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Abstract

In this dissertation, I address the following four issues of artificial intel-
ligence: (1) qualitative interpretation of inaccurate data, (2) possibility prop-
agation and uncertain reasoning, (3) constraint satisfaction problems, and (4)
knowledge-based systems. First, I present a novel method for interpreting inac-
curate data by using qualitative correlations among related data as confirmatory
or disconfirmatory evidence. Second, I present a novel method for reasoning
under uncertainty by extracting and propagating qualitative correlations among
hypotheses. Third, I present a practical method for solving constraint satis-
faction problems, including an efficient pattern-driven algorithm for generating
initial solutions and an overlap-reduce heuristic for repairing the initial solutions.
Finally, I introduce a knowledge-based system for infrared spectrum interpreta-
tion. The above three methods are all successfully applied to the system, and
the implementation of the system indicates that it is significantly better than
many similar systems.
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Preface

Many problems of artificial intelligence (AI) are solved by analyzing input data.
However, when input data are inaccurate, analyzing them becomes very difficult,
and may not lead to any useful conclusion. Therefore, interpreting inaccurate
data to determine what they mean or what they should be has long been regarded
as a significant and difficult problem in Al

Meanwhile, in practical problems, especially in data rich problems such as
diagnosis and signal processing, input data are often inaccurate. One reason is
that the measuring and entering methods are error-prone, and the other is that
the real data are not noise-free. As a matter of fact, interpreting inaccurate data
is an unavoidable problem in many applications of Al.

In this dissertation, I present qualitative methods for interpreting inaccu-
rate data. The methods consider qualitative dependencies among data, called
qualitative correlations among related data, as confirmatory or disconfirmatory
evidence of interpreting inaccurate data.

First, I introduce and discuss the definitions of related data and qualitative
correlations among related data. Then, I put forward a new concept called
support coefficient function (SCF). SCF can be used to extract, represent, and
calculate qualitative correlations among related data within a dataset.

I propose an approach to calculating shift intervals of inaccurate data which,
based on SCF, dynamically determines how inaccurate an inaccurate data item
is allowed to be. Then, I propose an approach to calculating possibility of iden-
tifying inaccurate data in the dynamic shift intervals.

On the basis of the above two approaches, I present a novel method for in-
terpreting inaccurate data by considering qualitative correlations among related
data as confirmatory or disconfirmatory evidence.

Then, I extend the method to a wider scope to propagate qualitative correla-
tions among hypotheses as confirmatory or disconfirmatory evidence for uncer-
tain reasoning. I present a method for extracting, representing and propagating
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qualitative correlations among hypotheses as confirmatory or disconfirmatory ev-
idence to update the possibilities of hypotheses. The function of the method is
similar to the probability propagation on Bayesian networks. But compared with
traditional methods for probability propagation, the method has the following
advantages: (1) it can be applied to the problems where evidence is not explicitly
given; (2) few numbers and assumptions need to be provided by domain experts
in advance; and consequently, (3) the knowledge acquisition is simple, and the
inconsistency in knowledge bases can be avoided.

I have applied the methods to infrared spectrum interpretation, and have
thoroughly tested the methods against about three hundred real spectra. The
experimental results show that the methods are significantly better than the
conventional ones used in many similar systems. This dissertation also describes
the implementation of the methods and the experiments.

In this dissertation, I also present a knowledge-based system for infrared
spectrum interpretation. The system employs the above two methods to handle
inaccuracy of infrared spectral data. Since handling inaccurate data is only one
issue of infrared spectrum interpretation, I introduce the other issues of infrared
spectrum interpretation, and give the overall picture of the system.

First, I discuss the principle and process of infrared spectrum interpreta-
tion, and propose a knowledge model for integrating qualitative reasoning and
quantitative analysis. Then, I introduce the design and development of the
knowledge-based system, and present the architecture and working process of
the system. ;

In addition, I also present a new method for solving constraint satisfaction
problems in this dissertation. I propose an efficient pattern-driven algorithm
for generating initial solutions, and an overlap-reduce heuristic for repairing the
initial solutions. The method is initially developed for solving the constraint
satisfaction problems in infrared spectrum interpretation, but it is applicable to
a class of similar problems.
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Chapter 1

Introduction

I viewed uncertainty as a normal, unavoidable result of interac-
tions between agents and their environments. ... Yet humans are
rarely crippled by uncertainty and generally manage with meager

computational resources.
— Paul R. Cohen

Interpreting inaccurate data can be regarded as a special problem of coping with
uncertainty. The problem has long been a significant and difficult problem in
artificial intelligence (AI). Since the beginning of Al, researchers have been trying
various methods to deal with the problem.

1.1 Significance of the Research

In daily life, there are many uncertainties caused by inaccuracy. People may
pronounce some words improperly in their speech, or make some spelling mis-
takes in their writing. If the mistakes are not very serious, they can usually be
understood, and cause no confusion. ;

The ability of interpreting and understanding minor inaccurate data or phe-
nomena is an important feature of human intelligence.

In science and engineering problems, the uncertainties caused by inaccurate
data are more common and unavoidable since few problems can provide com-
pletely accurate data [Cohen, 1984 & 1987]. The reasons of having inaccurate
data involved are various. One main reason is that the methods of measuring and

1




2 CHAPTER 1. INTRODUCTION

entering data are error-prone sometimes. For example, a patient’s temperature
may be inaccurately measured or entered, and a signal or an experimental data
item may be inaccurately observed or recorded. The other reason is that the real
data are not noise-free in some cases. For example, among the received satellite
signals, there may be some noise mixed up, and what is worse, infrared spectral
data (peaks) themselves may be noisy, i.e., some peaks may be affected by noise
or other factors [Colthup, Daly, & Wiberley, 1990][Oppenheim & Nawab, 1992).

The ability of interpreting and understanding inaccurate data plays an im-
portant role in solving complex science and engineering problems.

Al researchers have long viewed the problem of interpreting inaccurate data
as a significant and difficult problem, and have been attempting to integrate the
human intelligence into computer systems [Kuipers, 1988][Zadeh, 1978].

In many problems of Al, inferences are drawn on the basis of interpretation
or analysis of measured data [de Kleer & Williams, 1987][Sacks, 1991]. However,
when measured data are inaccurate, interpreting or analyzing them is very diffi-
cult. In diagnosis or signal analysis, for example, the general reasoning method
is to compare measured data with reference values [Reiter, 1987][Shortliffe &
Buchanan, 1975|[Voscovi & Robles, 1992]. When measured data are not accu-
rate due to noise or other unforeseen reasons, the comparison between measured
data and reference values may not lead to any useful conclusion. A rule like
“if there is a strong peak in 3000 cm™'- 8100 cm™! on the infrared spectrum of
an unknown compound, then the unknown compound may contain at least one
benzene-ring” may work in ideal cases (here “strong” and “3000 em=1- 3100
em™1" are reference values, and “infrared spectrum of unknown compound”’ is a
measured dataset). However, the rule can not work in general cases. For ex-
ample, when the spectral data are inaccurate, e.g., the measured peak in 3000
em™1- 3100 ¢cm™! is not a strong peak but a medium one, or a measured strong
peak is not exactly located in 3000 cm~*- 3100 cm™" but shifts slightly, the rule
may not be applied. :

In the past decades, many methods have been proposed to deal with the
problem. Fuzzy logic provides a mathematical framework for representation and
calculation of inaccurate data [Zadeh, 1978 & 1989]. By fuzzy logic, reference
value z, is associated with a fuzzy interval Az. If a measured data item falls
into [zg — Az, zg+ Az], then it can be interpreted as the reference value with a
corresponding membership degree. Probability theory and possibility theory are
also widely used for handling inaccuracy and uncertainty [Dempster, 1968][Duda,
Hart, & Nilsson, 1976] [Pearl, 1988][Shafer, 1976]. In many practical systems,
when statistical samples are insufficient or absent, subjective statements are
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used to take the place of statistics of inaccurate data or uncertain evidence,
such as certainty factors in MYCIN [ Shortliffe, 1976], and prior probabilities in
PROSPECTOR [Duda, and et al, 1977]. The above methods are commonly used
in AI systems. The way of applying them, however, depends on the nature of
domain problems, and there is not yet a standard and generally accepted method
thus far.

Due to the difficulty of interpreting inaccurate data, many Al systems suppose
that all input data have been formalized, and are accurate, then make inference
based on the precondition [Kawata, and et al, 1987][Moldoveanu & Rapson,
1987]. However, the precondition is not tenable to non-toy or non-experimental
problems. .

1.2 Motivations

I began my research on interpreting inaccurate data around 1984 when I de-
veloped an experimental natural language interface for a road inquiring system
[Zhao, 1984]. The function of the system was to automatically provide informa-
tion about the roads, traffic and main scenic spots of Beijing City. The interface
was developed to enable users to input their inquiries by using limited words and
sentences, such as:

How long will it take from A to B? or

Where is Street C located?

Because users sometimes made mistakes when they entered inquiries, espe-
¢ially when they entered the addresses or building names, the interface needed
to check its dictionary first to detect wrong entrances. Doing that was not dif-
ficult since the dictionary was very limited. However, frequently telling users
that their inquiries were invalid and that their inquiries needed to be entered
again made the use of the interface and the system very boring, especially when
users only had one or two letters typed wrong. As an attempt, I tried to inter-
pret unmatched strings based on how many letters in the string were matched
and how many letters were not. For example, suppose the entered string was
Wangfujingsajie. In the dictionary, there was no string as Wangfujingsagjie, but
there was a very close string as Wangfujingdajie. Because 14 out of 15 letters
in the two strings were the same (i.e., the matching rate is about 93%), the
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interface interpreted Wangfujingsajie as Wangfujingdajie by assuming that let-
ter s came from letter d due to users’ inaccurate (improper) typing. In these
cases, the interface first reminded users of the wrong typing, then went ahead to
answer user’s inquiries. Only when the interface made an interpretation for an
unmatched string but the matching rate was not high, or it could not make any
interpretation at all, users were required to enter their inquiries again. Although
the method for processing inaccurate (improper) data in the interface was very
simple, it significantly improved the use of the interface.

Later in almost every system I developed, I met the similar uncertainties
caused by inaccurate data, although the inaccurate data appeared in various
ways.

For example, in developing the knowledge-based system for general cargo
stowage, I met many inaccurate data and phenomena [Zhao, 1986a] [Zhao &
Lin, 1987 & 1988]. The system can be briefly described as follow.

Given the capacity and shape of a ship hold, and given a batch of
general cargoes with their weights, volumes, shapes, packing forms
and stowage requirements, the system should make stowage plans to
properly arrange all cargoes in the ship hold.

One of the difficult tasks of the system was to deal with inaccurate data.
Because cargoes were all general cargoes, the shapes of them were irregular. As
a result, the volumes of cargoes were always estimated, and hence inaccurate. It
was impossible to measure cargoes for accurate volumes before making stowage
plans, so the system had to imitate domain experts to use other information, such
as weights, specific gravities, shapes and packing forms to interpret inaccurate
volumes, i.e., to infer the accurate volumes.

I realized two important facts from developing the system:

1. Interpreting inaccurate data is unavoidable in solving practical engineering
problems;

2. Related data can rexﬁedy inaccurate data, therefore, theyA can be used as
evidence of interpreting inaccurate data.

In 1991, T undertook a large project on infrared spectrum interpretation at
ASTEM Research Institute [Zhao, 1991-1993]. The objective of the project was
to develop programs to interpret infrared spectra of unknown compounds in
order to identify what the unknown compounds contain, or what they are. The
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input datasets of the project (i.e., infrared spectra of unknown compounds) were
typical inaccurate datasets. Many noises were included in obtaining the datasets.
And what is worse, even if the datasets were thresholded and filtered, they were
still inaccurate in most cases because data themselves (i.e., peaks on infrared
spectra) affected each other very often. Therefore, I did much work to interpret
the inaccurate datasets to give correct solutions.

From then on till my doctoral study at Nara Institute of Science and Technol-
ogy (NAIST), I have been studying on the general, effective and efficient methods
for interpreting inaccurate data. The research described in this dissertation is
about my work then at ASTEM, and later at NAIST.

1.3 Objectives

Inaccurate data mean data which shift from the correct values (or the reference
values). For example, if we consider a word as a set of data, then a letter typed
wrong in the word is an inaccurate data item. On the other hand, if we consider
a sentence as a set of data, then a word spelled wrong in the sentence is an
inaccurate data item.

Interpreting inaccurate data is to find the correct values or the most suitable
values for inaccurate data [Riese, 1993]. In signal processing or infrared spectrum
interpretation, for example, interpreting inaccurate data is to get the meanings
of inaccurate signals or infrared spectral data [Oppenheim & Nawab, 1992].

Traditional methods for interpreting inaccurate data are primarily based on
quantitative analysis. For example, in fuzzy logic, interpreting inaccurate data is
based on quantitative calculation of the membership degree of an inaccurate data
item in a fuzzy region [Bowen, Lai, & Bahler, 1992](Mukaidono, Shen, & Ding,
1989]. In probabilistic reasoning, prior probabilities or statistic values are needed
beforehand for making interpretation of datasets [Laskey & Lehner, 1989][Ramer
& Lander, 1991]. In continuous methods, a distortion function is needed to
determine the possible values of an inaccurate data item [Bose & Rajamoney,
1993][Console, Friedrich, & Dupre, 1993][Raskutti & Zukerman, 1991].

However, the main problems of only using quantitative analysis are:

1. Quantitative analysis needs many numbers and mathematical models pro-
vided by domain experts in advance. But, unfortunately, in many problems,
these numbers and models are not always available.
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2. Quantitative analysis is usually very complex, and in some cases, it may
become intractable.

The objectives of the research are using qualitative methods to effectively
interpret inaccurate data, and applying the methods to practical problems.

1.4 Contributions

I present a method for interpreting inaccurate data on the basis of qualitative
correlations among related data. The method is based on the essential consider-
ation that some data items within a dataset are qualitatively dependent: a set
of data may describe the same phenomenon, or refer to the same behavior. For
example, a patient’s temperature, blood pressure and other symptomatic data
reflect the patient’s disease, and a couple of peaks on an infrared spectrum indi-
cate the presence of a partial component. The dependency among data within a
dataset is called qualitative correlation among related data’.

By considering qualitative correlations among related data, the confirmatory
or disconfirmatory evidence can be obtained to interpret inaccurate data. In
general, related data should be simultaneously present or absent, so if most of
the related data have been completely identified, these data will enhance the
identification of the rest. For example, a benzene-ring can create many other
peaks besides the strong peak in 3000 cm~- 3100 cm~!. All the peaks created
by the benzene-ring are related data which have qualitative correlations. If all
the peaks except that in 3000 cm™!- 3100 cm~! have been completely identi-
fied, the benzene-ring is quite likely to be contained by the unknown compound.
Therefore, the inaccurate peak around 3000 cm - 3100 cm™! may still be iden-
tified. In fact, spectroscopists frequently use the following knowledge in addition
to the rules given in Section 1.1:

If there is a strong peak around 3000 cm='- 3100 cm™!, then the
spectrum may be partially created by benzene-rings —- check peaks
around 1650 cm™, 1550 em™' and 700 cm™- 900 em ™" to make sure
because a benzene-ring may have other peaks there at the same time.

The central idea of the method is to find evidence for interpreting inaccurate
data by considering qualitative correlations among related data. The idea is

!Detailed definitions will be given later.
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very common in human thinking. When all the data except blood pressure of a
patient show that the patient has a certain disease, we would naturally suspect
that the blood pressure of the patient was inaccurately entered. Similarly, when
all the peaks except one indicate that a partial component is present, we would
naturally suspect that the unmatched peak was inaccurately measured or the
peak was affected by noise or something else. If acceptable solutions can be made
by assuming an inaccurate data item to be a reference value based on qualitative
correlations between the data item and its related data, the inaccurate data item
may be compensated and hence identified.

The key point is a new concept called support coefficient function (SCF) for
extracting, representing, and calculating qualitative correlations among related
data. When measured data are inaccurate, the qualitative correlations among
related data can provide evidence for confirming or disconfirming the hypothesis
that the measured data are the same as the reference values. An approach to de-
termining dynamic shift intervals of inaccurate data, an approach to calculating
possibility of interpreting inaccurate data, and an algorithm for using the above
two approaches are proposed on the basis of SCF, respectively.

The method uses much dynamically obtained information, so it does not re-
quire many assumptions in advance, and is more robust. The method interprets
inaccurate data by considering qualitative correlations among related data, so it
is quite effective and efficient, especially in the case of problems where depen-
dencies among data apparently exist. In general, qualitative correlations among
data can always, more or less, be extracted. In the worst case where qualitative
correlations are not known a priori, the method degenerates to a conventional
fuzzy method?.

Some extensions which allow the qualitative correlations to propagate among
related data enable the method to interpret inaccurate symbolic data. Based
on the extensions, I develop a new method for propagating qualitative correla-
tions among hypotheses as confirmatory or disconfirmatory evidence for uncer-
tain reasoning. I present an algorithm for extracting and representing qualitative
correlations among hypotheses, and an algorithm for propagating qualitative cor-
relations as confirmatory or disconfirmatory evidence to update the possibilities
of hypotheses, respectively. The function of the method is similar to the probabil-
ity propagation on Bayesian networks. But compared with traditional methods
for probability propagation, the method has the following advantages: (1) it can

2] refer to the fuzzy methods which use an empirical fuzzy interval for each inaccurate data
item as conventional fuzzy methods.
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be applied to the problems where evidence is not explicitly given; (2) few num-
bers and assumptions need to be provided by domain experts in advance; and
consequently, (3) the knowledge acquisition is simple, and the inconsistency in
knowledge bases can be avoided.

I have applied the above two methods to infrared spectrum interpretation,
and have thoroughly tested the methods against several hundred real spectra.
The experimental results show that the methods are significantly better than the
traditional methods used in many similar systems.

I also present a knowledge-based system for interpreting infrared spectra. The
primary task of the system is to identify unknown compounds by interpreting
their infrared spectra. I propose a knowledge model for integrating qualitative
reasoning into infrared spectrum interpretation. The implementation of the sys-
tem indicates that both the efficiency and quality are improved by employing the
knowledge model. The rate of correctness (RC) and the rate of identification
(RI) of the system are near 74% and 90% respectively, and the former is the
highest among known systems®.

In addition, I present a new method for solving constraint satisfaction prob-
lems. The method is initially developed for solving the constraint satisfaction
problems in infrared spectrum interpretation, but it is applicable to a class of
similar problems. I propose an efficient pattern-driven algorithm for generating
initial solutions, and an overlap-reduce heuristic for repairing the initial solutions.

Briefly, my contributions mainly include:

1. A qualitative method which interprets inaccurate data by using qualita-
tive correlations among related data as confirmatory or disconfirmatory
evidence, and a corresponding algorithm which crystallizes the method;

2. A qualitative method which propagates qualitative correlations among
known hypotheses to update the possibilities of the hypotheses, and a cor-
responding algorithm which crystallizes the method;

3. Successful applications of the above two qualitative methods to a practical
problem;

4. A knowledge-based system which integrates qualitative reasoning and quan-
titative analysis to interpret infrared spectra;

®RC and RI are two important standards for evaluating the solutions of infrared spectrum
interpretation. I will give the detailed definitions of RC' and RI, and show the experimental
results of the system later.
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5. A new method for solving constraint satisfaction problems including an
efficient pattern-driven algorithm for generating initial solutions and an
overlap-reduce heuristic for repairing the initial solutions.

1.5 Outline of the Dissertation

This dissertation consists of ten chapters. The rest of the dissertation is organized
as follows.

" In Chapter 2, I describe the problem of interpreting inaccurate data. First, I
discuss the concepts of inaccurate data and inaccurate data interpretation, and
give some examples. Then, [ introduce the formal representation of interpreting
inaccurate data.

In Chapter 3, I give the preliminaries of my research including some new
definitions and notions. First, I define the concepts of related data and qualitative
correlations among related data. Then, I put forward a novel concept called
support coefficient function (SCF), and discuss the dynamic shift intervals of
inaccurate data based on SCF. Finally, I introduce the concept of determining
the possibilities of interpreting inaccurate data in the dynamic shift intervals
by considering qualitative correlations among related data as confirmatory or
disconfirmatory evidence.

In Chapter 4, I present a method for interpreting inaccurate data by consid-
ering qualitative correlations among related data. First, I discuss the method of
extracting, representing and calculating qualitative correlations among related
data, and the method of representing and calculating SCF. Then, I propose an
approach to calculating shift intervals of inaccurate data which, based on SCF,
dynamically determines how inaccurate an inaccurate data item is allowed to be,
and an approach to calculating possibility of identifying inaccurate data in the
dynamic shift intervals. Finally, based on the above two approaches, I propose
an algorithm for interpreting inaccurate data by considering qualitative correla-
tions among related data as confirmatory or disconfirmatory evidence, and briefly
discuss the applicability and complexity of the algorithm.

In Chapter 5, I present a method for propagating qualitative correlations
among hypotheses as confirmatory or disconfirmatory evidence for uncertain
reasoning. The method can automatically extract and propagate qualitative
correlations among hypotheses as confirmatory or disconfirmatory evidence to
update the possibilities of hypotheses. First, I introduce the method. Then, I
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give an example to demonstrate the use of the method, and discuss its properties
and applicability.

In Chapter 6, I introduce the application of the methods to a practical sys-
tem for infrared spectrum interpretation, and discuss my experiments and the
implementation of the proposed methods. First, I briefly describe the architec-
ture of the system, and the way of applying the proposed methods to the system.
Then, I introduce the experimental results with the system. I have thoroughly
tested the system against about three hundred real infrared spectra. The exper-
imental results show that the proposed methods are significantly better than the
conventional methods used in many similar systems.

In Chapter 7, I present a knowledge-based- system for infrared spectrum in-
terpretation. I propose a knowledge model for integrating qualitative reasoning
into infrared spectrum interpretation, and introduce the design, architecture and
working process of the system.

In Chapter 8, I present a new method for solving constraint satisfaction prob-
lems in infrared spectrum interpretation. I propose an efficient pattern-driven
algorithm for generating initial solutions, and an overlap-reduce heuristic for
repairing them. _

In Chapter 9, I address the related work, and analyze the advantages and
disadvantages of my own work. I claim that in general cases, qualitative corre-
lations among related data are always available since there are always structures
existing in complex datasets. Therefore, the methods proposed in this disserta-
tion are generally effective and efficient. I also claim that in some cases when the
qualitative correlations among related data are not known a priori, the methods
degenerate to a traditional fuzzy method. I also address my future research work
in Chapter 9.

Finally, I conclude the dissertation in Chapter 10.

Some chapters of this dissertation are based on our published papers. Roughly,
Chapter 3 and 4 are based on [Zhao & Nishida, 1995a & 1995c]. Chapter 5 is
based on [Zhao & Mikami, 1994]. Chapter 6 is based on [Zhao & Nishida, 1995b].
Chapter 7 is based on [Zhao & Nishida, 1994a, 1994b & 1995d]. Chapter 8 is
based on [Zhao, 1994].




Chapter 2

Background Problem

1In this chapter, I introduce the background problem of the research including the
problem description of interpreting inaccurate data, an example of the problem
in science and engineering, and the logic representation of the problem.

2.1 Problem Description

Analyzing datasets is a commonly used method for solving science and engineer-
ing problems [Fringuelli, and et al, 1991][Wang, 1994]. For example, the behav-
iors of a device form a dataset of the device. By analyzing the dataset, the state
of the device can be known, and the troubles of the device can also be diagnosed
[Biswas & Yu, 1993][Huberman & Struss, 1989](Iwasaki, and et al, 1993][Zhao,
1991]. In spoken or written language understanding, a string of letters form a
dataset of a word, and a set of words form a dataset of a sentence. Understanding
the word or the sentence requires analyzing the corresponding dataset. In signal
processing and image understanding, the main task is to analyze datasets, i.e.,
received signals or images, to get the interpretation or structures behind them
[Blaffert, 1986][Luinge, and et al, 1987).

In practice, however, datasets are often inaccurate due to various reasons most
of which are unforeseen, or unknown at all. When a dataset contains inaccurate
data, analyzing it becomes very difficult [Berry, 1992][Cullen, Hull, & Srihari,
1992].

There are primarily three kinds of inaccuracy in datasets including:

11
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1. Inaccuracy caused by including noises or irrelevant data in datasets. For
example, in signal processing, many noises may be received along with
signal series;

2. Inaccuracy caused by inaccurately measuring or entering data. For exam-
ple, a letter in a word may be typed wrong, and a word in a sentence may
be spelled improperly;

3. Inaccuracy caused by data themselves affecting each other. For example,
in infrared spectrum interpretation, due to co-existence of two different
partial components in a compound, their peaks on infrared spectra may
shift from their reference values.

The occurrences and causes of inaccurate data are unpredictable, or unknown
at all in some cases, so interpreting inaccurate data in datasets is a very difficult
task.

Many systems bypass the problem, and directly assume that all data in their
datasets have been accurate. However, practical datasets can rarely be guaran-
teed to be completely accurate.

2.2 Example

Take the infrared spectrum interpretation for example to introduce the problem
of interpreting inaccurate data [Colthup, Daly, & Wiberley, 1990][Savitzky, 1987].

Infrared spectrum interpretation is a typical problem having inaccurate data
included in datasets. Some inaccurate data are caused by noises, but in most
cases, they are caused by unforeseen effects among data themselves.

The task of infrared spectrum interpretation is to interpret infrared spectra
of unknown compounds to identify the unknown compounds, or to identify the
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compositions of the unknown compounds (i.e., to identify what partial compo-
nents (PC) the unknown compounds contain).

The process of infrared spectrum interpretation for unknown compounds is
shown in Figure 2.1.

The input datasets of infrared spectrum interpretation are infrared spectra
of unknown compounds, and the solutions are sets of partial components which
the unknown compounds may contain.

The unknown

contains:

Unknown Spectrum

Knowledge-based

Interpretation

Figure 2.1: Process of Infrared Spectrum Interpretation

An infrared spectrum can be represented as a set of peaks:

Sp= {p11p2:"')p‘n}

where peak p; consists of its frequency position f;, strength s; and width w;, that
is,

pi = (fi, 85, wy) i=1.2..%
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The peak lists of partial components are known in advance, each of which
is a list of peaks that the partial component can create. Table 2.1 shows the
examples of partial components and their peak lists.

Peak List

CH3— || Fre. | Str. Wid. || Fre. | Str. Wid.
2960 | 1.3626 | 0.7105 | 2870 | 0.7920 | 0.3011
Peak List
[CH3]; —CH— || Fre. | Str. | Wid. [ Fre. | Str. | Wid.
1170 | 1.1034 | 0.6918 || 1145 | 0.6672 | 0.1082
Peak List
—[CH(CgHs) — CH3)pn— || Fre. | Str. Wid. | Fre. | Str. | Wid.
1170 | 1.1034 | 0.6918 || 1145 | 0.6672 | 0.1082

Table 2.1: Examples of Partial Components and Their Peak Lists

Suppose the peak list of partial component PC, is

PL('PC&)={pan pam: seey pmm}
={(.fan Say;y wa,-) ] i= 1,2, ,m}

then if PC,, is contained by a compound, peaks in PL(PC,) will appear on the
infrared spectrum of the compound.

Ideally, if all spectral data are accurate, the process of infrared spectrum
interpretation for unknown compounds can be simply described by the following
steps:

1. Select a peak, p;, from Sp. Retrieve all partial components whose peak
lists have the same peak, and put the partial components in a candidate
list: CL;

2. Select a partial component, PCj, from CL. If PL(PC;) C Sp, then put
the partial components in a solution list: SL; Otherwise, delete the partial
component from CL;

3. Goto 2 until all partial components in C'L are checked;
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4. Goto 1 until all peaks in Sp are identified;

5. Delete conflicts (overlaps) among partial components in SL, and output
SL as the solution.

The above process can be briefly represented as the following predicate calculi.

VinPCj((pi & PL(PCJ)) —+ (PCJ = CL)), and

VPC;((PC; € CL) A (PL(PC;) C Sp) " (PC; € SL))

In practice, however, spectral data are often inaccurate due to various reasons
most of which are unforeseen, or unknown at all. The main reasons causing
inaccuracy of spectral data include:

1. Infrared spectral data are very easy to be affected by noise;

2. Infrared spectral data vary along with different conditions and purity of
compounds;

3. Finally and most importantly, infrared spectral data are often shifted by ef-
fects among co-existing partial components, or in other word, effects among
data themselves in datasets.

Because the peak lists of partial components are accurate but Sp is inaccurate
(i.e., p; € PL(PC;) and PL(PC;) C Sp are uncertain), it is not simple to
determine whether p; € PL(PC;) and PL(PC;) C Sp are true or false.

2.3 Formal Representation

In practical problems, measured data can be represented as a finite set:
MD = {dy,ds,...,d, },

and reference values can also be represented as a finite set:

RV = {ry,rs,...,Tx}

Interpreting or analyzing measured data is typically carried out on the basis
of so-called “if-then” rules in which the premises are comparisons between M D
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and RV like “if d; = r; then ...”, or “if (r; € MD) A (r; € MD) then ...
When M D is accurate, the main operation implied by these premises is usually
to find a corresponding reference value from RV for each data item in MD.
However, when M D is inaccurate, the operation becomes complicated. In this
case, it is difficult to determine to which reference value an inaccurate data item
corresponds, e.g., for some measured data no reference value may be simply
identified, while for others more than one may be available.

For example, if received signals are known to be accurate, and an expected
signal (reference value) can not be found from the signal series (measured data),
then we can conclude that the expected signal does not appear. However, if
received signals are inaccurate, and an expected signal can not be identified
from the signal series, it is hard to determine whether the expected signal does
not appear or appears but looks different due to the inaccuracy [Oppenheim &
Nawab, 1992].

Most currently known approaches to dealing with inaccurate data such as
fuzzy logic and probabilistic reasoning are mainly based on quantitative similarity
or closeness between measured data and reference values [Kruse, 1984][Wang,
1983]. However, the identity of qualitative features is much more effective and
reliable than quantitative similarity or closeness in many cases [Forbus, 1983 &
1987).

Consider signal analysis again. If an inaccurate signal has the same quali-
tative features as the expected one such as the interval of frequency, the signal
may still be identified even though its quantitative features are slightly different
from those of the expected one such as strength etc.; conversely, an inaccurate
signal may not be identified if it is quantitatively similar to an expected signal
but does not have the same qualitative features as the expected one.

I have discussed the following points before:

1. Some data items within a dataset are qualitatively dependent (i.e., they
are related data);

2. There are qualitative correlations among related data;

3. Qualitative correlations among related data enable us to confirm or discon-
firm the interpretation of qualitative features.

Therefore, RV and MD can be, explicitly or implicitly, divided into finite
groups on the basis of qualitative dependencies among data, and the data in each
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group are related to each other. For example, RV can be divided into R;, R,
.. and Ry: :

RV=R1UR2U...UR;=,
where

Rj={rj |7; € RV,1 <1< N}.

The qualitative correlations among related data in R; include:

1. Data in R; should be simultaneously present or absent which means that
all reference values in R; should have corresponding data in M D;

2. The presence of r;, may enhance the presence of 7;,, and the absence of 7;,
may depress the presence of 7;,.

Consequently, considering the qualitative correlations among related data will
lead to evidence for the interpretation of inaccurate data.

Suppose the corresponding reference values of measured data M D can be
represented as IN(M D), then IN(M D) should be a subset of RV, that is,

IN(MD) C RV.

So the problem of interpreting/analyzing inaccurate data is to make qualita-
tive hypotheses for M D, or in other words, to find an IN(M D) from RV. The
problem can be briefly represented as the following predicate calculi:

Vd.YR;((d:QR;) — (R; € CL)), and

VR;((R; € CL) A (R;QMD) — (R; € IN(MD)))

where “d;@QR;” and “R;@MD” are two essential qualitative predicates in my
methods which represent that d; possibly (qualitatively) belongs to R; (i.e., ?
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d; € R;), and R; possibly (qualitatively) belongs to MD (i.e., ? R; C MD),
respectively. Determining “A@B” is based on qualitative correlations among

related data.
Since R; € CL is a certain predicate, I simply use the following expression
to represent the above predicate calculi:

{d;QR;, R;@M D} = {R; € IN(MD)}.




Chapter 3

Preliminaries

In this chapter, I put forward and discuss several new concepts which are used,
and play important roles, in the research. I first define these concepts, then give
corresponding examples and explanations of them, respectively.

3.1 Qualitative Dependency and Related Data

Data in a dataset are rarely completely independent. There are qualitative de-
pendencies or connections among some data in a dataset. For example, a set of
data may describe the same behavior, structure, object or phenomenon.

3.1.1 Definition

Definition 3.1 Related data: If data dy, ds, ..., and d,, describe a common
phenomenon, or they refer to the same behavior simultaneously, then they can be
treated as related data.

For example, a patient’s temperature, blood pressure and other symptomatic
data are related data, and all the features for describing a criminal are also
related data. If we consider a word, or correctly, a string, as a dataset, then all
letters in the word can be viewed as related data. If we consider a sentence as a
dataset, then all words in the sentence can be viewed as related data.

The phenomenon that some data within a dataset are related data is more
apparent in engineering problems. In the following section, I give an engineering
problem to show the phenomenon that some data items are related to each other.

19
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3.1.2 Example

The datasets of infrared spectrum interpretation are infrared spectra. Or in other
words, they are sets of peaks on infrared spectra. Figure 3.1 shows an infrared
spectrum of a compound from which two kinds of related data can be noticed.

£

-y

Figure 3.1: Example of Related Data in Spectrum Interpretation

First, as far as a single peak is concerned, the frequency (position) f;, strength
(height) s;, and width (shape) w; of the peak are related data. Second, a partial
component may create numerous peaks at the same time. If we consider all the
peaks that a partial component may create, all of these peaks are related data.

3.2 Qualitative Correlations among Related
Data

Related data in a dataset are qualitatively dependent on each other. Suppose a
dataset describes the behaviors of a device, the related data describing the same
behavior of the device are qualitatively dependent. For example, if a behavior
is identified, then all related data describing the behavior should be contained
in the dataset. Or in other words, if and only if all related data describing the
same behavior are found in the dataset, then the behavior can be identified.
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3.2.1 Definition

Definition 3.2 Qualitative Correlation among Related Data: If d; and d; are two
related data items, then the presence of d; qualitatively enhances the presence of
dj, and the absence of d; qualitatively depresses the presence of d;. This kind of
effects among related data are called qualitative correlations among related data.

For example, some symptomatic data such as temperature, blood pressure
and pulse refer to a certain disease. In describing the disease, all of these symp-
tomatic data are related data. Making a definite diagnosis of a certain disease
for a patient, all related data referring to the disease should be definitely found
from the dataset of the patient.

In practice, if some symptomatic data of a patient presage a certain dis-
ease, the other data related to these data which refers to the disease are usually
required to be tested and diagnosed.

3.2.2 Example

Consider the example of infrared spectrum interpretation in Section 3.1.2 again.
The frequency (position), strength (height) and width (shape) are related data
items, so these three data items should be present or absent simultaneously.
When spectral data are accurate, interpreting a single peak on an infrared spec-
trum requires that these three data items should be all identified. On the other
hand, when spectral data are inaccurate (i.e., some measured peaks look like but
are not exactly the same as reference peaks), the identification of a data item
among the related data may prompt and enhance the identification of others
since all related data should be present or absent at the same time. Similarly,
the peaks that a partial component can create are also related data items, so
these peaks should also be present or absent simultaneously. When spectral data
are accurate, interpreting a partial component requires that the peaks created
by the partial component should be all identified. When spectral data are in-
accurate, on the other hand, the identification of some peaks may prompt and
enhance the identification of other peaks since all these peaks should be present
or absent at the same time.
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3.3 Support Coefficient Function

There are qualitative correlations among related data. The presence of some data
items can qualitatively enhance the presence of their related data items, and the
absence of some data items can qualitatively depress the presence of their related
data items. Therefore, qualitative correlations among related data may lead to
either confirmatory or disconfirmatory evidence of interpreting inaccurate data,
depending on the degree called support coefficient.

3.3.1 Deﬁﬁition

Definition 3.3 Support coefficient function (SCF): If there are m-1 data related
to d;, then SCF of d; is the function to calculate the total effects of the m-1
related data of d;.

Suppose ¢;(d;) represents the qualitative correlation between d; and its related
data item d;, then the support coefficient function of d; can be defined as:

SCE=p( > c(d;),m).

i=1,j#i

where £ is a function which should reflect the ratio of how many and how much
related data support d;. When SCF; is greater than a certain value given by
domain experts, the related data tend to support d;; Otherwise, the related data
tend to depress d;.

For example, if most symptomatic data referring to a certain disease can not
be found, then other data referring to the disease will be depressed, and are not
likely to be caused by the disease but by others, although they looks quite like.
Conversely, if most symptomatic data referring to a certain disease are found,
then other data which are related to the disease but can not be exactly found
will be supported, and will usually be analyzed carefully.

3.3.2 Example
Consider the following four strings:

(a) t-n-a-c-c-u-r-a-t-e
(b) 2-m-a-c-c-u-r-a-t-e
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(c) 1-m-a-c-c-u-l-a-t-e
(d) i-m-a-c-u-l-a-t-e

(a) is a correct word, but (b), (c) and (d) are all spelled wrong. There is one
letter, “m”, in (b) different from that in (a), so the SCF for interpreting “m” in
(b) as “n”in (a) is quite great. As a result, (b) can be easily interpreted as (a).
Further, there are two letters, “m” and “I”, in (c) different from those in (a).
Although (c) may be interpreted as (a), the SCFs for interpreting “m”and “I”
in (c) as “n”and “r” in (a) would not be great. Finally, there are three letters,
“m”, “c” and “I”, in (d) different from those in (a). As a result, (d) will hardly
be interpreted as (a) since the SCF's for interpreting these three letters will be
very small (even smaller than those for interpreting (d) as word “‘mmaculate”).

The definition of the threshold that the SCF of an inaccurate data item
tends to support the inaccurate data item is domain-dependent. The principle
for defining and calculating SCF is that SCF should directly depend on how

many and how much related data support an inaccurate data item.

3.4 Dynamic Shift Interval

Tuse “d;@R;” to express that d; can be qualitatively identified from R;. Realizing
“d;@QR;” requires to define a shift interval A for R; like:

RitA={(r,£A)|1=1,2,..,m},

then to determine the possibility of “d; € R; + A”.

The above formula is similar to that in fuzzy logic, but contains completely
different meanings. The primary difference is that the shift intervals are dynam-
ically determined by SCF;, while in fuzzy logic, the fuzzy intervals are usually
provided by domain experts in advance or calculated with quantitative criteria.

3.4.1 Definition

Definition 3.4 Shift Interval: Shift interval is a dynamic region for inaccurate
data. Given a standard fuzzy interval for inaccurate data, the shift interval of d;
varies around the standard fuzzy interval on the basis of SCF;.
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When SCF; shows that the related data support d;, the shift interval of d;
becomes wider than the standard fuzzy interval. On the other hand, when SCF;
shows that the related data do not support d;, the shift interval of d; becomes
narrower than the standard fuzzy interval.

Suppose A is a standard fuzzy region for inaccurate data, then the shift
interval, Ad;, of inaccurate data item d; can be dynamically determined the
following way:

Ad; = 6(A, SCF))

where 6 is a function which should make Ad; directly depend on SCF..

In traditional fuzzy methods, Ad; is simply A. When qualitative correla-
tions among related data are extracted and considered, A becomes a standard
reference, and the shift interval will be determined by SCF;.

3.4.2 Example

I first discuss an example of using fuzzy logic to interpreting inaccurate data.

Suppose many inaccurate data are provided to describe the characteristic of
a criminal, such as height, color of skin, age, and etc. Because all these data
are inaccurate, a fuzzy region A,, and a membership function F, are needed
to calculate the degree that a real data item Y is interpreted as the provided
inaccurate data item X.
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Briefly, by fuzzy logic, the degree of Y being interpreted as X varies along
with the curve shown in Figure 3.2 [Bousson & Trave-Massuyes, 1993][Kruse,
Gebhardt, & Klawonn, 1994].

Degree
1
| 0 Data
Y X
~ Gy IR R R
X LX

Figure 3.2: Membership Curve of Inaccurate Data

When a real data item Y is located outside the fuzzy region, the degree of Y’
being interpreted as X is zero; Otherwise, the degree varies from 0 to 1 along
with the membership curve.

The problem of fuzzy logic is that A, and F, are usually fixed and provided
by domain experts in advance, so dynamic information and correlations among
data can not be properly used.

For example, if the description about the criminal’s age is 30 — 40, then
Xage = 35, and Ay, = 5. As a result, ages outside [30, 40] will be viewed as
unidentified.

With the definition of shift interval, the dynamic information and qualitative
correlations among related data can be used to dynamically determine how wide
a data item is allowed to shift, or in other words, how inaccurate an inaccurate
data item is allowed to be.

Suppose all data except age have been identified already. These identified
data will provide age with a great SCF. Therefore, the dynamic shift interval
for age may become larger than A,;,. With the same membership function, the
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degree of identifying age will vary along the new membership curve shown in
Figure 3.3.
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Figure 3.3: A Dynamic Shift Interval (1)
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Figure 3.4: A Dynamic Shift Interval (2)
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On the contrary, suppose most of other data can not be identified, then these
unidentified data will provide age with a small SCF. Therefore, the dynamic
shift interval for age may become narrower than Agge. With the same member-
ship function, the degree of identifying age will vary along the new membership
curve shown in Figure 3.4.

3.5 Evidence Based on Qualitative Correlations

I have discussed that the values of SCF; determines the shift interval of d;,
that is, SC'F; determines how widely d; is allowed to shift. The wider the shift
interval, the more easily d; is identified. Therefore, SC'F; provides confirmatory
or disconfirmatory evidence for identifying d;.

3.5.1 Definition

Definition 3.5 Confirmatory Evidence from Qualitative Correlations: If dy-
namic shift interval of an inaccurate data item becomes wider than the standard
fuzzy region by considering the qualitative correlations among related data, then
the qualitative correlations provide confirmatory evidence for interpreting the in-
accurate data item.

Definition 3.6 Disconfirmatory Evidence from Qualitative Correlations: If dy-
namic shift interval of an inaccurate data item becomes narrower than the stan-
dard fuzzy region by considering the qualitative correlations among related data,
then the qualitative correlations provide disconfirmatory evidence for interpreting
the inaccurate data item.

If the SCF; of d; is greater than a certain value, then the related data tend to
support d;. As a result, the dynamic shift interval of d; becomes greater than the
standard fuzzy region, and confirmatory evidence is provided for interpreting d;;
Otherwise, if the SCF; of d; is smaller than the certain value, then the related
data tend not to support d;. As a result, the dynamic shift interval of d; becomes
narrower, and disconfirmatory evidence is provided for interpreting d;.
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3.5.2 Example

The example shown in Section 3.4.2 actually indicates the confirmatory and
disconfirmatory evidence got from qualitative correlations among related data.
In this section, I discuss the infrared spectrum interpretation as another example.

Partial component C'H; usually creates numerous peaks including a strong
peak located at 2960 cm™!. Because the peaks of C' H; on real infrared spectra are
always inaccurate, especially in the case of C H; being contained by a compound
together with partial component OH, CO and Benzene-ring, spectroscopists
usually consider the peaks of C'H; with a region instead of the exact locations.
For example, peaks in 2960 + 20 cm™! can all be viewed as the peaks of C'Hs.
Giving a region for an inaccurate data item is similar to the treatment of the
values in fuzzy logic, but contains completely different meanings. Spectroscopists
determine the region based on static information, but modify it dynamically.

Since CHj can create many peaks besides that at 2960 ¢m™', the qualita-
tive correlations among the peaks created by CHj can be used as confirmatory
evidence to enhance the interpretation of the peak at 2960 cm™!, or as discon-
firmatory evidence to depress the interpretation of the peak. For example, if
the SCF tends to support the identification of the peak, then the dynamic shift
interval of the peak will become greater than 20 cm™!. As a result, peaks which
can not be identified before may be identified. Similarly, if the SCF tends not
to support the identification of the peak, then the dynamic shift interval of the
peak will become smaller than 20 cm™. As a result, the peaks which can be
identified before may be considered again.

3.6 Summary

I put forward several new concepts in this chapter, including related data, quali-
tative correlations among related data, support coefficient function, dynamic shift
interval, confirmatory evidence and disconfirmatory evidence.

For each concept, I gave corresponding examples and detailed discussion in
order for readers to understand them.

These concepts are used, and play important roles, in the methods to be
presented in the following chapters. '

With these concepts and examples, I tried to explain the intuition behind the
research.

The first concept is related data which is based on the phenomenon that data
in a dataset are rarely completely independent. For example, a set of data may
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describe the same object, or refer to the same behavior. The second concept is
qualitative correlations among related data which means that related data in a
dataset may qualitatively enhance or depress each other. For example, related
data should be simultaneously present or absent in general, so if most of the re-
lated data have been completely identified, they will enhance the identification of
the rest. The third concept is support coefficient function which enable qualita-
tive correlations among related data to be represented and calculated. The fourth
concept is dynamic shift interval which represents the dynamic region that an
inaccurate data item may shift. It is not a static region, but varies dynamically
along with qualitative correlations among related data. The more an inaccurate
data item is supported by its related data, the wider the dynamic shift interval
should be. The last two concepts are confirmatory evidence and disconfirmatory
evidence. The central idea of the research is on the basis of these two concepts,
that is, to use qualitative correlations among related data as confirmatory or
disconfirmatory evidence to interpret inaccurate data.




Chapter 4

Qualitative Interpretation of
Inaccurate Data

In this chapter, I introduce a method for qualitatively interpreting inaccurate
data. The fundamentals of the method are concepts introduced in Chapter 3,
and the central idea is to extract, represent and use the qualitative correlations
among related data as confirmatory or disconfirmatory evidence.

4.1 Introduction

I use predicate “d;@R;” to express that d; possibly (qualitatively) belongs to R;,
where d; is a measured data item, and R, is a set of reference values. And I use
predicate “R;@MD” to express that R; possibly (qualitatively) belongs to M D,
where M D is a set of measured data.

Predicate “d;QR;” and “R;@MD” are two essential qualitative predicates
in the research. “d;@R;” provides a logic framework for interpreting a single
inaccurate data item on the basis of qualitative correlations among related data,
and “R;@M D" provides a logic framework for interpreting a set of inaccurate
data on the basis of qualitative correlations among related data.

The values of “d;@R;” and “R;@MD” are determined by considering quali-
tative correlations among related data, which differs the method from fuzzy logic
and other methods in the following two aspects:

1. Determining the value of predicate “d;@R;” (i.e., interpreting inaccurate
data item d;) is not only based on the calculation of d;, but also based
on the calculation of the related data of d;, since qualitative correlations

31
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among related data can provide more important evidence of interpreting
inaccurate data in some cases. Similarly, determining the value of predicate
“R;@MD?” (i.e., interpreting a set of inaccurate data R;) is not only based
on the calculation of R; , either;

2. Dynamic information can be properly used in determining the values of
predicate “d;@R;” and predicate “R;@MD”. In interpreting inaccurate
data, qualitative correlations among related data are extracted and used,
and the shift intervals for inaccurate data are dynamically calculated on
the basis of qualitative correlations among related data.

In this chapter, I present the method with an emphasis on the realization of
these two predicates. First, I discuss how to define and determine the value of
predicate “d;@R,"”, and introduce a procedure for realizing the predicate. Then,
I discuss how to define and determine the value of predicate “R;@M D”, and
introduce a procedure for realizing the predicate. Finally, I present the method
with the form of an algorithm. I also discuss and analyze the applicability and
complexity of the algorithm.

4.2 Predicate “d;,QR;”

When d; is accurate, “d;@R;” is equal to “d; € R;”. If there is a reference value
in R; which corresponds to d; (i.e., 7j, € R; and r;, = d;), then ;@R; = T. If
there is no reference value corresponding to d;, then d;QR; = F.

When d; is inaccurate, however, it is not sure whether r;, corresponds to d;.
In this case, “d;QR;” means that d; possibly (qualitatively) belongs to R;, or in
other words, r;, possibly (qualitatively) corresponds to d;. The value of “d;QR;”
is not T or F, but the possibility of “rj, = di” or “d; € R;".

I have discussed that the identity of qualitative features is much more robust
and reliable than quantitative similarity or closeness in many cases. I have also
discussed that qualitative correlations among related data can lead to evidence
for the identity of qualitative features in diagnosis or interpretation. So if 8
(rj, € R;) is assumed to correspond to d;, and there are m-1 reference values
D e P, oy Tjp11 Tips1s =+ Tin ) Telated to 7; , then each of the m-1 reference
values should correspond to a certain data item in M D, and the m — 1 data
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items in M D are also related to each other. Therefore, qualitative correlations
between d; and its m-1 related data items in M D should be considered.

The method first determines the possibility of “rj, = d;” by calculating the
similarity or closeness between 7;, and d; as the same as conventional fuzzy
methods, then considers qua.htatlve correlations among related data to obtain
evidence for updating the possibility. When the qualitative correlations show
that the related data support “rj, = d;", the possibility of “rj, = d;” will increase.
When the qualitative correlatlons show that the related data do not support

5, = d;”, the possibility will decrease.

4.2.1 Defining Support Coefficient Function

Suppose 7;, corresponds to d;, where r;, € R;, and d, € M D. Because v € Ry,
7j, is related to r;,, and d, is related to d;. As I have discussed, the qua.hta—
tive correlation between d; and d; means that if d, exists, then d; is enhanced;
otherwise, d; is depressed.

First, I define the qualitative correlation between two related data items, d;
and d;, as

1 if d; can be found from M D which satisfies:
je—do < di <75, +d,
0 if d; can not be found from M D which satisfies:
do S dt S Tiq > do

C;(dt) =

where d, is a standard fuzzy interval of inaccurate data, and ¢;(d;) expresses the
qualitative correlation between d; and d,. ¢i(d;)=1 means that d; is enhanced by
its related data item d, since d; can be found from the measured dataset, and
ci(d;)=0 means that d; is depressed by d, since it can not be found from the
measured dataset. The definition of ¢;(d;) is simply based on the consideration
that if a data item is identified, then the data item will support its related data,
items (i.e., the coexisting data items).

As there are m reference values in R;, the support coefficient function SCF;
of d; can be defined on the basis of ¢;(d;) (¢ = 1,2, ...,m, t # 1):

14 T30 i Ci( )

m

SCF; =
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where (1) SCF; expresses the total qualitative correlations between d; and all
of its related data. In other words, SCF; reflects the support coefficient of iy
corresponding to d;; (2) 0 < SCF; < 1.

If m =1, then SCF; = 1. When m > 1, SCF;, is in the direct ratio to the
number of the related data which may be identified from MD.

4.2.2 Determining Dynamic Shift Interval

Suppose d, is a standard fuzzy interval of inaccurate data, the dynamic shift
interval of d; can be defined on the basis of SCF; as:

where (1) Ad; expresses how inaccurate d; is allowed; (2) 0 < Ad; < 2d,; and
(3) Ad; is in the direct ratio to SCF..

If m = 1, then SCF; = 1, and Ad; = d,. In other words, when qualitative
correlations among data are not known a priori, SCF, = 1 and Ad; = d,. In
this case, the method degenerates to a conventional fuzzy method.

When m is fixed, the more the related data are identified, the greater the
SCF;, therefore the greater the Ad;. When SCF; is fixed, Ad; depends on the
number of related data.

Table 4.1 shows the relation among Ad;, m and SCF;.

Ad; m
i 10 50 100 500 1000
1 d, 1.90004d, | 1.9800d, | 1.9900d, | 1.9980d, | 1.99904,
0.8 / 1.5200d, | 1.5840d, | 1.5920d, | 1.5984d, 1.59924d,
SCF; [ 0.5 ' 0.9500d, | 0.9900d, | 0.9950d, | 0.9990d, | 0.9995d,
0.3 / 0.5700d, | 0.5940d, | 0.5970d, | 0.5994d, | 0.5997d,
0.1 / 0.1900d, | 0.1980d, | 0.1990d, | 0.1998d, | 0.1999d,

Table 4.1: Relation among Ad;, m and SCF;
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The following properties can be drawn from the above formulas.

Property 4.1: With the same m, the more the related data are identified, the
greater the SCF;; otherwise, the smaller the SCF;.

Property 4.2: With the same m, the greater the SCF;, the greater the Ad;. In

other words, the more the related data support d;, the more widely d; is allowed
to shift.

Property 4.3: With the same SCF;, the greater the m, the less Ad; varies along
with m. In other words, the greater the number of related data, the less a single
related data item can affect d;.

Property 4.2 and Property 4.3 are illustrated in Figure 4.1.

24
SCFI. = 1

ey SCF. = 0.5

3

SCF;.: 0.1

SCF,= 0.3

Figure 4.1: Ad; versus m with Different SCF;

The following properties can also be drawn from the above formulas.

Property 4.4: Ad; is directly proportional to SCF;. The slope is equal to, or
greater than 1.5, which means that Ad; heavily depends on SCF;.
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Property 4.5: Along with the increase of m, the slope increases very slightly.
In other words, Ad; depends on the number of the related data which support d;,
rather than the total number of related data.

Property 4.4 and Property 4.5 are illustrated in Figure 4.2.

2dg

SCFi

Figure 4.2: Ad; versus SCF; with Different m

4.2.3 Calculating Value of Predicate “d;@QR;”

The value of “d;@R;” is equal to the possibility of “r; = d;”, where d; € M D,
7, € Rj, and d; corresponds to r;,. The value of “d;@R;” can be calculated by
using the following formula:

#i=1———-—|di—rj”l
Ad;
where (1) | d; — ;, | means the real distance between d; and 75,5 (2) Ad; means

the maximum distance between d; and r;, which is dynamically determined by
SCF;; and (3) p; < 1.
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At a glance, the representation of y; looks like the membership degree of
“ri, — Ad; < d; < 75, + Ad;” in fuzzy logic. However, the meaning is completely
different, since Ad; is neither provided by domain experts nor determined by
quantitative similarity or closeness. Here /\d; is determined on the basis of qual-
itative correlations among related data. When qualitative correlations among
related data are not considered, Ad; is d,, and the possibility is 1 — ld—‘g—"’i.
With the consideration of qualitative correlations, the possibility is updated.

Figure 4.3: Value of “d;@QR;” versus Various Ad;

Two new properties can be drawn from the above formula for calculating p;.

Property 4.6: With the same d;, the greater the /\d;, the greater the y;. In other
words, the wider the dynamic shift interval, the greater the value of “d;QR;”.
Formally, if Ad{> Ad;>Ad;, then pl! > ui>p;.
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Property 4.7: SCF; provides qualitative evidence for accepting or rejecting d;
as rj,, since p; 1s in the direct ratio to Ad;, and Ad; is in the direct ratio to

SCF;.
Property 4.6 and Property 4.7 are illustrated in Figure 4.3.

4.2.4 Procedure d;QR;

The above process of calculating the value of “d;@R;” in Section 4.2.1 to Section
4.2.3 can be expressed by the following procedure.

Procedure d;QR;

select r;, from R;;
SCF.=10;
if di =1,
SCF.=1:
pi =1
}
else{
for eachrj € R (1=1,..,m, 1 # p){
calculate ci(d;);
SCF; = SCF; + ¢;(dy);
}
SCF; = (1+ SCF;)/m;
Ad; =d, x SCF; x (2m - 1)/m;
pi = 1= di — 75, | [ Ady;
}
if pi >0
return p;;
else
return NIL
end procedure

In the procedure, d; stands for the data item in M D which corresponds to T,
When d; can be identified with a certain possibility (i.e., y; > 0), the procedure
returns the value of p; (“4; > 0” means “I™); otherwise, the procedure returns
F.
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4.3 Predicate “R,QMD”

When MD is accurate, “R;@MD” is equal to “Ri C MD”, where R; is a
set of reference values, and MD is a set of mea.sured data. If all of the m
reference values in R can be identified from M D, then R; @MD = T'; otherwise
R,QMD =F.

When MD is inaccurate, however, “R;QMD” means that R; is possibly
(qualitatively) a subset of MD. The value of “R;@MD" is not T or F, but the
possibility that all the reference values in R; can be identified from M D

4.3.1 Calculating Value of Predicate “R;@QM D”

The value of “R;@M D” is equal to the possibility of “R; C MD”. Suppose there
are m reference values in R;, the value of “R;@MD” reflects the possibilities of
all of the m reference values being identified.

K1, M2, ... and pm can be respectively calculated by using the algorithm
presented in Section 4.2.4. If 4y > 0 (I = 1,2,...,m), then R; can be regarded as
a subset of M D with a certain possibility. Let sy, s, ..., and s,, be the priorities
of the reference values in R; which are usually determined by domain experts,
then the value of “R;Q@M D” can be calculated based on 4, pa, ..., and p,, by
using the following formula,

RjeMD = Zizi s X p
2i=1 81
where (1) s; > 0; and (2) i > 0.

To most problems, s;, s;, ... and s,, are the same. To some problems,
however, there may be a priority chain among related data. For example, in
infrared spectrum mterpretatlon, the peaks of C'Hj in frequency section 2800

em™! to 3000 cm™! are more distinct than its peaks elsewhere. Therefore, the
peaks in this section are prior to those located in other sections. In the case of
problems where some data are prior to others, s;, s,, ... and s,, represent the
priorities of the data.

4.3.2 Procedure R;QMD

Suppose p; has been calculated by using procedure d;@R;, then the process
of calculating the value of “R;@M D” can be expressed by the following simple
procedure.
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Procedure R;QMD

P = 8; X ;

S = s
forl=1tom (Il # p){
m = &,QR;;

tf > 0{
P=P+s x p;
§=8+s;

}

else{

P=;
exit;

}

}
sfP>0

return P/S;

else

return NIL

end procedure

In the procedure, d; stands for the data item in M D which corresponds to
7j,. When R; can be identified as a subset of M D with a certain possibility

(i.e, P/S), the procedure returns the value of P/S (“P/S > 0” means “T™);
otherwise, the procedure returns F.

4.4 Algorithm for Qualitatively Interpret In-
accurate Data

In this section, I first present the method for interpreting inaccurate data based
on qualitative correlations among related data with the form of algorithm, then
I discuss and analyze the algorithm.

4.4.1 Algorithm

I give the following algorithm for interpreting/analyzing measured data based on
procedure d;@R; and procedure R;@M D. When measured data are not accu-
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rate, the algorithm can identify inaccurate data items by considering qualitative
correlations among related data.

Algorithm Making-Qualitative- Hypotheses

IN(MD) = 6;

Jori=1ton{
forj=1tok {
P(R;) = 0;

if d;QR; (i.e., Procedure d;@R;)
if R;@MD (i.e., Procedure R;@MD) {
R; — IN(MD);
P(R;) = R,@MD;
}
end if
end if
}

end for

}

end for
end algorithm

In the algorithm, P(R;) represents the value of “R;@MD”. The algorithm
is actually the realization of the logic expression: {d;@R;, R,@M D} = {R; €
IN(MD)} which has been discussed in Chapter 2.

4.4.2 Analysis

I discuss and analyze the algorithm in the following two aspects:

1. Validity of the algorithm: The algorithm uses qualitative correlations among
related data as confirmatory or disconfirmatory evidence. In general, data
in a dataset are rarely completely independent, so qualitative correlations
among related data can always be extracted, represented and used with the
algorithm. In the specific cases that qualitative correlations among related
data are not known a priori, the algorithm degenerates to a traditional

fuzzy method;
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2. Complezity of the algorithm: For each measured data item in M D (MD
= {dy, dy, ..., dp}), the algorithm searches RV (RV = {Ri1, Ry, ..., Ri})
once. For each R; (R; = {r;,,7j,,...,7;,}), the algorithm checks other n-1
measured data items for m times, and other m-1 reference values for n
times. Therefore, with blind search, the number of operations is about (at
worst): n X kX [m x (n—1)+n x (m — 1)] = (2m — 1)kn? — kmn. Since
k and m are two constants, the complexity of the algorithm is O(n2).

4.5 Discussion

In the above sections of this chapter, a method for interpreting inaccurate data
by considering qualitative correlations among related data as confirmatory or
disconfirmatory evidence was proposed. In this section, I discuss the method in
more detail.

4.5.1 Intuition

The intuition behind the method can be summarized in the following three as-
pects.

1. The idea is very common in human thinking. When all data except blood
pressure of a patient show that the patient has a certain disease, we would
naturally suspect that the blood pressure of the patient was inaccurately
entered. Similarly, when all peaks except one indicate that a partial com-
ponent is present, we would naturally suspect that the unmatched peak was
inaccurately measured or the peak was affected by noise or something else.
If acceptable solutions can be made by assuming an inaccurate data item
to be a reference value based on qualitative correlations between the data
item and its related data, the inaccurate data item may be compensated
and hence identified;

2. In practical problems, the idea is commonly used by domain experts when
inaccuracy occurs. In infrared spectrum interpretation, for example, spec-
troscopists frequently use the qualitative analysis like

If there is a strong peak around 3000-3100 cm™, then the un- -
known spectrum may be partially created by benzene-rings —-
check peaks around 1650, 1550 and 700-900 cm™" to make sure
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since a benzene-ring may have other peaks there at the same
time. Or

If there is a sharp peak in 2950-2960 cm™!, and the peaks around
1500-1600 cm™" look like the peaks of CO, then the peak in 2950-
2960 cm™* is likely to be the peak of CHj even if it is not strong.

So if spectral data are inaccurate (i.e., some measured peaks look like but
are not exactly the same as reference peaks), considering qualitative corre-
lations among related data may lead to qualitative evidence for the iden-
tification of inaccurate data. For example, suppose the strength of a peak
is slightly different from the reference value, but both the frequency and
shape of the peak are the same as the reference values, then the strength
of the peak may still be identified since both of its related data, frequency
and shape, support it. Similarly, if peaks at low frequency sections are
inaccurate, considering related peaks at high frequency sections may help
identify these peaks;

3. The qualitative correlations among related data are similar to evidence of
inference, and identifying an inaccurate data item is similar to making hy-
potheses of inference. So to find qualitative correlations among related data
is actually to search for evidence for hypotheses, and to propagate proba-
bilities on inference networks. The similar idea has been widely accepted
in evidence theory and probabilistic reasoning. However, the difference lies
in that the proposed method dynamically calculates the values of “d;@QR;"
and “R;@M D", so it does not need many assumptions in advance, and can
avoid inconsistency in knowledge and data bases as well. Concerning this
point, more descriptions are available in the following chapter.

4.5.2 Applicability

Data in a dataset are rarely completely independent in general, so qualitative
correlations among related data can always be used as evidence of interpreting
inaccurate data. Therefore, the method can be applied to many science and
engineering problems. :
For example, in infrared spectrum interpretation, data concerning a single
peak (i.e., the frequency position, strength and width of the peak) are related to
each other. If one of them can not be identified due to its inaccuracy, but all oth-
ers can be completely identified, then the inaccurate data item may be supported
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and compensated, since related data should be present or absent simultaneously.
The more the related data support the inaccurate data item, the more it is com-
pensated. Analogously, data concerning the pattern of a partial component (i.e.,
the peaks created by the partial component) are also related to each other. If
one peak can not be identified due to its inaccuracy, but all other peaks can be
completely identified, then the inaccurate peak may be compensated and hence
identified. s

The method can be easily employed to solve the problems such as infrared
spectrum interpretation. As a matter of fact, I have done many experiments on
applying the method to the problem of infrared spectrum interpretation. Later
in Chapter 6, I will introduce the application of the method to the problem, and
give corresponding examples.

4.5.3 Comparison

In determining a dynamic shift interval for an inaccurate data item, the method
is similar to fuzzy method [Zadeh, 1978]. The differences between the method
and conventional fuzzy methods include:

1. The method dynamically determines shift intervals for inaccurate data,
while fuzzy intervals for inaccurate data in conventional fuzzy methods are
usually provided and fixed by domain experts in advance. Consequently,
much more information can be used in determining how inaccurate an
inaccurate data item is allowed to be;

2. The method determines dynamic shift intervals on the basis of qualitative
correlations among related data, while fuzzy intervals in conventional fuzzy
methods are solely determined in general. Consequently, the interpretation
of inaccurate data can be more reliable.

In the case of problems where qualitative correlations among related data
exist, the method is better than conventional fuzzy methods. In the case of
problems where qualitative correlations among related data are not known a
priori, the method degenerates to conventional fuzzy methods.

Using qualitative correlations among related data to determine the possibility
of interpreting inaccurate data is a little bit similar to using evidence to update
the probabilities of hypotheses in Bayesian methods [Duda, and et al, 1977).
The advantage of the method over traditional Bayesian methods is that it needs
few assumptions in advance, while traditional Bayesian methods usually need
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many numbers provided by domain experts in advance, such as the degree that
a piece of evidence is sufficient for a hypothesis and the degree that a piece
of evidence is necessary for a hypothesis. I will further compare the use of
qualitative correlations among related data and the probability propagation in
Bayesian methods in Chapter 5.

4.6 Summary

In this chapter, I presented a method for interpreting inaccurate data by con-
sidering qualitative correlations among related data as confirmatory or discon-
firmatory evidence.

I discussed the way of extracting, representing and calculating qualitative
correlations among related data, and the way of representing and calculating
SCF of related data. SCF reflects the total qualitative correlations between an
inaccurate data item and its related data, and provides either confirmatory or dis-
confirmatory evidence of interpreting the inaccurate data item. Then, I proposed
an approach to calculating dynamic shift intervals of inaccurate data based on
SCF which dynamically determines how wide an inaccurate data item is allowed
to shift, and an approach to calculating possibility of identifying inaccurate data
in the dynamic shift intervals. Finally, based on the above two approaches, I pre-
sented an algorithm for interpreting inaccurate data by considering qualitative
correlations among related data as confirmatory or disconfirmatory evidence. I
also briefly analyzed the applicability and complexity of the algorithm, and gave
the discussion about the intuition behind the method, the applicability of it, and
the comparison of it with other similar methods.




Chapter 5

Propagation of Qualitative
Correlations

In this chapter, I present a novel method for extracting, representing and prop-
agating qualitative correlations among hypotheses as confirmatory or disconfir-
matory evidence of uncertain reasoning. Part of the method is based on some
extensions of the method presented in Chapter 4. The extensions allow qualita-
tive correlations among related data to propagate which enable the possibilities
of inaccurate data being interpreted to be updated by considering qualitative
correlations among related data. as confirmatory or disconfirmatory evidence.
The function of the extended method is similar to the probability propagation
on Bayesian networks [Duda, Hart, & Nilsson, 1976], but the advantages of the
method are evident. First, it can be applied to the problems where evidence is
not explicitly given, or is not available. Second, fewer numbers and assumptions
need to be provided by domain experts in advance, since both the degree that a
piece of evidence enhances a hypothesis (i.e., LS in Subjective Bayesian Meth-
ods) and the degree that a piece of evidence does not enhance a hypothesis (i.e.,
LN in Subjective Bayesian Methods) are dynamically calculated from qualita-
tive correlations among related data, rather than are provided by domain experts.
Third, the knowledge acquisition procedure is simpler, and the inconsistency in
knowledge bases can be avoided, since most numbers are dynamically calculated
in the interpreting process, rather than are obtained from domain experts before-
hand. As an additional result, the method can be used to qualitatively interpret
inaccurate symbolic data as well as inaccurate numerical data.

47
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5.1 Introduction

Bayesian inference has been proved to be effective for reasoning under uncer-
tainty, and has been used in many Al systems [Dempster, 1968][Kleiter, 1992].
However, the problems of using Bayesian inference are: (1) evidence must be
explicitly provided, and the relation between evidence and hypothesis must be
explicitly provided too. Unfortunately, in many cases, evidence and the relation
between evidence and hypothesis are not always available. In addition, after
evidence has been considered and hypotheses have been made, it is still possible
to refine the hypotheses by using other knowledge and information; (2) Bayesian
inference requires many statistical numbers in advance. Unfortunately, in many
practical problems, it is impossible to have all numbers provided beforehand.
Although subjective Bayesian methods provide a practical framework for using
subjective statements or assumptions to take the place of statistical data when
they are insufficient or absent, the problems still remain since subjective state-
ments are not always available and the inconsistency in knowledge bases is hard
to avoid [Duda, Hart, & Nilsson, 1976].

Chapter 4 provided a method for interpreting inaccurate data by consider-
ing qualitative correlations among related data, and discussed the effectiveness of
using qualitative correlations among related data as confirmatory or disconfirma-
tory evidence in interpreting inaccurate data. The qualitative correlations among
related data are always available within a dataset, so the method is applicable
in general cases.

Since there are qualitative correlations among related data, if the possibili-
ties of inaccurate data in a dataset have been calculated or provided, then the
qualitative correlations among related data may be used as confirmatory or dis-
confirmatory evidence to update the known possibilities of inaccurate data.

In addition, in most cases, data in a dataset are numerical data, such as the
position, strength and width of a peak, the length and frequency of a signal,
and the voltage and current intensity at an electric circuit. Numerical data are
objects that the method presented in Chapter 4 concerns. From a wider scope,
however, data in a dataset may also be in other forms, such as symbols and
letters. For example, when the strength of a peak is concerned, the strength is a
numerical data item. On the other hand, when a peak is concerned, the peak is
a symbolic data item. Similarly, a letter in a word and a word in a sentence are
both symbolic data items.

No matter whether data are in numerical or symbolic forms, there are the
following preliminaries concerning qualitative correlations:
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1. Some data items in a dataset are usually qualitatively related to each other;
2. There are qualitative correlations among related data;

3. Qualitative correlations among related data can provide confirmatory or
disconfirmatory evidence of interpreting inaccurate data.

Based on the preliminaries, the method presented in Chapter 4 can be ex-
tended to a new form which enables qualitative correlations to propagate among
related data, and at the same time, can be used to interpret inaccurate symbolic
data. : :

What is more important, on the basis of the extensions, a new method can
be developed for uncertain reasoning.

In the following sections of this chapter, I first briefly introduce the probability
propagation on Bayesian networks, then discuss some extensions of the method
presented in Chapter 4. Based on the extensions, I present a novel method for un-
certain reasoning. The method automatically extracts, represents and propagates
qualitative correlations among hypotheses as confirmatory or disconfirmatory ev-
idence to update the possibilities of the hypotheses. The function of propagating
qualitative correlations and updating possibilities of hypotheses in the proposed
method is similar to the function of propagating and updating the probabilities
of hypotheses in Bayesian inference. But unlike Bayesian inference, the proposed
method automatically obtains and uses qualitative correlations among hypothe-
ses as qualitative evidence, so the above problems of using Bayesian inference
can be easily avoided. I put forward a new concept called qualitative correlations
among hypotheses and a new concept called qualitative correlation propagation.
Then I propose an algorithm for extracting and representing qualitative corre-
lations among hypotheses and an algorithm for propagating qualitative correla-
tions and updating possibilities of hypotheses respectively. After presenting the
method, I give an example to demonstrate its applications, and compare it with
other similar ones.

5.2 Probability Propagation on Bayesian Net-
works
Bayesian methods provide mathematical fundamentals for updating probabili-

ties with conditional probabilities [Dempster, 1968][Kleiter, 1992]. Subjective
Bayesian methods are proved to be useful in using subjective statements to take
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the place of statistics of data or evidence when statistical samples are insufficient
or absent [Duda, Hart, & Nilsson, 1976]. Many systems use subjective Bayesian
methods to handle inaccuracy and uncertainty [Duda, and et al, 1977][Ramer &
Lander, 1991].

Subjective Bayesian methods update probabilities by calculating the proba-
bility propagation for the inference rule with the following form:

IF {E,P(E)} then {H,P(H)} {LS,LN}

where

:

ke

5.

6.

E is a piece of evidence;
P(E) is the probability that E is true;
H is a hypothesis;
P(H) is the probability that H is true;
P(E|H) .

LS represents the degrees that F enhances H, LS = TMI:T?)T’_

LN represents the degrees that —F enhances H, LN = %"—E‘Ell:f%.

P(E), P(H), LS and LN are all provided by domain experts in advance.
When F is obtained, P(H) is updated with two conditional probabilities:

LS x P(H)
A = ar e ™
HE | i ¥ 2O

(LN - 1)P(H) + 1

The final conditional probability of H can be calculated with the following
formula:

P(H | E) — P(H)
1—- P(E)

P(H | S5)=P(H)+ x [P(E | §)— P(E)]

where S stands for relevant observations.

The above process can be graphically represented in Figure 5.1.
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P(E) P(H)
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Figure 5.1: Probability Propagation

If an inaccurate data item is viewed as a hypothesis, and its related data are
viewed as pieces of evidence, then the form of subjective Bayesian methods is
similar to the method presented in Chapter 4. However, the problems of using
subjective Bayesian methods are:

1. The degree that a piece of evidence supports or does not support a hypoth-
esis is determined in advance, therefore, useful dynamic information can
not be used properly;

2. Many assumptions and numbers, such as LS and LN, are needed, therefore,
the knowledge acquisition procedure is very tedious in general;

3. The inconsistency in knowledge bases can hardly be avoided.

5.3 Propagation of Qualitative Correlations

I have discussed that there are qualitative correlations among related data, and
that qualitative correlations among related data can be used as confirmatory or
disconfirmatory evidence for interpreting inaccurate data. I presented a method
to crystallize the use of qualitative correlations among related data as confir-
matory or disconfirmatory evidence in interpreting numerical inaccurate data in
Chapter 4. When possibilities of inaccurate data have been known, qualitative
correlations among related data can be used to update the known possibilities as
confirmatory or disconfirmatory evidence. Or in other words, when hypotheses
have been made with corresponding possibilities, qualitative correlations among
hypotheses can be used as evidence of uncertain reasoning.




52 CHAPTER 5. PROPAGATION OF QUALITATIVE CORRELATIONS

5.3.1 Two Extensions

With the following two extensions, the method presented in Chapter 4 can propa-
gate qualitative correlations among related data, and can use qualitative correla-
tions among related data as confirmatory or disconfirmatory evidence to interpret
inaccurate symbolic data. Based on the extensions, I propose a new method for
uncertain reasoning:

1. In Chapter 4, I used d, to express the standard fuzzy region of inaccurate
numerical data. d, means how much a numeral is allowed to shift, and can
actually be viewed as the qualitative correlation between a data item and
itself. To the problems where the possibilities of inaccurate data have been
known and the problems where the datasets consist of inaccurate symbolic
data, the qualitative correlation between a data item and itself can be
viewed as 1. In these cases, d, = 1;

2. In Chapter 4, I used d; to express an inaccurate data item, and 75, to
express a reference value corresponding to d;. Then, the possibility of d;
being interpreted as r;, is:

| di — 5, |
PR P L R X
P Ad;
When the possibility of an inaccurate data item has been known as pg, or

d; is an inaccurate symbolic data item, | d; — r;, | is “1 — p2”.

5.3.2 Concepts and Definitions

In inference, hypotheses are rarely completely independent. A group of hypothe-
ses may refer to the same object, i.e., different hypothesis refers to the different
aspect of the object. For example, in medical diagnosis, several symptoms may
refer to the same hypothesis, and several hypotheses may refer to the same dis-
ease. The hypotheses referring to the same disease may have some qualitative
correlations.

Due to the qualitative correlations among hypotheses, some hypotheses may
be related to each other. If the possibilities of hypotheses have been calculated
or provided, then the related hypotheses may be used as confirmatory or discon-
firmatory evidence to update the known possibilities of hypotheses.
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The following concepts are given to define the related hypotheses, the quali-
tative correlations among related hypotheses, and the confirmatory and discon-
firmatory evidence from the qualitative correlations among related hypotheses.

Definition 5.1 Related hypotheses: If hypotheses hy, hs, ..., and h,, refer to the
same object, then they can be treated as related hypotheses.

I use rh, to represent a group of related hypotheses, and use hi&h; to rep-
resent that h; is related to hj, then rh, = {hy | VAp((he € Tha) A (hps # hy) —
(hikehie))}.

For example, the hypotheses describing various features of a criminal are
related hypotheses since they refer to the same criminal. If we consider a string
as an object, then the hypotheses for all letters in the string can be viewed as
related hypotheses. If we consider a sentence as an object, then the hypotheses
for all words in the sentence can also be viewed as related hypotheses.

Definition 5.2 Qualitative correlations among related hypotheses: If h; and h;
are two related hypotheses (i.e., hi&h;), then the great possibility of h; qualita-
twvely enhances h;, and the small possibility of h; qualitatively depresses hj. This
kind of effects among related hypotheses are called qualitative correlations among
related hypotheses.

I use gc to represent the qualitative correlations of h; to h;. The greater the
possibility of h;, the more greatly h; qualitatively supports hj, and the smaller
the possibility of h;, the more weakly it qualitatively supports h; (or in other
words, the more greatly it qualitatively depresses h;).

The main effectiveness of qualitative correlations among hypotheses includes:

1. Great qualitative correlations imply strong support among hypotheses which
are related to each other. The greater the qualitative correlations, the
stronger the support;

2. Small qualitative correlations imply weak support among hypotheses which
are related to each other (or in other words, small qualitative correlations
imply strong depression among related hypotheses). The smaller the qual-
itative correlations, the weaker the support (or in other words, the smaller
the qualitative correlations, the stronger the depression ).

For example, some symptomatic hypotheses such as temperature, blood pres-
sure and pulse refer to a certain disease. In describing the disease, all of these
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hypotheses are related to each other. Making a definite diagnosis of a certain
disease for a patient, all related hypotheses referring to the disease should be
completely confirmed. So in practice, if some symptomatic hypotheses of a pa-
tient presage a certain disease, the other hypotheses related to these hypotheses
which refers to the disease are usually required to be made and confirmed.

Consider the infrared spectrum interpretation. The hypotheses that some
peaks are created by a certain partial component are related to each other.
Because all peaks that a partial component can create should be present or
absent simultaneously, identifying a partial component requires that all these
related hypotheses be made and confirmed. As a result, making some hypotheses
with great possibilities may prompt and enhance making other hypotheses that
are related to these ones.

Definition 5.3 Sum-degree of qualitative correlations among related hypotheses:
If there are m — 1 hypotheses related to h;, then the Sum-degree of qualitative cor-
relations among related hypotheses of h; reflects the total qualitative correlations
between h; and all of its related hypotheses.

I use SD; to represent the Sum-degree of the qualitative correlations between
h; and its related hypotheses.

For example, consider the following four strings again:

b

(a) i-n-a-c-c-u-r-a-t-e
(b)

(¢) i-m-a-c-c-u-l-a-t-e
(

i-m-a-c-c-u-r-a-t-e

d) i-m-a-c-u-l-a-t-e

(a) is a correct word, but (b), (c) and (d) are all spelled wrong. For a wrong
spelled word, determining what a letter in the word should be is to make a
hypothesis for the letter. Because all letters in a word refer to the same word,
the hypotheses for these letters are related to each other, and have qualitative
correlations each other. There is one letter, “m”, in (b) different from that in (a),
so the Sum-degree of qualitative correlations from other letters which support
interpreting “m” in (b) as “n” is quite great. As a result, (b) can be easily
interpreted as (a). Further, there are two letters, “m” and “I”, in (c) different
from those in (a). Although (c) may be interpreted as (a), the Sum-degree of
qualitative correlations from other letters which support interpreting “m”and

“I" in (c) as “n”and “r” would not be great. Finally, there are three letters,
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“m”, “c” and “1”, in (d) different from those in (a). As a result, (d) will hardly
be interpreted as (a) since the Sum-degree of qualitative correlations from other
letters which support interpreting these three letters will be very small (even
smaller than that for interpreting (d) as word “/mmaculate”).

The principle for defining and calculating the Sum-degree of qualitative cor-
relations among related hypotheses is that the qualitative correlations among
related hypotheses should reflect the ratio of how many and how much related
hypotheses qualitatively support each other.

My method bases on the above two definitions. The method extracts qualita-
tive correlations among known hypotheses, and propagates them among related
hypotheses as confirmatory or disconfirmatory evidence, and updates the possi-
bilities of the hypotheses.

Definition 5.4 Confirmatory evidence from qualitative correlations among re-
lated hypotheses: If the Sum-degree of qualitative correlations among related hy-
potheses of h; is greater than a certain value given by domain ezperts, then the
qualitative correlations among related hypotheses provide confirmatory evidence
for hi. As a result, the possibility of h; may increase.

Definition 5.5 Disconfirmatory evidence from qualitative correlations among
related hypotheses: If the Sum-degree of qualitative correlations among related
hypotheses of h; is smaller than a certain value given by domain experts, then
the qualitative correlations among related hypotheses provide disconfirmatory ev-
idence for h;. As a result, the possibility of h; may decrease.

For example, partial component C Hj usually creates numerous peaks each of
which should have an exact location on infrared spectra. Because the peaks of
CHj on real infrared spectra are always inaccurate, especially the peak located
at 2900 em™?, real peaks on infrared spectra can not be directly identified as the
peaks of C'Hj. Instead, hypotheses need to be made to assume the similar peaks
to be those of CH;. Suppose a peak around 2900 ¢m™! is assumed to be the
peak of C'Hj. Since C'H; can create many peaks besides that at 2900 ecm™!, the
qualitative correlations among the hypotheses for these peaks created by CH,
can be used as confirmatory evidence to enhance the hypothesis for the peak
around 2900 cm™!, or as disconfirmatory evidence to depress the hypothesis.
For instance, if other hypotheses all have very great possibilities, then these
hypotheses tend to support the hypothesis for the peak around 2900 cm~!, and
the Sum-degree of qualitative correlations among related hypotheses of the peak
around 2900 cm ™! will be very great. As a result, the possibility of identifying the
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peak around 2900 cm™! will increase, that is, the possibility of the hypothesis for
the peak will be updated with a greater one. Similarly, if the related hypotheses
all have quite small possibilities, then they tend to depress the hypothesis for the
peak around 2900 cm ™!, and the Sum-degree of qualitative correlations among
related hypotheses of the peak will be quite small. As a result, the possibility of
identifying the peak around 2900 cm~! will decrease, that is, the possibility of
the hypothesis for the peak will be updated with a smaller one.

5.4 Method for Qualitative Correlation Prop-
agation

I have discussed that there are qualitative correlations among related hypotheses,
and that qualitative correlations among related hypotheses can be propagated
as confirmatory or disconfirmatory evidence for reasoning under uncertainty. In
this section, I present a method to realize the use of qualitative correlations
among related hypotheses as confirmatory or disconfirmatory evidence. First,
I present an algorithm for extracting and representing qualitative correlations
among hypotheses. Then, I present another algorithm for propagating qualita-
tive correlations and for updating the possibilities of hypotheses by propagating
qualitative correlations among related hypotheses as confirmatory or disconfir-
matory evidence.

5.4.1 Algorithm for Obtaining Qualitative Correlations

I describe the algorithm for obtaining qualitative correlations among hypotheses
with the following steps.

Step 1: Grouping related hypotheses

Suppose the known hypotheses are h,, ho, ..., and h, which form a hypothesis
set H. If some hypotheses in H refer to the same object, they can be treated as
related hypotheses. Therefore, H is divided into some subsets, that is,

H= {hl, hz, ARE hn} = Thl U 'T'hg U ’i"hk
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where (1) 7h; = {hs, | hi, € H AVh; (hi, € Thi A bi, # hy) — hi,&h;,)},
(2) rh,- # (D, and
(3) Th,' n 'l"hj == 0 or ?‘h,' n Thj -‘,é @, () 75 j

Step 2: Eztracting qualitative correlations among related hypotheses

For each subset of H, i.e.,

Thi = {hﬁ?h’izl"', him}, § = 1,2,...,k,

suppose the corresponding set of possibilities is

B = 1 B}y §=1,2, k.

The principle for defining the qualitative correlation between two related
hypotheses is that if the possibility of a hypothesis is greater than a certain value,
then it is qualified to qualitatively support its related hypotheses; otherwise, it
is not qualified. For example, suppose 0.5 is given as the certain value, then

go_ |1 Py €Thi AR €ThiApg > 0.5
%710 b, erhiAh, €Thinpg <05

where qc::: = 1 means that h;, is qualitatively supported by h; , and qc::: = 0
means that A;, is not qualitatively supported by h;,.

Step 3: Calculating Sum-degree of qualitative correlations

There are m hypotheses in rh; related to each other, so the Sum-degree of
qualitative correlations of h;, is calculated by considering qc}; yi= 1.2 ..mand
l # p, that is,

S0 14+ Llat oy T

ip m

where 0 < SD;, < 1.

SD;, expresses the total qualitative correlations between h;, and all of its
related hypotheses. If m = 1, then SD;, = 1. When m > 1, §D; is in the
direct ratio to the number of the related hypotheses in rh; which are qualified to
qualitatively support their related hypotheses.
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5.4.2 Algorithm for Propagating Qualitative Correla-
tions

I describe the algorithm for propagating qualitative correlations among hypothe-
ses to update the possibilities of hypotheses with the following steps.

Step 1: Calculating possibility propagation factor

I use P,z to represent the possibility propagation factor of h;, from all of its
related hypotheses, and calculate P,i by considering the confirmatory or discon-
firmatory evidence obtained from SD; :

(2m — 1) x $D;,
m

2 e
Pl =

where SD;, < P: < 25D,
P} is in the direct ratio to SD; . If m = 1, then S$D; =1, and P,-:'; =1.In

other words, when qualitative correlations among hypotheses are not available,
SD;, =1 and P,i = 1. This is the only case to which the method is not applica-
ble. However, in practical problems, qualitative correlations among hypotheses
are always available, so the method can always be applied.

When m is fixed, the greater the number of related hypotheses which are
made with great possibilities, the greater the SD; , therefore the greater the P,:

When SD;, is fixed, P,-i depends on the number of related hypotheses.

Step 2: Propagating qualitative correlations as (dis)confirmatory evidence

The possibility of k;, has been known as ps,, and the possibility propagation
factor of h;, has been calculated as P?. So a new possibility of h;, can be

calculated with the following formula after using qualitative correlations among
related hypotheses as confirmatory or disconfirmatory evidence:

where 0 < p;, < 1.

The function of SD;, is similar to the function of LS and LN in Subjective
Bayesian methods. However, both SD; and P,i are automatically calculated
by considering qualitative correlations among related hypotheses, while in Sub-

jective Bayesian methods both LS and LN are provided by domain experts in
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advance. In addition, using P: to calculate y;, is also similar to using evidence
to update the probabilities of hypotheses. However, the method is applicable
to any problem where hypotheses have been made with corresponding possibil-
ities, while Subjective Bayesian methods are usually applicable to the problems
where evidence and the relations between evidence and hypotheses are explicitly
provided.

Step 3: Updating possibilities of hypotheses

For h; € rh; (1 =1,2,...,m), if p; exists, then y;, is used to replace M.

5.5 An Example

I discuss the application of the proposed method through the following example.

Figure 5.2 shows the peak of partial component CH; in 3000 ¢! to 2900
em~1. The accurate peak of CHj in this region should be a strong peak located
at 2960 cm ™!, but in this example, the real peak of CHs is only a medium peak
located at 2918 cm™'. By considering the peak itself, the possibility that the
real peak at 2918 cm™! is identified as the peak of CH; at 2960 cm™! is 0.352
[Zhao & Nishida, 1995a], that is,

= 0.352.

o
'u'Pznao

CHj3 can mainly create 4 peaks, pagso, P2s70, P14so and pisso. These peaks are
related to each other.

If CHj is contained by the real infrared spectrum, then all peaks of C'Hj
should be identified. Therefore, if other peaks are all identified with great pos-
sibilities, C'Hj is quite likely to be contained by the real infrared spectrum, and
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the other peak will qualitatively support the identification of the inaccurate peak
at 2918 cm™! as the peak at 2960 cm™1.

—\\ f
SR |
L
accurate peak “l’
vrealpeak
!Iiiill.JIFIHHIHII
3000 em™! 2900

Figure 5.2: Peaks of CH;

Suppose the possibilities of other peaks are obtained with the same method:

= 0.850, p2,, =092l and p, . =0.975.

o
”P?STD

According to the proposed method, the qualitative correlations between two
related peaks are respectively calculated as:

qcpzuo — 1’ qcpuao — 1 and qcpzasu — 1

D2g60 P2960 P2960
Then
IDpes =1, omd FL . = s S RN
So
1-0.352
)U-Pz“n =1 — W = BAY,

Therefore, the possibility that the real peak at 2918 cm™! is identified as
peak paggo of C' Hj increases from 0.352 to 0.629 due to the qualitative correlations
among related hypotheses. C'H3 can not be identified before since one main peak
of it can not be found from the real infrared spectrum (i.e., p7, . < 0.5). After
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considering qualitative correlations among related hypotheses as confirmatory
evidence, C'H3 can be identified with considerably great possibility (i.e., Pipsoso =
0.629).

The above process is similar to the probability propagation in probabilistic
reasoning. However, neither evidence nor relation between evidence and hy-
potheses is required beforehand.

5.6 Discussion

In Section 5.4, I presented a new method for uncertain reasoning. In this section,
I discuss the properties of the method, and compare it with related work.

5.6.1 Properties

The following main properties of the method can be drawn.

Property 5.1: With the same number of related hypotheses, m, the greater
the number of related hypotheses whose possibilities are greater than a certain
value provided by domain ezperts, the greater the SD; ; otherwise, the smaller
the S D.; G

Property 5.2: With the same m, the greater the SD;,, the greater the P?.

Property 5.3: With the same SD;,, the greater the m, the less P,-i varies along
with m.

Property 5.4: With the same i, , the greater the P,-i, the greater the p;,.

Property 5.5: SD;, provides qualitative confirmatory or disconfirmatory evi-
dence for h;, since p;, is in the direct ratio to P,-i, and P,i is in the direct ratio
to S D,‘p .

The method can be graphically represented in Figure 5.3.
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Due to the propagation of qualitative correlations among related hypotheses
hi,, hiy, -.., and h;,, the possibility of h;, changes from uf to i,

Tm )

Figure 5.3: Propagation of Qualitative Correlations

5.6.2 Comparison

The propagation of qualitative correlations among hypotheses in the method
is similar to the probability propagation in Bayesian methods - if we view the
qualitative correlations a.mong related hypotheses as pieces of evidence [Duda,
and et al, 1977).

In solving the problems where qua.htatlve correlations among related hypothe-
ses can be extracted and used, the method is better in the following aspects:

1. In traditional Bayesian methods, evidence and its prior probability, hy-
potheses and their prior probabilities, and the relations between evidence
and hypotheses (e.g., LS and LN) are all provided and fixed by domain
experts in advance, so knowledge acquisition is a difficult task, and con-
sequently, inconsistency can hardly be avoided. In the proposed method,
on the other hand, only a few numbers are needed in advance. Instead,
qualitative correlations among related hypotheses and much dynamic in-
formation are automatically obtained and propagated;

2. Traditional Bayesian methods require that the evidence which supports or
depresses hypotheses be explicitly provided, and are only applicable to the
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problems where the relations between evidence and hypotheses are known.
The proposed method, however, is applicable to the problems where the
relations between evidence and hypotheses are unknown as well as the
problems where the relations between evidence and hypotheses are known.

3. In some cases, the proposed method does not need any assumption in ad-
vance. For example, in interpreting an inaccurate peak, the possibility
of the peak, which corresponds to the prior probability of a hypothesis in
Bayesian methods, can be automatically obtained by using the method pre-
sented in Chapter 4. Then, qualitative correlations between the inaccurate
peak and its related peaks are directly used to update the possibility.

When qualitative correlations among related hypotheses are available, and
assumptions necessary for Bayesian methods are hard to obtain, the proposed
method is better than traditional Bayesian methods. However, when qualitative
correlations among hypotheses are not known a priori, the method is not appli-
cable. The method is especially effective to interpret inaccurate numerical and
symbolic data by considering qualitative correlations among known hypotheses
as confirmatory or disconfirmatory evidence.

5.7 Summary

In this chapter, I presented a novel method for propagating qualitative correla-
tions among related hypotheses as confirmatory or disconfirmatory evidence of
uncertain reasoning. The function of the method is similar to the probability
propagation in Bayesian methods. However, compared with traditional Bayesian
methods, the proposed method can be applied to the problems where evidence
or the relation between evidence and hypotheses is not explicitly given, or is not
available. In addition, the proposed method needs few numbers and assumptions
in advance. Therefore, it is quite simple, and can effectively avoid inconsistency
in knowledge bases. The method is especially effective to interpret inaccurate nu-
merical and symbolic data by considering qualitative correlations among related
data as confirmatory or disconfirmatory evidence.




Chapter 6

Implementation and
Experiments

I have developed a knowledge-based system for interpreting infrared spectra by
applying the proposed methods, and have thoroughly tested the system against
several hundred real spectra. The experimental results show that the proposed
methods are significantly better than the conventional methods used in many
similar systems.

6.1 Infrared Spectrum Interpretation

The primary task of infrared spectrum interpretation is to identify unknown
objects by interpreting their infrared spectra. In this chapter, I will focus on
the problem to interpretation of infrared spectra of compounds to determine
composition of unknown compounds without loss of generality.

Infrared spectrum interpretation is a very good test-bed of the research for
the following reasons:

1. Interpreting infrared spectra is a very significant problem in both academic
research and industrial application. For example, in chemical science and
engineering, interpreting infrared spectra of compounds is the most effec-
tive way to identify unknown compounds, and to analyze the composition
and purity of compounds [Colthup, Daly, & Wiberley, 1990.

2. Interpreting infrared spectra is a very difficult problem. First, spectral
data are huge in quantity, and complex in representation. Second, both

65
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symbolic reasoning and numerical analysis é.re needed to interpret infrared
spectral data [Puskar, Levine, & Lowry, 1986][Sadtler, 1988].

3. Interpreting infrared spectra is a typical problem dealing with inaccurate
data since spectral data are often inaccurate. They often shift from their
theoretical values due to various reasons. For example, the following is an
assertion for spectrum interpretation:

The high frequency peak of partial component PC, is located at F;.
In practice, however, the peak of PC, may irregularly shift around F; due

to noise or other unforeseen reasons. When the above assertion is used to
identify real spectra, uncertainty arises.

6.2 Applying the Proposed Methods to Infrared
Spectrum Interpretation '

Interpreting infrared spectra is a special problem of diagnosis. Suppose the
infrared spectrum of an unknown compound can be thresholded and represented
as a finite set of peaks (i.e., the measured dataset M D):

Sp = {P11P2; “':P‘n}:

where every peak consists of the frequency (position) f, strength (height) s, and
width (shape) w, respectively:

pi = (fi, i, w;) sl g N

Because f;, s; and w; refer to the same peak p;, they are related data. This
is one kind of related data in infrared spectrum interpretation.
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Suppose there are finite partial components (i.e., reference values RV):

PC = {PC,, PG, ..., PCy}
i {{pjlipjz)"‘ipjm} | J _— 1,2,...,k}

= {{(fir»83,w3,) | P=1,2,..,m} | j = 1,2, ..., k}.

Because fj,, s;, and wj, also refer to the same reference peak p;,, they are
related data as well.

The spectroscopic knowledge for interpreting infrared spectra is usually in
the form like “if p; is equal to p;,, then p; may be created by partial component
PC;”, where “p; is equal to p;,” represents that f;, s;, and w; are equal to Tss
8;,, and w;, respectively.

This kind of related data has the following qualitative correlations:

1. fi, s; and w; should be identified simultaneously, that is,

o if f; corresponds to f;,, then s; corresponds to s;,, and w; corre-
sponds to wj,, and

e if s; corresponds to s;,, then f; corresponds to f; , and w; corre-
sponds to w;,, and

e if w; corresponds to w;,, then f; corresponds to f; , and s; is 8j,-

2. related data support each other. For example, if both f; and s; have been
identified, then they will enhance the identification of w;. Conversely, if f;
and s; have not been identified, then they will weaken the identification of
w;.
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The methods for identifying f;, s; and w; based on the qualitative correlations
among them presented in Chapter 4 can be formalized as the following predicate
calculi, respectively®:

{£iQ@p;,,p;,@p;} = {pi is created by PC;}, and
{Si@pj?,pj?@Pi} = {p; is created by PC;}, and
{w;@pj,,p;,@p;} = {p; is created by PC;},

where “p; is created by PC;” means that f;, s; and w; can be qualitatively
identified to be f; , s;, and w;,.

In general, each partial component may create finite peaks at the same time. :
So if p; is created by PCj, then Sp is partially created by PCj; if Sp is partially
created by PCj, then all the peaks that PC; may create should be contained
by Sp simultaneously. Therefore, all the peaks created by a partial component
are also related data. This is another kind of related data in infrared spectrum
interpretation.

This kind of related data has the following qualitative correlations:

1. all the peaks of a partial component should be identified simultaneously,
that is,

if p; corresponds to p;,, then p;, € Sp (I =1,2,...,m,l # p).

2. the peaks created by the same partial component support each other. For
example, if most of the peaks of a partial component have been identified,
these peaks will enhance the identification of the rest peaks. Conversely,
if most of the peaks of a partial component can not be identified, then the
identification of the rest peaks will be depressed.

!The process described in this chapter does not concern the constraint satisfaction problems
in infrared spectrum interpretation which will be presented in Chapter 8.
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The method for identifying related peaks based on the qualitative correlations
can be formalized as the following logic expression:

{p:@PC;, PC;@Sp} = {PC; € IN(Sp)}.

6.3 System for Interpreting Infrared Spectra

The system is implemented with C and MS-WINDOWS. Figure 6.1 shows the
data flow diagram of the system?.

< (o
PCa PG, PC,

IN(Sp): Interpretation of Sp

Figure 6.1: Data Flow Diagram of the System

The input data of the system are infrared spectra of unknown compounds,
and the solutions are partial components that the input spectra may contain. Be-
cause inferences are based on qualitative features of spectral data and qualitative

2This section only briefly mentions the architecture of the system. The design and devel-
opment of the system will be presented in Chapter 7.
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correlations among related data, the system can gain high correct interpretation
performance with noisy spectral data.

AsI mentioned before, there are two kinds of related data in infrared spectrum
interpretation: all the features of a single peak (i.e., f;, s; and w; of p;), and all
the peaks of a single partial component (i.e., p;, p2, ... and pn,). The inference
engine of the system employs the proposed methods to both kinds of the related
data when inaccuracy arises.

6.4 Examples

I discuss the performance of the system through the following example. Figure
6.2 shows an infrared spectrum of an unknown compound. The spectrum is very
hard to interpret since the peak with an arrow (named p,) shifts substantially.
The system correctly identifies that p; is created by partial component benzene-
Ting.

In contrast, many similar systems can not correctly identify the peak [Clerc,
Pretsch, & Zurcher, 1986][Hasenoehrl, Perkins, & Griffiths, 1992][Wythoff, Buck,
& Tomellini, 1989], since the peak of a benzene-ring at this frequency position
(named p, ) should be a strong peak (i.e., s, > 1.000) according to spectroscopic
knowledge, not a medium one (s; = 0.510) as the case in this example. Systems
based on conventional fuzzy methods usually assume a fuzzy interval for each
inaccurate peak, then determine the membership degree that the inaccurate peak
is in the fuzzy interval. Suppose the reference value for a strong peak is 1.000,
and the fuzzy interval for a strong peak is 0.300 [Colthup, Daly, & Wiberley,
1990], then only peaks with strength of 1 + 0.300 can be regarded as strong
peaks. Obviously, by conventional fuzzy methods, the possibility of p; being a
strong peak is zero, i.e., flsenzene—ring(51) = 0.

Inferring on the basis of qualitative correlations among related data, the
system makes a correct interpretation of the spectrum. Through the following
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two cases, I introduce the inference process of the system, and at the same time
demonstrate the use of the methods presented before.

0.000

Strength (Absorbance)

1.200

4000 Frequency(cm-1) 600

Figure 6.2: An Example of Infrared Spectrum

6.4.1 Case I: Considering the First Kind of Related Data

Because the frequency (position) and width (shape) of p; are both the same as
those of benzene-ring, the possibility of f; being identified as f;, is 100% (i.e.,
Hbenzene—ring(f1) = 1), and the possibility of w; being identified as wj, is also
100% (i-e‘, ,u-bcnzcne—ring(wl) = 17,

3. (d) means the possibility of d being identified by conventional fuzzy methods, i.e., SCF
is not considered.
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As I have discussed before, fi, s; and w; are related data, so we can obtain
confirm evidence for identifying s; by considering qualitative correlations among
81, f1 and wy: '

#benzene--ring(fl) == 1:

80, €5, (f1) = 1 (csy(f1) represents the qualitative correlation between
sy and fi),

ﬂ'benzene-—ring(wl) o 11

80, €y, (w1) = 1 (c,, (w1) represents the qualitative correlation between
81 and w,)

so, SCF,, = -:L-aﬂ =1, and
As; = @;-'(M x 1 =0.500, and

5,Qpy, =1 - %12 = 0.02.

By considering SCF,,, the possibility of p; being regarded as a strong peak
of benzene-ring increases from 0 to 0.02. Many near-misses may be handled
by the negligible possibility. For example, in most systems based on fuzzy and
other methods [Clerc, Pretsch, & Zurcher, 1986], it is impossible to identify p; to
be “strong” (i.e., fsenzene—ring($1) = 0), but considering qualitative correlations
among related data makes it possible, although the possibility is only 0.02 (“p <
0” means “impossible”, but “x > 0 means “possible”).

As f; and w; are both the same as the reference values, so f;@p;, = 1, and
?.U]_@pbl 3 I

Suppose the priorities of fi, s; and w; are 2, 1 and 1 respectively, then the
possibility of p; being identified as p,, is:

2x14002+1
H1=p,@p = - = 0.755.

while the possibility of p; being identified before is 0, since one data item can
not be identified (i.e., fpenzene—ming(81) = 0).
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6.4.2 Case II: Considering the Second Kind of Related
Data

The process of considering the second kind of related data is quite similar.

We have got that the possibility of p; being created by a benzene-ring is y,
(#1 = 0.755). Suppose the benzene-ring can create m peaks: 1. B - D6 )
then the m peaks are related to each other. If p; is created by the benzene-
ring, then Sp is partially created by the benzene-ring (i.e., the benzene-ring is
contained by the unknown spectrum); if Sp is partially created by the benzene-
ring, then the other m-1 peaks of the benzene-ring should also be identified.

By using the same procedure as obtaining p;, we can get p, ps, ... and
Hm as well. According to the method presented in Chapter 5, the qualitative
correlation between two related peaks, p; and p;, is defined as:

e if p;>0.5
ch_{o if i <0.5.
So
1+
SD; = E—l*”*'q‘, Q8 <
m
Then
2 2m-1 2
Fl= Xobh, QCPtel
m
and

— M
o

p;@benzene — ring = 1 —

p;@benzene — ring < 1.
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Roughly, when SD; > 0.5, related peaks tend to support p;. When related
peaks support p;, P? > 1. When P? > 1, p;@benzene — ring > u;.

Table 6.1 shows the relation among p;@benzene — ring, y; and P?.

p;Qbenzene — ring i
1 0.8 0.5 0.3 0
1.3 1 0.846 0.615 0.462 0.231
i1 1 0.818 0.545 0.364 0.091
g | 1 0.8 0.5 0.3 0
0.9 i 0.778 0.444 0.222 /
0.7 1 0.714 0.286 0 /

Table 6.1: Relation among p;@benzene — ring, pu; and P?

In the above example, SD; = 0.850, and P? = 1.658, so

1-—0.755
@b —ring =1 - ——— = 0.852.
p1@benzene — ring 1658 0.85

Therefore, the possibility of p; being identified as p;, increases from 0.755 to
0.852 due to qualitative correlations among related peaks. The process is similar
to the probability propagation in probabilistic reasoning. Here identifying p; is
a hypothesis, and qualitative correlations among related data of p, are pieces of
evidence. j

After all the peaks of the benzene-ring are identified, the possibility that the
benzene-ring is contained by Sp can be finally calculated.

6.5 Analysis of Experimental Results

I compare two methods in the experiments. The first method (called “AF™) is a
conventional fuzzy method which is used by most similar systems [Clerc, Pretsch,
& Zurcher, 1986][Wythoff, Buck, & Tomellini, 1989]. To use AF, each reference
value must be associated with a fuzzy interval for dealing with inaccuracy. Both
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reference values and fuzzy intervals are empirically determined [Colthup, Daly,
& Wiberley, 1990].

Table 6.2 lists some reference values and their fuzzy regions used by AF.

CH; 2960 + 15cm™! strong+£0.3  sharp=+1
2870 £ 15cm™! strong+0.3 sharp*1
1450 £ 10em™! medium + 0.3 sharp + 0.5

benzene — ring 3055+ 25cm~! strong+£0.3  sharp£1.5
1645+ 10em™' medium 0.3 sharp+0.5
1550 £ 30cm™' medium £ 0.3 sharp+1
1450 £ 3em™  medium £ 0.3 sharp+0

—CH, - OH 3635+ 5cm™!  strong+0.3  broad £ 1
3550 £ 25cm™! strong+£0.3  sharp+1

Table 6.2: Some Reference Values and Their Fuzzy Regions

The membership function of AF is:

pr(d) = maz {0, 1- | dé:d'r' I},

where d is a measured data item, r is a reference value, Ad is the fuzzy interval
of r, and 0 < p,(d) < 1.

The second method (called “AF*”) is the combination of the methods pro-
posed in Chapter 4 and Chapter 5. AF* uses the same reference values and fuzzy
intervals as AF in identifying a single peak, but the fuzzy intervals in AF* are
only used as standard fuzzy intervals based on which dynamic shift intervals are
determined by considering qualitative correlations among related data.

AF and AF* use the same reference values and empirical fuzzy intervals.
The formula for calculating membership degrees in AF (i.e., p,(d) = maz{0,1—
J%l]-) is also similar to the formula for calculating possibility in AF* (i.e., y; =

|di—j, |

1- TEL) However, in AF, Ad is simply an empirical fuzzy interval, while
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in AF*, Ad; is a dynamic shift interval based on qualitative correlations among
related data.

I have tested the system against about three hundred real infrared spectra
of organic compounds. The experimental results show that AF* is significantly
better than AF'.

There are two important standard metrics for evaluating solutions of infrared
spectrum interpretation:

Definition 6.1 Rate of correctness (RC): the rate that the identified partial
component set is ezactly the same as the partial component set in the correct
solutions.

Definition 6.2 Rate of identification (RI): the rate that how many partial com-
ponents in the correct solutions are identified.

Table 6.3 shows the comparison between AF and AF* with the two standard
metrics.

RC (error-rate) | RI  (error-rate)
AF 0.455  (0.545) |0.812  (0.188)
AF* | 0.736  (0.264) |0.894  (0.106)

Table 6.3: Evaluation of AF & AF* with RC and RI

Table 6.3 demonstrates that both the RC' and RI increase by integrating
SCF, but the RC increases more significantly. The reason is that although
AF can identify most partial components of unknown compounds, it is hard to
identify all partial components of unknown compounds because there are always
some partial components whose measured peaks seriously shift from the reference
values.

Table 6.4 and 6.5 list part of the experimental results in which the first
column indicates the solutions obtained by AF; the second column indicates the
solutions obtained by AF*; and the third column shows the correct solutions.
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AF (Without SCF) AF* (With SCF) Correct Solutions
® CH>- CH3 -[CHZn- ® _CH- CH3- -{CHZn- -CH2-  CH3- -[CH2n-
; | |
M @ OB o8 o CH- CH:- ¢
| | |
(IJHS CIHS (T‘.H3
@ -CH2- CH3- —(fH @ -CH2- CH3- _CI:H -CH2-  CH3- -(IJH
CH3 CH3 CH3
| | |
® CH- CH3- -C- @ -CH2- CH3- - -CH2-  CH3- —C-
| | |
(I‘/HS 9H3 (I3H3
@)  CHa- -?H ® CH3- -(I:H Q CH3- —(.",H O
CH3 CH3 CH3
€9 -CH- CH3- >C=CH- ® -CH2- CH3- >C=CH- -CH2-  CH3- >C=CH-
0 g
@ ¢z 0 @ cH- ci:- c- 0
© t identified PC set is the same as the PC set in the correct solution(in this case, RI=1)
@ ¢ idenctified PC set is not the same as the PC set in the correct solution(the number indicates the RI)

Table 6.4: Experimental Results with AF & AF* (Part 1)
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AF (Without SCF)

AF* (With SCF)

Correct Solutions

@5 -CH2-  CH3-

) -CH2- CH3-

e o 0

@) >C=CH-

7 CH3- >C=CH-

CH3- >C=CH- (J

HCH2p- c=cH ()

® -[CH2n- CxcH (0

-[CH2p- cscH

(@) -CH-  CH3- >C=CH- @ -CH- CH3- >C=CH- -CH2-  CH3- >C=CH-
~CH[CH3]2 -CHICH3R () ~CH[CH3]2 ()
@ c- (0 ® -cie- ciz- (0 cH- o (0
| ! !
@ ¢ ® -CcC- cfc o
~Cl “Cl ~Cl

@ CB- O NH-

Pl S
NH2-

|
- o 0
NH2-

@ + identified PC set is the same as the PC set in the correct solution(in this case, RI=1}

i @ : ldentified PC set is not the same as the PC set in the correct solution{the number indicates the RI)

Table 6.5: Experimental Results with AF & AF* (Part 2)
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6.6 Comparison with Related Systems

Related systems mainly fall into the fo]lowihg four categories: (1) Systems based
on Y/N classification, (2) Systems based on fuzzy logic, (3) Systems based on
pattern recognition, and (4) Systems based on neural networks.

6.6.1 Systems Based on Yes/No Classification

The method commonly used by spectroscopists in practice is numerical analysis
[Colthup, Daly, & Wiberley, 1990]. Numerical analysis is primarily based on
comparison between spectral data and reference values. Reference values are
usually some regions like frequency : 3615 £ 5cm™1 or strength : 1.000 £ 0.300.
If spectral data are in certain regions, the answer of classification is yes; otherwise,
the answer is no.

Most systems for interpreting infrared spectra use this method [Hasenoehrl,
Perkins, & Griffiths, 1992|[Puskar, Levine, & Lowry, 1986][Wythoff, Buck, &
Tomellini, 1989]. For example, in Wythoff’s system, rules for comparing spectral
data are in following forms as shown in Table 6.6.

ANY PEAK(S) FREQUENCY:1700-1707 . STRENGTH-0.7-1.0
WIDTH:SHARP TO BROAD
ANSWER -YES-
ACTION - **+

Table 6.6: Rules for Comparing Spectral Data

The advantage of these systems is that they are very easy to develop because
they can directly use spectroscopic knowledge, and do not need further compu-
tation. However, the problem is that each of these systems is only applicable to a
specific class of compounds, or pure compounds because when spectral data are
seriously inaccurate, the reference values (regions) can not reflect the inaccuracy.
For example, Hasenoehrl’s system is only for distinguishing compounds contain-
ing at least one carbonyl functionality from other compounds, although the RI
of the system is about 98% (naturally, the RC is not available), and Puskar’s
system is only for identifying hazardous substances.
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In fact, spectroscopists also use qualitative analysis in some specific cases
in addition to the formal spectroscopic knowledge, such as “if the peaks in 600
em™1- 900 em™" look like the peaks of benzene-rings, then the peaks in 3000 cm™=1-
8100 em™" are quite likely to be created by a benzene-ring.” Unfortunately, the
qualitative analysis was hardly applied to these systems since it can not be used
directly. In contrast, my system can successfully use the qualitative analysis like
spectroscopists. The way of using it is the methods proposed in this Chapter 4
and Chapter 5. As a result, the system is applicable to all compounds with very
high correct performance.

6.6.2 Systems Based on Fuzzy Logic

Since spectral data are always inaccurate, and the representation of spectroscopic
knowledge is quite like that in fuzzy logic, some systems naturally use fuzzy

logic or some techniques similar to fuzzy logic [Clerc, Pretsch, & Zurcher, 1986].
In these systems, fuzzy intervals which are similar to the regions described in
Section 6.6.1 are given for reference values, and memberships of inaccurate data
are calculated on the basis of the degrees that the inaccurate data are in the
fuzzy intervals. These systems are better than those described in Section 6.6.1
in some cases, but the degrees that inaccurate data are in fuzzy intervals do
not necessarily reflect the possibility of the inaccurate data being the reference
values. For example, in Figure 6.3, it is difficult to determine which peak is closer
to the reference value only by considering the degrees that peak a and peak b
are in the fuzzy interval.

peak a

peak b
reference value

(fuzzy interval)

Figure 6.3: Two Peaks in a Fuzzy Interval

However, by applying the methods proposed in Chapter 4 and Chapter 5,
the above problem can be easily solved. As I discussed before, in practice,
spectroscopists also frequently use knowledge about correlations among peaks
in addition to the formalizable spectroscopic knowledge. This kind of knowledge
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is essential to my methods which enable qualitative correlations among related
data to be used as evidence for the identification of inaccurate data.

I have compared the fuzzy method used by these systems with the proposed
methods in section 6.5. So far as I know, the RC of my system is the highest
among the similar systems, and the RI of my system is higher than that of many
similar systems.

6.6.3 Systems Based on Pattern Recognition

Some systems use pattern recognition techniques to interpret infrared spectra
[Jalsovszky & Holly, 1988][Sadtler, 1988], of which Sadtler is the most popular
commercial system. The system compares known patterns with unknown ones,
and determines the possibility of an unknown pattern being a known one by
calculating the quantitative similarity or closeness between the two patterns.

Unlike fuzzy techniques, pattern recognition considers a group of data (i.e.,
a pattern) at the same time. However, pattern recognition is primarily based on
quantitative analysis. I have discussed that in many cases especially when the
inaccuracy of spectral data is not slight, qualitative features of spectral data are
much more important than quantitative ones. For example, Figure 6.4 shows
two simple cases. The difference between the two patterns in (a) is smaller than
that in (b). From the viewpoint of Sadtler, the two patterns in (a) are closer
than those in (b). However, the two patterns in (b) may be the same in some
cases, while the two patterns in (a) may not be the same in any case. The reason
is that the qualitative features (frequency positions of peaks) of the two patterns
in (a) are different.

pattern 2

pattern 1

difference

(a) (b)

Figure 6.4: Quantitative Differences between Patterns

Because quantitative similarity and closeness are not always sound, most
systems based on pattern recognition including Sadtler can not give concrete
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solutions. In general, the solutions of these systems are only a series of candidates
from which users have to finally decide the possible one by themselves.

It is difficult to compare these systems with mine because the solutions of
these systems are quite loose, and neither the RC nor the R/ is available. Sadtler,
for example, usually gives the list of all known patterns associated with the values
of quantitative differences between the unknown patterns and these known ones.

6.6.4 Systems Based on Neural Networks

Recently, neural networks have been applied to infrared spectrum interpreting
" systems [Anand, Mehrotra, Mohan, & Ranka, 1991][Becraft, Lee, & Newell,
1991][Robb & Munk, 1990]. In Anand’s system, a neural network approach
is used to analyze the presence of amino acids in protein molecules. To this
specific classification, the RI of Anand’s system is about 87%, and the RC is
not available. In Robb’s system, a linear neural network model is developed for
interpreting infrared spectra. The system is for general purpose like mine. With-
out prior input of spectrum-structure correlations, the RC of Robb’s system is
53.3%.

Although the RC and RI of my system are both higher than those of the two
systems, using neural networks is still promising, especially when model training
or system learning is a must.

6.7 Summary

In this chapter, I introduced the implementation of the proposed methods, and
discussed the corresponding experiments. I applied the methods to a practical
system for infrared spectrum interpretation, a typical problem dealing with inac-
curate data. I fully tested the system against about three hundred real infrared
spectra of organic compounds. The experiments show that the methods are sig-
nificantly better than the conventional methods used in many similar systems.

I also gave two examples in this chapter to demonstrate how to use qualita-
tive correlations among related data as evidence to identify inaccurate data in
practical problems. In addition, I compared my system with similar systems, the
RC and RI of my system are higher than those of others so far as I know. I also
compared the methods with related methods, and discussed when and how they
are better or different.




Chapter 7

Knowledge-Based System for
Infrared Spectrum
Interpretation

In this chapter, I present a knowledge-based system for infrared spectrum inter-
pretation. In Chapter 6, I once discussed the application of my methods to the
system for interpreting inaccurate spectral data. Since interpreting inaccurate
spectral data is only one of the difficult issues of system, in order to give an
overall picture of the system, in this chapter, I introduce other issues of the sys-
tem. First, I briefly introduce the design and development of the system. Then,
I demonstrate the working process of the system with examples.

7.1 Introduction

Traditional methods for infrared spectrum interpretation require comparing in-
frared spectra of unknown compounds with infrared spectra of known compounds
to interpret what the unknown ones are. The principle behind traditional meth-
ods is that compounds exhibiting similar infrared spectra will also have similar
chemical structures which can be expressed as the following formula.

Sp = F(St)
{ St = F~(5p),

where Sp means spectra of compounds, and St means their chemical structures.

83
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Performing the task of comparing infrared spectra of unknown and known
compounds traditionally relies on quantitative analysis. However, only using
quantitative analysis has two critical problems:

1. Quantitative analysis is generally very complex, and in some cases it may
even become intractable. For example, the number of known compounds
is very large, and the comparison between unknown and known infrared
spectra is very complex, so reducing the number of known compounds to
be compared must be done before quantitative analysis starts;

2. Spectral data are always inaccurate due to noise and other unforeseen rea-
sons. When spectral data are inaccurate, only using quantitative analysis
is hard to give concrete solutions.

As we know, a compound usually consists of several different partial compo-
nents, and different partial component has different spectral pattern. Therefore,
the infrared spectrum of the compound will somewhat exhibit the patterns of
the partial components, that is,

Partial_Sp; = G;(Partial_Component;)
Partial_Component; = G;*(Partial _Sp;),

and

Sp = ¥ (Partial _Sp)
St = 3 (Partial_Component).

My system interprets infrared spectra with three separate phases. Instead of
investigating all known compounds to directly determining what compounds the
unknown compounds are, the system first qualitatively analyzes the unknown
spectra to determine what partial components the unknown compounds contain.
Then, at the second phase, it gives, based on the partial components, a very lim-
ited list of candidates of compound. Finally, at the third phase, it investigates
the limited compound candidates to determine the correct one by using quanti-
tative analysis. Because the number of partial components is much smaller than
the number of compounds, and qualitative rather than quantitative information
can be used in analyzing partial components, the first phase is quite simple. And
because the number of compounds to be compared with unknown compounds
can be significantly reduced by qualitative analysis (Usually the space can be
narrowed down from over thousand known compounds to several candidate),
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the quantitative analysis at the third phase becomes very convenient. In addi-
tion, qualitative analysis relies on qualitative features of infrared spectra more
than quantitative features of infrared spectra, inaccuracy of spectral data can be
handled well at the same time.

7.2 Design of the System

Three phases of the system described in Section 7.1, can be roughly viewed as
two different processes, that is, a qualitative process for analyzing what partial
components an unknown compound contains by qualitatively interpreting the
infrared spectrum of the compound, and a quantitative process for analyzing
partial components to produce a list of candidates of compound which contains
the partial components identified by the qualitative process, and for analyzing
the list of candidates of compound to determine what the unknown compound
is.

The two processes are shown in Figure 7.1.

:0f Compounds

~._Set of Candidates

il

'\\
Qualitative i “
Reasoning
Quantitative Solutions

Analysis

Figure 7.1: Qualitative and Quantitative Processes

By doing qualitative analysis first, the system only needs to apply complex
quantitative analysis to a very limited list of candidates. The method for qual-
itatively interpreting inaccurate data presented in Chapter 4 and the method
for uncertain reasoning presented in Chapter 5 are employed by the qualitative
reasoning.
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7.2.1 Qualitative Process

Before introducing the qualitative process, I first put forward the following three
new concepts.

Definition 7.1 (Peaks' Unique Pattern): Peaks’ Unigue Paitern (PUP) is a
combination of some peaks of a partial component which distinguishes the partial -
component from others. The peaks in the PUP of a partial component are called
key peaks of the partial component.

For example, the peaks of meta-sub benzene are distributed from 4000 cm ™!
to 600 cm™1. In 3100 cm™! to 3000 cm ™, only alkane CH, meta-sub benzene,
ortho-sub benzene, mono-sub benzene, and para-sub benzene have peaks. There-
fore, peaks of these partial components in (3100, 3000) can be selected as one
of their key peaks to distinguish them from others. Similarly, in 900 cm™! to
800 cm™, only benzenes have peaks. Therefore, peaks of benzenes in (900, 800)
can also be selected as their key peaks to distinguish them from others. Among
benzenes, only meta-sub benzene has peaks in 800 cm™! to 700 cm™!, so the
peak in (800, 700) can be selected as its key peaks to distinguish it from other
benzenes. As a result, the peaks in (3100, 3000), (900, 800) and (800, 700) can
form a PUP of meta-sub benzene.

The following theorem can be directly given from the definition of PUP.

Theorem 7.1: If PUP; ¢ Sp, then PC; ¢ SL, where PC; is a partial compo-
nent, PUP; represents the PUP of PCj;, Sp is the spectrum of unknown com-
pound, and SL is the solution list.

Proof: 1) PUP; C PL(PC;), where PL(PC;) is the peak list of PC},
so if PUP; ¢ Sp, then PL(PC;) ¢ Sp;
2) if PL(PC;) ¢ Sp, then PC; ¢ SL. m]
If the PUP of a partial component can be identified from the S’p of an
unknown compound, the partial component is perhaps contained by the unknown

compound; if the PUP can not be identified, the partial component is definitely
not contained by the unknown compound.
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With the theorem, we can easily eliminate obviously impossible partial com-
ponents from our consideration by only checking the PUPs of partial compo-
nents.

Definition 7.2 (Splitted Spectral Section): Splitted Spectral Sections (5SS ) are
spectral regions on spectra in each of which only the key peaks of some specific
partial components appear.

For example, in the region of 3700-3100 ¢m™!, partial components OH, NH
and CH are active. The key peaks of these partial components always appear
in this region. So this region can be selected as an §S55. Similarly, the region of
3100-3000 em™! can also be selected as an SSS in which Substituted-benzenes
and Alkane-CH are always active.

If there are peaks in an S5, a hypothesis, the partial components which
have key peaks in this SSS possibly exist, is made. The further matter is to
find evidence to prove the hypothesis, or to negate it. If other peaks of these
partial components are also found, the hypothesis is enhanced. If all peaks of
these partial components are found, the hypothesis gets proved.

The following theorem can be drawn from the definition of S5S.

Theorem 7.2: If p; ¢ SSS;, then PC; ¢ SL, where p; is a key peak of PC;,
and S585; is an SSS of PC; in which p; should appear.
Proof: 1) §55; is a section of Sp where p; should be,

so if p; ¢ 555;, then p; ¢ Sp;

2) Di e PUPj,
so if p; ¢ Sp, then PUP; ¢ Sp, PL(PC;) ¢ Sp;
3) if PL(PC;) ¢ Sp, then PC; ¢ SL. O

In a single SS§, it is impossible to identify what partial components exist,
but it is possible to identify what partial components do not exist. Because if
the key peak of a partial components should be but can not be found in an 5§55,
then the partial component is definitely not contained by the Sp.

If a key peak of a partial components can be found in an S5, then the
partial component is likely to exist. The further work is to find other peaks of
the partial component from Sp.

Definition 7.3 (Vague Frequency Position): Vague Frequency Positions (VFP)
are frequency intervals of peaks around their standard frequency positions.

Because spectral data are always inaccurate due to noise or other unforeseen
reasons, the real peaks on Sp are always slightly different from their theoretical
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positions. In qualitative analysis, the location of a peak is more important than
its exact frequency position. In eliminating impossible partial components, the
location of a peak in a specific 555 is used to represent the vague position of
the peak which is called Vague Frequency Position (VFP). No matter what
their frequency positions are, once the peaks fall into some S55s, corresponding
hypotheses will be made.

Using V F P can significantly reduce the complexity of checking partial com-
ponents, and more importantly, can enable us to avoid handling inaccuracy of
spectral data in the process of eliminating obviously impossible partial com-
ponents, but leave inaccuracy handling for the process of deciding the correct
partial components. :

The following is a simple algorithm for the qualitative process of analyzing
partial components.

Algorithm From-Sp-to-PC
Procedure From-Sp-to-Possible-PC
Possible PC = {PC; | =1,2,..,N}; i vra
fori=1to L { ;; zsss
Possible_PC; = {PC whose PUP is in SS5S;};
if no_peak_in SSS;
Possible_PC = Possible_PC - Possible_PC;;}
return{Possible_PC} ;;; sl possivie PCs

end procedure

Procedure From-Possible-PC-to-Solutions

SL = 0,
fori=1to M ;;; M PCsin Possibic_rc
if PC; C Sp
SL = SL U {PC;};
return{SL} 137 Aanal solution

end procedure
end algorithm

The way of handling inaccurate spectral data in qualitatively analyzing par-
tial components has been extensively discussed in Chapter 4, 5 and 6, so I made
no mention of it in this section.
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7.2.2 Quantitative Process

Before describing the quantitative process, I first introduce two relevant concepts.

Definition 7.4 (DB1): DB1 is the data base of compounds which consists of
all known compounds and their classifications.

The classification of a compound includes the class and subclass that the
compound belongs to.

In the system, DB1 is organized in the following form.

Class Subclass Compound
Hydrocarbon n-Paraffin CH;s-[CH,s-CHj
C'Hs-[CHyl1o-CHs
Isopara.ffin C'H3-[CH-CH2]-CH3

Definition 7.5 (DB2): DB?2 is the data base of PC's which consists of all known
partial components and their classifications.

The classifications of PC's are determined by the classifications of compounds
in which the PCs first appear. For example, CH,, CH; and CH first appear
in the class of Hydrocarbon, so they belong to the class of Hydrocarbon. CH,
and C'Hj appear in both the subclasses of n-Paraf fin and Isoparaf fin, but
appear in n-Paraf fin first, so they belong to the subclass of n-Paraf fin.

In the system, DB?2 is organized in the following form.

PC Class Subclass
CH,, CHs, [CH,|, Hydrocarbon n-Paraffin

CH Hydrocarbon Isoparaf fin

After partial components that an infrared spectrum contains have been de-
termined by the qualitative process presented in Section 7.2.1, DB1 and DB2
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are checked to produce a list of compounds as candidates each of which consists
of these partial components.

The algorithm shown in Figure 7.2 performs the task of producing candidates
from partial components. In the algorithm, Lpc is the list of partial components.

s
@ End]

pce=the firast of sl
si=the reat of sl

B=the subclas:s of
pec in DB2

C=all compounds in
subclass B in DB1

C=NIL?
no

c—the first of C
C-the rest of C

Does c contain all
PCs in SL7?

ves

c is one
candidate

Figure 7.2: Algorithm for Generating Candidate List

Since compounds consisting of the same partial components are very lim-
ited, the number of compounds in the list of candidates is generally very small.
Therefore, using complex quantitative analysis to determine the correct com-
pound from the list of candidates becomes very simple.

The algorithm in Figure 7.2 can create a list of compound candidates. How-
ever, deciding which candidate the unknown compound is still requires quanti-
tative analysis. For example, so far we may be sure that an unknown compound
is either CH;; g [CHg]s e CH;; or C.Hg er [CHZ]]_U e C.Hg The further work de-
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termining the number n in CHj — [C Hy|, — C H; has to be done by quantitative
analysis.

I adopt a commonly used method for quantitative analysis. The method
calculates the quantitative closeness between two Sps as the possibility of one
being the other, and gives the known compound with the greatest possibility
of being the unknown compound as its solution [Colthup, Daly, & Wiberley,
1990][Sadtler, 1988]. :

There are two critical requirements for quantitative analysis of Sp. First,
the correct solution must be included in the compound candidates. Second, the
number of compounds in the compound candidates should be as few as possible.

Because the qualitative analysis is based on what PCs the unknown com-
pounds contain, the first requirement can be satisfied in general cases. Concern-
ing the second requirement, the system is also quite satisfactory. The average
number of compound candidates in my experiments is about 3.76 which is much
better than other known methods. For example, in Sadtler’s system, the average
number is about twenty [Sadtler, 1988].

7.3 Architecture of the System

The system is developed by using C under MS-WINDOWS. Figure 7.3 shows the
architecture of the system.
In the system, main parts include:

1. Inference Engine

Inference engine is the kernel of the system. It analyzes the spectra of
unknown compounds to identify what partial components the unknown
compounds contain, and what compounds the unknown compounds are. It
also performs the task of dealing with inaccurate data.

2. Knowledge Base

Knowledge base provides spectroscopic knowledge for interpreting infrared
spectra, identifying partial components and compounds, and dealing with
related data and qualitative correlations among related data.

3. Data Bases

Data bases consist of spectroscopic data, references of compounds, and
patterns of partial components.
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4. Explanation

Ezplanation is developed for displaying various solving paths and solv-
ing methods of the system to help users to understand why and how the
inference engine gives the results.

I Explanation )
"\-._.‘_v-m"-.‘. nl),.—m\#'"“"l

Figure 7.3: Architecture of IR Spectrum Interpreting System
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5. Rule Interpreter

The rules in knowledge base are written in semi-natural language for the
convenience of operation. As a result, a rule interpreter is necessary to
transfer various rules to the forms that the inference engine can understand.

. 6. User Interface

Microsoft windows softwares are used to develop the user interface of the
system. Users can use the system under the convenient working environ-
ment.

7. Load

Users can search libraries of references, or load files in disks under the user
interface by using Load.

8. Add

Users can add new references to the libraries, or input new unknown com-
pounds in the process of operation by using Add.

Figure 7.4 shows an example of the system. Figure 7.4 (a) is the Sp of an
unknown compound. Figure 7.4 (b) shows the solution of the qualitative process,
and Figure 7.4 (c) shows the solution of the quantitative process.

7.4 Summary

In this chapter, I introduced a knowledge-based system for infrared spectrum
interpretation. I mentioned the system in Chapter 6 as the background problem
of applying the methods for qualitatively interpreting inaccurate data. In this
chapter, I gave the overall introduction to system. First, I described the design
and architecture of the system. Then, I demonstrated the working process of the
system with a real example.

Qualitative reasoning is widely believed to be able to guide and simplify
quantitative analysis [Forbus, 1984][Nishida, 1991-1994][Yip, 1991]. The central
idea of my research is to conduct qualitative reasoning to narrow down the space
of objects at the first stage. Then, at the second stage, complex quantitative
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analysis will only be applied to the candidates generated at the first stage. Both
the efficiency and quality of the system are improved this way.

WY -

s ‘The unkn mp- ins [ The unknown compound may be:
the following partial emnu:\// 2-CH3 .\J../
CH2
CH3 Ethyl-benzene
O-ben
4000 800 4000 800
(b) (e)

Figure 7.4: An Example of the System
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Chapter 8

A Method for Solving
Constraint Satisfaction
Problems in Infrared Spectrum
Interpretation

In this chapter, I introduce a simple method for constraint satisfaction solving.
In infrared spectrum interpretation, getting an initial solution is much more dif-
ficult than refining the initial solution. Therefore, the most difficult constraints
concerning that different variables cannot take on the same value (called con-
straint a) are considered after the other constraints (called constraint ) have
been considered. An efficient pattern-driven algorithm is proposed to generate
initial solutions which satisfy constraint 8. Then an overlap-reduce heuristic
is applied to minimize the redundancy in the initial solutions until all conflicts
among the variables are eliminated.

| 8.1 Introduction

Constraint satisfaction problem (CSP) is an important problem in reasoning and
problem solving [Dechter & Pearl, 1988]. The problem arises in the diagnosis,
analysis, interpretation and other Al systems [Minton, and et al, 1990][Stefik,

Take the infrared spectrum interpretation for example. The problem variables
are a set of peaks on an infrared spectrum of an unknown compound:
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Sp e {p11p2’ --':pn}

where p;=(f;, s;, w;) represents a peak on the unknown spectrum in which f;, s;
and w; are the frequency position, strength and width of the peak, respectively.

The associated domains of the variables are a set of known partial compo-
nents:

PC = {PC]_,PCz, veey PC,,,,}

where PC; ={pj,, Pj,, .., Pj,} Tepresents a known partial component which can
create peaks p;,, pj,, ... and p;, if it is contained by the unknown compound.

The task of IR spectrum interpretation involves assigning a value for every
variable:

e PCJ'

where p; € Sp and PC; € PC, that is, determining by which partial components
in set PC the peaks on the unknown spectrum are created, and what partial
components the unknown compound contains. So the solution of IR spectrum
interpretation is a subset of PC:

SL = {PC],PCQ,...,PCk}, SL & PC

where
PCy ={p1,,...p1, | P €SPADP > 1}
PC; = {p3,,....,02, | P2, €SPAg 2> 1}
PCk = {Pry; -, Pr, | Pr; € SPAT > 1}
and

PC]_UPCzU...UPCk:SP
PONPCimb (=12 .. ki#j)

Assigning values for all variables in Sp is similar to searching a complete
graph constructed by Sp to find the possible divisions which has been proved
to be a NP Complete problem [Karp, 1975]. The constraints, especially those
concerning that several variables cannot take on the same value, or that one
variable cannot take on several values, make the problem harder to solve.
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The primary methods of solving constraint satisfaction problems are heuristic
backtracking and constraint propagation [Bitner & Reingold, 1975|[Fox, Sadeh,
& Baycan, 1989]. However the searching space and time consumption are two
big problems [Brown & Purdom, 1981][Friedrich, Gottlob, & Nejdl, 1991]. What
is more, in some practical problems such as infrared spectrum interpretation
where the number of variables is huge and the assignment for the variables is
complex, generating an initial solution itself is much more difficult than refining
it. Traditional methods that consider all constraints to give an initial assignment
for the variables and then apply local heuristics to repair the assignment is not
efficient.

I propose a simple constraint-based reasoning method to solve this kind of
constraint satisfaction problems. The key point of the method is that all con-
straints are classified into two groups. The difficult constraints like PC; N PC; =
0 (¢,j = 1,2,...,k,i # j) which restrict that different variables cannot take on
the same value are classified as constraint a. And the other constraints, like
PC; U PCyU ...U PCy = Sp are classified as constraint 8. Firstly, only con-
straint J are considered to generate an initial solution. Because constraint o
are not considered at this stage, conflicts among variables in the initial solution
are permitted so that the problem of searching a complete graph constructed
by Sp can be transferred into a process of checking whether the patterns of the
possible partial components are contained by Sp, which is a pattern-driven pro-
cess without backtracking. Secondly, constraint o are considered to eliminate
the conflicts among variables. However, the effective range of these constraints
has been narrowed down, and the heuristic for refining the initial solution has
become more effective. An overlap-reduce heuristic is applied which minimizes
the number of partial components in the initial solution so as to eliminate the
conflicts among variables.

8.2 Delay of Some Constraints

Among all constraints about variables, some constraints like PC; U PCy U ... U
PC} = Sp indicate that every variable p; in Sp must be assigned a value PCj,
that is, p; € PCj.

These constraints actually require to search a complete graph constructed by
Sp to find values for all nodes.

On the other hand, some constraints like PC; N PC; = 0 (i,j=1, 2, ..., k,
i # 7) indicate that every variable p; in Sp can only have one value PC;.
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These constraints actually express the restrictions on solutions to avoid multi-
assignments for variables in Sp.

For example, suppose peak p; of Sp can be created by partial components
PC,, PC; and PCj respectively, and the three partial components whose pat-
terns are known as followings will be checked.

PCl ={p1,p3, }
PCy = {plap-i: }
PC3 = {pI:QI: s }

Since ¢ ¢ Sp, partial component PC; will not be considered. If all peaks
in the patterns of PC; and PC; can be identified from Sp, either PC; or PC,
can be considered as a possible partial component to be included in the initial
solution, that is, the following two kinds of assignment for variables p;, p3, ps
and others in PC; and PC; can be given:

P E PC,, P3 € PCI,
P € PCz, P4 € PCg,

But PC; and PC; cannot be included in the solution simultaneously because
PCy N PC, = p, violates the constraint of PC; N PC; = 0.

Suppose peak p, can be created by partial components PCy and PCj respec-
tively, and the patterns of PCy and PCjs are:

PC4 = {pz,pg, }
PC5 = {’pz,ps, }

Similarly, PC; and PCj cannot exist simultaneously due to PC; N PC, # 0.
The result is that {PC;, PCs}, {PC,, PC,} or {PC>, PCs} can be considered
as possible partial components, that is, the following three kinds of assignment
are all possible.

PlEPGz,P2€PC’4,p3€PC4,p4EPC'2,

{plePC’hpgePC’5, ngPC’1,p5€PC’5,
p1 € PCy, pa € PCs, ps € PCy, ps € PCs, ...

The above process continues until an assignment for all variables in Sp is
generated, which has the exponential complexity in general.

If some constraints, like PC;NPC; = 0 (i, j=1, 2, ..., k, © # j), which restrict
the multi-assignments among variables (called constraint a), are considered after
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others (called constraint 3), an initial solution which satisfies constraint 3 can be
generated much more quickly and easily. An efficient pattern-driven algorithm
can be used to generate the initial solution. The other important point of the
delay is that the effective range of constraint a can be significantly narrowed
down, so later, an overlap-reduce heuristic can be used to refine the initial
solution toward the optimal solution.

The following is the solving procedure:

1. From PC, the partial components by which one or more peaks in Sp may
be created are picked out to form a possible partial component set, no
matter whether these partial components satisfy all constraints or not:

Vp,YPC;((p; € PC;) — (PC; € PC'))

where PC’' C PC.

2. If all constraints except constraint o are considered, an initial solution can
be generated from PC':

VPCi((PC; € PC') A Vp;((p; € PC;) — (p; € Sp)) — (PC; € PC"))

where PC"” C PC'.

3. Because constraint a is not considered in the process of generating PC",
multi-assignments for variables may exist, so PC” may contain redundant
partial components, although all partial components in the optimal solu-
tion, SL, have been contained by PC” (i.e., SL must be a subset of PC"):

PC” D SL.

Then, considering constraint o can refine PC” towards SL.

8.3 Pattern-Driven Algorithm

Since the constraints such as PC; N PC; = 0 are not considered at the first stage,
overlaps among the partial components in PC” are permitted. If one peak of a
partial component is found from Sp, then the partial component can be viewed as
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a possible partial component, and if all peaks of the partial component are found
from Sp, then the partial component will be included in the initial solution.

Therefore assigning values for all variables in Sp becomes checking whether
the patterns of these possible partial components can be found from Sp or not,
which can be represented as the following procedure.

Procedure I (Forming a possible partial component set)
PC' =8
for i =1ton{;;nis the number of peaks in Sp
for 5 =1tom{;;; mis the number of PCs in PC
if pi € PCJ'
PC' = PC' U PC;;
}

}
return{PC'}

end procedure I

Suppose there are M possible partial components in PC', and there are [;
peaks in the pattern of the possible partial component PC;, then the second
procedure can be given in brief:

Procedure II (Forming an initial solution)
PC' = §;
for j=1to M {
Symbol = 1;
fori=1tol;{
if p; ¢Sp{
Symbol = 0;
exit;
}
}
if Symbol =1
PC" =PC"u PCj;




8.3. PATTERN-DRIVEN ALGORITHM 101

return{PC"};

end procedure II

Both Procedure I and Procedure II have linear complexities.

Figure 8.1 shows an unknown spectrum and the partial components in the
initial solution generated by the above algorithm.

In the initial solution shown in Figure 8.1, both parﬁal component 1 and
partial component j recognize Peak p, as their own peak, that is, variable p,
has been assigned twice. Therefore, an overlap between partial component i
and partial component j exists, which means that partial component i or/and
partial component j should be eliminated later from the initial solution.

Unknown Spectrum W
A

i \p., 4
[T0.. .. T T 1

Ml Overlap of PC 1 and j

Figure 8.1: Unknown Spectrum and Its Interpretation

In the pattern of a partial component, some peaks are more distinctive than
others, so the peaks can be sorted according to their distinctions. Therefore,
in practice, partial components are not checked one by one, but a group by a
group. When a peak on an unknown spectrum is concerned, the partial compo-
nents whose most distinctive peaks are the same as this peak will be considered
together. Only those whose second distinctive peaks can also be found from the
spectrum are left to enter the next layer. The above process is shown in Figure

8.2.
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8.4 Overlap-Reduce Heuristic

The pattern-driven algorithm can generate an initial solution with linear com-
plexity. The initial solution is not a random assignment, but has the following
characteristics: ;

1. Tt satisfies all constraints except constraint a such as PC; N PC; = §.

2. It may contain some redundant partial components, that is, conflicts among
variables may exist. However, the partial components in the optimal solu-
tion are all included in the initial solution.

3. The difference between the initial solution and the optimal solution is that
the former contains more partial components than the latter. Therefore,
minimizing the number of partial components in the initial solution may
make the initial solution close to the optimal one.

Unknown Spectrum

§ PC Sets

Figure 8.2: Hierarchical Procedure
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A repair heuristic called overlap-reduce heuristic can be applied to minimize
the number of partial components in the initial solution:

1. Pick out partial components having overlaps with others:
VPCYPC;((PC; # PC;)AN(PC;NPC; # B) — (PC; ¢ SL)V (PC; ¢ SL))

2. From the above result, eliminate a partial component, PC;, whose peaks
can be distributed to other partial components, and reassign values for
those variables which have been assigned as to PC;:

Vp(p € PC; — 3PC;((PC; # PC;) A (p € PC;)))

Figure 8.3 shows the process of refining the initial solution, where o represents
the variable, and U represents the partial component, and /¥ means being in
conflict /overlap.

PC1 PC3 BCj

Figure 8.3: Conflict/Overlap Reducing
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8.5 Discussion

The method presented in this chapter is a not a perfect method. I discuss the
defects and effectiveness of the method in this section.

8.5.1 Defects of the Method

The method for solving constraint satisfaction problems has the following two
main defects:

1. The overlap-reduce heuristic can be used to reduce the overlaps among
variables, but it cannot guarantee that all overlaps in the initial solution
can be eliminated. Or in other words, in the worst case, optimal solution
can not be obtained with polynomial complexity;

2. The method is only effective to a class of constraint satisfaction problems,
such as the constraint satisfaction problems in infrared spectrum inter-
pretation, in which generating an initial solution is much more difficult
and complex than refining it, and conflicts in the initial solution are not
numerous, but the method may not be effective to other problems.

To some problems, the above defects of the method can not lead to any
fatal mistake. I will discuss the effectiveness of the method to these problems in
Section 8.5.2.

To some other problems, however, the method may not be effective at all.
Because the method is initially developed for solving constraint satisfaction prob-
lems in infrared spectrum interpretation only, the research concerning its appli-
cations to other problems is left for my future work.

8.5.2 Effectiveness

The method is effective to a class of constraint satisfaction problems in which
getting an initial solution is much more difficult and complex than refining it,
and conflicts in the initial solution are not numerous.

I discuss the effectiveness of the method in the following two aspects:

1. Constraint satisfaction problem is a difficult problem in AI. Sometimes,
even human experts can hardly eliminate all conflicts with a time limi-
tation. The strategy of the proposed method is to use repair heuristic
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to eliminate as many conflicts as possible with the limited computational
resources;

2. To many problems, incomplete solutions are definitely unacceptable, but
superfluous solutions are usually acceptable, because further means can be
employed to analyze the superfluous solutions. For example, in infrared
spectrum interpretation, if not all partial components are identified, many
useful inferences can not be drawn. But if extra partial components are
identified incorrectly, using the knowledge about the possible combination
of partial components may detect extra partial components. The method

- guarantees that the optimal solutions are completely included in its solu-
tions, although it does not guarantee that all of its solutions are optimal.

8.6 Summary

In this chapter, I introduced a simple method for constraint satisfaction solv-
ing. First, I mentioned that in infrared spectrum interpretation, getting an
initial solution is much more difficult than refining it. Then, I discussed that the
most difficult constraints concerning that different variables cannot take on the
same value (called constraint a) can be considered after the other constraints
(called constraint ) have been considered. Based on this idea, an efficient
pattern-driven algorithm was proposed to generate initial solutions which sat-
isfy constraint [, and an overlap-reduce heuristic was proposed to minimize the
redundancy in the initial solutions until all conflicts among the variables are
eliminated.

The method described in this chapter is not a optimal method, and is only
effective to a certain class of constraint satisfaction problems. In this chapter, I
also discussed the defects and effectiveness of the method.
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Chapter 9

Related Work and Discussion

My work roughly falls into four areas of AI: (1) qualitative interpretation of inac-
curate data, (2) possibility propagation and uncertain reasoning, (3) knowledge-
based system for infrared spectrum 1nterpreta.t10n and (4) constraint satisfaction
problems.

Interpreting inaccurate data has long been regarded as a significant and dif-
ficult problem in AI. Many methods and techniques have been proposed.

Fuzzy logic provides the mathematical fundamentals of representation and
calculation of inaccurate data [Bowen, Lai, & Bahler, 1992][Negoita & Ralescu,
1987][Zadeh, 1978 & 1989]. My method for qualitatively interpreting inaccurate
data is primarily based on fuzzy theory. But compared with conventional fuzzy
techniques, the advantages of the method include: (1) shift intervals of inaccu-
rate data are dynamically determined so that dynamic information can be used;
(2) shift intervals are based on qualitative features of data and qualitative corre-
lations among related data so that the solutions are more robust. The limitation
of the method is that when qualitative correlations among related data are not
known in advance, the method degenerates to a conventional fuzzy method. For
instance, if SCF is unavailable, the two methods described in Section 6.5 become
the same.

Pattern recognition provides the techniques for interpreting measured data in
group [Jalsovszky & Holly, 1988][Raskutti & Zukerman, 1991]. By using pattern
recognition methods, related data and connections among data can be consid-
ered. However, there are two preconditions which must be satisfied for complex
data analysis by pattern recognition to be successful. The first precondition is
that we have to obtain adequate data bases from which we can derive the patterns
we need to recognize, and the second precondition is that we have to demonstrate
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that there are suitable metrics of similarity between patterns. When patterns ex-
plicitly exist, and measured patterns are not seriously noisy, pattern recognition
methods are effective. However, if patterns are not explicit, or patterns change
irregularly which implies that there is not a stable metrics for determining the
similarity between patterns (e.g., spectrum interpretation), the proposed method
is more practical and robust.

Probabilistic reasoning provides a practical framework for reasoning under
uncertainty [Dempster, 1968] [Duda, Hart, & Nilsson, 1976][Pearl, 1988][Shafer,
1976]. For example, by using Bayesian theory, uncertain evidence can be cal-
culated and propagated on inference networks. In many systems, subjective
statements are used to take the place of statistics of uncertain evidence when
statistical samples are insufficient or absent, such as certainty factors in MYCIN
[Shortliffe & Buchanan, 1975], and prior probabilities in PROSPECT [Duda,
Hart, & Nilsson, 1976]. My method for propagating qualitative correlations as
evidence of uncertain reasoning is similar to the method for probabilistic reason-
ing. However, the essential difference is that my method dynamically calculates
qualitative correlations as evidence so it does not need many assumptions in
advance, and can avoid inconsistency in knowledge and data bases.

When statistical samples are sufficient, or subjective statements can be con-
sistently obtained like in MYCIN and PROSPECTOR, probabilistic reasoning
methods can be applied. When statistical samples of inaccurate data are not
enough and consistent subjective statements are not available, the proposed
method is very effective.

Traditional methods and systems of infrared spectrum recognition are pri-
marily based on quantitative analysis techniques which identify infrared spectra
of unknown compounds by calculating the quantitative similarity or closeness
between the infrared spectra of known and unknown compounds [Jalsovszky &
Holly, 1992][Sadtler, 1988]. Due to the huge number of known compounds, these
methods and systems usually require users to provide a range to which the un-
known compounds belong in advance, then apply quantitative analysis to the
known compounds in the range. In some cases, users may roughly provide the
information by using the physical features of unknown compounds, but in more
cases they can not. When users can not provide the information, or the infor-
mation provided is not certain, quantitative analysis may be very complex. In
contrast, the presented knowledge-based system analyzes what partial compo-
nents the unknown compounds contain, and then analyzes the partial compo-
nents to determine what the unknown compounds may be, so it can always give
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a very limited list of candidates in which the unknown compounds are included.
Therefore, the complexity of quantitative analysis can be significantly reduced.

Some recently developed systems also recognize infrared spectra by decompos-
ing them [Hasenoehrl, Perkins, & Griffiths, 1992]. Compared with these systems,
my system has two advantages. First, it uses the new concepts of PUP, SSS
and VFP to generate the preliminary solutions, so its efficiency is very high.
Second, it uses qualitative correlations among related peaks as evidence, so the
inaccuracy of spectral data can be effectively handled. Both RC and RI of my
system are higher than those of the systems using fuzzy or other techniques to
deal with the inaccuracy [Anand, Mehrotra, Mohan, & Ranka, 1991].

My future research concerning the system is to consider the interaction among
identified partial components. As I discussed before, spectroscopists frequently
use the knowledge like: “if CsHg coezists with C Hs, then the peaks of C Hs around
2900 cm™ may shift”, or “if -C-O-C- has been identified, then the strength of
the peaks of C H3 may change”. Therefore, it is possible to update the possibili-
ties of identified partial components by considering the interaction among them.
Analyzing the effects among identified partial components would not only help
us identify inaccurate data, but also provide us with the reason why the data are
inaccurate.

Constraint satisfaction problems have invited various research and applica-
tions [Dechter & Pearl, 1988]. To a certain class of constraint satisfaction prob-
lems where generating an initial solution is very difficult, the proposed method is
efficient, since it can employ a pattern-driven algorithm to quickly generate an
initial solution in which the optimal solution must be contained. However, the
proposed method is not an optimal method, since it cannot guarantee that its
final solution be optimal in any time. Developing the method further is another
research of my future work.
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Chapter 10

Conclusions

In this dissertation, I have presented a novel method for qualitatively interpreting
inaccurate data by using qualitative correlations among related data as confir-
matory or disconfirmatory evidence. First, I introduced a new concept called
support coefficient function (SCF). Then, I proposed an approach to determin-
ing dynamic shift intervals of inaccurate data based on SCF, and an approach
to calculating possibilities of interpreting inaccurate data, respectively. Based
on these two approaches, I introduced a method for using qualitative correla-
tions among related data as confirmatory or disconfirmatory evidence for the
interpretation of inaccurate data.

I have presented a novel method for propagating qualitative correlations
among hypotheses as confirmatory or disconfirmatory evidence for uncertain
reasoning. The method can extract, represent and propagate qualitative correla-
tions among hypotheses as confirmatory or disconfirmatory evidence to update
the possibilities of hypotheses. The function of the method is similar to the
probability propagation on Bayesian networks. But compared with traditional
methods for probability propagation, the method has the following advantages:
(1) it can be applied to the problems where evidence is not explicitly given; (2)
few numbers and assumptions need to be provided by domain experts in advance;
and consequently, (3) the knowledge acquisition is simple, and the inconsistency
in knowledge bases can be avoided.

I have applied the above two methods to infrared spectrum interpretation,
and have fully tested the methods against several hundred real infrared spectra.
The experimental results show that the methods are significantly better than the
traditional methods used in many similar systems.
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I have also presented a knowledge-based system for infrared spectrum inter-
pretation. The primary task of the system is to identify unknown compounds by
interpreting their infrared spectra. I proposed a knowledge model for integrating
qualitative reasoning into infrared spectrum interpretation. The implementation
of the system indicates that both the efficiency and quality are improved by
employing the knowledge model.

Finally, I have presented a new method for solving constraint satisfaction
problems. I proposed an efficient pattern-driven algorithm for generating ini-
tial solutions, and an overlap-reduce heuristic for repairing the initial solutions,
respectively. I discussed the advantages, disadvantages and applicability of the
method.

Briefly, my contributions mainly include:

1. A qualitative method which interprets inaccurate data by using qualita-
tive correlations among related data as confirmatory or disconfirmatory
evidence, and a corresponding algorithm which crystallizes the method;

2. A qualitative method which propagates qualitative correlations among hy-
potheses to update possibilities of them, and a corresponding algorithm
which crystallizes the method;

3. Successful applications of the above two qualitative methods to a practical
problem;

4. A knowledge-based system which integrates qualitative reasoning and quan-
titative analysis to interpret infrared spectra;

5. A simple method for solving constraint satisfaction problems including an
efficient pattern-driven algorithm for generating initial solutions, and an
overlap-reduce heuristic for repairing the initial solutions.
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