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Statistical Learning from Multiple Information Sources*

Masashi Inoue

Abstract

In intelligent information processing tasks such as pattern recognition and information re-
trieval (IR), probabilistic models are now widely used because they can represent ambiguities
of observed data and are robust against noises. Parameters of probabilistic models are statisti-
cally estimated (learned) from given training data. However, when the training data contain an
insufficient amount of information, the learned model becomes unreliable and its performance
severely deteriorates. This thesis proposes two novel learning algorithms that use multiple infor-
mation sources to mitigate this information scarcity problem in the following two applications.

The first application is solving classification problems in which optimal class labels are
automatically assigned to observations whose class labels are unknown. Among various types of
classification problems, this paper considers classification of sequences that consist of sequential
observation points. As a classifier, we focus on the hidden Markov model (HMM), which has
been widely used for the classification of sequences. Generally, an HMM is trained on labeled
data that consist of observed feature values and class labels. However, due to the high labeling
cost, the amount of labeled training data is often small. In this thesis, we propose a learning
scheme called semi-supervised learning to improve the classification performance even if the
amount of labeled training data is small. The proposed scheme uses both of a small amount
of labeled data, and unlabeled data that are not usually used for learning. First, we design a
suitable HMM structure for using the unlabeled sequences. Then, we formally derive a semi-
supervised learning algorithm in which the convergence property is theoretically guaranteed.
Next, we apply the proposed method to two types of time series sequences: those acquired from
sign language sign data and those acquired from speech phoneme data. Experimental results
show that the proposed method outperforms conventional methods.

The second application is solving IR problems, especially cross-media IR in which queries
and corresponding target data belong to different media. More specifically, this thesis focuses
on situations where queries are represented as text and target data are images. When textual
annotations explaining the contents of images are provided, such cross-media image retrieval
can be regarded as ordinary textual IR. In text retrieval, associations between words can be
learned from data and used to relate queries and text in the documents. However, in image
retrieval, the number of annotations is too small to learn the word relationships. Using the fact

that annotations and images are related, we regard images as the paired data of annotations.

*Doctor’s Thesis, Department of Information Systems, Graduate School of Information Science, Nara Insti-
tute of Science and Technology, NAIST-IS-DT0161006, March 24, 2004.



We propose a method for estimating similarities among annotation words by using the paired
image data to interpolate sparseness of annotation data. We apply the proposed method to
the retrieval of photo images and show the usefulness of the paired data for improving retrieval
performance. We also compare the proposed method with conventional methods to show its

advantages.
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mation retrieval
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Chapter 1

Introduction

1.1. Motivation and Definition

This thesis addresses the problem of information insufficiency in learning. Suppose we have
observed or accumulated data. Then, learning is an inference of the generating mechanism of a
set of given data. Such a mechanism is represented by a model, and the goal of learning a model
is to precisely fit the model to not only the given training data, but also to unseen data as far
as possible. If an infinite amount of data were available, the model could be successfully fit. In
practice, however, the amount of available training data are limited because data collection is
often difficult. Instead, in this thesis, to solve this information insufficiency problem we try to
use additional information sources that have different characteristics to the original information
but can easily be collected. However, it is not clear how to simultaneously use such additional
information sources when leaning the model. The goal of this thesis is to propose practical
learning methods to effectively utilize additional information sources.

Broadly speaking, there are two types of models: deterministic models and probabilistic
models. In this thesis, we focus on probabilistic models because they can represent both the
uncertainty of data-generating mechanisms and noises on measurements. To gain a more intu-
itive understanding, we explain the difference between deterministic and probabilistic models
by using Fig. 1.1.

Deterministic models define the rigid relationships between their sub-components or vari-
ables. An example is rule-based models consisting of if-then rules [1]. When we observe a
list of symbols several times as shown in Fig. 1.1, we can expect that the first and the third
symbols will be “a” while the second and the remaining symbols will be “b.” The advantage
is that these rules are expressive and easy to understand for humans. The disadvantage is that
exceptions or noises cannot be dealt with appropriately. The third observation is an example
of such irregularities that violates the rule: if in the third position, then the symbol
is ‘‘a.’’ Deterministic models are not suitable for dealing with such ambiguities.

The real world environment usually contains such uncertainties in underlying mechanism



Deterministic Model Probabilistic Model

if (d,) then (a)
if (d,) then (b)
if (d3) then (a)
if (d,) then (b)
if (d,) then (b)

P(ald,) = 1.0, P(bld,)=0
P(ald,) = 1.0, P(bld,)=0
P(ald,) = 0.75, P(b|d,)=0.25
P(ald,) = 1.0, P(bld,)=0
P(ald)) = 1.0, P(bld)=0

@ Data Generation i

d, d, d,, d,, d

0,=[a b, a b, b]

0,=[a b, a b, b]

0,=[a b, b, b, b]

0,=[a b, a b, b]
Learning Learning

Observations

Figure 1.1. When we observe series of data, we can infer unobserved models (either deterministic

or probabilistic) that explain how the observations are generated. In this example, we have four

observations 01, 02, ..., 04, and each observation fills five slots d1, da, ..., ds by one of two types of
Wa?

symbols (“a” or “b”). An example of a deterministic model is a set of rules, while a probabilistic
model may consist of conditional probabilities.



or noises on measurements. These irregularities may be modeled well by probabilistic models.
They represent the events of interest by the probabilities of their occurrences; that is, observed
data are assumed to be generated from an unknown stochastic process or a probabilistic density
function (pdf).

The learning of probabilistic models is called statistical learning since it is done with the
statistical properties of data. In the example of Fig. 1.1, the probabilities of “a” would be
estimated as 1.0 for the first position dy and 0.75 for the third position d3, and the probabilities
of “b” would be estimated as being 1.0 for the second position ds, 0.25 for the third position
dsz, and 1.0 for the remaining positions. Uncertainty in the third position can be expressed in
this model. Although probabilistic models are powerful representations, here arises a critical
question in statistical learning: how reliable are these estimates? For instance, can we believe
that the symbols occurring at the fifth position will continue to be “b” forever? In other words,
the question on the use of probabilistic models is how we can accurately learn the models.

1.2. Statistical Learning under Information Insufficiency

Roughly speaking, in probabilistic models, the degree of reliability of learned values depends
on the amount of information used. In practice, the amount of data available for the learning,
called training data, is frequently insufficient. This is the fundamental problem in statistical
learning and what this thesis addresses. Information insufficiency causes a problem generally
termed over-fitting, where the learned model that has fitted the insufficient amount of training
data perfectly usually fails to represent data we have not yet observed [2]. That is, explaining
observed data does not mean explaining unseen data in general. The standard approach to the
over-fitting problem follows the self-help principle.

Self-help methods use the available information at hand ingeniously so that adverse effects
of information insufficiency are reduced. Three major approaches are available: model and data
simplification, model ensembles, and parameter smoothing. These methods contrast with the
methods that employ multiple information sources, the theme of this thesis. For the sake of
comparison, we briefly review them. Simplification can be performed on the models and on
data. If a model has a small number of parameters, the amount of data needed for estimation
will also be small. Various information criteria have been proposed to select model size. If the
dimensionality of data becomes small, the number of parameters also becomes small. Feature
extraction and feature selection techniques are used in this situation. The former method in-
cludes the use of principal component analysis (PCA) [3], [4] and latent semantic indexing (LST)
[5] for example. A comparative study was conducted on various feature (word) selection tech-
niques in text classification [6]. Another example for comparative study concerns the ranking of
features according to their saliency [7]. Ensemble techniques combine different models learned
from different initial parameter values or subsets of the data. Consequently, the estimation of
parameters becomes robust [8]. Smoothing makes model parameter values flatter by using prior

knowledge on data or by combining different types of parameter estimates such as estimates on



simpler models. It is a more general technique that may include the two mentioned above. As
far as language models (LMs), types of probabilistic models which we will use in Chapter 3, are
concerned, Chen and Goodman empirically compared various smoothing techniques [9], and for
LM-based information retrieval, Zhai and Lafferty also carried out an empirical comparison of
various smoothing techniques [10]. Although these three methods are practically important,
they have an obvious limitation: they cannot reveal anything that the data do not suggest. If
the desired performance of the model is beyond the capability of given information, additional
information is needed for the learning.

1.3. Looking for Additional Information

A straightforward solution to the information insufficiency problem is, of course, to collect more
data. Sometimes gathering additional data is the only way to tackle the problem. In many

situations, however, data collection is too expensive. Here are some examples.

e You need video data taken from documentary films with transcriptions. Transcriptions
are supposed to indicate from which part to which part the content is boring. To provide
transcriptions, human annotators have to watch hours of videos not to enjoy them but
to evaluate them.

e You suspect that a compound may exhibit some strange behavior if substances A and B
exist in it at the same time. Both A and B are found frequently in the compound but they
seldom co-exist. In that case, hundreds of measurements of the compounds can provide
sufficient information on the statistical properties of A and B but never tell the outcomes
of their interaction, which is what you want to know. Heavy repetition may be needed to
obtain that information.

e You want to categorize music CDs according to genre. You also want a categorization
system that will be useful for people searching for the CDs. Different people have different
conceptions of music categories; therefore, to be most useful, category indexing must re-
flect the majority opinion. Asking whether certain categorization is relevant to somebody

is often time consuming and probably stressful for the respondent.

These are only a few examples but clearly, in many situations, gathering additional data is
prohibitive due to cost.

Now let us see when and where such difficulty may occur most seriously. Viewed from
specific applications, examples like the ones above are often found in two important information
processing tasks: classification and information retrieval (IR), and they may suffer from severe
information insufficiency. When training classifiers, label information such as the indices of
categories or good/bad judgments must be provided. Labels are usually created by human
effort and labeling sometimes involves expert knowledge or careful investigation. Because of
the use of such labeling, the problem of label scarcity occurs frequently. In IR, documents



are ranked according to the the relevance to the user’s need, and this need is represented by
a query. The availability of relevance information to a specific query is unlikely before the
query is actually issued. Moreover, reliability of relevance information is questionable as it is
derived from subjective ratings. Thus, it is common to build IR models without relying on the
relevance information. In such IR models, the ranking is performed by using similarities between
the query and documents based on word-occurrence information. Accordingly, complex word-
word relationships must be estimated from finite examples or documents. The vocabularies
of natural languages are enormous, whereas the observable patterns of their appearances are
limited. Information insufficiency is, thus, evident in IR. Because it is so difficult to gather
training data as exemplified above, it is important to overcome information insufficiency without
a data collection cost.

When information is insufficient and we cannot gather any more data, the use of additional
information source emerges as a potentially powerful approach. Although the importance of re-
search on learning from multiple sources has been frequently raised in literature (e.g., [11],[12]),
practical algorithms for specific applications have not been fully prepared. Presumably, there
is no universal procedure that can successfully combine all types of additional sources in any
application because information sources are heterogeneous and all additional sources have their
own unique characteristics. We investigate the usage of available information sources in the
two distinct application domains (classification and IR). As mentioned above, these two tasks
suffer particularly heavily from information insufficiency. The information sources considered
are unlabeled data and paired representations, respectively. We present for the two applica-
tions novel multi-source learning algorithms that break through the data heterogeneity. The

following sections explain the contributions of this thesis more specifically.

1.4. Data Scarcity in Classification

The first application we consider is classification problems in which optimal class labels are
automatically assigned to observations whose class labels are unknown. Generally, a classifier
is trained only on labeled data consisting of observed feature values and their class labels.
However, because of the high labeling cost, the quantity of labeled training data is often small.
We call this information insufficiency data scarcity. In such a case, the model over-fits the
training data and will typically generalize poorly [13]. Namely, such a trained model cannot
classify unseen data well.

In this thesis, we utilize a learning scheme called semi-supervised learning in which both
labeled and wunlabeled data are used to increase the size of training data. In many situations,
feature values are measured automatically with lower cost and are readily available. Con-
sequently, unlabeled data are now some of the most eagerly-explored information sources to
overcome the training data scarcity. Broadly speaking, unlabeled data are included in the cate-
gory of incomplete data. The degree of incompleteness, however, varies. For example, a datum

can be considered weakly labeled when its class label is given to a group of data rather than



Table 1.1. This table summarizes various techniques that use unlabeled data in learning clas-
sifiers when training data are scarce. Particular emphasis is on the model type, which is either
designed for static data or for dynamic data. Unlabeled data can be integrated with the output

of classifiers (pseudo-labels) or can be used as the class-weighted unlabeled data.

Model Type Procedure Type Examples of Algorithms

Static Model Output-Based Co-Training [20], [21]
Within Learning Process EM-Based [25], [26], [27]

Dynamic Model Output-Based Naive Labeling [22], [23]

Within Learning Process  This Thesis

to a single datum [14]. Another type of incompleteness may occur when label information on
a datum is missing though labels of surrounding data are known [15]. The unlabeled data we
consider here feature absolute incompleteness.

Some theoretical and empirical results on the properties of unlabeled data have been pro-
vided [16], [17], [18], [19], and from among various types of classification problems, this thesis
concerns the classification of a series of observed points. As depicted in Table 1.1, unlabeled
data have been used in learning of classifiers for static data. Unlabeled sequences, however,
have not.

Let us now look at the types of semi-supervised algorithms. We categorize them into two
families. The first branch includes model-output level merging algorithms, in which tenta-
tively built classifiers assign pseudo-class labels to unlabeled data. Co-training is an example.
Classifiers are learned from two feature sets and from both labeled and unlabeled data [20].
Co-updating has similar properties in that it uses both additional features and unlabeled data
as the additional sources [21]. The scheme uses only outputs of a model rather than the inter-
nal values of models, which could be an advantage because original fully supervised learning
algorithms need not be changed. The limiting factor of co-training algorithms, however, is
that they require redundant features, meaning that as well as a pool of unlabeled data, other
information sources are needed. In fact, the model-output level semi-supervised algorithms
that have actually been used in dynamic models are not co-training algorithms. Instead, a less
powerful method, which we call the naive labeling (NL) method, has been used [22],[23]. In the
NL method, only a single set of feature values is used and redundant features are not needed,
although the usefulness of the method seems to be mixed. Chapter 2 discusses the NL method
in detail.

Another branch of semi-supervised algorithms utilizes the assumption that class labels are
random variables. By using an iterative learning algorithm called the EM algorithm [24],
unlabeled data are used as class-weighted data during the learning process. EM-based semi-
supervised algorithms have been derived and applied to some probabilistic models such as
Gaussian mixture models [25], mixture of expert models [26], and naive Bayes models [27].

These are, however, models for static data and do not directly address sequences. In this thesis,



we consider the use of unlabeled sequences in learning hidden Markov models (HMMs). HMMs
are the most frequently used probabilistic models for sequences. Application areas of HMMs
include speech recognition, gesture recognition, natural language processing, bioinformatics, and
many more. We consider the construction of semi-supervised algorithms for HMMs valuable
due to their practical importance.

Before explaining our contributions, a few remarks on the definition of unlabeled data should
be made. On one hand, unlabeled data for the static models are defined uniquely. On the other
hand, they follow two definitions of unlabeled sequences. The first one is the straightforward
extension of unlabeled static data: one sequence corresponds to one label. The second one
assumes partial labeling: one sequence corresponds to a series of labels. Of the two definitions,
we focus on the first basic case.

The contribution of this thesis to the data scarcity problem in learning HMMs is threefold:

e We introduce a mixture of HMMs to utilize unlabeled sequences.

e We formally show the semi-supervised EM algorithm for the above HMMs that uses
unlabeled sequences. There is already a method that labels unlabeled sequences then
uses them as if they are labeled data. However, we first propose a method that uses both

labeled and unlabeled sequences “simultaneously.”

e We experimentally show that our method can improve classification performances for the
two types of real data. We also show that our method is superior to the above-mentioned

conventional method.

1.5. Data Sparseness in Information Retrieval

We consider IR problems as the second application. In many IR tasks, the vocabulary is
very large. In contrast, the variety of words used in a single document is very limited. For
example, the variety of words contained in a document is usually less than 1% of the whole
vocabulary, which means the information on word usage obtainable from a document is very
sparse compared to the total vocabulary. We call this type of insufficiency data sparseness. As
Katz claimed, the situation deteriorates if we want to use some higher structural information
among words such as compound words [28], even if we have a sufficient amount of data entries,
such sparseness of information is still a serious problem in IR. The relationships between words
play a crucial role in probabilistic model-based IR systems but such information is difficult to
obtain. To be successful, learning algorithms usually require additional sources that fill in the
sparseness of training data.

From among various types of IR problems, this thesis deals with the cross-media IR, in
which queries and corresponding target data belong to different media. In the history of IR,
textual data, which are symbolic data, have been the main concerns of researchers. These
days, however, large collections of signal data such as images are very common and effective
retrieval techniques for these data are needed. Signal data can be retrieved by comparing one



Table 1.2. This table summarizes various techniques that use additional information in learning
IR systems when training data are sparse. Particular emphasis is on the type of IR, either
mono-media or cross-media. Additional information can be either pre-structured knowledge or

low-level signals.

Task Type Information Type FExamples of Sources

Mono-media IR.  Knowledge Level = Thesaurus [29], [30]
Feature Level Mixed Data [31], [32]

Cross-media IR Knowledge Level ~ Thesaurus [33], [34]
Feature Level This Thesis

example of data to the other data in the collection. Unfortunately, such sample images are
not always available nor manipulable. The easiest and most effective way to issue a query
to retrieve such signal data is to use natural language. In this case, the IR task becomes a
cross-media one, using textual queries and visual documents. Therefore, cross-media IR is
quite an important research topic in modern IR that should be explored further. When textual
annotations explaining the contents of images are provided, such cross-media image retrieval can
be approached by adopting conventional textual IR techniques on annotations. The problem
of data sparseness, however, becomes more serious in such annotation-based cross-media IR.
Compared to ordinary texts, annotations contain fewer words, and the learning of semantic
relationships between words becomes more difficult.

In mono-media IR where queries and documents are represented on the same medium,
additional information has been used in various ways (See Table 1.2). Additional information
can also be introduced as knowledge; a thesaurus is a typical example and has been used in
textual IR [29], [30]. Semantic relationships between words are manually defined within it.
Additional information can also be supplied as feature values. An example in textual IR is the
use of multilingual text databases. The learning of a probabilistic model for a minor language
based on the documents in the WWW has been improved by modeling other languages as well
using documents obtained from the WWW [31]. Another example uses both textual and visual
data in visual IR [32]. These researches on multi-source learning are still in their infancy but
are gradually gaining attentions.

In contrast to mono-media IR, cross-media IR itself has not been studied extensively. Conse-
quently, relatively fewer researches on using additional sources have been carried out (See Table
1.2). As for already-structured information sources, as well as textual IR, thesauri have been
used for cross-media visual IR [33], [34], while as for the unorganized feature level, incorpora-
tion techniques still seem to be unexplored. We enter this field with the idea that annotations
and images are correlated. We regard images as the paired data of annotations and propose
a method for estimating similarities among annotation words by using similarity between im-
ages. It can be said that, in our algorithm, the paired image data are used to interpolate the

sparseness of textual annotations. We consider this a new way to use heterogeneous information



sources in cross-media IR.
The contribution of this thesis to the problem of data sparseness in cross-media IR is three-
fold:

e We introduce a probabilistic model that performs query-by-text cross-media IR.

e We propose an algorithm that utilizes paired data and mitigates the data sparseness

problem in learning of the above model.

e We experimentally show that the proposed algorithm can improve the IR performances

for the photo image dataset when the amount of annotations is limited.

1.6. Summary of Remaining Chapters

The remaining chapters are organized as follows. In Chapter 2, we present the method for
exploiting unlabeled sequences in learning HMMs and experimentally evaluate it using sign-
language data and speech phoneme data. Chapter 3 explains our method to incorporate paired
data in learning a model for cross-media image retrieval. Experimental results on photo image

retrieval are also shown. Finally, Chapter 4 concludes the thesis.



Chapter 2

Unlabeled Sequences in Hidden
Markov Models

2.1. Introduction to This Chapter

One major problem in designing classifiers is the scarcity of training data. Usually, a classifier
is trained on pairs of observed feature vectors and their class labels. Such a framework is called
supervised learning. In most cases, class labels are manually assigned by experts. Therefore, it is
expensive and time consuming to collect large amounts of labeled data. Because of this labeling
cost, data is often scarce in practice. Consequently, the designed classifier becomes unreliable
and its generalization performance becomes poor [35], especially in nonlinear models.

To overcome this problem in supervised learning, a new learning scheme called semi-
supervised learning has been proposed in which unlabeled data are also used to train classifiers.
Since unlabeled data can be easily collected without labeling efforts, semi-supervised learning
has attracted classifier designers, and has been studied in various applications for both static
data [36], [37], [25], [26], [27], and sequential data [22], [23]. It was reported that the classifiers
learned from both labeled and unlabeled data could achieve better classification performance
than those learned from small amounts of labeled data.

In this paper, we focus on semi-supervised learning for hidden Markov models (HMMs).
HMMs are stochastic state transition models that have been extensively used in two types of
applications. The first one is concerned with classification of sequences in speech recognition
(e.g. [38]), in gesture recognition (e.g. [39]), in computational biology (e.g. [40]), and so on. In
these tasks, given a sequence, HMMs assign a class label to the entire sequence. The second type
deals with the determination of state sequences given observation sequences. Examples of this
type of applications include part of speech tagging in natural language processing (e.g. [41]) and
named entity extraction in information extraction (e.g. [42] ). In the second type of applications,

the term “labeled data” means the observed sequences with the state sequence information
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associated with them, while the term “unlabeled data” means the sequences without the state
sequence information [43], [44], [45]. That is, the second one is concerned with “partially hidden
data” which are not “unlabeled data” in the sense used for the semi-supervised learning for
static data. Such “partially hidden data” of the second application type can be processed by
the standard learning framework of HMMs and in this paper, we investigate the “unlabeled
data” in the first type of application, the classification of sequences.

For the the first applications, a simple semi-supervised learning scheme has been used, which
we refer to as the naive labeling (NL) approach [22], [23]. With the NL approach, HMMs are first
trained solely on given labeled data. Then, pseudo class labels are deterministically assigned
to unlabeled data by classifying them using the trained HMMs. The HMMs are retrained with
these newly labeled data.

The NL approach appears to be a method for classifier adaptation under the assumption
that the initial model is to some extent reliable. In the above two studies where the quantities
of initial labeled data were relatively large, the NL approach could improve the HMMs. This
applies to the case when training HMMs used in speech recognition systems for adaptation.
However, when trained on small amounts of labeled data, initial models become unreliable and
therefore the pseudo labels also become unreliable. As a result, the addition of unlabeled data
with such unreliable labels may not improve the generalization performance of the HMM.

To overcome this problem associated with the NL approach, in this paper, we present a
new semi-supervised learning approach that can use unlabeled data for training HMMs more
effectively than the NL approach. In our approach, as with [37], [25], [26], [27], the class labels
are treated as missing information and the pseudo class labels are probabilistically assigned
to unlabeled data so that the joint likelihood function for both labeled and unlabeled data
is maximized. To handle unlabeled data, we introduce extended tied-mixture HMMs (ETM-
HMMs) as a mixture of tied-mixture HMMs (TM-HMMs) [46], [47]. For training ETM-HMMs,
we derive an extended Baum-Welch (EBW) algorithm. Unlike the NL approach, the proposed
algorithm theoretically guarantees convergence to a local maximum of the likelihood.

The EBW algorithm can be regarded as an extension of the conventional labeling approach
for static data based on the EM algorithm [24] to the one for sequential data. Although the
usefulness of static unlabeled data has been claimed, the usefulness of sequential unlabeled
data in such approach has not been shown. In the present paper, we formally explain the EBW
algorithm and empirically compare it with the NL approach.

The rest of the chapter is organized as follows. After the formal definition of labeled and
unlabeled data in Section 2.2, the conventional NL approach is explained in Section 2.3. Section
2.4 briefly reviews TM-HMMs and introduces ETM-HMMs. Next, the EBW algorithm is
presented in Section 2.5. Section 2.6 provides some experimental results using gesture and
speech data in which the effect of unlabeled data in our method is evaluated and compared
with the NL approach. Section 2.7 concludes this chapter.
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2.2. Labeled and Unlabeled Data

Let Xp= (Xpn;»Xnys -y Xnys s Xng, ) be the nth observation sequence of d-dimensional feature
vectors, where x,,, € R% is the tth feature vector in X,, and T}, is the length of the sequence X,,.
Let y, be a class label corresponding to X,. y, € {1,...,y,...,Y} where Y is the number of
classes. Thus, a labeled datum is (X,,y,,) and an unlabeled datum is X,,. Let D; be a labeled
data set and D,, be an unlabeled data set. It is assumed that we have D=D; UD,,. In addition,
we assume that data are mutually independent.

In the above definition, a single label is assigned to each of the observed sequences. Many
types of sequence meet the above definition. For example, physiological sequences such as brain
waves, biological sequences such as gene expression profiles, and economic time series data
such as the trend of unemployment. For some types of sequence, on the other hand, another
definition of labeled sequences is sometimes used: an observed sequence corresponds to several
concatenated labels. For example, continuous speech recognition systems that regard each
phoneme as a class deal with spoken sentences as such sequences. For these settings, however,
together with segmentation algorithms such as [48], the concatenated sequences may be dealt
with as the basic sequences defined above. In this paper, with the aim of evaluating the proposed
algorithm, we consider only the basic sequences where there is a one-to-one correspondence
between a sequence of feature vectors and a class label.

2.3. Naive Labeling Approach

First, we review the conventional NL approach that utilizes unlabeled data straightforwardly.
Assume that relatively small amounts of data have been manually labeled and vast amounts
of unlabeled data are accessible. In the NL approach, using the hand-labeled data, a partially
correct initial model is trained. The remaining unlabeled data are labeled based on the initial
model. Once unlabeled data have been given pseudo labels, they can be regarded as labeled
data. Then, the model can be retrained by using conventional supervised learning algorithms.

Let D; be a pseudo-labeled data set whose labels are generated by the initial model. Then,

the NL approach can be summarized as follows:

Step 1: Initialization
1-1. Set D «— D;.

1-2. Train a model (classifier) using D.

Step 2: Retraining

Repeat the following several times:

2-1. Based on the current model, assign a pseudo label to each datum in D,, and generate

’

D,.
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2-2. Set D — D, UD,.
2-3. Retrain the model using D.

The above algorithm gives the most general form of the NL approach, However, since the
NL approach has been developed independently for various applications, some variants and
extensions exist. For example, in [36], Dl, was used and D; was not used in retraining, and
in [22], step 2 was executed just once. However, such differences do not seem to be essential.
Therefore, in this paper, we use the general algorithm given above.

Although the NL approach has been reported to be effective in practice, it has two funda-
mental drawbacks. First, the convergence of step 2 is not guaranteed. Therefore, should the
retraining procedure not converge, we should stop the retraining cycle based on some heuristic
criterion such as the maximum number of retraining cycles. Second, when the initial model is
unreliable, the unlabeled data cannot be effectively used. Since D; in step 1-1 is often small, the
initial model may be poorly trained; thus, a substantial percentage of pseudo labels assigned by
such models may be wrong. If 'Dl, contains many erroneous data, their addition may deteriorate
the performance of the classifier.

Confidence measures for labeling have been introduced to cope with the second problem
[22], [23] so that unreliable pseudo labeled data whose confidence measures are below a cer-
tain threshold are not included in D. These confidence measures are defined for individual
applications based on domain knowledge and have been reported to be beneficial in improving
classification. Such measures are, however, not always available or effective. That is, the success

of the NL approach basically depends on the quality of the initial model.

2.4. TM-HMMs and ETM-HMMs

2.4.1 Proposed Algorithm and Model Structure

To overcome the problems associated with the NL approach, we propose a new algorithm which
uses unlabeled data directly without explicit labeling. By so doing, we can use both labeled
and unlabeled data simultaneously and expect a better initial estimate of the model parameters
based on the larger amount of training data. Such methods have been already presented for
static models [37], [25], [26], [27]. However, the structure of conventional HMMs prevents the
direct use of these methods. The static models used in the above researches include all classes
in a single model and unlabeled data can be used in those models. In contrast, HMMs are
constructed for each class and all training data must be allocated to the classes before learning.
Therefore, unlabeled data cannot be used unless pseudo-labels are given by a method such
as the NL approach. In Section 2.4.2, we briefly review the definition of HMMs. In Section
2.4.3, to clarify why unlabeled data cannot be used in conventional HMMs, we detail the model
structure of conventional HMMs especially tied-mixture HMMs (TM-HMMs). In Section 2.4.4,

as an extension of TM-HMMSs, we introduce a model structure named extended tied-mixture
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Figure 2.1. This figure shows a two-state (S; and S3) example of (a) a Markov model (MM)
and (b) a hidden Markov model (HMM). The circles represent HMM states and the solid arrows
represent state transitions. The squares denote output space of symbols. In (a), output symbol
“a” always comes from state S; and “b” from S,. In contrast, in (b), such the relationship

between states and outputs are probabilistic (hidden).
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HMMs (ETM-HMMSs) that can handle unlabeled data. Actually, our ETM-HMMs is not the
only way to use unlabeled sequences in HMMs; another model structure is also possible (See
Appendix A).

2.4.2 HMDMs

An HMM consists of several states and the probabilistic transitions between them. Its transition
from one state to another depends only on the current state. Such a property is said to
be Markovian. If the outputs from Markovian models correspond to their state one-to-one,
such models are called Markov models (MMs). Hidden Markov models are different. When a
sequence of output values from an HMM X = {x3,X3,...,X;} is observed, it is considered to
be generated from state sequence of HMMs. Such a sequence is not observable, in contrast to
the observable output sequences, which is the reason for the name “hidden.” Figure 2.1 shows
simple a two-state example of an MM and an HMM. The basic HMMs output symbolic values.
Continuous (vector) values can be dealt by with an extension of HMMs called continuous HMMs.
Continuous HMMs output a continuous value from each state according to the distribution of
a mixture of Gaussians associated with them. Formal definitions of HMMs will be given in the
next section for a variant of HMMs called TM-HMMs.

2.4.3 TM-HMMs

In a TM-HMM shown in Fig. 2.2(a), each state has a mixture of Gaussians with shared
underlying Gaussian components over all classes, but different mixing parameters. TM-HMMs
are frequently used because they can reduce the number of model parameters without losing
flexibility [46], [47].

Let TM-HMM(y) be a TM-HMM of class y. Let UY be the number of states in TM-
HMM(y) and K be the number of Gaussian components in the feature space. Let s; €
{1,...,i, .0, j, ..., UY} be the index of the state at time t. ' Let m; € {1,...,k,..., K} be the
index of the component at time t. Let ©, = {7}, a}}, cgjk, Wy, Xk} be the set of parameters for
TM-HMM(y). The definitions of parameters in ©, are listed below.

e Initial state probabilities for 1 < 57 < U¥:
T} = P(s1=ily), (2.1)
where 7 >0 and Zﬂle.
i

e Transition probabilities for 1 < s;, 8.1 < UY:

al; = P(si11 = jlst = i,y), (2.2)
where aj; > 0 and Z al;=1.
J

ISince indices i and j represent a state of the HMM for a particular class (y), they should be written as ¥

and jY. However, for simplicity of notation, we omit the superscript y.
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Figure 2.2. This figure shows a two-class example of (a) a Tied-Mixture HMM (TM-HMM) and
(b) an Extended Tied-Mixture HMM (ETM-HMM). The circles represent HMM states and the
solid arrows represent state transitions. The black ovals denote feature spaces represented by a

mixture of Gaussians. In (b), w; and wy denote class priors for class 1 and class 2, respectively.
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e Mixture coefficients for 1 < s, <UY, 1<m; < K:

i, = P(my=kl|s; = j,y), (2.3)
where c?k >0 and Z cgk =1.
k
e Gaussian parameters (mean vectors and covariance matrices) for 1 <m; < K:
py and X, (2.4)

where my = k.

Note that since all Gaussians are common to all states and classes, p;, and X depend neither
on ¢, j nor on y.

Let S, ={s¢| t=1,..., T, } be the sequence of states, M,, ={m;| t=1, ..., T;,} be the sequence
of Gaussian components both of which correspond to X,,. In TM-HMM(y), X,, is observable
and S, and M, are unobservable; hence, they are called hidden variables. According to the
definition of ©,, when s = h,s; = i,5.41 = j,my = k, the complete data likelihood of TM-
HMM(y) is given by:

T,—1 Ty
:7‘(’2 H a?jHC?k (xnt| 1227 Zk) (25)
t=1 t=1

In TM-HMMs, as shown in Fig. 2.3(a), the feature space is tied over classes and any feature
vector can be placed there. In contrast, since state spaces are defined separately for each TM-
HMM(y), unlabeled data without class labels cannot be placed in state spaces. Therefore,
TM-HMDMs cannot use unlabeled data directly.

2.4.4 ETM-HMMs

To deal with unlabeled data in state space, we use another model structure named an ETM-
HMM. Let P(y) = wy be a class prior. Then, an ETM-HMM can be defined by:

ETM-HMM = 3", w, TM-HMM(y). (2.6)

That is, an ETM-HMM is defined as a mixture of TM-HMMSs of different classes as shown in
Fig. 2.2(b). In an ETM-HMM, as well as a TM-HMM, a feature space represented by a mixture
of Gaussians is tied over all classes. As shown in Fig. 2.3(b), in ETM-HMMs, unlabeled data
can be located in multiple state spaces with probabilistic weights.

The hidden variables of an ETM-HMM for labeled data are that for a TM-HMM, and for
unlabeled data, class label y,, is also a hidden variable. A set of parameters for an ETM-HMM
O ={wy,0yly=1,...,Y}, where ©, has been defined for TM-HMMs in Section 2.4.3. When
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Figure 2.3. Allocations of (a) labeled and (b) unlabeled sequences in the state spaces of two
classes. Labeled sequences can be located in either TM-HMMSs or an ETM-HMM. By contrast,
unlabeled sequences can be located only in an ETM-HMM.
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s1 = h,s; = i,5441 = j, and my = k, the complete data likelihood for an ETM-HMM is given
by:

p(Xn7Yn7‘S'na Mn|@)
Tn

Tp—1
= wym} Hafj I N (Xn,| By Zk)- (2.7)
=1 =1

Equation (2.7) differs from (2.5) in that class prior w, is introduced and class labels are regarded

as random variables.

2.5. Extended Baum-Welch Algorithm

2.5.1 Q-function for Mixed Data

This section describes the learning algorithm for the ETM-HMMs, named the extended Baum-
Welch (EBW) algorithm. The EBW algorithm is an extension of the Baum-Welch (BW) al-
gorithm [49], which is widely used to train HMMs. The BW algorithm can be regarded as an
application of the expectation-maximization (EM) algorithm [24] to HMMs. The EM algorithm
is an iterative procedure for computing maximum likelihood estimates from incomplete data.
It alternates two steps: E-step computes the expected complete data log-likelihood called Q-
function, and M-step maximizes the Q-function with respect to unknown parameters. Since the
ETM-HMM learns from both labeled and unlabeled data, the Q-function for the conventional
HMM needs to be redefined.

First, we derive the Q-function for labeled and unlabeled mixed data in a general form.
Let Z; and Z, be sets of hidden variables that correspond to D; and D,,, respectively. Then,
a set of hidden variables Z = Z; U Z,, corresponds to D. Each datum is either labeled (d; €
D, and z; € Z;) or unlabeled (d, € D, and z, € Z,). Let 0 be a set of unknown model
parameters. Assuming that data are independently and identically distributed (i.i.d.), we can
decompose complete data likelihood into the complete data likelihood for labeled data and that

for unlabeled data:
p(D,Z‘@) :p(Dl;Zl|9) 'p(DuaZu|0)' (28)

Similarly, since p(D) = p(D;) - p(D,,) holds based on the assumption of the independence be-
tween data, the distribution of posterior probabilities for the hidden variable Z given current
parameter estimates 6°'9 can be decomposed as shown below:
p(D, 2|6°9)
D
(diy s 21, iy 2l s oy Dy s Zuy s Qg s Zug s o] 0°9)
D(diy s digy ey duy s Dy ---)

p(Dla Z |901d) p(Du, Zu|901d)

p(D)  p(D)
= P(Z|Dy,0°) - P(Z,|Dy,0°9). (2.9)

P(Z|D,6°) =
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By definition, the general formulation of the Q-function is given by:

Q(016°) = E [logp(D, Z|0)| D, 6°M]
= Y P(Z|D,6°%)logp(D, Z0). (2.10)
Z

Therefore, by substituting (2.8) and (2.9) into (2.10), the Q-function for the mixed data can be

obtained:

Q(6]6°'%) = Qu(016°') + Q. (6]6°'), (2.11)
where
Qu(016°'Y) = E[logp(Dy, Z0)| Dy, 6°"]
and
Qu(016°'") = E [logp(Du, Zu|0)| Dy, 0] .

To sum up, the Q-function for the mixed data is the direct sum of the Q-functions for labeled

and unlabeled data.

2.5.2 E-step: Calculation of Q-function

Applying (2.11) to ETM-HMMSs, we derive the Q-function for the EBW algorithm. Let N; be
the number of labeled sequential data and Z, be the set of data indices {n| y, =y}. Labeled
data are {(X,,y,) € D;} and the corresponding hidden variables are {(S,,M,) € Z;}. By
taking the conditional expectation of the complete log-likelihood (log of (2.7)) over the hidden
variables given the data and the current estimates of parameters ©°4, the Q-function for labeled

data, @, is derived as follows:

Q1(0]6°9)
Ny
= ZE[logp(Xnv.YnaSn;Mn|6)| men,@"ld]

n=1
Y

= Z Z {logwy
y=1neZ,

+ ) Yo (4) log 7
i

Th—1

+ Z Z ynt(z,j)loga%

ij t=1

Tn
+ DD GG k) log e,

Gk t=1
T,

+ DD tn(k) 10gN(Xnt|uk,2k)}- (2.12)

k t=1
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Next, the posterior probabilities of hidden variables defined as (2.9) are specified. In (2.12), ~
C and k represent transition posteriors, staying and emission posteriors, and emission posteriors
given below for ¢ > 1:

ﬂ/nt(ivj> = P(St = i, St+1 :]‘ Xn7 Yns @Old), (213)
Cm(ja k) = P(St =J, my = k| Xns Yns (_)OId)a (2'14)
K‘nt(k) = P(mt = k‘ Xna Yns @Old)- (215)

Note that in (2.13), ., (j) = P(s1 = j| Xn, ¥,,, ©°9).

Let N, be the number of unlabeled sequential data. Unlabeled data are {X,, € D, } and the
corresponding hidden variables are {(y,,, Sn, M) € Z,}. By taking the conditional expectation
of the complete log-likelihood (log of (2.7)) over the hidden variables given the data and the
current estimates of parameters 099 the Q-function for unlabeled data, Q,, is derived as
follows:

Qu<®|®01d)

2
3

= E [logp(Xn,yn,Sn,Mn\G)\ Xn,eold]

S
2
I

Il
M~<

{PWIXa, 09 logw,

3
Il
-
-

+
g
5

no (Y ) log 7!

o
L

An, (Y. 1, 7) log af;

™

N
&

~
Il

—_

+
M=

M, (Y, J, k) log ¢,

.
B
i
éﬂw

- (0 k) 108 N (0, 114, ) }- (2.16)

E
~+
Il
—

In (2.16), A\, n, and & represent transition posteriors, staying and emission posteriors, and
emission posteriors given below for ¢ > 1:

M (Y1, )=P(v,, =Yy, 1=, 5001 =j| Xp, %9, (2.17)
M, (0,7, K)=P(y,, =y, st=Jj,m;=k| X,, ©°9), (2.18)
&n, (9, K)=P (v, =y, my=k| X, ©°). (2.19)
Note that in (2.17), An, (v, 5)=P(3,, =y, 51 =j| X, ©°9). Equations (2.17) (2.19) correspond

0 (2.13) (2.15), respectively but differ in that the class label y is regarded as the value of the

random variable. For unlabeled data, the class posterior given below should also be calculated.

P(y| X, ©°9). (2.20)
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Either for labeled data or for unlabeled data, the forward-backward algorithm [50] efficiently
calculates the above posteriors. For unlabeled data, however, due to computational problems,
a modified scaling technique needs to be applied in practice (See Appendix B).

The Q-function of the ETM-HMM is given by the sum of (2.12) and (2.16). It is different
from that of the TM-HMM in the following two respects. First, (),, does not exist in the Q-
function for TM-HMMs since TM-HMMs cannot handle unlabeled data. Second, the term for

wy does not exist in @; for TM-HMMSs in which class priors are not taken into account.

2.5.3 M-step: Parameter Re-estimation

In the M-step, the Q-function that was derived in Section 2.5.2 is maximized with respect
to each model parameter. For example, the re-estimation formula for class prior w, can be
obtained by maximizing the objective function J=Q(0|0°4) + T(Z;/:l wy — 1) with the con-
straint Z;le wy =1 where 7 is a Lagrange multiplier. By solving the two equations, 0.J/0w, =0
and 90.J/01 =0, the following re-estimation formula is obtained:

Ny
A Ny + Zn:l P(y‘Xn7 @Old)

= 2.21
Wy N, + N, s ( )

where @, denotes newly estimated w, and N, represents the number of labeled data belonging
to class y.
In a similar manner, the re-estimation formulae for transition probabilities and mixture

coefficients are obtained as follows: 2

Tp—1 N, T,—1
iy = = e : (2.22)
SO LGS A (w2.d)
neZyt=1 j n=1t=1 j
T N, T,
T nez,t=1 n=1t=1
ik = T. Nu T, : (2.23)
neZyt=1 k n=1t=1 k

2The re-estimation formula for wf is not given here because we used the left-to-right models in which 7r§’ is

unchanged by re-estimation.
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The re-estimation formulae for mixture components, which are Gaussians, are given as follows:

S S R xS S Sl %

y=1 nGIytZI n=1t=1

oy, = — — : (2.24)
SOSTS R YDy k)
y=1| n€Z,t=1 n=1t=1
Y Ty N, T,
> B (VeSS s KV
o y=1|nel,t=1 n=1t=1
Xk = : (2.25)
Y Tr N, T,
PRI DA DY BEACHD)
y=1 | neZ, t=1 n=1t=1

where Vi = (Xp, — ) (Xn, — py)¢ (the superscript ¢ denotes transpose).

At each stage of parameter re-estimation, the increase in the likelihood is guaranteed. We
stop the EM cycle when the change in the log-likelihood value is below a specified threshold.
Unfortunately, when mixed data are used, accurate calculation of the log-likelihood is compu-
tationally difficult; therefore, we use another measure as a convergence criterion (See Appendix
Q).

When only labeled data are used, the re-estimation formula for the class priors becomes w, =
N, /N;. It is a constant defined by the number of training data for each class. Other parameter
re-estimation formulae become those constituted from the first term of both numerators and
denominators. Such formulae are the same as those in the BW algorithm. Therefore, if the
class priors are the same among classes, in other words, if we assume all classes have the same
number of data, the EBW algorithm without unlabeled data is reduced to the BW algorithm.
That is, the BW algorithm can be viewed as a special case of the EBW algorithm.

2.5.4 Selective Posterior Calculation

As for the practical issue, a few remarks should be made concerning the computational cost
of the EBW algorithm. The computational complexity of calculating posteriors in the EBW
algorithm is, for labeled data, O(N;); while, for unlabeled data, it is O(N,, - Y). In the re-
estimation formula for c?i/j (2.23) for example, the posterior (2.18) must be calculated for all
combinations of classes, states, and Gaussian components (Y,U¥, and K) for each sequence.
In the case of the experiment in 2.6.3, Y =48, UY =3, and K = 500; thus, the number of
combinations is 72,000. Since such a large amount of computation is sometimes impractical,
we introduce the following approximate calculation, which we call selective posterior calculation.

First, class posteriors (2.20) are calculated for all classes. Next, according to their values,
the classes are sorted in descending order (e.g. If Y =4, P(1|X)=0.3, P(2|X)=0.7, P(3|X) =
0.1, and P(4|X) = 0.5, we have an ordered class index set as {2,4,1,3}). Posteriors (2.13)-
(2.19) are calculated only for the top M (< Y") classes and the posterior values for the remaining
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classes are set at zero. For instance, if we set M =3, there are 4,500 parameter combinations
for (2.18), which is 1/16 of the original number of combinations.

2.5.5 Classification

Once the ETM-HMM has been trained based on the maximum likelihood principle, unknown
sequential data are classified to the class with the largest posterior probability. The class y* of

an unseen sequence X * is determined by the following formula:

y* = argmax P(y| X*,0),
y

where O is the estimate of a set of parameters obtained by the EBW algorithm.

2.6. Experiments

2.6.1 Experimental Conditions

We experimentally validated the proposed algorithm on two datasets: gesture data and speech
data. Our goal is to improve the classifiers that learned poorly due to the scarcity of labeled
data by adding unlabeled data. The classification error rate (CER) was used to evaluate the
performance of the learned classifiers. The data in the original datasets were all labeled; thus,
unlabeled data were created by hiding their class labels for experimental purposes. In both
experiments, in addition to the few initial labeled training data 'D;“i, either labeled data D; or
unlabeled data D, were added to the training data set. Here, we say that the initial data are
“few” when the addition of labeled data to the initial training data set decreases the CER on the
test data set. This situation implies that the initial labeled training data are insufficient relative
to the number of model parameters and the model parameters are not reliably estimated.

Once we found that there were few initial labeled data, such ETM-HMM was trained on
the larger quantity of labeled data (D™ U D;) or on the mixed data (DI U D,) by using
the EBW algorithm varying the quantity of additional data. The classification performance
of learned ETM-HMMs was compared for two types of additional data, labeled or unlabeled,
with respect to their quantity. In general, as the quantity of labeled training data increases,
the generalization performance improves [51]. Therefore, the addition of labeled data can be
regarded as the ideal setting for performance improvement; we can examine how close the
performance with the addition of unlabeled data is to the performance with the addition of
labeled data.

In addition to the quantity of training data, the classification performance is influenced
by two other factors: variances in the initialization of the model parameters and those in the
training data selection. Although both kinds of variance should be averaged, since the amount
of computation required was too large, we only averaged the effect of data selection over ten
trials and used fixed initial model parameters for all trials. For each quantity of additional
labeled and unlabeled data, the training data were drawn 10 times randomly from the whole
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available training data set. Then, ten different ETM-HMMs were trained on these 10 data
subsets. The median of their CERs for the independent test data set was calculated.
Throughout the experiments in this article, we used left-to-right HMMs. Fixed model pa-
rameters of those HMMs were set as follows. Class priors, transition probabilities, and mixture
coeflicients were initialized to uniform distributions. Gaussian means were determined by the
k-means algorithm for the whole available training data of all classes. Gaussian covariances
were determined by the Voronoi partitions of the data based on the result of the k-means al-
gorithm. The covariance matrices were diagonal. Note that in ETM-HMMs, since the feature
spaces are tied, all data can be used for estimating the Gaussian parameters. By undertaking
the initialization with large quantities of data, we avoided the effect of poor parameterization

so that we could focus our attention on the effect of the data amount.

2.6.2 Gesture Classification
Sign Language Dataset

The first experiment was on gesture data. Each gesture was one of the 15 Japanese sign lan-
guage (JSL) signs. The signs were “aisatsu (greeting)”, “aida (gap)”, “au (meet)”, “akarui

(bright)”, “atatakai (warm)”, “atarashii (new)”, “atarimae (common)”, “ataru (hit)”, “at-

» o«
)
sumaru (gather)”, “aratamete (anew)”, “arigatou (thank you)”, “anshin (peace of mind)”, “ie
(house)”, “issho (together)”, and “itsumo (always)”. Although all of them begin with the same
vocal sounds of either ’a’ or ’i’ when voiced, their hand movements as signs are substantially
different. With an electromagnetic position tracking system (Polhemus 3SPACE FASTRAK
system) [52] the movements of the hands in three dimensional space and the rotation angles
around three axes were measured at a 30 Hz sampling rate. The collected sequences were,
therefore, 15 classes (Y =15) and 12 dimensional. Each sign was performed 40 times (30 for
training data and 10 for test data) by 20 non-native JSL signers. The total amount of train-
ing data was 9000 and the total amount of test data was 3000. All 15 classes have the same
amount of data (600 training data and 200 test data for each class). The mean, maximum, and
minimum lengths of the sequences were, respectively, 25.6, 44, and 15 for the training data and

24.6, 41, and 16 for the test data.

Preliminary Experiment

Unless the addition of labeled data reduces the CER, unlabeled data cannot reduce the errors,
either. Therefore, in our preliminary experiments, we first searched for a situation where the
training data were insufficient. Let N;ni be the amount of initial labeled data for class y. We
found that when N;™ =2 for all classes, the number of states UY =5 for all classes, and the
number of components K = 50, the median of CERs decreased more than 40 points when
labeled sequences were added to the training data. This implies that N;}ni is too small relative
to the number of model parameters to be estimated. Using the above case as an example, we
evaluated the EBW algorithm when unlabeled data were added.
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Experimental Results

We trained ETM-HMMs of the structure specified by UY =5 and K =50. The initial labeled
data, Ngi/ni =2 for all ys, comprised about 0.33% of the total available training data. Either 150
labeled or unlabeled sequences were added at a time to D;™. That is, the number of additional
data, N; or N,, was 150. For each number, N; or N,, we created ten training data sets by
random sampling, and for the ten ETM-HMMs learned from those training data subsets, the
CERs on the test data with a size N; =3000 were computed.

The result of the experiment is shown in Fig. 2.4. Each bar in the graph represents the
median of the CERs of ten ETM-HMMSs. When no data were added, the median of the CERs
was 63.1% as shown by the leftmost bars. Black bars show the change in the CERs caused by
the addition of labeled data. The median of CERs decreased to 17.2% at their lowest. White
bars show the change in the CERs caused by the addition of unlabeled data. The median of
CERs decreased to 50.8% at their lowest. As Gaussian parameters change more than other
parameters by adding unlabeled data, we presume that the improved estimation of Gaussian
parameters is the most important source of performance improvement.

It should be noted that the addition of labeled data lowered the CERs dramatically, whereas
the addition of unlabeled data lowered the CERs gradually. That is, in terms of reducing errors,
the labeled data were clearly superior to the unlabeled data. However, we do not usually have
additional expensive labeled data and without adding unlabeled data, the median of CERs
remains at 63.1%. In this regard, we can say that the addition of unlabeled data by the EBW
algorithm was beneficial in improving the classifier for this gesture dataset when the amount of
labeled data was limited.

Note that since all classes were equal as regards the number of initial labeled data, the class
priors were uniform. Therefore, the initial ETM-HMMs learned by the EBW algorithm were
the same as the initial TM-HMMs learned by the BW algorithm.

Comparison with Naive Labeling Approach

We compare our EBW algorithm with the NL approach explained in Section 2.3 in terms of the
degree of improvement. Varying the confidence threshold C' among {0,0.8,1.0}, we computed
the changes in the CERs caused by the NL approach. Here, C'=0 indicates the NL approach
without a confidence measure. The result is shown in Fig. 2.5 in which the CERs obtained by
the EBW algorithm are cited from Fig. 2.4. Although the CERs did not decrease monotonically,
the EBW algorithm was able to improve the classification performance in general. In contrast,
the change in the CERs caused by the NL approach was unstable. For some C' and N,, the
CERs became worse than that of the initial model. From the results, it can be said that the
EBW algorithm was superior to the NL approach for the JSL data.
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Figure 2.4. The change in the classification error rates for JSL data by the number of additional
labeled or unlabeled data. The thick bars represent medians of CERs and the thin lines represent
upper and lower quartiles. The initial training data were 2 labeled data for each class (i.e.,
N™ =30), the number of states UY =5 for each class, and the number of Gaussians K = 50.
Either 150 labeled or unlabeled data were added at a time.
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Figure 2.5. The change in the classification error rates for JSL data by the EBW algorithm and
by the NL approach for the same amount of unlabeled data. The initial training data were 2
labeled data for each class (i.e., N/ =30), the number of states U¥ =5 for each class, and the
number of Gaussians K =50. Either 150 labeled or unlabeled data were added at a time. The
thick bars represent medians of CERs and the thin lines represent upper and lower quartiles.
In the NL approach, the threshold of the confidence measure was changed (C'=0,0.8,1.0).
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2.6.3 Phoneme Classification

Speech Dataset

As an example of larger data and uneven class distributions, we used the TIMIT corpus [53] of
read speech. The phoneme classification tasks on TIMIT have frequently been used to evaluate
classifiers for sequential data.

In our experiment, for the training data, we used the standard datasets SX and SI defined in
TIMIT. There were 140, 099 sequences or phonemes in this training data set, and they were all
used for model initialization. For the test data, we used the core test dataset defined in TIMIT.
There were 50,754 sequences or phonemes in this test data set. The mean, maximum, and
minimum lengths of the sequences were, respectively, 8.9, 238, and 3 for the training data, and
9, 465, and 3 for the test data. In contrast to the gesture data, each class contained different
numbers of sequences: from the smallest (149 sequences) to the largest (12,516 sequences) (See
Appendix D for detail). As in [54], for training, we grouped the original 64 phoneme categories
into 48 as follows: {q — ’'remove’}, {ux — uw}, {axr — er}, {ax-h — ah}, {em — m}, {nx
— n}, {eng — ng}, {hv — hh}, {pcl, tcl, kel — cl}, {bel, dcl, gcl — vcl}, {h#, pau — sil}.
As in [54], for testing, we grouped the above 48 phoneme categories into 39 as follows: {cl, vcl,
ep — sil}, {el — 1}, {en — n}, {zh — sh}, {ao — aa}, {ix — ih}, {ax — ah}. Thirty-nine
dimensional feature vectors were extracted as in [55]: 12 MFCC coefficients, log-energy, and
the corresponding delta and delta-delta coefficients were computed at a 10 ms frame rate, using

a 25 ms Hamming window.

K-means Algorithm with Pruning

As explained in Section 2.6.1, we used the k-means algorithm to initialize Gaussian parameters.
In this experiment, since we used a large number of components as shown below, an ordinal
k-means algorithm generate many components that contain no data. To avoid such skewed
distributions, we used a modified k-means algorithm, which we call the k-means algorithm
with pruning. In this variant, components whose numbers of member data are smaller than a
pre-defined threshold are eliminated during iteration. This initialization, thus, guarantees that
each component has more than a predefined number of data. To initialize mixtures of Gaussian
parameters in HMMs, the Linde Buzo Gray (LBG) algorithm [56] is often used. However, the
LBG algorithm takes much longer time than our method thus from a practical standpoint, we
did not adopt the LBG algorithm. ISODATA [57] has been proposed to overcome this data
imbalance among clusters. It adds and deletes components one-by-one, whereas the method we

used only deletes (usually more than one at a time) components.

Preliminary Experiment

In the preliminary experiment, as well as the previous experiment on the gesture data, we
searched for a situation where there was little training data relative to the number of free

model parameters. As a result, we found that the median of CERs decreased more than 20
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points when we added labeled data, when Né“i =5, UY =3 for all classes, and K =500. We
focused on this case as an example, and evaluated the effect of unlabeled data utilized by the
EBW algorithm.

We also examined the effect of M which is introduced in 2.5.4. Varying M among {1,3,5},
we compared the CERs of the learned ETM-HMMSs. Since we did not observe any clear improve-
ment by increasing M, we concluded that, as far as the TIMIT corpus is concerned, the choice
of M does not affect the performance. Therefore, to minimize the amount of computation, we

chose M =1 for the rest of the experiments.

Experimental Results

For D;“i, although the class distributions of TIMIT were inhomogeneous, we sampled the data
uniformly from all classes. This assumed that we knew there to be 48 classes, but we had
no prior knowledge of their distributions. The number of initial labeled data N;ni =5 for all
y, which comprised about 0.17% of all the available training data. In contrast to the labeled
data, the unlabeled data were randomly drawn from the real distribution of the whole training
data, since we usually collect unlabeled data without knowing their true classes. The sampled
unlabeled data might reflect the true distribution of the labeled data if the amount were large
enough. Either 480 labeled or unlabeled data were added at a time until the total reached 4800.
For each additional amount, ten different data sets were created as above. Then, ETM-HMMs
(UY¥=3, K=500) were trained on these data sets and tested on the same test data set.

The results of these experiments are shown in Fig. 2.6. The median of the CERs of the
ETM-HMMs learned only from initial labeled data was 66.7%. For the ETM-HMMSs learned
from mixed data containing 4, 800 unlabeled data, the median of CERs decreased to 54.1%. Of
course the addition of labeled data was more effective (the median of CERs decreased 44.2%);
nevertheless, the improvement provided by the unlabeled data with the EBW algorithm may be
valuable since labeled data are usually expensive and not easily available. As JSL gesture data,
we presume that the improvement comes from the better estimates of Gaussian parameters.

In this experiment, the improvement provided by unlabeled data was more significant than
that for the gesture data. One reason may be the difference in the dimensionalities of the
two data sets. In [25], it is argued that unlabeled data are more effective when the feature
dimensionality is high. The dimensionality of TIMIT data is about three times higher than
that of JSL data.

Unfortunately, a significant improvement could not always be achieved by using unlabeled
data. When relatively larger initial labeled data were available, the addition of unlabeled data
did not reduce the errors. Figure 2.7 shows the case where N;“i =50. As with the previous
case, UY=3 and K =500. As can be seen, the addition of unlabeled data did not improve the
performance; on the contrary, the addition sometimes had a detrimental effect. For example,
when 4, 800 unlabeled data were added, the median of CERs was 44.2% while the initial median
of CERs was 42.6%. Here, it should be noted that the addition of labeled data did not improve

the performance significantly either, although they did not degrade the performance. The main
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Figure 2.6. The change in the classification error rates for TIMIT data when either 480 labeled
or unlabeled sequences were added at a time to the initial training data set (N/%=240). The
thick bars represent medians of CERs and the thin lines represent upper and lower quartiles.

The number of states UY =3 for each class and the number of Gaussians K =500.
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Figure 2.7. The change in the classification error rates for TIMIT data when either 480 labeled
or unlabeled sequences were added at a time to the initial training data set (N =2400). The
thick bars represent medians of CERs and the thin lines represent upper and lower quartiles.

The number of states UY =3 for each class and the number of Gaussians K =500.
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reason for the performance degradation may be that the models responsible for the different
classes were close to each other as a result of the addition of unlabeled data. That is, the class
boundary provided by the sufficient amount of initial labeled data may become blurred through
the addition of unlabeled data.

In conclusion, the addition of unlabeled data by the EBW algorithm seems to be useful
when HMMs need to be complex to achieve satisfactory performances but labeled data are too
scarce to estimate their parameters accurately. In contrast, it may be not helpful when there

are enough labeled data available.

Comparison with Naive Labeling Approach

We examined the NL approach using the same phoneme data and model structure (UY =3, K =
500). Varying C' among {0, 0.8,1.0}, we computed the changes in the CERs when unlabeled
data were added. Figure 2.8 shows the medians of the CERs for 10 data subsets for each amount
of added data. For ease of comparison, the results obtained with the EBW algorithm are cited
from Fig. 2.6. Clearly, the performance of the ETM-HMMs learned by the EBW algorithm
was better than that with the NL approach. This result implies an advantage of our approach.
In addition to the higher CERs, the results of the NL approach were unstable: for some C' and
Ny, the performance degraded from that of the initial ETM-HMMs. This difference in stability
suggests another advantage of our approach over the NL approach.

Here, we discuss the possible reasons for the ineffectiveness of the NL approach. In the above
experiment, the CER for the initial model was 66.7%. We may regard this CER as indicating
poor performance. The pseudo labels generated by such a classifier must be unreliable and
the addition of data might have adverse effects. Throughout the experiment, regardless of
the amount of additional data, the poor initial parameter estimates were used for the NL
approach; in contrast, for the EBW algorithm, both labeled and unlabeled data can be used
from the beginning of the learning process. Possibly, the NL approach may work when the
initial models are relatively well trained based solely on initial labeled data. When the initial
models are unreliable and the purpose of using unlabeled data is to improve the classification
to an acceptable level, as has been considered in this paper, our method may work better than

the NL approach.

Discussion

The above experiments showed the benefit of unlabeled sequences in designing classifiers. They
also suggested notable differences in the utility of labeled and unlabeled sequences. To narrow
the gap between the values of these two types of data, we should apply more elaborated usages
of unlabeled data. Constraint on class distribution has been used to avoid the degradation
caused by unlabeled data [58]. However, in our preliminary experiments, such constraints
did not improve the performance on the data set used here. Although we just fixed class
prior probabilities rather than calibrate them as in [58], we do not consider that this method

could work in our settings where posterior probability dominates class prior probabilities. In
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Figure 2.8. The change in the classification error rates for TIMIT data by the EBW algorithm
and by the NL approach for the same amount of data. The number of states UY =3 for each
class and the number of Gaussians K = 500. Either 480 labeled or unlabeled sequences were
added at a time to the initial training data set (N;™ =240). The thick bars represent medians
of CERs and the thin lines represent upper and lower quartiles. In the NL approach, the
confidence measure threshold was changed (C'=0,0.8,1.0).
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contrast, scheduling constraints on the posterior probabilities seems more promising. That is,
their values are controlled so that they are not as distinctive between classes at the earlier
stage of the learning; instead, they gradually become acute at a later stage. Another important
method is the discounting of unlabeled data. As shown in Fig. 2.7, use of unlabeled sequences
was not always beneficial. The degradation of classification performance has also been reported
for static data [27], [59]. However, by choosing an appropriate weighting factor on unlabeled
data so that the contribution of unlabeled data can be reduced, some of such adverse effect
could have been avoided. When necessary, a similar discounting technique can be used in the

learning of sequence classifiers.

2.7. Summary of This Chapter

In this chapter, we proposed the EBW algorithm to enable the learning of HMMs from both
labeled and unlabeled sequential data. Conventionally, in HMM learning, unlabeled sequences
have been used heuristically by the NL approach without the guarantee of convergence. In
contrast, in the EBW algorithm, the parameter re-estimation formulae have been formally de-
rived in the framework of the EM algorithm. We also found that our method utilized unlabeled
sequences more effectively than the NL approach in terms of classification performance. Two
experimental results on gesture data and speech data showed that the EBW algorithm reduced
the classification errors in most cases in contrast to the NL approach.

Although when the initial labeled data were scarce, our method could compensate for the
insufficiency of labeled training data by using unlabeled data, when the initial labeled data
were sufficient, the EBW algorithm sometimes had a detrimental effect on the classification
performance. This is a limitation of our approach and the situations in which unlabeled se-
quences do not help should be studied further. The reason why adding unlabeled data could
not monotonically improve the performance can probably be explained based on the analysis
in [60].

In future work, we can apply our method for adaptation where unseen test data whose
properties are different from those of training data can be regarded as unlabeled data [26],
[61]. Furthermore, there exists a more sophisticated NL approach called co-training [20], in
which feature vectors need to be separated into two feature sets, each of which is capable of
learning a classifier. For example, in automatic speech recognition, visual information taken
from speaker’s mouth region has been used with conventional audio information [62]. When
we have such a redundant dataset, it is interesting to compare the NL approach, the EBW

algorithm, and the co-training algorithm.
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Chapter 3

Image Retrieval by Textual
Query

3.1. Introduction to This Chapter

3.1.1 Image Retrieval

In this chaper, we consider the problem of information retrieval (IR). Among the various IR
tasks, we are interested in image retrieval. Textual information retrieval has long been the
main topic of IR [63]. In contrast, image retrieval is relatively new research field since most
data stored previously had been textual data and accumulations of multimedia data including
visual data has come together with recent developments of various recording devices. Another
reason is that symbols such as texts can be handled more easily than signals by computers.
Thus, image retrieval is considered to be difficult.

Currently, in the field of image retrieval, the query by example (QbE) framework has at-
tracted many researchers. In QbE, users are assumed to have an initial query image at hand
as an example. The IR system returns the ranked list of images in the order of similarities to
the query image[64]. The QbE problem includes the popular research topic known as content-
based image retrieval (CBIR) [65]. Roughly speaking, the research on CBIR has resulted in
the extraction of good features from images and the exploration of metrics that define how two
images are semantically similar despite their different visual appearances. We agree with that
QbE can be applied to a variety of areas, but rather than QbE, we studied query by text (QbT)

for the following two reasons:

e Textual queries are always available because we can generate them freely. On the other

hand, sample images are not always available and we cannot generate them freely.
e The easiest way to acquire sample images to initiate QbE is via QbT.

e Few studies have been conducted on the topic despite its importance.
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3.1.2 Cross-Media Information Retrieval

In QbT IR, if documents are signals such as images rather than symbols like word tokens, the
task becomes cross-media one: queries and documents are represented by different media. We
regard image retrieval by textual queries as typical and at the same time a difficult example of
cross-media IR. The typicalities and difficulties are the reasons why we focus on this QbT image
retrieval. QbT image retrieval is typical because we often want to use textual queries even for
image retrieval as explained in Section 3.1.1. QbT image retrieval is a difficult cross-media IR
because the correspondence between queries and target documents is not clear. Some other
cross-media IR might, however, be easier; imagine another example of cross-media IR where
queries are musical scores and documents are musical sounds. Their correspondence may be
more apparent than that of QbT image retrieval.

Various approaches are possible for QbT image retrieval. The most straightforward one is
to learn the relationships between textual symbols and image signals. However, to achieve this
we need a bunch of training data collected and enormously complicated model structures to
learn. This is almost equivalent to building artificial intelligence with human common sense.
We leave this high-flying attempt for the future, and restrict our attention to a less ambitious

setting.

3.1.3 Annotation-Based Image Retrieval

In this thesis, we assume images are annotated by some keywords (annotations) that explain
the contents of images. This condition means that images have already been translated to a
textual medium. Since the medium of annotations is text and that of queries is also text, QbT
image retrieval can now be seen as textual IR (See Fig. 3.1). Such relaxation of cross-media IR
seems to simplify the task, but, in fact, the task is still difficult. The details of this difficulty
are explained in Section 3.3.1.

In spite of its practical advantages, there have been few research works conducted on
annotation-based cross-media IR. Exceptional examples are found in captioned image retrieval
where natural language processing (NLP) techniques were employed [34], [66]. Another example
is retrieving audio data using an ontology, which is an explicit specification of the relationships
between words [67]. Our work is different from these previous researches in that we use multiple

information sources to improve the retrieval model.

3.2. Basic Information Retrieval Model

3.2.1 Language Model-based Information Retrieval

Although the traditional vector space model (VSM) [63] is the most widely known framework
in IR, recent researches have based most text IR models on language models (LMs) [68] because

the LM framework is theoretically rigorous and effective in practice.
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Figure 3.1. This figure shows schematic diagrams of different types of information retrieval. a)
In conventional textual IR, queries are texts (keywords) and documents are texts, too. b) In
cross-media visual IR, queries are texts (keywords) and documents are images. ¢) In annotation-

based cross-media visual IR, queries are texts (keywords) and documents are both images and
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Language models are in fact probability distributions over vocabularies —in other words,
probabilities for the occurrence of a certain word. The basic LM-based IR system is built from
the probabilities of generating words in the vocabulary V of size V' that is defined over all
documents. The simplest formulation of LMs is based on unigram models where the context of

term appearance does not count:
P(ty, ta, ts,...) = [ P(t:), (3.1)
i

where t; represents the ith term in the observation.

Obviously, imposing dependencies between terms using a tool such as the bigram model
P(ty, ta,ts,...)=P(tr) [ [ P(tilti—1) (3.2)
i

leads to richer expressions but requires more information to learn the model accurately. Through-
out this thesis, we use unigrams because what we are considering is not ordinary text but an-
notations, which are likely formulated as a list of keywords. That is, the order of terms does
not have any particular meaning in annotation-based image retrieval.

Let D be the set of all N documents called a collection. For each query, documents are ranked
according to their relevance to the query. Let g; be a query term and d; be annotation term. In
LM-based IR, relevances are determined as the likelihoods of query q =< q1, ¢2, ..., Giy .-, qr, >
of length L given a nth document d,, =< di,d>, ..., d;, ..., dyr > of length M:

P(qld,) = HP(qun). (3.3)

Because an LM is defined on one document rather than across the whole document collection,

we call each probability distribution defined over a document a document model (DM):

DM, = < P(wi|d,),P(wszldy,),..., P(wyl|d,) > . (3.4)

The parameters of the nth DM are estimated by the maximum likelihood (ML) estimation as
follows:

P(w,ld,) = n(w,) € dn (3.5)

Zn’ n(wv) € dnl ’
where n(w,) represents the frequency of the word w,.
In many cases of textual retrieval, an additional term P(w|D), called the collection model
(CM), is combined with (3.3) heuristically, and this addition has indicated performance im-

provement [69]. Let A be a weighting parameter. The CM is used as follows:
Plald,) = J[(P@lds) + (1~ NP@lD)}- (36)

In this thesis, however, we do not use this smoothing term since the validity of this heuristics
in cross-media IR has not been clarified. Moreover, we want to focus our attention on the most
basic model at this time.
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3.3. Exploiting Word Association

3.3.1 Vocabulary Problem

IR systems have to deal with ambiguities inherent in natural languages. The distinction made
by Rabitti and Savino between the conventional “database approach” and “IR approach” is
important [70]. The database approach deals with queries that precisely define the values of all
attributes in data. The task is to evaluate the Boolean combination of attributes to find a “true”
document. In contrast, the IR approach should rank documents according to the similarities
among unstructured documents with the unrestricted query. Actually, the biggest problem in
IR is considered to be the lexical mismatch between the query words and annotation words;
even if both query and annotation words refer to the same concept, there are many expressions
possible for that single concept. Such a problem is called a vocabulary problem [71]. This
problem is derived from the variety in our word usage; more specifically, synonymy. In most
IRs, including textual IR and annotation-based cross-media IR, it is clear that simple term-
matching strategies (the database approach) will not work because of this problem. Some
solutions have been proposed in the textual IR field, and the most promising solution so far is
to acquire word associations from data. By using the learned relationships, queries and texts
in the target documents can be semantically connected.

3.3.2 Query Expansion

One solution for the vocabulary problem is use of a technique called query expansion (QE)
[72], [73]. In QE, a query is expanded by adding the synonyms to the initial query. QE is
implemented with the technique known as relevance feedback (RF) [74].

Originally, RF was introduced to change the weights of words, determining which word in
the vocabulary is important and which one is not, according to the users’ responses. Users are
expected to evaluate the initial ranked list of retrieved documents by specifying whether each
of these documents is relevant or irrelevant. By expending the additional effort to use RF, a
user can refine the importance weights of words to be close to their information needs. Later,
RF is used for the QE. In RF-based QE, the words contained in the relevant documents, whose
relevances are determined by users, are added to the original query.

Although RF is effective, some user studies suggest that casual users are not willing to
use RF due to its cumbersome additional operations. For this reason, RF is now replaced
by pseudo-RF (PRF) [75] and other methods that perform RF-like operations automatically
without bothering users. Despite its recent unpopularity in text retrieval, RF is still a preferred
technique in the field of image retrieval, where no sound IR architecture has yet been established
and interactive refinement is the most reliable procedure. Some machine-learning techniques
have been applied to improve the RF in QbE image retrieval. Although RF is also used in
the context of learning from multiple information sources [76], [77], and RF is a matter worthy
of study, we do not consider RF any further in this article. The reason is that RF induces
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cognitive burden on the user and the automation of IR process should be our research goal.
QE with PRF is called automatic QE. In automatic QE, the words contained in the top-
ranked instead of relevant documents are concatenated to the original query. The modified query
is expected to have words that can be matched with texts in relevant documents. However, it is
clear that the performance of initial retrieval plays a crucial role in PRF. Therefore, we consider
it more desirable to expand queries automatically by using predefined knowledge without using
the retrieval results. For the QE prior to any document ranking, we can use thesauri that define
the semantic associations between words. Such thesauri can be introduced externally in the

form of knowledge or can be learned from data.

General Thesaurus

The external knowledge considered here are hand-crafted thesauri. A well known example of
a general thesaurus is WordNet [78], which is build based on psycholinguistic interest and is
not intended for information processing systems. However, since WordNet is designed to be
used with computers, it has been used many information processing applications, including IR.
Although WordNet sometimes does not work well in textual IR, it has been used successfully in
cross-media IR where images are retrieved based on their captions (annotations) [33], [34]. The
conclusion in these references is that WordNet is suited for the short texts such as annotations.

As successful as the use of WordNet in cross-media IR was, there are two recognized draw-
backs of general thesauri in IR tasks [79]: First, the integration process of external knowledge
into the task domain is cumbersome. A data-driven thesaurus is more desirable because it can
be built automatically and can be integrated into the probabilistic models directly. Second,
they are not specific enough for individual document collection. One particularly serious ex-
ample is that they lack information about proper nouns. Because domain-specific rather than
general thesauri are preferred for IR, our aim here is to realize a learned thesaurus based solely
on available data without any manual effort.

Cooccurrence-based Method

If the relationships between words can be learned from the data, queries can be converted into
other expressions that can match the texts of target documents. For this purpose, the most
heavily studied information source is word cooccurrence in the documents. Cooccurrences are
defined as the occcurrences of two words in a single document. The assumption is that two
words appearing in the same document have similar meaning. This may sound naive but it
works well in practice.

Semantic relationships between words can be represented as a probabilistic model learned
from the frequencies of word cooccurrence. The semantic similarity between two words (wy and

wy in the vocabulary V) is estimated as follows:

n(wg, wy)

P(wi|wy) = (wr)

; (3.7)
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where n(wy, w;) represents the frequency of cooccurrence wy and wy, and n(wy) represents the
frequency of wj in all documents D. Probabilistic relationships between all word pairs can
be calculated in this way. Note that the relationship between two words is asymmetric, and
this asymmetry is natural since words have different degrees of abstraction. For example, the
concrete word “lion” must be strongly related to the word “animal,” whereas the abstract word
“animal” is not necessarily strongly related to “lion” since “animal” has a wider variety of

relationships with other specific animals and the degree of semantic similarities may diffuse.

3.3.3 Statistical Translation Model

Once we have the word-word relationships, we can include the knowledge in the retrieval model.
One successful method of text retrieval derives from statistical translation [80] in which query

terms are assumed to be translated into document terms (annotation terms, in our case):
[1D_ Plaildr. dn)P(dsldn)
i€q j

112 Plaild;) P(djldn). (3.8)

i€q j

P(q|d)

Q

As well as the standard LM-based IR, the likelihoods of an nth document generating q are
assumed to be its relevance to the query. We call this model the statistical translation model
(STM). The P(d;|d,,) in (3.8) is DM as defined in (3.4), and the component that corresponds
to P(g;|d;) in (3.8) is called the translation model (TM) in [80]. In the reference, the TM
takes word orders into consideration. In our model, as explained in Section 3.2.1, the context of
word appearance does not matter. In this regard, we call P(¢;|d;) the word association matrix
(WAM) instead of the TM. The WAM is estimated from the word cooccurrence information in
annotations using (3.7).

By the approximation made in (3.8), we assume that WAMs are common to all documents,
whereas DMs are, of course, document dependent. In our view, an STM performs probabilistic
QE using the WAM prior to the retrieval. Note that conventional PRF is not practical for
annotation-based image retrieval because annotations are very sparse. As discussed in Section
3.3.2, good initial retrieval is needed to perform PRF. In annotation-based image retrieval, if
the WAM is not used, we usually cannot have any matched or pseudo-relevant documents.
Thus, the use of top-ranked documents as the relevant documents does not make sense. That

is, expansion prior to the retrieval is essential.

3.3.4 Probabilistic Latent Semantic Indexing

There is another approach to dealing with the vocabulary problem, and it operates by indexing
each word by latent semantic categories. The categories are estimated so that all synonyms are
indexed by the same categories. In other words, all words are grouped based on the latent se-
mantic similarities. One well-known example of this approach is latent semantic indexing (LST)
[5]. As a probabilistic model of LSI, probabilistic Latent Semantic Indexing (pLSI) has been
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proposed [81]. Compared to LSI, pLSI enjoys some advantages of probabilistic representation
such as robustness to noises. Let z; be the kth latent index. In pLSI, a query is assumed to be
generated according to the following probabilistic model:

11> Plailzr. dn) P(zildn)
€q k

11D Plailze)P(ze[dn). (3.9)

i€q k

P(q|d)

Q

The documents are ranked by the likelihood of generating the query from this model. Since
STM and pLSI have similar model hierarchy or complexity, it seems fair to compare these two
approaches. Note that (3.9) looks similar to (3.8), but the intervening variables d and z are
either evident word tokens or latent semantic categories. Word tokens can be observed directly
and the WAM and DM in STM can be learned separately. The latent index must be estimated
from data and the entire model parameters are learned simultaneously. For the learning of
pLSI, Hofmann proposed the tempered EM (TEM) algorithm to avoid over-fitting; however,
in our experiment, we found that TEM based on perplexity measures does not perform well.
This result may be explained by the observation made by Azzopardi et al. that the perplexity
of LM is a good predictive performance measure but not a good IR performance measure [82].
For this reason, we used a manually tuned early-stopping criterion; that is, we terminated the
EM algorithm at the pre-defined appropriate iteration step.

3.4. Use of Image Information

3.4.1 Annotation Insufficiency

Annotations are now thought to be highly useful even if additional human efforts are needed
to prepare them. However, providing annotations to images by hand is tedious work and it is
less likely that well-annotated images are available in abundance. Therefore, we may expect
that images are annotated with only small number of keywords. The worst case could be a
single word attached to an image and that word is extracted from the file name of the image.
Insufficiency of annotations is surely the major obstacle to performing annotation-based image
retrieval.

If the target documents are regular texts, the cooccurrence information may be sufficient
to estimate a WAM. However, as explained above, annotation data are very sparse; hence, the
cooccurrence information is even more sparse. Consequently, a WAM estimated based solely
on annotations may lack a huge portion of information on the relationships between words. We
propose a new method to utilize image data that are paired with annotations for the learning
of a WAM.

43



3.4.2 Interpolation by Image Similarities

Although it is virtually impossible to learn the connection between natural language words
and image features, we think it is easier to believe that the similarities between images have
something to do with the similarities between their annotation words. Image features are
usually dense—every dimension of feature vector contains some values —and we can almost
always define similarities between images. This motivates us to use these image similarities to
help estimate word similarities.

To measure similarity, we use Kullback-Leibler divergence (KLD) [51]. Assuming that the
underlying probability distributions generate images and images can be represented by feature
histograms, the similarity between two histograms can be calculated as the distance between
two distributions. Let P(i;) and P(i;) be such distributions corresponding to two histograms
i; and i;. Then, the KLD between the ith and jth images is:

KL(PGIPG) = Y Pl los B 3.10)

KLD is non-negative and zero if and only if P(i;) = P(i;). If i, =i;, we skip the calculation.
This happens when ¢ = j and also when two images are not exactly the same but approximated
to be the same during the quantization process of making histograms.

Let w; be the fixed length annotation vector for the ith document, w; the annotation vector

for the jth document:

w;, = <n(wi1),n(wi2), . ...n(wig), ...nlwy)>0<k<V)

w; = <n(wji),n(wj2),....n(wj),...n(wjy) > (0<1<V).

For example, if the second word appears once in the ith annotation, w; =< 0,1,...,0,...,0 >
and if the first and the last words appear once and the second word appears twice in the jth
annotation, w; =< 1,2,...,0,...,1 >. Based on the similarity between two images, the similarity
sk, between kth and lth words, each of which appears in ith and jth documents respectively,

is calculated by using KLD as follows:

— L if k) > 1A ) >1
sealiyg) = {KL(P(WP(IJ-)) it n(wik) 21 An(w;1) > (3.11)

0 otherwise
sio= > skl ). (3.12)
j
Note that we do not use the information on word frequencies here, but only consider whether
the word exists. This is the simplification we made by utilizing the fact that any given words

seldom appear more than once in an annotation.

By calculating all similarity scores between all word pairs in the vocabulary, we have the
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similarity matrix:

S11 S12 e S1v
S21 522 R S2v

SM=| o . (3.13)
Svi1 Sv2 ... Syv

By normalizing the SM, the probabilities of associations between kth and [th words is obtained:

s
P(wg|lw) = 5 k;kl
l
=  Qagl. (3.14)
Finally, we have the following WAM:

ait a2 Ce. aly

a1 a2 ... Qv
WAM = ] ] ) ) . (3.15)

avi ava2 ... avy

Note that an STM includes a basic DM (3.3) as a special case: if the WAM is an identity

matrix, no expansion takes place and an STM will be reduced to a DM.

3.4.3 Feature Expansion by Concatenation

For the latent variable model, the paired information is utilized by combining textual and visual
features. The basic idea is quite simple: if we have textual annotation w and image feature
vector i, then the concatenated feature vector x =< w,i >. Once the pre-concatenated vectors
are replaced with this new feature vectors, the remaining learning process is the same.

Such a method has already been used in [83], in which textual features and visual features
are concatenated and LSI is applied for the clustering. In this thesis, we conduct probabilistic
versions of that work; that is, we use pLSI (3.9) instead of LSI because pLSI is supposed to
work better than LSI. Another example that concatenates two features uses unigram models
for both textual and visual information in [84]. Their IR scheme is, however, not QbT in the

sense used in this thesis; thus, we cannot make a direct comparison.

3.5. Evaluation of Cross-Media Information Retrieval

3.5.1 Test Collection

Evaluation of image retrieval methods is one of the biggest problems in this field because there
is no established test collection. A test collection is a set of queries and documents in which

relevant documents are manually specified for each query. For textual IR, TREC ! is one of the

Thttp://trec.nist.gov
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most widely used test collections. For QbE image retrieval, efforts are being made to construct
a publicly available test collection such as Benchathlon [85]?. Furthermore, there is an attempt
to evaluate the difficulty of QbE tasks based on the complexity of the database itself without
preparing test queries [86]. For QbT image retrieval, which we consider here, there seems to
be no well-prepared test collection as far as we know except for some inhouse datasets, nor
does there exist an evaluation method that does not use test collections. Therefore, we shall
prepare a test collection by ourselves or invent an evaluation method that does not require such
collection. Building a test collection itself is of course an important research topic, but at this
time, we have decided to evaluate the performance of our algorithm by using an easily built

synthetic test collection.

3.5.2 Synthetic Test Collection

Since our research goal is to associate query terms with annotations, we can restrict our
evaluation to the situation where query terms and annotation terms do not match directly.
In other words, the query and the annotation do not contain the same word. In this re-
gard, we take some annotation words randomly from the original annotations and use them
as pseudo-queries. For example, if two terms wi,ws are selected from the ith annotation
w; =< n(w; 1), n(W;2), .., (Wi k), ..., n(w; ) >, the synthetic query q; =< n(g;,1),n(gi2) >
and the new annotation w; =< n(wi1) — 1, n(w;2) — 1, ..., n(w; 1), ..., n(w;,y) > are created.
Since we know from which document such queries are created, we can identify one image that
should be relevant to the query. In general, one query has more than one relevant document,
and this is indeed true for our dataset. However, we assume there is only one relevant document
per query, since we do not have any knowledge about the relationships between queries and

other relevant documents.

3.5.3 Performance Measure

We use the synthetic dataset constructed from the original data according to the procedure
explained in Section 3.5.2. In practical image retrieval systems, retrieved images may be listed
in a computer window. If the window can display ten images at a time, then for example, the
top ten images can be viewed in the first page and lower-ranked images are only accessible by
turning pages over. Therefore, it is preferable that the relevant image is included on the first
page. Here, we use the first-page hit rate (FPHR) as a performance measure. If one page can
display 10 or 20 images, we use the notations FPHR10 or FPHR20. Another criterion we used
for the evaluation was the averaged ranking of relevant documents over all queries. We sued
the median for the average, since we want to avoid the influences of extreme values. We believe
the behavior of the median is preferable to the mean in understanding the practicality of IR

systems.

2http://www.benchathlon.net/
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Table 3.1. Summary of three categories in the photo object image dataset.

Category No. of Documents | No. of Vocabularies
Education 207 260
Sport & Leisure 2303 1165
House & Home 4996 2101

3.6. Experiments

3.6.1 Object Image Data Set

The dataset we used is taken from Hemera Photo Object CDs2. Images are color pictures
consisting of 14 categories. The photographic subjects are various objects, which are annotated
manually. The mean number of annotations is 8.87, maximum number is 25, and minimum

number is 1. The annotations mostly refer to the contents of images rather than visual traits.

3.6.2 Image Feature

We used a color histogram for image features. A color histogram represents the proportion of
pixels of each color within an image. Color information is sometimes considered a low-level
feature since it does not correspond to conceptual contents of images. In our model, we already
have semantic information from annotations. Therefore, low-level features may supplement the
information sparseness well. As for color space, we used RGB (red, green, blue) space. We
divided each dimension of the color space into four subspaces; thus, the dimensionality of the
color histogram is 64. In our preliminary experiments, the difference of dimensionality yielded
some variation in performance. However, because the degree of those changes were moderate,

we did not investigate the influence of dimensionalities to any greater depth.

3.6.3 Experimental Conditions

Among the 14 categories, we choose three categories whose sizes are either largest, medium,
smallest. Topics of these categories are “Education,” “Sport & Leisure,” and “House & Home.”
These three categories are summarized in Table 3.1. We conducted IR tasks within each cate-
gory, and to observe the effects of other factors clearly, we pegged the length of query L to two.
This number is assumed to be the query length most often used by casual users. A study of
query length via the WWW search engine reported that the average query length is 2.35 [87].
This number may be applicable in various IR settings including cross-media IR. We believe

casual users of IR systems are not willing to use longer queries.

Shttp://www.hemera.com
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3.6.4 Experimental Results

This subsection compares the performances of STM under different conditions. We first com-
pared the three following three model types:

e No word association model (LM), which is capable of term matching only.
e STM whose WAM is estimated without visual information.
e STM whose WAM is estimated with visual information.

All documents have the same number of annotation words in each experimental condition, and
we varied the size of annotations M from 1 to 3. Note that when M =1, there is no cooccurrence,
and the results for LM and that for STM without visual information are the same.

Tables 3.2, 3.3, and 3.4 show the results of IR for three categories. In these tables, since the
median values change according to the number of documents in each category, for the category-
wide comparison, we list the position of the median value in the collection. If documents are
selected randomly regardless of queries, the position of a relevant document will be in the
middle (50%) of the collection on average. The use of the WAM improved the performance
significantly in the small collection, as shown in Table 3.2. In Tables 3.2 and 3.3, when the
number of annotations was small, visual information certainly helped to improve the estimation
of WAMs. However, as the size of annotations increased, the relative contributions given by
visual information decreased. This is natural because annotations usually contain semantically
more meaningful information than visual information in IR.

Although the use of visual information according to our approach was effective for the small
collection, when the collection size increased, the addition of visual information did not work
well, as shown in Table 3.4. Considering the fact that the position of relevant documents in the
large collection was below 10%, the ineffectiveness of visual information may suggest that the
sparseness of textual information can be compensated for by using abundant documents. That
is, our approach might not leave room for improvement when the performance reaches a certain
level. However, from a practical point of view, the FPHRs achieved were still too low and more

work is needed to achieve satisfactory retrieval performance from larger image databases.

3.6.5 Comparison with Conventional Method

This subsection compares the performances of STMs and pLSI models. The feature vectors in
the pLST model were concatenated according to Section 3.4.3. That is, each entry in an image
histogram was regarded as a word. Among the three categories used, we showed the result
for the smallest category, “Education,” where the use of visual features had been shown to be
helpful in the previous experiments.

As shown in Table 3.5, pLSI models perform worse than our STM-based method, although
they could achieve improvements over simple LMs. This difference in performance might be
cause by the performance of basic retrieval models. That is, pLSI models are less powerful
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Table 3.2. This table shows the retrieval performances of LM, STM without visual information,
and STM with visual information when increasing the size of annotations M from 1 to 3. The
performances are measured by FPHR10, FPHR20, and the median in the category “Education.”

M=1
Model FPHR10 (%) FPHR20 (%) Median (Position (%))
LM: Annotation Only 4.35 6.76 109 (52.66)
STM: Annotation Only 4.35 6.76 109 (52.66)
STM: Annotation and Image 39.13 53.62 17 (8.21)
M =2
Model FPHRI10 (%) FPHR20 (%) Median (Position (%))
LM: Annotation Only 3.38 8.21 103 (49 76)
STM: Annotation Only 39.61 54.59 8 (8.70)
STM: Annotation and Image 51.21 69.57 0 (4.83)
M=3
Model FPHR10 (%) FPHR20 (%) Median (POSltlon (%))
LM: Annotation Only 8.21 17.39 97 (46.86)
STM: Annotation Only 55.56 69.57 9 (4.35)
STM: Annotation and Image 54.11 71.98 10 (4.83)
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Table 3.3. This table shows the retrieval performances of LM, STM without visual information,
and STM with visual information when increasing the size of annotations M from 1 to 3. The
performances are measured by FPHR10, FPHR20, and the median in the category “Sport &
Leisure.”

M=1
Model FPHRI10 (%) FPHR20 (%) Median (Position (%))
LM: Annotation Only 0.83 1.09 1156.5 (50.24)
STM: Annotation Only 0.83 1.09 1156.5 (50.24)
STM: Annotation and Image 10.08 15.33 212 (9.21)
M =2
Model FPHR10 (%) FPHR20 (%) Median (Position (%))
LM: Annotation Only 0.65 1.22 1136 (49.35)
STM: Annotation Only 13.16 20.07 137 (5.95)
STM: Annotation and Image 15.64 23.68 95 (4.13)
M =3
Model FPHRI10 (%) FPHR20 (%) Median (Position (%))
LM: Annotation Only 1.87 2.87 1133 (49.22)
STM: Annotation Only 23.20 34.58 44 (1.91)
STM: Annotation and Image 16.20 25.46 70 (3.04)
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Table 3.4. This table shows the retrieval performances of LM, STM without visual information,
and STM with visual information when increasing the size of annotations M from 1 to 3. The
performances are measured by FPHR10, FPHR20, and the median in the category “House &
Home.”

M=1
Model FPHRI10 (%) FPHR20 (%) Median (Position (%))
LM: Annotation Only 0.30 0.48 2513 (50.30)
STM: Annotation Only 0.30 0.48 2513 (50.30)
STM: Annotation and Image 0.70 1.18 1587 (31.77)
M =2
Model FPHR10 (%) FPHR20 (%) Median (Position (%))
LM: Annotation Only 0.68 0.98 2486.5 (49.77)
STM: Annotation Only 8.61 13.61 312 (6.25)
STM: Annotation and Image 6.08 9.07 457 (9.15)
M =3
Model FPHRI10 (%) FPHR20 (%) Median (Position (%))
LM: Annotation Only 1.66 2.28 2473.5 (49.51)
STM: Annotation Only 16.57 24.64 100 (2.00)
STM: Annotation and Image 7.59 11.27 325.5 (6.52)
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than STMs as far as this experiment concerns. Another reason for this result could be derived
from the limitation in using textual and image features, assuming their independence. In our
method, visual information was used to interpolate the sparseness of textual information. The
main information source was annotations and visual information was not equally used but used

as subsidiary information to learn the model.

3.7. Summary of This Chapter

In this chapter, we have described the difficulty of QbE cross-media image retrieval even if
annotations are provided. We clarified that in order to retrieve images with annotations, some
forms of word associations are needed. In an effort to solve this problem, we introduced an
STM that has been used in textual IR, an IR model with such association. The sparseness of
annotation, however, prevents us from learning STM directly. To mitigate this problem, we have
proposed the use of visual information that is paired with textual information in learning the
model. We also have proposed an evaluation method by using synthetic test collection for the
annotation-based cross-media IR. Experimental results show improvements in IR performances
given by paired data via our method. We also compared our method with another multi-
information source method in the context of QbE cross-media IR. Experimental results suggest
that our method could use the paired data more effectively. For a larger dataset, however, the
behavior of our method was unsatisfactory.

Further research issues for the improvement include the term-weighting scheme to avoid
estimating incorrect word associations. Textual IR has been struggling with this term-weighting
issue [88] and similar techniques may apply to our model. Another scheme is the combination of
learned parameters or matrices. Here, we point out the difference between our method and other
method such as the image registration techniques in combining parameters. Image registration
is the application area where unsupervised techniques are used as well as IR. Different matrices
that represent different images are aligned so as to use all images jointly [89]. However, in
IR, in contrast to the registration, there is no particular template on which the rest of the
matrices are aligned; some parts of the WAMs learned from textual information are good, and
some parts of them from visual information are also good, but we do not know which parts of
WADMs are effective in IR. Therefore, in our framework, simple, weighted combinations of two
types of WAMSs may not work. Actually, preliminary experiments using combined WAMs only
exhibited slight improvements or even deterioration, depending on the experimental setting,
even if weighting parameters were tuned. Some type of supervision, however, can be used as
an information source to extract effective sub-components from two types of WAMs.

Furthermore, we can use out-of-domain data such as the texts on the WWW as an important
information source. They have been successfully used to interpolate data sparseness in creating
models for the word sense disambiguation (e.g., [90], [91], [92]) and can be helpful to refine
WAMs in our methods.

On interesting research direction of QbT image retrieval may be the integration with auto-
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matic image indexing. Automatic indexing is a classification task whose target task class has
the size of a vocabulary. Statistically learned probabilistic models are now used for automatic
image annotation [93], [94], [95]. In this thesis, we assumed that images are manually annotated
and all annotations are correct. If annotations are provided automatically using heuristics or
machine-learning techniques as referred to previously, the annotation will inevitably include
many incorrect or ambiguous words since no automatic method has achieved human-like abil-
ities to interpret the meanings of images. Researches on label noises in classification such as
filtering noisy data [96] or incorporating label uncertainty [97] may serve as a guideline for

future studies on annotation noises.
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Table 3.5. This table shows the retrieval performances of the pLSI model and STM when
increasing the size of annotations M from 1 to 3. The performances are measured by FPHR10,
FPHR20, and the median in the category “Education.”

M=1
Method FPHRI10 (%) FPHR20 (%) Median (Position (%))
pLSIL: Annotation and Image 5.80 9.18 106 (51.21)
STM: Annotation and Image 39.13 53.62 17 (8.21)
M =2
Method FPHRI10 (%) FPHR20 (%) Median (Position (%))
pLSI: Annotation and Image 21.74 35.75 31 (14.98)
STM: Annotation and Image 51.21 69.57 10 (4.83)
M =3
Method FPHR10 (%) FPHR20 (%) Median (Position (%))
pLSI: Annotation and Image 30.92 53.14 19 (9.18)
STM: Annotation and Image 54.11 71.98 10 (4.83)
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Chapter 4

Conclusions

4.1. Summary of Thesis

As demands to the intelligent information systems grow rapidly, probabilistic models tend
to become more complex; therefore, more information is required to learn the models. This
causes the data insufficiency problem. Focusing on two particular domains, classification and
IR problems where the data insufficiency is crucial, this thesis has proposed novel methods to
solve the problem of information insufficiency in statistical learning. The key technique is to
use additional information sources. We have shown that the use of unlabeled sequences can
help in the learning of HMMs and the use of paired images can advance cross-media image
retrieval.

Conventionally, there have been some approaches involving the use of simplification methods,
ensemble methods, and smoothing methods. These techniques leverage available information
as much as possible but do not use any additional source. Through experimental results, we
have found that the additional information usage brought remarkable improvements that have

never been achieved without them.

4.2. Related Works and Future Directions

4.2.1 Interactive Learning

In both Chapter 2 and Chapter 3, we did not consider human interventions during learning. In
the classification problem, observed measurements (feature vectors) do not contribute equally
to construct class boundaries. That is, there are some informative data among them, and if we
can select them and assign their class labels, we can obtain high-performance classifiers with
little effort. This type of learning scheme is called active learning. In active learning, the system
prompts the human labelers to assign class labels to the selected unlabeled data points.

The query-by-committee (QbC) algorithm is a typical active learning. QbC first designs
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several different classifiers on the same labeled training data. It, then, selects unlabeled data
points with strong disagreement among these classifiers’ outputs and presents them to the hu-
man labelers, assuming that the stronger the disagreement is, the more the data are informative
to the classifier design. The theoretical justification of QbC is given in [98]. The QbC algorithm
has been applied to HMMs [99)].

In IR, relevance feedback (RF), which has been discussed in Section 3.3.2, is an interactive
learning scheme [100], [101]. In RF, a user is asked to assign relevance information to the
initial IR output to refine the retrieval. In some domains, such as IR on the World Wide Web,
interactivity sometimes does not work because relevance information is not obtainable; casual
users are reluctant to be bothered by additional operations. In contrast, in some domains
such as the analysis of scientific experiments, where experts’ inspection of data has been the
convention, even minimal reduction in human effort will be appreciated and experts may be
willing to provide additional information. The use of interactivities in statistical learning should
be examined from both theoretical and practical perspectives as above, and that should be a

focus of our further research.

4.2.2 Computational Efficiency

We evaluated classification algorithms on the classification error rates and IR algorithms on
the first-page hit rates. Computational efficiency was not a central issue in this thesis. As for
classification, the proposed algorithm was designed based on the EM algorithm. Since various
algorithms for speeding up the EM algorithm have been proposed (e.g. [102]), the learning
speed of the proposed method can be improved by straightforwardly using those algorithms. In
IR, retrieval speed is important. Currently, our IR method simply employs exhaustive search,
although quick retrieval has become one of the most active areas in the database community
(e.g. [103]). These methods developed there should be helpful in increasing the efficiency of
our IR algorithm.

4.2.3 Other Information Sources

Other than the two information processing tasks we have explored, there may exist many
applications where information for learning is quite insufficient, and these may suffer from
various types of insufficiency. Also, within the scope of classification and IR, other types of
information sources may be considered that have different types of heterogeneity. Viewed in
this light, there are still various algorithms that need to be developed. One illustrative example
is the use of pairwise constraints (e.g. two data must be in the same cluster or must not be
in the same cluster) in clustering tasks. It has been reported that adding these constraints
drastically improved clustering performance [104]. As another example, Cohn used similarity
constraints in dimensionality reduction techniques so that the pair of data which belong to the
same class should be projected to the same point in the reduced feature space [105].
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4.2.4 Other Applications

In Chapter 2, we used HMMs for the classification and the learning algorithm was supervised.
HMMs can also be used for the clustering of sequences (e.g. [40]) with unsupervised learning
algorithms. If we apply our method to the clustering, we can perform semi-supervised clus-
tering. In classification, we use labeled data as the basis of learning, with unlabeled data as
an additional information source. In contrast, unlabeled data are the subject of the matter in
clustering, whereas the label information is regarded as supplementary. One interesting aspect
of semi-supervised clustering by using mixture models (mixture of HMMSs in our case) is that
we can find new classes which are not represented by labeled data. In this regard, we have
carried out semi-supervised clustering with unknown classes [106]. A similar attempt has been
made for the static data [107].

4.3. Final Remarks

Recently, we have been faced with flood of data; however, it is difficult to extract information
from so much data. Ironmically, we are still suffering from information insufficiency. The aim
of this thesis has been to show the possibilities of using additional heterogeneous information
sources that had previously been unused in traditional statistical learning settings.

We have shown two cases: one is the use of unlabeled sequences in learning HMM-based
classifiers, the other is the use of paired data in learning STM-based cross-media image-retrieval
systems. These are only two examples of such possibilities but we hope they highlight the
potentialities of additional information. Furthermore, we hope that the methods developed in

this thesis will stimulate future rigorous research on multi-source statistical learning.
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Appendix

A. Choice of Probabilistic Models

ETM-HMMs are not the only ways to incorporate unlabeled data directly into the training of
HMDMSs. Another possibility is an extension of the static model based on the mixture of experts
(MoE) framework [108]. This method has been used by Miller and Uyar [26]. In contrast to
the MoE framework, we call our approach the tied-mixture (TM) framework.

On one hand, the probabilistic model of an ETM-HMM, a mixture of HMMs within our

TM framework, is written as follows:

P(X10)

> PW)Y Y p(X,S, My, 0)

S M
> P(y)d > P(Sly,©)P(M]|S,y,©)p(X|S, M,y,0)
Y S M

~ S PSS P(Sly, ©)P(MIS, O)p(X|S. M, y,0)

~ Y P(y)Y > P(S|y,©)P(M]|S,0)p(X|M,0), (4.1)
Y S M

where P(y) is the class prior, P(Sly,©) is the state transition probability, P(M|S,©) is the
state-conditional (i.e., class conditional) mixture coefficient, and p(X|M, ©) is the distribution
represented by a Gaussian. The last transformation means Gaussians are tied over classes. The
second-last transformation means that the mixture coefficient depends on ¥, not directly but
indirectly, through .S, which depends on y.

On the other hand, the probabilistic model of the mixture of HMMSs within the MoE frame-
work is written as follows:

P(X1]0)

= > 2> p(X,y.5MO)

y S M

= > 3> P(ylS, M, X,0)P(S, M|®)p(X|S, M, 0)
y S M

>33 Pls. M, X,0)P(S|0)P(M|S, 0)p(X|M,0)

Yy S

Q

Q

2.0 PWlS, M, ©)P(S|0)P(M|S,0)p(X|M,6), (42)
y S M

where P(y|S, M,©) is the stochastic class selector, P(S|@)P(M|S,©) is the gating function,

and p(X|M,©) is the local committee (expert) represented by a Gaussian. The last transfor-

mation assumes the independence of the class selectors from feature vectors. The second-last

transformation means that the output depends only on M and not on S.
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Figure 4.1. A trajectory of the right hand while signing “aisatsu” in JSL, which consists of 29
sampling points. Its five states are conceptualized by S1,---,S5. The first state corresponds to
the initial position of the hand (around the chest). In the second state, the hand is pushed
forward. In the third state, it is raised. In the fourth state, it stays in front of the face, and in
the fifth state, it returns to the initial position.

In the TM framework given by (4.1), the primitives of phenomena (or state) remain in-
terpretable; P(S|y,©) in (4.1) corresponds to a particular stationary process of class y phe-
nomenon. For example, a sign in sign language is viewed as a sequence of primitive hand
movements (class-dependent state sequences). An example of such primitives of Japanese Sign
Language (JSL) signs used in our experiment in Section 2 is shown in Fig. 4.1. This inter-
pretability of the states is sometimes considered to be an interesting feature of HMMs in an
application such as gesture understanding [109]. In contrast, P(S|©) in (4.2) is difficult to
interpret since it is mixed over different classes. We choose to use the TM model because of
this differences.
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B. Scaling for the unlabeled posteriors

This appendix describes the scaling technique we used to prevent the computational problem
that occurs during the calculation of unlabeled posteriors. In HMMs, posteriors are efficiently
calculated by the forward-backward algorithm [50]. However, if the observed sequence is long,
the values of the intermediate variables used in the forward-backward algorithm become too
small to be handled within the precision range of computers. For labeled data, this problem
can be avoided by applying a scaling technique [50]. For unlabeled data, however, it is not
applicable. In the following, we show why conventional scaling does not work and present a
modified scaling procedure that is applicable to unlabeled data.

As an example, we consider the calculation of transition posteriors for labeled or unlabeled
data (2.13) or (2.17). Here and in the following, for simplicity of notation, we assume a single
observation and omit the index n. Let of (i) =p(x1, ..., X¢, 5t =1i| y, ©) be the forward variable
unscaled and computed from time 1 to ¢ in the state i at time t. Let 5} (§) =p(X¢11, .., XT| 8¢ =
i,y,0) be the backward variable unscaled and computed from time T to ¢ in the state j at time
t. Let & (i) be the forward variable scaled from time 1 to time ¢ — 1 in the state i at time ¢, and
Bf (7) be the backward variable scaled from time 7" to time ¢t 4+ 1 in the state j at time ¢. Let
W{=1/3",a/(i) be the scaling coefficient at time ¢, &/ (1)=W} - &/ (i) be the forward variable
scaled from time 1 to time ¢, and Y(j) = WY - Y(j) be the backward variables scaled from
time T to time ¢. Between scaled forward or backward variables, unscaled forward or backward
variables, and scaling coefficients, the following relationships holds [50]:

&/ (i) = lH Wi’f] - (i), (4.3)

t'=1
T
Bngl(]) = [ H Wf,] ﬁngl(]) (4-4)
t=t+1

For labeled data, if this scaling procedure is applied, since the scaling coefficients in the numer-
ator and the denominator cancel out, 7 (i, ) can be calculated by the following equation:

%4 (i)a?jbg(xtﬂ)@h (7)

~ / .
Yierv O (i)

where b (x¢+1) = 35 €N (Xet1 i, Xg) and F¥ represents the final state among the states

2 i.4) = ! (4.5)

of the class y HMM. For unlabeled data, if the scaling procedure is applied, \;(y,, ) may be
calculated by the following equation:

wydf(i)a?jbg(Xt+1)Bf+1(j)
H5:1 Wﬂ Zy’ Wy D ey’ O‘%’ (4)

In (4.6), with the help of the scaling, each variable in the numerator can be calculated at

(4.6)

Ai(y,i,5) = [

each time ¢; while, in the denominator, the product of scaling coefficients HZ::1 WY, cannot
be calculated when the length of the sequence T is large. This is because WY is usually large
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at each t and the calculation of the product often reaches infinity on computers. To avoid
this problem, the following successive computation procedure is introduced. We transform the
denominator of (4.6) as follows:

’
> Ak ()
i€Fv

1]
ﬁ;
2l

t'= Ht’ 1 W

; 1] <y> (4.7)

By so doing, in most practical cases, the value of WY /WY " remains computable. Other posteriors

for unlabeled data can be calculated by applying this transformation.
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C. Convergence Criterion

This appendix describes the convergence criterion used in this paper. When the increase in
likelihood is smaller than a predefined threshold, we regard the EBW algorithm to be converged.
This is possible on condition that the likelihood, or log-likelihood, is computable. The log-
likelihood of an ETM-HMM is given as follows:

£(®ID>=£(@IDz) + £(O|D,)

—Z Zlogp Xn,¥,10) +Zlogp (Xn|O)

y=1neZl,
:Z Z log wyp(Xy |y, ©) + Zlog Zwyp(Xn|y, 0). (4.8)
y=1nel, n=1 y

. . . . . To
When scaling coefficients W¥ =~ defined in Appendix B are used, since [[,*; WY = p(X,|y,0)

holds, (4.8) is rewritten as:

Y

L(O|D) = Z Z log ——— + Z og . (4.9)

y=1neI, Ht 1W7y”t n=1 y= 1Ht 1W:7qlt

As has been explained in Appendix B, H;[;W%t cannot be computed when T, is large. To
make the log-likelihood computable, we introduce a meta-scaling coefficient V whose value is
defined empirically according to the data. Let N be the sum of N; and N,. By substituting
the product of V from (4.9), we have:

Tn

L'(0|D) = L(Oe|D) logHHV
n=1t=1
Y

LOMD) =YY logHV ZlogHV

y= 1n€Iy t=1

Z Z log ——+—— V W) —I—Zlogz . (4.10)

y=1n€Z, Ht 1 n=1 Ht 1 V W%t)

Thus, if we choose V appropriately so that Hthl(V - WY ) is computable, we can obtain
L'(©|D). Although L£/(©|D) is no longer the log-likelihood itself, since the substituted value,
log nyzl HtT;Ll V, is a constant, we can use the change in £'(©|D) to determine the convergence
of the EBW algorithm.
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D. Class Distribution of TIMIT Data

This appendix shows the data distributions in 48 classes of TIMIT data used in Section 2.6.3.
In contrast to the JSL data used in Section 2.6.2, the quantities of data in each class of TIMIT
are diverse. Table 4.1 shows the distribution for the training data and Table 4.2 shows that for
the test data.

Table 4.1. The distribution of TIMIT training data.

‘ Phone ‘ No. of Sequences | Percentage(%) H Phone ‘ No. of Sequences | Percentage(%) ’

aa 2,252 1.61 iy 4,598 3.28
ae 2,292 1.64 jh 1,013 0.72
ah 2,623 1.87 k 3,794 2.71
ao 1,861 1.33 1 4,423 3.16
aw 728 0.52 m 3,566 2.55
ax 3,534 2.52 n 6,894 4.92
ay 1,917 1.37 || ng 1,220 0.87
b 2,181 1.56 || ow 1,642 1.17

ch 820 0.59 oy 304 0.27
cl 12,516 8.93 p 2,588 1.85

d 2,432 1.74 r 4,680 3.34

dh 2,376 1.70 s 6,176 4.41
dx 1,864 1.33 sh 1,317 0.94
eh 3,275 2.34 sil 8,282 5.91
el 951 0.68 t 3,048 2.82

en 630 0.45 th 745 0.53
epi 908 0.65 || uh 500 0.36
er 4,108 2.93 || uw 1,947 1.39
ey 2,265 1.62 v 1,994 1.42
f 2,215 158 || el 7,217 5.15

g 1,191 0.85 w 2,216 1.58

hh 1,659 1.18 y 995 0.71
ih 4,245 3.03 z 3,682 2.63
ix 7,366 5.26 zh 149 0.11
total 140,099 100
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Table 4.2. The distribution of TIMIT test data.

‘ Phone ‘ No. of Sequences | Percentage(%) H Phone ‘ No. of Sequences | Percentage(%) ‘
aa 846 1.67 iy 1,810 3.57
ae 772 1.52 jh 295 0.58
ah 974 1.92 k 1,204 2.37
ao 761 1.50 1 1,858 3.66
aw 216 0.43 m 1,406 2,77
ax 1,321 2.60 n 2,434 4.80
ay 686 1.35 ng 378 0.74
b 886 1.75 ow 600 1.18
ch 259 0.51 oy 127 0.25
cl 4,300 8.47 p 957 1.89
d 841 1.66 r 1,849 3.64
dh 896 1.77 s 2,172 4.28
dx 634 1.25 sh 460 0.91
eh 1,247 2.46 sil 3,053 6.02
el 343 0.68 t 1,367 2.69
en 216 0.43 th 259 0.51
epi 332 0.65 uh 215 0.42
er 1,692 3.33 uw 572 1.13
ey 802 1.58 v 710 1.40
f 911 1.79 vel 2,553 5.03
g 452 0.89 903 1.78
hh 561 1.11 y 376 0.74
ih 1,438 2.83 z 1,236 2.44
ix 2,501 4.93 zh 73 0.144

total 50,754 100
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