and the con-

struction algorithm for SCX that enumerates XML elements based on the schematic

structure deduced from DTD or XML schema. Incorporating both structural and tag

85

/

/

/

//

site people person address ='Japan' textcity

|

site people person address ='Japan' textcity

Virtual Joins Virtual Join

Index

E E

E E

E E

E A

E E

E E

Index

Index

Index

Index

Index

Index

Index

Figure 5.1. The prior and new approaches for processing the queryS1

name information, SCX allows the navigation to the parent of an element, as well as

testing the tag name of the parent in the time independent of the document size. In

Section 5.4, we describe the Virtual Join mechanism to evaluate XML queries in both

path and twig patterns. The mechanism has an optimal I/O workload: The indexing

data of only the candidate sets that contain the output elements or relate with the se-

lection predicates is needed. It does not require the indexing data to be sorted. Many

intermediate joins can be avoided using the operations on SCX. In Section 5.5, we

present the experimental results to show the efficiency of our method in XML query

processing with various configurations. Not any special indexing structure except the

B+-tree is required. We conclude this chapter with a suggestion for the future work in

Section 5.6.

The current result of this research can be primarily applied in the applications cat-

egorized into theNative XML DatabasesandContent Management Systemsgroups, as

discussed in Section 2.3.1, page 23 of this thesis.

5.1.2 Related work

Querying on the structure is an essential task of the databases of semi-structure and

XML data. Several structural summaries have been presented as a graph for semistruc-

86

tured data. Structural information, such as node paths, is extracted from the data

source, classified, and then represented in a structure graph. The graph can be used

both as an indexing structure and a guide by which users can perform meaningful and

valid queries. A data structure called Data Guide was proposed in [32] that records

all possible paths in the source semi-structure data. Paths also can be summarized

grouping by type as inT-index [38]. In order to reduce the complexity of construc-

tion of structural summary, the bi-simulation mapping has been chosen instead of Data

Guide as in [29]. Another approach is Index Fabric [5] that encodes paths in the semi-

structured data as strings and inserts the codes in a balanced B+-tree-like index that

can be combined with a storage manager.

A path-based approach to query the XML data by storing all available node paths

in a table of RDBMS and making queries over the pattern of the node paths has been

proposed [26]. An integration of XML node numbers in query statements and an al-

gorithm for transformation from XPath to SQL have been discussed in [21]. A general

approach to store XML data in tables of RDBMS, where a query is evaluated by joining

the tables containing the data items related to the query, has been presented in [24].

The presentation of XML elements by (docID, startPos, endPos, nodeLevel)

and the equivalent tuples usingpre andpost orders,preorder andrange have been

used in [8, 31, 35, 27, 36] for processing structural joins. In our work, to present the

actual order of elements in an XML document, we adopted the presentation. Both [35]

and [27] use stacks in the structural join algorithms to reduce the number of match

tests between candidate sets of a join. The algorithms in [35] can produce the result

sorted either by ancestor or descendant nodes. The algorithms in [27] can process both

of the path and twig queries, where the partial and total answers have been in compact

stacks to avoid the large intermediate answers. The indexing structures such as B+-tree

and R-tree built-in in RDBMSs have been exploited in [40] to index the presentation

values.

The current works related to our approach are [42, 19]. XML documents are em-

bedded in a binary tree in [42], hence the depth of the binary tree is high in practice.

[19] has proposed the XR-tree to manage the stab lists used to find the qualified pairs

of elements in the ancestor-descendant structural join. The index permits skipping over

the portions of the candidate sets that are guaranteed not to produce any match. The

index implementation requires a new data structure other than the widely used B+-tree

87

and does not support well the parent-child relationship.

Our research investigates the whole query processing procedure, including the I/O

workload for the indexing data. The function (5.4) of SCX was inspired by the UID

method presented in [52], which enumerates the nodes of a tree by sequent integers,

starting from one at the root. Besides the Virtual Join mechanism, the design of SCX

solves the issues of coding size and robustness in structural update that limit the effi-

ciency of the original UID method in query processing.

5.2 Structure information in DTD and XML schema

An overview of DTD and XML schema was presented in Section 2.1.2. In this part,

let us consider the DTD and XML schema of an XML document in details. An XML

document may have a reference to a DTD or an XML Schema, which contain the

description of the hierarchical relationship of XML elements. By definition, DTD

is a grammar for a class of documents. A DTD that defines the elements of the XML

document graphically represented in Figure 5.2 may have the element type declarations

shown in Listing XD.2.

Listing XD.2: Declarations containing schematic information in a DTD

<!ELEMENT personnel (company, business, person+)>

<!ELEMENT person (name, email?, person*)>

<!ELEMENT name (family, given)>

The first element type declaration indicates that thepersonnel element has one

elementcompany , one elementbusiness , and one or many elementsperson . This is

an extension of the structure of the XML document used in Chapter 3 by integrating

the information of all people together.

The hierarchical order of elements can be found also in the complex element de-

scriptions in the XML schema of the same XML document. For example, the declara-

tion in Listing XS.2 indicates that the complex elementname has one elementfamily

and one elementgiven .

88

Listing XS.2: Declarations in an XML schema

<xs:element name="name">

<xs:complexType>

<xs:sequence>

<xs:element name="family" type="xs:string"/>

<xs:element name="given" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

The element hierarchy extracted from the DTD and XML schema for the XML docu-

ment in Figure 5.2 is depicted in Figure 5.3.

In practice, the size of a DTD or XML schema is much smaller than the size of the

XML documents associating with them. Normally, the sizes of DTD and XML schema

are of a few KB whereas the size of XML documents are measured by MB. Let us call

the number of parent-child pairs in the DTD or XML schema referenced by an XML

document thestructural cardinalityof the document. The specifications of the DTDs

of the XMark1 and Shakespeare2 data sets are shown in Table 5.1.

Data set DTD Size Stru.Card.

XMark auction.dtd 4304 bytes 117

Shakespeare play.dtd 1184 bytes 44

Table 5.1. The specification of some DTDs

1http://monetdb.cwi.nl/xml/downloads.html
2http://sunsite.unc.edu/pub/sun-info/xml/eg/shakespeare.1.10.xml.zip

89

personnel

person person person

person personname email

branson@
domain.com

name email

abra@domain.net

name email

allen@domain.org

family

Branson

given

Richard

family

Soros

given

George

family

Allen

given

Irwin

family

Abrahams

given

Jim

family

Leeson

given

Nick

name name

company

XData

business

IT

…

email

soros@
domain.net

Figure 5.2. An XML example

personnel

person *name

person +

email

givenfamily

company business

Figure 5.3. Element hierarchy

90

5.3 SCX: a structure coding

In this section, we describe the design of our novel structure coding SCX and the

construction algorithms. For simplicity, we will use the notation of DTD. The main

goals of the SCX design is the efficiency in XML query processing and the robustness

in structural update.

The main component of SCX is thestructural identifierthat presents the schematic

order of XML elements. The schematic order of an XML element is determined by the

DTD element type declarations, in which the element participates. For example, if a

tag nameb appears in the element type declarations of the tag namesa andf in a DTD

then in any instance of the XML document conforming to the DTD, the tag name of

the parent element of an element having the tag nameb must be eithera or f .

The structural identifier of a node uniquely determines both structural identifier

as well as the tag name of the parent node using twoindex functions: the function

parentSID returns the structural identifier of the parent node and the functionnameID

returns an integer value used together with the tag name of the child node to find the

tag name of the parent node.

The functionnameID is a novel and essential part of our method. Intuitively, each

pair of the tag names of parent and child nodes in the DTD is mapped into an integer

called thechild order. The child order together with the tag name of the child node

uniquely determines the tag name of the parent node. In other words, the following

dependencies hold:

parent tag ,child tag −→child order (5.1)

parent tag ←−child tag ,child order (5.2)

The benefit of the introduction of these functions is the ability to determine the tag

names of all ancestor nodes of a node without the necessity to access to the secondary

memory. Therefore, intermediate structural joins can be avoided and the indexing data

of only the leaf nodes in the query tree structure is necessary for evaluating XML

queries.

91

5.3.1 The description of SCX

SCX represents the schematic and actual orders of an XML node by the pair [sid, ord],

wheresid is the structural identifier andord is a presentation of the node in an XML

instance. There are several proposed presentations for the position of XML elements

in an XML document, each of them uses thedocID andnodeLevel together with one

of the pairs (preorder , postorder), (preorder , range), or (startPos , endPos).

The methods to determine the hierarchical relationship among XML nodes using these

presentations are similar and can be converted from one to other with a minor modifi-

cation. In this research, we adopt the 3-tuple (docID , startPos , endPos) to present

XML nodes, i.e. the componentord of SCX. ThenodeLevel parameter used in the

prior presentations is omitted. The element (docID , startPos 1, endPos 1) is an an-

cestor of the element (docID , startPos 2, endPos 2) iff startPos 1 < startPos 2

andendPos 2 < endPos 1. Since the encoding is very useful in defining the preceding

and following orders, the inclusion of theord in SCX guarantees that SCX can help

the evaluation of queries related to these orders. As will be shown in Section 5.4,sid

andord complement each other in query processing. Since the design of SCX helps to

reduce the number of elements and attributes, the indexing data of which needed to be

loaded for processing a query, the size of the combination makes a little impact on the

performance of the technique.

Definition 8 A c-group is the maximal group of the consecutive sibling nodes having

the same tag name.

The notion ofc-group in the Definition 8 can be extended to encompass the se-

quence of the same subgroup of elements that appear multiple times. In a DTD ele-

ment type declaration, ac-group corresponds to a single child element or a subgroup

of elements, the cardinality of which is multiple, such as ‘b’, “ b* ”, or “ (c, d)* ”. We

will discuss the decomposition of DTD in section 5.3.2 to deal with the extension. For

simplicity, the current form of the Definition 8 is used.

Definition 9 An enumeration of the nodes in an XML treeT is called “forehand” if the

identifier of a node is smaller than the identifier of the siblings from the other c-groups

to the right of the node in the same parent node.

92

The forehand property guarantees that the identifiers of XML nodes reflect their

order as described in DTD declarations.

Definition 10 A functionchildOrd: (a,b) → Integer, that maps a pair of tag namesa

andb, whereb appears in the element content ofa in a DTD element type declaration,

to an integer, is called “parent-name-determinable” if¬∃ a1 anda2 such thata1 6= a2

butchildOrd(a1, b) = childOrd(a2, b).

In other words, the child order and the child tag name uniquely determine the par-

ent tag name. The construction of the “parent-name-determinable” functionchildOrd

from the declarations of a DTD will be described in section 5.3.2.

The structural identifiers of the nodes in an XML tree are generated in a preorder

traversal by a forehand enumeration. All the nodes in ac-group are assigned the same

integer equal to the sum of a basic value computed from the structural identifier of

the parent node and the child order of thec-group computed by the parent-name-

determinable functionchildOrd. The root node, itself is ac-group, is enumerated

by 1.

Figure 5.4 shows a tree structure of the DTD declaration<!ELEMENT a(b, c,

d*, e)> . The child nodes belong to fourc-groups having the tag namesb, c , d, and

e. The nodesds have the samesid equal tol+3.

a

b c d

&l+1

d d e

&l+2 &l+3 &l+3 &l+3 &l+ 4

base

&l

computed fro
m &k

&k

childOrd(a, d)

Figure 5.4.c-groups and structural identifiers

93

5.3.2 Generating SCX

Before describing the algorithm to generate SCX in section 5.3.2, we present the pro-

cess to construct the parent-name-determinable functionchildOrd from DTD.

The construction of thechildOrd function

The functionchildOrd returns an auxiliary integer used to distinguish the same child

in different parents in a mapping from the child tag to the parent tag. The function

is represented as a table constructed based on the DTD listing all possible arguments

and values. In general, a DTD can be complex because of the complex specification

of the type of an element. For example, an elementa can be defined by a DTD decla-

ration such as<!ELEMENT a ((b, c, d)?, (e, f)*)> . A direct transformation

of such complex DTDs to the functionchildOrd is not the best solution.

A complete investigation to answer the question which types of DTD can enable the

SCX is out of the scope of the current stage of the research. In this thesis, we propose

a primitive solution to deal with the common-used types of DTDs. We decompose

it using theintermediateelements recursively to reduce the complexity, where the

intermediate elements are assigned unique tag names. The primary decomposition

rules of DTD declarations are:

1. (b|c)* is decomposed intod* and d = (b|c)

2. (b, c)* is decomposed intod* and d = (b, c)

3. b* |c* is decomposed intod|e andd = b*, e = c*

The purpose of this decomposition is to guarantee the dependencies 5.1 and 5.2 by

separating the occurrences of child elements with different tag names in the parent el-

ement. For example, the above complex declaration can be presented by an equivalent

group of DTD declarations<!ELEMENT g (b, c, d)> , <!ELEMENT h (e, f)> ,

and<!ELEMENT a (g?, h*)> .

Note that the commonly found in practice DTDs do not contain such complex

DTD declarations. For simplicity, we consider only themeaning f ulDTDs, i.e. any

child element in actual data conforming the DTDs can be mapped uniquely to a child

element in the DTD declaration of its parent element.

94

Since a DTD can be represented by a unranked tree automaton[16], its character-

istics can be described by the language accepted by the automaton. Therefore, the

SCX-enable DTDs can be also described by automata. Due to the relative dependence

between the topic of the current research and the raised issue, we will discuss this issue

in another work.

The core form of DTD declaration. In a DTD declaration, an element may have

a number of sub-elements having the same tag name. The cardinality is omitted in

construction ofchildOrd.

Definition 11 The core form of a DTD declaration is received from the DTD declara-

tion by replacing the cardinalities of the subelements by one.

For example, the core form of the DTD declaration<!ELEMENT a (b, c?, d*)>

is <!ELEMENT a (b, c, d)> .

Core child-orders. Each element is assigned a core child-order in its parent element

equal to the index of the correspondingc-group.

Definition 12 The index of ac-group is the order of the corresponding tag name in

the core form of the DTD declaration of the parent element. The core child order of

the noden in its parent nodep, denoted byp a n, is equal to the index of thec-group

containingn in p.

Note that the core child order is different from the actual order of child nodes and

independent from the data size.

Example 9 If an elementa that conforms the DTD declaration<!ELEMENT a (b,

c, d*, e)> has five child nodesd then the actual orders of the child nodes ofa are:

b←1, c←2, d[1] ←3, d[2] ←4,.., e←8. The core child orders are:a a b←1, a a
c←2, a a d[1] ←3, a a d[2] ←3,..,a a e←4.

Extended child-order. We extend the core child-order notion to guarantee the depen-

dency (5.2). If∃ a1 anda2 such thata1 6= a2 but childOrd(a1, b) = childOrd(a2, b)

then an integer value is added to the core child order of all the child nodes ofa2 such

thatchildOrd(a1, b) 6= childOrd(a2, b). Since the cardinalities of XML documents are

finite, the extended child-orders always exists.

95

Property 2. All values eC () are distinguishing.

The extend child-orders are stored in the tableStruDTD that has three columns

PAR, CHI, and cOrder containing the tag name of the parent elements, the tag name of

the child elements, and the extended child-orders of the child elements, respectively.

A row (a, b, o) of the tableStruDTD means that any element having the tag nameb

can appear only in theoth c-group of a parent element having the tag namea.

In Algorithm BuildStruDTD, a segmentis a sequence of consecutive rows having

the same value in the PAR column. The step 1 lists the pairs of parent-child tag names.

For example, the DTD declaration<!ELEMENT a (b*, c|d)> corresponds to three

rows inStruDTD, the columns PAR and CHI of which area andb, a andc , a andd,

respectively. Steps 2-7 compute the initial values of cOrder. Steps 8-12 generate the

extended child orders. Steps 13 returns the tableStruDTD and the fanoutf .

96

Algorithm: BuildStruDTD

Input: A DTD or XML schema

Output: Table StruDTD and fanout f

1. save pairs a->b in PAR-CHI

/*initiating the possible value of the cOrder */

2. for each pair a->b

3. if element content type is ’choice’

4. cOrder ← 1;

else /*sequence*/

5. if (a->b is the start of a segment)

6. cOrder ← 1;

7. else cOrder←previous cOrder + 1; endif

endif

endfor

/* eliminating the duplication*/

8. loop

9. for each pair a->b

10. if ∃ a preceding pair a’->b &&

cOrders are equal then

11. ⇑ cOrder of a->* by 1

endif

endfor

12. if all segments are fixed then break;

endloop

13. return PAR, CHI, cOrder, f←max(cOrder)

97

Note that this algorithm runs once with DTD or XML schemas, the size of which

are independent from the size of the data sets associated with them. The tableStruDTD

is loaded in to main memory when the queries are processed. The intermediate ele-

ments resulted from decomposition of complex DTD declarations, if exist, also are

included in the tableStruDTD.

Example 10 The tableStruDTD of the element hierarchy in Figure 5.3 is shown in

Table 5.2. The fanoutf is equal to four. Both of the nodespersonnel and person

may have a nodeperson as a child node, hencepersonnel a person must be different

from person a person .

PAR CHI cOrder

personnel company 1

personnel business 2

personnel person 3

person name 2

person email 3

person person 4

name family 1

name given 2

Table 5.2. A tableStruDTD

Function childOrd . The functionchildOrd takes the values in the columns PAR and

CHI in each line of the tableStruDTD and returns the integer in the column cOrder.

For example, in Table 5.2,childOrd(person , name) = 2. Since the dependency (5.2)

holds, letparentTAG denote the function from (cOrder, CHI) to PAR, and we have

parentTAG(childOrd(a,b),b) = a (5.3)

Algorithm for SCX construction

Algorithm ConstructSCX generates SCX of the nodes of an XML document in a pre-

order traversal. Set the fanoutf equal to the maximal value of the columncOrder in

98

StruDTD that is independent from the size of XML documents. Ifn is a child node of

p then the structural identifier ofn is the sum of the base value equal to (p.sid -1)× f

+ 1 andchildOrd(n.tag, p.tag).

Algorithm: ConstructSCX

Input: T rooted at r , a fanout f >1

Output: SCX of nodes in T

1. travel T in the preorder

2. if n is the root

3. n. sid ← 1;

4. else p ← parent(n);

5. corder ← childOrd(p.tag, n.tag);

6. n. sid ← f * (p. sid - 1) + 1 + corder;

endif

7. n. ord. startPos ← start position;

8. n. ord. endPos← end position;

endtravel

The steps 5 and 6 of AlgorithmConstructSCX incorporate the child-orders com-

puted by the functionchildOrd into the structural identifiers. Thesid of the nodes of

the XML document in Figure 5.2 are shown in Figure 5.5, where the fanoutf is equal

to four.

Example 11 In Figure 5.5, suppose we have to generate thesid of the nodename

of the first nodeperson . Since the code is generated in a preorder traversal, the

sid of the parent nodeperson is already known to be equal to four. The function

nameID(person , name) = 2. Therefore, thesid of the nodename is equal to4× (4−
1)+1+2, or 15.

5.3.3 Index functions

The index functions are used to navigate between a node and its parent node based

on the structural identifier of SCX. Given the fanoutf and a noden, the function

99

personnel &1

person
&4

person
&4

person
&4

person
&17

person
&17

name
&15

email
&16

name
&15

email
&16

name
&15

email
&16

family

&58

given

&59

family
&266

given
&267

family

&58

given

&59

family

&58

given

&59

family
&266

given
&267

name

&67

email

&68

name

&67

company
&2

business
&3

…

Figure 5.5.sid of the document in Figure 5.2.

parentSIDis defined as the following:

parentSID(n.sid) = b(n.sid−2)/ f c+1 (5.4)

The purpose of the functionparentSID is to compute the structural identifier of the

parent node. This property of SCX is similar to the enumeration introduced in [52].

However, our structural identifier system is more robust and realistic. In addition, the

introduction of the functionnameID makes SCX more efficient than the method in

[52]. The function nameID is defined as the following:

nameID(n.sid) = n.sid− f ×b(n.sid−2)/ f c−1 (5.5)

This function returns the child order ofn in its parent node. In other words, it computes

thedistancefrom the start of the interval of possible structural identifiers for the child

nodes to the structural identifier ofn.

Lemma 2 If the structural identifiers of SCX are generated by AlgorithmConstructSCX

then given a node, the structural identifier and the tag name of the parent node of the

node can be determined.

100

Proof: Let n andp denote a node and its parent node. We shall show

p.sid = n.sid− f ×b(n.sid−2)/ f c−1 (5.6)

From the steps 5 and 6 of AlgorithmConstructSCX, we have

n.sid = f × (p.sid−1)+1+childOrd(p.tag,n.tag) (5.7)

Since 1≤ childOrd(p.tag,n.tag)≤ f ,

f × (p.sid−1)+2≤ n.sid≤ f × (p.sid−1)+1+ f (5.8)

or
f × (p.sid−1)≤ n.sid−2 < f × (p.sid) (5.9)

Divide to f > 0, we have

p.sid−1≤ (n.sid−2)/ f < p.sid (5.10)

Therefore,
p.sid = b(n.sid−2)/ f c+1 (5.11)

Thus, (5.6) holds and the structural identifier ofp can be computed by Formula 5.4.
Furthermore, to determine the tag name ofp, from (5.11) andf > 0, we have

f ×b(n.sid−2)/ f c= f × (p.sid−1) (5.12)

or
n.sid− f ×bn.sid−2

f
c−1 = n.sid− f × (p.sid−1)−1 (5.13)

From (5.5), (5.7), and (5.13), we have

nameID(n.sid) = childOrd(p.tag,n.tag) (5.14)

From (5.3) and (5.14),

p.tag= parentTAG(nameID(n.sid),n.tag) (5.15)

The lemma holds. 2

Note that the determination of thesid and the tag name of the parent node is inde-

pendent from theord of the child node.

101

Example 12 In Figure 5.5, for the nodegiven , thesid of which is equal 267, thesid

of the parent node is equal tob(267 - 2) / 4c + 1, which is equal to 67. The functions

nameID returns267−4×b(267−2)/4c−1, which is equal to 2. The functionparent-

TAG(given , 2) returns the valuename. Similarly, the tag names of the ancestor nodes

are found to beperson , person , andpersonnel , respectively. Therefore, the full node

path for the nodegiven is “ personnel/person/person/name/given ”.

5.3.4 Other features of SCX

Coding complexity

We generated SCX for an XML document using the SAX parser [4]. A stack, the

size of which is the maximal height of the XML tree, keeps the current node path.

Two other buffers keep the tag names and thesids of the previous nodes. A node is

visited after thesid of its parent node is known. The cost of the functionchildOrd is

log2(size(StruDTD)). Therefore, the cost for generating SCX isO(log2(size(StruDTD))

× (data size)). In our experiments, it took 90 seconds for generating in the main

memory the SCX of a data set of 4103211 elements and attributes.

Coding size

The interesting feature of the SCX is that the fanout used to computesid depends on

the number ofc-groups rather than the degree of the nodes in the XML instances.

For example, according to the DTD declaration<!ELEMENT a (b?, c*, d)> , the

degree ofa increases in parallel to the number ofc. However, the number ofc-groups

is 3, a fixed value. The small size of the fanout keeps the size of SCX small. In Table

5.3, we provide the sizes of the data sets used in our experiments and of the SCX

indexing data (in the columnStrInxSize) generated from the data sets as an illustration.

Robustness of SCX

The structural identifier of SCX is robust for the structural update. Taking into account

the DTD or XML schema, SCXanticipatesthe position of updated nodes in the asso-

ciated XML documents. The structural updates that significantly affect the robustness

of the numbering schemes are:

102

1. The increase of the number of nodes having the same tagin a parent node.

For example, according to the DTD declaration<!ELEMENT a (b?, c*, d)> ,

a node having the tag namea may have a number of nodes having the tag name

c . All these nodesc have the samesid. A new nodec must belong to thec-group

of existingc , hence it has the samesid. Furthermore, it is always possible to se-

lect thec.ord such that the newc will be reside in the correct order. The order of

the newc among the nodescs is guaranteed by an appropriate value of theord

and does not affect the selection of the structural partsid of the new node.

2. The uncertain occurrenceof an element in its parent element: Let consider the

same DTD declaration<!ELEMENT a (b?, c?, d)> . A node having the tag

namea may or may not have a child node having the tagb. According to the

construction of SCX, a place for such ab is reserved.

Therefore, in both cases, the insertion of a new node does not cause the change of

the sid of the other nodes. Note that SCX is robust in the terms of structural update

with clue, i.e. the schematic information from DTD or XML schema is available.

Coping with changing DTD

A radical change of DTD, which leads to the entire change of document content and

structure, requires rebuilding the index from scratch. The insertion of an element in

the content specification of the DTD declaration of an existing element may change

the SCX of related elements in the actual data. If insertions are predicted then asparse

mode of SCX construction can reserve thelocation for the elements to be inserted. If

an inserted element is the last child element of its parent element and does not increase

the maximal value ofcOrderthen SCX of existing data is not changed. In practice, the

changes in a DTD are rarer than the changes in the content and structure of the XML

documents conforming to the DTD.

5.4 Virtual Joins with SCX

SCX provides the Virtual Joining mechanism that can avoid many the intermediate

structural joins in XML query processing. To perform Virtual Join mechanism, we

need several basic functions.

103

Determining the tag name of the parent node.For a given node, the functionfind-

ParentSidAndTag calls theparentSID andnameID functions to compute thesid of the

parent node and the child order, which is used by the functionparentTAG to find the

tag name of the parent node.

Function: findParentSidAndTag

Input: n. sid, n. name

Global: the fanout f of T

1. sid←parentSID(n. sid);

2. tid←nameID(n. sid);

3. name←parentTAG(n. name, tid);

4. return sid, name;

Establishing node path. The functiongenerateNodePath establishes the full node

path for a given node by recursively performing the functionfindParentSidAndTag.

Checking the existence of an ancestor having a specific tag name.For a given node

with its isd and tag name, the functionfindAncByName look for the lowest ancestor

that has a given name.

Function: findAncByName

Input: n. sid, n. name, ancname

Global: the fanout f of T

1. name←n. name, sid←n. sid;

2. loop (sid >1)

3. sid, o ←findParentSidAndTag(sid, name);

4. name←parentTAG(name, o);

5. if (name is empty) return null;

6. else if (name = ancname) return sid, name;

endloop

The functionfindAncByName can be modified by replacing the step 6 with the

following command:

104

if (name = ancname&&((l >0 && i=l) || l=0))

to incorporate the level of the ancestor to be looked for. It checks if thel -level ancestor

has a given tag name. Ifl is equal to 0, the level requirement is omitted.

5.4.1 Basicpath-predicatequeries

In this section, we describe how to apply the Virtual Join mechanism to process the

queries represented by a path expression ended with a predicate.

Definition 13 A path query is called basic path-predicate query if it is expressed in

the form: a1`1a2`2· · ·`k−1ak or a1`1a2`2· · ·`k−1[P of ak], wherek≥ 1, `i (i = 1 to

k-1) is either the parent axis ’/’ or the ancestor axis ’//’, andP is a predicate ofak.

For example, “person/name[given = ’Smith’] ” is a basic path-predicate query.

In the basic path-predicate queries, all the nodes having the tag namesai, i 6= k, and the

nodes having the tag nameak filtered by the predicateP participate in the structural

joins. The predicateP is optional and can be void.

A basic path-predicate query is presented by a table calledquery patternwith four

columns. The column TAG contains the tag names in the query path expression in

reverse order, i.e.ai, (i = k-1 to 1). The column AXIS contains thèi (i = k-1 to 1).

The column ANS indicate the lines having the axis ’//’ in the column AXIS. In the

column FROM, only the values of the lines having the axis ’//’ in the AXIS column

are used and initially equal to 0.

The functionmatchPattern checks if a node having the tag nameak matches a

query pattern. The functionstep(i) looks for the element having the tag name TAG[i]

in the axis AXIS[i] of the current node by calling the functionfindAncByName. If the

AXIS[i] is ’//’ and FROM[i] > 0 thensid of the node to be found must be less than

FROM[i]. The functionstep returnsnull if there is no such a node, otherwise returns

the foundsid and tag name. The step 11 seeks the next possible root for a sub-path

starting by ’//’. The functionmatchPattern returnstrue if all the steps in the query

pattern are satisfied.

105

Function: matchPattern

Input: a node n, a query pattern

1. cursid ←ak. sid; curtag ←ak. tag; curstep ←1;

2. while (true)

3. b ← step(curstep)

4. if (b!= null)

5. cursid = b. sid; curtag = b. tag;

6. if (AXIS[curstep]=’//’)

7. FROM[curstep] = b. sid;

endif

8. if curstep = sizeOf(querypattern)

9. return true;

10. else curstep++;

else

11. Seek max j < curstep: AXIS[j]=’//’&& FROM[j] > 1

12. if ∃: curstep ← j; ∀ i>j FROM[i] ← 0;

13. else break;

endif

endwhile ;

14. return f alse;

Function step(i)

1. s ← cursid; t ← curtag;

2. n←findAncByName(s, t, TAG[i], AXIS[i]);

3. return n;

In function matchpatter, the functiongenerateNodePath can be applied to avoid

the repetition of the functionstep.

Lemma 3 The functionmatchPattern correctly verifies if the elementak satisfies the

path expressiona1`1a2`2· · ·`k−1ak.

Performing Virtual Joins. The procedureVirtualJoin takes a set of the nodesak,

which satisfy the predicateP, and a query pattern as the input. By a single scan

106

over the set, for each indexi, the functionmatchPattern checks if the nodeai
k matches

the query pattern. Note that the functionmatchPattern will terminate early for the

disqualified nodes and the checking process run totally in main memory. The function

virtualJoin can process theancestor-leveljoins, where the hierarchy level is required,

such as “a/b ”, “ a/*/b ”, as well as the “a//b ”.

Function: VirtualJoin /*for basic path-predicate query*/

Input: dlist[], queryPattern

1. for (i from 0 to the size of dlist - 1)

2. if matchPattern(dlist[i], pattern) = true

3. output dlist[i];

4. endif ;

endfor ;

The Virtual Join mechanism does not require the candidate nodes to be sorted and

evaluates basic path-predicate queries without I/O except the indexing data of the out-

put candidate set. For queries with long location paths, as shown by the experiment

results, the Virtual Join mechanism has a clear advantage since the indexing data of

only the last elements in the location paths is needed to be loaded.

5.4.2 Complexpath-predicatequeries

A path query may be associated with several selection predicates.

Definition 14 A path query is called complex path-predicate query if it is expressed in

the form of a finite sequence of basic path-predicate queries separated by the parent

axis ’/’ or the ancestor axis ’//’.

A complex path-predicate queryB1`1B2`2· · ·`k−1Bk, k ≥ 1, is evaluated by inte-

grating the result of the basic path-predicate queriesBi, i = 1 tok, which are evaluated

separately using the Virtual Joins. Let{r i} denote the list of result nodes ofBi, {si} de-

note the list ofsid of the nodes in the highest hierarchical structure ofBi corresponding

to {r i}. From the description ofmatchPattern, {si} is generated together with{r i}.

107

The lists{r i} are joined using the conventional structural join technique to produce the

final result. Two elementsr j
i andr k

i+1, 1≤i<k−1, are matched in the structural joins

of {r i} and{r i+1} if:

1. r
j
i .startPos< r k

i+1.startPos&& r
j
i+1.endPos< r k

i .endPos, and

2. (`i is ’/’ && r
j
i .sid = parentSID(sj

i)||(`i is ’//’ && r
j
i .sid < sj

i)

For example, the complexpath-predicatequerya/b/c/[d : P1]/e/f/[g : P2]

is decomposed into two subqueriesa/b/c/[d : P1] and/e/f/[g : P2]. For the first

subquery, thed satisfying the predicateP1 are loaded and virtually joined withc, b,

a. For the second subquery, theg satisfied the predicateP2 are loaded and virtually

joined with f ande. Thesid of the nodese corresponding to the intermediate nodesg

are also available. Thesed andg are joined by the condition:“d is an ancestor ofg and

d.sid = parentSID(e.sid), where thee corresponds to theg”.

5.4.3 Processing twig queries

Queries on XML data typically specify elements by selection predicates and their tree

structure relationship that can be represented as a node label twig pattern with elements

with or without predicates in the leaf nodes.

A twig query is decomposed into three complex path-predicate subqueries that are

processed separately using the Virtual Joins. The result elements of these queries then

are joined using the componentord of SCX by conventional structural join techniques

that base on the (startPos , endPos) presentation of the position of elements, e.g.

[35], [27] etc. The compatibility with the prior researches is an interesting feature of

SCX.

Figure 5.6 illustrates a twig query, the result elements of which have the tag name

b. The twig query is decomposed into three subqueries represented by the paths from

a to b, from the node bellowb in the left branch top, and from the node bellowb in

the right branch toq. The join of the outputs of these subqueries to produce the final

answer is similar to the join of intermediate results in a complex path-predicate query.

Example 13 Using SCX, the XQuery statement “FOR $b IN /site/people/person

WHERE $b/address/city = ‘Nara’] RETURN $b/name/text ” is decomposed

108

a

b
indexing data I/O

p

predicate

p

predicate

virtual join

Figure 5.6. Processing a twig query.

into the basic path-predicate queries “/site/people/person ”, “ address/city

= ’Nara’] ”, and “ name/text ”.

Note that, in general, the I/O complexity isoptimal since only the indexing data

of elements that have to be verified by predicates is loaded or belong to the candidate

set of the output. For example, in Example 13, the indexing data of elementsperson ,

city andtext are needed to perform the joins.

DSet Size #ele. #att. StrInxSize

1 23.4MB 336224 76867 23MB

2 57.6MB 832911 191162 55MB

3 87.2MB 1253793 286576 87MB

4 115.7MB 1666315 381878 110MB

5 145.1MB 2088879 478374 148MB

6 174.0MB 2502484 573122 158MB

7 203.4MB 2921324 669773 188MB

8 232.2MB 3337649 765562 219MB

Table 5.3. Specifications of the data sets

109

5.5 Experiment

We have implemented SCX and the Virtual Join mechanism in a system called Virtual

Joins Engine for XML(VJEX). The current version of VJEX has the module for evalu-

ating the basic path-predicate queries. We maintain the main file structure for storing

the structure coding as the following:

<scx, element name, add infor>

wherescx is the SCX, including bothsid andord, element name is the tag name,

andadd infor consists of an indicator whether the item is an element or attribute and

a pointer to data. The primary functions on the structures are:

F1: For a givenscx , retrieve the elements or attributes having that identifier.

F2: For a given name, retrieve all the elements or attributes having that name.

The XML content and the coding data are indexed using B+-tree. We create two

B+-trees onscx andelement name. Since it is not necessary to sort the indexing

data in Virtual Joins, the data is sorted by thescx.ord.startPos as required by

most of the structural join techniques. For the purpose of this research, the physical

data presentation of the XML content is not material and its details is not relevant to

the results of this research.

VJEX keeps the tableStruDTD in the main memory during the query evaluation.

The input query of VJEX is transformed into a basic path-predicate, a complex path-

predicate, or a twig forms. The basic path-predicate subqueries are evaluated sepa-

rately using the Virtual Join mechanism. The partial results are joined using non-virtual

join algorithms (not shown here) to produce the final result.

5.5.1 Experiment setup

We measure thefull processing time that includes the elapsed times for loading the

indexing data and for performing structural joins in XML queries.

We compare our method with the methodStack-Tree-Decs in [35] andPathStack in

[27]. Both of these Algorithms use the tuple (docID , startPos , endPos , nodeLevel)

to present an XML element.Stack-Tree-Decs is the highest performance method

110

among four methods described in [35], where stacks are used to reduce the number

of the match tests for the pairs of elements from the joined candidate sets in structural

joins. PathStack also uses stacks to compactly present the partial and total answers to

avoid the large intermediate answers.

5.5.2 Experimental platform and Data sets

Our experiments were conducted in a workstation running on Windows XP Profes-

sional with a 2GHz CPU. The SAX parser available from the Xerces project [4] were

used to parse XML data. Other programs for extracting structure information from

DTD, generating SCX, and processing the Virtual Joins were written in Java. The

maximal Java heap size was set to be equal 300MB.

We used the XML data generatorxmlgen provided by XMark [2] to generate syn-

thetic XML documents conforming the DTD “auction.dtd”. This DTD has a fairly

complex structure to make the experiments objective. The specifications of these data

sets are shown in Table 5.3. As shown in the columnStrInxSize of Table 5.3, the size

of the SCX indexing data is approximately equal to the size of the XMark data sets

from which it was generated.

5.5.3 Experimental results

To evaluate SCX, we use the queries that features the various complexities of structural

joins, some of them were borrowed from prior researches in the same topic. The

queries contain both ’/’ and ’//’ axes and include short, medium, and long location

paths as shown in Table 5.4.

The experiment results are shown in Figures 5.7, 5.8, and 5.9, where the methods

SCX, Stack-Tree-Decs, andPathStack are abbreviated by SCX, STD and PS, respec-

tively. The number of hits of the queries are shown by the columnsQ1, Q2, Q3, Q4,

Q5, andQ6 in Table 5.5 according to the data sets.

Simple joins

The queries with a single structural join have been discussed in detail in the [31] such

as parent-child joins “E1/E2 ” or ancestor-descendant joins “E1//E2 ”. We omit the

discussion about the element and attribute join, considering it as a special case of

111

Queries XPath expressions

Q1 //closed auction/item

Q2 //items/name

Q3 //open auction//description

Q4 //open auction//description//listitem

Q5 //open auction//description//keyword

Q6 //closed auctions/closed auction/annotation/description/

parlist/listitem/text/emph/keyword/

Table 5.4. Query set for testing Virtual Joins

“E1/E2 ” join. Both of the queries Q1 and Q2 involve a single parent-child join of

two element sets. The query Q3 has an ancestor-descendant join. The cardinalities

of the XML element sets participating in the structural joins are different. From the

Figure 5.7(a), we can see the SCX is slightly better thanStack-Tree-Decs in the

smallest data set and significantly better in the bigger data sets. The elapsed times for

processing the short queries on different data sets are shown in Figure 5.7(a)(b) and

5.8(a).

Medium complex queries

The queries contain several structural joins that may be ancestor-descendant or parent-

child joins. The queries Q4 and Q5 are borrowed from [40]. In the queries Q4 and

Q5, there are only the ancestor-descendant joins. The elapsed times for processing the

queries on different data sets are shown in Figure 5.8(b) and 5.9(a). As expected, the

axis ‘//’ can be processed efficiently using Virtual Joins. For the location paths of Q4

and Q5, the indexing data of only two elementslistitem andkeyword was loaded

and the remaining part of the evaluation process was done in main memory.

Complex queries

A number of queries introduced in XMark [2] have complex structure. The evaluation

of such queries requires many structural joins. An example of such queries is Q6.

112

Performing the structural joins inQ6 is the main workload of the evaluating the query:

“Print the keywords in emphasis in annotations of closed auctions”. The elapsed time

for processing the query on different data sets is shown in Figure 5.9(b). For the

complex query, the advantage of the SCX over STD and PS is greatly significant. It

can be explained by that the amount of indexing data saved by SCX from loading

from secondary memory, that is required by other indexing methods, is larger for such

queries. For the location path of Q6, the indexing data of the only elementkeyword

was loaded and the remaining part of the evaluation process was done in main memory

despite of the number of joins in the location path.

DSet Q1 Q2 Q3 Q4 Q5 Q6

1 1952 7350 2400 3528 3173 50

2 4875 10875 6000 8361 7471 134

3 7312 16312 9000 12759 11341 203

4 9750 21750 12000 16640 14954 271

5 12187 27187 15000 21123 19030 318

6 14625 32625 18000 25499 22917 412

7 17062 38062 21000 29706 26551 448

8 19500 43500 24000 33954 30377 521

Table 5.5. Numbers of hits of the test queries

In our query set, the join workloads are increased from queries Q1 to Q6. In all ex-

periments, we can see an interesting tendency that when the sizes of data sets increase,

the comparison result is changed in the favor of the SCX method. The advantage of

SCX steadily increases in correspondence with the size of the experimental data sets as

well as the join workload. The experiment result accords with our expectation that for

the large data sets and the queries with the heavy join workload, the advantage SCX in

I/O complexity for XML query processing becomes more significant since the amount

of data saved from I/O becomes larger.

113

�

�����

� �����

� �����

�������

� �	�
��	� �����
�� �	�
 ���	�
����	� ��
 �	� �������
��� �����������! ��#"��	 �"��� �����������! ��#"��	 �"��� �����������! ��#"��	 �"��� �����������! ��#"��	 �"

$% &
'(
)* +
, -
). -
(
/

$% &
'(
)* +
, -
). -
(
/

$% &
'(
)* +
, -
). -
(
/

$% &
'(
)* +
, -
). -
(
/

021�3 0�4�5 620

(a) Elapsed query time for Q1

�

�������

�������

�������

� �	�
��	� �����
�� �	�
 ���	�
����	� ��
 �	� �������
��� �����������! ��#"��	 �"��� �����������! ��#"��	 �"��� �����������! ��#"��	 �"��� �����������! ��#"��	 �"

$% &
'(
)* +
, -
). -
(
/

$% &
'(
)* +
, -
). -
(
/

$% &
'(
)* +
, -
). -
(
/

$% &
'(
)* +
, -
). -
(
/

021�3 0�4�5 620

(b) Elapsed query time for Q2

Figure 5.7. Query processing of the short queries Q1 and Q2.

114

�

�������

�������

�������

�������

� �
	 ���
	 ���
	
 ����	
 ����	
 ����	 ��
��
	 �����
	
��� ��������� �"! �$#��
! #��� ��������� �"! �$#��
! #��� ��������� �"! �$#��
! #��� ��������� �"! �$#��
! #

%& '
()
*+ ,
- .
*/ .
)
0

%& '
()
*+ ,
- .
*/ .
)
0

%& '
()
*+ ,
- .
*/ .
)
0

%& '
()
*+ ,
- .
*/ .
)
0

132�4 1�5
6 731

(a) Elapsed query time for Q3

�

� �����

�������

�������

� �������

��	�
 ��	�

�	�
 � ��	�
 � ��	�
 � ��	�
 ����	�
 ����	�

��� ���������! #"# %$���"!$��� ���������! #"# %$���"!$��� ���������! #"# %$���"!$��� ���������! #"# %$���"!$

&' (
)*
+, -
. /
+0 /
*
1

&' (
)*
+, -
. /
+0 /
*
1

&' (
)*
+, -
. /
+0 /
*
1

&' (
)*
+, -
. /
+0 /
*
1

2�3�4 2�5�6 7�2

(b) Elapsed query time for Q4

Figure 5.8. Query processing of the short query Q3 and the medium query Q4

115

�

� �����

�������

�������

� �������

��	�
 ��	�

�	�
 � ��	�
 � ��	�
 � ��	�
 ����	�
 ����	�

��� ��������� �"!"�$#���! #��� ��������� �"!"�$#���! #��� ��������� �"!"�$#���! #��� ��������� �"!"�$#���! #

%& '
()
*+ ,
- .
*/ .
)
0

%& '
()
*+ ,
- .
*/ .
)
0

%& '
()
*+ ,
- .
*/ .
)
0

%& '
()
*+ ,
- .
*/ .
)
0

13254 156�7 831

(a) Elapsed query time for Q5

�

�������

� �������

� �������

���������

���������

���	�
��	� ���	� �
���� �����	� � �����
�� �	�
������
��� �	���������! !�#"��	 $"��� �	���������! !�#"��	 $"��� �	���������! !�#"��	 $"��� �	���������! !�#"��	 $"

%& '
()
*+ ,
- .
*/ .
)
0

%& '
()
*+ ,
- .
*/ .
)
0

%& '
()
*+ ,
- .
*/ .
)
0

%& '
()
*+ ,
- .
*/ .
)
0

132�4 1�5	6 731

(b) Elapsed query time for Q6

Figure 5.9. Query processing of the medium query Q5 and the complex query Q6

116

5.6 Summary of Chapter 5

Prior techniques for processing XML queries have not utilized efficiently the document

structure described in DTD and XML schema and heavily depended on the actual or-

der of XML elements in XML instances. In this study, we proposed the Virtual Join

mechanism for structural joins using the Structure Coding for XML data (SCX) that

incorporates both structure and tag name information extracted from DTD or XML

schema. SCX greatly improves the I/O complexity of XML query processing. Many

intermediate containment joins can be avoided by computing the result set using the op-

erations on the SCX only. According to our experiments, SCX significantly improves

the query processing efficiency in correspondence with the structural join workload

and the size of data sets. In addition, SCX and prior structural joins techniques can be

integrated to improve the XML query processing.

117

Chapter 6

Summary and Future Research

6.1 Conclusion

Since XML has been widely considered as a leading candidate for the data organizing

principle in Internet, the amount of data formatted in XML expands quickly. Therefore,

the need for efficient indexing structures for XML data is more and more significant

for XML data management.

In this thesis, we present the result of the studies on efficient XML indexing struc-

tures. We propose three indexing structures for XML data to address three common

issues of XML data management as follows:

1. We have founded that to cope with extensively content-updated XML data, the

expression of the position of elements in XML documents by Relative Region

Coordinate is a solution. RRC can reduces the workload to maintain the coordi-

nate integrity for XML data in XML indexing structure.

2. We have proposed the novel recursive numbering schemerUID that is robust

in structural update, scalable for coding arbitrarily large XML documents, and

expressive in presenting the main XPath axes. The indexing structure based

on the numbering scheme can deal well with the XML, where the new XML

elements can be inserted without clues, i.e. DTD or XML schemas.

3. We have showed that the schematic information extracted from DTD or XML

schemas can be used effectively to improve the efficiency of XML query pro-

119

cessing. For this purpose, we have proposed a mechanism called Virtual Joins

that allows greatly reduce the I/O workload needed for processing XML queries.

The mechanism is based on a structure coding for XML data called SCX that

is robust on the structural update of the XML documents conforming DTD or

XML schemas.

Design of efficient XML indexing structures is a complex task because XML’s

semantic characteristics effect each other. Our solutions presented in the thesis is the

result of exhausted analysis, extensive testing and performance evaluation. Although

some parts of the thesis can be developed further, based on the experimental results, we

concluded that the proposed indexing structures are competitive in solving the specific

issues that the structures have been desinged to aim at.

6.2 Future Research

A further development of the research issues addressed in the thesis is likely going

to improve or develop some additional properties of the proposed indexing structures.

For example, an extension of Chapter 4 is to investigate the impact of therUID frame

on the effectiveness of query processing. The variants of the indexing structuresrUID

and SCX specific for various platforms are in our next plan. Currently, we are going

to investigate the application of Virtual Joins in the applications categorized into the

XML-Enabled Databasegroup, as discussed in Section 2.3.1, page 23 of this thesis.

Following a comment from the Thesis Committee, it is worth to investigate in

detail which types of DTD enable the SCX. In this thesis, a primitive solution has

been proposed to deal with the common-used types of DTDs. For a comprehensive

investigation, a tentative approach is using the automata theory to represent DTDs and

providing the analysis of the characteristics of SCX-enable DTD based on the richness

of the automata theory. A short discussion has been added to Chapter 5 to outline the

approach. However, due to the theoretical nature of the approach, it would better to be

discussed in a new work.

Another interesting direction is to investigate the functional characteristics of these

structures in new application domains. Since XML is the next wave of the Internet

technology, the research domain related with XML covers a large range of applications

such as stream data management, e-commerce applications, XML data management

120

for bio-informatics, etc. However, due to the differences of the types of data generated

in the applications, it is likely that each application requires further refinement and

improvement of the current proposed techniques, including indexing structures, for

XML data management.

121

References

[1] A. Biliris. An Efficient Database Storage Structure for Large Dynamic Objects.

Proceedings of the International Conference on Data Engineering, Arizona, USA,

pages 301–308, 1992.

[2] A. Schmidt. XMark: A Benchmark for XML Data Management.Proceedings of

the International Conference on Very Large Databases, Hongkong, China, 2002.

[3] Akmal B. Chaudhri, Awais Rashid, Roberto Zicari.XML Data Management:

Native XML and XML-Enabled Database Systems. Addison Wesley, ISBN:

0201844524, 2003.

[4] Apache Software Foundation. Apache XML Project.http://xml.apache.org/,

2001.

[5] B. Cooper, N. Sample, M. Franklin, G. Hjaltason, M. Shadmon. A Fast Index for

Semistructured Data.Proceedings of the International Conference on Very Large

Databases, Hongkong, China, pages 341–350, 2001.

[6] C. C. Kanne, G. Moerkotte. Efficient Storage of XML Data.Proceedings of

the International Conference on Data Engineering, California, USA, page 198,

2000.

[7] C. F. Goldfarb, P. Prescod.XML Handbook, 4th edition. Prentice Hall, New

Jercey, USA, 2002.

[8] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, G. Lohman. On Supporting Con-

tainment Queries in Relational Database Management Systems.Proceedings of

the ACM SIGMOD Conference on Management of Data, California, USA, May

2001.

[9] D. Dinh Kha, M. Yoshikawa, S. Uemura. An XML Indexing Structure with

Relative Region Coordinate.Proceedings of the International Conference on

Data Engineering, Heidelberg, Germany, pages 313–320, April 2001.

[10] D. Dinh Kha, M. Yoshikawa, S. Uemura. A Structural Numbering Scheme for

XML Data. EDBT workshop on XML Data Management (XMLDM), Prague.

122

Lecture Notes of Computer Science 2490: XML-Based data Management and

Multimedia Engineering, pages 91–108, 2002.

[11] D. Dinh Kha, M. Yoshikawa, S. Uemura. Application of rUID in Processing

XML Queries on Structure and Keyword.Proceedings of International Con-

ference on Database and Expert Application, Aix-en-provence, France. Lecture

Notes of Computer Science 2453, pages 279–289, 2002.

[12] D. Florescu, D. Kossmann. A Perfomance Evaluation of Alternative Mapping

Schemes for Storing XML data in Relational Database.Technical Report 3680

INRIA http://rodin.inria.fr/dataFiles/FK99.ps, May 1999.

[13] D. Florescu, I. Manolescu, D. Kossmann. Integrating Keyword Search into XML

Query Processing.Proceedings of the International WWW Conference, Elsevier,

Amsterdam, pages 119–135, May 2000.

[14] D. Shin. XML Indexing and Retrieval with a Hybrid Storage Model.Knowledge

and Information Systems, 3:252–261, 2001.

[15] Dan Gusfield.Algorithms on Strings, Trees, and Sequences. Cambridge Univer-

sity Press, New York, USA, 1997.

[16] F. Neven. Automata Theory for XML Researchers.SIGMOD Record, 31(3),

2002., 2002.

[17] H. Garcia-Molina, J. D. Ullman, J. Widom.Database System Implementation.

Prentice Hall, New Jersey, USA, 2000.

[18] H. Jang, Y. Kim, D. Shin. An Effective Mechanism for Index Update in Struc-

tured Documents.Proceedings of CIKM, Kansas, USA, pages 383–390, 1999.

[19] H. Jiang, H. Lu, W. Wang, B. C. Ooi. XR-Tree: Indexing XML data for Efficient

Structural Joins.Proceedings of the International Conference on Data Engineer-

ing, India, 2003.

[20] H. Kaplan, T. Milo, and R. Shabo. A Comparison of Labeling Schemes for

Ancestor Queries.Proceedings of ACM-SIAM Symposium on Discrete Algo-

rithms(SODA), USA, pages 954–963, 2002.

123

[21] I. Tatarinov et al. Storing and Querying Ordered XML Using a Relational

Database System.Proceedings of the ACM SIGMOD, USA, June 2002.

[22] I. Tatarinov, Zachary G. Ives, Alon Y. Halevy, Daniel S. Weld. Updating XML.

Proceedings of the ACM SIGMOD Conference on Management of Data, Califor-

nia, USA, pages 413–424, May 2001.

[23] IBM. DB2 XML Extender. http://www-

3.ibm.com/software/data/db2/extenders/xmlext/, 2002.

[24] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, J. Naughton. Rela-

tional Databases for Querying XML Documents: Limitations and Opportunities.

Proceedings of the International Conference on Very Large Databases, Edin-

burgh, Scotland, pages 302–314, 1999.

[25] M. J. Carey, D. J. DeWitt, J. E. Richardson, E. J. Shekita. Object and File Man-

agement in the EXODUS Extensible Database System.Proceedings of the In-

ternational Conference on Very Large Databases, Kyoto, Japan, pages 91–100,

1986.

[26] M. Yoshikawa, T. Amagasa, T. Shimura, S. Uemura. XRel: A Path-Based Ap-

proach to Storage and Retrieval of XML Documents Using Relational Databases.

ACM Transation on Internet Technologies, 1(1):110–141, 2001.

[27] N. Bruno, N. Koudas, D. Srivastava. Holistic Twig Joins: Optimal XML Pattern

Matching.Proceedings of SIGMOD, USA, pages 310–321*, 2002.

[28] Oracle company. Oracle 9i. http://otn.oracle.com/products/oracle9i/content.html,

2002.

[29] P. Buneman, S. Davidson, M. Fernandez, D. Suciu. Adding Structure to Unstruc-

tured Data. Proceedings of the International Conference on Database Theory,

Greece, pages 336–350, 1997.

[30] P. F. Dietz. Maintaining order in a link list.Proceedings of the Fourteenth ACM

Symposium on Theory of Computing, California, pages 122–127, May 1982.

124

[31] Q. Li, B. Moon. Indexing and Querying XML Data for Regular Path Expressions.

Proceedings of the International Conference on Very Large Databases, Roma,

Italy, pages 361–370, September 2001.

[32] R. Goldman and J. Widom. DataGuides: enabling query formulation and opti-

mization in semistructured databases.Proceedings of the International Confer-

ence on Very Large Databases, pages 436–445, September 1997.

[33] R. Sacks-Davis, T. Dao, J. A. Thom, J. Zobel. Indexing Documents for Queries

on Structure, Content and Attributes.Proceedings of International Symposium

on Digital Media Information Base (DMIB), Nara, Japan, pages 236–245, 1997.

[34] S. Abiteboul, H. Kaplan, and T. Milo. Compact Labeling Schemes for Ancestor

Queries.Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA),

USA, pages 547–556, 2001.

[35] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, D. Srivastava. Struc-

tural Joins: A Primitive for Efficient XML Query Pattern Matching.Proceedings

of ICDE, USA, pages 141–148, 2002.

[36] S. Chien et al. Efficient Structural Joins on Indexed XML Documents.Proceed-

ings of VLDB, Hongkong, 2002.

[37] S. Chien, V. J. Tsotras, C. Zaniolo, D. Zhang. Storing and Querying Multiversion

XML Documents using Durable Node Numbers.Proceedings of the Interna-

tional Conference on Web Information Systems Engineering, Kyoto, Japan, pages

270–279, December 2001.

[38] T. Milo, D. Suciu. Index Structures for Path Expression.Proceedings of the

International Conference on Database Theory, pages 277–295, 1999.

[39] Tobin J. Lehman, Bruce G. Lindsay. The Starburst Long Field Manager.Pro-

ceedings of the International Conference on Very Large Databases, Amsterdam,

Netherlands, pages 375–383, 1989.

[40] Torsten Grust. Accelerating XPath Location Steps.Proceedings of the ACM

SIGMOD Conference on Management of Data, Wisconsin, USA, pages 109–120,

June 2002.

125

[41] University of California, Berkeley. Berkeley Database.

http://www.sleepycat.com/, 2002.

[42] Wang Wei et al. PBiTree Coding and Efficient Processing of Containment Join.

Proceedings of the ICDE, India, 2003.

[43] World Wide Web Consortium. Overview of SGML Resources.

http://www.w3.org/MarkUp/SGML/.

[44] World Wide Web Consortium. HyperText Markup Language (HTML) Home

Page.http://www.w3.org/MarkUp/.

[45] World Wide Web Consortium. Scalable Vector Graphics (SVG) 1.1 Specification.

http://www.w3.org/TR/SVG11/.

[46] World Wide Web Consortium. Document Object Model (DOM) Level 1 Specifi-

cation.http://www.w3.org/TR/REC-xml, 1998.

[47] World Wide Web Consortium. Extensible Markup Language (XML) 1.0.

http://www.w3.org/TR/REC-xml, 2000.

[48] World Wide Web Consortium. XML Path Language (XPath) Version 1.0.

http://www.w3.org/TR/xpath, 2000.

[49] World Wide Web Consortium. Extensible Stylesheet Language (XSL) Version

1.0. http://www.w3.org/TR/xsl/, 2001.

[50] World Wide Web Consortium. XML Linking Language (XLink) Version 1.0.

http://www.w3.org/TR/xlink/, 2001.

[51] World Wide Web Consortium. XQuery 1.0: An XML Query Language.

http://www.w3.org/TR/xquery, 2002.

[52] Y. K. Lee, S-J. Yoo, K. Yoon, P. B. Berra. Index Structures for structured doc-

uments. ACM First International Conference on Digital Libraries, Maryland,

pages 91–99, March 1996.

126

List of Publications

Journal Papers

1. Dao Dinh Kha, Masatoshi Yoshikawa and Shunsuke Uemura, “A Structural Num-

bering Scheme for Processing Queries by Structure and Keyword on XML Data”,

IEICE Special Section on Information Processing Technology for Web Utiliza-

tion, pp.361-372, Vol.E87-D, No.2, February 2004.

2. Dao Dinh Kha, Masatoshi Yoshikawa and Shunsuke Uemura, “XML Content

Update using Relative Region Coordinate”, IEICE Transactions on Information

and Systems, Vol.E87-D, No.3, March 2004.

International Conference Papers

1. Dao Dinh Kha, Masatoshi Yoshikawa and Shunsuke Uemura, “Application of

rUID in Processing XML Queries on Structure and Keyword”, Proceedings of

13th International Conference on Database and Expert Systems Applications

(DEXA), Lecture Notes in Computer Science 2453, pp.279-289, September

2002.

2. Dao Dinh Kha, Masatoshi Yoshikawa and Shunsuke Uemura, ”A Structural Num-

bering Scheme for XML Data Proceedings of the Workshop on XML-based Data

Management”, XML Data Management Workshop (in conjunction with the Con-

ference on Extending Database Technology), Lecture Notes in Computer Sci-

ence 2490, pp.91-108, March 2002.

3. Dao Dinh Kha, Masatoshi Yoshikawa and Shunsuke Uemura, “An XML Index-

ing structure with Relative Region Coordinate”, Proceedings of the 17th IEEE

International Conference on Data Engineering (ICDE), pp.313-320, April,2001.

Other Publications

1. Dao Dinh Kha, Masatoshi Yoshikawa and Shunsuke Uemura, “Virtual Joins for

XML Data”, NAIST Technical Report IS-TR2003012, November 2003.

2. Dao Dinh Kha, “Update-robustness for XML Data”, Ph.D. Doctoral Poster, VLDB,

August 2002 (accepted, not presented).

3. Dao Dinh Kha, Masatoshi Yoshikawa and Shunsuke Uemura, “Processing XML

Queries on Structure and Keywords using rUID in SKEYRUS”, Database Work-

shop, July 2002.

4. Dao Dinh Kha, Masatoshi Yoshikawa and Shunsuke Uemura, “Processing XML

Queries on Structure and Keywords in SKEYRUS”, NAIST Technical Report IS-

TR2002010, June 2002.

5. Dao Dinh Kha, Masatoshi Yoshikawa and Shunsuke Uemura, “An Effective Stor-

age of XML data with Relative Region Coordinate”, The 62nd National Conven-

tion IPSJ, March 2001.

6. Dao Dinh Kha, Masatoshi Yoshikawa and Shunsuke Uemura, “Application of

Relative Region Coordinate for XML Storage”, Data Engineering workshop,

March 2001.

7. Masatoshi Yoshikawa, Toshiyuki Amagasa, Dao Dinh Kha, Kenji Hatano, Hi-

roko Kinutani, Noboru Matoba, Junko Tanoue, Masahiro Watanabe and Shun-

suke Uemura, “On Two Query for Interfaces Genome XML Databases”, Pro-

ceedings of IEEE Workshop on XML-Enables Wide Area Search in Bioinfor-

matics (XEWA), December 2000.

8. Dao Dinh Kha, Masatoshi Yoshikawa and Shunsuke Uemura, “An XML Index-

ing structure with Relative Region Coordinate”, NAIST Technical Report IS-

TR2000012, December 2000.

128

Appendix

A B+-tree: an example

2* 3*

17

5 13 24 30

5* 7* 8* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

�������

Figure 6.1. Example of a B+ Tree, Order is equal 2.

B-trees, introduced by Bayer (1972) and McCreight, m-ary balanced trees the

structure of which allows records to be inserted, deleted, and retrieved with guaran-

teed worst-case performance. Ann-node B-tree has heightO(lg n), wherelg is the

logarithm to base 2. A B-tree organizes its blocks into a tree. The root is either a tree

leaf or has at least two children. Each node (except the root and tree leaves) has at least

half capacity, i.e. betweend m/2 e andm children, whered x e is the ceiling function.

In a B-tree, each path from the root to a tree leaf has the same length. In B+ tree,

leaves are connected by pointers to provide sequential access. An example of B+-tree

is depicted in Figure 6.1.

B R-tree: an example

R-Tree is a spatial access method, i.e. a data structure to search for lines, polygons, etc,

which splits space with hierarchically nested, and possibly overlapping boxes. Objects

are indexed in each box which intersects them. The tree is height-balanced. In a R-

Tree, the root node has at least two children nodes unless it is a leaf. Every node

contains betweenmandM children unless it is the root node. All leaves appear on the

same level since the tree is balanced. Entries in non-leaf node contain a child-pointer

to the address of a lower node in the R-tree and the bounding rectangle of this entry.

129

Entries in a leaf node contain a tuple-identifier referring to the tuple in the database

and the bounding rectangle of this entry. An example of R-tree and the data indexed

by it are depicted in Figure 6.2.

R8 R9 R10

R1 R2

R3 R4 R5 R6 R7

R11 R12 R13 R14 R15 R16 R17 R18 R19

�������

R2

R1
R3

R4

R5

R7

R6

R17

R18

R19

R12

R11

R8

R9

R10

R14
R13

R16
R15

Figure 6.2. Example of a R-Tree and its spacial objects.

130

C The DTD of the datasetsI

<!ELEMENT personnel (person)+>

<!ELEMENT person (name,email*,note?,link?,person*)>

<!ATTLIST person id ID #REQUIRED note CDATA #IMPLIED

contr (true | false) "false" salary CDATA #IMPLIED>

<!ELEMENT name (family, given)>

<!ELEMENT family (#PCDATA)>

<!ELEMENT given (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT note (#PCDATA)>

<!ELEMENT link EMPTY>

<!ATTLIST link manager IDREF #IMPLIED subordinates IDREFS #IMPLIED>

D The DTD of XMark datasets

regions

catgraph

categories

site

asia | africa |…

edge

open_auction

closed_auction

from

to

item

name

category description

annotation

initial

itemref

increase

description

anotation

pride

itemref

open_auctions

closed_auctions

bidder

description

reserve

mailbox mail

people person

creditcard

homepage

name

profile income

Figure 6.3. The sketch of theauction.dtd for XMark dataset.

131

