NAIST-1S-DT0161013

Doctor’'s Thesis

Machine Learning and Data Mining Approaches to
Practical Natural Language Processing

Taku Kudo

March 24, 2004

Department of Information Processing
Graduate School of Information Science
Nara Institute of Science and Technology

Doctor’s Thesis
submitted to Graduate School of Information Science,
Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of
DOCTOR of ENGINEERING

Taku Kudo

Thesis committee: Yuji Matsumoto, Professor
Kiyohiro Shikano, Professor
Shin Ishii, Professor

Machine Learning and Data Mining Approaches to
Practical Natural Language Processing

Taku Kudo

Abstract

With a rapid growth of online-text available through the Internet, accurate, robust,
efficient and practical natural language processing must be required to extract and orga-
nize usefuknowledgeepresented in text. In this thesis, we focus on two approaches:

i) machine learning, ii) data mining, to build such accurate and practical text proces-
sors.

Recent studies in Natural Language Processing (NLP) owe greatly to empirical
or corpus-based approaches. Especially, Kernel-based learning (e.g., Support Vector
Machines) has been successfully applied to many hard problems in Natural Language
Processing (NLP). In this paper, we first introduce two applications of Support Vector
Machines to the tasks in NLP. One is the general text chunking task and the other is
the Japanese dependency parsing task, both of which perform significantly better than
previous statistical approaches.

Kernel-based text analysis shows an excellent performance in terms in accuracy;
however, these methods are usually too slow to apply to large-scale text analysis. Sec-
ond, we extend 8asket Miningalgorithm to convert a kernel-based classifier into a
simple and fast linear classifier.

Finally, we focus on the text classification task, in which a text is represented not
in a traditional bag-of-words (e.g., multi-set of words) but in a labeled-ordered-tree,
such as dependency tree or phrase-structure tree. These structural information is quite
useful to classify a text not by a topic but by a option, modality, or subjectivity. In this
thesis, we propose a Boosting algorithm that captures sub-structures embedded in text.

*Doctor’s Thesis, Department of Information Processing, Graduate School of Information Science,
Nara Institute of Science and Technology, NAIST-IS-DT0161013, March 24, 2004.

The proposal consists of i) decision stumps that use subtree as features and ii) Boosting
algorithm in which the subtree-based decision stumps are applied as weak learners.
Keywords:

Machine Learning, Support Vector Machines, Boosting, Text Chunking, Dependency
Analysis

Contents

1 Introduction

2 Support Vector M

achines

2.1 OptimalHyperplane.
2.2 Generalization for the Non-separable Case

— Soft MarginConstraints
2.3 High-dimensional mapping

and Generalized Inner Products — Kernel function
2.4 Generalization abilityof SVMs

3 Text Chunking
3.1 Introduction
3.2 Text Chunki

NG . o e

3.3 SystemDescription e

3.3.1 Text

Chunking as a Sequential Labeling Problem

3.3.2 Chunking with Support Vector Machines.
3.3.3 EncodingFeatures
3.34 Weighted\Voting
3.4 EXperiments
3.4.1 Experimental Settings
342 Results
3.4.3 DISCUSSION
3.4.4 Comparison with Related Work

3.5 Summary

4 Dependency Parsing
4.1 Introduction
4.2 Statistical Dependency Parsing

4.2.1 The Probabilistic Model
4.2.2 Integration of SVMs into the probabilistic model
4.2.3 Cascaded ChunkingModel
4.2.4 Encoding Features
4.3 EXperiments
4.3.1 Experimental Setting
432 Results
433 Discussion
4.3.4 Comparison with Related Work
4.4 SUMMAIY . . .« o e e

5 Fast Methods for Kernel-based Text Analysis
5.1 Introduction
5.2 Kernel Method and Support Vector Machines
5.3 Polynomial Kernel of degreé
5.4 Fast Classifiers for Polynomial Kernel

5.4.1 PKI (Inverted Representation)

5.4.2 PKE (Expanded Representation)

5.5 Experiments

5.5.1 English BaseNP Chunking (EBC).
5.5.2 Japanese Word Segmentation (JWS).
5.5.3 Japanese Dependency Parsing (JDP)
554 Results
5.5.5 Frequency-basedPruning.

5.6 Discussion
5.7 Summary

6 A Boosting Algorithm for Classification of Semi-Structured Text

6.1 Introduction
6.2 Classifier for Trees
6.2.1 Preliminaries

35
35
36
36
39
41
46
51
51
52
52
58
60

61
61
62
63
65
65
66
71
72
72
73
73
73
74
75

6.2.2 DecisionStumps e 82
6.2.3 ApplyingBoosting oo 83
6.3 Implementationlssue 85
6.3.1 Efficient Enumerationof Trees 85
6.3.2 Upperboundofgain 86
6.3.3 RuleCache 89
6.3.4 Fast algorithm for classification 89
6.4 Relationto SVMs with TreeKernel 92
6.5 Experiments 95
6.5.1 Experimental Setting 95
6.5.2 ResultsandDiscussiaon. 96
6.6 Summary 101
Conclusions 102
References e 104
Acknowledgements 112

List

2.1
2.2

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6

of Figures

Two possible separating hyperplanes
Projecting 2-D feature space onto 3-Dspace.

Features set for chunkingtagk€2)
Weighted Votingof 8 systems.

12

25
28

An example of the parsing process with the probabilistic model

Algorithm: Sekine’s Best-First-Parsing algorithm.

40

Example of the parsing process with cascaded chunking model

Algorithm: Cascaded Chunking Model
The functiorestimaten training
An example of ambiguous dependency relations.
Three types of dynamic features,
An example of featureencoding L.
Results of the probabilistc model €3)
Results of the cascaded chunking modet@3)

PseudocodeforPKI
SE-Treeonasét,b,c,d}
QinTRIE representation

Algorithm: AdaBoost,
rightmostextension L.
Recursion of rightmost extensions

Algorithm: Find OptimalRule.
StringEncoding
IGIINTRIE

Vi

38

44

6.7 Examples of data set

vii

List of Tables

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3

Examples of each chunk representation 21
Accuracies of individual representations 30
Results of weighted voting, 31
Bestresultsforeachdataset. 31
Best results for each chunk type in chunkingtask 32
Features used inourexperiments 49
Cascaded Chunking model vs Probabilistic model 52
Results of the probabilistic model £ 3,k =5) 54
Results of the cascaded chunking modet(3) 55
Effects of dynamic features with the cascaded chunking model
Dimension vs Accuracy (1172 sentences, probabilistic médel3) . 57
Dimension vs Accuracy (1172 sentences, cascaded chunking model) .
Beam width vs Accuracy (6756 sentences, probabilistic mddel3) 58
Comparison with the related work 59
Detailsof DataSet 74
Resultsof EBC 75
Resultsof I WS 76
Resultsof JDP 77
Frequency-based pruning(JWS) 178
Frequency-based pruning(JDP) 178
Results of Experiementson PHS/MOD 97
Examples of features in PHS dataset 99
A running example of actual classification. 100

viii

56

57

cHAPTER 1 INntroduction

I just invent, then wait until man comes around to needing what I've invented.
R. Buckminster Fuller

With a rapid growth of online-text available through the Internet, accurate, robust,
efficient and practical natural language processing must be required to extract and or-
ganize usefuknowledgeepresented in text. Most natural language applications, such
as Information Retrieval, Information Extraction, Question Answering and Text Min-
ing would certainly benefit from high-accurate and high-speed text processors. In this
thesis, we focus on two approaches: i) machine learning, ii) data mining, to build such
accurate and practical text processors.

Recent studies in NLP owe greatly to empirical or corpus-based approaches. In
the late 80’s, as computational power increased and large amount of machine-readable
language resources and annotated copora became available, a new methodology, what
we callstatistical Natural Language Processi(8NLP), has become popular in NLP
[10]. In the early 90’s, classical machine learning methods, such as transformation-
based learning[8]k-nearest neighbor classifiers (a.k.a. memory-based learning)[16,
55, 80], decision trees[50], maximum likelihood estimation [11, 12], maximum en-
tropy model[52, 53] were applied to many tasks in NLP. The area of machine learn-
ing is making rapid progress. In the late 90’s, new machine learning algorithms,
such as Support Vector Machines[15, 74] and Boosting[19, 58] have been proposed.
These methods are sometimes callasige Machine Classifierand have shown ex-
cellent performances not only in NLP [22, 27,37, 38, 40, 45] but also in various fields,
such as object recognition[49] and digit recognition[15]. In particular, Support Vec-
tor Machines are known to be variantskKérnel Methodswhich can employbject-
independentlassifications, where the object to be classified is represented not only in
numerical feature vector but amyrepresentation, as long as generalized dot products
(or similarities) between two objects can be defined.

The reason why the machine learning methods are preferred to in NLP is that most
tasks in NLP can be re-formulated as a simgkessification in which one observes
some linguisticcontextb € B and predicts the correct linguistatassc € C. This

1

problem can be reduced to constructing a classffiey : B — C.
More specifically, the statistical or machine learning-based natural language pro-
cessing consists of the following three steps:

1. Formulate the given (complex) task as a simple classification task. In other
words, define theontexth and the correspondingassc.

2. Since most machine learning algorithms accept only a set or numerical feature
vector as their inpuk, we decomposé into ann-dimensional feature vector
by giving a mapping functio®(b) : b — x € R", which converts the original
contexth into ann-dimensional feature vector.

3. Collecttraining datd’ = {(c1, ®(b1)), ..., (e, ®(br))}, which is a set of pairs of
correct class and context, and employ a training of machine learning algorithm.

To describe above three steps, consider the prepositional phrase attachment (PP-
attachment), which is the task of choosing the correct attachment of a preposition from
candidate interpretations of the given sentence. This task is a sub-problem of the gen-
eral natural language parsing problem. As an example, let us begin with the following
two sentences.

1. | bought cars with money.
2. | bought cars with tires.

In sentence lwith modifiesbought sincewith moneydescribes how | could buy cars.

In sentence 2, in contrastjth modifiescars sincewith tiresdescribes a figure of cars.

For the first step, we simplify the original problem by representing a given sentence in
the tuple(v, ny, p, ny), wherev € V,n; € N,p € P andn, € N indicate verb (base
form), first noun (base form), preposition and second noun (base form) respectively.
In the sentence Xp, ny, p, ny) corresponds t@buy, car, with, money Such abstrac-

tion allows to model the above PP-attachment problem as the following classification
problem:

b= (v,ny,p,na) EVXNXP XN
f(®(D)) : @(b) € R" — {£1}

The class of this problem is binary, where, for example, the class is +1 if the preposition
p modifies the verly, and -1 if the prepositiop modifies the first noum;. In this
setting, thecontextb is the tuple and classis either +1 or -1. For the second step, a
mapping function®(-) will be constructed. This step is non-trivial and there exist a
number of encodings. The most naive setting is, for example, that we assign a distinct
feature dimension to each verb nounl, preposition, or noun2. For instance, if a tuple
has the worduyas verb, the corresponding dimension.,, is setto be 1, otherwise

0. The size of dimensions of such feature space thus becdhes | + |P| + | V1.

As a second example, consider the part-of-speech (pos) tagging, which is the task
of choosing a correct sequence of pos tfgs. . ., ¢, } associated with the given input
word sequencéw;, ..., w,}. In this problem, it is not easy to define the conteahd
classe, since the class is not represented in an element of a set, but a sequence of tags.
However, we can naturally implement a complex classiffer~ ¢* as a sequence of
classifications:

n
{t1,...,t,} = argmaxHP(tiHl,...,ti,l,wl,...,wn)
{tl,...,tn} i=1

= argmaXH P(t;|®(ty, ..., ti 1, wy,y ..., wy))
{t1,tn} i=1

wherety, ..., t; 1,x1,...x,, SOmetimes called eontextor history, is the textual in-
formation available at theé-th decision, and; is the outcome of theé-th decision.
P(ti|t1, ..., ti_1, w1, ..., wy,) is a conditional probability or certain score that predicts

how likely a tagt; is observed at théth decision. The training data thus can be gen-
erated like:

T= {{t,®(wy,...,w,)),

n

<t2, (P(tl,wl, . ,wn)>,

<tn, q)(tl, N ,tn,l,wl, .. ,wn)>}

By using such modeling, the original complex problem can be translated into a set of
subproblems, each of which can be modeled as a classification. It is not the special
case of part-of-speech tagging. Even if the given task seems to be complicated, in
most cases, it can be modeled as a sequence of classifications.

3

In this thesis, we focus on three tasks in natural language processifigxti)
Chunking, ii) Dependency Parsingand iii) Text Classification, in above manner.
Let us concentrate our discussion on the following three claims.

Accuracy

Accuracy is most important to makimgactical text processes. Every text processor
discussed here uskarge Margin Classifiersespecially Support Vector Machines and
Boosting, and performs the same or even better than traditional rule-based systems as
well as other prior statistical systems, without any task-specific optimizations. Large
Margin Classifiers focus on finding the hypothesis that maximizes the margin (the
distance from the separating hyperplane to nearest examples). Recent theoretical and
experimental results show that many learning algorithms, such as SVMs, Boosting,
and Bagging, produce classifiers with the concept of large margins, which gives a
good upper bound of the generalization error.

Efficiency

Even though accurate text processors can be desigmefticientones would not be

used in real natural language applications, which must handle a large amount of text
data available through the growing Internet. One of the goals of this thesis is to propose
not only accurate but efficient and practical text processors applicable to wider range
of natural language applications. However, it is well-known that kernel-based systems,
including SVMs, exhibit classification speeds which are substantially slower than those
of other machine learning algorithms. In this theses, we treat this problem and propose
two methods that make the kernel based text processors faster. The ideas stem from
the data mining algorithms, motivated by the requirements that frequent sub-structures
(e.q., subsets, sub-sequences, sub-trees, or sub-graphs) must be extracted efficiently
from a large database (set of transactions). We also present an another method, based
on Boosting as well as data mining, that makes the classification speed significantly
faster compared to kernel methods with comparable or even better accuracies.

Less efforts on feature selections

One of the problems in SNLP is how one can desigaoropriatemapping function

®(b) € R" for individual tasks. This problem is usually callézhture selectionand

arises not only in the text analysis (e.g., tagging and parsing) but in any level of ap-
plications in NLP. Using text analyzers, a text can be converted istona-structured

text, where part-of-speeches, base-phase information, named-entities or dependency
relations are annotated. These information are quite useful to higher level of natural
language applications. However, one cannot clearly say which or what kind of sub
information is useful to individual applications.

Recall the prepositional phrase attachment task again. In that setting, we use, as
an example, the simplene-to-onanapping from a word to a feature dimension (e.g.,

v = buy — z,-p,, = 1). However, higher accuracies cannot be observed only using
such naive setting, since one cannot identify attachments on the assumption that each
word affects the final classificatiomsdependently It is natural that conjunctions or
relations of words are much more important to identify correct attachments (e.g, the
relation betweebuyandmoneyetc.). Still, a selection of optimal relations is left to be

an open question.

In prior research, they seem not to pay much attentions to design of feature sets.
They usually use naive and simple feature sets by preparing hand-crafted rules or tem-
plates beforehand. They also employ ad-hoc or trial-and-error strategies to find best
subsets of candidate feature sets. In other words, feature selections were conducted
almost manually or heuristically. However, it is difficult to create and maintain these
rules, since the size of candidate feature sets is large and the context available to clas-
sifications are sometimes represented in some satroftureddata (e.g., sequence,
tree or graph).

Even though these heuristic approaches might deliver us high accuracies, to pro-
pose domain-independent, reusable and practical text processors, (semi-) automatic
and systematic feature selections are inevitable. Ideally, a user gives a large number
of candidate feature sets, which are large enough not to be enumerated explicitly, and
the systemautomaticallyselects highly-relevant subsets from the given feature sets.

In this thesis, we treat this problem and present two approaches: i) Kernel-based fea-
ture selections and ii) feature extractions from a semi-structured data, each of which
significantly reduces the efforts on feature selections.

This thesis is organized as follows.

In Chapter 2, we describe an overview of Support Vector Machines (SVMs) and
their theoretical backgrounds. In this chapter, we argue that SVMs are much more use-
ful and effective, especially to Natural Language Processing, than previous machine
learning algorithms, such as Maximum Entropy, Decision List, and Decision Trees.
The main contribution of SVMs to NLP is its expandability to a non-linear classifica-
tion using kernel-trick.

In Chapter 3, we apply SVMs to Text Chunking, which is better knowlaal-
low Parsing where a text is divided into syntactically related non-overlapping groups
of tokens. The concept of Text Chunking is quite general, and there exist a number
of applications modeled as Text Chunking. Examples include part-of-speech tagging,
word tokenizization, phrase identification, Japarasesetsudentification, named en-
tities recognition and so force. We also apply an weighted voting of 8 SVMs-based
text chunker to obtain a better accuracy. Each committee used for the weighted vot-
ing is trained with different conditions, such as different encoding of training data or
different chunking directions.

In Chapter 4, we propose dependency parsers based on Support Vector Machines.
Two approaches are employed to confirm the effectiveness of SVMs. Onepsotie
abilistic mode] which has been widely used in the Japanese dependency parsing. This
method assumes that each dependency relation is mutually independent and estimate a
probability how likely a candidate modifier depends on a modfiee. To obtain probabili-
ties, we extend to use Support Vector Machines. The other approach iscagtied
chunking modelwhere a sentence is parsed deterministically only deciding whether
a candidate modifier depends on the modifiee appearing in the next. This model can
be seen as a sort of shift-reduce parsing, and gives efficient parsing and training. We
compare the above two methods through the experiments using bracketed corpus.

In Chapter 5, we present two methods that make the kernel-based text analyzers,
described in the chapter 3 and 4, substantially faster. While state-of-the-art perfor-
mances have been delivered by SVMs, their inefficiencies in actual testing (parsing)
lose their opportunities to be used in the real applications, such as Information Re-
trieval, Question Answering, or Text Mining, where fast analysis of large quantities of
text is indispensable. Some report says that an SVM-based NE-chunker runs at a rate
of only 85 byte/sec, while previous rule-based system can process several kilobytes

per second [26]. Proposed methods are applicable not only to the NLP tasks but also
to general machine learning tasks where training and test examples are represented in
a binary vector.

In Chapter 6, we describe an application of text analyzers. The application focus-
ing on there is text classification. In the traditional text classification tasks, a text is
usually represented as a multi-set (i.e, a bag) of words, ignoring word orders nor syn-
tactic relations embedded in text. Actually, such bag-of-words representations are not
sufficient to the recent text classification tasks, such as modalities, opinions or sub-
jectivity identification. In this chapter, we propose a text classification algorithm that
captures sub-structures embedded in text.

cHAPTER 2 Support Vector Machines

Prediction is very difficult, especially if it's about the future.
Niels Bohr

In this chapter, we describe the algorithm and theoretical backgrounds of Support
Vector Machines (SVMs). SVMs is powerful new type of learning algorithm based on
recent advances in statistical learning theory. SVMs is now applied to a large number of
real-world applications such as text categorization, hand-written character recognition,
etc., and delivers a state-of-the-art performance.

2.1 Optimal Hyperplane
Suppose the training data which belong either to positive or negative class as follows.

(Xlayl)a"'a(xiayi)a"'a(Xlayl)
x; € R", y; € {+1, —1}

x; is a feature vector akth sample, which is represented by-.:adimensional vector
(x; = (f1,---, fa) € R"). y; is a scalar value that specifies the class (positive(+1)
or negative(-1) class) afth data. Formally, one can define the pattern recognition
problem as a learning and building process of the decision fun¢titdR™ — {+1}.

In basic SVMs framework, one tries to separate the positive and negative samples
in the training data by a linear hyperplane:

(W-x)+b0=0 weR" beR. (2.1)

SVNMs finds the “optimal” hyperplane (optimal parameser) which separates the
training data into two classes accurately. What dose “optimal” mean? In order to define
it, we need to consider thmargin between two classes. Figure 2.1 illustrates this
idea. Solid lines show two possible hyperplanes, each of which correctly separates the
training data into two classes. Two dashed lines parallel to the separating hyperplane
indicate the boundaries in which one can move the separating hyperplane without any

8

O 1 1
@ @
O 1 1
O 1 1 .
O ale o
Smal | Margin Large Margin

Figure 2.1. Two possible separating hyperplanes

misclassification. We call the distance between those parallel dashed limesgis.
SVMs takes a direct strategy that finds the separating hyperplane which maximizes its
margin.

In order to describe the separating hyperplane, we introduce the following form:

(W-x;)+b> 1 if (y; =1) (2.2)
(w-x;)+b< -1 if (y; = —1). (2.3)

yil(w-x;) +b] > 1 (i=1,...,0). (2.4)

Thus, the margin between two separating hyperplanes can be written as:

min d(w,b;x;) + min 1d(w,b; X;)

X3y =1 XiYi=—
|w - x; + b |W - x; + b
= m +
xiwi=l ||w] xigi=—1 [|w|
B 2
Il

To maximize the margin, one should minimige/||. In other words, this problem
becomes equivalent to solving the following optimization problem:

Minimize : L(w) = i||lw]]?

The solution of this optimization problem can be obtained by considering the following
primal Lagrangian:

l
1
L(w,b,a) = 5”""'”2 - Zai{yi[(xi ‘W) +b] -1} (2.5)
i=1
where then; are Lagrange multipliers. We must now minimize this Lagrangian with
respect tow andb under the constraints; > 0. At the saddle point, the solutiom, b
must satisfy the following conditions:

OL(w,b, «) :

OL(w,b,) l

=1

Substituting these conditions into (2.5), we can obtain the following dual Lagrangian:

l [l
1
Maximize : L(a) = Z =3 Z Z ;oYY (X - X5) (2.7)
i=1 i=1 j=1
[
Subject to : a; >0, Zaiyi:() (t=1,....,10)
i=1
(2.6) indicates that the optimal hyperplane (vectdris a liner combinations of
the vectors of the training data. Namely, there is a Lagrange multipliéor every
training datax;. In this dual form problem, the training data with non-zeroq; is
called a Support Vector. Support Vectors can be considered as the minimal and critical
elements which represent the all other training data. If all other training data were
removed, one could obtain the same separating hyperplane.

10

By using the Support Vectors; andb can thus be expressed as follows:

W = E QX b=w-x; —y;.
1;%;€ESV's

Finally, the decision functiorf : R" — {41} can be written as:
f(x) = sgn(w-x+0b)

= sgn (Z ;Y (% - x) + b) . (2.8)

1;%,€S5V's

2.2 Generalization for the Non-separable Case
— Soft Margin Constraints

In the case where we cannot separate training samples linearly, “Soft Margin” method
allows some classification errors that may be caused by some noise in the training
samples. This can be done by introducing the positive slack varigples0 in the
constraints (2.2),(2.3).

(Ww-x;)+b>—-14+¢ if (y; = —1)

In this case, we minimize the following value instead.dfw||%.

l
Liw) = 3IwIE+C Y6 29)

2

The first term in (2.9) specifies the size of margin and the second term evaluates how
far the training data are away from the optimal separating hyperplanis. the pa-
rameter that defines the balance of two quantities. If one ma@kiesger, separating
hyperplane becomes to evaluate classification error large, and if we@hsikell, the
separating hyperplane becomes evaluate whole margin more significant, permitting
some classification error.

Though we omit the details here, minimization of (2.9) is reduced to the following

11

° o

Original Feature Space Projected Fedture Space

Figure 2.2. Projecting 2-D feature space onto 3-D space

optimization problem:

l l l

Maximize : L(a) = Z o — % Z Z ;Y (X - X;)

i=1 i=1 j=1
I

Subject to : 0<a; <C, Zaiyi:0 (1=1,...,10).
i=1

Only the difference from the separable case is thatth®ow has an upper bound
of C'. Usually, the value of’ is estimated experimentally.

2.3 High-dimensional mapping
and Generalized Inner Products — Kernel function

In general classification problems, there are cases in which it is unable to separate the
training data linearly.

Suppose the exclusive-or (XOR) problem in two dimensional feature space (Figure
2.2, left-hand side). It is not possible to construct the separable liner hyperplane. How-
ever, one may obtain separable hyperplane if one projects the original two dimensional
feature space into three dimensional feature space by giving some projecting function
like (Figure 2.2):

O(x): (21,m9) = (21,79, T1T2).

More generally, the linearly unseparable training data could be separated linearly
by expanding all combinations of features as new ones, and projecting them onto a

12

higher-dimensional space. However, such a naive approach requires enormous com-
putational overhead, since one must carry out vector operations in higher dimensional
space. For example, if one tries to construct polynomials of degree n in n-
dimensional feature space, one needs more tha)? features.

Let us consider the case where we project the training gfatemto a higher-
dimensional space by using projection functidrchosena priori 1. As we pay at-
tention to the objective function (2.7) and the decision function (2.8), these functions
depend only on the dot products of the input training samples. If we could calculate
the dot products fronx; andx, directly without considering the vectofis(x;) and
®(x,) projected onto the higher-dimensional space, we can reduce the computational
complexity considerably. Namely, we can reduce the computational overhead if we
could find the functiornk that satisfies:

B(x1) - Dlxs) = K (x1,%0). (2.10)

On the other hand, since we do not n@edself for actual learning and classifica-
tion, all we have to do is to prove the existencebothat satisfies (2.10) provided the
function K is selected properly. Itis known that (2.10) holds if and only if the function
K satisfies theMercer condition[74]. In this way, instead of projecting the training
data onto the high-dimensional space, we can decrease the computational overhead
by replacing the dot products, which is calculated in optimization and classification
steps, with the functioril. Such a functionk’ is called aKernel function. Kernel
function can be considered as generalized inner products of given two vectors. Some
representative examples of Kernel functions &re:

K(x,y) = tanh(ax-y —b) (2.11)
K(x,y) = exp (%) (2.12)
K(x,y) = (x-y+1)% (2.13)

Using a Kernel function, we can rewrite the dual form Lagrangian and decision func-

In general ®(x) is a mapping into Hilbert space.

2tanh(z) = m is the sigmoid function

13

tion as:

Zaz - = Z Za,ajyzy] (xi, %) (2.14)

zl]l

yzsgn(Z ;Y K (x4, x +b) (2.15)

1;%X;,ESVs

Substituting the Kernel functio®” in the decision function (2.15) with each of the
above examples, (2.11) represents the so-called two layered neural networks, (2.12)
represents Radial Basis Function (RBF) network models. (2.13) is calléthgsoly-
nomial kernel. Use ofi-th polynomial kernel function allows us to build an optimal
separating hyperplane which takes into account all combinations of featureg.up to

It is easy to prove the existence of actual projecting funcfi¢r), when one ap-
plies polynomial kernel function with second degrée<(2) to the previous exclusive-
or (XOR) problem in two dimensional feature space.

K(xy) = (x-y+1)°
T1Y1 + Toy2 + 1)

TYT + T3y + 231y1 + 29y + 2T1Y1T2Y2 + 1)T

I?;%,\/_%,\/_@,\/_%xz,) (y%ayga\/iyh\/iy%\/imyz,l)
q)(x): (1‘1,1'2) (xlax%\/_xla\/_x%\/_xlx%)

By using second polynomial kernel function, the original two dimensional feature
space is projected onto six dimensional feature space. This implies that the use of
polynomial kernel function allows us to build a linearly separable hyperplane even in
the case of exclusive-or (XOR) problem.

(
(
(
(

2.4 Generalization ability of SVMs

In this section, we introduce a uniform generalization theory for machine leaning al-
gorithms. Suppose that training data and test data are generated from the same under-
lying i.i.d. probability distributionP(x, y). Then the classification problems consists

of finding a mapping functiorf : X — Y that minimizes th&iskof misclassification

Rif) = 5 [1560 - vlaPlx.y).

14

The problem is that one cannot estimétgf| directory since the distributioR(x, y)
is unknown. Instead of minimize the triksk usually the followingempirical Riskis
used.

1 [
Remp[f] - 52|f(xz)_yz|
=1

However, it is know that thedempirical Risk Minimizatiorprinciple dose not always
guarantee a small actual risk. Therefore we do have to find a novel method to estimate
the trueRiskindeed.

Statistical Learning Theor{74] states thaEmpirical Riskand Riskhold the fol-
lowing theorem.

Theorem 1 (Vapnik) If h(h < [) is the VC dimension of the class functions imple-
mented by some machine learning algorithms, then for all functions of that class, with
a probability of at least — 7, the Risk is bounded by

2l
RIf) < Remglf] + \/ Mog+l-hy (216)
whereh is a non-negative integer called the Vapnik Cheroveniks (VC) dimension, and
is a measure of the capacity of the given decision function. The right side term of
(2.16) is called a¥C bound.

Actually, almost all previous machine learning techniques are basé&anmirical
Risk Minimizationprinciple, then try to only minimize th&mpirical RiskR .., f]
under the fixed VC dimension. However, it is difficult to estimate an appropriate VC
dimension for individual classification tasks. In other words, one can not estimate
precisely the complexity and capacity of the given tasks.

On the other handstructural Risk Minimizatioprinciple tries to choose the func-
tion f which minimizes the guaranteed VC bound. (2.16) shows that we must minimize
the VC dimension in order to minimize the VC bound. It is known that the following
theorem holds for VC dimensidnand margin\/[74].

Theorem 2 (Vapnik) Suppose: as the dimension of given training samplég, as
the margin, andD as the smallest diameter which enclose all training data, then VC
dimensiom: of the SVMs is bounded as

h < min(D?/M?,n) + 1. (2.17)

15

In order to minimize the VC dimensioh, we have to maximize the margity,
which is exactly the strategy that SVMs takes. In addition, sibces decided by
the given Kernel function, (2.17) also gives some criteria for selecting the appropriate
kernel function and the soft margin parameter .

Vapnik gives an alternative bound for tReskof SVMs:

Theorem 3 (Vapnik) If we suppose;|f] is an error rate estimated by Leave-One-
Out procedure ;[f] is bounded by

Number of Support Vectors
Blf] < J Supp

— Number of training samples’

(2.18)

Leave-One-Ouyprocedure is a simple method to examineRigk— first by removing

one element from the training data, we constructs the decision function on the basis of
the remaining training data, and then tests the removed element. In this fashion, we
tests alll elements of the training data usihdifferent decision functions.

(2.18) is a natural consequence bearing in mind that support vectors are the only
factors contributing to the final decision function. Namely, when the every removed
support vector becomes error ligave-One-Ouprocedure F;[f| becomes the right
side term of (2.18). Althougheave-One-Oubound is elegant and allows us to esti-
mate the rough bound of thieisk there seems to be many situations where the actual
error increases even though the number of support vectors decreases. Actually, it is
known that this bound is less predictive than the VC bound.

16

cHaPTER 3 Text Chunking

Knowledge is of no value unless you put it into practice.
Anton Chekhov

In this chapter, we apply Support Vector Machines (SVMs) to identify English base
phrases (chunks). We also apply an weighted voting of 8 SVMs-based systems trained
with distinct chunk representations. Experimental results show that our approach per-
forms better than previous approaches.

3.1 Introduction

The text chunking task is to divide a sentence into syntactically related non-overlapping
groups of tokens. Usually, chunking task is regarded as a preprocessing step for full
parsing. Various tasks in the fields of Natural Language Processing can be seen as a
chunking task. Examples include English base noun phrase identification (base NP
chunking), English base phrase identification (chunking), Japanese dhumse(sy
identification and named entity extraction. Tokenization and part-of-speech tagging
can also be regarded as a chunking task, if we assume each charadigkeas a

Recently, a number of machine learning techniques has been applied to the chunk-
ing task[51, 57, 63, 64, 66, 73]. These techniques can avoid the needs for hand-crafted
rules for identifying chunks, and almost always promise us a robust, accurate and
wide-covered performance. However, conventional machine learning techniques, such
as Hidden Markov Model (HMM) and Maximum Entropy Model (ME), normally re-
quire a careful feature selection in order to achieve high accuracy. They do not provide
a method for automatic selection of given feature sets. Usually, some heuristics are
used for selecting effective features and their combinations.

New statistical learning techniques such as Support Vector Machines (SVMs)
[15, 74] and Boosting[18] have been proposed. These techniques take a strategy that
maximizes the margin between critical samples and the separating hyperplane. In par-
ticular, SVMs achieve high generalization even with training data of a very high di-

17

mension. Furthermore, by introducing the Kernel function, SVMs handle non-linear
feature spaces, and employ the training considering combinations of more than one
feature. Thanks to such predominant nature, SVMs attain the state-of-the-art perfor-
mance in real-world applications such as recognition of hand-written letters, or of three
dimensional images. In the field of natural language processing, SVMs are applied to
text categorization and syntactic dependency structure analysis, and are reported to
have achieved higher accuracy than previous approaches.[27, 37, 61].

In this chapter, we apply Support Vector Machines to the chunking task. In addi-
tion, in order to achieve higher accuracy, we apply weighted voting of 8 SVM-based
systems which are trained using distinct chunk representations. For the weighted vot-
ing systems, we introduce a new type of weighting strategy which are derived from the
theoretical basis of the SVMs.

3.2 Text Chunking

Text chunking task is to divide a sentence into syntactically related non-overlapping
groups of tokens (chunks). Usually, text chunking task consists of the following two
processes: first identifying propehunksfrom a sequence dbkens(such as words),
and second classifying these chunks into some syntactic classes.

As an example, in the task of Noun-Phrase Chunking, the senteleceeckons
the current account deficit will narrow to only # 1.8 billion in Septembercan be
chunked as follows:

[He] reckons [the current account deficit] wll narrow
to [only # 1.8 billion in [Septenber]

Chunks are represented as series of tokens (words) surrounded by square brackets. In
this case, only noun phrases are extracted from the given sentence.
In the task of base phrase chunking, the same sentence can be chunked as follows:

[NP He] [VP reckons] [NP the current account deficit]
[VP will narrow] [PP to] [NP only # 1.8 billion]
[PP in] [NP Septenber]

18

In this case, one must not only infer chunk boundaries but determine the syntactic
category of the chunk. A tag next to close brackets denotes the category of the chunk.
For instance, NP, VP and PP denote noun, verb and prepositional phrase respectively.
As far as we know, almost all available annotated corpora have no direct infor-
mation about boundaries of chunks and their syntactic categories. However, it is not
difficult to extract chunk information from full-parsed corpora, since chunking task is
a preprocessing step for full parsing. For example, the scrighariklink! allows us to
extract above chunk information from the Wall Street Journal (WSJ) part of the Penn
TreeBank Il corpus. This script uses simple sets of hand-crafted rules for extracting
chunks from the parse-tree of WSJ corpus. In this thesis, we work with the WSJ corpus
as parsed tree, and useunklinkto extract chunk information.

3.3 System Description

3.3.1 Text Chunking as a Sequential Labeling Problem

We regard chunking as a tagging task where each token in a given sentence is assigned
a tag which represents the word is inside or outside a chunk. There are mainly two
types of representations for proper chunks. Orlasgle/Outsiderepresentation, and

the other isStart/End representation.

1.

Inside/Outside
This representation was first introduced in [51], and has been applied for base
NP chunking. This method uses the following set of three tags for representing
proper chunks.

I Current token is inside of a chunk.

O Current token is outside of any chunk.

B Current token is the beginning of a chunk which immediately follows
another chunk.

Tjong Kim Sang calls this method I0B1 representation, and introduces three
alternative versions — I0B2,I0E1 and IOEZ2 [64].

Ihttp://ilk.uvt.nl/ sabine/chunklink/README.html

19

IOB2 ABtag is given for every token which exists at the beginning of a chunk.
Other tokens are the same as I0B1.

IOE1 An Etagis used to markthe last token of a chunk immediately preceding
another chunk.

IOE2 An E tag is given for every token which exists at the end of a chunk.

2. Start/End
This method has been used for the Japanese named entity extraction task, and
requires the following five tags for representing proper chunksfes].

B Current token is the start of a chunk consisting of more than one token.
E Current token is the end of a chunk consisting of more than one token.

| Current token is a middle of a chunk consisting of more than two tokens.
S Current token is a chunk consisting of only one token.

O Current token is outside of any chunk.

Examples of these five representations are shown in Table 3.1.

If we have to identify a class of each chunk, such as grammatical phrase names or
named entities, we represent them by a pair of an I/O/B label and a class label. For
example, in IOB2 representation, B-VP label is given to a token which represents the
beginning of a verb base phrase (VP).

3.3.2 Chunking with Support Vector Machines

Using Inside/Outside or Start/End representations, one can view text chunking as a se-
quential prediction problem. Given a word sequefeg . . ., w, }, the goal of chunk-

ing is to find a best chunk-tag sequeris, . .., ¢,} associated with the input word
sequence.
Atag sequencéc, . .., ¢, } has the following conditional probability:

n
P(er, ... cp|wy, .. wy) = Hp(0i|01, ey G, Wy e, W),
=1

wherep(c;ley, ..., i1, wq, ..., w,) iS a point-wise conditional probability that pre-
dicts how likely a chunk tag; is observed on the conditions that a word sequence and

20riginally, Uchimoto uses C/E/U/O/S representation. However we rename them as B/I/O/E/S for
our purpose, since we want to keep consistency with Inside/Start (B/I/O) representation.

20

Table 3.1. Examples of each chunk representation
In [early trading] in [busy Hong Kong] [Monday] , [gold] was ...

Inside/Outside Start/End
IOB1 10B2 IOE1 IOE2| IEOBS

In O O O O O
early I B I I B
trading I I I E E
in O O O O O
busy I B I I B
Hong I I I I I

Kong I I E E E
Monday| B B I E S
, O O O O O
gold I B I E S
was @) @) @) @) @)

a partial tag sequence estimated previously are given. If we use Maximum Entropy
model to estimate this conditional probability, the model becomes equivalent to the
MEMM (Maximum Entropy Markov Model)[53].

The best tag sequenég . . ., ¢, is then given by

Clyovoy Gy = argmax P(cq, ... cplwy, ... wy)
Clyenny cn€C
n
= argmaXHp(Ci|cla---;Ciflawla---awn)

Clyeeny cn€C i1

= argmax Hp(c,-@(cl, ey G, Wy ey W)

Clyeeny cn€C i1

where®(-) is a function that builds a numerical feature vector from a word sequence
wi,...,w! and a partial tag sequencg. .. ., ¢, ,. The best tag sequence can be found
by Viterbi algorithm, a sort of Dynamic Programming. We can also employ dstop
breadth first search (BFS), which is better knowrbaam searchto find an approxi-
mated best tag sequence efficiently[53].

21

In training phase, a training sequence of pairs of word and tag
wh, ey, o (wh is given as a training data. We then decompose the
1 +~1 n’-n

given training data into the following set efsubproblems where a simple multi-class
classifier can be applicable to training:

{{wr, é), s (Wi)t = ey, @y, w))),

1
(ch, (), wy, ... w))),

wherec, is a class label to be predicted.
In addition, we can give an alternative model where we simply reverse the parsing
direction (from right to left) as follows:

n
Pler, ... cplw, ... wy) = Hp(cn—i+1|cn—i+27 e Cpy W -, Why).
=1
In this case, a partial chunk tag sequengs, . . ., ¢, which appears to the right hand
side of the current tokemw; is used to predict the current chunk tgg The training
data is thus decomposed as follows:

{{wr, i), (wn,)t = {(G, Bl wy)),

(e _1, (), wy, ... w)),

(ch, (s, .oy cpywr, -y wp)) }

In this thesis, we call the method which parses from left to righbasard parsing,
and the method which parses from right to lefbaskward parsing.

These formulations in testing and training are general, since one can apply any
kind of machine learning algorithms that can employ simple multi-class training and
classifications. However, SVMs are binary classifiers, thus we must extend SVMs to
multi-class classifiers in order to handle three (B,I,0) or more (B-NP,I-NP,B-VP ...)
classes. There are two popular methods to extend a binary classification task to that
of K classes. One igne class vs. all othersn which total K classifiers are build so
as to separate one class from all others. The othmairsviseclassification that builds

22

K x (K —1)/2 classifiers considering all pairs of classes, and final decision is given by
their voting. In addition, there are a number of other methods to extend binary classi-
fiers to multi-class classifiers. For example, Dietterich and Bakiri[17] and Allwein[3]
introduce a unifying framework for solving the multi-class problem by reducing them
into binary models. Their method can unify the above mentioned two approaches and
other robust approaches with error-correcting properties. In our experiments, however,
we employ the simplpairwiseclassifiers because of the following reasons:

e In general, SVMs requir®(n?) ~ O(n?) training cost (where: is the size of
training data). Thus, if the size of training data for individual binary classifiers
is small, we can significantly reduce the training cost. Althopainwiseclassi-
fiers tend to build a larger number of binary classifiers, the training cost required
for pairwisemethod is much more tractable compared todhe vs. all others

e Some experiments [35] report that a combinatiopaifwiseclassifiers performs
better than thene vs. all others

SVMs are discriminative classifiers and cannot produce a conditional probability
by themselves. To employ Viterbi or beam search, we need to estimate conditional
probabilities or scores (costs). In CoNLL 2000 shared task, we use the number of
votes for the class obtained through the pairwise voting as the certain score[38].

In this thesis, however, we apply a deterministic method instead of applying beam
search with keeping some ambiguities. Such deterministic chunking is reduced to
letting the conditional probability be:

1 The prediction for@(cy, ..., ¢ 1, wy, ..., wy,) iS¢

p(cler Ci_1, Wy w)déf
o 0 otherwise

The reason we apply deterministic method is that our preliminary experiments and

investigation for the selection of beam width show that larger beam width dose not

always give a significant improvement in the accuracy. Given our experiments, we

conclude that satisfying accuracies can be obtained even with the deterministic parsing.
Another reason for selecting the simpler setting is that the major purpose of this thesis
is to compare weighted voting schemes and to show an effective weighting method
with the help of empirical risk estimation frameworks.

23

3.3.3 Encoding Features

In this section, we describe how we design the mapping funcbich that builds a
numerical feature vector from a word sequenge. . ., w;, and a partial tag sequence
oy

Advantages of Support Vector Machines are their robustness to irrelevant fea-
tures and extensions to a non-linear classification using Kernel tricks. We can thus
use as many features as possible and use the polynomial kernel to handle their con-
jugations (combinations). For the features, we use all the information available
in the surrounding context, such as the words, their part-of-speech tags as well as
the chunk tags. Letv ,,w xi1,...,wy,...,ws 1, w; be an input word sequence.
Lett g, gity---stoy.-osti1,tp @NAdC g, C_pi1,...,Co,...,Ck_1,Ct DE the part-of-
speech (POS) sequence and chunk tag sequence associated with the input word se-
guence respectively. Here we want to predict the chunkgay the current wordu.
The following is a list of the features used in our chunking experiments:

1. word featuresw; (i = —k,...,+k)
2. pos features; (i = —k,...,+k)

3. chunk tag features; (i = —k,...,—1) (forward parsing),
c; (1=1,...,k) (backward parsing)

Figure 3.1 illustrates an example of features to identify the current chuni,tagnere
k is set to be 2. For each data point, the associated features are encoded as a binary
vector. For instance, in the figure 3.1, the tuple, the) corresponds to the single
feature fiu, ey With its value 1. The tuplgw,, in) does not appear in this data
point, the value of the featurg.,, .,y is set to be 0. By using such encoding, the
size of features will become quite large. However, the time complexity of SVMs does
not depend on the number of features, but rather on the the size of active (non-zero)
features per data point, which is usually quite small.

Clearly, it is important to use conjugation features, such as second order features
like: ¢; x t;,t; x w;, (i, = —k,..., ki < j). In previous research, such conjugation
features are selected manually. One drawback of using these features is memory con-

24

Chunking Direction (Left to Right)

Relati >
elative
Position: -2 -1 0 +1 +2
: W—2 W—l WO W+1 W+2 :
Word: . Confidence in the pound is
1:—2 t—1 t0 t+1 t+2
POS: ¢ NN PP DT NN VBZ
C., c, | G
Chunk: : | B-NP B-PP |i{|B-NP
Added dynamically Classified Feature set
in test phase (DP) label for learning

Figure 3.1. Features set for chunking taBk< 2)

sumption in training. With SVMs, we can implicitly use updaonjugation features
by using the polynomial kernel of degree

3.3.4 Weighted Voting

Tjong Kim Sang et al. report that they improve accuracies of chunking by apply-
ing weighted voting of systems which are trained using distinct chunk representations
and different machine learning algorithms, such as MBL, ME and IGTree [63, 66]. It
is well-known that weighted voting scheme has a potential to maximize the margin
between critical samples and the separating hyperplane, and produces a decision func-
tion with high generalization performance [58]. Boosting is a type of weighted voting
scheme, and has been applied to many NLP problems such as parsing, part-of-speech
tagging and text categorization.

In our experiments, in order to improve the performance, we also apply weighted
voting of 8 SVM-based systems which are trained using distinct chunk representa-

25

tions. Before applying weighted voting method, first we need to decide the weights
to be given to individual systems. We can obtain the best weights if we could obtain
the accuracy for the “true” test data. However, it is impossible to estimate them. In
boosting technique, the voting weights are given by the accuracy of the training data
during the iteration of changing the frequency (distribution) of training data. However,
we cannot use the accuracy of the training data for voting weights, since SVMs do not
depend on the frequency (distribution) of training data, and can separate the training
data without any mis-classification by selecting the appropriate kernel function and
the soft margin parameter. In this paper, we introduce the following four weighting
methods in our experiments:

1. Uniform weights baseling
We give the same voting weight to all systems. This method is taken as the
baseline for other weighting methods.

2. Cross validation
Dividing training data intaV portions, we employ the training by using — 1
portions, and then evaluate the remaining portion. In this fashion, we will have
N individual accuracy. Final voting weights are given by the average of tNese
accuracies.

3. VC-bound
By applying (2.16) and (2.17), we estimate the lower bound of accuracy for each
system, and use the accuracy as a voting weight. The voting weight is calculated
as:w =1 — VCbound. The value ofD, which represents the smallest diameter
enclosing all of the training data, is approximated by the maximum distance from
the origin.

D? ~ max{K(x;,%x;) — 2K (x;,0) + K(0O,0)}

(O : the origin)

4. Leave-One-Out bound
By using (2.18), we estimate the lower bound of the accuracy of a system. The
voting weight is calculated as: = 1 — E.

The procedure of our experiments is summarized as follows:

26

1. We convert the training data into 4 representations (IOB1/I0B2/IOE1/IOE2).

2. We consider two parsing directions (Forward/Backward) for each representation
(i.e.,4 x 2 = 8 systems for a single training data set are given). Then, we employ
SVMs training using these independent chunk representations.

3. After training, we examine the VC bound and Leave-One-Out bound for each of
8 systems. As for cross validation, we employ the steps 1 and 2 for each divided
training data, and obtain the weights.

4. We test these 8 systems with a separated test data set. Before employing
the weighted voting, we have to convert them into a uniform representa-
tion, since the tag sets used in individual 8 systems are different. For this
purpose, we re-convert each of the estimated results into 4 representations
(IO0B1/IOB2/IOE2/IOEL).

5. We employ weighted voting of 8 systems with respect to the converted 4 uni-
form representations and the 4 voting schemes respectively. Finally, wel have
(types of uniform representationg) 4 (types of weights)= 16 results for our
experiments.

Figure 3.2 illustrates the procedure of our experiments.

Although we can use models with IOBES-F or IOBES-B representations for the
committees of the weighted voting, we do not use them in our voting experiments.
The reason is that the number of classes are different (3 vs. 5) and the estimated VC
and Leave-One-Out bound cannot straightforwardly be compared with other models
that have three classes (I0B1/I0B2/IOE1/IOE2) under the same condition. We con-
duct experiments with IOBES-F and IOBES-B representations only to investigate how
far the difference of various chunk representations would affect the actual chunking
accuracies.

3.4 Experiments

3.4.1 Experimental Settings

We use the following three annotated corpora for our experiments.

27

Training _

Original

training data
Step 1 — S —— -
oswosz [1oe1] [jos2| [ioe1] [io2]
IOE1/IOE2
swz. /S
Forward/
Backward F B F B F B F B
Ses
Uniform/CV.
VC-dim./L.0.0 W W, W Wp W, W Wy W
Step 4 v v v v v v v v
IOB1/10B2 IOB1||I0OB1|{IOB1||I0OB1||{I0OB1||I0B1||I0B1||I0B1
IOE1/IOE2
Step 5. Test Weighted Voting
Voting

Figure 3.2. Weighted Voting of 8 systems

e Base NP standard data skageNP-$
This data set was first introduced by [51], and taken as the standard data set for
baseNP identification tadk This data set consists of four sections (15-18) of
the Wall Street Journal (WSJ) part of the Penn Treebank for the training data,
and one section (20) for the test data. The data has part-of-speech (POS) tags
annotated by the Brill tagger|[8].

e Base NP large data sdigseNP-L)
This data set consists of 20 sections (02-21) of the WSJ part of the Penn Treebank
for the training data, and one section (00) for the test data. POS tags in this data
sets are also annotated by the Brill tagger. We omit the experiments IOB1 and
IOE1 representations for this training data since the data size is too large for our

3ftp://tp.cis.upenn.edu/pub/chunker/

28

current SVMs learning program. In case of IOB1 and IOEL, the size of training
data for one classifier which estimates the class | and O becomes much larger
compared with IOB2 and IOE2 models. In addition, we also omit to estimate the
voting weights using cross validation method due to a large amount of training
cost.

e Chunking data sethunking)
This data set was used for CoNLL-2000 shared task[65]. In this data set, the
total of 10 base phrase clasg&8®,vP,PP,ADJP,ADVP,CONJP, INITJ,LST,PTR,SBAR)
are annotated. This data set consists of 4 sections (15-18) of the WSJ part of the
Penn Treebank for the training data, and one section (20) for the test data

All the experiments are carried out with our software pack@iggSVM, which is
designed and optimized to handle large sparse feature vectors and large number of
training samples. This package can estimate the VC bound and Leave-One-Out bound
automatically. For the kernel function, we use the quadratic kernel (polynomial kernel
of degree 2) and set the soft margin paramétéo be 1.

In our experiments, the performance of the systems is usually measured with three
rates: precision, recall and F measure (harmonic mean between precision and recall):

2 - precision - recall

—
=1 precision + recall

In this paper, we simply refer tbz_, asaccuracy

3.4.2 Results

Table 3.2 shows the results with individual chunk representations. This table also
lists the voting weights estimated by different approaches (B:Cross Validation, C:VC-
bound, D:Leave-one-out). We also show the results with Start/End representation in
Table 3.2.

Table 3.3 shows the results of the weighted voting of four different voting methods:
A: Uniform, B: Cross Validation§ = 5), C: VC bound, D: Leave-One-Out Bound.

Table 3.4 shows the precision, recall afigl.; of the best result for each data set.
The best accuracies per each chunk type in the chunking task are shown in Table 3.5

4http://lcg-www.uia.ac.be/conll2000/chunking/
Shttp://cl.aist-nara.ac.jp/ taku-ku/software/TinySVM/

29

Table 3.2. Accuracies of individual representations
B:Cross Validation, C:VC bound, D:LO bound
Training Condition| Acc. | Estimated Weights
data rep. Fg—q B C D
baseNP-S 10B1-F 93.76| .9394 .4310 .9193
IOB1-B | 93.93| .9422 .4351 .9184
IOB2-F | 93.84| .9410 .4415 .9172
IOB2-B | 93.70| .9407 .4300 .9166
IOE1-F | 93.73| .9386 .4274 .9183
IOE1-B | 93.98| .9425 .4400 .9217
IOE2-F | 93.98| .9409 .4350 .9180
IOE2-B | 94.11| .9426 .4510 .9193

baseNP-L IOB2-F| 95.34| - 4500 .9497
IOB2-B | 95.28| - 4362 .9487
IOE2-F | 95.32 - 4467 .9496
IOE2-B | 95.29| - 4556 .9503

chunking I0OB1-F | 93.48| .9342 .6585 .9605
IOB1-B | 93.74| .9346 .6614 .9596
IOB2-F | 93.46| .9341 .6809 .9586
IOB2-B | 93.47| .9355 .6722 .9594
IOE1-F | 93.45| .9335 .6533 .9589
IOE1-B | 93.72| .9358 .6669 .9611
IOE2-F | 93.45| .9341 .6740 .9606
IOE2-B | 93.85| .9361 .6913 .9597
baseNP-S IOBES-F 93.96
IOBES-B| 93.58
chunking IOBES-H 93.31
IOBES-B| 93.41

30

Table 3.3. Results of weighted voting

A:Uniform Weights, B:Cross Validation, C:VC bound, D:L.O.0O bound

Training Condition

AccuracyFjp—;

data rep. A B C D
baseNP-S 10B1 | 94.14 94.20 94.20 94.16
I0B2 94.16 94.22 94.22 94.18
IOE1 |94.14 94.19 94.19 94.16
IOE2 | 94.16 94.20 94.21 94.17
baseNP-L 10B2 | 95.77 - 95.66 95.66
IOE2 | 95.77 - 95.66 95.66
chunking 10B1 | 93.77 93.87 93.89 93.87
IOB2 | 93.72 93.87 93.90 93.88
IOE1 | 93.76 93.86 93.88 93.86
IOE2 | 93.77 93.89 93.91 93.85

Table 3.4. Best results for each data set

data set

precision

recall Fps—;

baseNP-S
baseNP-L
chunking

94.15%
95.62%
93.89%

94.22
95.77
93.91

94.29%
95.93%
93.92%

3.4.3 Discussion

Accuracy vs Chunk Representation

31

We obtain the best accuracy when we apply IOE2-B representation for both baseNP-S
and chunking data set. It is more important to focus on the relationship between the
accuracy of the test data and the weights estimated by each weighting method, than
just to compare the results of each representation.
From the results, Cross-Validation and VC bound assign a relatively higher weights
to the IOE2-B representation than other representations. In other words, these two
methods can almost correctly predict the best representation, I0OB2, for the test data.

Table 3.5. Best results for each chunk type in chunking task

chunk type| precision| recall | Fz_,
ADJP 77.75% | 74.20%| 75.93
ADVP 82.44% | 81.29%| 81.86
CONJP 60.00% | 66.67%| 63.16
INTJ 00.00% | 50.00% | 66.67
LST 0.00% | 0.00% | 0.00
NP 94.47% | 94.32%| 94.39
PP 97.04% | 98.15%| 97.59
PRT 76.79% | 81.13%]| 78.90
SBAR 88.44% | 85.79%| 87.10
VP 93.69% | 94.10%| 93.89
overall 93.89% | 93.92%| 93.91

On the other hand, Leave-One-Out bound cannot predict the best representations. We
can conclude that Cross-Validation and VC-bound are quite useful to selecting an op-
timal representation in chunking tasks. Even if we have no room to apply the voting
schemes because of some real-world constraints (limited computation and memory ca-
pacity), the use of these two methods may allow to select an optimal representation for
the unseen test data.

There are no significant differences in the performance between In-
side/Outside(IOB1/IOB2/IOE1/IOE2) and Start/End(IOBES) representations.
Sassano and Utsuro evaluate how the difference of the chunk representation would
affect the performance of the systems based on different machine learning algo-
rithms[57]. They report that Decision List system performs better with Start/End
representation than with Inside/Outside, since Decision List considers the specific
combination of features. As for Maximum Entropy, they report that it performs better
with Inside/Outside representation than with Start/End, since Maximum Entropy
model regards all features as independent and tries to catch the more general feature
sets. We believe that SVMs perform well regardless of the chunk representation, since
SVMs show a high generalization performance even with high-dimensional feature
space.

32

Effects of Weighted Voting

The results with weighted voting deliver us a higher accuracies than any single system
regardless of the voting weights. Furthermore, we achieve relatively higher accuracy
by applying Cross validation, VC-bound and Leave-One-Out bound compared to the
baseline method.

The results with VC bound show slightly better accuracy than those with Cross
validation. This result suggests that the VC bound has potentials to predict the error
rate for the “true” test data. On the other hand, we find that the prediction abilities of
Leave-One-Out bound is worse than those of VC bound as well as Cross Validation.

Cross validation is the standard method to estimate the voting weights for different
systems. However, Cross validation requires a larger amount of computational over-
head, since the training data should be divided and be repeatedly used to obtain the
weights. We believe that VC bound is more effective and tractable than Cross valida-
tion, since it can obtain the comparable results to Cross validation without increasing
computational overhead.

3.4.4 Comparison with Related Work

Tjong Kim Sang et al. report that they achieve accuracy of 93.86 for baseNP-S data set,
and 94.90 for baseNP-L data set. They apply weighted voting of the systems which are
trained using distinct chunk representations and different machine learning algorithms
such as MBL, ME and IGTree[63, 66].

Our experiments show the accuracy of 93.76 - 94.11 for baseNP-S, and 95.29 -
95.34 for baseNP-L, even with a single chunk representation. In addition, by applying
the weighted voting framework, we can see the accura®Adt2for baseNP-S, and
95.77for baseNP-L data set. As far as accuracies are concerned, our model outper-
forms Tjong Kim Sang’s model.

In the CoNLL-2000 shared task, we achieved the accuracy of 93.48 using |IOB2-F
representation[38] By combining weighted voting, the accuracya.91is obtained,

6In our experiments, the accuracy of 93.46 is obtained with IOB2-F representation, which was the
exactly the same representation we applied for CoNLL 2000 shared task. This slight difference of
accuracy arises from the following two reason : (1) The difference of beam width for parsing (N=1 vs.
N=5), (2) The difference of applied SVMs package

33

which outperforms other methods based on weighted voting[64, 73].

3.5 Summary

In this chapter, we introduce a uniform framework for chunking task based on Sup-
port Vector Machines (SVMs). Experimental results on WSJ corpus show that our
method outperforms other conventional machine learning frameworks such MBL and
Maximum Entropy Models. The results are due to the good characteristics of gener-
alization and non-overfitting of SVMs even with a high dimensional vector space. In

addition, higher accuracies can be achieved by applying weighted voting of 8-SVM
based systems which are trained using distinct chunk representations.

34

cHAPTER 4 Dependency Parsing

Imagination is more important than knowledge.
Albert Einstein

This chapter presents dependency parsers based on Support Vector Machines. We
propose two methods for parsing. One is the probabilistic model, which has been
widely used in the dependency parsing, and the other is the cascaded chunking model
in which a sentence is parsed determinately only estimating the current segment mod-
ifies the immediately right-hand side segment. We compare two methods and discuss
the merits and demerits of them.

4.1 Introduction

Dependency parsing has been recognized as a basic technique in Japanese sentence
analysis, and a number of studies have been proposed for years. Japanese dependency
structure is usually defined in terms of the relationship between phrasal units called
‘bunsetsu’'segments (hereafter “segments”). Generally, dependency parsing consists
of two steps. In the first step, dependency matrix is constructed, in which each element
corresponds to a pair of chunks and represents the probability of a dependency relation
between them. The second step is to find the optimal combination of dependencies to
form the entire sentence.

In previous approaches, these dependencies are given by manually constructed
rules. However, rule-based approaches have problems in coverage and consistency,
since there are a number of features that affect the accuracy of the final results, and
these features usually relate to one another.

On the other hand, as large-scale tagged corpora have become available these
days, a number of statistical parsing techniques, which estimate the dependency prob-
abilities using such tagged corpora, have been developed[11, 20]. These approaches
have overcome the systems based on the rule-based approaches. A number of ma-
chine learning algorithms, such as Decision Trees[22] and Maximum Entropy mod-

35

els[9, 30, 31,53, 7] has been applied to the dependency or syntactic structure analy-
sis. However, these models require an appropriate feature selection in order to achieve
a high performance. In addition, acquisition of efficient combinations of features is
difficult in these models.

In recent years, new statistical learning techniques such as Support Vector Ma-
chines (SVMs) [15, 74] and Boosting[18] are proposed. These techniques take a strat-
egy that maximize the margin between critical examples and the separating hyperplane.
In particular, compared with other conventional statistical learning algorithms, SVMs
achieve high generalization even with training data of a very high dimension. Fur-
thermore, by selecting a proper type of Kernel function, SVMs can handle non-linear
feature spaces, and carry out the training with considering combinations of more than
one feature.

Thanks to such predominant nature, SVMs deliver state-of-the-art performance in
real-world applications such as recognition of hand-written letters, or of three dimen-
sional images. In the field of natural language processing, SVMs are also applied to
dependency parsing[37], chunking[38, 39] and text categorization[27, 28, 61], and are
reported to have achieved high accuracy without falling into over-fitting even with a
large number of words taken as the features.

In this chapter, we propose an application of SVMs to Japanese dependency pars-
ing. We propose two methods for applying based on SVMs. One is the probabilistic
model which has been widely applied to Japanese dependency parsing. The other cas-
caded chunking model, which is a sort of deterministic parser only estimating whether
current segment modifies immediately right-hand side segment. We use the features
that have been studied in conventional statistical dependency parsing with a little mod-
ification on them.

4.2 Statistical Dependency Parsing

4.2.1 The Probabilistic Model

This section describes a general formulation of the probabilistic model and parsing
techniques which have been applied for Japanese statistical dependency parsing.
Let B = {by,by,...,b,} € BandD = {d;,ds,...,dn_1} € D be a sequence

36

of segments and a sequence of dependency patterns respectjvely; means that
the segment; depends on (modifies) the segméntWe assume that the dependency
sequencd satisfies the following two constraints.

1. Except for the rightmost one, each segment depends on (modifies) exactly one
of the segments appearing to the right,
(e,Vi,1<i<m-1l,i<d; <m-—1)

2. Dependencies do not cross one another.
(e,3i,j:d; =j=>Vk:i<k<jd<j)

Statistical dependency parsing is defined as a searching problem in which one tries
to find an optimal sequenc® that maximizes the conditional probabilify(D|B)
under the above two constraints.

D = argmax P(D|B)
DeD

If we assume that all dependency relations are mutually independebtB) can be
decomposed as:

m—1

P(D|B) = [P(di=j|®(bi,b;)) (bi,by) € R",

i=1
whereP(d;=j | ®(b;, b;)) represents a point-wise conditional probability that predicts
how likely a segment; depends on (modifies) a segmént ®(b;, b,) is ann dimen-
sional feature vector that encodes various kinds of linguistic features related to the
segments; as well ash;. Usually, the conditional probability’(d; = j | ®(b;, b;)) is
represented in a matrix formd/;; = P(d;=j| ®(b;, b;)), which is sometimes referred
to thedependency matrix

For our convenience, we here divide the original parsing problem into the following

two subproblems:

1. Estimate point-wise conditional probabilities and then build a dependency ma-
trix.

2. Search the best dependency relation which maximize the conditional probability
P(D|B) of the input sequence.

37

Input: Fhi 1 / &kE 2 /| EHIZ3 /| 78FT 4
I-top / with her / to Kyoto-loc / go

1. Build a Dependency Matrix
(How probable one segment
. modifies another
Modifiee)
4

2 |3
Z |1 |01 |02 07
S |2 0.2 |08
% [3 1.0

Dependency Matrix 2. Search the optimal dependencies
which maximize the sentence
probability

Output: | | * l

Pl /M&xE 2 / ®EIZ3 / 7EFT
[-top / with her / to Kyoto-loc / go

Figure 4.1. An example of the parsing process with the probabilistic model

Figure 4.1 shows an example of the parsing process with the probabilistic model.

There are mainly two approaches to solve the first problem. One is the rule-based
approach in which dependency matrix is given by hand-crafted rules. This approach
had been used in the early studies of dependency parsing. However, rule-based ap-
proaches have problems in coverage and consistency, since there are a number of fea-
tures that affect the accuracy of the final results, and these features usually relate to
one another. In addition, it is too difficult to incorporate a scoring scheme in rule-
based systems.

The other is corpus-based statistical approach. As large-scale tagged corpora have
become available these days, a number of statistical parsing techniques which estimate
the dependency probabilities using such tagged corpora have been developed[11, 20].
These approaches have overcome the systems based on the rule-based approaches.
Decision Trees[22] and Maximum Entropy models[9, 53, 69—-71] have been applied to

38

dependency or syntactic structure analysis.

For the second problem, bottom-up parsing algorithms such as CYK[32] or
Chart[34] have been widely used. For the Japanese dependency parsing, Sekine sug-
gests an efficient parsing algorithm that parses from the end of a sentence and employs
a beam search[60]. Figure 4.2 illustrates the Sekine’s Best-First-Parsing algorithm in
more detail. The running time is dominated by the inner 3 loops. For each segment,
at mostK partial dependency patterns must be inserted into the priority queue (heap)
where each insertion costs at m@stlog K) . The total parsing time of Sekine’s
method is thug)(Km? - log(K)), which is lower thanO(m?), the cost of the stan-
dard parsing techniques such as CYK and Chart. For an efficient and tractable parsing,
we here focus only on the Sekine’s Best-First-Parsing algorithms instead of CYK and
Chart.

4.2.2 Integration of SVMs into the probabilistic model

We here consider the interpretation of SVMs into the probabilistic model described
before. To apply SVMs, the following two problems arise

e How can a training data be constructed? In other words, what are the positive
and negative examples for SVMs?

e How can we estimate the probabilities of dependencies? SVMs have no potential
to output the conditional probabilities.

For the first problem, we adopt a straightforward method: Out of all combinations
of two candidate segments in the training data, we take a pair of segments that are
in a dependency relation as a positive example, and two segments that appear in a
sentence but are not in a dependency relation as a negative example. Given a sequence
of segment$3 = {by,..., b, } and a correct dependency pattéin= {di,...,d,, 1},

39

Algorithm: Best-First-Parsing
argument: Sequence of segments= {b,...,b,}
Beam-width: K
returns: An optimal dependency pattei = {d;, ..., dn_1 }
begin
H = {ho,...,hm 1} (an array of empty priority queue)
push h,,_1, (1.0, {0,...,0})

fori=m —1 downto 1

k=1
while h; #pand k < K
k=k+1

(p, {dy,...,dm_1})=poph;
forj=i+1tom
ifd, <j (VIl: i<l<j)then//no crossing
p=p-P(d; = j|®(bi,b;))
di=]
pushh; 1, (p,{di,...,dm 1})
end
end
end
end

(p, {di,...,dn1})=pOp ho
return {di,...,dm_1}
end

Figure 4.2. Algorithm: Sekine’s Best-First-Parsing algorithm

40

the training datd” for SVMs can be given by:

T = {y12a<(I)(b1vb2)>v<y137q)(b17b3)>7"'7<y1m7q)(b17bm)>a
(Y23, P(b2, 03)), - - -, (Y2m, P(b2, bin)),

<ym—2m—17 (I)(bm—Za bm—1)>7 ety <ym—1m7 (I)(bm—la bm)>a
Ym—1m> P(bm—1,bm))} = U {(yij7q)(bi7bj)>}a

1<i<m—1
#1<j<m

where®(b;, b;) € R" is a feature vector encoding linguistic features relate} end

b;, andy;; = 2I(d; = j) — 1 (€ {£1}) is a class labél If d; = j, the corresponding

class label becomes +1, and otherwise -1. A totahc()fn — 1)/2 training examples

(wherem is the number of segments in a sentence) must be produced per sentence.
For the second problem, we define the conditional probability by substituting the

distance between a test dakéb,, b;) and the separating hyperplane for the sigmoid

function:

' 1
P(di=j|®(bi, b)) = 1 exp[—f(@(b;, b)))]’

where

F@bib) = Y o B0, B(bi,by) +b. (4.1)
®(b,y), €ESVs

This transformation dose not give us a true probability however, there is a report which
states that sigmoid function experimentally gives a good approximation of probability
function from the decision function of SVMs[48]. We adopt this method in our exper-
iment to transform the distance measure obtained in SVMs into a probability function.

By giving dependency probabilities, we can analyze dependency structure with the
conventional probabilistic model.

4.2.3 Cascaded Chunking Model

In the probabilistic model, we have to estimate the probabilities of each dependency
relation. The sigmoid function can heuristically be used to obtain pseudo probabilities
in SVMs, however, there is no theoretical endorsement for this heuristics.

11(-) is the indicator function.

41

Moreover, the probabilistic model is not good in its scalability since it usually
requires a total ofn - (m — 1)/2 training examples per sentence. It will be hard
to combine the probabilistic model with some machine learning algorithms, such as
SVMs, which require a polynomial computational cost on the number of given training
examples.

In this thesis, we introduce a new method for Japanese dependency analysis, which
does not require the probabilities of dependencies and parses a sentence determinis-
tically. The proposed method can be combined with any type of machine learning
algorithm that has classification ability.

The original idea of our method stems from the cascaded chucking method which
has been applied in English parsing [56]. Let us introduce the basic framework of the
cascaded chunking parsing method:

1. A sequence of base phrases is the input for this algorithm.

2. Scanning from the beginning of the input sentence, chunk a series of base
phrases into a single non-terminal node.

3. For each chunked phrase, leave only the head phrase, and delete all the other
phrases inside the chunk

4. Finish the algorithm if a single non-terminal node remains, otherwise return to
the step 2 and repeat.

We apply this cascaded chunking parsing technique to Japanese dependency anal-
ysis. Since Japanese is a head-final language, and the chunking can be regarded as
the creation of a dependency between two segments, we can simplify the process of
Japanese dependency analysis as follows:

1. Put anO tag on all segments. The tag indicates that the dependency relation
of the current segment is undecided.

2. For each segment with & tag, decide whether it modifies the segment on its
immediate right hand side. If so, tla&tag is replaced with & tag.

3. Delete all segments with a D tag that are immediately followed by a segment
with an O tag.

42

4. Terminate the algorithm if a single segment remains, otherwise return to step 2
and repeat.

Figure 4.3 shows an example of the parsing process with the cascaded chunking
model. In addition, figure 4.4 represents a pseudo code of this algorithm.

We think this proposed cascaded chunking model has the following advantages
compared to the probabilistic model.

e Simple and Efficient
If we use the CYK algorithm, the probabilistic model requit@gn?) parsing
time, (wherem is the number of segments in a sentence.). Even using the Best-
First-Parsing method described in the previous section, parsing costs amount
to O(Km?log(K)). On the other hand, the cascaded chunking model requires
O(m?) in the worst case when all segments modify the rightmost segment. The
actual parsing time is usually lower thér{m?), since most of segments modify
segment on its immediate right hand side.

Furthermore, in the cascaded chunking model, the training examples are ex-
tracted using the parsing algorithm itself. In the training phase, the function
estimatein the figure 4.4 is replaced by the function shown in the figure 4.5.
The size of training examples required for the cascaded chunking model is much
smaller than that for the probabilistic model. The model reduces the training
cost significantly and enables training using larger amounts of annotated corpus.

e No assumption on the independence between dependency relations

The probabilistic model assumes that dependency relations are independent.
However, there are some cases in which one cannot parse a sentence correctly
with this assumption. For example, coordinate structures cannot be always
parsed with the independence constraint. The cascaded chunking model parses
and estimates relations simultaneously. This means that one can use all depen-
dency relations, which have narrower scope than that of the current focusing
relation being considered, as feature sets. We describe the details in the next
section.

e Independence from machine learning algorithm
The cascaded chunking model can be combined with any machine learning al-
gorithm that works as a binary classifier, since the cascaded chunking model

43

sl

O 000 0OO0bO OobOg oDgood
He her warm heart be moved

(He was moved by her warm heart.)
Initialization

Input: b 000 DoOOo bod0 boobo

Input: o0 000 ooo ood ooood
Tag: @) @) D D @)

Deleted
Input o0 oOoo 000 ooooo
Tag: O D D O
Deleted
Input: 0@ 000 ooooo
Tag: @) D @)
Deleted
Input 0o ooooQd
Tag D 0
Deleted
Input ooooo
Tag: @)

Finish

Figure 4.3. Example of the parsing process with cascaded chunking model

44

Algorithm: Cascaded Chunking Model

argument: Sequence of segments= {b;,...,b,}

return: An optimal dependency patteid = {d;, ..., dp_1}

begin
DEL = {dely, ... del,,} = {false,..., false} Il delete flags
TAG = {tago, ..., tag,} = {0,...,0} [/ tag
D={dy,...,dp_1} =1{0,...,0} [/ result
n = 0 // # of deleted segments

function estimate (src, dst)
return any _classifier (®(bs., byst))
end

function next (7)
forj=i+1tom
if del; =falsereturn j
end

while (n <m — 1)
fori=1tom—1
j =next (i) // get next segment
tag; = estimate(i,)
if (tag; = D) then
di =]
if (tag;i—, = O) then
del; = true
n=n-+1
end
end
end
end

return D

end
Figure 4.4. Algorithm: Cascaded Chunking Model

45

function estimate (src, dst)
if (by modifiesb,, in the training corpus then

result = D
else
result = O

T=TU <T€8Ult, (I)(bsrca det)>
return result

end
Figure 4.5. The functiorstimatdn training

parses a sentence deterministically only deciding whether or not the current seg-
ment modifies the segment on its immediate right hand side. Probabilities of
dependencies are not always necessary for the cascaded chunking model.

4.2.4 Encoding Features

This section describes the concrete feature set used for learning. Note that the design
of feature set is equalent to the construction of the mapping functidg, -) € R”
that builds a numerical feature vector from two candidate modifier and maglifee

Static and Dynamic Features

Linguistic features that are supposed to be effective in Japanese dependency analysis
are: head words and their parts-of-speech tags, functional words and inflection forms
of the words that appear at the end of segments, distance between two segments, ex-
istence of punctuation marks. As those are solely defined by the pair of segments, we
refer to them as thstatic features

Japanese dependency relations are heavily constrained by such static features since
the inflection forms and postpositional particles constrain the dependency relation.
However, when a sentence is long and there are more than one possible dependents,
static features, by themselves cannot determine the correct dependency.

Consider the example shown in Figure4.6. In this example, 1“0 O (this book-
acc)” may modify either of 1 0 0 0 O (have)” or 00 O O O (be looking for)” and
cannot be determined only with the static features. HoweVer,)‘T] (lady-acc)” can

46

i Vs

WmFE ZoxE FHoTlhvd miHEE BLTWS
I-top this book-acc have lady-acc be looking for

v

: 3 o v
—DAXE FoTWb —DAxZE HELTWS
this book-acc have this book-acc be looking for

Both relations arsyntacticallycorrect.

Figure 4.6. An example of ambiguous dependency relations

modify the only the verb 10 O O O0,”. Knowing such information is quite useful

for resolving syntactic ambiguity, since two accusative noun phrase hardly modify the
same verb. It is possible to use such information if we add new features related to
other modifiers. In the above case, the chunk™ 0 O [0 ” can receive a new feature

of accusative modification (by™ [0 [0 ") during the parsing process, which precludes
the chunk T O O O ” from modifying “00 0 O O O ” since there is a strict constraint
about double-accusative modification that will be learned from training examples. We
decided to take into consideration all such modification information by using func-
tional words or inflection forms of modifiers.

Using such information about modifiers in the training phase has no difficulty since
they are clearly available in a tree-bank. On the other hand, they are not known in the
parsing phase. This problem can be easily solved if we adopt a bottom-up parsing al-
gorithm and attach the modification information dynamically to the newly constructed
phrases (the chunks that become the head of the phrases). We refer to the features that
are added incrementally during the parsing procestyaamic features

Specifically, we take the following three types of dynamic features in our experi-
ments.

A. The segments which modify the current candidate modifiee. (boxes marked with
Ain Figure 4.7)

47

modify or not?

il Tkl]

B || B| | Modifier | ---| A|| A [[Modifiee] ---| C

Figure 4.7. Three types of dynamic features

B. The segments which modify the current candidate modifier. (boxes marked with
B in Figure 4.7)

C. The segment which is modified by the current candidate modifiee. (boxes
marked with C in Figure 4.7)

Cascaded chunking model enables us to use all types of dynamic features. How-
ever, in this model, dependency relations with short distance are identified earlier than
those with long distance. Therefore, the distances of dependency relations used as
dynamic features are shorter than that between the candidate modifier and modifiee.

In the probabilistic model, in contrast, we can only use the dynamic features with
type of A and C. Since Sekine’s Best-First-Parsing method parses a sentence from the
end of sentence, the dependency relations which appear the left hand side of the current
candidate modifier are not identified yet. We can use all the dependencies as dynamic
features, which appear in the right hand side of the candidate modifier, since they are
already identified.

Concrete Design of Features

Concrete features used for learning are summarized in Table 4.1. The static features
are basically taken from Uchimoto’s list[71] with little modification.

In this table head word (HW)s defined as the rightmost content word in the seg-
ment.functional word (FW)s defined as follows:

¢ The rightmost functional word, if there is a functional word in the segment.

e The rightmost inflection form, if there is a predicate in the segment.

48

e Same as thelW, otherwise.

The static features include the information on existence of brackets, question marks
and punctuation marks etc. Besides, there are features that show the relative relation
of two segments, such as distance, and existence of brackets, quotation marks and
punctuation marks between them.

For a segment X and its dynamic feature with type A or B, we usduhetional
representation (FRQf X based on théunctional word (FW)f X, denoted by(X-FW).
Specifically,Functional Representatias defined as follows:

e Lexical form of X-FWif POS of X-FW s particle, adverb, adnominal or con-
junction

e Inflectional form ofX-FWif X-FWhas an inflectional form.

e The POS tag oK-FW, otherwise.

For the dynamic features with type C, we use their POS tag and POS-subcategory.
An concrete example of our feature encoding is shown in Figure 4.8.

Table 4.1. Features used in our experiments
Static Features | Modifier/Modifiee| Head Word (surface-form, POS, POS-
segments subcategory, inflection-type, inflection-
form), Functional Word (surface-form,
POS, POS-subcategory, inflection-type,
inflection-form), brackets, quotation-
marks, punctuation-marks, position in
sentence (beginning, end)
Between two segt distance(1,2-5,6-), case-particles, brackets,

ments guotation-marks, punctuation-marks
Dynamic Features Type A,B Form of inflection represented withunc-
tional Representation
Type C POS and POS-subcategory of Head word

Smilier to the Text Chunking described in chapter 3, for each candidate relation
b, b;, the associated featurégb;, b;) are encoded as binary vectors. For instance, in

49

Candidate modifier and modifiee

B A C
: v . vy v
EILD |BEEIEMNS| #&kD BN [EVELIDZE| BHLS BELS:
building parking green car drove off aman saw

A man saw a green car drove off the parking of the building.

Static Features:
Modifier: (BfEIZHD)

Head: Functional word: Brackets: N/A,
surface:5i# 15 (parking) surface/m 5 (source) Question marks: N/A
pos: noun pos: particle Punctuations: N/A
pos-subcategory: N/A pos-subcategory: N/A Positions: don't care
inflection-type: N/A inflection-type: N/A
inflection-form: N/A inflection-form: N/A

Modifiee: EYEDD %)

Head: Functional word: Brackets: N/A,
surface:EY XS (drive off) surface (accusative) Question marks: N/A
pos: verb pos: particle Punctuations: N/A
pos-subcategory: N/A pos-subcategory. N/A Positions: don't care
inflection-type: RA-gyo inflection-type: N/A

inflection-form: base-form inflection-form: N/A

Between two segments:

Distance: 2-5
Case-particles®, H'
Brackets: N/A
Question marks: N/A

Dynamic Features:

Type A: EEAHY) Type B: E/LD)
Functional Representatiom® Functional Representatior®

Type C: BZLT:)
POS and POS-subcategory of head: Verb

Figure 4.8. An example of feature encoding
50

the figure 4.8, the tupléstatic feature, modifier, pos, nouncorresponds to the single
feature f(siasic_feature modifier, pos,nouny With its value 1.

In dependency parsing, it is quite important to use conjugation features, since one
cannot identify correct dependency relations only using the information from either
of modifier or modifee. By using the polynomial kernel of degrgeve use up to
d conjugation features implicitly. It avoids careful feature selection required in the
previous machine learning algorithms such as Maximum Entropy and Decision List.

4.3 Experiments

4.3.1 Experimental Setting

We used the following two annotated corpora for our experiments.

e Standard data sé&tandard)
This data set consists of the Kyoto University text corpus Version 2.0 [41]. We
used 7,958 sentences from the articles on January 1st to January 7th as training
examples, and 1,246 sentences from the articles on January 9th as the test data.
This data set was used in [69, 72] and [37].

e Large data sedfarge)
In order to investigate the scalability of the cascaded chunking model, we pre-
pared larger data set. We used all 38,383 sentences of the Kyoto University text
corpus Version 3.0. The training and test data were generated by a two-fold cross
validation.

For the kernel function, we used the polynomial kernel (2.13). We set the soft
margin parametet’ to be 1.

Performance on the test data is measured using dependency accuracy and sentence
accuracy. Dependency accuracy is the percentage of correct dependencies out of all
dependency relations. Sentence accuracy is the percentage of sentences in which all
dependencies are determined correctly.

51

Table 4.2. Cascaded Chunking model vs Probabilistic model
PM: Probabilistic Model CCM: Cascaded Chunking Model

Data Set Standard Large

Model PM CCM PM CCM

Dependency Acc. (%) 89.09 89.29 N/A 90.46
Sentence Acc. (%) 46.17 47.53 N/A 53.16
of training sentences 7,956 7,956 19,191 19,191
of training examples 459,105| 110,355| 1,074,316| 261,254
Training Time (hours) 336 8 N/A 48

Parsing Time (sec./sentence) 2.1 0.5 N/A 0.7

4.3.2 Results

The results for the probabilistic model as well as the cascaded chunking are summa-
rized in Table 4.2. We cannot employ the experiments for the probabilistic model using
large dataset, since the data size is too large for our current SVMs learning program to
terminate in a realistic time period.

Even though the number of training examples used for the cascaded chunking
model is less than a quarter of that for the probabilistic model, and the used feature
set is the same, dependency accuracy and sentence accuracy are improved using the
cascaded chunking model (89.09%89.29%, 46.17% 47.53%).

The time required for training and parsing are significantly reduced by applying
the cascaded chunking model (336t8h, 2.1sec~ 0.5sec.).

4.3.3 Discussion
Probabilistic model vs. Cascaded Chunking model

As can be seen Table 4.2, the cascaded chunking model is more accurate, efficient and
scalable than the probabilistic model. It is difficult to apply the probabilistic model

to the large data set, since it takes no less than 336 hours (2 weeks) to carry out the
experiments even with the standard data set, and SVMs require quadratic or more

computational cost on the number of training examples.

52

For the first impression, it may seems natural that higher accuracy is achieved with
the probabilistic model, since all candidate dependency relations are used as training
examples. However, the experimental results show that the cascaded chunking model
performs better. Here we list what the most significant contributions are and how well
the cascaded chunking model behaves compared with the probabilistic model.

The probabilistic model is trained with all candidate pairs of segments in the train-
ing corpus. The problem of this training is that exceptional dependency relations may
be used as training examples. For example, suppose a segment which appears to right
hand side of the correct modifiee and has a similar content word. The pair of two
segments becomes a negative example. However, this is negative because there is a
better and correct candidate at a different point in the sentence. Therefore, this may
not be a true negative example, meaning that this can be positive in other sentences. In
addition, if a segment is not modified by a modifier because of cross dependency con-
straints but has a similar content word with correct modifiee, this relation also becomes
an exception. Actually, we cannot ignore these exceptions, since most segments mod-
ify a segment on its immediate right hand side. By using all candidates of dependency
relation as the training examples, we have committed to a number of exceptions which
are hard to be trained upon. Looking in particular on a powerful heuristics for depen-
dency structure analysis: “A segment tends to modify a nearer segment if possible,” it
will be most important to train whether the current segment modifies the segment on
its immediate right hand side. The cascaded chunking model is designed along with
this heuristics and can remove the exceptional relations which have less potential to
improve performance.

Effects of Dynamic Features

Table 4.3 and 4.4 summarize the results of parsing accuracies performed by the prob-
abilistic model and the cascaded chunking model with and without dynamic features
respectively. We also show these results in Figure 4.9 and 4.10. The results with the
dynamic features are better than the results without them. The results with dynamic
features constantly outperform those with static features, when the size of the training
data is large. In most cases, the improvements is considerable.

Table 4.5 summarizes the performance without some dynamic features when the
cascaded chunking model is used. From these results, we can conclude that all dynamic

53

Table 4.3. Results of the probabilistic modék 3, k = 5)

Training data size Dependency Accuracy (%) Sentence Accuracy (%)
with / without dynamic featureg with / without dynamic features
1172 86.52 / 86.12 39.31/ 38.50
1917 87.21/86.81 40.06 / 39.80
3032 87.67 /1 87.62 42.94 [42.45
4318 88.35/88.33 44.15 | 44.47
5540 88.66 / 88.40 45.20 / 43.66
6756 88.77 / 88.55 45.36 / 45.04
7958 89.09 / 88.77 46.17 / 45.04

features are effective in improving the performance.

Dimension of the polynomial kernel

Table 4.6 and 4.7 show the relationship between the dimensions of the polynomial
kernel and the parsing accuracies. In addition, in order to investigate how VC-Bound
and Leave-One-Out bound (L.O.O bound) can pretdict error rate, these tables also
include the error-rate estimated with these theoretical bounds.

As a result, the case df = 3 gives the best accuracy with both of two models. In
addition, the accuracies with the casedof 1 are significantly worse than the those
of other cases. With the probabilistic model, the separating hyperplane seems not to
be builtin the case af = 1, seeing the accuracies of 67.09% for test data and 90.73%
for training data. This result supports our first intuition that we need a combination
of at least two features. It will be hard to confirm a dependency relation with only
the features of the modifier or the modifiee. It is natural that a dependency relation is
decided by at least the information from both of two chunks.

Ignoring the case off = 1, error rates estimated by VC dimension and L.O.O
bound show minimum at = 2. This means these theoretical bounds predict that best
kernel dimension may bé = 2. Although they cannot predict the optimal choice
of kernel dimensiond = 3), we think this prediction seems to be reasonable and
valuable, since the differences of accuracies between the case-0? andd = 3
are not significant, and size of training data used in this experiments is so small (1172

54

Table 4.4. Results of the cascaded chunking matle!)

Training data size Dependency Accuracy (%) Sentence Accuracy (%)
with / without dynamic featureg with / without dynamic features
1172 86.66 / 86.72 42.29 [41.32
1917 87.23/87.43 42.94 | 42.53
3032 87.87 /1 87.49 44.63 | 43.26
4318 88.48 / 88.16 44.63 / 44.31
5540 88.64 / 88.17 45.36 / 43.83
6756 88.84 / 88.22 47.05/ 44.15
7958 89.29/88.72 47.53 / 45.20
89.5 - - - . . .
g 89 r 1
S 885 | -
5
3 887]
<
g 875 |]
()
£ 87}]
o
O 86.5 ‘dynamic-p’ —— A
/ 'static-p’ =
86 1 1 1

1000 2000 3000 4000 5000 6

000 7000 8000

Number of Training Data (sentences)

Figure 4.9. Results of the probabilistic model 3)

55

89.5 - - -

g 89 1
S 885 -
5
3 88 |
<
g 875 :
QO
% 87]
A 865 ‘dynamic-c’ ———
'static-C’
86 I I I

1000 2000 3000 4000 5000 6000 7000 8000
Number of Training Data (sentences)

Figure 4.10. Results of the cascaded chunking matle! 8)

Table 4.5. Effects of dynamic features with the cascaded chunking model

Deleted type of| Difference of accuracy without each feature
dynamic featurg Dependency Accuracy Sentence Accuracy
A -0.28% -0.89%
B -0.10% -0.89%
C -0.28% -0.56%
AB -0.33% -1.21%
AC -0.55% -0.97%
BC -0.54% -1.61%
ABC -0.58% -2.34%

56

Table 4.6. Dimension vs Accuracy (1172 sentences, probabilistic modeR)

Dimension of Dependency Accuracy (%) Estimated Estimated
the polynomial kernel Test Training VC dimension| L.O.O Bound
1 67.09 90.73 14446 0.243
2 86.10 99.77 187878 0.194
3 86.52 99.97 215511 0.232
4 86.36 99.99 394709 0.278
5 86.00 99.99 885006 0.334

Table 4.7. Dimension vs Accuracy (1172 sentences, cascaded chunking model)

Dimension of Dependency Accuracy (%) Estimated Estimated
the polynomial kernel Test Training VC dimension| L.O.0O Bound
1 84.05 97.68 55500 0.301
2 86.42 99.99 53387 0.372
3 86.65 99.99 78657 0.463
4 86.38 99.99 158024 0.553
5 85.95 99.99 366320 0.641

57

Table 4.8. Beam width vs Accuracy (6756 sentences, probabilistic mbeeB)

Beam width| Dependency accuracy (%)Sentence accuracy (%)
1 88.66 45.16
3 88.74 45.20
5 88.77 45.36
7 88.76 45.36
10 88.67 45.28
15 88.65 45.28

sentences) that the theoretical bounds cannot predict the error rates correctly

Beam width

In the probabilistic model, there remains one free parameter, beam width for parsing,
to be determined. Sekine [60] gives an interesting report about the relationship be-
tween the beam width and the parsing accuracy. Intuitively, high parsing accuracies
are expected when a large beam width is employed. However, the results are against
our intuition. They report that beam widths between 3 and 10 gives the best parsing
accuracy, and parsing accuracy falls down with a width larger than 10. This result sug-
gests that Japanese dependency structures may consist of a series of local optimization
processes.

We also evaluate the relationship between the beam width and the parsing accuracy.
Table 4.8 shows their relations , changing the beam widths freml to 15 and setting
d = 3. The best parsing accuracy is achieved at 5, and the best sentence accuracy
is achieved at = 5 andk = 7, which support the Sekine’s reports.

4.3.4 Comparison with Related Work

Table 4.9 summarizes recent results on Japanese dependency analysis.

Uchimoto et al. report that using the Kyoto University Corpus for their training
and testing, they achieve around 87.93% accuracy by building statistical model based
on the Maximum Entropy framework[69, 70]. They extend the original probabilistic
model, which learns only two class; ‘modify* and ‘not modify*, to the one that learns

58

three classes; ‘between’, ‘modify* and ‘beyond‘. Their model can also avoid the influ-
ence of the exceptional dependency relations. Using same training and test data, we
can achieve accuracy of 89.29%. The difference is considerable.

Kanayama et al. use an HPSG-based Japanese grammar to restrict the candidate de-
pendencies[30, 31]. Their model uses at most three candidates restricted by the gram-
mar as features; the nearest, the second nearest, and the farthest from the modifier.
Thus, their model can take longer context into account, and disambiguate complex de-
pendency relations. However, the features are still static, and dynamic features are not
used in their model. We cannot directly compare their model with ours because they
use a different corpus, EDR corpus, which is ten times as large as the corpus we used.
Nevertheless, they reported an accuracy 88.55%, which is worse than our model.

Haruno et al. report that using the EDR Corpus for their training and testing, they
achieve around 85.03% accuracy with Decision Tree and Boosting[23, 24]. Although
Decision Tree can take combinations of features as SVMs, it easily overfits on its own.
To avoid overfitting, Decision Tree is usually used as an weak learner for Boosting.
Combining Boosting technique with Decision Tree, the performance may be improved.
However, Haruno et al. (99) report that the performance with Decision Tree falls down
when they added lexical entries with lower frequencies as features even using Boosting.
We think that Decision Tree requires a careful feature selection for achieving higher
accuracy.

Table 4.9. Comparison with the related work
PM: Probabilistic model CCM: Cascaded Chunking Model

Model Training Corpus (# of sentences)Acc. (%)
Our model 1 PM (SVMs) Kyoto Univ. (7,956) 89.09
Our model 2 CCM (SVMs) Kyoto Univ. (19,191) 90.46
Kyoto Univ. (7,956) 89.29
Uchimoto et al 00,98 PM (ME) Kyoto Univ. (7,956) 87.93
Kanayamaetal 99| PM (ME + HPSG) EDR (192,778) 88.55
Haruno et al 98 PM (DT + Boosting) EDR (50,000) 85.03
Fujio et al 98 PM (ML) EDR (190,000) 86.67

59

4.4 Summary

This chapter proposes two Japanese dependency parser based on Support Vector Ma-
chines. One is the probabilistic model, which has been widely used in the dependency
parsing, and the other is the cascaded chunking model in which a sentence is parsed de-
terminately only estimating the current segment modifies the immediately right-hand
side segment. We compare two methods and discuss the merits and demerits of them.
Through the experiments with Japanese bracketed corpus, we show the proposed meth-
ods achieve a high accuracy even with a small training data and outperforms previous
approaches.

60

cHapTER 5 Fast Methods for Kernel-
based Text Analysis

Fast is fine, but accuracy is everything.
Wyatt Earp

In this chapter, we present two methods which make the kernel-based text analyzers
substantially faster.

5.1 Introduction

Kernel methods attract a great deal of attention recently. In the field of Natural
Language Processing, many successes have been reported. Examples include Part-
of-Speech tagging [46] Text Chunking [39], Named Entity Recognition [26], and
Japanese Dependency Parsing [37, 40].

It is known in NLP that combination of features contributes to a significant im-
provement in accuracy. For instance, in the task of dependency parsing, it would be
hard to confirm a correct dependency relation with only a single set of features from
either a head or its modifier. Rather, dependency relations should be determined by at
least information from both of two phrases. In previous research, feature combination
has been selected manually, and the performance significantly depended on these se-
lections. This is not the case with kernel-based methodology. For instance, if we use
a polynomial kernel, all feature combinations are implicitly expanded without loss of
generality and increasing the computational costs. Although the mapped feature space
is quite large, the maximal margin strategy [74] of SVMs gives us a good generaliza-
tion performance compared to the previous manual feature selections. This is the main
reason why kernel-based learning has delivered great results to the field of NLP.

Kernel-based text analysis shows an excellent performance in terms in accuracy.
However, its inefficiency in actual analysis limits practical application. For example,
an SVM-based NE-chunker runs at a rate of only 85 byte/sec, while a previous rule-
based system can process several kilobytes per second [26]. Such slow execution time

61

is inadequate for Information Retrieval, Question Answering, or Text Mining, where
fast analysis of large quantities of text is indispensable.

This chapter presents two novel methods that make the kernel-based text analyzers
substantially faster. These methods are applicable not only to the NLP tasks but also
to general machine learning tasks where training and test examples are represented in
a binary vector.

More specifically, we focus on Bolynomial Kernebf degreed, which can attain
feature combinations that are crucial to improving the performance of tasks in NLP.
Second, we introduce two fast classification algorithms for this kernel. One is PKI
(Polynomial Kernel Inverted), which is an extensionlmferted Indexn Information
Retrieval. The other is PKE (Polynomial Kernel Expanded), where all feature com-
binations are explicitly expanded. By applying PKE, we can convert a kernel-based
classifier into a simple and fast liner classifier. In order to build PKE, we extend to
use theSet-Enumeration Tr¢29], an efficientBasket Miningalgorithm, to enumerate
effective feature combinations from a set of support examples.

Experiments on English BaseNP Chunking, Japanese Word Segmentation and
Japanese Dependency Parsing show that PKI and PKE perform respectively 2 to 13
times and 30 to 300 times faster than standard kernel-based systems, without a dis-
cernible change in accuracy.

5.2 Kernel Method and Support Vector Machines

Suppose we have a set of training data for a binary classification problem:
(Xla yl)a D) (XLa yL) X € §RN7 Y € {+17 _]-}7

wherex; is a feature vector of thg-th training sample, ang; is the class label asso-
ciated with this training sample. The decision function of SVMs is defined by
y(x) = sgn(Z yios0(x5) - o(x) + b), (5.1)
jesv
where: (A)¢ is a non-liner mapping function fro®”" to R” (N <« H). (B) o, b €
§R, Q; Z 0.
The mapping functiorp should be designed such that all training examples are
linearly separable ift” space. Since7 is much larger thanV, it requires heavy

62

computation to evaluate the dot produgts;) - ¢(x) in an explicit form. This problem

can be overcome by noticing that both construction of optimal paramet@ve will

omit the details of this construction here) and the calculation of the decision function
only require the evaluation of dot produetx;) - ¢(x). This is critical, since, in some
cases, the dot products can be evaluated by a sikgieel Function K (x,x3) =

b(x1) - p(x2). Substituting kernel function into (5.1), we have the following decision
function.

y(x) = Sgn(> yioK (x5, %) + b) (5.2)
jeESV
One of the advantages of kernels is that they are not limited to vectorial ohjbat
that they are applicable to any kind of object representation, just given the dot products.

5.3 Polynomial Kernel of degreel

For many tasks in NLP, the training and test examples are represented in binary vectors;
or sets since examples in NLP are usually represented in so-cBlatuire Structures
Here, we focus on such cases

Suppose we have a feature géet= {1,2,..., N} and training exampleX;(j =
1,2,...,L), all of which are subsets af' (i.e., X; C F). In this case,X; can be
regarded as a binary vectey = (x;1, xjo,...,z;5) Wherez;; = 1if i € X;, z;;, =0
otherwise. The dot product af, andx, is given byx; - x, = | X; N X5/

Definition 1 Polynomial Kernel of degreé
Given setsX andY’, corresponding to binary feature vectaxsandy, Polynomial
Kernel of degreel K;(X,Y) is given by

Ku(x,y) = Ku(X,V) = (14 [X 0 V])", (5.3)

whered =1,2,3,....

1In the Maximum Entropy model widely applied in NLP, we usually suppose binary feature func-
tions f;(X;) € {0,1}. This formalization is exactly same as representing an exatdiplén a set

{kIfr(X;) = 1}.

63

In this thesis, (5.3) will be referred to as emplicit form of the Polynomial Kernel.

It is known in NLP that a combination of features, a subset of featurd’set
general, contributes to overall accuracy. In previous research, feature combination has
been selected manually. The use of a polynomial kernel allows such feature expansion
without loss of generality nor an increase in computational costs, since the Polynomial
Kernel of degred implicitly maps the original feature spaéeinto F'¢ space. (i.e.¢ :

F — F%). This property is critical and some reports say that, in NLP, the polynomial
kernel outperforms the simple linear kernel [26, 37].

Here, we will give an explicit form of the Polynomial Kernel to show the mapping

functiong(-).

Lemma 1 Explicit form of Polynomial Kernel.
The Polynomial Kernel of degrekcan be rewritten as

Ky(X,Y) =) cqlr)- |P(X NY), (5.4)

r=0
where

e P.(X)is aset of all subsets of with exactlyr elements in it,

o clr) = S0 () (Shs (-1 m (1)

Proof See Appendix A.
cq(r) will be referred as @ubset weightf the Polynomial Kernel of degreé This
function gives grior weightto the subset, where|s| = r.

Example 1 Quadratic and Cubic Kernel
Given setsX = {a,b,¢,d} andY = {a,b,d, e}, the Quadratic KerneK,(X,Y") and
the Cubic KernelK3(X, Y') can be calculated in an implicit form as:
Ky(X,Y)=(1+|XNnY|)?=(1+3)%=16,
Ky(X,Y)=(1+|XNY])? = (1+3)° =64.
Using Lemma 1, the subset weights of the Quadratic Kernel and the Cubic Ker-
nel can be calculated as,(0) = 1, (1) =3, «(2) =2 andc;(0) =1, e3(1) =
7, c3(2)=12, c3(3)=6.
In addition, subset®,.(X NY) (r = 0,1, 2, 3) are given as followsP,(XNY) =
{0}, P(X NY)={{a},{b},{d}}, P(X NY)={{a,b},{a,d} {b,d}}, Ps(X N

64

Y)={{a,b,d}}. K2(X,Y) and K3(X,Y) can similarly be calculated in an explicit
form as:

KyX,Y)=1-143-3+2-3=16,

Ky(X,Y)=1-147-3+12-3+6-1=64.

5.4 Fast Classifiers for Polynomial Kernel

In this section, we introduce two fast classification algorithms for the Polynomial Ker-
nel of degreel.
Before describing them, we give the baseline classiR&H):

y(X)zsgn(Z yjaj-(1—|—|XjﬂX|)d+b). (5.5)
JESV
The complexity of PKB i) (|.X | - |SV), since it take®)(].X |) to calculate(1 + | X; N
X1)? and there are a total 81| support examples.

5.4.1 PKI (Inverted Representation)

Given anitem € F, if we know in advance the set of support examples which contain
itemi € F, we do not need to calculat&’; N X| for all support examples. This
is a naive extension dhverted Indexingn Information Retrieval. Figure 6.4 shows
a pseudo code of the algorithm PKI. The functibfi) is a pre-compiled table and
returns a set of support examples which contain the item

The complexity of the PKIi€)(| X |- B + |SV]), whereB is the average df(i)|
over all item: € F'. The PKI can make the classification speed drastically faster when
B is small, in other words, when feature space is relatively sparseRi.&, |SV]).
The feature space is often sparse in many tasks in NLP, since lexical entries are used
as features.

The algorithm PKI does not change the final accuracy of the classification.

65

Algorithm: PKI classification
argument: A setx
return: class label € {+1}
begin
r=¢# an array, initialized as ¢
foreachi € x
foreach j € h(i)
ri=r;+1
end
end
result =0
foreachj € SV
result = result + yja; - (1 +r;)?
end
return sgn(result + b)
end
Figure 5.1. Pseudo code for PKI

5.4.2 PKE (Expanded Representation)
Basic Idea of PKE

Using Lemma 1, we can represent the decision function (5.5) in an explicit form:

= sgn(Z et Z) |P(X; N X)) + b). (5.6)

JESV
If we, in advance, calculate

= D yiaseallsDI(s € Py (X))

jeSv

(wherel(t) is the indicator functiorf) for all subsetss € Uf«l:o P,(F), (5.6) can be
written as the following simple linear form:

y(X) = sgn(Z w(s) +b). (5.7)
s€Tg(X)
2](t) returns 1 ift is true,returns O otherwise.

66

wherel'(X) = ", P.(X).

The classification algorithm given by (5.7) will be referred taP&&E. The com-
plexity of PKE isO(|T4(X)|) = O(|X]?), independent on the number of support
examplegSV|.

Mining Approach to PKE

To apply the PKE, we first calculat€,(F')| degree of vectors

w = (w(s1),w(se), ..., w(srum)))-

This calculation is trivial only when we use the Quadratic Kernel, since we just project
the original feature spadg into F' x F' space, which is small enough to be calculated
by a naive exhaustive method. However, if we, for instance, use the polynomial kernel
of degree 3 or higher, this calculation becomes not trivial, since the size of feature
space exponentially increases. Here we take the following strategy:

1. Instead of using the original vectar, we usew’, an approximation ofv.

2. We apply theSubset Mininglgorithm to calculatev’ efficiently.

Definition 2 w': An approximation ofw

An approximation ofw is given byw' = (w'(s1),w'(s2),...,w'(sr,r))), Where
w'(s) is set to 0 ifw(s) is trivially close t0 0. (i.e.0peg < W(S) < Tpos (Tneg <
0, 0pos > 0), Whereo,,; ando,., are predefined thresholds).

The algorithm PKE is an approximation of the PKB, and changes the final accu-
racy according to the selection of threshotds, ando,.,. The calculation ofw’ is
formulated as the following mining problem.

Problem 1 Feature Combination Mining
Given a set of support examples and subset weight), extract all subsets and
their weightsw(s) if w(s) holdsw(s) > 0,05 Or w(s) < 0pey -

We applySub-Structure Mininglgorithm to the feature combination mining prob-
lem. Generally speaking, sub-structures mining algorithms efficiently exXteagtent
sub-structures (e.g., subsets, sub-sequences, sub-trees, or sub-graphs) from a large

67

database (set of transactions). In this contBegjuentmeans that there are no less

than¢ transactions which contain a sub-structure. The paraniesansually referred

to as theMinimum SupportSince we must enumerate all subsetg'ofve can apply

subset mining algorithm, in some times calleBasket Miningalgorithm, to our task.
Most of Basket Mining algorithms use the following two strategies to efficiently

enumerate all frequent subtrees from a set of transactions.

1. Define a canonical search tree or search lattice to enumerate the power set of a
given set.

2. For an efficient enumeration of frequent subsets, prune the search tree/lattice
defined in (1) with respect to an upper bound of the frequency.

There are some methods to define a search space for enumerating the power set of
a set. The most popular algorithm is known to be the complete lattice structure used
in Apriori[2]. In this thesis, we use Set Enumeration Tree (SE-Tree), first proposed by
Bayardo[29], because of its efficiency and easy implementation. SE-Tree first defines
a total order (e.g., lexicographic order) on the elements of the given feature. set
The root node of the search tree is set to be the empty set. The children of a node
N enumerates its super-sets by adding a single element in the feature gethis
appending process, SE-Tree restricts that the single element addethtest follow
every element already iV according to the total order. Figure 5.2 illustrates an SE-
tree. Note that there exists a unique path to each node. For instance, {hecsé}
can be obtained by appending the item: andd to the empty sef} according the
total order of the set (in this case, lexicographic order is used). SE-tree is simple to
enumerate the power set Bf compared to complete lattice used in Apriori algorithm.

For the second strategy, the following simple observation is ued:set is not
frequent, super-sets of the set are not frequent either.bther words, if one can find
that a setV, corresponding the nod¥’ in the SE-Tree, is not frequent, the sub-space
spanned from the nodé¥’ can be safely pruned.

The problem of the feature combination mining can similarly be realized by using
the above defined two strategies. The enumeration method is almost the same except
for the restriction of the size. When using polynomial kernetl-@h order, we must
only enumerate the subsets of up to size

68

{}
) T
{a} {b} {c} {d}

I
{a,b} {ac} {ad} {b,c} {b,d} {c,d}

] | |
{a,b,cHa,b,d¥a,c,d} {b,c,d}
{a,b,|c,d}

Figure 5.2. SE-Tree on a s§t, b, ¢, d}

For the second strategy, we cannot straightforwardly use the above frequency-based
pruning criteria, since the mining criteria is not the frequency of & setit the mag-
nitude of |w(s)|. Here we give the following convenience lemma to define a pruning
criteria for the feature combination mining problem.

Lemma 2 upper bound and lower bound ofw(s)
For any superset of (i.e., Vs D) fineq(s) < w(s") < fipos(s). Wherepu,,s(s) and
Lineg(s) are given as:

def
fpos(s) = Z a;Cql (s C Xj)
{jlieSVyj=+1}
def
tneg(s) = = > ;Cal(s C X;)

{jliesvy;=-1}

=U,...,

69

Proof

w(s’) = > ageallsDI(s' € X;) —

{il7eSVyj=+1}

S ageallSDIs € X))
{jlieSVyyj=—1}
S ageall I € X)
{jliesvy;=+1}
S Z ajC'd](s' g X])
{jlieSVyj=+1}
S ZajC’dI(s QX])
{jlieSVyj=+1}
= MPOS(S) (=0)

(i.e., For any superset of (Vs',s' D s), {ily; = +1,5' C X;}| < [{jly; = +1,s C
X;}|.) Similarly,

IN

w(s') > - Z o;Cyl (s C X;)
{iliesVy;=-1}
= Hneg(s) (£0)

Thus, for any superset 6f(Vs' D s), fineq(s) < w(s') < pipos(s) O.

Setting the thresholdso,,; and o,

The thresholds,,, ando,, control the rate of approximation. For the sake of conve-
nience, we just give one parametgrand calculate,,, ando,., as follows

(#of positive examples>
o- ,

Opos —
P #of support examples
(#of negative exampleS)
o = —0- .
e #of support examples

Feature sets represented in TRIE structure

After the process of mining, a set of tupl@s= {(s,w(s))} is obtained, where is
a frequent subset and(s) is its weight. We use a TRIE to efficiently store the set

70

Q root

S W(S) /\
{a} 10.5
{d} -10.5 35 B G d 105
{a,b} | 12 ~10.
{a,c} 12 / \ /\ ‘
{bcy | 12 =+ p c c d d ,,
{b,d} -18 12 12 12 18
{c,d} | -24 |
{b,c,d}| -12 d

-12

Figure 5.3.Q2 in TRIE representation

2. The example of such TRIE compression is shown in Figure 5.3. Although there
are many implementations for TRIE, we use Double-Array [4] in our thskThe
actual classification of PKE can be examined by traversing the TRIE for all subsets
s € Ty(X).

5.5 Experiments

To demonstrate performances of PKI and PKE, we examined three NLP tasks: English
BaseNP Chunking (EBC), Japanese Word Segmentation (JWS) and Japanese Depen-
dency Parsing (JDP). A more detailed description of each task, training and test data,
the system parameters, and feature sets are presented in the following subsections. Ta-
ble 5.1 summarizes the detail information of support examples (e.g., size of SVs, size
of feature set etc.).

Our preliminary experiments show that a Quadratic Kernel performs the best in
EBC, and a Cubic Kernel performs the best in JWS and JDP. The experiments using a
Cubic Kernel are suitable to evaluate the effectiveness of the basket mining approach
applied in the PKE, since a Cubic Kernel projects the original feature dpaue F3
space, which is too large to be handled only using a naive exhaustive method.

All experiments were conducted under Linux using XEON 2.4 Ghz dual processors
and 3.5 Ghyte of main memory. All systems are implemented in C++.

3We use darts[36] for our implementation.

71

5.5.1 English BaseNP Chunking (EBC)

As described in Chapter 3, Text Chunking is a fundamental task in NLP — dividing
sentences into non-overlapping phrases. BaseNP chunking deals with a part of this
task and recognizes the chunks that form noun phrases. Here is an example sentence:

[He] reckons [the current account deficit] will narrow
to [only 1.8 billion]

A BaseNP chunk is represented as sequence of words between square brackets.
BaseNP chunking task is usually formulated as a simple tagging task, where we rep-
resent chunks with three types of tads: beginning of a chunkl: non-initial word.

O: outside of the chunk. In our experiments, we used the same settings described in
Chapter 3. We use a standard data set [51] consisting of sections 15-19 of the WSJ
corpus as training and section 20 as testing.

5.5.2 Japanese Word Segmentation (JWS)

Since there are no explicit spaces between words in Japanese sentences, we must first
identify the word boundaries before analyzing deep structure of a sentence. Japanese
word segmentation is formalized as a simple classification task.

Let s = ¢+ ¢, be a sequence of Japanese characters, tt,---t,, be
a sequence of Japanese character typassociated with each character, apdc
{+1,—-1}, (i = (1,2,...,m—1)) be a boundary marker. If there is a boundary be-
tweenc; andc¢;, 1, y; = 1, otherwisey; = —1. The feature set of example is
given by all characters as well as character types in some constant window (e.g., 5):
{ciio, ity Civay Ciysy tizay ti1,-+ -, tiro, t;r3}. Note that we distinguish the rela-
tive position of each character and character type. We use the Kyoto University Corpus
[41], 7,958 sentences in the articles on January 1st to January 7th are used as training
data, and 1,246 sentences in the articles on January 9th are used as the test data.

4Usually, in Japanese, word boundaries are highly constrained by character types, lsivateas
and katakana(both are phonetic characters in Japanese), Chinese characters, English alphabets and
numbers.

72

5.5.3 Japanese Dependency Parsing (JDP)

The task of Japanese dependency parsing is to identify a correct dependency of each
Bunsetsubase phrase in Japanese). In previous research, we presented a state-of-
the-art SVMs-based Japanese dependency parser [40]. We combined SVMs into an
efficient parsing algorithmCascaded Chunking Modekhich parses a sentence de-
terministically only by deciding whether the current chunk modifies the chunk on its
immediate right hand side. The input for this algorithm consists of a set of the linguistic
features related to the head and modifier (e.g., word, part-of-speech, and inflections),
and the output from the algorithm is either of the value +1 (dependent) or -1 (indepen-
dent). We use a standard data set, which is the same corpus described in the Japanese
Word Segmentation.

55.4 Results

Tables 5.2, 5.3 and 5.4 show the execution time, acctyanyd|| (size of extracted
subsets), by changingfrom 0.01 to 0.0005.

The PKI leads to about 2 to 12 times improvements over the PKB. In JDP, the
improvement is significant. This is becaudethe average ofi(:) over all items € F,
is relatively small in JDP. The improvement significantly depends on the sparsity of the
given support examples.

The improvements of the PKE are more significant than the PKI. The running time
of the PKE is 30 to 300 times faster than the PKB, when we set an approgpriate
(e.g.,0 = 0.005 for EBC and JWSg = 0.0005 for JDP). In these settings, we could
preserve the final accuracies for test data.

5.5.5 Frequency-based Pruning

The PKE with a Cubic Kernel tends to maRdarge (e.g.|2| = 2.32 million for JWS,
|©2| = 8.26 million for JDP).

To reduce the size 61, we examined simple frequency-based pruning experiments.
Our extension is to simply give a prior threshgle= 1,2, 3,4 . . .), and erase all subsets
which occur in less thag support examples. The calculation of frequency can be

5In EBC, accuracy is evaluated using F measure, harmonic mean between precision and recall.

73

Table 5.1. Details of Data Set

Data Set EBC JWS JDP

of examples | 135,692| 265,413| 110,355
|SV| # of SVs 11,690| 57,672 34,996

of positive SVs 5,637 | 28,440 17,528
of negative SVs 6,053| 29,232 17,468
|F'| (size of feature) 17,470| 11,643| 28,157
Avg. of | X}| 11.90| 11.73| 17.63

B (Avg. of |h(i)])) 7.74| 58.13| 21.92

(Note: In EBC, to handlé(-class problems, we usepairwise classificationbuilding

K x (K —1)/2 classifiers considering all pairs of classes, and final class decision was
given by majority voting. The values in this column are averages over all pairwise
classifiers.)

similarly conducted by th&et-Enumeration Trealgorithm. Tables 5.5 and 5.6 show
the results of frequency-based pruning, when werfiK.005 for JWS, andr=0.0005
for JDP.

In JDP, we can make the size of $eétabout one third of the original size. This
reduction gives us not only a slight speed increase but an improvement of accuracy
(89.29%-+89.34%). Frequency-based pruning allows us to remove subsets that have
large weight and small frequency. Such subsets may be generated from errors or special
outliers in the training examples, which sometimes cause an overfitting in training.

In JWS, the frequency-based pruning does not work well. Although we can reduce
the size of) by half, the accuracy is also reduced (97.94%7.83%). It implies that,
in JWS, features even with frequency of one contribute to the final decision hyperplane.

5.6 Discussion

There have been several studies for efficient classification of SVMs. Isozaki et al.
propose an XQK (eXpand the Quadratic Kernel) which can make their Named-Entity
recognizer drastically fast [26]. XQK can be subsumed into PKE. Both XQK and PKE
share the basic idea; all feature combinations are explicitly expanded and we convert

74

Table 5.2. Results of EBC

PKE Time Speedup F1 2]
o | (sec./sent.) Ratio (x 1000)
0.1| 0.0010 163.4 | 92.98 43
0.05| 0.0013 127.8 | 93.84 141
0.01| 0.0016 105.2 | 93.79 518
0.005| 0.0016 101.3 | 93.85 668
0.001| 0.0017 97.7 |93.84 858
0.0005| 0.0017 96.8 |93.84 889
0.0001| 0.0017 96.8 |93.84 5,206
PKI 0.020 8.3 93.84
PKB 0.164 1.0 93.84

the kernel-based classifier into a simple linear classifier.

The explicit difference between XQK and PKE is that XQK is designed only for
Quadratic Kernel. It implies that XQK can only deal with feature combination of size
up to two. On the other hand, PKE is more general and can also be applied not only to
the Quadratic Kernel but also to the general-style of polynomial kefhel$X NY|)<.

In PKE, there are no theoretical constrains to limit the size of combinations.

In addition, Isozaki et al. did not mention how to expand the feature combinations.
They seem to use a naive exhaustive method to expand them, which is not always
scalable and efficient for extracting three or more feature combinations. PKE takes a
basket mining approach to enumerating effective feature combinations more efficiently
than their exhaustive method.

5.7 Summary

We focused on #&olynomial Kernelof degreed, which has been widely applied in
many tasks in NLP and can attain feature combination that is crucial to improving the
performance of tasks in NLP. Then, we introduced two fast classification algorithms
for this kernel. One is PKI (Polynomial Kernel Inverted), which is an extension of
Inverted Index The other is PKE (Polynomial Kernel Expanded), where all feature

75

Table 5.3. Results of JWS

PKE Time Speedup Acc.(%) 19
o | (sec./sent.) Ratio (x 1000)
0.1| 0.0007 1290.6 | 96.09 21
0.05| 0.0010 846.7 97.36 84

0.01| 0.0024 358.2 97.93 1,228
0.005| 0.0028 300.1 97.95 2,327
0.001| 0.0034 242.6 97.94 4,392

0.0005| 0.0035 238.8 97.94 4,820
0.0001| 0.0036 236.2 97.94 5,206

PKI 0.4989 1.7 97.94

PKB | 0.8535 1.0 97.94

combinations are explicitly expanded.

Experimental results on English BaseNP Chunking, Japanese Word Segmentation
and Japanese Dependency Parsing, show that PKI is about 2 to 13 times, and PKE is
about 30 to 300 times faster than the original kernel-based classifiers, while preserving
the final accuracy.

It is often said that the key to the success of kernel-trick is the implicit mapping
from a data space to feature space which better captures the structure inherent in the
data. The intuition behind the PKE is that there are only a few subsets that construct a
decision hyperplane, although the mapped feature space (subsets space) is very large.
The PKE tries to find such subsets from a set of support examples by Baskgpt
Mining Algorithm.

Clearly the two classification algorithms described in this paper can be applied to
other domains where training and test examples are representesktn\&e would
like to apply our methods to a wider class of domains.

The concept in PKE can also be applicable to kernels for discrete data structures,
such as String Kernel [43] and Tree Kernel [13, 33]. For instance, Tree Kernel gives a
dot product of an ordered-tree, and maps the original ordered-tree onto its all sub-tree
space. To apply the PKE, we must efficiently enumerate the effective sub-trees from
a set of support examples. We can similarly apply a sub-tree mining algorithm [79] to

76

Table 5.4. Results of JDP

PKE Time Speedup Acc.(%) 19
o | (sec./sent.) Ratio (x 1000)
0.1| 0.0008 338.2 82.02 7
0.05| 0.0014 200.0 86.27 30
0.01| 0.0042 66.8 88.91 73

0.005| 0.0060 47.8 89.05 1,924
0.001| 0.0086 33.3 89.26 6,686
0.0005| 0.0090 31.8 89.29 8,262
0.0001| 0.0091 31.4 89.29 9,846
PKI 0.0226 12.6 89.29
PKB | 0.2848 1.0 89.29

this problem.

Appendix A.: Lemma 1 and its proof

calr) = l}i: (‘;) (i(—l)’”m ! (;))

r m=0
Proof.
Let X, Y be subsets of’ = {1,2,..., N}. In this case|X N Y| is same as the dot
product of vectok, y, where

X = {Il,IQ,...,IN}, y:{yhy?a"'ayN}
(zj,y; € {0,1})
r;=1if j € X, z; = 0 otherwise.
(1+|XNY])?= (1+x-y)?can be expanded as follows
d

(1+x-y)! = ;(‘;) (jzjv;xjyj)z

£

=0

77

Table 5.5. Frequency-based pruning (JWS)

PKE time Speedup Acc.(%) (9]
¢ | (sec./sent.) Ratio (x 1000)
1| 0.0028 300.1 97.95 2,327
2| 0.0025 337.3 97.83 954
3| 0.0023 367.0 97.83 591
PKB | 0.8535 1.0 97.94

Table 5.6. Frequency-based pruning (JDP)
PKE time Speedup Acc.(%) (9]
¢ | (sec./sent.) Ratio (x 1000)

1| 0.0090 31.8 89.29 8,262

2| 0.0072 39.3 89.34 2,450

3| 0.0068 41.8 89.31 1,360
PKB | 0.2848 1.0 89.29

where

ki+...+kny=I l'

() = Z ﬁ(fflyl)kl o (@vyn)t

Fns0 1 N

Note thatrff is binary (i.e., xfj € {0,1}), the number of--size subsets can be given
by a coefficient of z,y,x2ys . . . 2,y,). Thus,

w0 =2 (X)

78

cHapTER 6 A Boosting Algorithm for
Classification of Semi-
Structured Text

The best way to predict the future is to invent it.
Alan Kay

In this chapter, we describe an application of text analyzers described in the previ-
ous chapters. The application focused on here is text classification. In the traditional
text classification tasks, a text is usually represented in a multi-set (i.e, a bag) of words,
ignoring word orders nor syntactic relations embedded in text. Actually, such bag-of-
words representations are not sufficient to the recent text classification tasks, such as
modalities, opinions or subjectivity identification. In this chapter, we propose a text
classification algorithm that captures sub-structures embedded in text.

6.1 Introduction

Text classification plays an important role in organizing online texts available on the
World Wide Web, Internet news and E-mails. Until recently, supervised learning
algorithms, such as Naive Bayes[47], Support Vector Machines[15, 74] and Boost-
ing[19, 58] have been applied to this problem and have been proven successful in many
domains.

In the traditional text classification tasks, one has to identify predefined “topics” of
text, such as politics, finance, sports or entertainment. A typical example of such topic-
based classification will be found in théahoodirectory*. For learning algorithms to
identify these topics, a text is usually represented in the bag-of-words, where a text
is regarded as a multi-set (i.e., a bag) of the words ignoring word orders or syntactic
relations appearing in the original text. Even though the bag-of-words representation

http://www.yahoo.com/

79

is naive and does not convey the meaning of the original text, a reasonable accuracy
can be obtained. This is because each word occurring in the text is highly relevant to
the predefined “topics” to be identified.

While a number of successes in the traditional text classifications have been re-
ported, the focus of recent research in text classification has expanded from a simple
topic identification to a more challenging task, such as opinion/modality identifica-
tion. Example includes categorization of customer E-mails and reviews by types of
claims, modalities or subjectivities[67, 75, 76]. For the latter, the traditional bag-of-
words representation is not sufficient, and a richer, structural representation will be
required. Accordingly, learning algorithms must be capable of handling such struc-
tures observed in text. A straightforward way to extend the traditional bag-of-words
representation is to heuristically add new types of features to the original bag-of-words
features, such as fixed-length n-grams (e.g., word bi-gram or tri-gram) or fixed-length
syntactic relations (e.g., modifier-head relations). These ad-hoc solutions might give
us a reasonable performance, however, they are highly task-dependent and require a
careful design of “optimal” feature set for individual tasks.

Generally speaking, by using text processing systems, a text can be converted
into a semi-structured text annotated with parts-of-speech, base-phrase information,
named entities or syntactic relations. These information is useful to identify opinions
or modalities represented in text. We think that it is more general to propose a learning
algorithm that can automatically capture relevant structural information observed in
text, rather than to heuristically add these information as new features.

From these points of view, in this chapter, we propose a classification algorithm
that captures sub-structures embedded in text. To simplify the problem, we first assume
that a text to be classified is represented in a labeled ordered tree, which is a general
data structure and a simple abstraction of text. Note that word sequence, base-phrase
annotation, named entities, dependency tree and an XML document can be modeled
as a labeled ordered tree.

The proposal consists of the following two steps: i) decision stumps that use sub-
trees as features, ii) Boosting algorithm in which the subtree-based decision stumps
are applied as weak learners. The algorithm proposed here has the following charac-
teristics:

e It performs learning and classification using structural information of text.

80

e It uses a set of all subtrees (bag-of-subtrees) for feature set without any con-
straints.

e Even though the size of the candidate feature set becomes quite laaigey-it
matically selects a compact and relevant feature set based on Boosting.

This chapter is organized as follows. First, we describe the details of our Boosting
algorithm in which the subtree-based decision stumps are applied as weak learners.
Second, we show an implementation issue to construct an efficient learning and clas-
sification algorithm. We also discuss about relation between our algorithm and Tree
Kernel[13, 14, 33], which is an another method that captures structural information.
Two experiments on the opinion and modality classification tasks are employed to con-
firm that subtree features are important. In addition, we will experimentally show that
our Boosting algorithm is computationally efficient for classification tasks involving
discrete structural features.

6.2 Classifier for Trees

We first assume that a text to be classified is represented in a labeled ordered tree.
The problem focusing on here can be formalized as a general problem, caltegkthe
classification problem

The tree classification problem is defined to induce a mapping fungtigi :
X — {+1}, from given training example¥ = {(x;,v;)}~,, wherex; € X is a
labeled ordered tree ang € {£1} is a class label associated with each training data
(we here focus on the binary classification problem.). The important characteristic
is that the input example; is represented not as a numerical feature vector (bag-of-
words) but a labeled ordered tree.

6.2.1 Preliminaries
Let us introduce a labeled ordered tree, its definition and notations, first.

Definition 3 Labeled ordered tree
A labeled ordered tree is a tree where each node is associated with a label and is
ordered among its siblings, that is, there are a first child, second child, third child, etc.

81

Definition 4 Subtree

Lett andu be labeled ordered trees. We say thahatchesu, or ¢ is a subtree of
u (t C u), if there exists a one-to-one functignfrom nodes int to u, satisfying the
conditions: (1)y) preserves the parent-daughter relation, (2)preserves the sibling
relation, (3)¢ preserves the labels.

For the sake of simplicity, we will sometimes refer to labeled ordered trée@sNe
denote the number of nodestims|t|.

6.2.2 Decision Stumps

One level decision trees, which are better known as decision stumps, are simple clas-
sifiers, where the decision is made by only a single hypothesis or feature. Decision
stumps may avoid overfitting to the training dataset arising in other complicated clas-
sifiers such afull decision trees. Boostexter[59] uses word-based decision stumps for
a topic-based text classification. To classify trees, we here extend to use the decision
stumps defined as follows.

Definition 5 Decision Stumps for Trees
Let¢ andx be labeled ordered trees, andbe a class labely € {+1}), a decision
stump classifier for trees is given by

def y tCx
h<t,y> (X) = {

—y otherwise.

The parameter for classification is a tugtey), which will be referred to as aile
of the decision stumps hereafter.

The decision stumps are trained to find a r(gj) that minimizes the error rate
for the given training dat@ = {(x;, v;) }/;:

(t,y) = argmin —Z[Yi 7 Iy (%3))

teF ye{il}
L

1
= argmin — Z(l — Yih gy (%)), (6.1)

teFye{+1} L 1

where is a set of candidate trees ofemture sefi.e., F = [J- {t|t C x;}) andI(-)
is the indicator function.

82

The gain function for a rulét, y) is defined as

L
gain((t,y) = > yihirg (x;). 6.2)
i=1
Using the gain, the search problem given in (6.1) becomes equivalent to the following
problem:

(t,) = argmax gain({t,y)).
teFye{+1}

We will use the gain instead of the error rate for a clarity purpose.

6.2.3 Applying Boosting

The decision stumps classifiers for trees are too inaccurate to be applied to real ap-
plication, since the final decision relies on the existence of a single tree. However,
accuracies can beoostedoy Boosting algorithm[19, 59]. Boosting repeatedly calls a
givenweak learneiand finally produces a hypothegiswhich is a linear combination

of K hypothesesi(=1,..., K), produced by the weak learners, i,e.:

f(x) = sgn(z aphi(x)), where hy(x) € {£1}, a; > 0.

A weak learner is built at each iteration with different distributions or weights
d® = @®, ... d¥y, whereY d; = 1,Vi = i,...,L,d* > 0). The weights
are calculated in such a way that hard examples are more focused on than easier exam-
ples. Boosting iteratively concentrates examples poorly classified with the classifier
build in the last iterationX — 1). It is known that Boosting gives a better result than
a single hypothesis, if the weak learner performs better than random guessing on any
distributions on the examples[19].

To use the decision stumps as the weak leaner of Boosting, we redefine the gain

function (6.2) as follows:

gain((t,y) = 3" yidihiy (x;). (6.3)

=1

whereX"X di=1,d; >0Vi=1,...,L.

83

There exist many variants of Boosting algorithm, however, the original and the best
known algorithm is AdaBoost[19]. Figure 6.1 shows a pseudo code of AdaBoost. In
this figure, we use the decision stumps for trees as the weak learner.

Algorithm: AdaBoost
arguments: training examples]” = {(x;, y;) } 2|,
number of iterationsk’
returns: A classifierf(x)
begin
dV=1/L, p¥=0vi=1,...,L
foreachk =1,.... K

(tr, yr) = argmaxtef’ye%l} gain((t,y))
k1

p*=Y) = min;_; PE

_ 1 L+gain({ty,yx))
Yk = 3 lgg(l—gam(m,yk»)
B = Zj:l @

pz(k) = Z?:l O{jh<h]‘,yj>(xi)/6k
Y = exp(—yip" Br) / 21
(Z}, is the normalizing term)

end

returns f(x) = sgn(3 e, arh) (x)/8xk)
end

Figure 6.1. Algorithm: AdaBoost

In this thesis, we use Arc-GV by Breiman[7], instead of AdaBoost, which is in-
duced by modifying the method of calculatian as:

1 1+ gain({tg, ye)), 1 1 — plk=1)
ap = —lo , 4+ Zlog(—F
' g(1 - galn(<tk,yk>)) ol

2 2
h (k) def - (
where p min_p,

Here, we add an additional term which only depends on the mafiry give in the
last iteration of Boosting. Arc-GV is shown to given the asymptotic convergengk of
to the global solutiop°’, wherep?! is the smallest margin to be maximized. We will
leave the details of the concept of smallest margin to the section 4.

84

6.3 Implementation Issue

In this section, we introduce an efficient and practical algorithm to find the optimal
rule (¢, §) from a given training data. This problem is formally defined as follows.

Problem 2 Find Optimal Rule

LetT = {(x1,y1,d1),...,{(X1,y5,dr)} be a training data, wherex; is a labeled
ordered treey; € {+1} is a class label associated witty andd; (Zle di =1, d; >
0) is a normalized weight assigned+g. GivenT, find the optimal rule(t, §) which
maximizes the gain. i.e(f, §) = argmax,c r e 11y diYiley), WhereF = |J7 {t|t C

Xi}-

The most naive and exhaustive method, where we first enumafagabtreesF
and then calculate the gains for all subtrees, is usually impractical, since a number of
subtrees is exponential to its size. Actually, the task of exhaustive enumerations of
all subtrees is known to be an NP-hard problem. We thus take an alternative strategy
which avoids such exhaustive enumerations.

The method to find the optimal rule is modeled as a variant of Branch-and-Bound
algorithm and will be summarized as the following strategies:

1. Define a canonical search space in which a whole set of subtrees of a set of trees
can be enumerated.

2. Find the optimal rule by traversing this search space.

3. In order to prune the search space, propose a criteria with respect to the upper
bound of thegain. Loosely speaking, we can prune a subspace if the upper
bound of the gain for this space is no greater than the gain for some suboptimal
rule.

We will describe these steps more precisely in the next subsections.

6.3.1 Efficient Enumeration of Trees

Abe and Zaki independently propose an efficient methigifmost-extensiqrio enu-
merate all subtrees from a given tree[1, 79]. The method is based on a similar technique
to the set enumeration tree search introduced by Bayardo[29]. First, the algorithm

85

starts with a set of trees consisting of single nodes, then expands a given tree of size
(k — 1) by attaching a new node to this tree to obtain trees of Bizélowever, it

would be inefficient to expand nodes in arbitrary positions of the tree, as duplicated
enumeration is inevitable. The algorithm, rightmost extension, avoids such duplicated
enumerations by restricting the position of attachment. We here give the definition of
rightmost extension to describe this restriction in detail.

Definition 6 Rightmost Extension[1, 79]

Lett andt’ be labeled ordered trees. We s4ys a rightmost extension of if and only

if t and¢’ satisfy the following three conditions:

(1) ' is created by adding a single nodettdi.e.,t C ¢' and|t| + 1 = |t'|).

(2) A node is added to a node existing on the unique path from the root to the rightmost
leaf (rightmost-path) irt. (We assume that all nodes:irare numbered in pre-order).

(3) A node is added as the rightmost sibling.

Consider Figure 6.2, which illustrates an example treéh the labels drawn from the

setL = {a,b,c}. For the sake of convenience, each node in this figure is numbered
in pre-order (depth-first enumeration). The rightmost-path of thettisda(c(b))),
occurring at the positions, 4 and6 respectively. The set of rightmost extended trees

is then enumerated by simply adding a single node to a node on the rightmost path.
Since there are three nodes on the rightmost path and the size of label sgtis 3
|L]), total 9 trees are enumerated from the original tredlote that all nodes added

by rightmost-extension are numbered as 7 in pre-order. In other words, rightmost
extension preserves the prefix ordering of nodes(ire., nodes at the positions. |¢|

are preserved). By repeating the process of rightmost-extensions recursively, we can
create a search space in which all trees drawn from th€ se¢ enumerated. Figure

6.3 shows a snapshot of such a search space. In this figure, for simplicity, we assume
that their is only a single label (i.d£| = 1).

6.3.2 Upper bound of gain

Rightmost extension defines a canonical search space in which one can enumerate all
subtrees from a given set of trees. We here consider an upper bound of the gain, which
allows to prune a subspace of this canonical search space. The following theorem, an

86

rightmost extensiont’

—]

Figure 6.2. rightmost extension

extension of Morhishita[44], gives a convenient way of computing a tight upper bound
ongain({t',y)) for any super-tre€ of ¢.

Theorem 1 Upper bound of the gainu(t)
Forany ¢ D tandy € {£1}, the gain of (¢,y) is bounded byu(t) (i.e.,
gain({t'y)) < u(t)), wherepu(t) is given by

L
pt) < omax(2 Y A=Yy d

{ily;i=+1,tCx;} i=1

2 Z di“‘zL:yi'di)-

iy =—1,tCx; =1
Proof 1 tly J

L
gain({t',y)) = D diyihyp) (x:)
i=1

L
= > diyi-y- QI Cx;) — 1)
=1

87

.}/11}

“ e

Figure 6.3. Recursion of rightmost extensions

If we focus on the casg= +1, then

gain(<tl’+1>) = 2 Z yzd_zyz

{i]t' Cx;}

< 2 Z d; _Zyz
{ilyi=+1,'Cx;} =1
< 2 Z d —Z?/z‘ 1)

{ilyi=+1,tCxi} =1

since|{ily; = +1,t' C x;}| < |{ily; = +1,t C x;}| foranyt D t. Similarly,
L
gain(<tlv_1>) < 2 Z di"‘zyi'dz
{ilyi=—1,tCx;} =1

Thus, forany’ D t andy € {£1},

gain((t' y)) < max(2 Z d; —Zy,- i

{ilyi=+1,tCx;} =1

2 Z d,-—i—Zyi'dz‘)

{ilyi=—1,1Cx;} i=1

88

We can efficiently prune the search space spanned by right most extension using the
upper bound of gaim(¢). During the traverse of the subtree lattice build by the re-
cursive process of rightmost extension, we always maintain the temporally suboptimal
gainT among all the gains calculated previouslyu(t) < 7, the gain of any super-tree

t' D tis no greater than, and therefore we can safely prune the search space spanned
from the subtree. If xu(¢) > 7, in contrast, we cannot prune this space, since there
might exist a super-treé D t such thatyain(t') > 7. We can also prune the space
with respect to the expanded single nedd&ven if u(¢) > 7 and a node is attached

to the treet, we can ignore the space spanned from the #réfep(s) < 7, since no
super-tree of gives an optimal gain. Figure 5 presents a pseudo code of the algorithm
Find Optimal Rule. The two pruning conditions described above are marked with (1)
and (2) respectively.

6.3.3 Rule Cache

At each iteration of Boosting, the suboptimal values reset to be 0. However, if

we can in advance calculate a tighter upper bound, the search space can be pruned
effectively. For this purpose, we maintain all rules found in the previous iterations in

a cache. The suboptimal valuds calculated by piking up one rule from the cache,
which maximizes the gain with respect the current distribution. The idea behind this
approach is based on our observation that a rule in the cache tends to be re-used as the
number of Boosting iterations increases.

6.3.4 Fast algorithm for classification

We consider an efficient algorithm for the classification of Boosting, when we use the
decision stumps for trees as the weak learner. The final hypothesis can be given by

f(x) = Sgn(zakh(tk,yk>(x))

= sgn(>_ ag - yp(21(tp C x) — 1))

= Sgn(Z)\t-I(t C x) —b),

teg

89

Algorithm: Find Optimal Rule
argument: T = {(x1,y1,d1) ..., (Xr,yr,dr)}
(x; atreey; € {+1}isaclass,and; (31, d; = 1, d; > 0) is a weight
returns: An optimal rule(t, §)
begin
7 =0 [/l suboptimal value
function project ()
if (t) < 7 then return
Y = argmaz,eqyqy gain(t, y)
if gain(t,y’) > 7 then... (1)
(£, 9) = (t,y)
7 = gain(t,7) I/ suboptimal solution
end

foreacht' € {set of trees that are rightmost extensiort §f
s =node added by RME
if 11(s) < 7 then continue. .. (2)
project(t’)
end
end

foreacht' € {t|t € UL, S(x;), |t| =1}
project (t)
end
return (z,)
end

Figure 6.4. Algorithm: Find Optimal Rule

90

where

K
b:Zykak, At = Z 2-yp-ag, G={tlt € F,\ #0}.
k=1 {klt=ty}
The final classification is performed only witéi| indicator functions associated with

real weights),. The bias term-b can be seen as a default class label. Th&jgst
referred asupport featureshat construct the final hypothesis. TreeMacher problem,
defined as follows, conveys an equivalent complexity as the classification, and hence
we here focus on TreeMatcher instead of the original classification problem.

Problem 3 TreeMatcher
Given a set of tree§ and a treex, extract all trees frongj which are subtrees of.

Before describing the detail of the algorithm, we first convert each trgammo a
canonical string in the following method for an efficient subtree matching.

Definition 7 String encoding of a tree [79]

The string encodingtr(t) for a treet is constructed by the following procedure: (1)
We setstr(t) = 0. (2) We perform a depth-first pre-ordered search starting at the root
of treet, adding the current node’s label tar(¢) (3) When we backtrack from a child
to its parent, a special and unique symbol -1 is added to the string).

Examples of such string encoding are illustrated in Figure 6.5. This encoding rep-
resents not only a unique subtree but a search path spanned by rightmost extension. In
other words, the order of nodes grown by the sequential process of rightmost exten-
sion is equivalent to that of the corresponding string. This property gives a convenient
and efficient way for solving the TreeMacher problem. First we store the set of string
encodings of tree§ into a TRIE to compress redundant prefix of strings. TreeMacher
problem can then be solved by simply traversing this TRIE, since the search space
defined by rightmost extension is exactly the same as this TRIE. The example of such
TRIE is illustrated in Figure 6.6. The complexity of classification thus depends only
on the number of nodes in the given training example (2€x]|)), which is indepen-
dent not only of the number of iteratios, but also of the size of support featutgs.

The complexity of our Boosting algorithm in classification is lower than that of Tree
Kernel O(L'|x||x;|, whereL' is a number of support vectors).

91

abc-1d-1f

abc-1d-1h

(@
OB o
©

abc-1-d-1-1i

Figure 6.5. String Encoding

6.4 Relationto SVMs with Tree Kernel

Recent studies [7, 54, 58] have shown that both Boosting and SVMsJ[15, 74] work ac-
cording to the similar strategy; constructing an optimal hypothesis that maximizes the
smallest margirbetween the positive and negative examples. The difference between
the two algorithms is the metric of margin; the margin of Boosting is measurkd in
norm, while, that of SVMs is measured istnorm. We describe how the maximum
margin properties are translated in the two algorithms.

AdaBoost and Arc-GV asymptotically solve the following linear program, maxi-

subtrees| A

abc 0.3
abd -0.2
ab-1c |05
ad 0.1
bc 0.2
bd-1e |-0.3

root

Figure 6.6./G| in TRIE

92

mizing the smallest margin[7, 54, 58],

6.4

weg‘l}i}}é%‘*‘ p ()
J

s.t. inwjhj(Xi) >p Vi=1,...,L (6.5)
7j=1

where.J is the number of hypotheses. (Note that in the case of decision stumps for
trees,J = |[{£1} x F| = 2|F|.) Breiman shows that Arc-GV asymptotically con-
verges the optimal solutigp’”* defined in the above linear optimization problem (i.e.,
limp 00 p* = p?)[7].

SVMs, on the other hand, solves the following quadratic optimization problem[15,
74]:2

max p (6.7)
weRd peRt+
st. y-(w-®(x;))>p Vi=1,...,L (6.8)

l|wlls = 1. (6.9)

The function®(x) maps the original input exampleinto an.J-dimensional feature
vector (i.e.®(x) € R’). Thel,-norm margin gives the separating hyperplane which is
expressed in terms of dot-products in feature space. The feature space in SVMs is thus
expressed in an implicit way by using Marcer kernel function, which is a generalized
dot-product between two objects, (i.&(x,x2) = ®(x1) - P(x3)). It will be therefore
often calledkernel feature space

In order to describe a connection between Boosting with decision stumps and
SVMs with convolution kernels, we here consider Tree Kernel[13, 33], which is one
of the convolution kernels, and implicitly maps the example represented in a labeled
ordered tree into its all subtree space. The implicit mapping defined by Tree Kernel
is given as:®(x) = (I(t; € x),...,I(t|7 C x)), wheret; € F,x € X andI(-) is
the indicator function. Noticing that the decision stumps defined in Definition 3 can be
expressed ak,) (x) =y - (2I(t C x) — 1), we can see that the constraints of Boost-
ing (6.5) are essentially the same as those of SVMs (6.8). In other words, no major

2For simplicity, we here omit the bias terr) (and the extension of Soft Margin.

93

difference in the feature sapce can be fuond between Boosting with decision stumps
and SVMs with Tree Kernel. The critical deferrence between them is the definition
of margin: Boosting useg-norm (6.6) and SVMs usk-norm (6.9). The question
one might ask here is how the difference effects in practice. Actually, the difference
between them can be explainedsparseness

It is well known that the solution or separating hyperplane of SVMs is expressed
in the linear combination of the training examples using some coefficignse.,
w = Zle Ai®(x;))[15, 74]. Maximizingl,-norm margin gives a sparse solution in
example spacdi.e., most of\; becomeg)). Examples that have non-zero coefficient
are calledsupport vectorshat form the final solution. Boosting, in contrast, performs
the computation explicitly in feature space. The concept behind Boosting is that only
a few hypotheses are needed to express the final solutiamorm margin allows to
realize such property. Boosting thus finds a sparse solutiteature spaceEven if
one can obtain a sparse solution in example space, one cannot say that this solution is
sparse in feature space, and vice versa. The accuracies of these two methods would
depend on the given training data. However, we argue that Boosting has the following
practical advantages:

¢ Fast Classification
Sparse hypotheses allow to build an efficient classification algorithm. The com-
plexity of Tree Kernel isO(|V;||N:|), where N; and N, are trees. Moreover,
the actual cost of kernel-based approaches depends on the number of support
vectorsL’. The total cost of SVMs is therefore given BY(L'| N, ||N,|), which
is too heavy to be applied to real application. Boosting, in contrast, performs
faster, since the complexity depends only on the small number of hypotheses or
decision stumps.

e Interpretable Modeling
Text classification is thought as a powerful and fundamental technique for Data
Mining and Knowledge Discovery, which must be developed not only by the
accuracy of the results but also by clear descriptions of how they perform. In
other words, the system must be able to explain what it is doing and why it is
doing it. Our boosting-based system performs with both accurate classifications
and transparent reasoning, since the final hypothesis are represented as a explicit

94

PHS BUOVE: A—)LEEZELE-BF. BENKRTINIDEEEHY NV TT,
EVE: BAER LRARUZAAENLSIZEBNET,

mod WE: Ry EV IO KETORIZFEBMZEA THTIEWLIFEL,
ER: Z0REEED. BRICESEEZTTHRYETEEL DO,
fatk: NTILBRETRHBESRN. HEERYEGRELEHoT-,

Figure 6.7. Examples of data set

and compact liner combination of decision stumps. It is difficult to give such
reasoning with kernel methods, since they define feature space implicitly.

6.5 Experiments

6.5.1 Experimental Setting

We employ two experiments of sentence classification task.

e PHS review classificatiorPHS)
The goal of this task is to classify reviews (in Japanese) forPasJpositive re-
views or negative reviews. Total 5,741 sentences are collected from an Web-BBS
discussing about PHS. In this BBS, users are directed to submit their positive re-
views and negative reviews separately. The unit of classification is a sentence.
The categories to be identified are “positive” or “negative”.

e Modality identification MOD)
It is the task to classify sentences (in Japanese) by modalities. Total 1,710
sentences from Mainich news articles are manually annotated according to the
Tamura’s taxonomyq]. The unit of classification is a sentence. The categories
to be identified are “opinion”, “assertion” or “description”.

Figure 6.7 shows examples of the two data set, PHS and MOD.
To employ learning and classifications, we have to represent a given sentence as a
labeled ordered tree. In this thesis, we use the following three ways of representation.

3PHS (Personal Handyphone System) is a sort of mobile phone developed in Japan in 1989.

95

e bag-of-wordslfow), baseline
Ignoring structural information embedded in text, we simply represent a text in
a set of words. This is exactly the same setting as Boostexter. Word boundaries
are identified using a Japanese morphological analyzer, Cha®ém use the
base form of the word instead of the surface form.

e Dependencydep)
We represent a text in a word-based dependency tree. We first use CaboCha
to obtain a chunk-based dependency tree of a text. The chunk approximately
corresponds to the base-phrase in English. By deciding a head word in the
chunk, a chunk-based dependency tree is converted into a word-based depen-
dency tree. We put two dummy nodes, BOS (beginning-of-sentence) and EOS
(end-of-sentence), to capture some special relations to the relative positions.

e N-gram fgram)
It is the word-based dependency tree assuming that each word simply modifies
the word appearing in the next. Any subtree of this structure becomes a word
n-gram.

We compared the performance of our Boosting algorithm and Support Vector Ma-
chines (SVMs) with bag-of-words kernel and Tree Kernel according to their F-measure
in 5-fold cross validation. Although there exist some extensions for Tree Kernel[33],
we use the original Tree Kernel by Collins[14], where all subtrees of a tree are used
as distinct binary features. This setting gives as a fair comparison in terms of feature
space. To extend a binary classifier to a multi-class classifier, we use the one-vs-rest
method. Hyperparameters, such as number of iterafiandoosting and soft-margin
parameter’ in SVMs®, are selected by using cross-validation.

6.5.2 Results and Discussion

Table 1 summarizes the results of PHS and MOD tasks.

“http://chasen.aist-nara.ac.jp/
Shttp://cl.aist-nara.ac.jp/” taku-ku/software/cabocha/
5Both parameters control the influence between error rate for training data and model complexity.

96

Table 6.1. Results of Experiements on PHS/MOD

PHS MOD
assertion| opinion | description
Boosting | bow 76.6 71.2| 621 83.0

dep 79.0 87.5| 80.5 91.9
ngram| 79.3 87.6| 78.4 91.9

SVMs | bow | 77.2 72.1| 59.2 82.5
dep 77.2 81.7| 26.1 88.1
ngram| 79.4 81.7| 26.1 88.1

Effects of structural information

In all tasks and categories, our Boosting algorithm (dep/ngram) performs better than
the baseline method (bow). This result supports our first intuition that structural in-
formation within texts are important to classify a text not by topics but by opinions or
modalities.

Only in the “opinion” category in the MOD task, dependency representation shows
a slightly better result than n-gram representation. However, as a whole, there are no
significant differences in accuracy between dependency and n-gram.

Comparison with Tree Kernel

When using bag-of-words feature, no significant differences in accuracy are observed
between Boosting and SVMs. When structual information are used in training and
classification, Boosting performs slightly better than SVMs with Tree Kernel. How-
ever, SVMs show significantly worse performance depending on tasks and categories,
(e.g., 26.1 F-measure in the MOD/opinions). When a convolution kernel is applied
to sparse data, kernel dot products between almost the same instances become quite
larger than those between different instances. This is because the number of common
features between similar instances exponentially increases in its size. It sometimes
causes an overfitting in training, where a test instance highly close to an instance in
training data is correctly classified, and other instances are classified as a default class.
To avoid this problem, there exist some heuristic approaches: i) employing a decay

97

factor to reduce the weights of large sub-structures[33]. ii) substituting a kernel dot
products for Gaussian function to smooth the original kernel dot products[25]. These
approaches may achieve better accuracy, however, they are designed not for fast clas-
sification nor interpretable feature space focused on this chapter but for accurate clas-
sification. Moreover, we cannot give a fair comparison in terms of same feature space.
The selection of optimal hyperparameters, such as decay factors in the first approach
and smoothing parameters in the second approach, is also left to as an open question.

Merits of our algorithm

In the previous section, we describe merits of our Boosting algorithm. We experimen-
tally verify these merits from the results of the PHS task.

As illustrated in section 4, our method can automatically select relevant and com-
pact features from a number of feature candidates. In the PHS task, total 1,793 features
(rules) are selected, while the size of distinct uni-gram, bi-gram and tri-gram appeatr-
ing in the data are 4,211, 24,206, and 43,658 respectively. Even giving all subtrees
as feature candidates, Boosting selects a small and highly relevant subset of features.
When we explicitly enumerate the subtrees used in Tree Kernel, the number of active
(non-zero) features might amount to ten thousands or more.

Table 6.2 shows examples of extracted support features (pairs of featuret (tree)
and weight\,;) in the PHS task.

e Features including the word™ 0 O (hard, difficult)
In general, {1 O 0O (hard, difficult) is an adjective expressing negative opin-
ions. Most of features including™ [0 [0 " are assigned a negative weight (neg-
ative opinion). However, only one featur&f] 0 OO (hard to cut offf has a
positive weight. This result highly reflects the domain knowledge, PHS (mobile
phone reviews).

e Features including the word™ [0 (use}
“0 0 (use) is a neutral expression for opinion classifications by itself. How-
ever, the weight varies according to the surrounding contextdD) “00 O (want
to use) — positive, 2) ‘00 OO0 (be easy to usé)— positive, 3) ‘00 O
00 OO0 (was easy to uséjpast form)— negative, 4) 1 OO0 OO0 OO
O (... is easier to use than’.jcomparative)— negative.

98

e Features including the word™ [0 (charge)
Features reflecting the domain knowledge are extractedOD) “0 0 O O
00 (charge time is short) — positive, 2) ‘00 OO O OO (charge time is
long)’ — negative. These features are interesting, since we cannot determine
the correct label (positive/negative) only using the bag-of-words features, such

as “charge”, “short” or “long” alone.

Table 6.3 illustrates an example of actual classification. For the input sentence *
O000000,00,0000 (The LCD is large, beautiful, and easy to sée.)
the system outputs the features applied to this classification along with their weights
A¢. These information allow us to analyze why the system classifies the input sentence
to the category and what kinds of features are used in the classification. We cannot
examine these analysis in Tree Kernel, since it defines their feature space implicitly.

Table 6.2. Examples of features in PHS dataset

keyword A¢ | subtree (support features)
ooad 0.0040| OO 0O O OO (be hardto cut off
(hard, -0.0006| OO OO0 (be hardto reajl
difficuly | -0.0007| 00O O OO (be hard to usg
-0.0017| O OO (be hard t)
00 0.0027| 0O OO (wantto use
(use 0.0002| O O (use
0.0002| OO OO (beinusg
0.0001| 00O OO0O (beeasytouge
-0.0001| 00O OODO O (was easy to use, (pakt)
-0.0007| 0O OODO (behardto use
-0.0019| 0 0 OO OOO (. is easier to use than
00 0.0028| 00O OO O OO (charge time is shojt
(charge -0.0041| 00 OO O OO (chargetimeis lonp

The testing speed of our Boosting algorithm is much higher than that of SVMs with
Tree Kernel. In the PHS task, the speed of Boosting and SVMs are 0.135 sec./1,149

99

Table 6.3. A running example of actual classification
nput: 0 OO OO OODOO,0000.
The LCD is large, beautiful and easy to see.

At

subtree (support features)

0.00368
0.00352
0.00237
0.00174
0.00107
0.00074
0.00058
0.00027
0.00036
-0.00001
-0.00033
-0.00052

000 (beeasyty

00 (beautifu)

00 000 (be easyto sge
O ooad (..islarge

OO0 0O 000 (The LCD is largé
00 O (The LCD s .)

00 (The LCD

00 (a particle for coordinatiof
00 (seg

O0ad (large)

0 (comma

O (anominative case marker

100

instances and 57.91 sec./1,149 instances respectivéle can say that Booting is
about 400 times faster than SVMs with Tree Kernel.

6.6 Summary

In this chapter, we focused on an algorithm for classification of semi-structured text
in which a sentence is represented in a labeled ordered tree. The labeled ordered tree
is a simple abstract of text, since a text annotated with part-of-speeches, phrase infor-
mation, named entities, and dependency relations can be modeled as a labeled ordered
tree. These information are useful to classify a text not by topics but by opinions,
modalities, or subjectivity. The proposal consists of i) decision stumps that use sub-
trees as features and ii) Boosting algorithm in which the subtree-based decision stumps
are applied as weak learners. Two experiments on the opinion/modality classifica-
tion tasks were employed to confirm that subtree features are important. In addition,
we experimentally shown that our Boosting algorithm is computationally efficient for
classification tasks involving discrete structural features.

"We tested the performances on Linux with XEON 2.4Ghz dual processors and 4.0Gbyte main mem-
ory.

101

cHAPTER 7 Conclusions

Problems cannot be solved by the same level of thinking that created them.
Albert Einstein

This thesis has described machine learning and data mining approaches to natural
language processing to buiftactical systems applicable to wider range of natural
language applications. We present four works on this topic.

The first work applies SVMs to Text Chunking, where a text is divided into syn-
tactically related non-overlapping groups of tokens. The concept of Text Chunking
is quite general, and there exist a number of applications modeled as Text Chunking.
We also apply an weighted voting of 8 SVMs-based text chunker to obtain a better
performance. Each committee used for the weighted voting are trained with different
conditions, such as different encoding of training data or different chunking directions.
This system is provided as an open source software c#headChawhich has been
practically used in many tasks, such as Named entity recognitions[6, 62, 77], part-of-
speech tagging of Chinese[78], Unknown-words and Filler identifications[5, 42], and
Semantic-role identifications[21].

In the second work, we propose two Japanese dependency parser based on Sup
port Vector Machines. One is the probabilistic model, which has been widely used
in the dependency parsing, and the other is the cascaded chunking model in which a
sentence is parsed determinately only estimating the current segment modifies the im-
mediately right-hand side segment. We compare two methods and discuss the merits
and demerits of them. Through the experiments with Japanese bracketed corpus, we
the proposed methods a high accuracy even with a small training data and outperforms
previous approaches. This system is also provided as an open source software called
CaboCha This system has been widely used not only in research areas, such as Ques-
tion Answering, Text Summarization and Translation knowledge acquisitions, but in
commercial or industrial areas.

The third work presents two methods that make the kernel-based text analyzers
substantially faster. While state-of-the-art performances have been delivered by SVMs,
their inefficiencies in actual testing (parsing) lose their opportunities to be used in the

102

real applications. Proposed methods are based on the concept of sub-structure mining
algorithms and are general enough to be applicable not only to the NLP tasks but also
to general machine learning tasks where training and test examples are represented in
a binary vector. This system is experimentally embedde@aboCha and will be
released as an open source software near the future.

In the last work, we focused on a algorithm for classification of semi-structured
text in which a text is represented in a labeled ordered tree. The labeled ordered tree
is a simple abstract of text, since a text annotated with part-of-speeches, phrase infor-
mation, named entities, and dependency relations can be modeled as a labeled ordered
tree. These information are useful to classify a text not by topics but by opinions,
modalities, or subjectivity. The proposal consists of i) decision stumps that use sub-
trees as features and ii) Boosting algorithm in which the subtree-based decision stumps
are applied as weak learners. Two experiments on the opinion/modality classifica-
tion tasks were employed to confirm that subtree features are important. In addition,
we experimentally shown that our Boosting algorithm is computationally efficient for
classification tasks involving discrete structural features.

103

References

[1] Kenji Abe, Shinji Kawasoe, Tatsuya Asai, Hiroki Arimura, and Setsuo Arikawa.
Optimized substructure discovery for semi-structured dat@rdo. 6th European
Conference on PKDP2002.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining associa-
tion rules. InProc. 20th Int. Conf. Very Large Data Bases, VLOip. 487—499,
12-15 1994.

[3] Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing multiclass
to binary: A unifying approach for margin classifiers. liriernational Conf. on
Machine Learning (ICML)pp. 9-16, 2000.

[4] Junichi Aoe. An efficient digital search algorithm by using a double-array struc-
ture. IEEE Transactions on Software Engineerinvgl. 15, No. 9, 1989.

[5] Masayuki Asahara and Yuji Matsumoto. Filler and disfluency identification based
on morphological analysis and chunking.I8CA and IEEE Workshop on Spon-
taneous Speech Processing and Recogni2003.

[6] Masayuki Asahara and Yuji Matsumoto. Japanese named entity extraction with
redundant morphological analysis. HLT-NAACL 2003: Main Conferengce
2003.

[7] Leo Breiman. Prediction games and arching algoritmdeural Computation
\ol. 11, No. 7, pp. 1493 — 1518, 1999.

[8] Eric Brill. Transformation-Based Error-Driven Learning and Natural Language
Processing: A Case Study in Part-of-Speech Tag@iognputational Linguistics
Vol. 21, No. 4, 1995.

[9] Eugene Charniak. A maximum-entropy-inspired parser.Piacessing of the
NAACL 200Qpp. 132-139, 2000.

[10] Hinrich Sch”utze Christopher D. Manningroundations of Statistical Natural
Language Processingrhe MIT Press, 1999.

104

[11] Michael Collins. A new statistical parser based on bigram lexical dependencies.
In Proceedings of the ACL '9¢pp. 184-191, 1996.

[12] Michael Collins.Head-Driven Statistical Models for Natural Language Parsing
PhD thesis, University of Pennsylvania, 1999.

[13] Michael Collins and Nigel Duffy. Convolution kernels for natural language. In
Advances in Neural Information Processing Systems 14, Vol.1 (NIPS,21)
625-632, 2001.

[14] Michael Collins and Nigel Duffy. New ranking algorithms for parsing and tag-
ging: Kernels over discrete structures, and the voted perceptréirotnof ACL,
2002.

[15] C. Cortes and Vladimir N. Vapnik. Support Vector Networkkachine Learning
Vol. 20, pp. 273-297, 1995.

[16] W. Daelemans, S. Buchholz, and J. Veenstra. Memory-based shallow parsing. In
Proceedings of CONLL-1999999.

[17] T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-
correcting output codesJournal of Artificial Intelligence ResearcNol. 2, pp.
263-286, 1995.

[18] Y. Freund and Schapire. Experiments with a new Boosting algoritml3th
International Conference on Machine Learnjri®96.

[19] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-
line learning and an application to boostingournal of Computer and System
Sicences\Vol. 55, No. 1, pp. 119-139, 1996.

[20] Masakazu Fujio and Yuji Matsumoto. Japanese Dependency Structure Analysis
based on Lexicalized Statistics. Rroceedings of EMNLP '9&p. 87-96, 1998.

[21] Kadri Hacioglu and Wayne Ward. Target word detection and semantic role chunk-
ing using support vector machines.Hih T-NAALCL 2003: Short Parper2003.

105

[22] Masahiko Haruno, Satoshi Shirai, and Yoshifumi Ooyama. A Japanese Depen-
dency Parser Based on a Decison tré&ansactions of IPSJvol. 39, No. 12, p.
3117, 1998.

[23] Msahiko Haruno, Satoshi Shirai, and Yoshifumi Ooyama. Using Decision Trees
to Construct a Partial Parser. Broceedings of the COLING '9®p. 505-511,
1998.

[24] Msahiko Haruno, Satoshi Shirai, and Yoshifumi Ooyama. Using Decision Trees
to Construct a Practical Pars&iachine Learning\Vol. 34, pp. 131-149, 1999.

[25] David Haussler. Convolution kernels on discrete structures. Technical report, UC
Santa Cruz (UCS-CRL-99-10), 1999.

[26] HidekiIsozaki and Hideto Kazawa. Efficient support vector classifiers for named
entity recognition. IrProceedings of the COLING-200@p. 390-396, 2002.

[27] Thorsten Joachims. Text Categorization with Support Vector Machines: Learning
with Many Relevant Features. Froceedings of the ECML-98, 10th European
Conference on Machine Learningp. 137-142, 1998.

[28] Thorsten Joachims. Transductive Inference for Text Classification using Support
Vector Machines. Irinternational Conference on Machine Learning (ICML)
1999.

[29] Roberto J. Bayardo Jr. Efficiently mining long patterns from databaseSIGn
MOD 1998, Proceedings ACM SIGMOD International Conference on Manage-
ment of DataACM Press, 1998.

[30] Hiroshi Kanayama, Kentaro Torisawa, Yutaka Mitsuishi, and Jun’ichi Tsujii. A
Hybrid Japanese Parser with Hand-crafted Grammar and StatistiBsodeed-
ings of the COLING 20Q(p. 411-417, 2000.

[31] Hiroshi Kanayama, Kentaro Torisawa, Yutaka Mitsuishi, and Jun’ichi Tsujii. A
Statistical Japanese Dependency Analysis Model with Choice Restricted to at
Most Three Modification CandidatesNatural Language Processing/ol. 7,

No. 5, pp. 71-91, 2000.

106

[32] T. Kasami. An efficient recognition and syntax analysis algorithm for context-
free languages. Technical report, Air Force Cambridge Research Laboratory,
Bedford, 1965.

[33] Hisashi Kashima and Teruo Koyanagi. Svm kernels for semi-structured data. In
Proceedings of the ICML-200pp. 291-298, 2002.

[34] M. Kay. Algorithm schemata and data structures in syntactic processing. Tech-
nical report, Technical Report CSL-80-12, Xerox PARC, 1980.

[35] Ulrich H.-G Krel3el. Pairwise Classification and Support Vector Machines. In
Advances in Kernel MathodMIT Press, 1999.

[36] Taku Kudo. Darts: Double-ARray Trie System, 2002.

[37] Taku Kudo and Yuji Matsumoto. Japanese Dependency Structure Analysis Based
on Support Vector Machines. Bmpirical Methods in Natural Language Pro-
cessing and Very Large Corparpp. 18-25, 2000.

[38] Taku Kudo and Yuji Matsumoto. Use of Support Vector Learning for Chunk
Identification. InProceedings of the 4th Conference on CoNLL-2000 and LLL-
200Q pp. 142-144, 2000.

[39] Taku Kudo and Yuji Matsumoto. Chunking with support vector machines. In
Proceedings of the the NAACpp. 192-199, 2001.

[40] Taku Kudo and Yuji Matsumoto. Japanese dependency analyisis using cascaded
chunking. InProceedings of the CoNLL-200gp. 63—69, 2002.

[41] Sadao Kurohashi and Makoto Nagao. Kyoto University text corpus project. In
Proceedings of the ANLP, Japaop. 115-118, 1997.

[42] Goh Chooi Ling, Masayuki Asahara, and Yuji Matsumoto. Chinese unknown
word identification using position tagging and chunking. ImnProc. of ACL
2003 Interractive Posters/Dem2003.

[43] Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris
Watkins. Text classification using string kernelournal of Machine Learning
Research\ol. 2, , 2002.

107

[44] Shinichi Morhishita. Computing optimal hypotheses efficiently for boosting. In
Progress in Discovery Sciengap. 471-481. Springer, 2002.

[45] Tetsuji Nakagawa, Taku Kudo, and Yuji Matsumoto. Unknown word guessing
and part-of-speech tagging using support vector machind2olteedings of the
NLPRS 200,12001.

[46] Tetsuji Nakagawa, Taku Kudo, and Yuji Matsumoto. Revision learning and its
application to part-of-speech tagging. Pnoceedings of the ACL 200@p. 497—
504, 2002.

[47] Kamal Nigam, Andrew K. McCallum, Sebastian Thrun, and Tom M. Mitchell.
Text classification from labeled and unlabeled documents using Elsichine
Learning Vol. 39, No. 2/3, pp. 103-134, 2000.

[48] John C. Platt. Probabilistic Outputs for Support Vector Machines and Compar-
isons to Regularized Likelihood Methods. Adlvances in Large Margin Classi-
fiers MIT Press, 1999.

[49] Massimiliano Pontil and Alessandro Verri. Support vector machines for 3d object
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence
\ol. 20, No. 6, pp. 637-646, 1998.

[50] J. Ross Quinlan.C4.5: Programs for machine learningMorgan Kaufmann
Publishers, 1993.

[51] Lance A. Ramshaw and Mitchell P. Marcus. Text chunking using transformation-
based learning. IRroceedings of the 3rd Workshop on Very Large Corppm@a
88-94, 1995.

[52] Adwait Ratnaparkhi. A maximum entropy model for part-of-speech tagging. In
Proc. of EMNLR pp. 133-142, 1996.

[53] Adwait Ratnaparkhi. A Liner Observed Time Statistical Parser Based on Maxi-
mum Entropy Models. IiProceedings of EMNLP '971997.

[54] Gunnar. Ritsch, Takashi. Onoda, and Klaus-RobetllY. Soft margins for
AdaBoost.Machine Learning\Vol. 42, No. 3, pp. 287-320, 2001.

108

[55] Dan Roth. Memory based learning in NLP. Technical Report 2125, Urbana,
lllinois, 1999.

[56] Abney S. Parsing By Chunking. Irinciple-Based ParsingKluwer Academic
Publishers, 1991.

[57] Manabu Sassano and Takehito Utsuro. Named Entity Chunking Techniques in
Supervised Learning for Japanese Named Entity RecognitioAtdceedings of
COLING 2000 pp. 705-711, 2000.

[58] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boost-
ing the margin: a new explanation for the effectiveness of voting methods. In
Proc. 14th International Conference on Machine Learnipg. 322—-330. Mor-
gan Kaufmann, 1997.

[59] Robert E. Schapire and Yoram Singer. BoosTexter: A boosting-based system for
text categorizationMachine Learning\Vol. 39, No. 2/3, pp. 135-168, 2000.

[60] Satoshi Sekine, Kiyotaka Uchimoto, and Hitoshi Isahara. Backward Beam
Search Algorithm for Dependency Analysis of JapanesePrateedings of the
COLING 2000 pp. 754-760, 2000.

[61] Hirotoshi Taira and Masahiko Haruno. Feature Selection in SVM Text Catego-
rization. Transactions of IPSJol. 41, No. 4, p. 1113, 2000.

[62] Koichi Takeuchi and Nigel Collier. Use of support vector machines in extended
named entity. Irin Proc. of CoNLL.2002.

[63] Erik F. Tjong Kim Sang. Noun phrase recognition by system combination. In
Proceedings of ANLP-NAACL 200fp. 50-55, 2000.

[64] Erik F. Tjong Kim Sang. Text Chunking by System CombinatiorPtaceedings
of CoNLL-2000 and LLL-20Q(p. 151-153, 2000.

[65] Erik F. Tjong Kim Sang and Sabine Buchholz. Introduction to the CoNLL-2000
Shared Task: Chunking. IRroceedings of CoNLL-2000 and LLL-2Q0fp.
127-132, 2000.

109

[66] Erik F. Tjong Kim Sang, Walter Daelemans, Her2éjean, Rob Koeling, Yuval
Krymolowski, Vasin Punyakanok, and Dan Roth. Applying system combination
to base noun phrase identification. Pnoceedings of COLING 200@p. 857—
863, 2000.

[67] Peter D. Turney. Thumbs up or thumbs down? semantic orientation applied to
unsupervised classification of reviews.Rroceedings of the ACL 200@p. 417—
424, 2002.

[68] Kiyotaka Uchimoto, Qing Ma, Masaki Murata, Hiromi Ozaku, and Hitoshi Isa-
hara. Named Entity Extraction Based on A Maximum Entropy Model and Trans-
formation Rules. IfProcessing of the ACL 2002000.

[69] Kiyotaka Uchimoto, Masaki Murata, Satoshi Sekine, and Hitoshi Isahara. De-
pendency Model Using Posterior Conteiiatural Language Processinyol. 7,
No. 5, pp. 3-17, 2000.

[70] Kiyotaka Uchimoto, Masaki Murata, Satoshi Sekine, and Hitoshi Isahara. De-
pendency model using posterior context. Hrocedings of Sixth International
Workshop on Parsing Technologj&900.

[71] Kiyotaka Uchimoto, Satoshi Sekine, and Hitoshi Isahara. Japanese Dependency
Structure Analysis Based on Maximum Entropy Modélsansactions of IPSJ
\ol. 40, No. 9, pp. 3397-3407, 1998.

[72] Kiyotaka Uchimoto, Satoshi Sekine, and Hitoshi Isahara. Japanese Dependency
Structure Analysis Based on Maximum Entropy Models.Pmceedings of the
EACL, pp. 196-203, 1999.

[73] Hans van Halteren. Chunking with WPDV Models. Pnoceedings of CoNLL-
2000 and LLL-2000pp. 154156, 2000.

[74] Vladimir N. Vapnik. Statistical Learning TheoryWiley-Interscience, 1998.

[75] Janyce M. Wiebe. Learning subjective adjectives from corpora. AAAI-
2000/1AAI-2000: Proceedings of the Seventeenth National Conference on Ar-
tificial Intelligence and Twelfth Conference on on Innovative Applications of Ar-
tificial Intelligence pp. 735740, 2000.

110

[76]

[77]

[78]

[79]

[80]

Janyce M. Wiebe, Rebecca Bruce, Matthew Bell, Melanie Martin, and
n Theresa Wilson. A corpus study of evaluative and speculative language. In
IN proc of the 2nd ACL SIG on Dialogue Workshop on Discourse and Dialogue
2001.

Hiroyasu Yamada, Taku Kudo, and Yuji Matsumoto. Japanese named entity ex-
traction using support vector machin&ansactions of IPSJol. 43, No. 1, pp.
44-53, 2002.

Tatsumi Yoshida, Kiyonori Ohtake, and Kazuhide Yamamoto. Comparative ex-
periments of chinese analyzers between support vector machines and minimum
connective costs method. IRSJ SIG NL-150 (in Japanes&002.

Mohammed Zaki. Efficiently mining frequent trees in a forest.Phoceedings
of the 8th International Conference on Knowledge Discovery and Data Mining
KDD, pp. 71-80, 2002.

Jakub Zavrel and Walter Daelemans. Memory-based learning: Using similarity
for smoothing. InProceedings of the Thirty-Fifth Annual Meeting of the Asso-
ciation for Computational Linguistics and Eighth Conference of the European
Chapter of the Association for Computational Linguistisg. 436—443, 1997.

111

Acknowledgements

First of all, 1 would like to express my gratitude to Professor Yuji Matsumoto, my
supervisor, for introducing me to the world of statistical natural language processing
during numerous extended discussion in our laboratory. | am also grateful to Associate
Professor Kentaro Inui, Assistant Professor Edoson Tadashi Miyamoto and Assistant
Professor Masashi Shimbo for giving me many comments. | learned a lot not only
about research but about daily life from them. | also thank the thesis committee in-
cluding Professor Kiyohiro Shikano and Professor Shin Ishii for giving me valuable
comments.

| would like to thank the members of machine learning work group in our labora-
tory: Hiroya Takamura, Hiroyasu Yamada, Hirotoshi Taira and Tetsuji Nakagawa. My
significant interest to the machine learning is founded during the continuous discus-
sion with them. From this excellent work group, | learned a lot about machine learning
from the view points of theoretical analysis as well as real-world application.

Finally, I would like to thank all previous and current members of Prof. Matsumoto
laboratory. They gave me a lot of useful and interesting knowledge about computer
science.

112

List of Publication

Journal Papers

1.

2.

3.

4.

gb g, dgb.bobbubooobbbobobooobb.bboo
00000, Vol43, No. 6 pp. 1834-1842, 2002.

OO0 0,00 O0O. Support Vector Machinel 000 ChunkO O 0000
00 Vol.9, No, 5 pp.3-22, 2002

OO0 00,00 O0,0000. SupportVectorMachine 000000000
000000000000, Vol43, No. 1, pp.43-53, 2002

OO0 00,00 0,00 00 SupportVectorMachine0OODOOOOO0O
000000000000 00000 [Ovol.44,No.5, pp.1354-1367, 2003

International Conference

1.

Taku Kudo, Yuji Matsumoto. Fast Methods for Kernel-based Text Analysis
41st Annual Meeting of the Association for Computational Linguistics, pp.24-
31, 2003

. Taku Kudo, Yuji Matsumoto. Japanese Dependency Analysis using Cascaded

Chunking CoNLL 2002: Proceedings of the 6th Conference on Natural Lan-
guage Learning, pp.63-69 2002

Tetsuji Nakagawa, Taku Kudo, Yuji Matsumoto Revision Learning and its Ap-
plication to Part-of-Speech Tagging 40th Annual Meeting of the Association for
Computational Linguistics, Proceedings of the Conference, pp.497-504, 2002

Tetsuji Nakagawa, Taku Kudo, Yuji Matsumoto Unknown Word Guessing and
Part-of-Speech Tagging Using Support Vector Machines NLPRS2001: Proceed-
ings of the Sixth Natural Language Processing Pacific Rim Symposium, pp. 325-
331, 2001

Hiroya Takamura, Hiroyasu Yamada, Taku Kudoh, Kaoru Yamamoto, Yuji Mat-
sumoto, Ensembling based on Feature Space Restructuring with Application
to WSD, NLPRS2001: Proceedings of the Sixth Natural Language Processing
Pacific Rim Symposium, pp.41-48, 2001

113

6. Taku Kudo, Yuji Matsumoto, Chunking with Support Vector Machines 2nd
Meeting of the North American Chapter of the Association for Computational
Linguistics, pp.192-199, 2001

7. Taku Kudo, Yuji Matsumoto, Japanese Dependency Structure Analysis Based
on Support Vector Machines Proceedings of the 2000 Joint SIGDAT Conference
on Empirical Methods in Natural Language Processing and Very Large Corpora,
pp.18-25, 2000

8. Taku Kudo, Yuji Matsumoto, Use of Support Vector Learning for Chunk lden-
tification, CoNLL-2000 and LLL-2000: Proceedings of the Fourth Conference
on Computational Language Learning and of the Second Learning Language in
Logic Workshop pp.142-144, 2000

Other Publications

1. 000,0000.000000000 Decision Stumps! Boosting Algorithm
O00.0000000000 2003-NL-158 pp.55-62 2003

2. 000,0000.0000000DbODbOoODbOOoDbbObOObOOUODOO. D
OOobDOobooon 2003-FI-72, 2003-NL-157 pp.33-40 2003

3.000000000000DO0ODODOO.BIolEDDODODD— MOOOOO.
Ooboboboonuobooboboogn pp.105-108

4. 0O00O,0b00b0.0b0obOoboooobbbobbobboboboobn
OO0o0.0b0b0oooognogd 2002-NL-153 pp.147-154 2003

5.000000000000000000. SYMOOOOOOO0OO0OO0O0O0O
0000000000000. 000000 0700000 00000
pp.257-260 2001

6. 000,000,00D00,0000.0000D0O0O0O0DDOODOOOOOO
O0o0bDobooooooonoobooibDn pp.643-646 2002

7.0000000000000. SupportVectorMachine 00000000
O00.0000000000 2001-NL-141 pp.77-82 2001

114

8. J0DDODODODOODODOOOD Support Vector Machines OO O OO0 OO
O000.0000000000 2001-NL-142 pp.121-128 2001

9. 000b0b00Ob.0o0ooooobooooooDobbobo.oogoo
OO0D00D00O 2001-NL-142 pp.97-104 2001

10. 00 000b00OO0RDBOOOODDODOODOOOODDODODOOOOOOO.
OO0D0O0DbO0o0O0o0n 2001-NL-144 pp.135-142 2001

11. 0000000000000 000OC000000 boboooooboooo
Word-Sense Disambiguation] 0 0O 00 0O OO O 2001-NL-144 pp.83-90
2001

12.00000000000000000000000000. 000000
0000 2001-NL-146 pp.1-8 2001.

13. 00000000 Support Vector Machingl 0O 0O ChunkO O OO0O00OO
00000 2000-NL-140 pp.9-16 2000

14. 0000000000000 @EOoDOOoO)bOO00bO0oOobObOOoODbO
OOopboOobooO0.00b0obooobodn 2000-NL-140 pp.77-84 2000

15. 00000000, SupportVectorMachine D OO0 O0DOO0OOO0O. O
000000000 2000-NL-138 pp.79-86 2000

Award

1. 00130 J0go0ob obobooboo oo.0ooobooooooboooo
O0000000.0000000000 2001-NL-142 pp.97-104 2001

2. 00140 000000DOO0DOOOOOOOOOO.ODO0OODOOD
O00000000000000000Db0b00b0b0ODO pp.643-646
2002

115

