NAIST-IS-DT0161014

Doctor’s Thesis

Security Assurance Methods for Access Control Systems

Using Static Analysis

Shigeta Kuninobu

February 6, 2004

Department of Information Processing
Graduate School of Information Science

Nara Institute of Science and Technology

Doctor’s Thesis
submitted to Graduate School of Information Science,
Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

DOCTOR of ENGINEERING

Shigeta Kuninobu

Thesis committee: Hiroyuki Seki, Professor
Katsumasa Watanabe, Professor

Katsuro Inoue, Professor

Security Assurance Methods for Access Control Systems

Using Static Analysis*

Shigeta Kuninobu

Abstract

As computer networks grow rapidly, it becomes more important to assure the secu-
rity of a computer system against attacks by malicious users. Access control, as well as
cryptography, is one of the fundamental technologies for establishing computer security.
Access control mechanisms are roughly classified into mandatory access control (MAC)
and discretionary access control (DAC). In MAC, a security level (e.g., top-secret, se-
cret and unclassified) is assigned to each user and data as a security policy and access
control is performed based on the distance between the security level assigned to a user
who requests an access to a data and the security level assigned to the data. In DAC,
the owner of each data freely assigns a security policy (permission) to the data. Unix
file permission is a typical example of DAC. In both of MAC and DAC, however, it is
difficult to manually check whether access control under given security policies satisfies
the security goals which the whole system is required to achieve.

In this thesis, we propose static analysis methods which check whether the whole
system behavior determined by access control based on given security policies satisfies
security goals of the system.

In Chapter 2, an information flow analysis algorithm for a procedural program is
proposed as a security assurance method for MAC based system. This algorithm in-
fers the security level of an output of a given program relative to the security levels
of program input. In the proposed method, a structure of security levels is formally
represented as an arbitrary finite lattice. Adopting abstract interpretation as an anal-
ysis method enables us to infer the information flow of an arbitrary recursive program.
Soundness of the proposed algorithm is formally proved and complexity of the algo-
rithm is shown to be cubic time in the size of a program. Furthermore, the algorithm is

extended so that operations (such as an encryption function) which hide information on

*Doctor’s Thesis, Department of Information Processing, Graduate School of Information Science,
Nara Institute of Science and Technology, NAIST-1S-DT0161014, February 6, 2004.

their arguments can be appropriately modeled by using a congruence relation. Analysis
results by using a prototype system are also presented.

In Chapter 3, a security assurance method for a DAC based system is proposed.
First, a simple but useful policy description language is proposed. In a conventional
DAC model, only permission (positive authorization) and prohibition (negative au-
thorization) can be specified. However, an obligation policy is also important, which
describes that a specified subject is obliged to perform a specified action when a certain
event occurs under a certain condition. The proposed language can specify not only
permission and prohibition policies but also obligation policies. A policy controlled
system (PCS) is a system in which each object has its own security policy and objects’
behaviors are autonomously controlled based on those policies when they interact with
one another. Operational semantics of PCS is formally defined in Chapter 3. Next,
the safety verification problem is defined as the problem to decide for a given PCS
and a security goal (also called a safety property) whether every reachable state of
the PCS satisfies the safety property. To solve this problem, we use a model checking
method for pushdown system. An automatic verification tool has been implemented,

and effectiveness of the proposed method is shown through verification of a sample

PCS.

Keywords:

access control, policy, information flow analysis, security verification, model checking

ii

gobogoboooootoobouboogn
oooboboooooboooboooor:

go od

gboog

g0, o,bbobbbobobobbboboon
Joododdobooboooobooooob. Doooboooooooooo
gd,o0boobgoooboboooooooboboboooboo. obboooooa, o
0000000 (Mandatory Access Control, MAC) D 00O OO OO0 (Discretionary
Access Control, DAC)D 0 OJ0OODO. MACOO,000000000 (top-secret, secret,
unclassified 0)0 0000000000000 0OO00O0O000O00OOOOOOOO0O0O
o, bbb booobbobuoooobobbuoboobbbooobo
000000000 boboooooooobooooooo. bAcog,ooooo
000000000000,0000000000000((@O0O00O0)00O0O0OO0O0O
oo, jbdddoooguoobbooobbooobbdooobbooboobnbn
oo0d. UNXOOOoooouooouobo bAciouobobobuoouo. bobobo,
DAC/MACOOOUOOOOU0ODOODOOOUOO,0000DO00DOOODODODOOOD
bbb ooob bbb ooboooDobboOo
gg.

ooobgo, MACOODO bDACOOOOooobO,0bgoboooobboboon
gooooo, 00000000, oggoo
gooodoooooooobbobboooog.

2000, MACODOUOUODOOODDODOOOOUObOOOO,DboobooboOobboo
gogooboobboooobobodoooo. goboboboobo,obobboboooboboa
Jo0ooooobooobgoooooooobooooooobooog,ogoboooon
gjodiodoooooooo. oouboo,oobbobobbobbbbo0oooon
00000000000. 0000000, 0000 (abstract interpretation) 00 O O
ugooobb, g obooboobbbtboooobodooo. oo bo
o000, 0000 bbbob0o0ooogoo 3sbogoonoo

0000000000000 0D000000 D000O0U0O0 0000, NAIST-1S-DT0161014, 20040
20 60.

il

goooooooo. oo, oogoooo,onogoooboooogboooood
0do0dooooooobobooouoboooooooobob oo ooooooooon
0. 0000000000, 0000000 ooooobooooooboooon.
3000, bACOO0O00O0DOOO0O00O000D0ODO0O0OOUOOOO. obo,O00d
00o0dddo0ooooooo. 000 bACOOOOO, 000000 oooooon
dooooboobo0o 2000000000000, b00oboobooouoaga
0,000 ooogo. o000, ooobooooooOon
goooooooouboooboobooboooobooobooou. goooon
00 (Policy Controlled System, PCS) 00, 0000000000000 OOOOOO
oooooooobo,0od0oodobooooboob0oooooooooooooon
goo. oo pcSOnDnooooo3ooooog. go,opCSPOODOOO FOOO
doooo, PO0000O0OOOO0OO0O FOOOOOOOOooOOooooooooooo
oo0ooo0d.ogbooboooooooog, 00000000 oooooon
o0ooo.o0do,0b0oooo0ooooo pCSO000OoooooooooOon.

goooo

ggoooo,0gbo,0boobobo,booobboo,obnooo

v

List of Publications

1

(1)

2

3)

3

(5)

Journal Papers

Shigeta Kuninobu, Yoshiaki Takata, Hiroyuki Seki and Katsuro Inoue: “An In-
formation Flow Analysis of Recursive Programs based on a Lattice Model of
Security Classes,” IEICE Transactions on Information and Systems (D-I), J85-
D-1(10), pp.961-973, Oct. 2002 (in Japanese).

English translation will appear in Systems and Computers in Japan.

Shigeta Kuninobu, Naoya Nitta, Yoshiaki Takata and Hiroyuki Seki: “Policy
Controlled System and Its Model Checking,” Submitted to IEICE Transactions

on Information and Systems.

International Conferences (Reviewed)

Shigeta Kuninobu, Yoshiaki Takata, Hiroyuki Seki and Katuro Inoue: “An Effi-
cient Information Flow Analysis of Recursive Programs based on a Lattice Model
of Security Classes,” Proceedings of Third International Conference on Infor-
mation and Communications Security (ICICS 2001), Xian, China, Nov. 2001,
Lecture Notes in Computer Science 2229, pp.292-303.

Shigeta Kuninobu, Yoshiaki Takata, Daigo Taguchi, Masayuki Nakae and Hi-
royuki Seki: “A Specification Language for Distributed Policy Control,” Pro-
ceedings of Fourth International Conference on Information and Communications
Security (ICICS 2002), Singapore, Dec. 2002, Lecture Notes in Computer Science
9513, pp.386-398.

Workshop (Reviewed)

Shigeta Kuninobu, Yoshiaki Takata, Hiroyuki Seki and Katsuro Inoue: “An Infor-
mation Flow Analysis Algorithm based on a Lattice Model of Security Classes,”

Proceedings of the 3rd Programming and Programming Language Workshop
(PPL2001), pp.109-118, Mar. 2001 (in Japanese).

4 Other Workshops

(6) Shigeta Kuninobu, Yoshiaki Takata, Hiroyuki Seki and Katsuro Inoue: “An Infor-
mation Flow Analysis of Programs based on a Lattice Model,” Technical Report
of IEICE, SS2000-11, pp.25-32, Nov. 2000 (in Japanese).

(7) Shigeta Kuninobu, Yoshiaki Takata, Daigo Taguchi, Masayuki Nakae and Hi-
royuki Seki: “A Specification Language for Distributed Policy Control,” Technical
Report of IEICE, SS2002-19, pp.25-30, Sep. 2002.

(8) Shigeta Kuninobu, Yoshiaki Takata, Naoya Nitta and Hiroyuki Seki: “A Ver-
ification Method for Distributed Policy Control,” Technical Report of IEICE,
SS2002-44, pp.43-48, Jan. 2003.

(9) Hiroyuki Seki, Naoya Nitta, Yoshiaki Takata and Shigeta Kuninobu: “Infinite
State Model Checking and Its Application to Software Verification,” Conference
Proceedings of the 2nd Workshop of Critical Software (WOCS), pp.20-22, Mar.
2003.

vi

Acknowledgements

First, and foremost, I would like to thank Professor Hiroyuki Seki for his continuous
support and encouragement of the work. He suggested an idea of this research in early
discussion, and he helped through the research. I would like to thank to Professor Ka-
tumasa Watanabe for providing me with beneficial comments to improve this research.
I am grateful to Professor Katsuro Inoue for his valuable suggestion in this research.
I would like to express my sincere gratitude to Assistant Professor Yoshiaki Takata
for his support and advice throughout the research. I would like to thank Assistant
Professor Naoya Nitta for his help of the work. He provided me beneficial comments
for verification system of PCS. I also thank Mr. Daigo Taguchi of NEC Corporation
for valuable discussions on the design of policy specification language. Finally, I wish

to express my gratitude to all members of Seki Laboratory for discussions and help.

vil

Contents

List of Publications e

Acknowledgementso
1 Introduction

2 Information Flow Analysis of Recursive Programs

2.1. Introduction
2.2. Definitionso Lo
2.2.1 Syntaxof Program
2.2.2 Semantics of Program
2.3. The Analysis Algorithm L oL
2.3.1 The Algorithm
2.3.2 Analysis Example
2.3.3 Definition of Soundnesso Lo
2.3.4 Soundness of the Algorithm
2.3.5 Time Complexity
2.4. An Extended Modelo oo
2.4.1 Extension of Analysis for Built-in Function
2.4.2 AnExample oo
2.5. Conclusion of Chapter 2

3 Policy Controlled System and Its Model Checking
3.1. Introduction L e
3.2. Policy Controlled System
3.2.1 Policy Specification Language
3.2.2 Formal Semantics of PCS
3.3. Pushdown System
3.3.1 Definitionso oo

vii

© o o o O

10
10
14
15
16
23
26
26
29
30

3.3.2 Model Checking Pushdown Systems 46

3.3.3 Computing Reachable Configurations 47

3.4. Model Checking Policy Controlled Systems 49
3.4.1 Abstracting PDS from PCS 49

3.4.2 Verification Example 51

3.5. Conclusion of Chapter 3 54

4 Conclusion 55
References o L 57

ix

List of Figures

2.1 Access Control Models Lo 7
2.2 Semantic mappingo e e e e e e e 11
2.3 Definitionof A 14
2.4 A program to analyze. e 23
2.5 An information flow graph. Lo o 0000 24
3.1 Syntax of a policy specification language 34
3.2 Asample program L. e e e 37
3.3 Inference rules which define the transition relation (1) 39
3.4 Behavior of the system with the program in Figure 3.2 40
3.5 Inference rules which define the transition relation (2) 43
3.6 Behavior of the system with obligations 44
3.7 A sample obligationo L o 44
3.8 A sample program with an exceptionedge 45
3.9 Inference rules for exception handling 46
3.10 Inference rules for Ras o o o i i i e e e e e 48
3.11 Inference rules for Gaso 48
3.12 Abstractionrules L L 50
3.13 A hotel reservation system L oo ... 52

List of Tables

1.1

2.1

3.1
3.2
3.3

Access Control Model and Analysis Method 2
Analysis time e e e e 31
Form of (operation unitl) and (operation unit2) 35
The truth of CAN(o,t.m<—8) v e 41
Verification profiles of example 3.4.3 53

xi

Chapter 1

Introduction

As computer networks grow rapidly, it becomes more important to assure the security
of a computer system against attacks by malicious users. Access control, as well as
cryptography, is one of the fundamental technologies for establishing computer secu-
rity. Access control mechanisms are roughly classified into mandatory access control
(MAC) and discretionary access control (DAC). In both of MAC and DAC, however,
it is difficult to manually check whether access control under given security policies
satisfies the security goals which the whole system is required to achieve. In this thesis,
we propose static analysis methods which check whether the whole system behavior
determined by access control based on given security policies satisfies security goals of
the system.

Model checking [CGPO00] is a well-known technique of automatically verifying whether
a system satisfies a given property. Most of the existing model checking methods and
tools assume that a system to be verified has finite state space. However, since a system
which executes a program has an infinite state space, static analysis, including model
checking, which checks all the states in the system is impossible. Therefore, the system
should be abstracted according to the purpose of analysis before the analysis. However,
if the abstracting method is not well-considered, the abstract system does not always
retain the desirable property of the original system, in which case the analysis fails.

In Chapter 2, an information flow analysis for a procedural program is proposed
as a security assurance method for MAC based system. Information flow analysis is
in a sense a special kind of data flow analysis problems. The proposed algorithm uses
abstract interpretation as an analysing method. In Chapter 3, a security assurance
method for a DAC based system is proposed. The proposed method verifies whether

the access control under given security policies satisfies the security goals which the

Table 1.1. Access Control Model and Analysis Method
Chapter 2 Chapter 3

Access Control Model | Mandatory Access Control | Discretionary Access Control

Type of the Analysis Data-Flow Analysis Control-Flow Analysis
Analysing Method Abstract Interpretation Model Checking

whole system is required to achieve by using the model checking technique for pushdown
system (PDS). The verification problem in Chapter 3 can be considered as a (semantic)
control flow analysis problem. Table 1.1 shows the relation of the analysing technique
used in Chapter 2 and Chapter 3. Finally, in Chapter 4, we conclude the paper.

In the rest of this chapter, backgrounds and research motivations are summarized

and related works are also surveyed.

Security Assurance Method for MAC based system In MAC, security levels
such as top-secret, confidential and unclassified are assigned to data and users (or
processes). Security level for data is called security class (SC) and security level for
users (or processes) is called clearance. User can access to data d if and only if the
clearance of user is higher or equal to the SC of d. However, if a program with clearance
top-secret reads data d with SC top-secret, creates some data d’ from d and writes d' as
a data with SC unclassified then an undesirable leaking may occur since data d’ may
contain some information on data d. One way to prevent these kinds of information
leaks is to conduct a program analysis which statically infers the SC of each output
of the program when the SC of each input is given. Several program analyses based
on a lattice model of SC have been proposed. [De76] and [DD77] are the pioneering
works which proposed a systematic method of analyzing information flow based on a
lattice model of SCs. Subsequently, Denning’s analysis method has been formalized
and extended in a various way by Hoare-style axiomatization [BBM94], by abstract
interpretation [095], and by type theory [VS97, HR98, LR9S|.

In a type theoretic approach, a type system is defined so that if a given program
is well-typed then the program has noninterference property such that it does not
cause undesirable information flow. [VS97] provides a type system for statically an-
alyzing information flow of a simple procedural program and proves its correctness.
The method in [VS97] assumes a program without a recursive procedure while method
proposed in this paper can analyze a program which may contain recursive procedures.

[HRI8] defines a type system for a functional language called Slam calculus to analyze

noninterference property. However, [HR98] does not prove the correctness of the anal-
ysis algorithm for an extended model in which assignment statements were introduced.
[SV98] showed that their type system in [VS97] is no longer correct in a distributed
environment and presented a new type system for a multi-threaded language. How to
extend the proposed method to fit a distributed environment is a future study.

A structure of SCs modeled as a finite lattice is usually a simple one such as {top-
secret, confidential, unclassified}. [ML9I8] proposes a finer grained model of SCs called
decentralized labels. Based on this model, [My99] proposes a programming language
called JFLOW, for which a static type system for information flow analysis as well as
a simple but flexible mechanism for dynamically controlling the privileges is provided.
However, their type system has not been formally verified to be sound.

Noninterference property in a distributed system has also been extensively studied
by using process algebra (for example, [RWW94, AFG99, RS99]). [AFGY99] and its
companion papers use a process algebra called spi calculus to analyze cryptographic
protocols.

In Chapter 2, we propose an algorithm which analyzes information flow of a program
containing recursive procedures. The algorithm constructs equations from statements
in the program. The equation constructed from a statement represents the information
flow caused by the execution of the statement. The algorithm computes the least fix-
point of these equations. We describe the algorithm as an abstract interpretation and
prove the soundness of the algorithm. For a given program Prog, the algorithm can
be executed in O(N?) time where N is the total size of Prog. Based on the proposed
method, a prototypic system has been implemented. Experimental results by using the
system are also presented.

In the algorithm proposed in this paper and most of all other existing methods, the
SC of the result of a built-in operation # (e.g., addition) is assumed to be the least upper
bound of the SCs of all input arguments of 8. This means that information on each
argument may flow into the result of the operation. However, this assumption is not
appropriate for some operations such as an encryption operation. For these operations,
it is practically difficult to recover information on input arguments from the result of
the operation. Considering the above discussions, the proposed method is extended so

that these operations can be appropriately modeled by using a congruence relation.

Security Assurance Method for DAC based system In DAC, the owner of each
data freely assigns a security policy (permission) to the data and access control for a

data is performed based on the security policy of the data. In a conventional DAC

model, only permission (positive authorization) and prohibition (negative authoriza-
tion) can be specified. Unix file permission is a typical example of conventional DAC
model. However, an obligation policy is also important, which describes that a specified
subject is obliged to perform a specified action when a certain event occurs under a
certain condition. A few specification languages are proposed which have rich functions
to describe policies in a concise way (for example, [DDLS01, JSS97, KS02]). In [JSS97]
and their companion papers, logical languages based on the Horn-clause are used as
specification languages, and various theoretical problems such as authorization inher-
itance and authorization conflict detection/resolution are discussed. In [KS02], the
model of [JSS97] is extended so that one can express an obligation policy. However, in
these papers, how to define a formal semantics has not been discussed.

Ponder [DDLS01, Da02] is a general purpose policy specification language in which
one can specify obligation, conditional and data-dependent policies. Also the formal
semantics of a subset of the language is defined in [Da02, T01]. However, they define
only the execution order of methods under given policies, leaving the rest of the system
as a blackbox. In this thesis, the entire behavior of a system under given policies
is formally defined by explicitly describing the change of runtime stack configuration.
Defining a formal semantics of the system including policy specification language is
important since a correct policy control is possible only by correctly interpreting the
meaning of a given policy specification.

In Chapter 3, first, we propose a simple but useful policy description language which
can specify not only permission and prohibition policies but also obligation policies.
Secondly, using the proposed language, we define a policy controlled system (PCS).
PCS is a system in which each object has its own security policy (specified by the
proposed language) and objects’ behaviors are autonomously controlled based on those
policies when they interact with one anther. Operational semantics of PCS is formally
defined.

We define the (safety) verification problem for PCS as the problem to decide for a
given PCS S and a goal (called safety property) ¥, whether every reachable state of
P satisfies U. As defined later, in this thesis, ¥ is represented as a regular language.
Using a model checking technique for pushdown system (PDS), we propose a method
for solving the (safety) verification problem for PCS.

A pushdown system (PDS) is an infinite state transition system with a pushdown
stack as well as a finite control. A PDS is a formal model of a system with well-nested
structure such as a program which involves recursive procedure calls. Recently, efficient

model checking algorithms for PDS and an equivalent model (namely, recursive state

machines (RSM)) have been proposed in [AEY01, BGR01, EHRS00, EKSO01].

Efficient algorithms and complexity of LTL and CTL* model checking for PDS
are extensively studied in [EHRS00, EKS01]. Verification results using an automatic
verification tool are reported in [ES01]. Model checking algorithms for RSM, which
is equivalent to PDS, are studied in [AEY01, BGRO1]. Their algorithms work in the
same complexity as [EHRS00]’s algorithm for a general RSM, and in linear time for a
single-exit RSM which models a usual recursive program. The first work which applies
model checking of a pushdown-type system to security verification is Jensen et al.’s
study [JMT99]. In that paper, the authors formally define a verification problem for
a program with an access control which generalizes JDK (Java development kit) stack
inspection. However, their approach has severe restrictions, e.g., a mutual recursion
is prohibited. Nitta et al. [NT'S01la, NTS01b] improved the result of [JMT99] by using
indexed grammar in formal language theory, showing that the verification problem is
decidable for programs with arbitrary recursion and stack inspection. Esparza et al.
independently showed that the problem for a program with stack inspection can be
reduced to an LTL model checking for a PDS with regular valuation [EKS01]. Espe-
cially, the problem for a program which contains no stack inspection is equivalent to the
model checking of a safety property (AGV) for a PDS with regular valuation. However,
the verification problem is computationally intractable (deterministic exponential time
complete) [EKS01, NTS01b]. In [NTS01b], a subclass of programs which exactly repre-
sents programs with JDK stack inspection is proposed and it is shown that verification
of a safety property can be performed in polynomial time of the program size in the
subclass. Jha and Reps show that name reduction in SPKI can be represented as a
PDS, and prove the decidability of a number of security problems by reductions from
decidability properties of the PDS model checking [JR02].

Our verification tool works as follows. First, a PDS is abstracted from a given PCS
and a nondeterministic finite automaton (NFA) which accepts the set of all reachable
states of the PDS is constructed. As described in section 3.3.3, the NFA construction
algorithm in this thesis works in linear time which matches the algorithms in [AEY01]
and [BGRO1] for a single-exit RSM (see related works). Next, we decide whether every
state accepted by the NFA satisfies a given safety property.

The main contribution of Chapter 3 of the thesis is that the proposed method is one
of the first attempts to verify a safety property of a policy controlled system. Also, this
thesis presents an application of model checking for PDS to a real world verification

problem and shows verification results conducted on an automatic tool.

Chapter 2

Information Flow Analysis of

Recursive Programs

2.1. Introduction

This chapter proposes an information flow analysis for a procedural program as a
security assurance method for Mandatory Access Control (MAC) [P94] based system.
The aim of MAC is to ensure that information flows in one direction. MAC requires
that data and users (or processes) be assigned certain security levels represented by a
label. A label for a data d is called the security class (SC) of d, denoted as SC(d). A
label for a user u is called the clearance of u, denoted as clear(u). In MAC, user u
can read data d if and only if clear(u) > SC(d). However, if a program with clearance
higher than SC(d) reads data d, creates some data d’' from d and writes d’ to a storage
which a user with clearance lower than SC(d) can read then an undesirable leaking
may occur since data d’ may contain some information on data d. One way to prevent
these kinds of information leaks is to conduct a program analysis which statically
infers the SC of each output of the program when the SC of each input is given. In
this chapter, we propose an algorithm which analyzes information flow of a program
containing recursive procedures. In the algorithm, SC of data can be formalized as
an arbitrary finite lattice. The algorithm constructs equations from statements in the
program. The equation constructed from a statement represents the information flow
caused by the execution of the statement. The algorithm computes the least fix-point of
these equations. We describe the algorithm as an abstract interpretation and prove the
soundness of the algorithm. For a given program Prog, the algorithm can be executed

in O(N?) time where N is the total size of Prog. Based on the proposed method, a

_ Store s1 .
W”te/’ (SC(s1) J clear(u) Write deta Store's
Useray Fl—————— | / —| (scodsc@))
User Program ||
Read Store 2 u \
(clear(u) JSC(=2)) Read daa
di,dz,.
~ Bell-LaPadula "~ Proposed
Model Model

Figure 2.1. Access Control Models

prototypic system has been implemented. Experimental results by using the system
are also presented.

Using the information flow analysis algorithm, MAC with Bell-LaPadula model can
be made more flexible. MAC with Bell-LaPadula model [PHS03] controls the access

based on the following two rules.
e User u may read data d if and only if SC(d) C clear(u).

e User u may write data to store s if and only if clear(u) C SC(s).

Note that store s with SC(s) contain data d with SC(s).

In Bell-LaPadula model, SC of data never decrease by these access control rules.
Therefore, undesirable information leak may not occur. However, the SC of a output
data by user u will become unnecessarily high if u has a high clearance.

To solve this problem, we can use the information flow analysis algorithm as follows.
When there is a program which reads data dy,ds,...,d; within the database as one
or more arguments and creates a new data d’, the analysis will determine the SC of
d' using the SCs of dy,ds,...,d,,. We can write d’ to specific store of the database
by using the analysis result. That is, d’ can be written back to store s if and only if
SC(d") C SC(s) (See Figure 2.1).

The assumption that security classes have a lattice structure is made because it is
natural to define the security class of data d3 which contains information of the data d
and ds as the least upper bound of SC(d;) and SC(d3). On the other hand, in an actual
system, the security classes may not have a lattice structure. For example, assume that

there exist two users Uy and Uy and two user groups G and G2. Also assume that both

users Uy and Uz belong to both groups G; and G2. We can naturally assume SC(G;) <
SCU;)(i = 1,2,j = 1,2). If we hypothetically consider the least upper bound of
SC(G1) and SC(G2) (which is denoted by SC(G3)), then from SC(G;) < SC(Uj)(i =
1,2,7 = 1,2) and the definition of the least upper bound, SC(G3) < SC(U;)(j =1,2)
holds. Intuitively, SC(G3) is the security class which includes information of data d;
with SC(G1) and data dy with SC(G2). SC(G3) < SC(U;)(j = 1,2) represents a
reasonable property such that the data which includes information of data d; and data
ds can be read by both users Uy and Us. Thus, making the security class have a lattice
structure is a natural assumption.

The rest of Chapter 2 of the thesis is organized as follows. Section 2.2 defines the
syntax and the operational semantics of a program language which will be the target
language of the analysis. In section 2.3, we formally describe the program analysis
algorithm, prove the correctness of the algorithm and show the time complexity of the
algorithm. A brief example is also presented in section 2.3. The method is extended in

section 2.4. Experimental results are briefly presented in section 2.5.

2.2. Definitions

In this section, we define the syntax and semantics of a programming language which
will be the input language to the proposed algorithm. This language is a simple pro-

cedural language similar to C.

2.2.1 Syntax of Program

A program is a finite set of function definitions. A function definition has the following

form:

f(@1,...,xp) local yy, ..., ym {Pr}

where f is a function name, z1,..., T, are formal arguments of f, y1,...,yn are local
variables and P; is a function body. The syntax of P; is given below where c is a
constant, z is a local variable or a formal argument, f is a function name defined in the
program and 6 is a built-in operator such as addition and multiplication. Any object

generated by cseq can be P;.

cseq == cmd | emdy; cseq
emd = if exp then cseq else cseq fi | returnezp
cseqy = cmdy | emdy; cseqy

emdy = x:= exp | if exp then cseq, else cseq, fi | while exp do cseq, od

exp = clx| f(exp,...,exp)|O(exp,...,exp)

Objects derived from exp, cmd or cmdy, cseq or cseq, are called an expression, a
command, a sequence of commands, respectively. An execution of a program Prog is
the evaluation of the function named main, which should be defined in Prog. Inputs
for Prog are actual arguments of main and the output of Prog for these inputs is the

return value of man.

2.2.2 Semantics of Program

We assume the following types to define the operational semantics of a program. Let

X denote the cartesian product and + denote the disjoint union.

type val (values) We assume for each n-ary built-in operator 6, n-ary operation 67 :
val X - - - Xval — val is defined. Every value manipulated or created in a program

has the same type val.
type store There exist two functions

lookup : store X var — val

update : store X var x val — store
which satisfies:

lookup(update(o,z,v),y) = if z =y then v else lookup(o,y).
For readability, we use the following abbreviations:

o(z) = lookup(o,z), o[z :=v]=update(o,z,v).
Let Lgiore denote the store such that Lgpe(z) is undefined for every .

We define a mapping which provides the semantics of a program. This mapping takes a
store and one of an expression, a command and a sequence of commands as arguments
and returns a store or a value.

=: (store — exp — wal) + (store — emd — (store + val)) + (store — cseq —
(store + val))

e “o |= M = v” means that a store o evaluates an expression M to the value v,

that is, if M is evaluated by using o then v is obtained.

e “o|=C = 0'” means that a store o becomes ¢’ if a command C' is executed.

e ‘o = C = v” means that if a command C is executed when the store is o then
the value v is returned. This mapping is defined only when C has the form of

‘return M’ for some expression M.
e Similar for a sequence of commands.

Figure 2.2 shows axioms and inference rules which define the semantic mapping, where

the following meta-variables are used.

TyTlyeneyYly--- VAT M,M,...:exp C : emd or cmd;

P,P,, P, : cseq or cseq; o,0',0" : store
b b b b

2.3. The Analysis Algorithm

A security class (abbreviated as SC) represents the security level of a value in a program.
Let SCset be a finite set of security classes. Also assume that a partial order C is defined
on SCset and (SCset, C) forms a lattice; let L denote the minimum element of SCset
and let a1 Llas denote the least upper bound of a1 and as for a1, as € SCset. Intuitively,
71 € 70 means that 79 is more secure than 71; it is legal that a user with clearance 7o

can access a value with SC 77. A simple example of SCset is:
SCset = {low, high}, low C high.

The purpose of the analysis is to infer (an upper bound of) the SC of the output value
when an SC of each input is given. Precisely, the analysis problem for a given program
Prog is to infer an SC of the output value of Prog which satisfies the soundness property
defined in section 2.3.3.

One of the security preservation method which uses the approach of setting the
security classes to “high” and “low” is MAC which is the main access control method
for database as mentioned before.

We describe the analysis algorithm in section 2.3.1 and the soundness of the pro-

posed algorithm is proved in section 2.3.4.

2.3.1 The Algorithm
To describe the algorithm, we use the following types.

type sc (security class) .

10

(CONST) olEc=cr
(VAR) oFEz=o0(x)
U|:MZ'=>UZ' (1<i<n)

(PRIM)
o |: O(Ml, .. ,Mn) = 9[(1}1,. .. ,Un)
(CALL) ocEM;=v (1<i<n) o' = Pr=wv
o= f(Mi,...,M,)=v
< f(z1,...,xpn) local y1,...,ym {Pr})
o = J—store[xl = Ul] te [xn = U'n]
=M =
(ASSIGN) | Y
oFEz:=M= oz :=v]
(IF1) o= M = true o= Py = o (rsp.v)
o |=if M then Py else P fi = o (rsp. v)
(1F2) o= M = false ol Py = o (rsp.v)
o |=if M then Py else P fi = o’ (rsp. v)
o= M = true ocEP=/d o' = while M do P od = "
(WHILE1)
o |= while M do P od = o
o= M = false
(WHILE2)
o = while M do P od = ¢
=M =
(RETURN) 7! Y
o E=return M = v
=C =o' "= P = o" .
(CONCAT) o | o = o (rsp. v)

o= C;P=d" (rsp.v)

Figure 2.2. Semantic mapping

11

type store (SC of store)

update : store X var X sc — store

lookup : store X var — sc

For store type, we use the same abbreviations as for store type. If ¢ is an element

of type store, then o(z) is the SC of variable z inferred by the algorithm. By

extending the partial order C defined on sc to type store as shown below, we can

provide a lattice structure to store:

For ¢ and ¢’ of type store, o C ¢’ & Vz € var. o(z) C o'(z).

The minimum element of store is o satisfying Vz € var. o(z) = L. We write this

minimum element as | g;pe.

type fun (SC of function) Similarly to type store, the following functions are de-
fined.

lookup : fun x fname — (sc x -+ x sc = sc)

update : fun X fname x (sc X - -+ X s¢c = sc) — fun

We use the following abbreviations for F' € fun, f € fnameand 1) : scX---xsc —

SC.

F[f] = lookup(F, f)
FIf = ¢] = update(F, f,)

For n-ary function f and SCs 11, ..., 7, F[f](T1,...,T,) is the SC of the returned
value of f inferred by the algorithm when the SC of i-th argument is specified as
7; (1 <4 < n). Similarly to type store, we can provide a lattice structure to type

fUJ. The minimum element offul is denoted as J‘fﬂ'

type cv-fun (covariant fun) This type consists of every F' of type fun which satisfies
the next condition:
If ; C 7] for 1 <4 <nthen F[f](11,...,7) C F[f]({,..., 7).

We use the following meta-variables.

o,0',0" : store F,F,Fs : fun

12

Below we define a function A[-] which analyzes the information flow. Before defining

the analysis function, we explain implicit flow [De76]. Consider the following command.
ifr=0theny:=0elsey:=11

In this command, the variable z occurs neither in y := 0 nor in y := 1. However, after
executing this command, we can know whether z is 0 or not by checking whether ¥ is 0
or 1. Therefore, we can consider information on the value stored in the variable x flows
into the variable y. In general, information may flow from the conditional clause of a
“if” command into “then” and “else” clauses and also it may flow from the conditional
clause of a “while” command into “do” clause. Such information flow is called implicit
flow. The function A[-] infers that the SC of implicit flow caused by a command C
or a sequence P of commands is the least upper bound of the SCs of the conditional
clauses of all the “if” and “while” commands which contain C' or P in their scopes.
A[-] takes the SC of implicit flow as its fourth argument.
A (exp X fun x store — sc) + (cmd X fun X store x sc — store)

+ (cseq X fun x store X sc — store)

o “A[M](F,c) = 77 means that, for SCs F' of functions and an SC ¢ of a store,

the SC of an expression M is analyzed as 7.

o “A[C](F,o,v) = ¢’ means that, for SCs F of functions, an SC ¢ of a store and
an SC v of implicit flow, the SC of the store after executing a command C is

analyzed as o'.

e Similar for a sequence of commands.

The definition of A is shown in Figure 2.3.
Define the function A[-] : program — fun — fun, which performs ‘one-step’ analy-

sis of information flow for each function f defined in a given program as follows:
For Prog = {f(x1,...,2,) local y1,...,ym {Pr},...},
A[Prog](F) =
Flf := Ao o (AP (F, Lstorel®1 = 71] -+ - [:= Ty, L) (ret))
| f is an n-ary function defined in Prog] (2.1)

For a lattice (S, <) and a function f : S — S, we write the least fix-point of f as
fiz(f). For a program Prog, the function A*[Prog] which analyzes information flow
of Prog is defined as the least fix-point of A[Prog], that is,

A*[Prog] = fix(AF.A[Prog](F)). (2.2)

13

(CONST) A[c](F,0) = L

(VAR) Alz](F, o) = o(x)

(PRIM) A[O(My, ..., Mp)(F, o) = Li<i<n AIMi](F, o)

(CALL) Alf (M, ..., Mp)|(F, o) = FIfI(A[M](F, 0), ..., A[M,](F,q))
(ASSIGN) A[z := M](F,co,v) = glz := A[M](F,co) U V]

(IF) A[if M then P else P, fi](F,o,v)

= A[P(F,o,vUT)UA[P](F,a,vUT)
where 7 = A[M](F, o)
(WHILE) Afwhile M do P od](F,o,v) = A[P](F,o,v U A[M](F,c))Ua
(RETURN) Let ret be a fresh variable which contains a return value of a function.
A[return M||(F,o,v) = a[ret := A[M](F,c) U]
(CONCAT) A[C; P)(F,o,v) = A[P](F, A[C](F,o,v),v)

Figure 2.3. Definition of A

As will be shown in lemma 2.3.3, A[Prog] is a monotonic function on the finite lattice

cv-fun. Therefore,
A*[Prog] = |_| .A[[Prog]]i(J_fﬂ) (2.3)
i>0

holds [Mi96] where f°(z) = z, fi*!(z) = f(f'(z)). Hence, A*[Prog] can be calculated
by starting with Lz, and repeatedly applying A[Prog] to the SCs of functions until

the SCs of the functions remains unchanged.

2.3.2 Analysis Example

In this subsection, we show how our analysis algorithm works. The program which we
are going to analyze is written below. In this example, we assume SCset = {low, high},
low C high.

main(z,y) { 7o) {
while z > 0 do if z > 0 then
y:=x+1; return z * f(x — 1)
z=y—4 else
od; return 0
return f(z)+vy fi
} }

14

In order to analyze this program, we continue updating F' using the following rela-

tion until F' does not change any more.

F = F[main := A172.(A[Pnain](F, Lstore|x :=11]ly:=T12], L)(ret))]
Uf = A1 (A[PF](F, Lstore[r := 11], L)(ret))]

The table below shows how F' changes. The SCs of the i-th column are calculated by
using the SCs of the (i — 1)th column.

0 1 2 3
Flmain] | Amy7o.L | AmyTo.79 | Ao U Ty | ATyTo.m U Ty
F[f])\Tl.J_ >\7’1.7‘1 >\7’1.7‘1)\7'1.7'1

From this table, we can know that A*[Prog]|[main](7i,72) = 71 U 72, that is, the SC of
the return value of the main function is low when the SC of both actual arguments are

low. Otherwise, SC of the return value of the main function could be high.

2.3.3 Definition of Soundness
Generally, the analysis algorithm is a function Z of the following type:
Z*[] : program — fname — (sc x - -+ X sc = sc).

Z*[Prog][f](T1,...,Tn) = T means that for an n-ary function f defined in Prog and for
SCs 7,...,T, of arguments of f, Z*[-] infers that the SC of f is 7.

Definition 2.3.1. An analysis algorithm Z*[-] is sound if the following condition

(called noninterference property) is satisfied.

Assume Prog is a program and man is the main function of Prog. If

Z*[Prog]|[main](Ti,...,7) =T,
Lstore E main(vy,...,vp) = v, Lgore E main(vl,... 00) =,

*¥n
Vi(l1<i<n):m CT.v;=0]

then v = v’ holds. O

By the above definition, an analysis algorithm is sound if and only if the following
condition is satisfied: assume that the analysis algorithm answers “the SC of the re-

turned value of the main function is 7 if the SC of the i-th argument is 7;.” If every

15

actual argument with SC equal to or less than 7 remain the same then returned values
of the main function also remains the same even if an actual argument with SC higher
than or incomparable with 7 changes. Intuitively, this means that if the analysis algo-
rithm answers “the SC of the main function is 7,” then information contained in each
actual argument with SC higher than or incomparable with 7 does not flow into the

return value of the main function.

2.3.4 Soundness of the Algorithm

This section shows the soundness of the proposed algorithm A (and A*) defined in

subsection 2.3.1. The following two lemmas guarantee the validity of the equation (2.3).

Lemma 2.3.2. (monotonicity) This lemma is used to prove lemma 2.3.3.

Assume Fy, Fy are of type cv-fun, F; C Fy, 0y E 09 and v1 C vy.
(a) AIM)(F1,01) E AIM](Fy, 05).
(b) AlP[(F1,04,v1) E A[P](F2, 02, 12).
Proof. We will prove the lemma by induction on the structure of M and P.

(Proof of (a)) (CALL) Let M = f(My,...,M,). By the inductive hypothesis,
AIMi](Fr,01) E A[Mi](F2, 05)(1 <4 < n).

Alf(My, ..., Myp)](F1, 04)
= RfI(AIM](Fy, 04), - A[MR](F1, 04)) ((CALL))
C RfI(AIM](Fy,09), - - ., AIMu](F2, 05)) (Fy is of type cv-fun)
C BAAIMI(EF, 05), -, A[My](F2; 05)) (F1 C F)
= A[f(My, ..)]](Fz,%) ((CALL))

The lemma can be easily proved for the other cases.
(Proof of (b)) (CONCAT) Let P = C; P;. By the inductive hypothesis on C,
A[C](F1,a,,v1) C A[C|(F2,09,v2). Also by the inductive hypothesis on P,
AlC; P](F1, 04, 11)
= A[P](F, A[C](F1,01,11),v1) ((CONCAT))

C A[P](Fy, A[C)(F2,09,12),12) (ind. hypo.)
= .A[[C, Pl]](F27Q27V2)' ((M))
The lemma can be easily proved for the other cases.]

16

Lemma 2.3.3. (a) If F' is of type cv-fun then A[Prog](F) is also of type cv-fun.

(b) (monotonicity) Assume Fy and I are of type cv-fun. If Fy C F, then
ALProg)(F\) T A[Prog](Fy).

Proof. We will prove the lemma by induction on the structure of Prog.

(Proof of (a)) Assume 7; C 7/ for 1 <i < n.

A[Prog]|(F)[f](T1,...,Tn)

= A[PfI(F, Lsorel®1 := 1] -+ [Z5 = 7], L) ((2.1))
C A[P/(F, Lsorelr1 := 1)+~ [zn :=75,], L) (lemma 2.3.2(b))
= A[Prog[(F)[fI(1,-.., 7)) ((2.1))

(Proof of (b))

A[Prog](F1)[f](T1,...,Tn)

= A[P¢](F1, Lstore[T1 :=71) -+ [:=Tp], L) ((2.1))
T A[Pf(F2, Lstore[r1 :=T1] -+ [Ty = 7], L) (lemma 2.3.2(b))
= A[Prog](F2)[f](T1,- -, Tn) ((2.1))

The following two lemmas are used to prove lemma 2.3.6

Lemma 2.3.4. (property of implicit flow) If A[P](F,o,v) = o', 0 = P = ¢’ and
v £ d'(y) then o(y) = o'(y).

Proof. We will prove the lemma by induction on the application number of inference

rules to deduce o |= P = o’.

(ASSIGN) Assume

o = Az := M|(F,o,v) = o[z := A[M|(F,c) U] (2.4)
cEM=v

oEz:=M= oz :=1] (2:5)

vIZd'(y). (2.6)
If x =y, then o'(y) = A[M](F,c)Uv J v by (2.4). This conflicts with (2.6). Therefore
z #y. By (2.5), o(y) = ofz := v](y).

17

(WHILE) Assume
d'=dUo (2.7)
o' = A[P](F,o,v U A[M](F,0)) (2.8)

o= M = true oEP=o o' = while M do P od = o"
o |= while M do P od = o”

v o"(y). (2.10)

By the inductive hypothesis on ¢’ |= while M do P od = ¢”, we see o'(y) = 0" (y). By
(2.7), we obtain ¢’(y) C o”(y). Therefore, by (2.10),

(2.9)

vUAM](F,0) Z &' (y). (2.11)

By (2.8), (2.11) and the inductive hypothesis on o = P = o', we see o(y) = o'(y).
Summarizing, o(y) = o”(y).

o= M = false
o = while M do P od = o

The proof for the case is straightforward.

(CONCAT) Assume

oc=C=o o =EP=o"

(2.12)

oEC;P=d"
o" = A[P)(F.d,v) (2.13)
o' = A[C|(F,o,v) (2.14)
vz a"(y). (2.15)

By (2.12), (2.13), (2.15) and the inductive hypothesis, we obtain ¢'(y) = o”(y). It
follows from (2.13) and (2.15) that ¢'(y) C ¢”(y). Hence, by (2.15),

vIZd(y) (2.16)

By (2.12), (2.14), (2.16) and the inductive hypothesis, o(y) = ¢’(y) holds. Therefore,
o(y) = 0" (y) holds.
The proof is similar for case (IF). O

Lemma 2.3.5. (property of implicit flow) It A[P](F,o,v) =¢', o = while M do P od =
o' and v Z ¢'(y) then o(y) = o'(y).

Proof. Assume
o' = A[P](F,o,v) (2.17)
vIZo(y). (2.18)

18

We will prove this lemma by induction on the application number of inference rules to
deduce ¢ = while M do P od = ¢.

(Basis) In this case,

o= M = false
o |=while M do P od = o

The lemma holds obviously.
(Inductive step) Assume
o=M=true ofEP=7

o' |=while M do P od = o" . (2.19)
o |= while M do P od = o

By (2.17), (2.19), (2.18) and the inductive hypothesis, o'(y) = ¢”(y) holds. By (2.17),
(2.18) and the assumption ¢ = P = ¢, we obtain o(y) = o'(y) by lemma 2.3.4.
Therefore, o(y) = o”(y). O

The following lemma shows the relationship between the analysis result using the

proposed algorithm and the noninterference property.
Lemma 2.3.6. Let F = A*[Prog].

(a) If AIM](F,0) =1, 01 |E M = v1, 09 = M = vy and Vz : g(z) C 7. 01(z) =
o9(x), then vy = vs.

(b) It A[P](F,o,v) =0d',01 =P = 0o},00 =P = 0, d'(y) =7 and Vz : o(z) C
7. 01(z) = 03(z), then o (y) = o (y).

(¢) HA[P|(F,o,v)=0',01 EP = vi,00 P = veandVz:o(z) C o'(ret). o1(z) =

o9(x), then vy = vs.

(Proof of (a)) (CALL) Assume

T=A[f(M,...,My)]|(F,o0) = F[f](A[Mi](F,0),..., A[M,](F, o)) (2.20)
or EM; = up; (1<i<mn) o) |= Pr = vy

ox = f(My,..., M) = v
0 = Lstore[T1 1= ug1] -+ [Tn 1= upn)] (k=1,2) (2.22)

(k=1,2) (2.21)

Vz:o(x) C 7. o1(z) = o2(z). (2.23)

19

Since F' = A[Prog](F), by (2.1) and (2.20),

= Alf(My,..., M,)](F,0)
= ATPI(F, Ltorelr i= ADAI(F, @)+ [0 i= AIMG](F, 0], L)(ret). (2:24)

If we let 7, = A[M;](F,0) (1 <i<n)and assume 7; C 7, then by (2.23) Vz : o(z) C

7;. 01(z) = o2(z). The inductive hypothesis (a) implies u1; = ug;. Hence,
Vi(l<i<n):A[M](F,0) C 7. uy; = uy;.
By (2.22),
Vz i Lgore|z1 := A[M)(F,@)] - - - [z := A[M,](F, 0)](z) C 7. 0 (z) = o) (z). (2.25)
The inductive hypothesis (¢) together with (2.24), (2.21), (2.25) implies v; = vs.
The other cases can be easily proved.
(Proof of (b)) (ASSIGN) Assume

o = Afr:= M|(F,o,v) = olz:=A[M](F,co)UV] (2.26)
(o |: M = vy

k=1,2) (2.27)

or =x:=M =0},
o, =olz:=v] (k=1,2) (2.28)
r=oy) (2.29)
Vz:0(z) C7.01(2) = 02(2). (2.30)

If x # y, then ¢'(y) = a(y) by (2.26). Hence, by (2.29) and (2.30) we obtain o1(y) =
o2(y). This implies o} (y) = ob(y) by (2.28). If z = y, then o'(y) = A[M](F,o)Urv =17
by (2.26) and (2.29). Therefore, AJM](F,c) C 7. By this fact and (2.30),

Vz:0(z) EA[M](F,g). o1(z) = o2(2). (2.31)

By (2.27), (2.31) and the inductive hypothesis (a), we obtain v; = vy. That is, o/ (y) =

3(y)-
(WHILE) Assume

o" = A[while M do P od](F,o,v) =

fitAX.c UA[P])(F,c U X,vUA[M](F,c U X))) (2.32)
= o"(y) (2.33)
Vz:o(x) 7. o1(z) = oo(x). (2.34)

And let

p=A[P](F,o,vUT) (2.35)
T = A[M]|(F, o). (2.36)

We use induction on the application number of (WHILE1). Let

o =colp. (2.37)
Then by the properties of a fixed point, (2.32) and (2.35), we obtain
o" = Afwhile M do P od](F,d’,v). (2.38)

oy = M = false
oy |= while M do P od = oy,
a’(y) = 7' by (2.33). By (2.34), 01(y) = 02(y).

(ii) Assume

(i) Assume (k=1,2). While ¢ C ¢" by (2.32), o(y) C

o1 = M = true o1 =P =0} o} = while M do P od = of
o1 = while M do P od = o

(2.39)

o9 = M = false
09 = while M do P od = oy '

(2.40)

If C 7', by (2.36), (2.34), (2.39), (2.40) and the inductive hypothesis (a), true = false,
which is a contradiction. Hence, 7 Z 7. If v U7 T p(y), by (2.37), (2.38) and (2.33),
we get 7 C v U7 C p(y) E ¢”(y) = 7' which is a contradiction. Therefore,

vUTZp(y). (2.41)

By (2.35), 01 = P = 0o}, (2.41) and lemma 2.3.4 we get 01(y) = o/ (y). Also, by (2.35),
o} |=while M do P od = o/, and (2.41) imply ¢/ (y) = ¢/ (y) by lemma 2.3.5. On the

other hand, we can show 01(y) = 02(y) in the same way as in case (i). Summarizing,
of(y) = oa(y)-
(iii) Assume
ok =M = true oy =P =0} o} = while M do P od = o}
ok |= while M do P od = o7,

(k=1,2). (2.42)

If p(z) C 7', then by (2.35), (2.34), (2.42) and the inductive hypothesis (b), o1(z) =
oh(z). Hence,
Vz : p(2) C 7. 0)(2) = 0y(2). (2.43)

By (2.38), (2.33), (2.42), (2.43) and the inductive hypothesis (b) of the application
number of (WHILE1), o/ (y) = o} (y).

(CONCAT) Assume

o" = A[C; P](F,o,v) = A[P](F,d',v) (2.44)
o' = A[C](F,a,v) (2.45)

o, =C =0y, o, =P =0 B
EGiP ool (k=1,2) (2.46)
T=20a"(y) (2.47)
Vz :o(x) CE 7. 01(x) = 0a(x). (2.48)

If o/(z) C 7, by (2.45), (2.46), (2.48) and the inductive hypothesis (b), o' (z) = ob(x).
That is,
Vi : o' (z) C 1. 0y (z) = oy(x). (2.49)

By (2.44), (2.46), (2.47), (2.49) and the inductive hypothesis (b), o (y) = o} (y).
The proof for the case of (IF) is easy.
The proof of (¢) is similar to the proof of (b). O

Theorem 2.3.7. The algorithm A*[-] is sound.

Proof. By lemma 2.3.6(¢c). O

Since the proposed algorithm is sound, if the algorithm answers “this program
does not leak input information to the output” for some program P, P never leaks
input information to the output. However, conversely, if the algorithm answers “this
program may leak input information to the output” for some program P, it does not
mean P always leaks input information to the output. In other words, the completeness
property is not satisfied. Intuitively, to satisfy the completeness property, the semantics
of expressions which appear in the conditional clause of if and while commands must be
accurately analyzed. However, since this is an undecidable problem, an algorithm which
satisfies the completeness property does not exist. Nevertheless, under the prerequisite
that the semantics (interpretation) of the built-in functions is freely given, a weak
completeness property [B76] is satisfied, which means that there exist an interpretation
of the built-in functions and inputs to the program that actually cause the information

flow which is detected by the analysis algorithm.

22

main(x, y) local z

1: if y < O then
2: return O
else
3: y = 0;
4: while y < 10 do
5: Z =y,
6: y =y + gy, x)
od;
7: return z
fi
}
g(x, v
8: if y <= 0 then
9: return O
else
10: return g(x, y-1) + 1

fi

Figure 2.4. A program to analyze.

2.3.5 Time Complexity

In this subsection, the time complexity of the algorithm A*[-] presented in section 2.3.1
is examined.

If the algorithm A*[-] which includes the fixpoint operation in (WHILE) and (2.2),
is implemented by using a simple iteration, the time complexity can become large. A*[-]
can be computed more efficiently by constructing a directed graph which represents a
control flow of a program to be analyzed (See Figure 2.5 for an example in Figure 2.4)
and searching within this graph.

Each part enclosed in ellipses in Figure 2.5 represents the results obtained by ap-
plying the algorithm A to one of the commands within the program. For example, the
assignment command y := y + ¢(y,), which is line 6 in Figure 2.4, is transformed to
y:=yUg(y,z)Urs (12 is a variable that was added to represent the implicit flow), and
the term on the right hand side is represented as a tree (ellipse 6 in Figure 2.5). This
transformation differs from the method described in subsection 2.3.1 in that it contains
the variables and functions obtained by the transformation as subterm. Also, for each
n-ary function f in Figure 2.5, the constants 7fi,...,7, representing the security
classes of the actual arguments of f are provided, and commands for assigning these

constants to the formal arguments are added. The arrows drawn between the ellipses

23

Figure 2.5. An information flow graph.

in Figure 2.5 represent relationships between the definitions and uses of variables. For
example, there is a possibility that the y value defined in ellipse 3 or ellipse 6 will be
used in the A[Prog] calculation for the y on the right hand side in ellipse 5. This is
represented by the arrows to the y in ellipse 5 from the left hand sides in ellipse 3 and
ellipse 6.

The A[Prog] calculation described in subsection 2.3.1 is equivalent to checking
whether or not there exists a path in Figure 2.5 from each of the constants 771,...,7¢,
representing the security classes of the actual arguments to ret. In other words, if we

let
A[Prog](F)[fl(T1y...,mn) =75, U... U™,

(where {i1,...,im} C{1,...,n}; since the only operations which appear in the analysis

algorithm are 1 and U, A[Prog](F)[f](71,...,7n) can always be written this way),

24

the fact that a path exists from 7y, to ret on the graph is equal to the fact that
j € {i1,...,im}. The F representing the security class of a function here corresponds
to the state of the edges between the vertex for a function call within the graph and
its children (edges drawn with dashed lines in Figure 2.5). For example, the fact
that F[g](m1,72) = T2 corresponds to the fact that among the edges between a vertex
corresponding to a call of g (both of the two calls) and its children. That is, the edge
corresponding to the first argument is unusable (information of the first argument does
not flow into the function value) and the edge corresponding to the second argument is
usable (information of the second argument can flow into the function value). Therefore,
when (1) all of these edges drawn with dashed lines are first marked as being unusable
and (2) it is known that function f enables information of the i-th argument to flow
into its function value (there exists a path from 77 ; to ret), the edge corresponding to
the i-th argument of function f is known to be usable. This can be done by searching
backwards along directed edges from each ret vertex. However, when the constant 7y ;
representing the security class of an actual argument is reached, the edge corresponding
to the i-th argument of each call of function f should be changed to usable, and if a
vertex corresponding to a call of f has already been visited, the vertex corresponding
to the i-th argument should be added as a search starting position to the processing
wait list.

If we let V' the number of vertices of this graph and E the number of edges, then
the graph can be searched in O(V + E) time. If we let N the description size of the
program to be analyzed, then V = O(N) and E = O(N?). On the other hand, to
construct this graph, the relationships between definitions and uses must be obtained.
This can be accomplished by calculating the reaching definition [ASU86]. If we let d
the maximum nesting depth of while commands in the program to be analyzed, the
reaching definition of each command is obtained by performing set operations related
to a subset of the assignment statement O(N - d) times. Since O(N) time is required
for the first set operation and d = O(NN), the total calculation time for the reaching
distance is O(N?). However, in an actual program, since the nesting depth of the while
commands often can be considered to be less than or equal to a constant or since a
technique such as bit vectors [ASU86, A98] can be used to speed up set operations.
The calculation time often will be O(NN) or O(N?)[A98].

25

2.4. An Extended Model

2.4.1 Extension of Analysis for Built-in Function

Generally, methods of statically analyzing the information flow of a program including
the method proposed in the previous sections assume that information in every argu-
ment of a built-in function flows into the output and define the security class of the
output as the least upper bound of the security classes of all of the arguments. With
this definition, the security class of the output is analysed to be high when the security
class of an argument is high even if information in the argument does not flow into the
output. To solve this problem, the model is extended so that the security class should
not actually increase. We extend the model so that the security class of the output of
an arbitrary built-in function can be defined according to a given analysis policy.

The algorithm A in the previous section has been defined for any built-in function

0 as:
(PRIM) A[O(M;, ..., Mp)]|(F,0) = i<i<n AIM:](F, 0).

This means that we assume information contained in each argument may flow into the
result of the operation #7. However, this assumption is too conservative for a certain
function. For example, if a function 67 is defined as Or(z,y) = z, then it is clear
that information in the second argument does not flow into the result of the operation.
Another example is an encryption. Assume that for a plain text d and an encryption
key k, the result of the operation Ez(d, k) is the cipher text of d with key k. We may
consider that the SC of E(z,y) is low even if the SCs of z and y are both high.

To express the above mentioned properties of particular built-in operations, we

generalize the above definition as:
(PRIM) A[0(My, .., My)|(F, o) = BIOJADMI(F,0), ..., AIM,](F,),
where B[0] is an arbitrary monotonic total function on sc:

B[O] : s¢ X -+ X s¢c — sc.

The extension in this section is the assumption that B[] can be defined for an arbitrary
built-in function € according to a given analysis policy. In particular, B[0](r1,..., ™) =
Lli<j<pn i for the original definition of A.

"We use the extended model below to show three examples in which the analysis
result of a built-in function is more accurate approximation than the original analysis

method.

26

Example 2.4.1 (nonstrict function). For the built-in function 67(z,y) = z, since

information in argument y cannot be obtained from the output x of the function, we

can define B[0](r1,72) = 71. O

Example 2.4.2 (encryption function). Let E be an encryption function which takes
the plaintext and the encryption key as its arguments. If we assume that information
contained in the plaintext and encryption key cannot be obtained no matter how an
illegal attacker manipulates the cipher text, then we can define B[E](high, high) =
low.]

Example 2.4.2 is useful when the analysis policy is: “Can illegal attacker obtain
information in plaintext or encryption key from program output without decryption
key? Under the assumption that an illegal attacker cannot decode a cipher text without

a decryption key.”

Example 2.4.3 (average value calculation function). Let the average value cal-
culation function Awve be a function for calculating the average value of 4 arguments
ni,...,n. If we assume that information contained in the arguments cannot be ob-

tained from the average value no matter what operations are performed, the we can

define B[Ave](r1,...,) = low. O

Defining B[Ave](71,...,7i) = low for the average value calculation function is valid
when the number of arguments 7 is sufficiently large. For example, since Aver(ni) = ny
when ¢ = 1, the assumption that “information contained in the arguments cannot be
obtained from the average value” does not hold, and defining B[Ave](r1) = low is
clearly unnatural. It depends of an analysis policy what is the minimum number of
arguments with which we can assume that information contained in the arguments
cannot be obtained from the average value no matter what operation are performed.
We should not use the definition B[Ave](m, ..., ;) = low if it is unknown whether or
not a large number of arguments are assigned to the Ave function within the program
to be analyzed.

The generalized algorithm using the new definition is no longer sound in the sense

of definition 2.3.1. Suppose that we define B[E] (71, 72) = low, and consider a program
Prog = {main(z,y) { return E(z,y) } }.

A*[Prog]|[main]|(high, high) = low holds while for distinct plain texts di, dy and a
key k, Ez(di,k) # Ez(da, k). Hence A*[-] is not sound. Intuitively, the fact that the

SC of expression E(z,y) is inferred as low means that we cannot recover information

27

contained in the arguments z,y from the result of the encryption. In other words,
Ez(di,k) and Ez(ds, k) are indistinguishable with respect to the information in the
arguments. To express this indistinguishability, we introduce the following notions.

A relation R on type wvalis called a congruence relation if R is an equivalence relation

which satisfies:

for each n-ary built-in operator 0, if ¢; R ¢ for 1 <1i < n then

9[(01, e ,Cn) R 9[(0’1, e CI)

ren

In the following, we assume that a particular congruence relation ~ is given. For v, v’ of
type wal, if v ~ v’ then we say that v and v’ are indistinguishable. By the definition, if v;
and v} for 1 < ¢ < n are indistinguishable then for any built-in operator 0, Oz(cy, ..., cy,)

and 07(c},...,c),) are also indistinguishable. This implies that once v and v' become

Y n
indistinguishable, we cannot obtain any information to distinguish v and v’ through
any operations.

Next, we require B[-] to satisfy the following condition.

Condition 2.4.4. Assume B[0](1,...,m7,) = 7 for an n-ary built-in operator 6. Let
¢, ¢ be of type wal (1 <i <mn). If ¢j ~ c;- for each j (1 < j <n) such that 7; C 7, then
Oz(c1y... cn) ~0z(ch, ..., ch). O

n

The above condition states that:

Let B[O](r1,...,T) = 7. Assume that arguments of € are changed from ¢y, ..., ¢,
toc,...,c,. Aslong as ¢j and c; are indistinguishable for each argument position
j such that 7; C 7, O7(c1,...,¢,) and 07(c), ..., c,) remain indistinguishable.

In example 2.4.1, condition 2.4.4 requires 67(cy,cq) ~ 07(c}, c,) for arbitrary values
¢1,¢),¢2 and . Since O7(c1,c2) = ¢1 ~ ¢ = 0z(c},dy) if ¢4 ~ ¢, then condition 2.4.4
is satisfied for any congruence relation ~.

In example 2.4.2, condition 2.4.4 requires Ez(d,k) ~ Ez(d', k) for arbitrary plain
text d and d' and arbitrary keys k and k’. This means that information in the plain
texts or the keys cannot be obtained from the cipher text.

In example 2.4.3, condition 2.4.4 requires Aver(ni,...,n;) ~ Aver(nl,...,n}) for
arbitrary integers ni,...n;, nj,...,n.. This means that information contained in the
arguments cannot be obtained no matter how the average value is manipulated.

Now we can define the soundness by using the notion of indistinguishability as

follows:

28

Definition 2.4.5 (generalized soundness). Let ~ be a congruence relation. We say

that an algorithm A*[-] is sound (with respect to ~) if the following condition holds:

If A*[Prog][main](Ti,...,7) =T,

Lstore = main(vy,...,v,) = v, Lgore = main(vi,...,vl) =o', and
Vi(l1<i<n):7 CT.v;~0
then v ~ v’ holds. O

It is not difficult to prove the following theorem in a similar way to the proof of theorem
2.3.7.

Theorem 2.4.6. If condition 2.4.4 is satisfied, then the generalized algorithm A*[-] is
sound in the sense of definition 2.4.5.]

2.4.2 An Example

Consider the following program which provides a digital signature only to data owned

by authenticated user.

main(id, pass,d) {
if (verify(id, pass)) then
return sign(d)
else

return d

fi
}

Input of this program is a user ID (id), user password (pass), and data (d) to which
the digital signature is to be provided. The function verify is a built-in function which
takes the user ID and user password as arguments and returns “true” if the user is
authenticated and returns “false” if not. And the function sign is a built-in function
which takes the data as an argument, attaches a digital signature to that data and
returns the signed data. Assume that the security class of the user ID and user pass-
word is the maximum value T and the security class of the input data is 7. If this
program analyzed without using the extended model (A[verify](11,72) = 71 LT2), then
information of the condition part of the if command flows into the return command
due to an implicit flow and the analysis algorithm determines that the security class of
the output data will be T. Assume that there is an user who is the owner of data d and

assume the user can read data of security class lower than 7. The analysis algorithm

29

says if the user attach the digital signature to the data d the security class will become
T. This means even the owner of data d may no longer be able to read his/her own
data if a digital signature is attached to d. Therefore, we can say the analysis result is
unnatural.

As a natural assumption, we consider that no information of the user ID and user
password can be obtained no matter how the output of the verify function (true or
false) is manipulated and define B[verify](T, T) = L. Using this definition, the analysis
algorithm for this program determines that the security class of the output data will be
7. This analysis result is natural since it means that signed data sign(d) has the same
security class as the input d. Also, under the assumption (condition 2.4.4) which says
“verifyr(cy,ca) ~ verifyr(c), ¢y) for arbitrary values ¢1, ¢/, ¢2 and ¢}” or in other words
“no information of the user ID and user password can be obtained no matter how the
output of the verify function (true or false) is manipulated,” this analysis guarantees
that the information of the user ID and user password will not leak into the digitally
signed data.

2.5. Conclusion of Chapter 2

In this chapter, we have proposed an algorithm which can statically analyze the in-
formation flow of a procedural program containing recursive definitions. It has been
shown that the algorithm is sound and that the algorithm can be executed in polyno-
mial time in the size of an input program. In addition, we generalized the definition
for an arbitrary built-in function and extended the model so that the security class of
the result of an arbitrary built-in function can be defined according to a given analysis
policy. Finally, we proved the soundness of the extended model. In [YO01], the pro-
posed algorithm is extended to be able to analyze a program which may contain global
variables and a prototypic analysis system has been implemented. Table 2.1 shows the
execution time to analyze sample programs by the implemented system (CPU:1.5GHz
Pentium 4, main memory: 512MB). However, in this prototype system, only two values
{high,low}(low C high) can be used as security classes.

The ticket reservation system in Table 2.1 contains a certification module which
deals with a credit card number. It is assumed that the security class of the credit card
number which is the input of the system is high. The analysis determined that the
security class could be high for 13 outputs among the 36 output commands (among the
13 outputs for which the security class became high, 7 existed within the certification

module). Next, as a sample application of the extended model, we assume the certi-

30

Table 2.1. Analysis time

Program Number of lines | Average analysis time (sec)
Ticket reservation system 419 0.050
Sorting algorithm 825 0.130
A program library 2471 2.270

fication module as a built-in function and the security class of the operation result is
assumed to be low. As a result, the only outputs for which the security class became
high were the 7 within the certification module and for the remaining 6 outputs, which
are outside of the certification module, the security class was low. Also, for the every
outputs which the security class could become high, credit card information was flowed
into all those outputs.

Extending the proposed method so that we can analyze a program which has point-
ers and/or object-oriented features is a future study.

Using the method proposed in section 2.4, we can appropriately analyze one-way
functions. However, trapdoor functions (e.g., a plaintext can be obtained by decrypting
the encrypted one) cannot be appropriately analyzed. In [OYF03], the information flow
analysis algorithm proposed in this chapter is extended so that can handle trapdoor

functions.

31

Chapter 3

Policy Controlled System and Its
Model Checking

3.1. Introduction

This chapter proposes a security assurance method for a Discretionary Access Control
(DAC) based system. DAC assumes that the owner of an object controls access permis-
sions to the object. It is at the owner’s discretion to assign security policy (permission)
to objects. In a conventional DAC model, only permission (positive authorization) and
prohibition (negative authorization) can be specified. Unix file permission is a typical
example of conventional DAC model. However, an obligation policy is also important,
which describes that a specified subject is obliged to perform a specified action when
a certain event occurs under a certain condition.

In section 3.2, we introduce a simple but useful policy specification language which
can specify not only permission and prohibition policies but also obligation policies.
Proposed language is suitable for distributed policy control and is used in policy con-
trolled system (PCS) which is proposed in section 3.2. PCS is a system in which each
object has its own security policy and objects’ behaviors are autonomously controlled
based on those policies when they interact with one another. Operational semantics of
PCS is formally defined.

In section 3.3 and 3.4, using a model checking technique for pushdown system
(PDS), we propose a method for verifying a safety property of a PCS. We define the
(safety) verification problem for PCS as the problem to decide for a given PCS S and
a goal (called safety property) ¥, whether every reachable state of P satisfies ¥. As

defined later, ¥ is represented as a regular language.

32

In section 3.3, first, a pushdown system (PDS) and Esparza et al.’s results on
model checking for PDS are reviewed. Next, we propose an efficient algorithm which
constructs an NFA accepting the set of all reachable states of a given PDS.

Section 3.4 is devoted to presenting our verification method; we provide an abstrac-
tion of PDS from PCS. Example verification results obtained by our verification tool
are also illustrated.

Section 3.5 concludes the chapter.

3.2. Policy Controlled System

We introduce a policy controlled multi-object system, and describe its formal semantics.

A policy controlled system (PCS) is a tuple S = (O, Prog, Policy) where O is a finite
set of objects, Prog is a finite set of bodies of all methods in O, and Policy is a finite
set of policies. In section 3.2.1, we propose a simple policy specification language. In

section 3.2.2, we formally define the structure and the behavior of a PCS.

3.2.1 Policy Specification Language

In a traditional access control model, 3-tuple (s,¢,a) means that “subject s performs
action @ on target ¢.” In an object-oriented model, (s,t,a) corresponds to “subject s
executes method a on target t.” There are four kinds of basic access control policy for

(s,t,a) as follows.
e positive authorization (or permission or right) : s is permitted to perform a on t.

e negative authorization (or prohibition) : s is forbidden to perform a on ¢ by the

target’s policy.
e refrainment : s is forbidden to perform a on ¢ by the subject’s policy.
e obligation : s is obliged to perform a on ¢ (when a specific event has occurred).

We write t.a < s to denote (s,t,a). Furthermore, we write t.a(p1,...,pn) < s to
denote that s performs ¢ with actual arguments py,...,p, on . In the following, auth+,
auth—, oblg and refrain stand for positive authorization policy, negative authorization
policy, obligation policy and refrainment policy, respectively.

In our model, each object has its own policy. When more than one object interact
with one another, the execution of every method should meet all the policies of the

objects which participate in the method execution. For example, object A can play the

33

(policy) = 'policy’ (model) {policy name)

['var’ (variable declaration)+]

(operation unitl)+ ['if’ (condition)]

% This rule defines the syntax of auth+ and refrain policies.

| ‘policy’ (mode2) (policy name)

['var' (variable declaration)+]

(operation unit2)+ ‘on’ {event) ['if’ {condition}]

%This rule defines the syntax of an obligation policy.
(condition) := (expression)

% The type of (expression) should be boolean.

(model) := ‘auth4’ | ‘auth—'| ‘refrain’
(mode2) := ‘oblg’
(operation unitl) := (object)’.’(action) ['+" (object}]
(operation unit2) := (object)’.’(action) ‘(" (expression)* ‘)" ['<—" (object)]
% See Table 3.1 for the microsyntax of {operation unitl) and (operation unit2).
(object) = (identifier) | ‘this’ % ‘this’ means the self object.
(expression) = ‘(' (expression) ‘)’ | (object)’.’(attribute) |

(expression) (binary operator) (expression) |

(unary operator) (expression) | {(constant) | (variable)
(event) := ‘beginning of’ (operation unit3) | ‘end of’ (operation unit3)
(operation unit3) := (operation unitl)
(variable declaration) := (variable)+ ‘" (type)
(policy name),(action),(attribute),{variable) := (identifier)

Figure 3.1. Syntax of a policy specification language

movie contained in object B by executing method B.play only when both the policies
of A and B permit A to execute B.play. We use the reserved word “this” to denote
the self object, namely, the object which has that policy.

We define the syntax of a policy specification language using BNF notation as
Figure 3.1. The policy specification language is a set of (policy).

Note that:

e (..) are nonterminal symbols, A | B is a choice of A and B, [A] means A is an
option, Ax stands for 0 or more repetition of A, A+ stands for 1 or more repetition

of A and ‘o’ stands for « itself as terminal symbols.

e The microsyntax of (binary operator), (unary operator), (constant), (type) and

(identifier) are omitted.

e In Table 3.1, x and y stand for any objects other than ‘this.’

34

Table 3.1. Form of (operation unitl) and (operation unit2)

this.m<—this z.m<this this.m<<y x.m<+y

auth+ Vv Vv
auth— Vv
refrain Vv Vv

oblg Vv Vv

e As defined in the above BNF rules, (operation unit3) is used only in the event

clause of obligation mode, and is allowed to have the form this.m<—this, z.m<—this

or this.m«y where £ and y stand for any objects other than ‘this.’

Using the policy specification language, basic access control policies can be written

as follows.

(1)

positive authorization
policy auth+ policy_-name this.m«+B if Cond
“If Cond holds, then object B is permitted to execute method m on this object.”

negative authorization
policy auth— policy_-name this.m«<B if Cond
“If Cond holds, then object B is forbidden to execute m on this object.”

refrainment
policy refrain policy_ name B.m<«this if Cond
“If Cond holds, then this object is forbidden to execute m on object B.”

obligation

policy oblg policy name B.m<this on Event if Cond

“If Cond holds when FEwvent occurs, then this object is obliged to execute m on
object B.”

Event should be a time instant (without duration). In the above policy specifi-

cation,

e if Fvent =“beginning of D.m’ < F” then this object must perform m on B

just before F' performs m’ on D.

e if Event =“end of D.m’ < F” then this object must perform m on B just

after F' performs m’ on D.

35

Example 3.2.1.

Policy of digital contents (Playing contents): Consider an object with media con-
tents such as digital audio and video. This object may specify the following policy. Let
x be an arbitrary user object.

“If x is the owner of this object and if x is older than or equal to 20 years, then x
may play the contents involved in this object.”

“Just after the execution of play method, z must execute pay method with actual
arguments z, B and $10.00. That is, when z has played the contents, then z must pay

$10.00 to B.”
policy auth+ Play_1

var X: user

this.play<—x if this.owner==x, x.age>=20

policy oblg Play_2
var x: user

this.pay(x,B,$10.00)<this on end of this.play<—x

Policy of a user (Refrainment from playing contents): A user object (or a personal
computer of the user) may have the following policy. Let z be an arbitrary object which
has a movie as contents.

“If the current user is under 18 years old and if the type of the contents is ‘v’, then
this user object cannot play z.”

policy refrain Age_Check
var z: content

z.play<—this if this.age<18, z.type==v

3.2.2 Formal Semantics of PCS

In this section, we formally define a multi-object system in which the behavior of
each object is controlled by specified policies. An object in the system calls a method
of another object (or itself) along a given program, and the invocation of the called
method is permitted or forbidden complying with both the caller’s and callee’s policies.
Moreover, an invocation and an ending of a method may cause other obligatory method
calls specified by the policies.

In subsection 3.2.2, we define a simple model of objects and programs that is a
behavior of PCS without policies. In subsection 3.2.2, we introduce several concepts

about policies and define the behavior of a system with policies. In subsection 3.2.2, the

36

0,.x:=10 n;=IT[o;.m]

|
0,251 ~
1 /// 10,.2>1 0,y := arg+20
// 0,.My(01.X) — 0, : n,=1T[0,.m,]
1 t | k '
l rue, return o,.y
\\ 0. X :=ret Ns
\\ truei M method o,.m,(arg,)
method 0,.m,()

Figure 3.2. A sample program

system is extended by introducing an exception handling function. In our model, an
exception occurs when a forbidden method call is requested, and thus policy violations

are handled by the uniform exception handling function.

Behavior of PCS without Policies

Objects Each object has a finite number of attributes and methods defined by its
class. Assume that an object o has attributes a1, as,...,ar. When the value of a; is
v; for 1 <7 < k, the state of o is represented by the tuple state = (vy,v9,...,v;). We
may write 0.a and 0.m to represent an attribute a and a method m of an object o,
respectively.

Let O be a finite set of objects. Assuming a total order of objects in O, we
let O be an ordered set (01,09,...,0,). A global state of O is an n-tuple o =
(statey, states, ..., statey), where state; is a state of oj for 1 < j <n. Let o(e) denote
the value of an expression e at a global state o and let ofo.a := v| denote the global
state which is the same as o except that the value of the attribute o.a is v.

The body of a method is a program described as follows.

Programs The body of a method 0.m is a program which is represented by a directed
graph as shown in Figure 3.2. A program is a tuple (NO,TG,IS,IT,VAR). In the
following we write NOJo.m], TG[o.m], and so on to represent each of the five components

of the body of a method o.m. Let EXP[o.m] be the set of expressions which consist of

37

built-in functions, attributes of o, and variables in VAR[o.m] (defined below).

e NOJo.m] is a set of nodes which represent program points. We assume that for
any objects 01, 02, and methods my, mg, NO[o;.m1] and NOJ[os.ms] are disjoint

unless 01 = 09 and m; = mo.

e TGlo.m] C NOJo.m] x EXP[o.m] x NO[o.m] is a set of edges called transfer edges.
For any ny,ny € NO[o.m], ny+ny denotes (ny, e, ny) € TG[o.m], which represents
that the control can move to ng just after the execution of ny if the value of e is

true.
e IT[o.m] € NOJo.m)] is the entry point of the program and is called the initial node.

e IS[o.m] is a mapping from a node to its label. The label of a node represents an

atomic action and is one of the following forms.

— 0g.ma(e1,...,€e)0 Invoke 03.m9 with the arguments ey, ..., e, € EXPlo.m];
move the control to IT[og.m2] and assign the values of expressions ey, ..., e
to the parameters argy,..., arg, in VAR[o2.m3], respectively.

— return e Return to the caller method and move the control to the next
node. The value of e € EXP[o.m] is returned and is assigned to the special

local variable ret of the caller method.
— o0.a:=e Assign the value of e € EXP[o.m] to the attribute a of o itself.

—r:=e Assign the value of e € EXP[o.m| to the local variable r €
VAR[o.m)].

In the following, let IS be the mapping which is the union of IS[o.m] for every

method m of every object o.

e VAR[o.m] is a set of local variables. Assuming that VAR[o.m| is an ordered
set (ri,...,7rg), a state of the local variables of o.m is represented by a tuple
p = (vi,...,vx) of their values. We define p(e) and plr := v] in the same way as
the global state of objects. The value of an expression e € EXP[o.m] at a global
state o and a state p of local variables is o o pu(e) = o(u(e)). The state of local

variables in which the values of all variables are undefined is denoted by _L.

Transition System The multi-object system consists of a set O of objects and a

control stack. The control stack is a sequence of an arbitrary number of stack frames.

38

IS(n) = “o0.a :=¢€” n — N9

o' =olo.a:= 0o u(e)] o' o u(ey) = true

(GASSIGN)
(Ua (n7 //') : f) - (UI7 (n27 /1') : 5)
IS(n) = “r :=¢€” n 3 ny
(LASSIGN) p =plr:=copule)] oou(e) = true
(Ua (n7 //') : f) - (0’, (”mlﬁl) : f)
IS(n) = “og.mo(ey, ..., e5) < 017
caryy Fo= (Tlosmal arg, i= 7o pler)]--arg = o per)
(Ua (n7/1') : f) - (0’, f2 : (”yli) f)
IS(m) = “return e” IS(ny) = “os.ma(ey,...,ex) < 01"
(RETURN) fo = (n1, plret := o o pus(e)], true)
(0, (m,p2) : (n1,p) 2 &) = (0, fa:§)
(FINISH) Ny ngy oo u(e) = true

(0, (Hh,p) =€) = (0, (n2,p) <€)

Figure 3.3. Inference rules which define the transition relation (1)

Each stack frame (or simply, frame) is a triple (n, u, ef), where n € NO[o.m] for a
method o.m, u a state of the local variables of 0o.m, and ef a truth value. The frame
represents that the control is at n in method o.m with the state p of the local variables,
and if ef = true, then it also represents that the label of n is 09.ms(eq,. .., ex) + 0 and
the control has already reached a return node in the callee method 03.m9o. We may
abbreviate a frame (n, p, false) to (n,p) and (n, u, true) to (4h,). The concatenation
of two sequences ¢ and v is denoted by ¢ : v. The empty sequence is denoted by e.
The leftmost symbol in a sequence of frames corresponds to the topmost symbol of the
stack.

The system is represented by a transition system Sys defined as follows. A state of
Sys is a pair (0,£) where o is a global state of O and ¢ is the contents of the control
stack. We define the transition relation — of Sys by inference rules in Figure 3.3 (also

see Figure 3.4).

39

assign return finish

] =) A) 2w)

Figure 3.4. Behavior of the system with the program in Figure 3.2

Behavior of PCS with Policies

Policies Now we extend the system by introducing policies. Consider an ordered set
O = (01,09,...,0y) of objects. Each object in O has a finite set of policies as well as
the attributes and the methods. Assuming that each object o; has a set P; of policies
for 1 <j <n, let Policy(O) = U< <, P} where P equals P; except that “this” in P;
is replaced with o;.

Let o be a global state of the set O of objects, s and ¢ be objects in O, m be a method
of t, and mod be any of auth+, auth— and refrain. We define a relation o = mod(s, t,m)
as follows, which represents that the target ¢ permits (if mod = auth+) or forbids
(mod = auth—) the subject s to call the method m of ¢, or s refrains (if mod = refrain)

from calling m of ¢ when the global state is o.

o = mod(s,t,m)
if and only if Jp € Policy(O), 30: a substitution for the variables in p,
p = “policy mod ... B.m + A if Cond”,
o0 6(Cond) = true, 8(A) = s, §(B) =

For a global state o and an event ev, we also define the set oblg(e, ev) of obligatory
method calls which become effective when the global state is ¢ and the event ev has

just occurred.

oblg(o, ev) = { t.m(vi,... v,) < s |
Jp € Policy(O), 30: a substitution for the variables in p,
p = “policy oblg ... B.m(E1,...,Ey,)<+ A on Ev if Cond”,
cgol(Ev) = ev, g o6(Cond) = true, 0(A) = s, O(B) = t,
col(E;) =v;for1 <i<kp}

Conflict between Policies If there exist two modes mod; and mods such that
o = mody(s,t,m) and o |= mods(s,t, m)

and (modyi, mods) = (auth+,auth—), then we say that the global state o causes a

conflict between policies upon the operation (s,t,m). Note that a conflict does not

40

Table 3.2. The truth of CAN(o,t.m <« s)

refrain
auth+ auth— not marked marked
not marked not marked | depending on implementation false
not marked marked false false
marked not marked true false
marked marked don’t care don’t care

occur if (mody, mody) = (auth+, refrain), since the subject s refrains from performing
(s,t,m) no matter whether ¢ permits it or not.

There are two approaches to resolving a conflict: one is to obey a fixed rule, and
the other is to specify a way to resolve using meta policies, which are policies to control

other policies. Examples of the former approach are:
e Always give priority to auth— for safety.

e Using the class hierarchy among the objects, give priority to a policy defined in

the most specialized class.

Using an arbitrary conflict resolution method (cf. [JSS97]), we define CAN(o, t.m <
s) as a predicate which is true if the operation t.m < s is permitted when the global
state is o.

At a global state o, we can compute CAN(o,t.m < s) as follows.

(1) For each mod € {auth+,auth—, refrain}, test whether there exists a policy p €
Policy(O) which satisfy the following.

e Assume that p = “policy mod ... B.m < A if Cond”. There exists a sub-
stitution @ such that 0(A) = s, 6(B) = t, and o o §(Cond) = true.

If there exists such a policy p, then mark mod to represent that o = mod(s,t, m)
holds.

(2) If there exists a conflict, that is, both auth+ and auth— are marked, then resolve

the conflict and erase the mark of either of them.

(3) The truth of CAN(o,t.m < s) is given by Table 3.2.

41

Order of Obligations If the set oblg(o, ev) of obligations has more than one ele-
ments, then we assume a total order < over oblg(o, ev) which represents the order of

performing the obligations. Thus
oblg(o, ev) = {opy,...,0p;} and op; < opy < --- < op;

where op; = “t;.m;(vi, ..., vk,;) <87 for 1 < i < 1. op; < op; represents that op;
should be performed before op;. For the above-mentioned oblg(o, ev), we define a

sequence Foblg(o, ev) of stack frames (defined later) as follows.

Foblg(a, ev) = (nobig[op1], L) : (nobiglopal, L) -+t (nobiglopy], L),

where nqpig[op] is a special node newly introduced here for any obligatory operation
op. Note that ngpig[op] does not belong to any method and IS(ngpiz[op]) is defined as
IS(nobig[op]) = op. Let NOgpig be the set of all ngpig[op]’s.

Transition System with Policies The transition system Sys defined by Figure 3.3
is modified substituting the rules (CALL’), (RETURN’), (FINISH') and (OFINISH) in
Figure 3.5 for the rules (CALL), (RETURN) and (FINISH) in Figure 3.3. After the
modification, a method invocation 0y.m94—0y is performed only when CAN(o, 09.m9 < 01) =
true. Moreover, when a method has been just invoked or has just finished, a sequence
of stack frames which will accomplish the obligations caused by the beginning or the

end of the method is pushed into the control stack (see Figures 3.6).

Exception Handling

We extend our model by a function to handle exceptions, that is,

(1) Extend the program model so that we can specify an action to be performed when

an exception has just occurred.

(2) Extend the transition system so that an exception occurs when a forbidden

method call is requested.

Consider a situation in which an obligation causes a policy violation. In the defini-
tion of the policy specification language, we said that the main clause of an obligation
policy is a method call, and thus we cannot specify any action for the violation excep-
tion. However, we extend the specification language as follows without changing the

model of obligations. Figure 3.7 shows a specification of an obligation policy written

42

IS(n) = “oz.ma(er, ..., ex) < 017

CAN(0,09.m2 < 01) = true

fo = (ITlosms), L{arg, := 0 o (er)]--larg, = o o u(ex)])
Foblg(o, beginning of 0s.mg <= 01) = fx1: fx2 -1 fxi

(CALL)
(07 (na:u) : E) — (Ua fx,l : fx,2 cod fx,l : f2 : (n,li) : g)
IS(m) = “return e” IS(ny) = “oy.ma(eq, ..., ex) < 01"
fo = (m, plret = 7 0 pafe)], true)
(RETURN') Foblg(o,end of 0a.mae <—01) = fx1: fe2 1 fxu
(Uv (m7u2) : (’fll,,ll,) : f) — (Ua fx,l : fx,2 Ll fx,l : f2 : é.)
(FINISH') n1 ¢ NOopig Ny -5 no oo u(e) = true
(o, (,p) : &) = (0, (n2,) 1 §)
(oFNisH) € NOobi

(07 (7}/17”) : 5)—)(0', g)

Figure 3.5. Inference rules which define the transition relation (2)

in the extended language. In the language we can write an arbitrary program code in
the main clause (part (a) of Figure 3.7). We assume that the part (a) is the body of a
method which has no name and when this obligation becomes effective, the method is

called.

Program with Exception Handling A program is a tuple (NO, TG, EG, IS, IT, VAR),
where EG is a set of edges called exception edges. An element in EG is a tuple
(n1,r, ty,ng) where ni,ny € NO, r € VAR, and ty a type of an exception such as
OperationFailed (see Figure 3.8). Note that in our model an exception occurs only at a
method call and thus ny should be a method call. nlg?’i;(; ny denotes (ny,r, ty,ng) € EG
and represents that if the control is at n1 and an exception ez of the type ty occurs,
it can move to ny assigning ex to r (i.e., the exception is caught). When an exception
ez of a type ty occurs at a node n and n?j)yEG ng does not hold for any ne and r, ez is
delivered to the method which called the method which n belongs to (i.e., the exception

is thrown).

43

obligations for the beginning of
the method called by n,

gassign

call cal
— [Ne] — [Maa[N[Mg [Ny | —= [M [Ny [Nep[M4 [1 | —

return
"'_’|rnz|nol|n02|n4|n2| - |n03|no4 01 n02|n4|n2| -

ef=true

obligations for the end of
the method called by n,,

Figure 3.6. Behavior of the system with obligations

policy oblg DELIVERY_FEE
var sender:Channel
try
(this.casher).pay((this.cert).fee, sender)

(a)

except
on e:OperationFailed do this.throw(e)

on beginning of this.receive<—sender

Figure 3.7. A sample obligation

Transition System with Exception Handling Let ex;gicy be a constant which
represents the policy violation exception, and typeof(ex) be the type of an exception
ex.

Let f1 = (n1,pu1,efy) and fo = (ng2,p2, efy) be arbitrary frames. We define a

mapping CASTOFF from and to a sequence of frames as
CASTOFF(f1) =€
CASTOFF(f, : f1 : €) = f1:¢& if ef | = true or ny ¢ NOgpig
S CASTOFF(f; : £) otherwise.

We extend the transition system Sys as follows. A stack frame can be either the
above-mentioned tuple (n, i, ef) or an exception ex. If the topmost element of the con-
trol stack is an exception ez, it represents that ex has occurred and is to be processed.
We add the inference rules in Figure 3.9 to the set of the rules in Figure 3.5. We also
add “mgy # throw” to the premise of the rule (CALL') in Figure 3.5.

44

0,.X:=10 n;=IT(0..My)
0,251 /// '
Ve

>
, 101.2 ! 0,.y :=arg,+20
// oz-mz(oll-x) -0 true | n=IT[o,m)]
[uel TR 0 '
l ' et ol.xl.— N return 0,.y]
\' n, OL.X:=T71 5
\\3 true : truel method o,.m,(arg;,)

n;

method o,.m,()

Figure 3.8. A sample program with an exception edge

3.3. Pushdown System

To verify a policy controlled system introduced in section 3.2, we use pushdown system
(PDS) and its model checking method. In this section, we first review the definition of
PDS and the model checking method for PDS in [EHRS00]. We then propose a new
algorithm for computing the reachable configurations of a PDS. This algorithm works
faster than the algorithm in [EHRS00] and matches the algorithms in [AEY01, BGRO1]

when we use it for the verification of a policy controlled system.

3.3.1 Definitions

A pushdown system is a tuple M = (P,T', A, qo,w) where P is the finite set of control
locations, T' is the finite stack alphabet, A C (P x T') x (P x I'*) is the finite set of
transition rules, qo € P is the wnitial control location, and w € I' is the bottom stack
symbol. For simplicity, we can write (p,a) < (q,w) instead of ((p,a),(q,w)) € A.
Without loss of generality, we assume that for any p,q € P, if (p,w) — (g, w), then w
is of the form aw. A configuration of M is a pair (g, w) where ¢ € P and w € I'*. The
initial configuration is (go,w). The empty sequence of stack symbols is denoted by e.

The transition relation of M is the least relation = satisfying the following condition:
(p,aw) = (q,vw) for every w € I'*, if (p,a) — (q,v).
The reflexive and transitive closure of = is denoted by =*. For a given set C' C P x I'*

of configurations, the set of successors of C'; which is {¢ € P xT* | 3ec € C. ¢ = ('},
is denoted by post[M](C). The reflexive and transitive closure of post[M](C'), which is

45

IS(n) = “oy.throw(ey) « 01”7 ex1 = oo u(er)

(THROW1)
(0, (n,pu):&) = (0, exy:(n,p):§)

IS(n) = “o2.ma(eq,...,ex) < 01”7
CAN(0,05.m2 < 01) = false

(POLICY _EX)
(o, (n,p) : &) = (0, eXpolicy : (1, 1) : &)

r:typeof(ex)
—BEG N2

(CATCH)
(o, ex:(n,p,ef): &) = (o, (no,plr:=ex]):§)
r:typeof(ex)
(THROW?2) —Eqg N9 does not hold for any ns and r.

(o, ex:(n,u,ef):&) = (o, ex: CASTOFF((n,pu,ef) : &))

Figure 3.9. Inference rules for exception handling

{ € PxT*|3Jce C.c="},is denoted by post*|[M](C). We say that a configuration
¢ is reachable if (qo,w) =* ¢ (or equivalently ¢ € post*[M]({(qo,w)})).

We say a PDS M is in normal form if M satisfies |w| < 2 for every transition rule
(p,a) — (p',w), where |w]| is the length of w. Any PDS can easily be converted into
a normal form PDS by adding new control locations, the number of which is not more
than the size of A.

3.3.2 Model Checking Pushdown Systems

As we are interested in security properties of policy control, we concentrate on the
safety verification problem (the verification problem for short), which is one of the
most important model checking problems. The (safety) verification problem for PDS

1s defined as follows:

e Inputs: A PDS M and a verification property ¥ C P x I'*.

e Output: Does every reachable configuration belong to ¥? (or equivalently,
post*[M]({(qo, w)}) C ¥?)

In [EKSO01], Esparza et al. show that if a set C of configurations is regular, then
post*[M](C) is also regular and they present an algorithm for calculating post*[M](C).
Using their results, we can solve the verification problem. To represent a regular set of

configurations, we define P-automata which accept configurations of M.

46

Definition 3.3.1 (P-automata). Let M = (P,T", A, qo,w) be a pushdown system. A
P-automaton is a tuple A = (Q,T,0, P, F') where Q D P is the finite set of states, T
is the tape alphabet (which equals the stack alphabet of M), § : Q@ x T' — 29 is the
transition function, P is the set of initial states (which equals the set of control locations
of M) and F C @ is the set of final states. We extend ¢ to 5 Q x I'* — 29 in the
usual way. A configuration (g, w) of M is accepted by A if and only if F' N S(q, w) # (.
The set of configurations accepted by A is denoted by Conf(A). We say a set C of

configurations is regular if there exists a P-automaton A such that C = Conf(A). [
For a set A, let |A| denote the cardinality of A.

Theorem 3.3.2. [EKS01] For any pushdown system M = (P,I',A,q,w) and any
P-automaton A = (Q,I,4, P, F), there effectively exists a P-automaton A,,s= such
that Conf(Apos<) = post*[M](Conf(A)). For a normal form PDS M, Ay,.+ can be
constructed in O(|P| - |A|- (|Q| + |A]) + |P| - |0]) time and space. O

If a verification property ¥ is given by a P-automaton, then we can solve the
verification problem for ¥ using the algorithm mentioned in Theorem 3.3.2. We describe
the decision algorithm in the next theorem for referential convenience to the following

sections.

Theorem 3.3.3. Let M = (P,['; A, qo,w) be a PDS and A = (Q,T',6, P, F) be a P-
automaton. The verification problem for M and verification property ¥ = Conf(A) is

solvable.

Proof. Recall that the verification problem is the problem which decides whether

post*[M]({(qo,w)}) € ¥. By Theorem 3.3.2, we can also construct a P-automaton
Apost= which accepts post*[M]({(go,w)}). Since the inclusion problem of regular lan-
guages is decidable, we can decide whether post*[M]({{(qo,w)}) C . O

3.3.3 Computing Reachable Configurations

The proof of theorem 3.3.3 shown above is based on Esparza’s Ao+ algorithm. The
algorithm can construct a P-automaton A,gs+ such that Conf(Ayes<) = post*[M](C)
for any regular set C of configurations. To solve the verification problem, however,
we need only Apyq+ for C = {(qo,w)}, which can be constructed more efficiently than
by using Esparza’s algorithm. In the following, we show an algorithm for constructing
Aposi= for C = {{(qo,w)}, which is an extension of the algorithm in [NTS01b]. Instead

47

(p,a) = {q1,b1ba...bg)
(q1,b1,92) € Ry

(p,a) = (g, €)

(p,a,q) € Ry (qk—1,bk—1,q1) € Ry
(qk, bk, q) € Ry
(p7 a, q) € RM

Figure 3.10. Inference rules for Ry,

(p, a) — <ql,b1b2 .. bk>
(q1,b1,92) € Ry
(p,a) = (g, €) (q2,b2,q3) € Ry
Xpa—pac€D Xpa—q€D

(gj—1,bj—1,q;) € Ry
Xp,a — Xq].7b]. bj+1bj+2 ...bp eD

Figure 3.11. Inference rules for Gy

of constructing a P-automaton, we construct a left linear grammar G, from a given
PDS M = (P,T',A, qy,w), which satisfies w € L(Gjs) if and only if w = ¢y and
(go,w) =" (q,7). Aposi can easily be obtained from Gy.

First, we define a relation Ry; C P x I' X P as the least relation which satisfies the

rules in Figure 3.10. The following lemma shows the meaning of Ry;.
Lemma 3.3.4. (p,a,q) € Ry if and only if (p,a) =* (g, ¢€).

Proof Sketch. (Only-if) By induction on the number of rules used for deriving (p, a, q) €
Ryy.
(If) By induction on the number of transitions between (p, a) and (g, €). O

Using Rjy, we define the right linear grammar G, = (V, T, D, I) for the given PDS
M = (P,T',A,qo,w) where V = P x I is the set of variables (for readability, we write
X, to represent (p,a) € V), T = P UL is the set of terminal symbols, D is the set of
productions and is defined as the smallest set which satisfies the rules in Figure 3.11,

and I = Xy, is the start symbol.
Lemma 3.3.5. w € L(Gy) if and only if w = qy and (qo,w) =" {q,7).

Proof Sketch. This lemma is implied by the following stronger proposition:

48

w can be derived from X, , if and only if w = ¢y and (p,a) =* (¢,7).

(Only-if) By induction on the length of the derivation of w.
(If) By induction on the number of transitions between (p,a) and (g,). O

Lemma 3.3.6. For a normal form PDS M = (P,T', A, qo,w), Gar can be constructed
in O(|P|* - |A|) where P. = {q € P | {p,a) < {q,€) for some p and a}. O

Obviously, | P < min(|P|,|A]). Note that a PDS which is not in normal form can
be converted into a normal form PDS without increasing |P|.

In the verification of a policy controlled system (PCS) described in section 3.4, we
construct A+ for a PDS St = (P,T,A,p,ng) with |P| = 2. When we use either
Esparza’s algorithm or ours to construct Ap,s, S has to be converted into a normal
form PDS M' = (P',T', A’ p,ng) with |P'| = O(|P| + ||A]]) and |A"] = O(]|A||), where
|Al| is the size of A. Therefore, Esparza’s algorithm takes O(]|A||*) time to construct
Apost= while ours takes only O(||Al]) time.

3.4. Model Checking Policy Controlled Systems

In this section, we present a method for verifying a safety property of a policy controlled
system (PCS). When every reachable configuration of a PCS (or PDS) S belongs to
a property U (see subsection 3.3.2), we simply say that S satisfies ¥. Similar to the
case of pushdown system (PDS), the (safety) verification problem for PCS is defined as
the problem to decide, for a PCS S and a verification property ¥, whether S satisfies
U. We first present an abstraction of a PDS S* from a given PCS S. We can verify
whether S* satisfies a given property ¥ by using the method described in section 3. By
the soundness of the abstraction (Theorem 3.4.2), if S* is known to satisfy ¥ then S is

also guaranteed to satisfy W.

3.4.1 Abstracting PDS from PCS

We define a transformation which abstracts PDS from PCS. Remember that a con-
figuration of a PCS is a pair of global variable values and a stack (of which frames
may involve local variable values), while a configuration of a PDS is a pair of a control
location and a stack. Hence, program variables in the PCS must be abstracted. For
a given PCS S = (O, Prog, Policy), the abstract PDS S* = (P,T, A, p,ng) is defined
as P = {p,q} where p and ¢ are new symbols, I' = {n, 7 | n is a node in Prog}, the

49

(GASSIGN) IS(n) = “0.a :=¢€” n B ny
(pa 1’L> — (pa TL2>
(Lassicy) B =tr=¢ nSn
<p7 n) — <p7 7l2>
IS(n) = “og.ma(e1, ..., e5) < 017
CANﬁ(oz.mg « 01) = true fa = 1T[02.m3)]
Foblgﬁ(beginning of 02.ma ¢ 01)3 fe1:feo it fxu
CALL 2 2 d
() (p7n> — (pafx,lfx,2"'fx,l f2n>
IS(m) = “return e” IS(n1) = “oa.ma(eq, ..., er) 01”7
(RETURN) Foblgﬁ(end of 00.ma ¢=01) D fun i fa2 i -t fuy
(p,m) < (q,€)
<qa nl) — <pa fx71fx,2 e fx7l 7/1)
nq ¢ Noob] nq —e> N9
FINISH £
() <p7n/1> — <p7n2>
(OFINTSH) "€ NOoblg

<p7 7/1) — <pv 6)

Figure 3.12. Abstraction rules

initial control location is p, the bottom stack symbol ng is a node in Prog, which
represents the initial program point of Prog and A is defined in Figure 3.12. Each
rule in Figure 3.12 has its counterpart in Figure 3.5. In fact, rules in Figure 3.12 are
obtained from Figure 3.5 by discarding values of global and local variables. Note that
rule (RETURN) in Figure 3.5 replaces the topmost two frames. To simulate this rule,
we use the location ¢ and define two rules which are consecutively applied due to q.
For a sequence of frames & = (ny,p1) : (na,pu2) @ ... @ (ng,pg) of S, define
€' = niny...n,. That is, €% is obtained from ¢ by discarding values of all local vari-
ables. CAN! and Foblg® in Figure 3.12 are the abstract versions of CAN and Foblg,
respectively. CAN' is any predicate such that CANﬁ(OQ.m < 01) = true whenever
CAN(0,09.m < 01) = true for some o. Specifically, we define CANF as follows: delete
all conditional negative authorization policies (i.e., which have the if-clauses), and re-
place the if-clauses of all positive authorization policies with true. Next, define CAN®

in the same way as CAN. Likewise, Foblgﬁ is any set of sequences of frames which

50

satisfies Foblg?(ev) 3 (Foblg(o, ev))! for every o.

For a configuration ¢ = (o,), let us define ¢! = (p,&%). Also, for a given property
T, which is a subset of configurations of S, let us define the abstract property ¥# as
U = {¢/ | every c such that ¢ = ¢ satisfies ¢ € U}. We can obtain the following

soundness property of the abstraction.

Lemma 3.4.1. Let S be a PCS and S* be the corresponding PDS abstracted from S.

For any configurations ¢; and ¢ in S, if ¢; — ¢3 then c§ =* cg.

Proof. By the correspondence of rules in Figure 3.5 and rules in Figure 3.12.]

Theorem 3.4.2 (Soundness of the abstraction). Let S be a PCS and S* be the
corresponding abstract PDS. Also let U be a property in S and ¥# be the corresponding
abstract property in St. If S* satisfies U#, then S also satisfies .

Proof. Assume that every reachable configuration of S* belongs to ¥#. Let ¢ be an
arbitrary reachable configuration of S. By Lemma 3.4.1, ¢! is reachable in S*. By
assumption, ¢! € U!. By the definition of ¥¥, we know ¢ € V. O

By Theorem 3.4.2, if we can find a P-automaton Ag such that Conf(Ag) C ¥# and
know that the answer to the verification problem for S* and Conf(Ayg) is affirmative by
the method in section 3, then we can conclude that the answer to the original problem

for S and ¥ is also affirmative.

3.4.2 Verification Example

In this section, we briefly introduce our verification tool and show verification results
on example policies. For simplicity, the current version of the verification tool assumes
that for a PCS S and a verification property W, authorization policies and program
variables have been abstracted from S according to the rules in Figure 3.12 and a
deterministic P-automaton Ay such that Conf(Ay) = VU is given. That is, inputs to
the verification tool are a PCS S = (O, Prog, Policy) where Prog is without variables
and Policy is a set of obligation policies, and a deterministic P-automaton Ag. The

verification tool performs the following procedure.

(Stepl) From a given PCS S, construct a P-automaton which accepts the set of all
reachable configurations of S* based on the algorithms in sections 3.3.3 and 3.4.1.
That is, construct a P-automaton Ay,s+ such that Conf (Apes+) = post* [Sﬁ] {(p,m0)})

where (p,ng) is the initial configuration of S*.

ol

~Hotel''s objects ~ ~Customer’s obj ects,
hl cl
Cancel Room() Noti f yOf Cancel ()

Reser veRoom()
Cust ormer _defaul t _policy

Hot el _defaul t _policy Pol i cy_of Cl
h2 c2
Cancel Room() Noti f yOf Cancel ()

Reser veRoom()
Cust ormer _defaul t _policy

Hot el _defaul t _policy Policy of C2

Figure 3.13. A hotel reservation system

(Step2) Decide whether Conf(Ap,s+) C Conf(Ayw).

The answer issued in (Step2) is “yes” if and only if post*[S*]({(p,n¢)}) C Conf(Ay) =
W, implying S satisfies W. The verification tool is implemented by Java.

Example 3.4.3. Consider a simple online hotel reservation system which provides
reservation management services for several hotels and their customers. In the system,
every hotel and every customer have their own object, and each of them can specify
its own policy in its object. Every hotel’s object must prepare ReserveRoom() and
CancelRoom() methods for their customers, and every customer’s object is required to
have NotifyOfCancel() method to receive a notice of cancellation of a room. Also, every
hotel’s object and every customer’s object must have the following policies.

“If a reservation at a hotel is canceled by a customer, then the hotel must give
notice of the cancellation to all other customers.”

“Every customer must cancel his/her reservation of a hotel before he/she makes a
new reservation of another hotel.”

For simplicity, we assume that two hotels h; and hy are registered in the system,
and their customers are ¢; and ¢z only (Figure 3.13). They must have the following

policies.

52

Table 3.3. Verification profiles of example 3.4.3

of PCS S Apos computation
customers | # of nodes | # of edges | |P| |A time! (sec)
10 190 830 791 | 1309 7.5
40 700 9290 9101 | 11120 45.9
70 1210 26750 26411 29930 198.3
100 1720 53210 52721 | 57740 312.8

f JVM build J2SDK.v.1.4.1, on Windows XP (Pentium 4 (2GHz), 1IGB RAM)

policy oblg Hotel_default_policy
c2.NotifyOfCancel()+this on end of this.CancelRoom()+cl
cl.NotifyOfCancel()+this on end of this.CancelRoom()<—c2
policy oblg Customer_default_policy
h1.CancelRoom()+this on beginning of h2.ReserveRoom()+this
h2.CancelRoom()<this on beginning of hl.ReserveRoom()<this

Furthermore, assume that ¢; wants to reserve at hotel h; and ¢y wants to reserve
at hotel ha. Thus they independently specify the following policies.

policy oblg Policy_of_C1

h1.ReserveRoom()<—this on end of this.NotifyOfCancel()<h1
policy oblg Policy_of C2

h2.ReserveRoom()<—this on end of this.NotifyOfCancel()+h2

Consider a situation that for some reason, ¢; has reserved at hotel ho and cs has
reserved at hotel hq. In this situation, if ¢z cancels his/her reservation at hy, then the
system immediately enters an infinite chain of obligation method calls.

This undesirable behavior could be detected by our verification tool as follows.
First, we specified the verification property as “the control stack is always shorter than
a certain length.” We will call this length the threshold length. Actually, we verified this
property for a few different threshold lengths, and for any lengths, our verification tool
answered “no” (the hotel reservation system did not satisfy the property) and showed
the following error trace:

h1l.CancelRoom()<—c2, cl.NotifyOfCancel()<—hl, hl.ReserveRoom()«—cl, h2.CancelRoom()<cl,
c2.NotifyOfCancel()<—h2, h2.ReserveRoom()<—c2, hl.CancelRoom()<c2,

To measure the computation time to verify a larger PCS, we extended the hotel
reservation system to have five hotels and an arbitrary number of customers. The
profiles of the verification are summarized in Table 3.3.

In this example, the computation time needed for the verification hardly increased

53

as the threshold length grew. That is, the computation time is affected mainly by the
size of the input PCS. Since the size of the PCS in this example is determined by the
number n. of customers (namely, O(n.) of nodes and O(n?) of edges), we fixed the
threshold length at 1000 and measured the computation time for different numbers of
customers. From Table 3.3, we can see that the computation time is within five and
a half minutes when the number of customers is not more than 100. Note that in this
example, Ap,q+ contains many unreachable transitions since most nodes of the PCS
are unreachable because of the infinite chain of obligations. For example, there are only
456 transitions reachable from the initial state when n. = 100. If we avoid generating
unreachable transitions when constructing A+, the construction time is reduced and

the total computation time becomes about the half of that in Table 3.3.]

3.5. Conclusion of Chapter 3

In this chapter, an automatic verification method for a policy controlled system (PCS)
using PDS model checking has been proposed. Examples conducted on the verification
tool have also been demonstrated.

Verification of a security goal other than a safety property, e.g., a liveness property
is left as a future study. The proposed abstraction of PDS from PCS is such that the
data part of the PCS is discarded and a conditional, which depends on the data part,
is replaced with a nondeterministic choice. However, in some cases, more sophisticated
abstraction is required to succeed in model checking [CGP00]. Such abstraction tech-
niques include abstract interpretation, program slicing [CDHLPRZ00] and predicate
abstraction [GS97]. We would like to integrate these techniques into our verification
method.

o4

Chapter 4

Conclusion

In this thesis, for MAC based system and DAC based system, we proposed static anal-
ysis methods which check whether the whole system behavior determined by security
policies satisfies security goals of the system.

In Chapter 2, an information flow analysis algorithm for a procedural program is
proposed. In our model, SC of data can be formalized as an arbitrary finite lattice. The
proposed algorithm adopt abstract interpretation as an analysis method which makes
information flow analysis of an arbitrary recursive program possible. That is, the al-
gorithm constructs equations from statements in the program and computes the least
fixpoint of those equations. We proved the soundness of the algorithm and showed the
algorithm can be executed in O(N?) time where N is the total size of given program.
Furthermore, the algorithm has been extended so that operations which hide informa-
tion of their arguments can be appropriately modeled by using congruence relation.

Analysis result of the proposed algorithm can be used for providing flexibility to a
MAC database system as shown in Figure 2.1.

In [OYF03], the information flow analysis algorithm proposed in Chapter 2 is ex-
tended so that not only one-way functions but also trapdoor functions can be properly
modeled.

In Chapter 3, first, a simple but useful policy description language which can specify
not only permission and prohibition policies but also obligation policies is proposed.
Secondly, using the proposed language, we have defined a policy controlled system
(PCS). PCS is a system in which each object has its own security policy (specified by
the proposed language) and objects’ behaviors are autonomously controlled based on
those policies when they interact with one anther. Operational semantics of PCS is

formally defined.

55

We defined the (safety) verification problem for PCS as the problem to decide for
a given PCS S and a goal (called safety property) ¥, whether every reachable state of
P satisfies ¥ where VU is represented by a regular language. Using a model checking
technique for pushdown system (PDS), we proposed a method for solving the (safety)
verification problem for PCS.

An obligation policy is similar to an aspect in aspect-oriented programming (AOP) [K03]
and an active rule (or an event-condition-action rule, ECA rule) in active database [PD99].
An aspect in AOP specifies actions which must be performed when the program con-
trol reaches a certain point called join point (e.g., “Call method A when method B is
called” where an invocation of method B is the join point of this aspect.) An active
rule in active database specifies actions which must be performed when a certain action
is performed to the database (e.g., “Take a log when data is written to the database.”)
How to apply the verification method for PCS to the verification of AOP and active
database system is a future work.

Note that, the security of all access control systems cannot be protected by using
the security assurance methods shown in this paper. However, for MAC based system
and DAC based system which are general access control systems, we showed that using
abstract interpretation and model checking as the analysis method is useful.

There is an access control model called Role-Based Access Control (RBAC) [PHS03]
as well as MAC and DAC. The RBAC model streamlines the access control by first
defining roles which are given access permissions to objects and later assigning roles to
subjects (users). That is, the access permissions do not depend on who a subject is but
rather which role a subject belongs to. The RBAC model allows us to define relations
among roles and users. When considering a security assurance method for RBAC, the
relation between a user and a role will be important. Therefore, if we are going to use
model checking as analysis method, the necessity of modeling the relation between a

user and a role will may come out, which is also an interesting future work.

56

References

[AFG99] M. Abadi, C. Fournet and G. Gonthier: Secure communications processing
for distributed languages, 1999 IEEE Symp. on Security and Privacy, 74-88.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman: Compilers, Principles, Techniques,
and Tools. Addison-Wesley, 1986.

[AEY01] R. Alur, K. Etessami and M. Yannakakis: Analysis of recursive state ma-
chines, 13th Conference on Computer Aided Verification (CAV ’01), LNCS 2102,
207-220.

[A98] A. W. Appel: Modern Compiler Implementation in Java, Cambridge University
Press, 1998.

[BBM94] J. Banatre, C. Bryce and D. Le Métayer: Compile-time detection of informa-
tion flow in sequential programs, 3rd European Symp. on Research in Computer

Security (ESORICS), LNCS 875, 55-73, 1994.

[BGRO1] M. Benedikt, P. Godefroid and T. Reps: Model checking of unrestricted hier-
archical state machines, 28th International Colloquium on Automata, Languages
and Programming (ICALP ’01), LNCS 2076, 652—666.

[B76] R. Bird: Programs and Machines, John Wiley & Sons, 1976.
[CGP00] E. M. Clarke, O. Grumberg and D. Peled: Model Checking, MIT Press, 2000.

[CDHLPRZ00] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu,
Robby and H. Zheng: Bandera: Extracting finite-state models from Java source
code, IEEE Int’l Conf. on Software Engineering (ICSE), 439-448, 2000.

[Da02] N. C. Damianou: A Policy Framework for Management of Distributed Systems.
PhD thesis, Imperial College of Science, Technology and Medicine, 2002.
http://www-dse.doc.ic.ac.uk /Research/policies/ponder/thesis-ncd.pdf

[DDLS01] N. C. Damianou, N. Dulay E. Lupu and M. Sloman: The Ponder policy
specification language, Workshop on Policies for Distributed Systems and Networks
(POLICY ’01), LNCS 1995, 18-38.

[De76] D. E. Denning: A lattice model of secure information flow, Communications of
the ACM, 19(5), 236-243, 1976.

57

[DD77] D. E. Denning and P. J. Denning: Certification of programs for secure infor-
mation flow, Communications of the ACM, 20(7), 504-513, 1977.

[EHRS00] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon: Efficient algorithms
for model-checking pushdown systems, 12th Conference on Computer Aided Veri-
fication (CAV ’00), LNCS 1855, 232-247, 2000.

[EKSO01] J. Esparza, A. Kucera, and S. Schwoon: Model-checking LTL with regular
variations for pushdown systems, 4th International Symposium on Theoretical
Aspects of Computer Software (TACS ’01), LNCS 2215, 316-339, 2001.

[ES01] J. Esparza and S. Schwoon: A BDD-based model checker for recursive programs,
13th Conference on Computer Aided Verification (CAV ’01), LNCS 2102, 324-336,
2001.

[GS97] S. Graf and H. Saidi: Construction of abstract state graphs with PVS, 9th
Conference on Computer Aided Verification (CAV ’97), LNCS 1254, 72-83, 1997.

[HR98] N. Heintze and J. G. Riecke: The SLam calculus: Programming with secrecy
and integrity, 25th ACM Symp. on Principles of Programming Languages (POPL),
365-377, 1998.

. Jajodia, P. Samarati and V. S. Subrahmanian: ogical language for ex-
JSS97] S. Jajodia, P. S i and V. S. Subrah i A logical 1 f
pressing authorizations, IEEE Symp. on Security and Privacy, 31-42, 1997.

[JMT99] T. Jensen, D. Le Métayer and T. Thorn: Verification of control flow based
security properties, IEEE Symp. on Security and Privacy, 89-103, 1999.

[JRO2] S. Jha and T. Reps: Analysis of SPKI/SDSI certificates using model checking,
TEEE Computer Security Foundations Workshop, 129-144, 2002.

[KS02] G. Karjoh and M. Schunter: A privacy policy model for enterprises, IEEE
Computer Security Foundations Workshop, 271-281, 2002.

[K03] I. Kiselev: Aspect-Oriented Programming with AspectJ, SAMS, 2003.

[LR98] X. Leroy and F. Rouaix: Security properties of typed applets, 25th ACM Symp.
on Principles of Programming Languages (POPL), 391-403, 1998.

[Mi96] J. Mitchell: Foundations of Programming Languages, The MIT Press, 1996.

58

[My99] A. C. Myers: JFLOW: Practical mostly-static information flow control, 26th
ACM Symp. on Principles of Programming Languages (POPL), 228-241, 1999.

[ML98] A. C. Myers and B. Liskov: Complete, safe information flow with decentralized
labels, 1998 IEEE Symp. on Security and Privacy, 186—197.

[NTSO01la] N. Nitta, Y. Takata and H. Seki: Security verification of programs with
stack inspection, 6th ACM Symp. on Access Control Models and Technologies
(SACMAT), 31-40, 2001.

[NTS01b] N. Nitta, Y. Takata and H. Seki: An efficient security verification method for
programs with stack inspection, 8th ACM Conf. on Computer and Communication
Security (CCS), 68-77, 2001.

[OYF03] H. Ohmura, M. Yoshida and T. Fujiwara: An information flow analysis of
programs with cryptographic function, Computer Security Symp., 277-282, 2003

in Japanese).
p

[095] P. Orbaek: Can you trust your data? 6th International Joint Conference on
the Theory and Practice of Software Development (TAPSOFT ’95) , LNCS 915,
575-589.

[PD99] N. W. Paton and O. Diaz: Active Database Systems, ACM Computing Surveys,
Vol.31, No.1, pp.63-103, 1999.

[PHS03] J. Pieprzyk, T. Hardjono and J. Seberry: Fundamentals of Computer Security,
Springer, 2003.

[P94] G. Purnul: Database Security, Advances in Computers (M. Yovits Ed.), Vol.38,
pp.1-72, 1994.

[RWW94] A. W. Roscoe, J. C. Woodcock and L. Wulf: Non-interference through de-
terminism, 3rd European Symp. on Research in Computer Security (ESORICS),
LNCS 875, 33-53, 1994.

[RS99] P. Y. A. Ryan and S. A. Shneider, Process algebra and non-interference, 12th
IEEE Computer Security Foundations Workshop, 214-227, 1999.

[SVI8] G. Smith and D. Volpano: Secure information flow in a muti-threaded impera-
tive language, 25th ACM Symp. on Principles of Programming Languages (POPL),
355-364, 1998.

59

[TO1] T. Tonouchi: An operational semantics of a ‘small’ ponder, July 2001.
http://www.doc.ic.ac.uk/ tton/Semantics.pdf

[VS97] D. Volpano and G. Smith: A type-based approach to program security, 7th In-
ternational Joint Conference on the Theory and Practice of Software Development

(TAPSOFT ’97), LNCS 1214, 607-621.

[YO1] R. Yokomori: Security Analysis Algorithm for Object-Oriented Programs, Mas-
ter’s Thesis, Osaka University, 2001.

60

