
NAIST-IS-DT0161013

Doctor’s Thesis

Machine Learning and Data Mining Approaches to

Practical Natural Language Processing

Taku Kudo

March 24, 2004

Department of Information Processing

Graduate School of Information Science

Nara Institute of Science and Technology

Doctor’s Thesis

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

DOCTOR of ENGINEERING

Taku Kudo

Thesis committee: Yuji Matsumoto, Professor

Kiyohiro Shikano, Professor

Shin Ishii, Professor

Machine Learning and Data Mining Approaches to

Practical Natural Language Processing�

Taku Kudo

Abstract

With a rapid growth of online-text available through the Internet, accurate, robust,

efficient and practical natural language processing must be required to extract and orga-

nize usefulknowledgerepresented in text. In this thesis, we focus on two approaches:

i) machine learning, ii) data mining, to build such accurate and practical text proces-

sors.

Recent studies in Natural Language Processing (NLP) owe greatly to empirical

or corpus-based approaches. Especially, Kernel-based learning (e.g., Support Vector

Machines) has been successfully applied to many hard problems in Natural Language

Processing (NLP). In this paper, we first introduce two applications of Support Vector

Machines to the tasks in NLP. One is the general text chunking task and the other is

the Japanese dependency parsing task, both of which perform significantly better than

previous statistical approaches.

Kernel-based text analysis shows an excellent performance in terms in accuracy;

however, these methods are usually too slow to apply to large-scale text analysis. Sec-

ond, we extend aBasket Miningalgorithm to convert a kernel-based classifier into a

simple and fast linear classifier.

Finally, we focus on the text classification task, in which a text is represented not

in a traditional bag-of-words (e.g., multi-set of words) but in a labeled-ordered-tree,

such as dependency tree or phrase-structure tree. These structural information is quite

useful to classify a text not by a topic but by a option, modality, or subjectivity. In this

thesis, we propose a Boosting algorithm that captures sub-structures embedded in text.

�Doctor’s Thesis, Department of Information Processing, Graduate School of Information Science,

Nara Institute of Science and Technology, NAIST-IS-DT0161013, March 24, 2004.

i

The proposal consists of i) decision stumps that use subtree as features and ii) Boosting

algorithm in which the subtree-based decision stumps are applied as weak learners.

Keywords:

Machine Learning, Support Vector Machines, Boosting, Text Chunking, Dependency

Analysis

ii

Contents

1 Introduction 1

2 Support Vector Machines 8

2.1 Optimal Hyperplane 8

2.2 Generalization for the Non-separable Case

— Soft Margin Constraints . .. 11

2.3 High-dimensional mapping

and Generalized Inner Products — Kernel function. 12

2.4 Generalization ability of SVMs. 14

3 Text Chunking 17

3.1 Introduction 17

3.2 Text Chunking . .. 18

3.3 System Description 19

3.3.1 Text Chunking as a Sequential Labeling Problem 19

3.3.2 Chunking with Support Vector Machines 20

3.3.3 Encoding Features . .. 24

3.3.4 Weighted Voting 25

3.4 Experiments 27

3.4.1 Experimental Settings. 27

3.4.2 Results .. 29

3.4.3 Discussion 31

3.4.4 Comparison with Related Work 33

3.5 Summary 34

iii

4 Dependency Parsing 35

4.1 Introduction 35

4.2 Statistical Dependency Parsing. 36

4.2.1 The Probabilistic Model 36

4.2.2 Integration of SVMs into the probabilistic model 39

4.2.3 Cascaded Chunking Model 41

4.2.4 Encoding Features . .. 46

4.3 Experiments 51

4.3.1 Experimental Setting .. 51

4.3.2 Results .. 52

4.3.3 Discussion 52

4.3.4 Comparison with Related Work 58

4.4 Summary 60

5 Fast Methods for Kernel-based Text Analysis 61

5.1 Introduction 61

5.2 Kernel Method and Support Vector Machines 62

5.3 Polynomial Kernel of degree� . 63

5.4 Fast Classifiers for Polynomial Kernel 65

5.4.1 PKI (Inverted Representation) 65

5.4.2 PKE (Expanded Representation) 66

5.5 Experiments 71

5.5.1 English BaseNP Chunking (EBC) 72

5.5.2 Japanese Word Segmentation (JWS). 72

5.5.3 Japanese Dependency Parsing (JDP). 73

5.5.4 Results .. 73

5.5.5 Frequency-based Pruning 73

5.6 Discussion 74

5.7 Summary 75

6 A Boosting Algorithm for Classification of Semi-Structured Text 79

6.1 Introduction 79

6.2 Classifier for Trees 81

6.2.1 Preliminaries 81

iv

6.2.2 Decision Stumps 82

6.2.3 Applying Boosting . .. 83

6.3 Implementation Issue 85

6.3.1 Efficient Enumeration of Trees 85

6.3.2 Upper bound of gain .. 86

6.3.3 Rule Cache 89

6.3.4 Fast algorithm for classification 89

6.4 Relation to SVMs with Tree Kernel 92

6.5 Experiments 95

6.5.1 Experimental Setting .. 95

6.5.2 Results and Discussion. 96

6.6 Summary 101

7 Conclusions 102

References. 104

Acknowledgements . .. 112

v

List of Figures

2.1 Two possible separating hyperplanes 9

2.2 Projecting 2-D feature space onto 3-D space. 12

3.1 Features set for chunking task (� � �) 25

3.2 Weighted Voting of 8 systems. 28

4.1 An example of the parsing process with the probabilistic model 38

4.2 Algorithm: Sekine’s Best-First-Parsing algorithm 40

4.3 Example of the parsing process with cascaded chunking model 44

4.4 Algorithm: Cascaded Chunking Model 45

4.5 The functionestimatein training . 46

4.6 An example of ambiguous dependency relations 47

4.7 Three types of dynamic features 48

4.8 An example of feature encoding 50

4.9 Results of the probabilistic model (� � �) 55

4.10 Results of the cascaded chunking model (� � �) 56

5.1 Pseudo code for PKI 66

5.2 SE-Tree on a set��� �� �� �� . 69

5.3 � in TRIE representation 71

6.1 Algorithm: AdaBoost 84

6.2 rightmost extension 87

6.3 Recursion of rightmost extensions 88

6.4 Algorithm: Find Optimal Rule. 90

6.5 String Encoding .. 92

6.6 ��� in TRIE . 92

vi

6.7 Examples of data set 95

vii

List of Tables

3.1 Examples of each chunk representation 21

3.2 Accuracies of individual representations 30

3.3 Results of weighted voting . .. 31

3.4 Best results for each data set .. 31

3.5 Best results for each chunk type in chunking task 32

4.1 Features used in our experiments 49

4.2 Cascaded Chunking model vs Probabilistic model 52

4.3 Results of the probabilistic model (� � �� � � �) 54

4.4 Results of the cascaded chunking model (� � �) 55

4.5 Effects of dynamic features with the cascaded chunking model 56

4.6 Dimension vs Accuracy (1172 sentences, probabilistic model,� � �) . 57

4.7 Dimension vs Accuracy (1172 sentences, cascaded chunking model) . 57

4.8 Beam width vs Accuracy (6756 sentences, probabilistic model,� � �) 58

4.9 Comparison with the related work 59

5.1 Details of Data Set 74

5.2 Results of EBC .. 75

5.3 Results of JWS .. 76

5.4 Results of JDP . .. 77

5.5 Frequency-based pruning (JWS) 78

5.6 Frequency-based pruning (JDP) 78

6.1 Results of Experiements on PHS/MOD 97

6.2 Examples of features in PHS dataset 99

6.3 A running example of actual classification 100

viii

CHAPTER 1 Introduction

I just invent, then wait until man comes around to needing what I’ve invented.

R. Buckminster Fuller

With a rapid growth of online-text available through the Internet, accurate, robust,

efficient and practical natural language processing must be required to extract and or-

ganize usefulknowledgerepresented in text. Most natural language applications, such

as Information Retrieval, Information Extraction, Question Answering and Text Min-

ing would certainly benefit from high-accurate and high-speed text processors. In this

thesis, we focus on two approaches: i) machine learning, ii) data mining, to build such

accurate and practical text processors.

Recent studies in NLP owe greatly to empirical or corpus-based approaches. In

the late 80’s, as computational power increased and large amount of machine-readable

language resources and annotated copora became available, a new methodology, what

we callstatistical Natural Language Processing(SNLP), has become popular in NLP

[10]. In the early 90’s, classical machine learning methods, such as transformation-

based learning[8],�-nearest neighbor classifiers (a.k.a. memory-based learning)[16,

55, 80], decision trees[50], maximum likelihood estimation [11, 12], maximum en-

tropy model[52, 53] were applied to many tasks in NLP. The area of machine learn-

ing is making rapid progress. In the late 90’s, new machine learning algorithms,

such as Support Vector Machines[15, 74] and Boosting[19, 58] have been proposed.

These methods are sometimes calledLarge Machine Classifiersand have shown ex-

cellent performances not only in NLP [22, 27, 37, 38, 40, 45] but also in various fields,

such as object recognition[49] and digit recognition[15]. In particular, Support Vec-

tor Machines are known to be variants ofKernel Methods, which can employobject-

independentclassifications, where the object to be classified is represented not only in

numerical feature vector but inanyrepresentation, as long as generalized dot products

(or similarities) between two objects can be defined.

The reason why the machine learning methods are preferred to in NLP is that most

tasks in NLP can be re-formulated as a simpleclassification, in which one observes

some linguisticcontext� � � and predicts the correct linguisticclass� � �. This

1

problem can be reduced to constructing a classifier���� � � 	 �.

More specifically, the statistical or machine learning-based natural language pro-

cessing consists of the following three steps:

1. Formulate the given (complex) task as a simple classification task. In other

words, define thecontext� and the correspondingclass�.

2. Since most machine learning algorithms accept only a set or numerical feature

vector as their input�, we decompose� into an	-dimensional feature vector

by giving a mapping function	��� � � 	 � �
�, which converts the original

context� into an	-dimensional feature vector.

3. Collect training data
 � �����	������ � � � � ����	������, which is a set of pairs of

correct class and context, and employ a training of machine learning algorithm.

To describe above three steps, consider the prepositional phrase attachment (PP-

attachment), which is the task of choosing the correct attachment of a preposition from

candidate interpretations of the given sentence. This task is a sub-problem of the gen-

eral natural language parsing problem. As an example, let us begin with the following

two sentences.

1. I bought cars with money.

2. I bought cars with tires.

In sentence 1,with modifiesbought, sincewith moneydescribes how I could buy cars.

In sentence 2, in contrast,with modifiescars, sincewith tiresdescribes a figure of cars.

For the first step, we simplify the original problem by representing a given sentence in

the tuple��� 	�� � 	��, where� � � 	� � � � � � and	� � � indicate verb (base

form), first noun (base form), preposition and second noun (base form) respectively.

In the sentence 1,��� 	�� � 	�� corresponds to�buy, car, with, money�. Such abstrac-

tion allows to model the above PP-attachment problem as the following classification

problem:

� � ��� 	�� � 	�� � � � � � ��
��	���� � 	��� �
� 	 ��
�

2

The class of this problem is binary, where, for example, the class is +1 if the preposition

 modifies the verb�, and -1 if the preposition modifies the first noun	�. In this

setting, thecontext� is the tuple and class� is either +1 or -1. For the second step, a

mapping function	��� will be constructed. This step is non-trivial and there exist a

number of encodings. The most naive setting is, for example, that we assign a distinct

feature dimension to each verb noun1, preposition, or noun2. For instance, if a tuple

has the wordbuyas verb, the corresponding dimension������ is set to be 1, otherwise

0. The size of dimensions of such feature space thus becomes��� �� �� ���� �� �.
As a second example, consider the part-of-speech (pos) tagging, which is the task

of choosing a correct sequence of pos tags���� � � � � ��� associated with the given input

word sequence���� � � � � ���. In this problem, it is not easy to define the context� and

class�, since the class is not represented in an element of a set, but a sequence of tags.

However, we can naturally implement a complex classifier�� 	 �� as a sequence of

classifications:

����� � � � � ���� � ����
����			����

��

��

� ��
���� � � � � �
��� ��� � � � � ���

� ����
����			����

��

��

� ��
�	���� � � � � �
��� ��� � � � � ����

where��� � � � � �
��� ��� � � � ��, sometimes called acontextor history, is the textual in-

formation available at the�-th decision, and�
 is the outcome of the�-th decision.

� ��
���� � � � � �
��� ��� � � � � ��� is a conditional probability or certain score that predicts

how likely a tag�
 is observed at the�-th decision. The training data thus can be gen-

erated like:

 � �����	���� � � � � �
�
����

����	���� ��� � � � � �����
� � �

����	���� � � � � ����� ��� � � � � ������

By using such modeling, the original complex problem can be translated into a set of

subproblems, each of which can be modeled as a classification. It is not the special

case of part-of-speech tagging. Even if the given task seems to be complicated, in

most cases, it can be modeled as a sequence of classifications.

3

In this thesis, we focus on three tasks in natural language processing: i)Text

Chunking, ii) Dependency Parsing, and iii) Text Classification, in above manner.

Let us concentrate our discussion on the following three claims.

Accuracy

Accuracy is most important to makingpractical text processes. Every text processor

discussed here usesLarge Margin Classifiers, especially Support Vector Machines and

Boosting, and performs the same or even better than traditional rule-based systems as

well as other prior statistical systems, without any task-specific optimizations. Large

Margin Classifiers focus on finding the hypothesis that maximizes the margin (the

distance from the separating hyperplane to nearest examples). Recent theoretical and

experimental results show that many learning algorithms, such as SVMs, Boosting,

and Bagging, produce classifiers with the concept of large margins, which gives a

good upper bound of the generalization error.

Efficiency

Even though accurate text processors can be designed,inefficientones would not be

used in real natural language applications, which must handle a large amount of text

data available through the growing Internet. One of the goals of this thesis is to propose

not only accurate but efficient and practical text processors applicable to wider range

of natural language applications. However, it is well-known that kernel-based systems,

including SVMs, exhibit classification speeds which are substantially slower than those

of other machine learning algorithms. In this theses, we treat this problem and propose

two methods that make the kernel based text processors faster. The ideas stem from

the data mining algorithms, motivated by the requirements that frequent sub-structures

(e.g., subsets, sub-sequences, sub-trees, or sub-graphs) must be extracted efficiently

from a large database (set of transactions). We also present an another method, based

on Boosting as well as data mining, that makes the classification speed significantly

faster compared to kernel methods with comparable or even better accuracies.

4

Less efforts on feature selections

One of the problems in SNLP is how one can design anappropriatemapping function

	��� �
� for individual tasks. This problem is usually calledfeature selection, and

arises not only in the text analysis (e.g., tagging and parsing) but in any level of ap-

plications in NLP. Using text analyzers, a text can be converted into asemi-structured

text, where part-of-speeches, base-phase information, named-entities or dependency

relations are annotated. These information are quite useful to higher level of natural

language applications. However, one cannot clearly say which or what kind of sub

information is useful to individual applications.

Recall the prepositional phrase attachment task again. In that setting, we use, as

an example, the simpleone-to-onemapping from a word to a feature dimension (e.g.,

� � ��� 	 ������ �
). However, higher accuracies cannot be observed only using

such naive setting, since one cannot identify attachments on the assumption that each

word affects the final classificationsindependently. It is natural that conjunctions or

relations of words are much more important to identify correct attachments (e.g, the

relation betweenbuyandmoneyetc.). Still, a selection of optimal relations is left to be

an open question.

In prior research, they seem not to pay much attentions to design of feature sets.

They usually use naive and simple feature sets by preparing hand-crafted rules or tem-

plates beforehand. They also employ ad-hoc or trial-and-error strategies to find best

subsets of candidate feature sets. In other words, feature selections were conducted

almost manually or heuristically. However, it is difficult to create and maintain these

rules, since the size of candidate feature sets is large and the context available to clas-

sifications are sometimes represented in some sort ofstructureddata (e.g., sequence,

tree or graph).

Even though these heuristic approaches might deliver us high accuracies, to pro-

pose domain-independent, reusable and practical text processors, (semi-) automatic

and systematic feature selections are inevitable. Ideally, a user gives a large number

of candidate feature sets, which are large enough not to be enumerated explicitly, and

the systemautomaticallyselects highly-relevant subsets from the given feature sets.

In this thesis, we treat this problem and present two approaches: i) Kernel-based fea-

ture selections and ii) feature extractions from a semi-structured data, each of which

significantly reduces the efforts on feature selections.

5

This thesis is organized as follows.

In Chapter 2, we describe an overview of Support Vector Machines (SVMs) and

their theoretical backgrounds. In this chapter, we argue that SVMs are much more use-

ful and effective, especially to Natural Language Processing, than previous machine

learning algorithms, such as Maximum Entropy, Decision List, and Decision Trees.

The main contribution of SVMs to NLP is its expandability to a non-linear classifica-

tion using kernel-trick.

In Chapter 3, we apply SVMs to Text Chunking, which is better known asShal-

low Parsing, where a text is divided into syntactically related non-overlapping groups

of tokens. The concept of Text Chunking is quite general, and there exist a number

of applications modeled as Text Chunking. Examples include part-of-speech tagging,

word tokenizization, phrase identification, Japanesebunsetsuidentification, named en-

tities recognition and so force. We also apply an weighted voting of 8 SVMs-based

text chunker to obtain a better accuracy. Each committee used for the weighted vot-

ing is trained with different conditions, such as different encoding of training data or

different chunking directions.

In Chapter 4, we propose dependency parsers based on Support Vector Machines.

Two approaches are employed to confirm the effectiveness of SVMs. One is theprob-

abilistic model, which has been widely used in the Japanese dependency parsing. This

method assumes that each dependency relation is mutually independent and estimate a

probability how likely a candidate modifier depends on a modfiee. To obtain probabili-

ties, we extend to use Support Vector Machines. The other approach is calledcascaded

chunking model, where a sentence is parsed deterministically only deciding whether

a candidate modifier depends on the modifiee appearing in the next. This model can

be seen as a sort of shift-reduce parsing, and gives efficient parsing and training. We

compare the above two methods through the experiments using bracketed corpus.

In Chapter 5, we present two methods that make the kernel-based text analyzers,

described in the chapter 3 and 4, substantially faster. While state-of-the-art perfor-

mances have been delivered by SVMs, their inefficiencies in actual testing (parsing)

lose their opportunities to be used in the real applications, such as Information Re-

trieval, Question Answering, or Text Mining, where fast analysis of large quantities of

text is indispensable. Some report says that an SVM-based NE-chunker runs at a rate

of only 85 byte/sec, while previous rule-based system can process several kilobytes

6

per second [26]. Proposed methods are applicable not only to the NLP tasks but also

to general machine learning tasks where training and test examples are represented in

a binary vector.

In Chapter 6, we describe an application of text analyzers. The application focus-

ing on there is text classification. In the traditional text classification tasks, a text is

usually represented as a multi-set (i.e, a bag) of words, ignoring word orders nor syn-

tactic relations embedded in text. Actually, such bag-of-words representations are not

sufficient to the recent text classification tasks, such as modalities, opinions or sub-

jectivity identification. In this chapter, we propose a text classification algorithm that

captures sub-structures embedded in text.

7

CHAPTER 2 Support Vector Machines

Prediction is very difficult, especially if it’s about the future.

Niels Bohr

In this chapter, we describe the algorithm and theoretical backgrounds of Support

Vector Machines (SVMs). SVMs is powerful new type of learning algorithm based on

recent advances in statistical learning theory. SVMs is now applied to a large number of

real-world applications such as text categorization, hand-written character recognition,

etc., and delivers a state-of-the-art performance.

2.1 Optimal Hyperplane

Suppose the training data which belong either to positive or negative class as follows.

���� ���� � � � � ��
� �
�� � � � � ���� ���

�
 � ��� �
 � ��
��
��

�
 is a feature vector of�-th sample, which is represented by an	 dimensional vector

(�
 � ���� � � � � ��� � ��). �
 is a scalar value that specifies the class (positive(+1)

or negative(-1) class) of�-th data. Formally, one can define the pattern recognition

problem as a learning and building process of the decision function� � �� 	 ��
�.
In basic SVMs framework, one tries to separate the positive and negative samples

in the training data by a linear hyperplane:

�� � �� � � � � � � ��� � � �� (2.1)

SVMs finds the “optimal” hyperplane (optimal parameter�� �) which separates the

training data into two classes accurately. What dose “optimal” mean? In order to define

it, we need to consider themargin between two classes. Figure 2.1 illustrates this

idea. Solid lines show two possible hyperplanes, each of which correctly separates the

training data into two classes. Two dashed lines parallel to the separating hyperplane

indicate the boundaries in which one can move the separating hyperplane without any

8

Small Margin Large Margin

Figure 2.1. Two possible separating hyperplanes

misclassification. We call the distance between those parallel dashed lines asmargin.

SVMs takes a direct strategy that finds the separating hyperplane which maximizes its

margin.

In order to describe the separating hyperplane, we introduce the following form:

�� � �
� � � �
 �� ��
 �
� (2.2)

�� � �
� � � � �
 �� ��
 � �
�� (2.3)

(2.2) (2.3) can be written in one formula as:

�
��� � �
� � �� �
 �� �
� � � � � ��� (2.4)

Distance from the separating hyperplane to the point�
 can be written as:

���� ���
� �
�� � �
 � ��

��� �

Thus, the margin between two separating hyperplanes can be written as:

���
�������

���� ���
� � ���
��������

���� ���
�

� ���
�������

�� � �
 � ��
��� � ���

��������

�� � �
 � ��
���

�
�

��� �

9

To maximize the margin, one should minimize���. In other words, this problem

becomes equivalent to solving the following optimization problem:

�������� � ���� � �
�
����

����� ! !" � �
��� � �
� � �� �
 �� �
� � � � � ���

The solution of this optimization problem can be obtained by considering the following

primal Lagrangian:

���� �� �� �

�
���� �

��

��

�
��
���
 ��� � ���
� (2.5)

where the�
 are Lagrange multipliers. We must now minimize this Lagrangian with

respect to� and� under the constraints�
 � �. At the saddle point, the solution�� �

must satisfy the following conditions:

����� �� ��

��
� � 	

��

��

�
�
 � �

����� �� ��

��
� � 	 � �

��

��

�
�
�
� (2.6)

Substituting these conditions into (2.5), we can obtain the following dual Lagrangian:

������� � ���� �
��

��

�
 �

�

��

��

��
���

�
���
����
 � ��� (2.7)

����� ! !" � �
 � ��
��

��

�
�
 � � �� �
� � � � � ��

(2.6) indicates that the optimal hyperplane (vector�) is a liner combinations of

the vectors of the training data. Namely, there is a Lagrange multiplier�
 for every

training data�
. In this dual form problem, the training data�
 with non-zero�
 is

called a Support Vector. Support Vectors can be considered as the minimal and critical

elements which represent the all other training data. If all other training data were

removed, one could obtain the same separating hyperplane.

10

By using the Support Vectors,� and� can thus be expressed as follows:

� �
�

����� �

�
�
 �
 � � � � �
 � �
�

Finally, the decision function� � �� 	 ��
� can be written as:

���� � #�� �� � � � ��

� #��

� �

����� �

�
�
 ��
 � �� � �
�
� (2.8)

2.2 Generalization for the Non-separable Case

— Soft Margin Constraints

In the case where we cannot separate training samples linearly, “Soft Margin” method

allows some classification errors that may be caused by some noise in the training

samples. This can be done by introducing the positive slack variables�
 � � in the

constraints (2.2),(2.3).

�� � �
� � � �
� �
 �� ��
 �
�

�� � �
� � � � �
 � �
 �� ��
 � �
�

In this case, we minimize the following value instead of�
�
����.

���� �

�
���� � �

��

��

�
 (2.9)

The first term in (2.9) specifies the size of margin and the second term evaluates how

far the training data are away from the optimal separating hyperplane.� is the pa-

rameter that defines the balance of two quantities. If one makes� larger, separating

hyperplane becomes to evaluate classification error large, and if we make� small, the

separating hyperplane becomes evaluate whole margin more significant, permitting

some classification error.

Though we omit the details here, minimization of (2.9) is reduced to the following

11

Projected Feature SpaceOriginal Feature Space

Φ(x)

Figure 2.2. Projecting 2-D feature space onto 3-D space

optimization problem:

������� � ���� �
��

��

�
 �

�

��

��

��
���

�
���
����
 � ���

����� ! !" � � � �
 � ��
��

��

�
�
 � � �� �
� � � � � ���

Only the difference from the separable case is that the�
 now has an upper bound

of �. Usually, the value of� is estimated experimentally.

2.3 High-dimensional mapping

and Generalized Inner Products — Kernel function

In general classification problems, there are cases in which it is unable to separate the

training data linearly.

Suppose the exclusive-or (XOR) problem in two dimensional feature space (Figure

2.2, left-hand side). It is not possible to construct the separable liner hyperplane. How-

ever, one may obtain separable hyperplane if one projects the original two dimensional

feature space into three dimensional feature space by giving some projecting function

like (Figure 2.2):

	��� � ���� ��� 	 ���� ��� ������

More generally, the linearly unseparable training data could be separated linearly

by expanding all combinations of features as new ones, and projecting them onto a

12

higher-dimensional space. However, such a naive approach requires enormous com-

putational overhead, since one must carry out vector operations in higher dimensional

space. For example, if one tries to construct polynomials of degree� � 	 in 	-

dimensional feature space, one needs more than�	���� features.

Let us consider the case where we project the training data� onto a higher-

dimensional space by using projection function	 chosena priori 1. As we pay at-

tention to the objective function (2.7) and the decision function (2.8), these functions

depend only on the dot products of the input training samples. If we could calculate

the dot products from�� and�� directly without considering the vectors	���� and

	���� projected onto the higher-dimensional space, we can reduce the computational

complexity considerably. Namely, we can reduce the computational overhead if we

could find the function� that satisfies:

	���� � 	���� � ��������� (2.10)

On the other hand, since we do not need	 itself for actual learning and classifica-

tion, all we have to do is to prove the existence of	 that satisfies (2.10) provided the

function� is selected properly. It is known that (2.10) holds if and only if the function

� satisfies theMercer condition[74]. In this way, instead of projecting the training

data onto the high-dimensional space, we can decrease the computational overhead

by replacing the dot products, which is calculated in optimization and classification

steps, with the function�. Such a function� is called aKernel function . Kernel

function can be considered as generalized inner products of given two vectors. Some

representative examples of Kernel functions are:2

������ � !�$�� � � � � �� (2.11)

������ � ��%

����� ���
���

�
(2.12)

������ � �� � � �
��� (2.13)

Using a Kernel function, we can rewrite the dual form Lagrangian and decision func-

1In general,���� is a mapping into Hilbert space.
2������� � �

��������� is the sigmoid function

13

tion as:

���� �
��

��

�
 �

�

��

��

��
���

�
���
�����
���� (2.14)

� � #��

� �

����� �

�
�
���
��� � �

�
� (2.15)

Substituting the Kernel function� in the decision function (2.15) with each of the

above examples, (2.11) represents the so-called two layered neural networks, (2.12)

represents Radial Basis Function (RBF) network models. (2.13) is called as�-th poly-

nomial kernel. Use of�-th polynomial kernel function allows us to build an optimal

separating hyperplane which takes into account all combinations of features up to�.

It is easy to prove the existence of actual projecting function	���, when one ap-

plies polynomial kernel function with second degree (� � �) to the previous exclusive-

or (XOR) problem in two dimensional feature space.

������ � �� � � �
��

� ����� � ���� �
��

� �����
�
� � ����

�
� � ����� � ����� � ��������� �
��

� ����� �
�
��
�
����

�
����

�
������
� � ����� ����

�
����

�
����

�
������
�

	��� � ���� ���	 ����� �
�
��
�
����

�
����

�
������
�

By using second polynomial kernel function, the original two dimensional feature

space is projected onto six dimensional feature space. This implies that the use of

polynomial kernel function allows us to build a linearly separable hyperplane even in

the case of exclusive-or (XOR) problem.

2.4 Generalization ability of SVMs

In this section, we introduce a uniform generalization theory for machine leaning al-

gorithms. Suppose that training data and test data are generated from the same under-

lying i.i.d. probability distribution� ��� ��. Then the classification problems consists

of finding a mapping function� � � 	 � that minimizes theRiskof misclassification

 �� � �

�

�
������ ���� ��� ���

14

The problem is that one cannot estimate �� � directory since the distribution� ��� ��

is unknown. Instead of minimize the trueRisk, usually the followingEmpirical Riskis

used.

 ����� � �

��

��

��

����
�� �
�

However, it is know that theseEmpirical Risk Minimizationprinciple dose not always

guarantee a small actual risk. Therefore we do have to find a novel method to estimate

the trueRiskindeed.

Statistical Learning Theory[74] states thatEmpirical RiskandRiskhold the fol-

lowing theorem.

Theorem 1 (Vapnik) If !�! � �� is the VC dimension of the class functions imple-

mented by some machine learning algorithms, then for all functions of that class, with

a probability of at least
� ", the Risk is bounded by

 �� � � ����� � �
�
!�&� ��

�
�
�� &� �

�

�
(2.16)

where! is a non-negative integer called the Vapnik Cheroveniks (VC) dimension, and

is a measure of the capacity of the given decision function. The right side term of

(2.16) is called asVC bound.

Actually, almost all previous machine learning techniques are based onEmpirical

Risk Minimizationprinciple, then try to only minimize theEmpirical Risk ����� �

under the fixed VC dimension. However, it is difficult to estimate an appropriate VC

dimension for individual classification tasks. In other words, one can not estimate

precisely the complexity and capacity of the given tasks.

On the other hand,Structural Risk Minimizationprinciple tries to choose the func-

tion� which minimizes the guaranteed VC bound. (2.16) shows that we must minimize

the VC dimension in order to minimize the VC bound. It is known that the following

theorem holds for VC dimension! and margin# [74].

Theorem 2 (Vapnik) Suppose	 as the dimension of given training samples,# as

the margin, and$ as the smallest diameter which enclose all training data, then VC

dimension! of the SVMs is bounded as

! � ����$��#�� 	� �
� (2.17)

15

In order to minimize the VC dimension!, we have to maximize the margin# ,

which is exactly the strategy that SVMs takes. In addition, since$ is decided by

the given Kernel function, (2.17) also gives some criteria for selecting the appropriate

kernel function and the soft margin parameter .

Vapnik gives an alternative bound for theRiskof SVMs:

Theorem 3 (Vapnik) If we suppose%��� � is an error rate estimated by Leave-One-

Out procedure,%��� � is bounded by

%��� � � &�'�() *� +�*)� , (��*)-

&�'�() *� �)��	�	. -�'�(-
� (2.18)

Leave-One-Outprocedure is a simple method to examine theRisk— first by removing

one element from the training data, we constructs the decision function on the basis of

the remaining training data, and then tests the removed element. In this fashion, we

tests all� elements of the training data using� different decision functions.

(2.18) is a natural consequence bearing in mind that support vectors are the only

factors contributing to the final decision function. Namely, when the every removed

support vector becomes error inLeave-One-Outprocedure,%��� � becomes the right

side term of (2.18). AlthoughLeave-One-Outbound is elegant and allows us to esti-

mate the rough bound of theRisk, there seems to be many situations where the actual

error increases even though the number of support vectors decreases. Actually, it is

known that this bound is less predictive than the VC bound.

16

CHAPTER 3 Text Chunking

Knowledge is of no value unless you put it into practice.

Anton Chekhov

In this chapter, we apply Support Vector Machines (SVMs) to identify English base

phrases (chunks). We also apply an weighted voting of 8 SVMs-based systems trained

with distinct chunk representations. Experimental results show that our approach per-

forms better than previous approaches.

3.1 Introduction

The text chunking task is to divide a sentence into syntactically related non-overlapping

groups of tokens. Usually, chunking task is regarded as a preprocessing step for full

parsing. Various tasks in the fields of Natural Language Processing can be seen as a

chunking task. Examples include English base noun phrase identification (base NP

chunking), English base phrase identification (chunking), Japanese chunk (bunsetsu)

identification and named entity extraction. Tokenization and part-of-speech tagging

can also be regarded as a chunking task, if we assume each character as atoken.

Recently, a number of machine learning techniques has been applied to the chunk-

ing task[51, 57, 63, 64, 66, 73]. These techniques can avoid the needs for hand-crafted

rules for identifying chunks, and almost always promise us a robust, accurate and

wide-covered performance. However, conventional machine learning techniques, such

as Hidden Markov Model (HMM) and Maximum Entropy Model (ME), normally re-

quire a careful feature selection in order to achieve high accuracy. They do not provide

a method for automatic selection of given feature sets. Usually, some heuristics are

used for selecting effective features and their combinations.

New statistical learning techniques such as Support Vector Machines (SVMs)

[15, 74] and Boosting[18] have been proposed. These techniques take a strategy that

maximizes the margin between critical samples and the separating hyperplane. In par-

ticular, SVMs achieve high generalization even with training data of a very high di-

17

mension. Furthermore, by introducing the Kernel function, SVMs handle non-linear

feature spaces, and employ the training considering combinations of more than one

feature. Thanks to such predominant nature, SVMs attain the state-of-the-art perfor-

mance in real-world applications such as recognition of hand-written letters, or of three

dimensional images. In the field of natural language processing, SVMs are applied to

text categorization and syntactic dependency structure analysis, and are reported to

have achieved higher accuracy than previous approaches.[27, 37, 61].

In this chapter, we apply Support Vector Machines to the chunking task. In addi-

tion, in order to achieve higher accuracy, we apply weighted voting of 8 SVM-based

systems which are trained using distinct chunk representations. For the weighted vot-

ing systems, we introduce a new type of weighting strategy which are derived from the

theoretical basis of the SVMs.

3.2 Text Chunking

Text chunking task is to divide a sentence into syntactically related non-overlapping

groups of tokens (chunks). Usually, text chunking task consists of the following two

processes: first identifying properchunksfrom a sequence oftokens(such as words),

and second classifying these chunks into some syntactic classes.

As an example, in the task of Noun-Phrase Chunking, the sentence“He reckons

the current account deficit will narrow to only # 1.8 billion in September .”can be

chunked as follows:

[He] reckons [the current account deficit] will narrow}

to [only # 1.8 billion in [September] .

Chunks are represented as series of tokens (words) surrounded by square brackets. In

this case, only noun phrases are extracted from the given sentence.

In the task of base phrase chunking, the same sentence can be chunked as follows:

[NP He] [VP reckons] [NP the current account deficit]

[VP will narrow] [PP to] [NP only # 1.8 billion]

[PP in] [NP September] .

18

In this case, one must not only infer chunk boundaries but determine the syntactic

category of the chunk. A tag next to close brackets denotes the category of the chunk.

For instance, NP, VP and PP denote noun, verb and prepositional phrase respectively.

As far as we know, almost all available annotated corpora have no direct infor-

mation about boundaries of chunks and their syntactic categories. However, it is not

difficult to extract chunk information from full-parsed corpora, since chunking task is

a preprocessing step for full parsing. For example, the script ofchunklink1 allows us to

extract above chunk information from the Wall Street Journal (WSJ) part of the Penn

TreeBank II corpus. This script uses simple sets of hand-crafted rules for extracting

chunks from the parse-tree of WSJ corpus. In this thesis, we work with the WSJ corpus

as parsed tree, and usechunklinkto extract chunk information.

3.3 System Description

3.3.1 Text Chunking as a Sequential Labeling Problem

We regard chunking as a tagging task where each token in a given sentence is assigned

a tag which represents the word is inside or outside a chunk. There are mainly two

types of representations for proper chunks. One isInside/Outsiderepresentation, and

the other isStart/End representation.

1. Inside/Outside

This representation was first introduced in [51], and has been applied for base

NP chunking. This method uses the following set of three tags for representing

proper chunks.

I Current token is inside of a chunk.

O Current token is outside of any chunk.

B Current token is the beginning of a chunk which immediately follows

another chunk.

Tjong Kim Sang calls this method IOB1 representation, and introduces three

alternative versions — IOB2,IOE1 and IOE2 [64].

1http://ilk.uvt.nl/ sabine/chunklink/README.html

19

IOB2 A B tag is given for every token which exists at the beginning of a chunk.

Other tokens are the same as IOB1.

IOE1 An E tag is used to mark the last token of a chunk immediately preceding

another chunk.

IOE2 An E tag is given for every token which exists at the end of a chunk.

2. Start/End

This method has been used for the Japanese named entity extraction task, and

requires the following five tags for representing proper chunks[68].2.

B Current token is the start of a chunk consisting of more than one token.

E Current token is the end of a chunk consisting of more than one token.

I Current token is a middle of a chunk consisting of more than two tokens.

S Current token is a chunk consisting of only one token.

O Current token is outside of any chunk.

Examples of these five representations are shown in Table 3.1.

If we have to identify a class of each chunk, such as grammatical phrase names or

named entities, we represent them by a pair of an I/O/B label and a class label. For

example, in IOB2 representation, B-VP label is given to a token which represents the

beginning of a verb base phrase (VP).

3.3.2 Chunking with Support Vector Machines

Using Inside/Outside or Start/End representations, one can view text chunking as a se-

quential prediction problem. Given a word sequence��� � � � � ���, the goal of chunk-

ing is to find a best chunk-tag sequence���� � � � � ��� associated with the input word

sequence.

A tag sequence���� � � � � ��� has the following conditional probability:

� ���� � � � � ������ � � � � ��� �
��

��

��
���� � � � � �
��� ��� � � � � ����

where��
���� � � � � �
��� ��� � � � � ��� is a point-wise conditional probability that pre-

dicts how likely a chunk tag�
 is observed on the conditions that a word sequence and
2Originally, Uchimoto uses C/E/U/O/S representation. However we rename them as B/I/O/E/S for

our purpose, since we want to keep consistency with Inside/Start (B/I/O) representation.

20

Table 3.1. Examples of each chunk representation

In [early trading] in [busy Hong Kong] [Monday] , [gold] was ...

Inside/Outside Start/End

IOB1 IOB2 IOE1 IOE2 IEOBS

In O O O O O

early I B I I B

trading I I I E E

in O O O O O

busy I B I I B

Hong I I I I I

Kong I I E E E

Monday B B I E S

, O O O O O

gold I B I E S

was O O O O O

a partial tag sequence estimated previously are given. If we use Maximum Entropy

model to estimate this conditional probability, the model becomes equivalent to the

MEMM (Maximum Entropy Markov Model)[53].

The best tag sequence���� � � � � ��� is then given by

���� � � � � ��� � ����
���			�����

� ���� � � � � ������ � � � � ���

� ����
���			�����

��

��

��
���� � � � � �
��� ��� � � � � ���

� ����
���			�����

��

��

��
�	���� � � � � �
��� ��� � � � � ����

where	��� is a function that builds a numerical feature vector from a word sequence

���� � � � � �
�
� and a partial tag sequence��� � � � � �

�

��. The best tag sequence can be found

by Viterbi algorithm, a sort of Dynamic Programming. We can also employ a top�

breadth first search (BFS), which is better known asbeam search, to find an approxi-

mated best tag sequence efficiently[53].

21

In training phase, a training sequence of pairs of word and tag

������ ����� � � � � ����� ����� is given as a training data. We then decompose the

given training data into the following set of	 subproblems where a simple multi-class

classifier can be applicable to training:

������ ����� � � � � ����� ����� 	 ������	����� � � � � �
�
����

�����	����� ��� � � � � �
�
����

� � �

�����	����� � � � � �
�
���� ��� � � � � �

�
�����

where��
 is a class label to be predicted.

In addition, we can give an alternative model where we simply reverse the parsing

direction (from right to left) as follows:

� ���� � � � � ������ � � � � ��� �
��

��

����
������
��� � � � � ��� ��� � � � � ����

In this case, a partial chunk tag sequence�
��� � � � � �� which appears to the right hand

side of the current token�
 is used to predict the current chunk tag�
. The training

data is thus decomposed as follows:

������ ����� � � � � ����� ����� 	 ������	����� � � � � �
�
����

�������	����� ��� � � � � �
�
����

� � �

�����	����� � � � � �
�
�� ��� � � � � �

�
�����

In this thesis, we call the method which parses from left to right asforward parsing ,

and the method which parses from right to left asbackward parsing.

These formulations in testing and training are general, since one can apply any

kind of machine learning algorithms that can employ simple multi-class training and

classifications. However, SVMs are binary classifiers, thus we must extend SVMs to

multi-class classifiers in order to handle three (B,I,O) or more (B-NP,I-NP,B-VP ...)

classes. There are two popular methods to extend a binary classification task to that

of � classes. One isone class vs. all others, in which total� classifiers are build so

as to separate one class from all others. The other ispairwiseclassification that builds

22

�����
��� classifiers considering all pairs of classes, and final decision is given by

their voting. In addition, there are a number of other methods to extend binary classi-

fiers to multi-class classifiers. For example, Dietterich and Bakiri[17] and Allwein[3]

introduce a unifying framework for solving the multi-class problem by reducing them

into binary models. Their method can unify the above mentioned two approaches and

other robust approaches with error-correcting properties. In our experiments, however,

we employ the simplepairwiseclassifiers because of the following reasons:

� In general, SVMs require/�	�� � /�	�� training cost (where	 is the size of

training data). Thus, if the size of training data for individual binary classifiers

is small, we can significantly reduce the training cost. Althoughpairwiseclassi-

fiers tend to build a larger number of binary classifiers, the training cost required

for pairwisemethod is much more tractable compared to theone vs. all others.

� Some experiments [35] report that a combination ofpairwiseclassifiers performs

better than theone vs. all others.

SVMs are discriminative classifiers and cannot produce a conditional probability

by themselves. To employ Viterbi or beam search, we need to estimate conditional

probabilities or scores (costs). In CoNLL 2000 shared task, we use the number of

votes for the class obtained through the pairwise voting as the certain score[38].

In this thesis, however, we apply a deterministic method instead of applying beam

search with keeping some ambiguities. Such deterministic chunking is reduced to

letting the conditional probability be:

������ � � � � �
��� ��� � � � � ���
�	

�

	

 The prediction for	���� � � � � �
��� ��� � � � � ��� is �

� otherwise�

The reason we apply deterministic method is that our preliminary experiments and

investigation for the selection of beam width show that larger beam width dose not

always give a significant improvement in the accuracy. Given our experiments, we

conclude that satisfying accuracies can be obtained even with the deterministic parsing.

Another reason for selecting the simpler setting is that the major purpose of this thesis

is to compare weighted voting schemes and to show an effective weighting method

with the help of empirical risk estimation frameworks.

23

3.3.3 Encoding Features

In this section, we describe how we design the mapping function	��� that builds a

numerical feature vector from a word sequence���� � � � � �
�
� and a partial tag sequence

��� � � � � �
�

��.

Advantages of Support Vector Machines are their robustness to irrelevant fea-

tures and extensions to a non-linear classification using Kernel tricks. We can thus

use as many features as possible and use the polynomial kernel to handle their con-

jugations (combinations). For the features, we use all the information available

in the surrounding context, such as the words, their part-of-speech tags as well as

the chunk tags. Let���� ������ � � � � ��� � � � � ����� �� be an input word sequence.

Let ���� ������ � � � � ��� � � � � ����� �� and���� ������ � � � � ��� � � � � ����� �� be the part-of-

speech (POS) sequence and chunk tag sequence associated with the input word se-

quence respectively. Here we want to predict the chunk tag�� of the current word��.

The following is a list of the features used in our chunking experiments:

1. word features:�
 �� � ��� � � � ����

2. pos features:�
 �� � ��� � � � ����

3. chunk tag features:�
 �� � ��� � � � ��
� (forward parsing),

�
 �� �
� � � � � �� (backward parsing)

Figure 3.1 illustrates an example of features to identify the current chunk tag��, where

� is set to be 2. For each data point, the associated features are encoded as a binary

vector. For instance, in the figure 3.1, the tuple���, the � corresponds to the single

feature��������� with its value 1. The tuple���, in � does not appear in this data

point, the value of the feature�����
�� is set to be 0. By using such encoding, the

size of features will become quite large. However, the time complexity of SVMs does

not depend on the number of features, but rather on the the size of active (non-zero)

features per data point, which is usually quite small.

Clearly, it is important to use conjugation features, such as second order features

like: �
 � ��� �
 � �
� ��� 0 � ��� � � � � �� � � 0�. In previous research, such conjugation

features are selected manually. One drawback of using these features is memory con-

24

Confidence in the pound is

NN PP DT NN VBZ

B-NP B-PP B-NP

Word:

POS :

Chunk:

Relative
Position:

2−w 1−w 0w 1+w 2+w

2−t 1−t 0t 1+t 2+t

2−c 1−c

2− 1− 0 1+ 2+

Classified
label

Added dynamically
in test phase (DP)

Feature set
for learning

Chunking Direction (Left to Right)

0c

Figure 3.1. Features set for chunking task (� � �)

sumption in training. With SVMs, we can implicitly use up to� conjugation features

by using the polynomial kernel of degree�.

3.3.4 Weighted Voting

Tjong Kim Sang et al. report that they improve accuracies of chunking by apply-

ing weighted voting of systems which are trained using distinct chunk representations

and different machine learning algorithms, such as MBL, ME and IGTree [63, 66]. It

is well-known that weighted voting scheme has a potential to maximize the margin

between critical samples and the separating hyperplane, and produces a decision func-

tion with high generalization performance [58]. Boosting is a type of weighted voting

scheme, and has been applied to many NLP problems such as parsing, part-of-speech

tagging and text categorization.

In our experiments, in order to improve the performance, we also apply weighted

voting of 8 SVM-based systems which are trained using distinct chunk representa-

25

tions. Before applying weighted voting method, first we need to decide the weights

to be given to individual systems. We can obtain the best weights if we could obtain

the accuracy for the “true” test data. However, it is impossible to estimate them. In

boosting technique, the voting weights are given by the accuracy of the training data

during the iteration of changing the frequency (distribution) of training data. However,

we cannot use the accuracy of the training data for voting weights, since SVMs do not

depend on the frequency (distribution) of training data, and can separate the training

data without any mis-classification by selecting the appropriate kernel function and

the soft margin parameter. In this paper, we introduce the following four weighting

methods in our experiments:

1. Uniform weights (baseline)

We give the same voting weight to all systems. This method is taken as the

baseline for other weighting methods.

2. Cross validation

Dividing training data into& portions, we employ the training by using& �

portions, and then evaluate the remaining portion. In this fashion, we will have

& individual accuracy. Final voting weights are given by the average of these&

accuracies.

3. VC-bound

By applying (2.16) and (2.17), we estimate the lower bound of accuracy for each

system, and use the accuracy as a voting weight. The voting weight is calculated

as:� �
� , ��*�	�. The value of$, which represents the smallest diameter

enclosing all of the training data, is approximated by the maximum distance from

the origin.

$� � ��

����
��
�� ����
� /� ���/�/��

�/ � �!(*)�.�	�

4. Leave-One-Out bound

By using (2.18), we estimate the lower bound of the accuracy of a system. The

voting weight is calculated as:� �
� %�.

The procedure of our experiments is summarized as follows:

26

1. We convert the training data into 4 representations (IOB1/IOB2/IOE1/IOE2).

2. We consider two parsing directions (Forward/Backward) for each representation

(i.e.,'�� � (systems for a single training data set are given). Then, we employ

SVMs training using these independent chunk representations.

3. After training, we examine the VC bound and Leave-One-Out bound for each of

8 systems. As for cross validation, we employ the steps 1 and 2 for each divided

training data, and obtain the weights.

4. We test these 8 systems with a separated test data set. Before employing

the weighted voting, we have to convert them into a uniform representa-

tion, since the tag sets used in individual 8 systems are different. For this

purpose, we re-convert each of the estimated results into 4 representations

(IOB1/IOB2/IOE2/IOE1).

5. We employ weighted voting of 8 systems with respect to the converted 4 uni-

form representations and the 4 voting schemes respectively. Finally, we have'

(types of uniform representations)� 4 (types of weights)�
) results for our

experiments.

Figure 3.2 illustrates the procedure of our experiments.

Although we can use models with IOBES-F or IOBES-B representations for the

committees of the weighted voting, we do not use them in our voting experiments.

The reason is that the number of classes are different (3 vs. 5) and the estimated VC

and Leave-One-Out bound cannot straightforwardly be compared with other models

that have three classes (IOB1/IOB2/IOE1/IOE2) under the same condition. We con-

duct experiments with IOBES-F and IOBES-B representations only to investigate how

far the difference of various chunk representations would affect the actual chunking

accuracies.

3.4 Experiments

3.4.1 Experimental Settings

We use the following three annotated corpora for our experiments.

27

Original
training data

IOB1 IOB2 IOE1 IOE2
Step 1.

Uniform/CV.
VC-dim./L.O.O

Forward/
Backward

Step 3.

Step 4.
IOB1/IOB2
IOE1/IOE2

IOB1/IOB2
IOE1/IOE2

F B F B F B F B

1w 2w 3w 4w 7w 8w3w 6w

Step 2.

Weighted Voting

IOB1 IOB1 IOB1 IOB1 IOB1 IOB1 IOB1 IOB1

Step 5.
Voting

Training

Test

Figure 3.2. Weighted Voting of 8 systems

� Base NP standard data set (baseNP-S)

This data set was first introduced by [51], and taken as the standard data set for

baseNP identification task3. This data set consists of four sections (15-18) of

the Wall Street Journal (WSJ) part of the Penn Treebank for the training data,

and one section (20) for the test data. The data has part-of-speech (POS) tags

annotated by the Brill tagger[8].

� Base NP large data set (baseNP-L)

This data set consists of 20 sections (02-21) of the WSJ part of the Penn Treebank

for the training data, and one section (00) for the test data. POS tags in this data

sets are also annotated by the Brill tagger. We omit the experiments IOB1 and

IOE1 representations for this training data since the data size is too large for our

3ftp://ftp.cis.upenn.edu/pub/chunker/

28

current SVMs learning program. In case of IOB1 and IOE1, the size of training

data for one classifier which estimates the class I and O becomes much larger

compared with IOB2 and IOE2 models. In addition, we also omit to estimate the

voting weights using cross validation method due to a large amount of training

cost.

� Chunking data set (chunking)

This data set was used for CoNLL-2000 shared task[65]. In this data set, the

total of 10 base phrase classes(NP,VP,PP,ADJP,ADVP,CONJP, INITJ,LST,PTR,SBAR)

are annotated. This data set consists of 4 sections (15-18) of the WSJ part of the

Penn Treebank for the training data, and one section (20) for the test data4.

All the experiments are carried out with our software packageTinySVM5, which is

designed and optimized to handle large sparse feature vectors and large number of

training samples. This package can estimate the VC bound and Leave-One-Out bound

automatically. For the kernel function, we use the quadratic kernel (polynomial kernel

of degree 2) and set the soft margin parameter� to be 1.

In our experiments, the performance of the systems is usually measured with three

rates: precision, recall and F measure (harmonic mean between precision and recall):

1��� �
� �)(��-�*	 �)(����
)(��-�*	 �)(����

In this paper, we simply refer to1��� asaccuracy.

3.4.2 Results

Table 3.2 shows the results with individual chunk representations. This table also

lists the voting weights estimated by different approaches (B:Cross Validation, C:VC-

bound, D:Leave-one-out). We also show the results with Start/End representation in

Table 3.2.

Table 3.3 shows the results of the weighted voting of four different voting methods:

A: Uniform, B: Cross Validation (& � �), C: VC bound, D: Leave-One-Out Bound.

Table 3.4 shows the precision, recall and1��� of the best result for each data set.

The best accuracies per each chunk type in the chunking task are shown in Table 3.5
4http://lcg-www.uia.ac.be/conll2000/chunking/
5http://cl.aist-nara.ac.jp/ taku-ku/software/TinySVM/

29

Table 3.2. Accuracies of individual representations

B:Cross Validation, C:VC bound, D:LO bound

Training Condition Acc. Estimated Weights

data rep. 1��� B C D

baseNP-S IOB1-F 93.76 .9394 .4310 .9193

IOB1-B 93.93 .9422 .4351 .9184

IOB2-F 93.84 .9410 .4415 .9172

IOB2-B 93.70 .9407 .4300 .9166

IOE1-F 93.73 .9386 .4274 .9183

IOE1-B 93.98 .9425 .4400 .9217

IOE2-F 93.98 .9409 .4350 .9180

IOE2-B 94.11 .9426 .4510 .9193

baseNP-L IOB2-F 95.34 - .4500 .9497

IOB2-B 95.28 - .4362 .9487

IOE2-F 95.32 - .4467 .9496

IOE2-B 95.29 - .4556 .9503

chunking IOB1-F 93.48 .9342 .6585 .9605

IOB1-B 93.74 .9346 .6614 .9596

IOB2-F 93.46 .9341 .6809 .9586

IOB2-B 93.47 .9355 .6722 .9594

IOE1-F 93.45 .9335 .6533 .9589

IOE1-B 93.72 .9358 .6669 .9611

IOE2-F 93.45 .9341 .6740 .9606

IOE2-B 93.85 .9361 .6913 .9597

baseNP-S IOBES-F 93.96

IOBES-B 93.58

chunking IOBES-F 93.31

IOBES-B 93.41

30

Table 3.3. Results of weighted voting

A:Uniform Weights, B:Cross Validation, C:VC bound, D:L.O.O bound

Training Condition Accuracy1���

data rep. A B C D

baseNP-S IOB1 94.14 94.20 94.20 94.16

IOB2 94.16 94.22 94.22 94.18

IOE1 94.14 94.19 94.19 94.16

IOE2 94.16 94.20 94.21 94.17

baseNP-L IOB2 95.77 - 95.66 95.66

IOE2 95.77 - 95.66 95.66

chunking IOB1 93.77 93.87 93.89 93.87

IOB2 93.72 93.87 93.90 93.88

IOE1 93.76 93.86 93.88 93.86

IOE2 93.77 93.89 93.91 93.85

Table 3.4. Best results for each data set
data set precision recall 1���

baseNP-S 94.15% 94.29% 94.22

baseNP-L 95.62% 95.93% 95.77

chunking 93.89% 93.92% 93.91

3.4.3 Discussion

Accuracy vs Chunk Representation

We obtain the best accuracy when we apply IOE2-B representation for both baseNP-S

and chunking data set. It is more important to focus on the relationship between the

accuracy of the test data and the weights estimated by each weighting method, than

just to compare the results of each representation.

From the results, Cross-Validation and VC bound assign a relatively higher weights

to the IOE2-B representation than other representations. In other words, these two

methods can almost correctly predict the best representation, IOB2, for the test data.

31

Table 3.5. Best results for each chunk type in chunking task

chunk type precision recall F���

ADJP 77.75% 74.20% 75.93

ADVP 82.44% 81.29% 81.86

CONJP 60.00% 66.67% 63.16

INTJ 00.00% 50.00% 66.67

LST 0.00% 0.00% 0.00

NP 94.47% 94.32% 94.39

PP 97.04% 98.15% 97.59

PRT 76.79% 81.13% 78.90

SBAR 88.44% 85.79% 87.10

VP 93.69% 94.10% 93.89

overall 93.89% 93.92% 93.91

On the other hand, Leave-One-Out bound cannot predict the best representations. We

can conclude that Cross-Validation and VC-bound are quite useful to selecting an op-

timal representation in chunking tasks. Even if we have no room to apply the voting

schemes because of some real-world constraints (limited computation and memory ca-

pacity), the use of these two methods may allow to select an optimal representation for

the unseen test data.

There are no significant differences in the performance between In-

side/Outside(IOB1/IOB2/IOE1/IOE2) and Start/End(IOBES) representations.

Sassano and Utsuro evaluate how the difference of the chunk representation would

affect the performance of the systems based on different machine learning algo-

rithms[57]. They report that Decision List system performs better with Start/End

representation than with Inside/Outside, since Decision List considers the specific

combination of features. As for Maximum Entropy, they report that it performs better

with Inside/Outside representation than with Start/End, since Maximum Entropy

model regards all features as independent and tries to catch the more general feature

sets. We believe that SVMs perform well regardless of the chunk representation, since

SVMs show a high generalization performance even with high-dimensional feature

space.

32

Effects of Weighted Voting

The results with weighted voting deliver us a higher accuracies than any single system

regardless of the voting weights. Furthermore, we achieve relatively higher accuracy

by applying Cross validation, VC-bound and Leave-One-Out bound compared to the

baseline method.

The results with VC bound show slightly better accuracy than those with Cross

validation. This result suggests that the VC bound has potentials to predict the error

rate for the “true” test data. On the other hand, we find that the prediction abilities of

Leave-One-Out bound is worse than those of VC bound as well as Cross Validation.

Cross validation is the standard method to estimate the voting weights for different

systems. However, Cross validation requires a larger amount of computational over-

head, since the training data should be divided and be repeatedly used to obtain the

weights. We believe that VC bound is more effective and tractable than Cross valida-

tion, since it can obtain the comparable results to Cross validation without increasing

computational overhead.

3.4.4 Comparison with Related Work

Tjong Kim Sang et al. report that they achieve accuracy of 93.86 for baseNP-S data set,

and 94.90 for baseNP-L data set. They apply weighted voting of the systems which are

trained using distinct chunk representations and different machine learning algorithms

such as MBL, ME and IGTree[63, 66].

Our experiments show the accuracy of 93.76 - 94.11 for baseNP-S, and 95.29 -

95.34 for baseNP-L, even with a single chunk representation. In addition, by applying

the weighted voting framework, we can see the accuracy of94.22for baseNP-S, and

95.77for baseNP-L data set. As far as accuracies are concerned, our model outper-

forms Tjong Kim Sang’s model.

In the CoNLL-2000 shared task, we achieved the accuracy of 93.48 using IOB2-F

representation[38]6 By combining weighted voting, the accuracy of93.91is obtained,

6In our experiments, the accuracy of 93.46 is obtained with IOB2-F representation, which was the

exactly the same representation we applied for CoNLL 2000 shared task. This slight difference of

accuracy arises from the following two reason : (1) The difference of beam width for parsing (N=1 vs.

N=5), (2) The difference of applied SVMs package

33

which outperforms other methods based on weighted voting[64, 73].

3.5 Summary

In this chapter, we introduce a uniform framework for chunking task based on Sup-

port Vector Machines (SVMs). Experimental results on WSJ corpus show that our

method outperforms other conventional machine learning frameworks such MBL and

Maximum Entropy Models. The results are due to the good characteristics of gener-

alization and non-overfitting of SVMs even with a high dimensional vector space. In

addition, higher accuracies can be achieved by applying weighted voting of 8-SVM

based systems which are trained using distinct chunk representations.

34

CHAPTER 4 Dependency Parsing

Imagination is more important than knowledge.

Albert Einstein

This chapter presents dependency parsers based on Support Vector Machines. We

propose two methods for parsing. One is the probabilistic model, which has been

widely used in the dependency parsing, and the other is the cascaded chunking model

in which a sentence is parsed determinately only estimating the current segment mod-

ifies the immediately right-hand side segment. We compare two methods and discuss

the merits and demerits of them.

4.1 Introduction

Dependency parsing has been recognized as a basic technique in Japanese sentence

analysis, and a number of studies have been proposed for years. Japanese dependency

structure is usually defined in terms of the relationship between phrasal units called

’bunsetsu’segments (hereafter “segments”). Generally, dependency parsing consists

of two steps. In the first step, dependency matrix is constructed, in which each element

corresponds to a pair of chunks and represents the probability of a dependency relation

between them. The second step is to find the optimal combination of dependencies to

form the entire sentence.

In previous approaches, these dependencies are given by manually constructed

rules. However, rule-based approaches have problems in coverage and consistency,

since there are a number of features that affect the accuracy of the final results, and

these features usually relate to one another.

On the other hand, as large-scale tagged corpora have become available these

days, a number of statistical parsing techniques, which estimate the dependency prob-

abilities using such tagged corpora, have been developed[11, 20]. These approaches

have overcome the systems based on the rule-based approaches. A number of ma-

chine learning algorithms, such as Decision Trees[22] and Maximum Entropy mod-

35

els[9, 30, 31, 53, 71,?] has been applied to the dependency or syntactic structure analy-

sis. However, these models require an appropriate feature selection in order to achieve

a high performance. In addition, acquisition of efficient combinations of features is

difficult in these models.

In recent years, new statistical learning techniques such as Support Vector Ma-

chines (SVMs) [15, 74] and Boosting[18] are proposed. These techniques take a strat-

egy that maximize the margin between critical examples and the separating hyperplane.

In particular, compared with other conventional statistical learning algorithms, SVMs

achieve high generalization even with training data of a very high dimension. Fur-

thermore, by selecting a proper type of Kernel function, SVMs can handle non-linear

feature spaces, and carry out the training with considering combinations of more than

one feature.

Thanks to such predominant nature, SVMs deliver state-of-the-art performance in

real-world applications such as recognition of hand-written letters, or of three dimen-

sional images. In the field of natural language processing, SVMs are also applied to

dependency parsing[37], chunking[38, 39] and text categorization[27, 28, 61], and are

reported to have achieved high accuracy without falling into over-fitting even with a

large number of words taken as the features.

In this chapter, we propose an application of SVMs to Japanese dependency pars-

ing. We propose two methods for applying based on SVMs. One is the probabilistic

model which has been widely applied to Japanese dependency parsing. The other cas-

caded chunking model, which is a sort of deterministic parser only estimating whether

current segment modifies immediately right-hand side segment. We use the features

that have been studied in conventional statistical dependency parsing with a little mod-

ification on them.

4.2 Statistical Dependency Parsing

4.2.1 The Probabilistic Model

This section describes a general formulation of the probabilistic model and parsing

techniques which have been applied for Japanese statistical dependency parsing.

Let 2 � ���� ��� � � � � ��� � � and$ � ���� ��� � � � � ����� � � be a sequence

36

of segments and a sequence of dependency patterns respectively.�
 � 0 means that

the segment�
 depends on (modifies) the segment��. We assume that the dependency

sequence$ satisfies the following two constraints.

1. Except for the rightmost one, each segment depends on (modifies) exactly one

of the segments appearing to the right,

(i.e.,���
 � � � '�
� � � �
 � '�
)

2. Dependencies do not cross one another.

(i.e,��� 0 � �
 � 0 � �� � � � � � 0� �� � 0)

Statistical dependency parsing is defined as a searching problem in which one tries

to find an optimal sequence�$ that maximizes the conditional probability� �$�2�

under the above two constraints.

�$ � ����
��	

� �$�2�

If we assume that all dependency relations are mutually independent,� �$�2� can be

decomposed as:

� �$�2� �
����

��

� ��
�0 �	��
� ���� 	��
� ��� �
��

where� ��
�0 �	��
� ���� represents a point-wise conditional probability that predicts

how likely a segment�
 depends on (modifies) a segment��. 	��
� ��� is an	 dimen-

sional feature vector that encodes various kinds of linguistic features related to the

segments�
 as well as��. Usually, the conditional probability� ��
 � 0 �	��
� ���� is

represented in a matrix form:#
� � � ��
�0 �	��
� ����, which is sometimes referred

to thedependency matrix.

For our convenience, we here divide the original parsing problem into the following

two subproblems:

1. Estimate point-wise conditional probabilities and then build a dependency ma-

trix.

2. Search the best dependency relation which maximize the conditional probability

� �$�2� of the input sequence.

37

Input: 私は 1 / 彼女と 2 / 京都に 3 / 行きます 4

I-top / with her / to Kyoto-loc / go

1.03

0.80.22

0.70.20.11

432

Dependency Matrix

Modifiee

M
o
d
if
ie
r

私は 1 / 彼女と 2 / 京都に 3 / 行きます
I-top / with her / to Kyoto-loc / go

2. Search the optimal dependencies

　　which maximize the sentence 　　
　　probability

1. Build a Dependency Matrix

(How probable one segment
modifies another)

Output:

Figure 4.1. An example of the parsing process with the probabilistic model

Figure 4.1 shows an example of the parsing process with the probabilistic model.

There are mainly two approaches to solve the first problem. One is the rule-based

approach in which dependency matrix is given by hand-crafted rules. This approach

had been used in the early studies of dependency parsing. However, rule-based ap-

proaches have problems in coverage and consistency, since there are a number of fea-

tures that affect the accuracy of the final results, and these features usually relate to

one another. In addition, it is too difficult to incorporate a scoring scheme in rule-

based systems.

The other is corpus-based statistical approach. As large-scale tagged corpora have

become available these days, a number of statistical parsing techniques which estimate

the dependency probabilities using such tagged corpora have been developed[11, 20].

These approaches have overcome the systems based on the rule-based approaches.

Decision Trees[22] and Maximum Entropy models[9, 53, 69–71] have been applied to

38

dependency or syntactic structure analysis.

For the second problem, bottom-up parsing algorithms such as CYK[32] or

Chart[34] have been widely used. For the Japanese dependency parsing, Sekine sug-

gests an efficient parsing algorithm that parses from the end of a sentence and employs

a beam search[60]. Figure 4.2 illustrates the Sekine’s Best-First-Parsing algorithm in

more detail. The running time is dominated by the inner 3 loops. For each segment,

at most� partial dependency patterns must be inserted into the priority queue (heap)

where each insertion costs at most/�&"��� . The total parsing time of Sekine’s

method is thus/��'� � &"�����, which is lower than/�'��, the cost of the stan-

dard parsing techniques such as CYK and Chart. For an efficient and tractable parsing,

we here focus only on the Sekine’s Best-First-Parsing algorithms instead of CYK and

Chart.

4.2.2 Integration of SVMs into the probabilistic model

We here consider the interpretation of SVMs into the probabilistic model described

before. To apply SVMs, the following two problems arise

� How can a training data be constructed? In other words, what are the positive

and negative examples for SVMs?

� How can we estimate the probabilities of dependencies? SVMs have no potential

to output the conditional probabilities.

For the first problem, we adopt a straightforward method: Out of all combinations

of two candidate segments in the training data, we take a pair of segments that are

in a dependency relation as a positive example, and two segments that appear in a

sentence but are not in a dependency relation as a negative example. Given a sequence

of segments2 � ���� � � � � ��� and a correct dependency pattern$ � ���� � � � � �����,

39

Algorithm: Best-First-Parsing

argument: Sequence of segments2 � ���� � � � � ���
Beam-width:�

returns: An optimal dependency pattern�$ � ���� � � � � ���� �
begin

� � �!�� � � � � !���� (an array of empty priority queue)

push!���, �
��� ��� � � � � ���

for � � '�
 downto

� �

while !
 �� 3 and � � �
� � � �

�� ���� � � � � ������ = pop !

for 0 � ��
 to '

if �� � 0 �� � � � � � � 0� then // no crossing

 � � � ��
 � 0�	��
� ����

�
 � 0

push!
��, �� ���� � � � � ������
end

end

end

end

�� ���� � � � � ������ = pop !�
return ���� � � � � �����

end

Figure 4.2. Algorithm: Sekine’s Best-First-Parsing algorithm

40

the training data
 for SVMs can be given by:

 � ����� �	���� ����� �����	���� ����� � � � � �����	���� �����
�����	���� ����� � � � � �����	���� �����
� � �

���������	������ ������� � � � � �������	������ �����
�������	������ ����� �

�������
�������

���
��	��
� ������

where	��
� ��� �
� is a feature vector encoding linguistic features related to�
 and

��, and�
� � �4��
 � 0��
 �� ��
�� is a class label1. If �
 � 0, the corresponding

class label becomes +1, and otherwise -1. A total of'*�' �
��� training examples

(where' is the number of segments in a sentence) must be produced per sentence.

For the second problem, we define the conditional probability by substituting the

distance between a test data	��
� ��� and the separating hyperplane for the sigmoid

function:

� ��
�0 �	��
� ���� �

 � ��%����	��
� �����
�

+$���

��	��
� ���� �
�

��������� �

�� � �� � 	��� ���� � 	��
� ��� � �� (4.1)

This transformation dose not give us a true probability however, there is a report which

states that sigmoid function experimentally gives a good approximation of probability

function from the decision function of SVMs[48]. We adopt this method in our exper-

iment to transform the distance measure obtained in SVMs into a probability function.

By giving dependency probabilities, we can analyze dependency structure with the

conventional probabilistic model.

4.2.3 Cascaded Chunking Model

In the probabilistic model, we have to estimate the probabilities of each dependency

relation. The sigmoid function can heuristically be used to obtain pseudo probabilities

in SVMs, however, there is no theoretical endorsement for this heuristics.
1���� is the indicator function.

41

Moreover, the probabilistic model is not good in its scalability since it usually

requires a total of' � �' �
��� training examples per sentence. It will be hard

to combine the probabilistic model with some machine learning algorithms, such as

SVMs, which require a polynomial computational cost on the number of given training

examples.

In this thesis, we introduce a new method for Japanese dependency analysis, which

does not require the probabilities of dependencies and parses a sentence determinis-

tically. The proposed method can be combined with any type of machine learning

algorithm that has classification ability.

The original idea of our method stems from the cascaded chucking method which

has been applied in English parsing [56]. Let us introduce the basic framework of the

cascaded chunking parsing method:

1. A sequence of base phrases is the input for this algorithm.

2. Scanning from the beginning of the input sentence, chunk a series of base

phrases into a single non-terminal node.

3. For each chunked phrase, leave only the head phrase, and delete all the other

phrases inside the chunk

4. Finish the algorithm if a single non-terminal node remains, otherwise return to

the step 2 and repeat.

We apply this cascaded chunking parsing technique to Japanese dependency anal-

ysis. Since Japanese is a head-final language, and the chunking can be regarded as

the creation of a dependency between two segments, we can simplify the process of

Japanese dependency analysis as follows:

1. Put anO tag on all segments. TheO tag indicates that the dependency relation

of the current segment is undecided.

2. For each segment with anO tag, decide whether it modifies the segment on its

immediate right hand side. If so, theO tag is replaced with aD tag.

3. Delete all segments with a D tag that are immediately followed by a segment

with an O tag.

42

4. Terminate the algorithm if a single segment remains, otherwise return to step 2

and repeat.

Figure 4.3 shows an example of the parsing process with the cascaded chunking

model. In addition, figure 4.4 represents a pseudo code of this algorithm.

We think this proposed cascaded chunking model has the following advantages

compared to the probabilistic model.

� Simple and Efficient

If we use the CYK algorithm, the probabilistic model requires/�'�� parsing

time, (where' is the number of segments in a sentence.). Even using the Best-

First-Parsing method described in the previous section, parsing costs amount

to /��'� &"�����. On the other hand, the cascaded chunking model requires

/�'�� in the worst case when all segments modify the rightmost segment. The

actual parsing time is usually lower than/�'��, since most of segments modify

segment on its immediate right hand side.

Furthermore, in the cascaded chunking model, the training examples are ex-

tracted using the parsing algorithm itself. In the training phase, the function

estimatein the figure 4.4 is replaced by the function shown in the figure 4.5.

The size of training examples required for the cascaded chunking model is much

smaller than that for the probabilistic model. The model reduces the training

cost significantly and enables training using larger amounts of annotated corpus.

� No assumption on the independence between dependency relations

The probabilistic model assumes that dependency relations are independent.

However, there are some cases in which one cannot parse a sentence correctly

with this assumption. For example, coordinate structures cannot be always

parsed with the independence constraint. The cascaded chunking model parses

and estimates relations simultaneously. This means that one can use all depen-

dency relations, which have narrower scope than that of the current focusing

relation being considered, as feature sets. We describe the details in the next

section.

� Independence from machine learning algorithm

The cascaded chunking model can be combined with any machine learning al-

gorithm that works as a binary classifier, since the cascaded chunking model

43

Input:

Tag: O O O O O

Initialization

Tag: O O D D O

Tag: O D D O

Tag: O D O

Deleted

Tag: D O

Tag: O
Finish

Input:

Input:

Input:

Input:

Input:

Deleted

Deleted

Deleted

 彼は 彼女の 温かい 真心に 感動した。

 彼は 彼女の 真心に 感動した。

 彼は 彼女の 真心に 感動した。

 彼は 彼女の 真心に 感動した。

 彼は 真心に 感動した。

 彼は 感動した。

感動した。

温かい

温かい

He her warm heart be moved

(He was moved by her warm heart.)

Figure 4.3. Example of the parsing process with cascaded chunking model

44

Algorithm: Cascaded Chunking Model

argument: Sequence of segments2 � ���� � � � � ���
return: An optimal dependency pattern�$ � ���� � � � � �����
begin

$%� � ��(��� � � � � �(��� � ����-(� � � � � ���-(� // delete flags

56 � ���.�� � � � � ��.�� � ��� � � � ��� // tag
�$ � ���� � � � � ����� � ��� � � � � �� // result

	 � � // # of deleted segments

function estimate�-)�� �-��

return any classifier�	������ ������

end

function next ���

for 0 � � �
 to'

if �(�� �falsereturn 0

end

while (� '�
)

for � �
 to'�

0 �next ��� // get next segment

��.
 � estimate��� 0�

if (��.
 � �) then

�
 � 0

if (��.
�� � �) then

�(�
 � true

	 � 	�

end

end

end

end

return �$

end
Figure 4.4. Algorithm: Cascaded Chunking Model

45

function estimate�-)�� �-��

if � ���� modifies���� in the training corpus� then

)(-��� � $

else

)(-��� � /

 �
 �)(-����	������ ������
return result

end
Figure 4.5. The functionestimatein training

parses a sentence deterministically only deciding whether or not the current seg-

ment modifies the segment on its immediate right hand side. Probabilities of

dependencies are not always necessary for the cascaded chunking model.

4.2.4 Encoding Features

This section describes the concrete feature set used for learning. Note that the design

of feature set is equivalent to the construction of the mapping function	��� �� �
�

that builds a numerical feature vector from two candidate modifier and modifee�
� ��.

Static and Dynamic Features

Linguistic features that are supposed to be effective in Japanese dependency analysis

are: head words and their parts-of-speech tags, functional words and inflection forms

of the words that appear at the end of segments, distance between two segments, ex-

istence of punctuation marks. As those are solely defined by the pair of segments, we

refer to them as thestatic features.

Japanese dependency relations are heavily constrained by such static features since

the inflection forms and postpositional particles constrain the dependency relation.

However, when a sentence is long and there are more than one possible dependents,

static features, by themselves cannot determine the correct dependency.

Consider the example shown in Figure4.6. In this example, “この本を (this book-

acc)” may modify either of “持っている (have)” or “探している (be looking for)” and

cannot be determined only with the static features. However, “女性を (lady-acc)” can

46

私は この本を 持っている 女性を 探している

I-top this book-acc have lady-acc be looking for

?

この本を 持っている

this book-acc have
この本を 探している

this book-acc be looking for

Both relations are syntacticallycorrect.

Figure 4.6. An example of ambiguous dependency relations

modify the only the verb “探している,”. Knowing such information is quite useful

for resolving syntactic ambiguity, since two accusative noun phrase hardly modify the

same verb. It is possible to use such information if we add new features related to

other modifiers. In the above case, the chunk “探している” can receive a new feature

of accusative modification (by “女性を”) during the parsing process, which precludes

the chunk “この本を” from modifying “探している” since there is a strict constraint

about double-accusative modification that will be learned from training examples. We

decided to take into consideration all such modification information by using func-

tional words or inflection forms of modifiers.

Using such information about modifiers in the training phase has no difficulty since

they are clearly available in a tree-bank. On the other hand, they are not known in the

parsing phase. This problem can be easily solved if we adopt a bottom-up parsing al-

gorithm and attach the modification information dynamically to the newly constructed

phrases (the chunks that become the head of the phrases). We refer to the features that

are added incrementally during the parsing process asdynamic features.

Specifically, we take the following three types of dynamic features in our experi-

ments.

A. The segments which modify the current candidate modifiee. (boxes marked with

A in Figure 4.7)

47

Modifier Modifiee

modify or not?

... ...A A CB B

Figure 4.7. Three types of dynamic features

B. The segments which modify the current candidate modifier. (boxes marked with

B in Figure 4.7)

C. The segment which is modified by the current candidate modifiee. (boxes

marked with C in Figure 4.7)

Cascaded chunking model enables us to use all types of dynamic features. How-

ever, in this model, dependency relations with short distance are identified earlier than

those with long distance. Therefore, the distances of dependency relations used as

dynamic features are shorter than that between the candidate modifier and modifiee.

In the probabilistic model, in contrast, we can only use the dynamic features with

type of A and C. Since Sekine’s Best-First-Parsing method parses a sentence from the

end of sentence, the dependency relations which appear the left hand side of the current

candidate modifier are not identified yet. We can use all the dependencies as dynamic

features, which appear in the right hand side of the candidate modifier, since they are

already identified.

Concrete Design of Features

Concrete features used for learning are summarized in Table 4.1. The static features

are basically taken from Uchimoto’s list[71] with little modification.

In this table,head word (HW)is defined as the rightmost content word in the seg-

ment.functional word (FW)is defined as follows:

� The rightmost functional word, if there is a functional word in the segment.

� The rightmost inflection form, if there is a predicate in the segment.

48

� Same as theHW, otherwise.

The static features include the information on existence of brackets, question marks

and punctuation marks etc. Besides, there are features that show the relative relation

of two segments, such as distance, and existence of brackets, quotation marks and

punctuation marks between them.

For a segment X and its dynamic feature with type A or B, we use thefunctional

representation (FR)of X based on thefunctional word (FW)of X, denoted by(X-FW).

Specifically,Functional Representationis defined as follows:

� Lexical form of X-FW if POS of X-FW is particle, adverb, adnominal or con-

junction

� Inflectional form ofX-FW if X-FWhas an inflectional form.

� The POS tag ofX-FW, otherwise.

For the dynamic features with type C, we use their POS tag and POS-subcategory.

An concrete example of our feature encoding is shown in Figure 4.8.

Table 4.1. Features used in our experiments

Static Features Modifier/Modifiee

segments

Head Word (surface-form, POS, POS-

subcategory, inflection-type, inflection-

form), Functional Word (surface-form,

POS, POS-subcategory, inflection-type,

inflection-form), brackets, quotation-

marks, punctuation-marks, position in

sentence (beginning, end)

Between two seg-

ments

distance(1,2-5,6-), case-particles, brackets,

quotation-marks, punctuation-marks

Dynamic Features Type A,B Form of inflection represented withFunc-

tional Representation

Type C POS and POS-subcategory of Head word

Smilier to the Text Chunking described in chapter 3, for each candidate relation

�
� ��, the associated features	��
� ��� are encoded as binary vectors. For instance, in

49

ビルの　駐車場から 緑の 車が　走り去るのを 男性が 目撃した

Candidate modifier and modifiee

A man saw a green car drove off the parking of the building.

building parking green car drove off a man saw

Static Features:

B CA

Head:
surface: 駐車場 (parking)
pos: noun
pos-subcategory: N/A
inflection-type: N/A
inflection-form: N/A

Distance: 2-5
Case-particles: の, が
Brackets: N/A
Question marks: N/A

Functional word:
surface: から (source)
pos: particle
pos-subcategory: N/A
inflection-type: N/A
inflection-form: N/A

Brackets: N/A,
Question marks: N/A
Punctuations: N/A
Positions: don’t care

Head:
surface: 走り去る (drive off)
pos: verb
pos-subcategory: N/A
inflection-type: RA-gyo
inflection-form: base-form

Functional word:
surface: を (accusative)
pos: particle
pos-subcategory: N/A
inflection-type: N/A
inflection-form: N/A

Brackets: N/A,
Question marks: N/A
Punctuations: N/A
Positions: don’t care

Modifier: (駐車場から)

Modifiee: (走り去るのを)

Between two segments:

Dynamic Features:

Functional Representation: が

Type A: (車が)
Functional Representation: の

Type B: (ビルの)

POS and POS-subcategory of head: verb

Type C: (目撃した)

Figure 4.8. An example of feature encoding

50

the figure 4.8, the tuple�static feature, modifier, pos, noun� corresponds to the single

feature��������
	����	������	����������� with its value 1.

In dependency parsing, it is quite important to use conjugation features, since one

cannot identify correct dependency relations only using the information from either

of modifier or modifee. By using the polynomial kernel of degree�, we use up to

� conjugation features implicitly. It avoids careful feature selection required in the

previous machine learning algorithms such as Maximum Entropy and Decision List.

4.3 Experiments

4.3.1 Experimental Setting

We used the following two annotated corpora for our experiments.

� Standard data set(standard)

This data set consists of the Kyoto University text corpus Version 2.0 [41]. We

used 7,958 sentences from the articles on January 1st to January 7th as training

examples, and 1,246 sentences from the articles on January 9th as the test data.

This data set was used in [69, 72] and [37].

� Large data set(large)

In order to investigate the scalability of the cascaded chunking model, we pre-

pared larger data set. We used all 38,383 sentences of the Kyoto University text

corpus Version 3.0. The training and test data were generated by a two-fold cross

validation.

For the kernel function, we used the polynomial kernel (2.13). We set the soft

margin parameter� to be 1.

Performance on the test data is measured using dependency accuracy and sentence

accuracy. Dependency accuracy is the percentage of correct dependencies out of all

dependency relations. Sentence accuracy is the percentage of sentences in which all

dependencies are determined correctly.

51

Table 4.2. Cascaded Chunking model vs Probabilistic model

PM: Probabilistic Model CCM: Cascaded Chunking Model

Data Set Standard Large

Model PM CCM PM CCM

Dependency Acc. (%) 89.09 89.29 N/A 90.46

Sentence Acc. (%) 46.17 47.53 N/A 53.16

of training sentences 7,956 7,956 19,191 19,191

of training examples 459,105 110,355 1,074,316 261,254

Training Time (hours) 336 8 N/A 48

Parsing Time (sec./sentence) 2.1 0.5 N/A 0.7

4.3.2 Results

The results for the probabilistic model as well as the cascaded chunking are summa-

rized in Table 4.2. We cannot employ the experiments for the probabilistic model using

large dataset, since the data size is too large for our current SVMs learning program to

terminate in a realistic time period.

Even though the number of training examples used for the cascaded chunking

model is less than a quarter of that for the probabilistic model, and the used feature

set is the same, dependency accuracy and sentence accuracy are improved using the

cascaded chunking model (89.09%	 89.29%, 46.17%	 47.53%).

The time required for training and parsing are significantly reduced by applying

the cascaded chunking model (336h.	8h, 2.1sec.	 0.5sec.).

4.3.3 Discussion

Probabilistic model vs. Cascaded Chunking model

As can be seen Table 4.2, the cascaded chunking model is more accurate, efficient and

scalable than the probabilistic model. It is difficult to apply the probabilistic model

to the large data set, since it takes no less than 336 hours (2 weeks) to carry out the

experiments even with the standard data set, and SVMs require quadratic or more

computational cost on the number of training examples.

52

For the first impression, it may seems natural that higher accuracy is achieved with

the probabilistic model, since all candidate dependency relations are used as training

examples. However, the experimental results show that the cascaded chunking model

performs better. Here we list what the most significant contributions are and how well

the cascaded chunking model behaves compared with the probabilistic model.

The probabilistic model is trained with all candidate pairs of segments in the train-

ing corpus. The problem of this training is that exceptional dependency relations may

be used as training examples. For example, suppose a segment which appears to right

hand side of the correct modifiee and has a similar content word. The pair of two

segments becomes a negative example. However, this is negative because there is a

better and correct candidate at a different point in the sentence. Therefore, this may

not be a true negative example, meaning that this can be positive in other sentences. In

addition, if a segment is not modified by a modifier because of cross dependency con-

straints but has a similar content word with correct modifiee, this relation also becomes

an exception. Actually, we cannot ignore these exceptions, since most segments mod-

ify a segment on its immediate right hand side. By using all candidates of dependency

relation as the training examples, we have committed to a number of exceptions which

are hard to be trained upon. Looking in particular on a powerful heuristics for depen-

dency structure analysis: “A segment tends to modify a nearer segment if possible,” it

will be most important to train whether the current segment modifies the segment on

its immediate right hand side. The cascaded chunking model is designed along with

this heuristics and can remove the exceptional relations which have less potential to

improve performance.

Effects of Dynamic Features

Table 4.3 and 4.4 summarize the results of parsing accuracies performed by the prob-

abilistic model and the cascaded chunking model with and without dynamic features

respectively. We also show these results in Figure 4.9 and 4.10. The results with the

dynamic features are better than the results without them. The results with dynamic

features constantly outperform those with static features, when the size of the training

data is large. In most cases, the improvements is considerable.

Table 4.5 summarizes the performance without some dynamic features when the

cascaded chunking model is used. From these results, we can conclude that all dynamic

53

Table 4.3. Results of the probabilistic model (� � �� � � �)

Training data size Dependency Accuracy (%) Sentence Accuracy (%)

with / without dynamic features with / without dynamic features

1172 86.52 / 86.12 39.31 / 38.50

1917 87.21 / 86.81 40.06 / 39.80

3032 87.67 / 87.62 42.94 / 42.45

4318 88.35 / 88.33 44.15 / 44.47

5540 88.66 / 88.40 45.20 / 43.66

6756 88.77 / 88.55 45.36 / 45.04

7958 89.09 / 88.77 46.17 / 45.04

features are effective in improving the performance.

Dimension of the polynomial kernel

Table 4.6 and 4.7 show the relationship between the dimensions of the polynomial

kernel and the parsing accuracies. In addition, in order to investigate how VC-Bound

and Leave-One-Out bound (L.O.O bound) can predicttrueerror rate, these tables also

include the error-rate estimated with these theoretical bounds.

As a result, the case of� � � gives the best accuracy with both of two models. In

addition, the accuracies with the case of� �
 are significantly worse than the those

of other cases. With the probabilistic model, the separating hyperplane seems not to

be built in the case of� �
, seeing the accuracies of 67.09% for test data and 90.73%

for training data. This result supports our first intuition that we need a combination

of at least two features. It will be hard to confirm a dependency relation with only

the features of the modifier or the modifiee. It is natural that a dependency relation is

decided by at least the information from both of two chunks.

Ignoring the case of� �
, error rates estimated by VC dimension and L.O.O

bound show minimum at� � �. This means these theoretical bounds predict that best

kernel dimension may be� � �. Although they cannot predict the optimal choice

of kernel dimension (� � �), we think this prediction seems to be reasonable and

valuable, since the differences of accuracies between the case of� � � and� � �

are not significant, and size of training data used in this experiments is so small (1172

54

Table 4.4. Results of the cascaded chunking model (� � �)

Training data size Dependency Accuracy (%) Sentence Accuracy (%)

with / without dynamic features with / without dynamic features

1172 86.66 / 86.72 42.29 / 41.32

1917 87.23 / 87.43 42.94 / 42.53

3032 87.87 / 87.49 44.63 / 43.26

4318 88.48 / 88.16 44.63 / 44.31

5540 88.64 / 88.17 45.36 / 43.83

6756 88.84 / 88.22 47.05 / 44.15

7958 89.29 / 88.72 47.53 / 45.20

86

86.5

87

87.5

88

88.5

89

89.5

1000 2000 3000 4000 5000 6000 7000 8000

D
ep

en
de

nc
y

A
cc

ur
ac

y
(%

)

Number of Training Data (sentences)

’dynamic-p’
’static-p’

Figure 4.9. Results of the probabilistic model (� � �)

55

86

86.5

87

87.5

88

88.5

89

89.5

1000 2000 3000 4000 5000 6000 7000 8000

D
ep

en
de

nc
y

A
cc

ur
ac

y
(%

)

Number of Training Data (sentences)

’dynamic-c’
’static-c’

Figure 4.10. Results of the cascaded chunking model (� � �)

Table 4.5. Effects of dynamic features with the cascaded chunking model

Deleted type of Difference of accuracy without each feature

dynamic feature Dependency Accuracy Sentence Accuracy

A -0.28% -0.89%

B -0.10% -0.89%

C -0.28% -0.56%

AB -0.33% -1.21%

AC -0.55% -0.97%

BC -0.54% -1.61%

ABC -0.58% -2.34%

56

Table 4.6. Dimension vs Accuracy (1172 sentences, probabilistic model,� � �)

Dimension of Dependency Accuracy (%) Estimated Estimated

the polynomial kernel Test Training VC dimension L.O.O Bound

1 67.09 90.73 14446 0.243

2 86.10 99.77 187878 0.194

3 86.52 99.97 215511 0.232

4 86.36 99.99 394709 0.278

5 86.00 99.99 885006 0.334

Table 4.7. Dimension vs Accuracy (1172 sentences, cascaded chunking model)

Dimension of Dependency Accuracy (%) Estimated Estimated

the polynomial kernel Test Training VC dimension L.O.O Bound

1 84.05 97.68 55500 0.301

2 86.42 99.99 53387 0.372

3 86.65 99.99 78657 0.463

4 86.38 99.99 158024 0.553

5 85.95 99.99 366320 0.641

57

Table 4.8. Beam width vs Accuracy (6756 sentences, probabilistic model,� � �)

Beam width Dependency accuracy (%)Sentence accuracy (%)

1 88.66 45.16

3 88.74 45.20

5 88.77 45.36

7 88.76 45.36

10 88.67 45.28

15 88.65 45.28

sentences) that the theoretical bounds cannot predict the error rates correctly

Beam width

In the probabilistic model, there remains one free parameter, beam width for parsing,

to be determined. Sekine [60] gives an interesting report about the relationship be-

tween the beam width and the parsing accuracy. Intuitively, high parsing accuracies

are expected when a large beam width is employed. However, the results are against

our intuition. They report that beam widths between 3 and 10 gives the best parsing

accuracy, and parsing accuracy falls down with a width larger than 10. This result sug-

gests that Japanese dependency structures may consist of a series of local optimization

processes.

We also evaluate the relationship between the beam width and the parsing accuracy.

Table 4.8 shows their relations , changing the beam widths from� �
 to
� and setting

� � �. The best parsing accuracy is achieved at� � �, and the best sentence accuracy

is achieved at� � � and� � ,, which support the Sekine’s reports.

4.3.4 Comparison with Related Work

Table 4.9 summarizes recent results on Japanese dependency analysis.

Uchimoto et al. report that using the Kyoto University Corpus for their training

and testing, they achieve around 87.93% accuracy by building statistical model based

on the Maximum Entropy framework[69, 70]. They extend the original probabilistic

model, which learns only two class; ‘modify‘ and ‘not modify‘, to the one that learns

58

three classes; ‘between‘, ‘modify‘ and ‘beyond‘. Their model can also avoid the influ-

ence of the exceptional dependency relations. Using same training and test data, we

can achieve accuracy of 89.29%. The difference is considerable.

Kanayama et al. use an HPSG-based Japanese grammar to restrict the candidate de-

pendencies[30, 31]. Their model uses at most three candidates restricted by the gram-

mar as features; the nearest, the second nearest, and the farthest from the modifier.

Thus, their model can take longer context into account, and disambiguate complex de-

pendency relations. However, the features are still static, and dynamic features are not

used in their model. We cannot directly compare their model with ours because they

use a different corpus, EDR corpus, which is ten times as large as the corpus we used.

Nevertheless, they reported an accuracy 88.55%, which is worse than our model.

Haruno et al. report that using the EDR Corpus for their training and testing, they

achieve around 85.03% accuracy with Decision Tree and Boosting[23, 24]. Although

Decision Tree can take combinations of features as SVMs, it easily overfits on its own.

To avoid overfitting, Decision Tree is usually used as an weak learner for Boosting.

Combining Boosting technique with Decision Tree, the performance may be improved.

However, Haruno et al. (99) report that the performance with Decision Tree falls down

when they added lexical entries with lower frequencies as features even using Boosting.

We think that Decision Tree requires a careful feature selection for achieving higher

accuracy.

Table 4.9. Comparison with the related work

PM: Probabilistic model CCM: Cascaded Chunking Model

Model Training Corpus (# of sentences)Acc. (%)

Our model 1 PM (SVMs) Kyoto Univ. (7,956) 89.09

Our model 2 CCM (SVMs) Kyoto Univ. (19,191) 90.46

Kyoto Univ. (7,956) 89.29

Uchimoto et al 00,98 PM (ME) Kyoto Univ. (7,956) 87.93

Kanayama et al 99 PM (ME + HPSG) EDR (192,778) 88.55

Haruno et al 98 PM (DT + Boosting) EDR (50,000) 85.03

Fujio et al 98 PM (ML) EDR (190,000) 86.67

59

4.4 Summary

This chapter proposes two Japanese dependency parser based on Support Vector Ma-

chines. One is the probabilistic model, which has been widely used in the dependency

parsing, and the other is the cascaded chunking model in which a sentence is parsed de-

terminately only estimating the current segment modifies the immediately right-hand

side segment. We compare two methods and discuss the merits and demerits of them.

Through the experiments with Japanese bracketed corpus, we show the proposed meth-

ods achieve a high accuracy even with a small training data and outperforms previous

approaches.

60

CHAPTER 5 Fast Methods for Kernel-

based Text Analysis

Fast is fine, but accuracy is everything.

Wyatt Earp

In this chapter, we present two methods which make the kernel-based text analyzers

substantially faster.

5.1 Introduction

Kernel methods attract a great deal of attention recently. In the field of Natural

Language Processing, many successes have been reported. Examples include Part-

of-Speech tagging [46] Text Chunking [39], Named Entity Recognition [26], and

Japanese Dependency Parsing [37, 40].

It is known in NLP that combination of features contributes to a significant im-

provement in accuracy. For instance, in the task of dependency parsing, it would be

hard to confirm a correct dependency relation with only a single set of features from

either a head or its modifier. Rather, dependency relations should be determined by at

least information from both of two phrases. In previous research, feature combination

has been selected manually, and the performance significantly depended on these se-

lections. This is not the case with kernel-based methodology. For instance, if we use

a polynomial kernel, all feature combinations are implicitly expanded without loss of

generality and increasing the computational costs. Although the mapped feature space

is quite large, the maximal margin strategy [74] of SVMs gives us a good generaliza-

tion performance compared to the previous manual feature selections. This is the main

reason why kernel-based learning has delivered great results to the field of NLP.

Kernel-based text analysis shows an excellent performance in terms in accuracy.

However, its inefficiency in actual analysis limits practical application. For example,

an SVM-based NE-chunker runs at a rate of only 85 byte/sec, while a previous rule-

based system can process several kilobytes per second [26]. Such slow execution time

61

is inadequate for Information Retrieval, Question Answering, or Text Mining, where

fast analysis of large quantities of text is indispensable.

This chapter presents two novel methods that make the kernel-based text analyzers

substantially faster. These methods are applicable not only to the NLP tasks but also

to general machine learning tasks where training and test examples are represented in

a binary vector.

More specifically, we focus on aPolynomial Kernelof degree�, which can attain

feature combinations that are crucial to improving the performance of tasks in NLP.

Second, we introduce two fast classification algorithms for this kernel. One is PKI

(Polynomial Kernel Inverted), which is an extension ofInverted Indexin Information

Retrieval. The other is PKE (Polynomial Kernel Expanded), where all feature com-

binations are explicitly expanded. By applying PKE, we can convert a kernel-based

classifier into a simple and fast liner classifier. In order to build PKE, we extend to

use theSet-Enumeration Tree[29], an efficientBasket Miningalgorithm, to enumerate

effective feature combinations from a set of support examples.

Experiments on English BaseNP Chunking, Japanese Word Segmentation and

Japanese Dependency Parsing show that PKI and PKE perform respectively 2 to 13

times and 30 to 300 times faster than standard kernel-based systems, without a dis-

cernible change in accuracy.

5.2 Kernel Method and Support Vector Machines

Suppose we have a set of training data for a binary classification problem:

���� ���� � � � � ���� ��� �� �
� � �� � ��
��
��
where�� is a feature vector of the0-th training sample, and�� is the class label asso-

ciated with this training sample. The decision function of SVMs is defined by

���� � #��
��
���

����3���� � 3��� � �
�
� (5.1)

where: (A)3 is a non-liner mapping function from
� to
� (& ! 7). (B) ��� � �

� �� � �.

The mapping function3 should be designed such that all training examples are

linearly separable in
� space. Since7 is much larger than& , it requires heavy

62

computation to evaluate the dot products3��
� �3��� in an explicit form. This problem

can be overcome by noticing that both construction of optimal parameter�
 (we will

omit the details of this construction here) and the calculation of the decision function

only require the evaluation of dot products3��
� � 3���. This is critical, since, in some

cases, the dot products can be evaluated by a simpleKernel Function: �������� �

3���� � 3����. Substituting kernel function into (5.1), we have the following decision

function.

���� � #��
��
���

����������� � �
�

(5.2)

One of the advantages of kernels is that they are not limited to vectorial object�, but

that they are applicable to any kind of object representation, just given the dot products.

5.3 Polynomial Kernel of degree�

For many tasks in NLP, the training and test examples are represented in binary vectors;

or sets, since examples in NLP are usually represented in so-calledFeature Structures.

Here, we focus on such cases1.

Suppose we have a feature set1 � �
� �� � � � � &� and training examples���0 �

� �� � � � � ��, all of which are subsets of1 (i.e.,�� " 1). In this case,�� can be

regarded as a binary vector�� � ����� ���� � � � � ���� where��
 �
 if � � ��, ��
 � �

otherwise. The dot product of�� and�� is given by�� � �� � ��� #���.

Definition 1 Polynomial Kernel of degree�

Given sets� and � , corresponding to binary feature vectors� and �, Polynomial

Kernel of degree� ����� � � is given by

������� � ����� � � � �
 � �� # � ���� (5.3)

where� �
� �� �� � � �.

1In the Maximum Entropy model widely applied in NLP, we usually suppose binary feature func-

tions ������ � �	�
�. This formalization is exactly same as representing an example� � in a set

��������� �
�.

63

In this thesis, (5.3) will be referred to as animplicit formof the Polynomial Kernel.

It is known in NLP that a combination of features, a subset of feature set1 in

general, contributes to overall accuracy. In previous research, feature combination has

been selected manually. The use of a polynomial kernel allows such feature expansion

without loss of generality nor an increase in computational costs, since the Polynomial

Kernel of degree� implicitly maps the original feature space1 into1 � space. (i.e.,3 �

1 	 1 �). This property is critical and some reports say that, in NLP, the polynomial

kernel outperforms the simple linear kernel [26, 37].

Here, we will give an explicit form of the Polynomial Kernel to show the mapping

function3���.

Lemma 1 Explicit form of Polynomial Kernel.

The Polynomial Kernel of degree� can be rewritten as

����� � � �
��
���

���)� � ����� # � ��� (5.4)

where

� ����� is a set of all subsets of� with exactly) elements in it,

� ���)� �
�

���

�
�

�

���

�����
���� �'�
�
�

�

��
.

Proof See Appendix A.

���)� will be referred as asubset weightof the Polynomial Kernel of degree�. This

function gives aprior weightto the subset-, where�-� �).

Example 1 Quadratic and Cubic Kernel

Given sets� � ��� �� �� �� and� � ��� �� �� (�, the Quadratic Kernel����� � � and

the Cubic Kernel����� � � can be calculated in an implicit form as:

����� � � � �
 � �� # � ��� � �
 � ��� �
),

����� � � � �
 � �� # � ��� � �
 � ��� �)'.

Using Lemma 1, the subset weights of the Quadratic Kernel and the Cubic Ker-

nel can be calculated as����� �
� ���
� � �� ����� � � and ����� �
� ���
� �

,� ������
�� ������).

In addition, subsets���� # � � �) � ��
� �� �� are given as follows:����#� ��

�3�� ���� #� � � ����� ���� ����� ���� # � � � ���� ��� ��� ��� ��� ���� ���� #

64

� � � ���� �� ���. ����� � � and����� � � can similarly be calculated in an explicit

form as:

����� � � �
 �
 � � � � � � � � �
),

����� � � �
 �
 � , � � �
� � � �) �
 �)'.

5.4 Fast Classifiers for Polynomial Kernel

In this section, we introduce two fast classification algorithms for the Polynomial Ker-

nel of degree�.

Before describing them, we give the baseline classifier (PKB):

���� � #��
��
���

���� � �
 � ��� #���� � �
�
� (5.5)

The complexity of PKB is/���� � �+, ��, since it takes/����� to calculate�
� ��� #
���� and there are a total of�+, � support examples.

5.4.1 PKI (Inverted Representation)

Given an item� � 1 , if we know in advance the set of support examples which contain

item � � 1 , we do not need to calculate��� # �� for all support examples. This

is a naive extension ofInverted Indexingin Information Retrieval. Figure 6.4 shows

a pseudo code of the algorithm PKI. The function!��� is a pre-compiled table and

returns a set of support examples which contain the item�.

The complexity of the PKI is/���� �2 � �+, ��, where2 is the average of�!����
over all item� � 1 . The PKI can make the classification speed drastically faster when

2 is small, in other words, when feature space is relatively sparse (i.e.,2 ! �+, �).
The feature space is often sparse in many tasks in NLP, since lexical entries are used

as features.

The algorithm PKI does not change the final accuracy of the classification.

65

Algorithm: PKI classification

argument: A set�

return: class label� � ��
�
begin

) � 3 # an array, initialized as 3

foreach � � �
foreach 0 � !���

)� �)� �

end

end

)(-��� � �

foreach 0 � SV

)(-��� �)(-���� ���� � �
 �)��
�

end

return -.	�)(-���� ��

end

Figure 5.1. Pseudo code for PKI

5.4.2 PKE (Expanded Representation)

Basic Idea of PKE

Using Lemma 1, we can represent the decision function (5.5) in an explicit form:

���� � #��
��
���

����
� ��
���

���)� � ������ #����� ��� (5.6)

If we, in advance, calculate

��-� �
�
���

��������-��4�- � �
�
�����

(where4��� is the indicator function2) for all subsets- � ��

��� ���1 �, (5.6) can be

written as the following simple linear form:

���� � #��
� �
������

��-� � �
�
� (5.7)

2���� returns 1 if� is true,returns 0 otherwise.

66

where-���� �
��

��� �����.

The classification algorithm given by (5.7) will be referred to asPKE. The com-

plexity of PKE is/��-������ � /������, independent on the number of support

examples�+, �.

Mining Approach to PKE

To apply the PKE, we first calculate�-��1 �� degree of vectors

� � ���-��� ��-��� � � � � ��-
�� �
���

This calculation is trivial only when we use the Quadratic Kernel, since we just project

the original feature space1 into1 � 1 space, which is small enough to be calculated

by a naive exhaustive method. However, if we, for instance, use the polynomial kernel

of degree 3 or higher, this calculation becomes not trivial, since the size of feature

space exponentially increases. Here we take the following strategy:

1. Instead of using the original vector�, we use��, an approximation of�.

2. We apply theSubset Miningalgorithm to calculate� � efficiently.

Definition 2 ��: An approximation of�

An approximation of� is given by� � � ����-��� �
��-��� � � � � �

��-
�� �
��, where

���-� is set to 0 if��-� is trivially close to 0. (i.e.,���! � ��-� � ��"� ����! �

�� ��"� 8 ��, where��"� and���! are predefined thresholds).

The algorithm PKE is an approximation of the PKB, and changes the final accu-

racy according to the selection of thresholds��"� and���!. The calculation of�� is

formulated as the following mining problem.

Problem 1 Feature Combination Mining

Given a set of support examples and subset weight���)�, extract all subsets- and

their weights��-� if ��-� holds��-� � ��"� or ��-� � ���! .

We applySub-Structure Miningalgorithm to the feature combination mining prob-

lem. Generally speaking, sub-structures mining algorithms efficiently extractfrequent

sub-structures (e.g., subsets, sub-sequences, sub-trees, or sub-graphs) from a large

67

database (set of transactions). In this context,frequentmeans that there are no less

than� transactions which contain a sub-structure. The parameter� is usually referred

to as theMinimum Support. Since we must enumerate all subsets of1 , we can apply

subset mining algorithm, in some times called asBasket Miningalgorithm, to our task.

Most of Basket Mining algorithms use the following two strategies to efficiently

enumerate all frequent subtrees from a set of transactions.

1. Define a canonical search tree or search lattice to enumerate the power set of a

given set.

2. For an efficient enumeration of frequent subsets, prune the search tree/lattice

defined in (1) with respect to an upper bound of the frequency.

There are some methods to define a search space for enumerating the power set of

a set. The most popular algorithm is known to be the complete lattice structure used

in Apriori[2]. In this thesis, we use Set Enumeration Tree (SE-Tree), first proposed by

Bayardo[29], because of its efficiency and easy implementation. SE-Tree first defines

a total order (e.g., lexicographic order) on the elements of the given feature set1 .

The root node of the search tree is set to be the empty set. The children of a node

& enumerates its super-sets by adding a single element in the feature set1 . In this

appending process, SE-Tree restricts that the single element added to& must follow

every element already in& according to the total order. Figure 5.2 illustrates an SE-

tree. Note that there exists a unique path to each node. For instance, the set��� �� ��
can be obtained by appending the item�, � and� to the empty set�� according the

total order of the set (in this case, lexicographic order is used). SE-tree is simple to

enumerate the power set of1 , compared to complete lattice used in Apriori algorithm.

For the second strategy, the following simple observation is used:“If a set is not

frequent, super-sets of the set are not frequent either.”. In other words, if one can find

that a set& , corresponding the node& � in the SE-Tree, is not frequent, the sub-space

spanned from the nodes& � can be safely pruned.

The problem of the feature combination mining can similarly be realized by using

the above defined two strategies. The enumeration method is almost the same except

for the restriction of the size. When using polynomial kernel of�-th order, we must

only enumerate the subsets of up to size�.

68

{}

{a} {b} {c} {d}

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}

{a,b,c}{a,b,d}{a,c,d}

{a,b,c,d}

{b,c,d}

Figure 5.2. SE-Tree on a set��� �� �� ��

For the second strategy, we cannot straightforwardly use the above frequency-based

pruning criteria, since the mining criteria is not the frequency of a set-, but the mag-

nitude of���-��. Here we give the following convenience lemma to define a pruning

criteria for the feature combination mining problem.

Lemma 2 upper bound and lower bound of��-�

For any superset of- (i.e., �-� $ -) 9��!�-� � ��-�� � 9�"��-�. Where9�"��-� and

9��!�-� are given as:

9�"��-�
�	

�

�
��
����������

����4�- " ���

9��!�-�
�	

� �

�
��
����������

����4�- " ���

��
�	

� ��

����			��
���)�

69

Proof

��-�� �
�

��
����������

������-���4�-� " ����
�

��
����������

������-���4�-� " ���

�
�

��
����������

������-���4�-� " ���

�
�

��
����������

����4�-
� " ���

�
�

��
����������

����4�- " ���

� 9�"��-� �� ��

(i.e., For any superset of- (�-�� -� % -), ������ � �
� -� " ���� � ��0��� � �
� - "
����.) Similarly,

��-�� � �
�

��
����������

����4�- " ���

� 9��!�-� �� ��

Thus, for any superset of- (�-� $ -), 9��!�-� � ��-�� � 9�"��-� �.

Setting the thresholds��"� and ���!

The thresholds��"� and���! control the rate of approximation. For the sake of conve-

nience, we just give one parameter�, and calculate��"� and���! as follows

��"� � � �
�.*� *-����((��'�(-
.*� -�*)� (��'�(-

�
�

���! � �� �
�.*� 	(.����((��'�(-

.*� -�*)� (��'�(-

�
�

Feature sets represented in TRIE structure

After the process of mining, a set of tuples� � ��-� ��-��� is obtained, where- is

a frequent subset and��-� is its weight. We use a TRIE to efficiently store the set

70

{a}

{d}
{a,b}

{a,c}

{b,c}

{b,d}

{c,d}

{b,c,d}

10.5

-10.5

12

12
-12

-18

-24

-12

w(s)

a db

b c c d

c

d

d

root

10.5

12 12

-10.5

-24
-18-12

-12

s
Ω

Figure 5.3.� in TRIE representation

�. The example of such TRIE compression is shown in Figure 5.3. Although there

are many implementations for TRIE, we use Double-Array [4] in our task3. The

actual classification of PKE can be examined by traversing the TRIE for all subsets

- � -����.

5.5 Experiments

To demonstrate performances of PKI and PKE, we examined three NLP tasks: English

BaseNP Chunking (EBC), Japanese Word Segmentation (JWS) and Japanese Depen-

dency Parsing (JDP). A more detailed description of each task, training and test data,

the system parameters, and feature sets are presented in the following subsections. Ta-

ble 5.1 summarizes the detail information of support examples (e.g., size of SVs, size

of feature set etc.).

Our preliminary experiments show that a Quadratic Kernel performs the best in

EBC, and a Cubic Kernel performs the best in JWS and JDP. The experiments using a

Cubic Kernel are suitable to evaluate the effectiveness of the basket mining approach

applied in the PKE, since a Cubic Kernel projects the original feature space1 into1 �

space, which is too large to be handled only using a naive exhaustive method.

All experiments were conducted under Linux using XEON 2.4 Ghz dual processors

and 3.5 Gbyte of main memory. All systems are implemented in C++.

3We use darts[36] for our implementation.

71

5.5.1 English BaseNP Chunking (EBC)

As described in Chapter 3, Text Chunking is a fundamental task in NLP – dividing

sentences into non-overlapping phrases. BaseNP chunking deals with a part of this

task and recognizes the chunks that form noun phrases. Here is an example sentence:

[He] reckons [the current account deficit] will narrow

to [only 1.8 billion] .

A BaseNP chunk is represented as sequence of words between square brackets.

BaseNP chunking task is usually formulated as a simple tagging task, where we rep-

resent chunks with three types of tags:B: beginning of a chunk.I : non-initial word.

O: outside of the chunk. In our experiments, we used the same settings described in

Chapter 3. We use a standard data set [51] consisting of sections 15-19 of the WSJ

corpus as training and section 20 as testing.

5.5.2 Japanese Word Segmentation (JWS)

Since there are no explicit spaces between words in Japanese sentences, we must first

identify the word boundaries before analyzing deep structure of a sentence. Japanese

word segmentation is formalized as a simple classification task.

Let - � ���� � � � �� be a sequence of Japanese characters,� � ���� � � � �� be

a sequence of Japanese character types4 associated with each character, and�
 �
��
��
�� �� � �
� �� � � � � '�
�� be a boundary marker. If there is a boundary be-

tween�
 and �
��, �
 �
, otherwise�
 � �
. The feature set of example�
 is

given by all characters as well as character types in some constant window (e.g., 5):

��
��� �
��� � � � � �
��� �
��� �
��� �
��� � � � � �
��� �
���. Note that we distinguish the rela-

tive position of each character and character type. We use the Kyoto University Corpus

[41], 7,958 sentences in the articles on January 1st to January 7th are used as training

data, and 1,246 sentences in the articles on January 9th are used as the test data.

4Usually, in Japanese, word boundaries are highly constrained by character types, such ashiragana

andkatakana(both are phonetic characters in Japanese), Chinese characters, English alphabets and

numbers.

72

5.5.3 Japanese Dependency Parsing (JDP)

The task of Japanese dependency parsing is to identify a correct dependency of each

Bunsetsu(base phrase in Japanese). In previous research, we presented a state-of-

the-art SVMs-based Japanese dependency parser [40]. We combined SVMs into an

efficient parsing algorithm,Cascaded Chunking Model, which parses a sentence de-

terministically only by deciding whether the current chunk modifies the chunk on its

immediate right hand side. The input for this algorithm consists of a set of the linguistic

features related to the head and modifier (e.g., word, part-of-speech, and inflections),

and the output from the algorithm is either of the value +1 (dependent) or -1 (indepen-

dent). We use a standard data set, which is the same corpus described in the Japanese

Word Segmentation.

5.5.4 Results

Tables 5.2, 5.3 and 5.4 show the execution time, accuracy5, and��� (size of extracted

subsets), by changing� from 0.01 to 0.0005.

The PKI leads to about 2 to 12 times improvements over the PKB. In JDP, the

improvement is significant. This is because2, the average of!��� over all items� � 1 ,

is relatively small in JDP. The improvement significantly depends on the sparsity of the

given support examples.

The improvements of the PKE are more significant than the PKI. The running time

of the PKE is 30 to 300 times faster than the PKB, when we set an appropriate�,

(e.g.,� � ����� for EBC and JWS,� � ������ for JDP). In these settings, we could

preserve the final accuracies for test data.

5.5.5 Frequency-based Pruning

The PKE with a Cubic Kernel tends to make� large (e.g.,��� � ���� million for JWS,

��� � (��) million for JDP).

To reduce the size of�, we examined simple frequency-based pruning experiments.

Our extension is to simply give a prior threshold���
� �� �� ' � � ��, and erase all subsets

which occur in less than� support examples. The calculation of frequency can be

5In EBC, accuracy is evaluated using F measure, harmonic mean between precision and recall.

73

Table 5.1. Details of Data Set
Data Set EBC JWS JDP

of examples 135,692 265,413 110,355

�SV� # of SVs 11,690 57,672 34,996

of positive SVs 5,637 28,440 17,528

of negative SVs 6,053 29,232 17,468

�1 � (size of feature) 17,470 11,643 28,157

Avg. of ���� 11.90 11.73 17.63

2 (Avg. of �!����)) 7.74 58.13 21.92

(Note: In EBC, to handle�-class problems, we use apairwise classification; building

�����
��� classifiers considering all pairs of classes, and final class decision was

given by majority voting. The values in this column are averages over all pairwise

classifiers.)

similarly conducted by theSet-Enumeration Treealgorithm. Tables 5.5 and 5.6 show

the results of frequency-based pruning, when we fix�=����� for JWS, and�=������

for JDP.

In JDP, we can make the size of set� about one third of the original size. This

reduction gives us not only a slight speed increase but an improvement of accuracy

(89.29%	89.34%). Frequency-based pruning allows us to remove subsets that have

large weight and small frequency. Such subsets may be generated from errors or special

outliers in the training examples, which sometimes cause an overfitting in training.

In JWS, the frequency-based pruning does not work well. Although we can reduce

the size of� by half, the accuracy is also reduced (97.94%	97.83%). It implies that,

in JWS, features even with frequency of one contribute to the final decision hyperplane.

5.6 Discussion

There have been several studies for efficient classification of SVMs. Isozaki et al.

propose an XQK (eXpand the Quadratic Kernel) which can make their Named-Entity

recognizer drastically fast [26]. XQK can be subsumed into PKE. Both XQK and PKE

share the basic idea; all feature combinations are explicitly expanded and we convert

74

Table 5.2. Results of EBC
PKE Time Speedup F1 ���
� (sec./sent.) Ratio (� 1000)

0.1 0.0010 163.4 92.98 43

0.05 0.0013 127.8 93.84 141

0.01 0.0016 105.2 93.79 518

0.005 0.0016 101.3 93.85 668

0.001 0.0017 97.7 93.84 858

0.0005 0.0017 96.8 93.84 889

0.0001 0.0017 96.8 93.84 5,206

PKI 0.020 8.3 93.84

PKB 0.164 1.0 93.84

the kernel-based classifier into a simple linear classifier.

The explicit difference between XQK and PKE is that XQK is designed only for

Quadratic Kernel. It implies that XQK can only deal with feature combination of size

up to two. On the other hand, PKE is more general and can also be applied not only to

the Quadratic Kernel but also to the general-style of polynomial kernels�
���#� ���.
In PKE, there are no theoretical constrains to limit the size of combinations.

In addition, Isozaki et al. did not mention how to expand the feature combinations.

They seem to use a naive exhaustive method to expand them, which is not always

scalable and efficient for extracting three or more feature combinations. PKE takes a

basket mining approach to enumerating effective feature combinations more efficiently

than their exhaustive method.

5.7 Summary

We focused on aPolynomial Kernelof degree�, which has been widely applied in

many tasks in NLP and can attain feature combination that is crucial to improving the

performance of tasks in NLP. Then, we introduced two fast classification algorithms

for this kernel. One is PKI (Polynomial Kernel Inverted), which is an extension of

Inverted Index. The other is PKE (Polynomial Kernel Expanded), where all feature

75

Table 5.3. Results of JWS
PKE Time Speedup Acc.(%) ���
� (sec./sent.) Ratio (� 1000)

0.1 0.0007 1290.6 96.09 21

0.05 0.0010 846.7 97.36 84

0.01 0.0024 358.2 97.93 1,228

0.005 0.0028 300.1 97.95 2,327

0.001 0.0034 242.6 97.94 4,392

0.0005 0.0035 238.8 97.94 4,820

0.0001 0.0036 236.2 97.94 5,206

PKI 0.4989 1.7 97.94

PKB 0.8535 1.0 97.94

combinations are explicitly expanded.

Experimental results on English BaseNP Chunking, Japanese Word Segmentation

and Japanese Dependency Parsing, show that PKI is about 2 to 13 times, and PKE is

about 30 to 300 times faster than the original kernel-based classifiers, while preserving

the final accuracy.

It is often said that the key to the success of kernel-trick is the implicit mapping

from a data space to feature space which better captures the structure inherent in the

data. The intuition behind the PKE is that there are only a few subsets that construct a

decision hyperplane, although the mapped feature space (subsets space) is very large.

The PKE tries to find such subsets from a set of support examples by usingBasket

Mining Algorithm.

Clearly the two classification algorithms described in this paper can be applied to

other domains where training and test examples are represented in aset. We would

like to apply our methods to a wider class of domains.

The concept in PKE can also be applicable to kernels for discrete data structures,

such as String Kernel [43] and Tree Kernel [13, 33]. For instance, Tree Kernel gives a

dot product of an ordered-tree, and maps the original ordered-tree onto its all sub-tree

space. To apply the PKE, we must efficiently enumerate the effective sub-trees from

a set of support examples. We can similarly apply a sub-tree mining algorithm [79] to

76

Table 5.4. Results of JDP
PKE Time Speedup Acc.(%) ���
� (sec./sent.) Ratio (� 1000)

0.1 0.0008 338.2 82.02 7

0.05 0.0014 200.0 86.27 30

0.01 0.0042 66.8 88.91 73

0.005 0.0060 47.8 89.05 1,924

0.001 0.0086 33.3 89.26 6,686

0.0005 0.0090 31.8 89.29 8,262

0.0001 0.0091 31.4 89.29 9,846

PKI 0.0226 12.6 89.29

PKB 0.2848 1.0 89.29

this problem.

Appendix A.: Lemma 1 and its proof

���)� �
��
���

�
�

�

�� ��
���

��
���� �'�

�
)

'

��
�

Proof.

Let �� � be subsets of1 � �
� �� � � � � &�. In this case,�� # � � is same as the dot

product of vector���, where

� � ���� ��� � � � � ���� � � ���� ��� � � � � ���
���� �� � ���
��

�� �
 if 0 � �, �� � � otherwise.

�
 � �� # � ��� � �
 � � � ��� can be expanded as follows

�
 � � � ��� �
��
���

�
�

�

�� ��
���

����
��

�
��
���

�
�

�

�
� :���

77

Table 5.5. Frequency-based pruning (JWS)

PKE time Speedup Acc.(%) ���
� (sec./sent.) Ratio (� 1000)

1 0.0028 300.1 97.95 2,327

2 0.0025 337.3 97.83 954

3 0.0023 367.0 97.83 591

PKB 0.8535 1.0 97.94

Table 5.6. Frequency-based pruning (JDP)

PKE time Speedup Acc.(%) ���
� (sec./sent.) Ratio (� 1000)

1 0.0090 31.8 89.29 8,262

2 0.0072 39.3 89.34 2,450

3 0.0068 41.8 89.31 1,360

PKB 0.2848 1.0 89.29

where

:��� �

���			������
����

�/

��/ � � � �� /
������

�� � � � �������� �

Note that���� is binary���(�� ���� � ���
��, the number of)-size subsets can be given

by a coefficient of��������� � � � �����. Thus,

���)� �
��
���

�
�

�

�� ���			������
�����������			��

�/

��/ � � � ��/

�

�
��
���

�
�

�

��
)��
�
)

�
�)�
���

�
)

�

�
�)���� � � � �

�

�
��
���

�
�

�

�� ��
���

��
���� �'�

�
)

'

��
� �

78

CHAPTER 6 A Boosting Algorithm for

Classification of Semi-

Structured Text

The best way to predict the future is to invent it.

Alan Kay

In this chapter, we describe an application of text analyzers described in the previ-

ous chapters. The application focused on here is text classification. In the traditional

text classification tasks, a text is usually represented in a multi-set (i.e, a bag) of words,

ignoring word orders nor syntactic relations embedded in text. Actually, such bag-of-

words representations are not sufficient to the recent text classification tasks, such as

modalities, opinions or subjectivity identification. In this chapter, we propose a text

classification algorithm that captures sub-structures embedded in text.

6.1 Introduction

Text classification plays an important role in organizing online texts available on the

World Wide Web, Internet news and E-mails. Until recently, supervised learning

algorithms, such as Naive Bayes[47], Support Vector Machines[15, 74] and Boost-

ing[19, 58] have been applied to this problem and have been proven successful in many

domains.

In the traditional text classification tasks, one has to identify predefined “topics” of

text, such as politics, finance, sports or entertainment. A typical example of such topic-

based classification will be found in theYahoodirectory1. For learning algorithms to

identify these topics, a text is usually represented in the bag-of-words, where a text

is regarded as a multi-set (i.e., a bag) of the words ignoring word orders or syntactic

relations appearing in the original text. Even though the bag-of-words representation

1http://www.yahoo.com/

79

is naive and does not convey the meaning of the original text, a reasonable accuracy

can be obtained. This is because each word occurring in the text is highly relevant to

the predefined “topics” to be identified.

While a number of successes in the traditional text classifications have been re-

ported, the focus of recent research in text classification has expanded from a simple

topic identification to a more challenging task, such as opinion/modality identifica-

tion. Example includes categorization of customer E-mails and reviews by types of

claims, modalities or subjectivities[67, 75, 76]. For the latter, the traditional bag-of-

words representation is not sufficient, and a richer, structural representation will be

required. Accordingly, learning algorithms must be capable of handling such struc-

tures observed in text. A straightforward way to extend the traditional bag-of-words

representation is to heuristically add new types of features to the original bag-of-words

features, such as fixed-length n-grams (e.g., word bi-gram or tri-gram) or fixed-length

syntactic relations (e.g., modifier-head relations). These ad-hoc solutions might give

us a reasonable performance, however, they are highly task-dependent and require a

careful design of “optimal” feature set for individual tasks.

Generally speaking, by using text processing systems, a text can be converted

into a semi-structured text annotated with parts-of-speech, base-phrase information,

named entities or syntactic relations. These information is useful to identify opinions

or modalities represented in text. We think that it is more general to propose a learning

algorithm that can automatically capture relevant structural information observed in

text, rather than to heuristically add these information as new features.

From these points of view, in this chapter, we propose a classification algorithm

that captures sub-structures embedded in text. To simplify the problem, we first assume

that a text to be classified is represented in a labeled ordered tree, which is a general

data structure and a simple abstraction of text. Note that word sequence, base-phrase

annotation, named entities, dependency tree and an XML document can be modeled

as a labeled ordered tree.

The proposal consists of the following two steps: i) decision stumps that use sub-

trees as features, ii) Boosting algorithm in which the subtree-based decision stumps

are applied as weak learners. The algorithm proposed here has the following charac-

teristics:

� It performs learning and classification using structural information of text.

80

� It uses a set of all subtrees (bag-of-subtrees) for feature set without any con-

straints.

� Even though the size of the candidate feature set becomes quite large, itauto-

maticallyselects a compact and relevant feature set based on Boosting.

This chapter is organized as follows. First, we describe the details of our Boosting

algorithm in which the subtree-based decision stumps are applied as weak learners.

Second, we show an implementation issue to construct an efficient learning and clas-

sification algorithm. We also discuss about relation between our algorithm and Tree

Kernel[13, 14, 33], which is an another method that captures structural information.

Two experiments on the opinion and modality classification tasks are employed to con-

firm that subtree features are important. In addition, we will experimentally show that

our Boosting algorithm is computationally efficient for classification tasks involving

discrete structural features.

6.2 Classifier for Trees

We first assume that a text to be classified is represented in a labeled ordered tree.

The problem focusing on here can be formalized as a general problem, called thetree

classification problem.

The tree classification problem is defined to induce a mapping function���� �

& 	 ��
�, from given training examples
 � ���
� �
���
��, where�
 � & is a

labeled ordered tree and�
 � ��
� is a class label associated with each training data

(we here focus on the binary classification problem.). The important characteristic

is that the input example�
 is represented not as a numerical feature vector (bag-of-

words) but a labeled ordered tree.

6.2.1 Preliminaries

Let us introduce a labeled ordered tree, its definition and notations, first.

Definition 3 Labeled ordered tree

A labeled ordered tree is a tree where each node is associated with a label and is

ordered among its siblings, that is, there are a first child, second child, third child, etc.

81

Definition 4 Subtree

Let � and� be labeled ordered trees. We say that� matches�, or � is a subtree of

� (� " �), if there exists a one-to-one function; from nodes in� to �, satisfying the

conditions: (1); preserves the parent-daughter relation, (2); preserves the sibling

relation, (3); preserves the labels.

For the sake of simplicity, we will sometimes refer to labeled ordered tree astree. We

denote the number of nodes in� as���.

6.2.2 Decision Stumps

One level decision trees, which are better known as decision stumps, are simple clas-

sifiers, where the decision is made by only a single hypothesis or feature. Decision

stumps may avoid overfitting to the training dataset arising in other complicated clas-

sifiers such asfull decision trees. Boostexter[59] uses word-based decision stumps for

a topic-based text classification. To classify trees, we here extend to use the decision

stumps defined as follows.

Definition 5 Decision Stumps for Trees

Let � and� be labeled ordered trees, and� be a class label (� � ��
�), a decision

stump classifier for trees is given by

!��������
�	

�

	
� � " �

�� *�!()��-(�

The parameter for classification is a tuple��� ��, which will be referred to as arule

of the decision stumps hereafter.

The decision stumps are trained to find a rule���� ��� that minimizes the error rate

for the given training data
 � ���
� �
���
��:

���� ��� � �����
��� ������

�

��

��

4��
 �� !�������
��

� �����
��� ������

��

��

��

�
� �
!�������
��� (6.1)

where' is a set of candidate trees or afeature set(i.e.,' �
��

������ " �
�) and4���
is the indicator function.

82

The gain function for a rule��� �� is defined as

.��	���� ��� �	

�

��

��

�
!�������
�� (6.2)

Using the gain, the search problem given in (6.1) becomes equivalent to the following

problem:

���� ��� � ����
��� ������

.��	���� ����

We will use the gain instead of the error rate for a clarity purpose.

6.2.3 Applying Boosting

The decision stumps classifiers for trees are too inaccurate to be applied to real ap-

plication, since the final decision relies on the existence of a single tree. However,

accuracies can beboostedby Boosting algorithm[19, 59]. Boosting repeatedly calls a

givenweak learnerand finally produces a hypothesis� , which is a linear combination

of � hypotheses, (� �
� � � � � �), produced by the weak learners, i,e.:

���� � -.	�
#�
���

��!������ +!()(!���� � ��
�� �� � ��

A weak learner is built at each iteration� with different distributions or weights

��� � ��
��

 � � � � � �

��
� �, (where

�

�� �
 �
� �� � �� � � � � �� ��
 � �). The weights

are calculated in such a way that hard examples are more focused on than easier exam-

ples. Boosting iteratively concentrates examples poorly classified with the classifier

build in the last iteration (� �
). It is known that Boosting gives a better result than

a single hypothesis, if the weak learner performs better than random guessing on any

distributions on the examples[19].

To use the decision stumps as the weak leaner of Boosting, we redefine the gain

function (6.2) as follows:

.��	���� ��� �	

�

��

��

�
�
!�������
�� (6.3)

where
�

�� �
 �
� �
 � � �� �
� � � � � �.

83

There exist many variants of Boosting algorithm, however, the original and the best

known algorithm is AdaBoost[19]. Figure 6.1 shows a pseudo code of AdaBoost. In

this figure, we use the decision stumps for trees as the weak learner.

Algorithm: AdaBoost

arguments: training examples,
 � ���
� �
���
��,

number of iterations,�

returns: A classifier����

begin

�
��

 �
��� <

��

 � � �� �
� � � � � �

foreach� �
� � � � � �

���� ��� � ������� ������ .��	���� ���
<���� � ���
���			�� <

����

�� � �
�
&"����!$
���� �����

��!$
���� �����
�

=� �
�

��� ��

<
��

 �

�

��� ��!��� ������
��=�

�
����

 � ��%���
<��
 =���>�

(�� is the normalizing term)

end

returns ���� � -.	�
#

��� ��!�����������=#�

end

Figure 6.1. Algorithm: AdaBoost

In this thesis, we use Arc-GV by Breiman[7], instead of AdaBoost, which is in-

duced by modifying the method of calculation�� as:

�� �

�
&"��

 � .��	����� ����

� .��	����� ����� �

�
&"��

� <����

 � <����

��

+$��� <��
�	

� ���

���			��
<��
 �

Here, we add an additional term which only depends on the margin<���� give in the

last iteration of Boosting. Arc-GV is shown to given the asymptotic convergence of<�

to the global solution<"��, where<"�� is the smallest margin to be maximized. We will

leave the details of the concept of smallest margin to the section 4.

84

6.3 Implementation Issue

In this section, we introduce an efficient and practical algorithm to find the optimal

rule ���� ��� from a given training data. This problem is formally defined as follows.

Problem 2 Find Optimal Rule

Let
 � ����� ��� ���� � � � � ���� ��� ���� be a training data, where,�
 is a labeled

ordered tree,�
 � ��
� is a class label associated with�
 and�
 �
�

�� �
 �
� �
 �
�� is a normalized weight assigned to�
. Given
 , find the optimal rule���� ��� which

maximizes the gain. i.e.,���� ��� � ������� ������ �
�
!�����, where' �
��

������ "
�
�.

The most naive and exhaustive method, where we first enumerateall subtrees'
and then calculate the gains for all subtrees, is usually impractical, since a number of

subtrees is exponential to its size. Actually, the task of exhaustive enumerations of

all subtrees is known to be an NP-hard problem. We thus take an alternative strategy

which avoids such exhaustive enumerations.

The method to find the optimal rule is modeled as a variant of Branch-and-Bound

algorithm and will be summarized as the following strategies:

1. Define a canonical search space in which a whole set of subtrees of a set of trees

can be enumerated.

2. Find the optimal rule by traversing this search space.

3. In order to prune the search space, propose a criteria with respect to the upper

bound of thegain. Loosely speaking, we can prune a subspace if the upper

bound of the gain for this space is no greater than the gain for some suboptimal

rule.

We will describe these steps more precisely in the next subsections.

6.3.1 Efficient Enumeration of Trees

Abe and Zaki independently propose an efficient method,rightmost-extension, to enu-

merate all subtrees from a given tree[1, 79]. The method is based on a similar technique

to the set enumeration tree search introduced by Bayardo[29]. First, the algorithm

85

starts with a set of trees consisting of single nodes, then expands a given tree of size

�� �
� by attaching a new node to this tree to obtain trees of size�. However, it

would be inefficient to expand nodes in arbitrary positions of the tree, as duplicated

enumeration is inevitable. The algorithm, rightmost extension, avoids such duplicated

enumerations by restricting the position of attachment. We here give the definition of

rightmost extension to describe this restriction in detail.

Definition 6 Rightmost Extension[1, 79]

Let � and�� be labeled ordered trees. We say�� is a rightmost extension of�, if and only

if � and�� satisfy the following three conditions:

(1) �� is created by adding a single node to�, (i.e.,� (�� and����
 � ����).
(2) A node is added to a node existing on the unique path from the root to the rightmost

leaf (rightmost-path) in�. (We assume that all nodes in� are numbered in pre-order).

(3) A node is added as the rightmost sibling.

Consider Figure 6.2, which illustrates an example tree� with the labels drawn from the

set) � ��� �� ��. For the sake of convenience, each node in this figure is numbered

in pre-order (depth-first enumeration). The rightmost-path of the tree� is ���������,

occurring at the positions
� ' and) respectively. The set of rightmost extended trees

is then enumerated by simply adding a single node to a node on the rightmost path.

Since there are three nodes on the rightmost path and the size of label set is 3��

�)�), total 9 trees are enumerated from the original tree�. Note that all nodes added

by rightmost-extension are numbered as 7 in pre-order. In other words, rightmost

extension preserves the prefix ordering of nodes in� (i.e., nodes at the positions
�����
are preserved). By repeating the process of rightmost-extensions recursively, we can

create a search space in which all trees drawn from the set) are enumerated. Figure

6.3 shows a snapshot of such a search space. In this figure, for simplicity, we assume

that their is only a single label (i.e.,�)� �
).

6.3.2 Upper bound of gain

Rightmost extension defines a canonical search space in which one can enumerate all

subtrees from a given set of trees. We here consider an upper bound of the gain, which

allows to prune a subspace of this canonical search space. The following theorem, an

86

b

a

c

1

2 4

a b5 6c3

b

a

c

1

2 4

a b5 6c3

b

a

c

1

2 4

a b5 6c3

b

a

c

1

2 4

a b5 6c3

rightmost- path

t

rightmost extension

7

7
7

t’

},,{ cbaL =

},,{ cba

},,{ cba
},,{ cba

Figure 6.2. rightmost extension

extension of Morhishita[44], gives a convenient way of computing a tight upper bound

on.��	����� ��� for any super-tree�� of �.

Theorem 1 Upper bound of the gain:9���

For any �� % � and � � ��
�, the gain of ���� �� is bounded by9��� (i.e.,

.��	������� � 9���), where9��� is given by

9���
�	

� ��

�
�

�
�

�����������

�
 �
��

��

�
 � �
�

�
�

�

�����������

�
 �
��

��

�
 � �

�
�

Proof 1

��������� ��� �

��

��

�
�
	��������
�

�

��

��

�
�
 � � � ��
��
� � �
�� ��

87

Figure 6.3. Recursion of rightmost extensions

If we focus on the case� � ��, then

������������� � �
�

�

������

�
�
 �

��

��

�
 � �

� �
�

�

������������

�
 �

��

��

�
 � �

� �
�

�

�����������

�
 �

��

��

�
 � �
�

since�����
 � ��� �� � �
	� � �����
 � ��� � � �
	� for any��
 �. Similarly,

������������� � �
�

�

�����������

�
 �

��

��

�
 � �

Thus, for any��
 � and� � ���	,

��������� ��� � ��	
�
�

�
�

�����������

�
 �

��

��

�
 � �
�

�
�

�

�����������

�
 �

��

��

�
 � �

�

� ���� �

88

We can efficiently prune the search space spanned by right most extension using the

upper bound of gain����. During the traverse of the subtree lattice build by the re-

cursive process of rightmost extension, we always maintain the temporally suboptimal

gain: among all the gains calculated previously. If9��� � : , the gain of any super-tree

�� % � is no greater than: , and therefore we can safely prune the search space spanned

from the subtree�. If 9��� � : , in contrast, we cannot prune this space, since there

might exist a super-tree�� % � such that.��	���� � : . We can also prune the space

with respect to the expanded single node-. Even if9��� � : and a node- is attached

to the tree�, we can ignore the space spanned from the tree�� if 9�-� � : , since no

super-tree of- gives an optimal gain. Figure 5 presents a pseudo code of the algorithm

Find Optimal Rule . The two pruning conditions described above are marked with (1)

and (2) respectively.

6.3.3 Rule Cache

At each iteration of Boosting, the suboptimal value: is reset to be 0. However, if

we can in advance calculate a tighter upper bound, the search space can be pruned

effectively. For this purpose, we maintain all rules found in the previous iterations in

a cache. The suboptimal value: is calculated by piking up one rule from the cache,

which maximizes the gain with respect the current distribution. The idea behind this

approach is based on our observation that a rule in the cache tends to be re-used as the

number of Boosting iterations increases.

6.3.4 Fast algorithm for classification

We consider an efficient algorithm for the classification of Boosting, when we use the

decision stumps for trees as the weak learner. The final hypothesis can be given by

���� � -.	�
#�
���

��!�����������

� -.	�
#�
���

�� � ����4��� " ���
��

� -.	�
�
���

?� � 4�� " ��� ���

89

Algorithm: Find Optimal Rule

argument:
 � ����� ��� ��� � � � � ���� ��� ����
(�
 a tree,�
 � ��
� is a class, and�
 �

�

�� �
 �
� �
 � �� is a weight

returns: An optimal rule���� ���
begin

: � � // suboptimal value

function project ���

if 9��� � : then return

�� � �).'������� .��	��� ��

if .��	��� ��� 8 : then � � � (1)

���� ��� � ��� ���
: � .��	���� ��� // suboptimal solution

end

foreach �� � �set of trees that are rightmost extension of� �
- �node added by RME

if 9�-� � : then continue � � � (2)

project(��)

end

end

foreach �� � ���� � �
��*��
�� ��� �
�
project ���

end

return ���� ���
end

Figure 6.4. Algorithm: Find Optimal Rule

90

where

� �
#�
���

����� ?� �
�

��
�����

� � �� � ��� � � ���� � ' � ?� �� ���

The final classification is performed only with��� indicator functions associated with

real weights?�. The bias term�� can be seen as a default class label. The set� is

referred assupport featuresthat construct the final hypothesis. TreeMacher problem,

defined as follows, conveys an equivalent complexity as the classification, and hence

we here focus on TreeMatcher instead of the original classification problem.

Problem 3 TreeMatcher

Given a set of trees� and a tree�, extract all trees from� which are subtrees of�.

Before describing the detail of the algorithm, we first convert each tree in� into a

canonical string in the following method for an efficient subtree matching.

Definition 7 String encoding of a tree [79]

The string encoding-�)��� for a tree� is constructed by the following procedure: (1)

We set-�)��� � �. (2) We perform a depth-first pre-ordered search starting at the root

of tree�, adding the current node’s label to-�)��� (3) When we backtrack from a child

to its parent, a special and unique symbol -1 is added to the string-�)���.

Examples of such string encoding are illustrated in Figure 6.5. This encoding rep-

resents not only a unique subtree but a search path spanned by rightmost extension. In

other words, the order of nodes grown by the sequential process of rightmost exten-

sion is equivalent to that of the corresponding string. This property gives a convenient

and efficient way for solving the TreeMacher problem. First we store the set of string

encodings of trees� into a TRIE to compress redundant prefix of strings. TreeMacher

problem can then be solved by simply traversing this TRIE, since the search space

defined by rightmost extension is exactly the same as this TRIE. The example of such

TRIE is illustrated in Figure 6.6. The complexity of classification thus depends only

on the number of nodes in the given training example (i.e.,/�����), which is indepen-

dent not only of the number of iterations�, but also of the size of support features���.
The complexity of our Boosting algorithm in classification is lower than that of Tree

Kernel (/��������
�, where�� is a number of support vectors).

91

b

d

a

e

b

d f

a

b

d

a

h

b

d

a

i

c

c c

c

a b c –1 d e a b c –1 d –1 h

a b c –1 d –1 f a b c –1 –d –1 –1 i

Figure 6.5. String Encoding

6.4 Relation to SVMs with Tree Kernel

Recent studies [7, 54, 58] have shown that both Boosting and SVMs[15, 74] work ac-

cording to the similar strategy; constructing an optimal hypothesis that maximizes the

smallest marginbetween the positive and negative examples. The difference between

the two algorithms is the metric of margin; the margin of Boosting is measured in��-

norm, while, that of SVMs is measured in��-norm. We describe how the maximum

margin properties are translated in the two algorithms.

AdaBoost and Arc-GV asymptotically solve the following linear program, maxi-

a

d

b

d

-1
0.2b c

-0.3b d –1 e

0.1a d

0.5a b –1 c

-0.2a b d

0.3a b c

subtrees

0.2b c

-0.3b d –1 e

0.1a d

0.5a b –1 c

-0.2a b d

0.3a b c

subtrees λ
root

b

c d -1

c
0.3

c

e

0.1

-0.2

0.2

-0.30.5

Figure 6.6.��� in TRIE

92

mizing the smallest margin< [7, 54, 58],

��
���	 �%���

< (6.4)

-��� �

&�
���

��!���
� � < � � �
� � � � � � (6.5)

������ �
� (6.6)

where@ is the number of hypotheses. (Note that in the case of decision stumps for

trees,@ � ���
� � '� � ��'�.) Breiman shows that Arc-GV asymptotically con-

verges the optimal solution<"�� defined in the above linear optimization problem (i.e.,

&��#�� <
� � <"��)[7].

SVMs, on the other hand, solves the following quadratic optimization problem[15,

74]: 2

��
���	 �%���

< (6.7)

-��� �
 � �� � 	��
�� � < � � �
� � � � � � (6.8)

������ �
� (6.9)

The function	��� maps the original input example� into an@-dimensional feature

vector (i.e.,	��� �
&). The��-norm margin gives the separating hyperplane which is

expressed in terms of dot-products in feature space. The feature space in SVMs is thus

expressed in an implicit way by using Marcer kernel function, which is a generalized

dot-product between two objects, (i.e.,�������� � 	�����	����). It will be therefore

often calledkernel feature space.

In order to describe a connection between Boosting with decision stumps and

SVMs with convolution kernels, we here consider Tree Kernel[13, 33], which is one

of the convolution kernels, and implicitly maps the example represented in a labeled

ordered tree into its all subtree space. The implicit mapping defined by Tree Kernel

is given as:	��� � �4��� " ��� � � � � 4��
�
 " ���, where�� � ' , � � & and4��� is

the indicator function. Noticing that the decision stumps defined in Definition 3 can be

expressed as!�������� � � � ��4�� " ���
�, we can see that the constraints of Boost-

ing (6.5) are essentially the same as those of SVMs (6.8). In other words, no major

2For simplicity, we here omit the bias term (), and the extension of Soft Margin.

93

difference in the feature sapce can be fuond between Boosting with decision stumps

and SVMs with Tree Kernel. The critical deferrence between them is the definition

of margin: Boosting uses��-norm (6.6) and SVMs use��-norm (6.9). The question

one might ask here is how the difference effects in practice. Actually, the difference

between them can be explained bysparseness.

It is well known that the solution or separating hyperplane of SVMs is expressed

in the linear combination of the training examples using some coefficients?, (i.e.,

� �
�

�� ?
	��
�)[15, 74]. Maximizing��-norm margin gives a sparse solution in

example space, (i.e., most of?
 becomes�). Examples that have non-zero coefficient

are calledsupport vectorsthat form the final solution. Boosting, in contrast, performs

the computation explicitly in feature space. The concept behind Boosting is that only

a few hypotheses are needed to express the final solution.��-norm margin allows to

realize such property. Boosting thus finds a sparse solution infeature space. Even if

one can obtain a sparse solution in example space, one cannot say that this solution is

sparse in feature space, and vice versa. The accuracies of these two methods would

depend on the given training data. However, we argue that Boosting has the following

practicaladvantages:

� Fast Classification

Sparse hypotheses allow to build an efficient classification algorithm. The com-

plexity of Tree Kernel is/��&���&���, where&� and&� are trees. Moreover,

the actual cost of kernel-based approaches depends on the number of support

vectors��. The total cost of SVMs is therefore given by/����&���&���, which

is too heavy to be applied to real application. Boosting, in contrast, performs

faster, since the complexity depends only on the small number of hypotheses or

decision stumps.

� Interpretable Modeling

Text classification is thought as a powerful and fundamental technique for Data

Mining and Knowledge Discovery, which must be developed not only by the

accuracy of the results but also by clear descriptions of how they perform. In

other words, the system must be able to explain what it is doing and why it is

doing it. Our boosting-based system performs with both accurate classifications

and transparent reasoning, since the final hypothesis are represented as a explicit

94

良い点: メールを送受信した日付、時間が表示されるのも結構ありがたいです。

悪い点: なんとなく、レスポンスが悪いように思います。
PHS

mod 断定: 「ポケモン」の米国での成功を単純に喜んでいてはいけない。

意見: その論議を詰め、国民に青写真を示す時期ではないのか。
叙述: バブル崩壊で会社神話が崩れ、教育を取り巻く環境も変わった。

Figure 6.7. Examples of data set

and compact liner combination of decision stumps. It is difficult to give such

reasoning with kernel methods, since they define feature space implicitly.

6.5 Experiments

6.5.1 Experimental Setting

We employ two experiments of sentence classification task.

� PHS review classification (PHS)

The goal of this task is to classify reviews (in Japanese) for PHS3 as positive re-

views or negative reviews. Total 5,741 sentences are collected from an Web-BBS

discussing about PHS. In this BBS, users are directed to submit their positive re-

views and negative reviews separately. The unit of classification is a sentence.

The categories to be identified are “positive” or “negative”.

� Modality identification (MOD)

It is the task to classify sentences (in Japanese) by modalities. Total 1,710

sentences from Mainich news articles are manually annotated according to the

Tamura’s taxonomy[?]. The unit of classification is a sentence. The categories

to be identified are “opinion”, “assertion” or “description”.

Figure 6.7 shows examples of the two data set, PHS and MOD.

To employ learning and classifications, we have to represent a given sentence as a

labeled ordered tree. In this thesis, we use the following three ways of representation.

3PHS (Personal Handyphone System) is a sort of mobile phone developed in Japan in 1989.

95

� bag-of-words (bow), baseline

Ignoring structural information embedded in text, we simply represent a text in

a set of words. This is exactly the same setting as Boostexter. Word boundaries

are identified using a Japanese morphological analyzer, ChaSen4. We use the

base form of the word instead of the surface form.

� Dependency (dep)

We represent a text in a word-based dependency tree. We first use CaboCha5

to obtain a chunk-based dependency tree of a text. The chunk approximately

corresponds to the base-phrase in English. By deciding a head word in the

chunk, a chunk-based dependency tree is converted into a word-based depen-

dency tree. We put two dummy nodes, BOS (beginning-of-sentence) and EOS

(end-of-sentence), to capture some special relations to the relative positions.

� N-gram (ngram)

It is the word-based dependency tree assuming that each word simply modifies

the word appearing in the next. Any subtree of this structure becomes a word

n-gram.

We compared the performance of our Boosting algorithm and Support Vector Ma-

chines (SVMs) with bag-of-words kernel and Tree Kernel according to their F-measure

in 5-fold cross validation. Although there exist some extensions for Tree Kernel[33],

we use the original Tree Kernel by Collins[14], where all subtrees of a tree are used

as distinct binary features. This setting gives as a fair comparison in terms of feature

space. To extend a binary classifier to a multi-class classifier, we use the one-vs-rest

method. Hyperparameters, such as number of iterations
 in Boosting and soft-margin

parameter� in SVMs6, are selected by using cross-validation.

6.5.2 Results and Discussion

Table 1 summarizes the results of PHS and MOD tasks.

4http://chasen.aist-nara.ac.jp/
5http://cl.aist-nara.ac.jp/˜ taku-ku/software/cabocha/
6Both parameters control the influence between error rate for training data and model complexity.

96

Table 6.1. Results of Experiements on PHS/MOD

PHS MOD

assertion opinion description

Boosting bow 76.6 71.2 62.1 83.0

dep 79.0 87.5 80.5 91.9

ngram 79.3 87.6 78.4 91.9

SVMs bow 77.2 72.1 59.2 82.5

dep 77.2 81.7 26.1 88.1

ngram 79.4 81.7 26.1 88.1

Effects of structural information

In all tasks and categories, our Boosting algorithm (dep/ngram) performs better than

the baseline method (bow). This result supports our first intuition that structural in-

formation within texts are important to classify a text not by topics but by opinions or

modalities.

Only in the “opinion” category in the MOD task, dependency representation shows

a slightly better result than n-gram representation. However, as a whole, there are no

significant differences in accuracy between dependency and n-gram.

Comparison with Tree Kernel

When using bag-of-words feature, no significant differences in accuracy are observed

between Boosting and SVMs. When structual information are used in training and

classification, Boosting performs slightly better than SVMs with Tree Kernel. How-

ever, SVMs show significantly worse performance depending on tasks and categories,

(e.g., 26.1 F-measure in the MOD/opinions). When a convolution kernel is applied

to sparse data, kernel dot products between almost the same instances become quite

larger than those between different instances. This is because the number of common

features between similar instances exponentially increases in its size. It sometimes

causes an overfitting in training, where a test instance highly close to an instance in

training data is correctly classified, and other instances are classified as a default class.

To avoid this problem, there exist some heuristic approaches: i) employing a decay

97

factor to reduce the weights of large sub-structures[33]. ii) substituting a kernel dot

products for Gaussian function to smooth the original kernel dot products[25]. These

approaches may achieve better accuracy, however, they are designed not for fast clas-

sification nor interpretable feature space focused on this chapter but for accurate clas-

sification. Moreover, we cannot give a fair comparison in terms of same feature space.

The selection of optimal hyperparameters, such as decay factors in the first approach

and smoothing parameters in the second approach, is also left to as an open question.

Merits of our algorithm

In the previous section, we describe merits of our Boosting algorithm. We experimen-

tally verify these merits from the results of the PHS task.

As illustrated in section 4, our method can automatically select relevant and com-

pact features from a number of feature candidates. In the PHS task, total 1,793 features

(rules) are selected, while the size of distinct uni-gram, bi-gram and tri-gram appear-

ing in the data are 4,211, 24,206, and 43,658 respectively. Even giving all subtrees

as feature candidates, Boosting selects a small and highly relevant subset of features.

When we explicitly enumerate the subtrees used in Tree Kernel, the number of active

(non-zero) features might amount to ten thousands or more.

Table 6.2 shows examples of extracted support features (pairs of feature (tree)�

and weight?�) in the PHS task.

� Features including the word “にくい (hard, difficult)”

In general, “にくい (hard, difficult)” is an adjective expressing negative opin-

ions. Most of features including “にくい” are assigned a negative weight (neg-

ative opinion). However, only one feature “切れに くい (hard to cut off)” has a

positive weight. This result highly reflects the domain knowledge, PHS (mobile

phone reviews).

� Features including the word “使う (use)”

“使う (use)” is a neutral expression for opinion classifications by itself. How-

ever, the weight varies according to the surrounding context: 1) “使いたい (want

to use)” 	 positive, 2) “使いやすい (be easy to use)” 	 positive, 3) “使いや
すか った (was easy to use)” (past form)	 negative, 4) “のほうが 使いやす
い (... is easier to use than ..)” (comparative)	 negative.

98

� Features including the word “充電 (charge)”

Features reflecting the domain knowledge are extracted: 1) “充電 時間が 短
い (charge time is short)” 	 positive, 2) “充電 時間が 長い (charge time is

long)” 	 negative. These features are interesting, since we cannot determine

the correct label (positive/negative) only using the bag-of-words features, such

as “charge”, “short” or “long” alone.

Table 6.3 illustrates an example of actual classification. For the input sentence “

液晶が大きくて, 綺麗, 見やすい (The LCD is large, beautiful, and easy to see.)”,

the system outputs the features applied to this classification along with their weights

?�. These information allow us to analyze why the system classifies the input sentence

to the category and what kinds of features are used in the classification. We cannot

examine these analysis in Tree Kernel, since it defines their feature space implicitly.

Table 6.2. Examples of features in PHS dataset

keyword ?� subtree� (support features)

にくい 0.0040 切れるにくい (be hard to cut off)

(hard, -0.0006 読むにくい (be hard to read)

difficult) -0.0007 使うにくい (be hard to use)

-0.0017 にくい (be hard to)

使う 0.0027 使うたい (want to use)

(use) 0.0002 使う (use)

0.0002 使うてる (be in use)

0.0001 使うやすい (be easy to use)

-0.0001 使うやすいた (was easy to use, (past))

-0.0007 使うにくい (be hard to use)

-0.0019 方が 使うやすい (.. is easier to use than)

充電 0.0028 充電時間が 短い (charge time is short)

(charge) -0.0041 充電時間が 長い (charge time is long)

The testing speed of our Boosting algorithm is much higher than that of SVMs with

Tree Kernel. In the PHS task, the speed of Boosting and SVMs are 0.135 sec./1,149

99

Table 6.3. A running example of actual classification

Input:液晶が大きくて綺麗,見やすい.

The LCD is large, beautiful and easy to see.

?� subtree� (support features)

0.00368 やすい (be easy to)

0.00352 綺麗 (beautiful)

0.00237 見るやすい (be easy to see)

0.00174 が 大きい (... is large)

0.00107 液晶が 大きい (The LCD is large)

0.00074 液晶が (The LCD is ...)

0.00058 液晶 (The LCD)

0.00027 て (a particle for coordination)

0.00036 見る (see)

-0.00001 大きい (large)

-0.00033 、 (comma)

-0.00052 が (a nominative case marker)

100

instances and 57.91 sec./1,149 instances respectively7. We can say that Booting is

about 400 times faster than SVMs with Tree Kernel.

6.6 Summary

In this chapter, we focused on an algorithm for classification of semi-structured text

in which a sentence is represented in a labeled ordered tree. The labeled ordered tree

is a simple abstract of text, since a text annotated with part-of-speeches, phrase infor-

mation, named entities, and dependency relations can be modeled as a labeled ordered

tree. These information are useful to classify a text not by topics but by opinions,

modalities, or subjectivity. The proposal consists of i) decision stumps that use sub-

trees as features and ii) Boosting algorithm in which the subtree-based decision stumps

are applied as weak learners. Two experiments on the opinion/modality classifica-

tion tasks were employed to confirm that subtree features are important. In addition,

we experimentally shown that our Boosting algorithm is computationally efficient for

classification tasks involving discrete structural features.

7We tested the performances on Linux with XEON 2.4Ghz dual processors and 4.0Gbyte main mem-

ory.

101

CHAPTER 7 Conclusions

Problems cannot be solved by the same level of thinking that created them.

Albert Einstein

This thesis has described machine learning and data mining approaches to natural

language processing to buildpractical systems applicable to wider range of natural

language applications. We present four works on this topic.

The first work applies SVMs to Text Chunking, where a text is divided into syn-

tactically related non-overlapping groups of tokens. The concept of Text Chunking

is quite general, and there exist a number of applications modeled as Text Chunking.

We also apply an weighted voting of 8 SVMs-based text chunker to obtain a better

performance. Each committee used for the weighted voting are trained with different

conditions, such as different encoding of training data or different chunking directions.

This system is provided as an open source software calledYamCha, which has been

practically used in many tasks, such as Named entity recognitions[6, 62, 77], part-of-

speech tagging of Chinese[78], Unknown-words and Filler identifications[5, 42], and

Semantic-role identifications[21].

In the second work, we propose two Japanese dependency parser based on Sup-

port Vector Machines. One is the probabilistic model, which has been widely used

in the dependency parsing, and the other is the cascaded chunking model in which a

sentence is parsed determinately only estimating the current segment modifies the im-

mediately right-hand side segment. We compare two methods and discuss the merits

and demerits of them. Through the experiments with Japanese bracketed corpus, we

the proposed methods a high accuracy even with a small training data and outperforms

previous approaches. This system is also provided as an open source software called

CaboCha. This system has been widely used not only in research areas, such as Ques-

tion Answering, Text Summarization and Translation knowledge acquisitions, but in

commercial or industrial areas.

The third work presents two methods that make the kernel-based text analyzers

substantially faster. While state-of-the-art performances have been delivered by SVMs,

their inefficiencies in actual testing (parsing) lose their opportunities to be used in the

102

real applications. Proposed methods are based on the concept of sub-structure mining

algorithms and are general enough to be applicable not only to the NLP tasks but also

to general machine learning tasks where training and test examples are represented in

a binary vector. This system is experimentally embedded inCaboCha, and will be

released as an open source software near the future.

In the last work, we focused on a algorithm for classification of semi-structured

text in which a text is represented in a labeled ordered tree. The labeled ordered tree

is a simple abstract of text, since a text annotated with part-of-speeches, phrase infor-

mation, named entities, and dependency relations can be modeled as a labeled ordered

tree. These information are useful to classify a text not by topics but by opinions,

modalities, or subjectivity. The proposal consists of i) decision stumps that use sub-

trees as features and ii) Boosting algorithm in which the subtree-based decision stumps

are applied as weak learners. Two experiments on the opinion/modality classifica-

tion tasks were employed to confirm that subtree features are important. In addition,

we experimentally shown that our Boosting algorithm is computationally efficient for

classification tasks involving discrete structural features.

103

References

[1] Kenji Abe, Shinji Kawasoe, Tatsuya Asai, Hiroki Arimura, and Setsuo Arikawa.

Optimized substructure discovery for semi-structured data. InProc. 6th European

Conference on PKDD, 2002.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining associa-

tion rules. InProc. 20th Int. Conf. Very Large Data Bases, VLDB, pp. 487–499,

12–15 1994.

[3] Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing multiclass

to binary: A unifying approach for margin classifiers. InInternational Conf. on

Machine Learning (ICML), pp. 9–16, 2000.

[4] Junichi Aoe. An efficient digital search algorithm by using a double-array struc-

ture. IEEE Transactions on Software Engineering, Vol. 15, No. 9, 1989.

[5] Masayuki Asahara and Yuji Matsumoto. Filler and disfluency identification based

on morphological analysis and chunking. InISCA and IEEE Workshop on Spon-

taneous Speech Processing and Recognition, 2003.

[6] Masayuki Asahara and Yuji Matsumoto. Japanese named entity extraction with

redundant morphological analysis. InHLT-NAACL 2003: Main Conference,

2003.

[7] Leo Breiman. Prediction games and arching algoritms.Neural Computation,

Vol. 11, No. 7, pp. 1493 – 1518, 1999.

[8] Eric Brill. Transformation-Based Error-Driven Learning and Natural Language

Processing: A Case Study in Part-of-Speech Tagging.Computational Linguistics,

Vol. 21, No. 4, 1995.

[9] Eugene Charniak. A maximum-entropy-inspired parser. InProcessing of the

NAACL 2000, pp. 132–139, 2000.

[10] Hinrich Sch”utze Christopher D. Manning.Foundations of Statistical Natural

Language Processing. The MIT Press, 1999.

104

[11] Michael Collins. A new statistical parser based on bigram lexical dependencies.

In Proceedings of the ACL ’96, pp. 184–191, 1996.

[12] Michael Collins.Head-Driven Statistical Models for Natural Language Parsing.

PhD thesis, University of Pennsylvania, 1999.

[13] Michael Collins and Nigel Duffy. Convolution kernels for natural language. In

Advances in Neural Information Processing Systems 14, Vol.1 (NIPS 2001), pp.

625–632, 2001.

[14] Michael Collins and Nigel Duffy. New ranking algorithms for parsing and tag-

ging: Kernels over discrete structures, and the voted perceptron. InProc of ACL,

2002.

[15] C. Cortes and Vladimir N. Vapnik. Support Vector Networks.Machine Learning,

Vol. 20, pp. 273–297, 1995.

[16] W. Daelemans, S. Buchholz, and J. Veenstra. Memory-based shallow parsing. In

Proceedings of CoNLL-1999, 1999.

[17] T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-

correcting output codes.Journal of Artificial Intelligence Research, Vol. 2, pp.

263–286, 1995.

[18] Y. Freund and Schapire. Experiments with a new Boosting algoritm. In13th

International Conference on Machine Learning, 1996.

[19] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-

line learning and an application to boosting.Journal of Computer and System

Sicences, Vol. 55, No. 1, pp. 119–139, 1996.

[20] Masakazu Fujio and Yuji Matsumoto. Japanese Dependency Structure Analysis

based on Lexicalized Statistics. InProceedings of EMNLP ’98, pp. 87–96, 1998.

[21] Kadri Hacioglu and Wayne Ward. Target word detection and semantic role chunk-

ing using support vector machines. InHLT-NAALCL 2003: Short Parpers, 2003.

105

[22] Masahiko Haruno, Satoshi Shirai, and Yoshifumi Ooyama. A Japanese Depen-

dency Parser Based on a Decison tree.Transactions of IPSJ, Vol. 39, No. 12, p.

3117, 1998.

[23] Msahiko Haruno, Satoshi Shirai, and Yoshifumi Ooyama. Using Decision Trees

to Construct a Partial Parser. InProceedings of the COLING ’98, pp. 505–511,

1998.

[24] Msahiko Haruno, Satoshi Shirai, and Yoshifumi Ooyama. Using Decision Trees

to Construct a Practical Parser.Machine Learning, Vol. 34, pp. 131–149, 1999.

[25] David Haussler. Convolution kernels on discrete structures. Technical report, UC

Santa Cruz (UCS-CRL-99-10), 1999.

[26] Hideki Isozaki and Hideto Kazawa. Efficient support vector classifiers for named

entity recognition. InProceedings of the COLING-2002, pp. 390–396, 2002.

[27] Thorsten Joachims. Text Categorization with Support Vector Machines: Learning

with Many Relevant Features. InProceedings of the ECML-98, 10th European

Conference on Machine Learning, pp. 137–142, 1998.

[28] Thorsten Joachims. Transductive Inference for Text Classification using Support

Vector Machines. InInternational Conference on Machine Learning (ICML),

1999.

[29] Roberto J. Bayardo Jr. Efficiently mining long patterns from databases. InSIG-

MOD 1998, Proceedings ACM SIGMOD International Conference on Manage-

ment of Data. ACM Press, 1998.

[30] Hiroshi Kanayama, Kentaro Torisawa, Yutaka Mitsuishi, and Jun’ichi Tsujii. A

Hybrid Japanese Parser with Hand-crafted Grammar and Statistics. InProceed-

ings of the COLING 2000, pp. 411–417, 2000.

[31] Hiroshi Kanayama, Kentaro Torisawa, Yutaka Mitsuishi, and Jun’ichi Tsujii. A

Statistical Japanese Dependency Analysis Model with Choice Restricted to at

Most Three Modification Candidates.Natural Language Processing, Vol. 7,

No. 5, pp. 71–91, 2000.

106

[32] T. Kasami. An efficient recognition and syntax analysis algorithm for context-

free languages. Technical report, Air Force Cambridge Research Laboratory,

Bedford, 1965.

[33] Hisashi Kashima and Teruo Koyanagi. Svm kernels for semi-structured data. In

Proceedings of the ICML-2002, pp. 291–298, 2002.

[34] M. Kay. Algorithm schemata and data structures in syntactic processing. Tech-

nical report, Technical Report CSL-80-12, Xerox PARC, 1980.

[35] Ulrich H.-G Kreßel. Pairwise Classification and Support Vector Machines. In

Advances in Kernel Mathods. MIT Press, 1999.

[36] Taku Kudo. Darts: Double-ARray Trie System, 2002.

[37] Taku Kudo and Yuji Matsumoto. Japanese Dependency Structure Analysis Based

on Support Vector Machines. InEmpirical Methods in Natural Language Pro-

cessing and Very Large Corpora, pp. 18–25, 2000.

[38] Taku Kudo and Yuji Matsumoto. Use of Support Vector Learning for Chunk

Identification. InProceedings of the 4th Conference on CoNLL-2000 and LLL-

2000, pp. 142–144, 2000.

[39] Taku Kudo and Yuji Matsumoto. Chunking with support vector machines. In

Proceedings of the the NAACL, pp. 192–199, 2001.

[40] Taku Kudo and Yuji Matsumoto. Japanese dependency analyisis using cascaded

chunking. InProceedings of the CoNLL-2002, pp. 63–69, 2002.

[41] Sadao Kurohashi and Makoto Nagao. Kyoto University text corpus project. In

Proceedings of the ANLP, Japan, pp. 115–118, 1997.

[42] Goh Chooi Ling, Masayuki Asahara, and Yuji Matsumoto. Chinese unknown

word identification using position tagging and chunking. InIn Proc. of ACL

2003 Interractive Posters/Demo, 2003.

[43] Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris

Watkins. Text classification using string kernels.Journal of Machine Learning

Research, Vol. 2, , 2002.

107

[44] Shinichi Morhishita. Computing optimal hypotheses efficiently for boosting. In

Progress in Discovery Science, pp. 471–481. Springer, 2002.

[45] Tetsuji Nakagawa, Taku Kudo, and Yuji Matsumoto. Unknown word guessing

and part-of-speech tagging using support vector machines. InProceedings of the

NLPRS 2001, 2001.

[46] Tetsuji Nakagawa, Taku Kudo, and Yuji Matsumoto. Revision learning and its

application to part-of-speech tagging. InProceedings of the ACL 2002, pp. 497–

504, 2002.

[47] Kamal Nigam, Andrew K. McCallum, Sebastian Thrun, and Tom M. Mitchell.

Text classification from labeled and unlabeled documents using EM.Machine

Learning, Vol. 39, No. 2/3, pp. 103–134, 2000.

[48] John C. Platt. Probabilistic Outputs for Support Vector Machines and Compar-

isons to Regularized Likelihood Methods. InAdvances in Large Margin Classi-

fiers. MIT Press, 1999.

[49] Massimiliano Pontil and Alessandro Verri. Support vector machines for 3d object

recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,

Vol. 20, No. 6, pp. 637–646, 1998.

[50] J. Ross Quinlan.C4.5: Programs for machine learning. Morgan Kaufmann

Publishers, 1993.

[51] Lance A. Ramshaw and Mitchell P. Marcus. Text chunking using transformation-

based learning. InProceedings of the 3rd Workshop on Very Large Corpora, pp.

88–94, 1995.

[52] Adwait Ratnaparkhi. A maximum entropy model for part-of-speech tagging. In

Proc. of EMNLP, pp. 133–142, 1996.

[53] Adwait Ratnaparkhi. A Liner Observed Time Statistical Parser Based on Maxi-

mum Entropy Models. InProceedings of EMNLP ’97, 1997.

[54] Gunnar. R¨atsch, Takashi. Onoda, and Klaus-Robert M¨uller. Soft margins for

AdaBoost.Machine Learning, Vol. 42, No. 3, pp. 287–320, 2001.

108

[55] Dan Roth. Memory based learning in NLP. Technical Report 2125, Urbana,

Illinois, 1999.

[56] Abney S. Parsing By Chunking. InPrinciple-Based Parsing. Kluwer Academic

Publishers, 1991.

[57] Manabu Sassano and Takehito Utsuro. Named Entity Chunking Techniques in

Supervised Learning for Japanese Named Entity Recognition. InProceedings of

COLING 2000, pp. 705–711, 2000.

[58] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boost-

ing the margin: a new explanation for the effectiveness of voting methods. In

Proc. 14th International Conference on Machine Learning, pp. 322–330. Mor-

gan Kaufmann, 1997.

[59] Robert E. Schapire and Yoram Singer. BoosTexter: A boosting-based system for

text categorization.Machine Learning, Vol. 39, No. 2/3, pp. 135–168, 2000.

[60] Satoshi Sekine, Kiyotaka Uchimoto, and Hitoshi Isahara. Backward Beam

Search Algorithm for Dependency Analysis of Japanese. InProceedings of the

COLING 2000, pp. 754–760, 2000.

[61] Hirotoshi Taira and Masahiko Haruno. Feature Selection in SVM Text Catego-

rization. Transactions of IPSJ, Vol. 41, No. 4, p. 1113, 2000.

[62] Koichi Takeuchi and Nigel Collier. Use of support vector machines in extended

named entity. InIn Proc. of CoNLL, 2002.

[63] Erik F. Tjong Kim Sang. Noun phrase recognition by system combination. In

Proceedings of ANLP-NAACL 2000, pp. 50–55, 2000.

[64] Erik F. Tjong Kim Sang. Text Chunking by System Combination. InProceedings

of CoNLL-2000 and LLL-2000, pp. 151–153, 2000.

[65] Erik F. Tjong Kim Sang and Sabine Buchholz. Introduction to the CoNLL-2000

Shared Task: Chunking. InProceedings of CoNLL-2000 and LLL-2000, pp.

127–132, 2000.

109

[66] Erik F. Tjong Kim Sang, Walter Daelemans, Herv´e Déjean, Rob Koeling, Yuval

Krymolowski, Vasin Punyakanok, and Dan Roth. Applying system combination

to base noun phrase identification. InProceedings of COLING 2000, pp. 857–

863, 2000.

[67] Peter D. Turney. Thumbs up or thumbs down? semantic orientation applied to

unsupervised classification of reviews. InProceedings of the ACL 2002, pp. 417–

424, 2002.

[68] Kiyotaka Uchimoto, Qing Ma, Masaki Murata, Hiromi Ozaku, and Hitoshi Isa-

hara. Named Entity Extraction Based on A Maximum Entropy Model and Trans-

formation Rules. InProcessing of the ACL 2000, 2000.

[69] Kiyotaka Uchimoto, Masaki Murata, Satoshi Sekine, and Hitoshi Isahara. De-

pendency Model Using Posterior Context.Natural Language Processing, Vol. 7,

No. 5, pp. 3–17, 2000.

[70] Kiyotaka Uchimoto, Masaki Murata, Satoshi Sekine, and Hitoshi Isahara. De-

pendency model using posterior context. InProcedings of Sixth International

Workshop on Parsing Technologies, 2000.

[71] Kiyotaka Uchimoto, Satoshi Sekine, and Hitoshi Isahara. Japanese Dependency

Structure Analysis Based on Maximum Entropy Models.Transactions of IPSJ,

Vol. 40, No. 9, pp. 3397–3407, 1998.

[72] Kiyotaka Uchimoto, Satoshi Sekine, and Hitoshi Isahara. Japanese Dependency

Structure Analysis Based on Maximum Entropy Models. InProceedings of the

EACL, pp. 196–203, 1999.

[73] Hans van Halteren. Chunking with WPDV Models. InProceedings of CoNLL-

2000 and LLL-2000, pp. 154–156, 2000.

[74] Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

[75] Janyce M. Wiebe. Learning subjective adjectives from corpora. InAAAI-

2000/IAAI-2000: Proceedings of the Seventeenth National Conference on Ar-

tificial Intelligence and Twelfth Conference on on Innovative Applications of Ar-

tificial Intelligence, pp. 735–740, 2000.

110

[76] Janyce M. Wiebe, Rebecca Bruce, Matthew Bell, Melanie Martin, and

n Theresa Wilson. A corpus study of evaluative and speculative language. In

IN proc of the 2nd ACL SIG on Dialogue Workshop on Discourse and Dialogue,

2001.

[77] Hiroyasu Yamada, Taku Kudo, and Yuji Matsumoto. Japanese named entity ex-

traction using support vector machine.Transactions of IPSJ, Vol. 43, No. 1, pp.

44–53, 2002.

[78] Tatsumi Yoshida, Kiyonori Ohtake, and Kazuhide Yamamoto. Comparative ex-

periments of chinese analyzers between support vector machines and minimum

connective costs method. InIPSJ SIG NL-150 (in Japanese), 2002.

[79] Mohammed Zaki. Efficiently mining frequent trees in a forest. InProceedings

of the 8th International Conference on Knowledge Discovery and Data Mining

KDD, pp. 71–80, 2002.

[80] Jakub Zavrel and Walter Daelemans. Memory-based learning: Using similarity

for smoothing. InProceedings of the Thirty-Fifth Annual Meeting of the Asso-

ciation for Computational Linguistics and Eighth Conference of the European

Chapter of the Association for Computational Linguistics, pp. 436–443, 1997.

111

Acknowledgements

First of all, I would like to express my gratitude to Professor Yuji Matsumoto, my

supervisor, for introducing me to the world of statistical natural language processing

during numerous extended discussion in our laboratory. I am also grateful to Associate

Professor Kentaro Inui, Assistant Professor Edoson Tadashi Miyamoto and Assistant

Professor Masashi Shimbo for giving me many comments. I learned a lot not only

about research but about daily life from them. I also thank the thesis committee in-

cluding Professor Kiyohiro Shikano and Professor Shin Ishii for giving me valuable

comments.

I would like to thank the members of machine learning work group in our labora-

tory: Hiroya Takamura, Hiroyasu Yamada, Hirotoshi Taira and Tetsuji Nakagawa. My

significant interest to the machine learning is founded during the continuous discus-

sion with them. From this excellent work group, I learned a lot about machine learning

from the view points of theoretical analysis as well as real-world application.

Finally, I would like to thank all previous and current members of Prof. Matsumoto

laboratory. They gave me a lot of useful and interesting knowledge about computer

science.

112

List of Publication

Journal Papers

1. 工藤拓,松本裕治. チャンキングの段階適用による係り受け解析. 情報処理
学会論文誌, Vol 43, No. 6 pp. 1834-1842, 2002.

2. 工藤拓,松本裕治. Support Vector Machineを用いた Chunk同定自然言語
処理 Vol.9, No, 5 pp.3-22, 2002

3. 山田寛康,工藤拓,松本裕治. Support Vector Machineを用いた日本語固有表
現抽出情報処理学会論文誌, Vol 43, No. 1, pp.43-53, 2002

4. 中川哲治,工藤拓,松本裕治Support Vector Machineを用いた形態素解析と
修正学習法の提案情報処理学会論文誌 　Vol.44,No.5, pp.1354-1367, 2003

International Conference

1. Taku Kudo, Yuji Matsumoto. Fast Methods for Kernel-based Text Analysis

41st Annual Meeting of the Association for Computational Linguistics, pp.24-

31, 2003

2. Taku Kudo, Yuji Matsumoto. Japanese Dependency Analysis using Cascaded

Chunking CoNLL 2002: Proceedings of the 6th Conference on Natural Lan-

guage Learning, pp.63-69 2002

3. Tetsuji Nakagawa, Taku Kudo, Yuji Matsumoto Revision Learning and its Ap-

plication to Part-of-Speech Tagging 40th Annual Meeting of the Association for

Computational Linguistics, Proceedings of the Conference, pp.497-504, 2002

4. Tetsuji Nakagawa, Taku Kudo, Yuji Matsumoto Unknown Word Guessing and

Part-of-Speech Tagging Using Support Vector Machines NLPRS2001: Proceed-

ings of the Sixth Natural Language Processing Pacific Rim Symposium, pp. 325-

331, 2001

5. Hiroya Takamura, Hiroyasu Yamada, Taku Kudoh, Kaoru Yamamoto, Yuji Mat-

sumoto, Ensembling based on Feature Space Restructuring with Application

to WSD, NLPRS2001: Proceedings of the Sixth Natural Language Processing

Pacific Rim Symposium, pp.41-48, 2001

113

6. Taku Kudo, Yuji Matsumoto, Chunking with Support Vector Machines 2nd

Meeting of the North American Chapter of the Association for Computational

Linguistics, pp.192-199, 2001

7. Taku Kudo, Yuji Matsumoto, Japanese Dependency Structure Analysis Based

on Support Vector Machines Proceedings of the 2000 Joint SIGDAT Conference

on Empirical Methods in Natural Language Processing and Very Large Corpora,

pp.18-25, 2000

8. Taku Kudo, Yuji Matsumoto, Use of Support Vector Learning for Chunk Iden-

tification, CoNLL-2000 and LLL-2000: Proceedings of the Fourth Conference

on Computational Language Learning and of the Second Learning Language in

Logic Workshop pp.142-144, 2000

Other Publications

1. 工藤拓,松本裕治. 部分木を素性とするDecision StumpsとBoosting Algorithm

の適応. 情報処理学会研究報告 2003-NL-158 pp.55-62 2003

2. 工藤拓,松本裕治. 部分木に基づくマルコフ確率場と言語解析への適用. 情
報処理学会研究報告 2003-FI-72, 2003-NL-157 pp.33-40 2003

3. 山本薫、工藤拓、小長谷明彦、松本裕治. BioIEに向けて― 　形態素解析編.

言語処理学会第 9回年次大会発表論文集 pp.105-108

4. 工藤拓,松本裕治. 系列パターンマイニングを用いた有効な素性の組み合わ
せの発見. 情報処理学会研究報告 2002-NL-153 pp.147-154 2003

5. 工藤拓、山田寛康、中川哲治、松本裕治. SVMを用いたチャンキングタ
スクにおける素性の自動選択. 言語処理学会 第 7回年次大会 発表論文集
pp.257-260 2001

6. 工藤拓,山本薫,坪井祐太,松本裕治. 言語情報を利用したテキストマイニン
グ言語処理学会第８回年次大会発表論文集 pp.643-646 2002

7. 中川哲治、工藤拓、松本裕治. Support Vector Machineを用いた未知語の品
詞推定. 情報処理学会研究報告 2001-NL-141 pp.77-82 2001

114

8. 山田寛康、工藤拓、松本裕治Support Vector Machinesを用いた日本語固有
表現抽出. 情報処理学会研究報告 2001-NL-142 pp.121-128 2001

9. 工藤拓、松本裕治. チャンキングの段階適用による係り受け解析. 情報処理
学会研究報告 2001-NL-142 pp.97-104 2001

10. 工藤拓、松本裕治 RDBを利用したタグ付きコーパス検索支援環境の構築.

情報処理学会研究報告 2001-NL-144 pp.135-142 2001

11. 高村大也、山田寛康、工藤拓、山本薫、松本裕治 素性空間再構成による
Word-Sense Disambiguation情報処理学会研究報告 2001-NL-144 pp.83-90

2001

12. 中川哲治、工藤拓、松本裕治修正学習法による形態素解析. 情報処理学会
研究報告 2001-NL-146 pp.1-8 2001.

13. 工藤拓、松本裕治Support Vector Machineを用いた Chunk同定情報処理学
会研究報告 2000-NL-140 pp.9-16 2000

14. 山田寛康、工藤拓、松本裕治 (奈良先端大) 単語の部分文字列を考慮した専
門用語抽出と分類. 情報処理学会研究報告 2000-NL-140 pp.77-84 2000

15. 工藤拓、松本裕治. Support Vector Machineによる日本語係り受け解析. 情
報処理学会研究報告 2000-NL-138 pp.79-86 2000

Award

1. 平成 13年情報処理学会山下記念研究賞受賞. チャンキングの段階適用に
よる係り受け解析. 情報処理学会研究報告 2001-NL-142 pp.97-104 2001

2. 平成 14年自然言語処理学会年次大会優秀発表賞受賞. 言語情報を利用し
たテキストマイニング言語処理学会第８回年次大会発表論文集 pp.643-646

2002

115

