NAIST-IS-DT9761017

Doctor’s Thesis

Japanese Dependency Structure Analysis based

-on a Lexicalized Statistical Model

Masakazu Fujio

February 7, 2000

Department of Information Processing
Graduate School of Information Science
Nara Institute of Science and Technology




Doctor’s Thesis
submitted to Graduate School of Information Science,
Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of
DOCTOR of ENGINEERING

Masakazu Fujio

Thesis committee: Yuji Matsumoto, Professor
Kiyohiro Shikano,Professor
Hiroyuki Seki, Professor




Japanese Dependency Structure Analysis based
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Masakazu Fujio

Abstract

The claim of this dissertation is that statistics of surface features, such as part-
of-speech tags and head words, extracted from a large corpus of parsed sentences,
along with particular algorithm, can produce accurate parses.

In the literature of a syntactic analysis, statistical approach exhibited some

.degrees of success, and various statistical parsing models are proposed. But it

is not enough for practical natural language applications (NLP). If we want to
achieve a higher rate of accuracy, it is necessary to use much information. How-
ever, the more information we use in a statistical model, the more parameters we
must estimate from a corpus, and the much more corpora we need (in other words,
the effect of sparse-data problem becomes more serious). In some cases, all the
parameters cannot be correctly estimated because of the limit of computational
resources (memories and disks).

The basic statistical model is not so much complex as other statistical parsers
in the literature of a computational statistical parser. We stick to a statisti-
cal model of simple setting aiming at an easy implementation and efficiency of
parsing. Instead, we address the problem of subordinate clauses and coordinate
structures, which are among the major causes of difficulty in the syntactic analysis
of a Japanese sentence.

In the study of subordinate clauses, we propose the decision list model that
considers “modify” and “beyond” relation between subordinate clauses. We show
that this model contributes to improve the precision of dependency analysis of

sentences.

* Doctor’s Thesis, Department of Information Processing, Graduate School of Information - "
Science, Nara Institute of Science and Technology, NAIST-IS-DT9761017, February 7, 2000.




. In the study of coordinate structures, we propose the method to treat basic
dependency analysis and coordinate structure identification in a uniform way,
and show the model fmprbves‘ the precision of dépendency analysis of sentences.

To achieve higher precision under the available statistical model, we also pro-
pose statistical partial parsing (the method to achieve higher precision at the cost
of lower recall) and redundant parsing methods (the method to achieve higher
recall at the cost of lower precision). |

Keywords:

parsing, statistic, dependency analysis, decision list, subordinate clauses, coordi-
nate structures, partial parsing
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1. Introduction

The needs for practical natural language processing (NLP) is increasingly call for
in real applications such as machine translation, information retrieval, computer-
aided education, and text mining.

Parsing gives us fundamental and necessary information for understanding
sentences. Parsing problems is to identify the hierarchical constituent structure
of a sentence. Consider the following sentence.

o I E RBRIZ 174,

(I go to Tokyo and Osaka.)

This sentence has at least two interpretations. One is more acceptable than
the other. The plausible and acceptable interpretation is “a) someone goes to both
Tokyo and Osaka”. The other interpretation, which is strange, is “B) someone
goes to Osaka with the man named Tokyo”.

The difference between the two interpretation can be represented by the fol-
lowing syntactic structures:

1) [FR=E] [RERIZ] 47 <o ]
2) FREE [RERIZ] 47<. ]|

The syntactic structure 1) has a left branching structure, and corresponds to the
interpretation a). The syntactic structure b) has a right branching structure, and
corresponds to the interpretation b).

Although, a natural language sentence takes on different meanings, depend-
ing on its context, a syntactic structure gives us primary cues for later natural
language processing. A number of potential applications described above would
also benefit from highly accurate parsing of sentences.

1.1 The Motivation for Parsing

In this section, we show some examples of NLP applications that would benefit
from highly accurate parsing of sentences.




Lexical pattern matching is not sufficient, to achieve high precision Informa-
tion Retrieval. Consider the query like “retrieve all articles where the actress A
appeared on some media.” Only with lexical pattern matching,' you would re-
trieve all text where actress A and verbs such as “appear” or “was on TV” are in
the same sentence, even though they have no relation to the appearance of actress
A. This query can be implemented by retrieving of all documents where actress
A is the subject of verbs such as “appear”. This example illustrates that high
precision Information Retrieval requires highly accurate parsing of sentences.

In Information Extraction task, an NLP system should find facts from some
group of documents. The properties or attributes of the noun phrase in a doc-
ament can be inferenced from the neighboring words and phrases, and from the
syntactic roles it occupies. In the genre of Molecular Biology, user can know the
category of the substance (such as protein, DNA or suga,r)v and its function from
its neighboring verbs in a syntactic structure.

Machine Translation is another example. In machine translation, alignment
is an important problem. Alignment is the description of how an expression in
one language corresponds to an expression in another language. Word to word
alignment does not always succeed, when aligning SVO language such as English,
and SOV language such as Japanese. Consider the following case.

~ Given the pair of parsed trees, you can see “go” is the head word in the English
sentence, and “47 {” is the head word in the corresponding Japanese sentence.
Furthermore, you can see the phrase “to Tokyo and Osaka” is an object of the
verb “go”, by its position in the parse tree, and the phrase “BH & KIRIZ” is
the object of the verb “4T {”, by the case marker “iZ”. Parse trees allow you to
correctly align sentences.

1.2 Syntactic Ambiguity

A major problem in parsing is ambiguity. Ambiguity can be roughly categorized
into syntactic and semantic ones. In this dissertation, we address the problem of
syntactic ambiguity. In this section, we give some examples of syntactic ambiguity
that appears in natural language sentences.

The fist examples are not ambiguous for humans.

1) & RBIC47<




formed parse trees. But the analysis not marked with the sign *

N

go to Tokyo and Osaka.

R ﬁac‘:jcli)i\k/%f‘i’o

Figure 1. Alignment of English and Japanese text.

[l &] [[RBRIZ) (17 <0 ]I}
(I go to Osaka with him.)

* [k &) RERIZ)) 37 <o ]
(I go to him and Osaka??)

2) W& KRR 17 <

* [FEEE] [[KRIC] [17<6 ]
(I go to Osaka with Tokyo?7?)

[[EFEE] [RBRi] fT<6 ]
(I go to Tokyo and Osaka.)

Both of two sentences consist of three phrases, and have two syntactically well-

than the other. In the fist example, “4%” is human and can be an agent of an
event, whereas “ABR” is the name of a place and cannot be an agent. The right
branching structure (the former bracketing of the first example) corresponds to

3

’ is more plausible




the interpretation “I go to Osaka with him”, and all native speaker of Japanese
would admit that this interpretation is correct. In the second example, both “
" and “ABR” are the names of places, construct a coordinate structure, and
become a locative of the verb “4T7 {”. The left branching structure (the latter
bracketirig of the second example) corresponds to this interpretation.

A broad-coverage parser, either rule based approach or statistical approach,
should correctly disambiguate syntactic structures of these examples. Both of the
above examples consist of three segments (bunsetsu’) with the following pattern.

a) Noung+& Nounp+IiZ 74

A rule based parser would examine whether Noun4 can be the agent of the
verb “47 ¢ ”. If it is an animate, a parser may conclude that Noun, can modify
“47 {” with the relation type “£” 1 (which is the case of the first sentence).
If Noun, is not an agent, a parser would calculates the similarity of Nounga
and Noungp (because the function word “&” implies an existence of coordinate
structure), and at the same time, would examine these two nouns can be a locative
of the verb “4T {” (which is the case of the second sentence).

In a statistical approach, the statistical model assigns probability or some sort
of measure to each syntactic structure, thereby ranking competing structures in
the order of plausibility. Usually, those statistics are learned from a large scale
parsed corpus. For instance, in statistical dependency analysis, if you assume the
independency of dependency relations, a statistical parser calculates the product
of probabilities of dependency relations between Noun, and a verb “4T<”, and
between Noung and “4T {” (which corresponds to the right branching structure
of example 1)), and the product of probabilities of dependency relations between
Noun, and Noung, and between Noung and a verb “47<” (which corresponds
to the left branching structure of example 1)). After calculating the probability
of each dependency structure, the analyzer selects the one that has the highest
probability. It is desirable that a noun or verb’s modification tendency which is
illustrated in the previous paragraph, can be learned from a corpus automatically,
and that is one of the reasons for taking a statistical approach.

1 In this dissertation, we call a sequence of function words in a segment (bunsetsu) as relation
type. A relation type is crucial for disambiguation of syntactic structure of a Japanese sentence.
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The third example is a more problematic one.
3) L ALOIETHEL.

[ &) [R0]) R [FEL7. |
(I talked with him in our room.)

4 &) [[[# ] [BBET]) [FEL7:. ]I
(I talked with him in my room.)

Both of the above analysis look equally plausible. A segment “ff&” and a
segment “FAM” can construct a coordinate structure and both of these phrases
modify the segment “#f/E T” (which corresponds to the former interpretation of
the example 3)). On the other hand, “{% &” can modify the last segment “GH
L7z. ” (which corresponds to the latter interpretation of the example 3)). By
contrast with the examples 1), 2), it is not easy to disambiguate the syntactic
structure without an entire dialogue or other contextual information.

For this case, a rule based parser would conclude that both syntactic structures
are correct, and a statistical parser would assign equal probability to these two
syntactic structures.

Consider the last example.

1) Bl LPRIRS LB,
([& 72 7= L] [[RLid] [F5 v, ]

— I can understand only you.

— Only you can understand me.

To decide syntactic structure of the sentence 4) is easier than the case of sentence
3). But unfortunately, the parse tree would not give any information on who
understands whom. For a syntactic structure for the sentence 4), both two inter-
Pretation, “I can understand only you” and “Only you can understand me”, are
possible. This is rather the problem of semantic ambiguation. The goal of our
dissertation is to disambiguate syntactic structure, not semantic interpretation.




1.3 Phrase Structure Analysis and Dependency Analysis

In this section, we explain the difference and correspondence between phrase
structure analysis and dependency analysis. Figure 2 gives the example of the
phrase structure representation and the dependency structure representation for
the sentence “ff & BEIC 47 <. (with him, to Tokyo, go)”. Basically, phrase
structure analysis gives a hierarchical constituent representation like the left tree
in Figure 2. And each internal node of the tree are labeled with grammatical
terms. On the other hand, dependency analysis gives word to word modification
rélations directory, and has no internal nodes.

/\
NP VP

/\
% & NP V /\

/\ | e EE T A7

BE IC 174,
Figure 2. An example of CFG

1.3.1 Phrase Structure Analysis

Context-free grammars (CFG) are widely used as a model of natural language
syntactic analysis, and various effective parsing algorithm are studied. In general,
CFG for natural language parsing consist of CFG rules.

The left-hand-side of each CFG rule is a non-terminal, such as np (noun
phrase), vp (verb phrase), pp (prepositional phrase), and so on. The following is
an example of CFG for parsing Japanese sentences.

In this framework, disambiguation of syntactic structure becomes a problem
of selecting a CFG rule and applying the left hand side of the rule to the right

6




s — npvp |noun — FFE (room)
s — vp verb — E&7 (talk)
np — noun noun — AKBX (Osaka)
np — noun !l | verb — 47< (go)

np — noun & | verb — &% (look)
vp — verb noun — 4% (he)

vp — npvp |noun — XK (Tokyo)

Table 1. Example of CFG (context-free grammar rules)

hand side of other rules, and finally deriving the input sentence. For instance,
for the sentence “ff & KFRIZ4T <. 7, we can apply the following CFG rules.

1. s— npvp

. np — noun &

. noun — ¥

- Vp — 1D VP

. noun — KK

2

3

4

5. np — noun {Z
6

7. vp — verb

8

. verb — 47X.

In CFG, various parsing algorithm to obtain parse trees (in other words, to
apply CFG rules in some order) are known, such as Chart parsing, CKY, Early
algorithm [36] and so on.

1.3.2 Dependency Analysis

Next, we overview dependency analysis framework. Dependency analysis is Widely
used for Japanese syntactic analysis. In general, the following three steps are per-
formed in a standard Japanese dependency analyzer.

1. Segmenting a sentence into a sequence of segments called bunsetsus.

7




Table 2. An example of word segmentation, POS tagging, and bunsetsu segmen-
tation of a Japanese sentence

Word Segmentation 1% & -5 Iz THhT LD

POS Tagging pronoun case- propernoun  case- verb
particle particle (volitional)
‘Bunsetsu Segmentation 1B-& RHE-IZ THIT L9
(Chunking)

English Translation with he to Tokyo let’s go out
(Let’s go to Tokyo with him.)

2. Preparing a modification matrix, each value of which represents how one
segment (bunsetsu) is likely to modify another.

3. Finding optimal dependency relations in a sentence (usually by a dynamic
programming technique).

Since words in a Japanese sentence are not segmented by explicit delimiters,
input sentences are first word segmented, part-of-speech tagged, and then chunked
into a sequence of segments called bunsetsu. Each segment (bunsetsu) generally
consists of a sequence of content words followed by function words.

Dependency analysis produces a directed tree structure that clarifies modifi-
cation relations between words, and this relation is irrelevant to the word order,
unlike the syntactic tree representation based on PSG. Table 2 gives examples of
word segmentation, part-of-speech tagging, and bunsetsu segmentation (chunk-
ing) of a Japanese sentence, where the verb is tagged with their parts-of-speech
as well as conjugation form. ’

In the step of deciding optimal dependency relations in a sentence, most prac-
tical dependency analyzers for the Japanese language usually assume the following
two constraints:




1. Every segment (bunsetsu) except for the last one modifies exactly one seg-
ment (bunsetsu) to the right in the sentence.

2. No modification crosses to other modifications in a sentence.

Under these constraints, we can use the dynamic programming technique to
find the most likely (in our model, the one with the highest probability) combi-
nation of dependency relations.

1.3.3 Correspondence between CFG and Dependency Analyses

If you wish to keep broad-coverage in PSG, you may need a grammar with a very
large number of rules. But if you go to the opposite extreme, you would only
need the following one CFG rule.

phrase — phrase *phrase

The sign ’*’ indicate the head phrase among the right hand side phrases of the
rule. The above rule applies to the head final language such as Japanese. This
is what dependency analysis does. The last one extension needed to the above
CFG rule is equality of head daughter’s lexical information and that of a parent.
A tree structure and a dependency structure have one to one correspondence, if
you ignore the internal-nodes in tree structure.

1.4 Rule Based Approach v.s. Statistical Approach

In order to construct a broad coverage parser of Japanese sentences, rule based
approach ([21, 26]), and statistical approach have been studied([14, 17]).

1.4.1 Rule Based Approach

When constructing a broad-coverage rule based parser, the difficulty is that there

are lots of exceptions which may easily be overlooked by the rule writers. For )
instance, rule writers may assume that there is no dependency relation between

a noun phrase with case marker “%” and another noun phrase with case marker

“IZ”. But this is not always the case. The following examples illustrate this.




1. [BEABR O KMEE] HHEC]) 0 5.
the exchange rate/ closing price/ on the basis/ decide
(It is decided on the basis of the exchange rate of the day.)

2. YANAD[TIT % PO AT 5.
the virus/ around Asia/ spread
(The virus spread around Asia.)

In the former case, “MfE%” modifies not “H&® 5”, but “Z# (2", and in the
later case, “7 ¥ 7 %” modifies not “§ifT¥ %", but “F.[+Z”. In both cases,
noun phrases with case marker “%” modify, not the verbs, but the noun phrases
with case marker “/Z7.

In the rule based approach, rules must be developed by a grammarian or
language expert based on their linguistic intuition. Changing rules to account
for new cases may cause other errors for previously examined cases. The most
important point is that no systematic way has been found to reproduce the set
of rules from scratch. |

For the reasons mentioned above, constructing and maintaining a rule based
system is a laborious task.

1.4.2 Statistical Approach

To avoid the construction and maintenance problem of rule based approaches,
statistical approach is another choice. Recently, a large amount of syntactically
annotated corpus becomes available. There is a possibility to extract useful lin-
guistic knowledge and to construct a broad-coverage syntactic parser automati-
cally from these corpora. Various statistical or machine learning approaches are
proposed. ,

Basically, statistical parser assigns a probability to each analysis. Thereby
ranking competing parses in the order of plausibility. Early approaches of statis-
tical parsing are based on CFG framework in which probabilities are assigned to
the grammar rules conditioned on the left-hand-side non-terminal.

In general, the parameters of PCFG (probabilistic CFG), are the probabilities
Ps(A — BC) and P4(A — w), where A, B and C are non-terminals, and w
is a terminal symbol. P4(A — BC) means the probability that the CFG rule

10




A — BC is applied when non-terminal A appears in syntactic analysis. In PCFG,
each grammar rule has a probability, and the probabilities for all the rules that
share the same non-terminal sum up to 1. The task of grammarian who uses
PCFG is to estimate these probabilities.

The following is a PCFG version of the CFG in Table 1. For instance, the

s — npvp 0.8 | noun — #¥E (room) 0.1
s — Vp 02| vertb — F&7 (talk) 0.1
np — noun 0.2 | noun — KR (Osaka) 0.1
np — noun iZ (to) 04| vertb — 47< (go) 0.1
np — noun & (with) 04 | vertb — &% (look) 0.1
vp — verb 0.3 | noun — %% (he) 0.1
vp — np verb 0.7 | noun — 3 (Tokyo) 0.1

Table 3. Example of PCFG (context-free grammar rules)

probability of the parse tree constructed from the following derivation steps can
be calculated by the product of the probabilities of each CFG rules appearing in
the derived parse tree.

S — np vp 0.8
np — noun & 0.4
“noun — 1% 0.1

vp — np verb 0.7

noun — Kfx 0.1
vp — verb 0.3

1
2
3
4
5 np — noun {2 0.4
6
7
8 wverb—47<. 0.1

One merit of PCFG to CFG is the possibility of automatic grammar induc-
tion. If you learn a grammar of CFG, you need both positive evidences (accept-
able sentences) and negative evidences (unacceptable sentences) as the training
data. On the other hand on PCFG, you can learn the grammar only from pos-
itive evidences. In this case, the probability of unlikely syntactic structures (in
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other words, the probabilities of rarely used CFG rules) become lower by repeat-

edly training the PCFG model. Inside-Outside algorithm [42] can be used for

the grammar re-estimation or grammar inference, in case the grammars are in

Chomsky Normal From (CNF). Further more, PCFG can construct not only the

most likely parse tree, but also candidate parse trees in the order of plausibility.
But the simple framework of PCFG have the following problems:

o PCFQs cannot reflect lexical preference to the culminating probability of a |

parse tree.
o PCFGs simply multiply the probability of each rule dérivation.

Thus, the resulting probability does not always correctly reflect the plausibility -
of each parse tree. ‘

To take more contextual information into account, word collocation is applied
to syntactic formalization, such as lexicalized PCFG [2, 19, 49, 32], Lexicalized
Tree Adjoining Grammar [41], and Lexicalized Link Grammar [29]. The length
of phrases or the distance between head words are also considered in several
models [19, 30].

As an extreme of lexicalization, there are parsing methods that do not use
any grammar rules. Collins [6] proposes a statistical parser based on the prob-
abilities of dependencies between head words in parse trees. In Japanese lan-
guage, we proposes a statistical model based on the collocation probabilities of
segment features [14], which is described in detail in Chapter 3. We uses two
types of features, one is the features defined by each segment and the other is
the features which reflect distance property between modifier segment and mod-
ifiee segment. The collocation probabilities of these features are estimated form
a corpus. Ehara and Uchimoto [10, 50] also use same kind of features to esti-
mate a probability of each dependency relation. The difference to our model is,
they use the maximum entropy method for the estimation of the probability. In
English, Ratnaparkhi [39] uses the maximum entropy model for the statistical
parser. Another machine learning technique used for the statistical parsing is
decision tree method. Haruno [17] uses decision tree to estimate the probabilities
of dependency relations based on the same kind of surface features used in Our
model.
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Magerman [31] proposes a statistical parser based on a decision tree model,
in which the probabilities are conditioned on the derivation history of the parse
trees. He compares the decision tree model with the n-gram model, and claims
that the amount of parameters in the resulting model remains relatively constant,
depending mostly on the number of training examples.

Charniak [5] proposes a generative statistical model and compared it with
Collins’, and Magerman’s models and shows what aspects of these systems affect
their relative performance.

In the literature of statistical syntactic analysis, about 87% of precision in
terms of segment is reported, in both English and Japanese sentences.

Another merit of statistical parsing is that a probability assigned to each parse
tree can be used in subsequent NLP systems. In section 4, we propose some of
applications taking advantage of this fact.

As the basic framework, we adopt dependency structure analysis, which is a
lexicalized formalism and needs no grammar rules.

1.5 Depehdency Structure Representation

Instead of constructing a hierarchical constituent representation commonly used
in phrase structure grammar (PSG), we aim to find out phrase to phrase depen-
dency relations in a sentence. In the rest of the disserta,tidn, we call a directed
tree structure of dependency relations in a sentence as “a dependency structure”,
and construction of a dependency structure, as “dependency analysis”.

Dependency analysis is widely used for Japanese syntactic analysis ([14, 17,
21, 26)).

The reason to use dependency structure representation is its advantages in
handling some aspects of a Japanese sentence, adaptability to lexical preferences
and portability to other grammar frameworks.

1.5.1 Free Word Order Language

It is often said that Japanese word order is free because the syntactic role of a
given constituent in a sentence is often uniquely determined by its post positional
markers. Consider the following sentence:
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(1) BET KELE BEE R,
Namba-de tomodachi-to eiga-wo miru.
Namba friend movie see.
I see a movie with a friend of mine at Namba.

(1a) BT K7D L BEE B3,
(1b) HE#ET BEE KA B,
(lo) Kb BT BEZ B2,
(1d) KEbE BHE BET B2,
(1e) BE% K7L E BET Rbo
(1f) BEE R BET KEHE Rbo

All of the six possible sequences of postpositional phrasesl constitute correct

Japanese sentences. A phrase structure grammar (PSG) produces a tree structure

which consists of all morphemes in a sentence and non-terminal symbols (S, NP,
V, and so on).. To accept these variations, PSG must prepare numerous phrase
structure rules corresponding to each tree structure even if they are derived from -
a small set of basic rules in a systematic way.

On the other hand, dependency analysis produces a connected graph structure
that clarifies which word modifies or depends on which, and the above variants
of post positional phrases’ order have the same dependency structure.

1.5.2 Topicalization

A certain Japanese phrase seems to modify more than one word. This happens
when ellipsis or topicalization occurs. For example:

a) Bz TZAE ENTHO BEE RIS Vo7, (topicalization)
I / meal / ate / a movie/ see / went
(After I ate a meal, I went to see a movie.)
b) Yarh TENTTHTL L Jo (ellipsis)
John / If possible / will do
(If possible, John will probably do it.)
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In the first sentence, the phrase “FAi13” is a topic phrase. In the second sentence,
the phrase “¥ 3 %% is omitted between “ T&#iE” and “§5TL &9 “ One
way to handle these cases in dependency analysis is to allow modifiers to modify
more than one segment.

For these cases, we define that topics modify the last predlcate

1.5.3 Lexical Preference

The importance of lexical information is getting recognized, and a number of
parsing frameworks incorporate lexical preference into recently proposed models
(Lexica]ized PCFG, Lexicalized Tree Adjoining Grammar, and Lexicalized Link
Grammar). R

Becausé dependency analysis find out a word to word relation directory, it is
easy to reflect lexical preference to the whole dependency structure.

1.5.4 Adaptability

The result of dependency analysis specifies simply the relationship between the
words that comprise the sentence. While this does not give an in-depth inter-
pretation of the sentence, it is intuitively easy to understand and is amenable to
many other more sophistica.ted grammar formalisms.

'For instance, as a well-defined grammar formalism, HPSG (Head-driven Phrase
Structure Grammar) [37] proposes highly lexicalized formalisms. HPSG describes
necessary information for j)arsing in the lexicon as much as possible, and gram-
mar rules are restricted into a six schemata. It is easy to combine with these
constraint based grammar and statistical parser.

1.6 Organization of this Dissertation

The dissertation is organized in the following way. In Chapter 1, we have just
addressed the problems of syntactic disambiguation in Japanese sentences and
Present the scope of research. For Japanese language analysis, dependency anal-
ysis is widely used as a parsing technique for some reasons. In this Chapter, we
have compared several frameworks such as Phrase Structure Grammar v.s De-
Pendency Structure Representation, and Rule Based Approach v.s. Statistical

15




Approach.

In Chapter 2, we overview the statistical approach for syntactic disambigua-
tion, and statistical partial parsing method. Then we overview the work related
to the structure of Japanese subordinate clauses and coordinate structures and
some other features of Japanese sentences.

In Chapter 3, we propose our statistical dependency analysis model. The
basic statistical model is not so complex compared with other related statistical
parsers, aiming at an easy implementation and efficiency. This helps to decrease
the effect of sparse data problem. We define the dependency structure as a
set of dependency relations (pairs of modifier segment and modifiee segment,
assume that each segment in a sentence except the last one modifies exactly one
of its subsequent segments in the sentence and no two modifications may cross
each other. The statistical model assign a probability to each set of depéndency
relations, ranking competing sets in the order of plausibility. The probability of
each set is calculated as the product of the probabilities of dependency relations
in a parse tree.

In Chapter 4, we propose statistical partial parsing and redundant parsing
methods. Partial parsing is a method to achieve higher precision at the cost
of lower recall. In other words, the partial parser outputs only plausible list of
dependency relations based on the some particular measures. Redundant parsing
is a method to achieve higher recall at the cost of lower precision. in other words,
the redundant parser allows to output ambiguous dependency structure as far
as their plausibility is high based on some predefined criterion. These methods
are useful for practical Natural Language Processing applications that need more
accurate syntactic analysis than the conventional syntactic parsers perform. The
methods can be used for any statistical models that assume the independence of
the probability of each dependency relations.

In Chapter 5, we pay attention to the scope embedding preference of sub-
ordinate clauses in a Japanese sentence, which are manually analyzed by some
linguists in the literature. The scope embedding preference of subordinate clauses
can be interpreted as the dependency preference between two subordinate clauses.
We learn the dependency preference from syntactically annotated corpora auto-
matically, and show that the preference contributes to the disambiguation of a
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syntactic structure of the whole sentence.

In Chapter 6, we propose a method to deal with the coordinate structure
analysis and the dependency analysis in a uniform way. The final probability
of dependency structure reflects the form of the coordinate structures from two
reasons. The first reason is that the existence of coordinate structures changes
the distance features of dependency pairs. The second reason is that a coordi-
nate structure has multiple heads, and the probability of dependency relation is
calculated from the multiple probabilities defined by these multiple heads.

Finally, we summarize the dissertation and describe the future direction in
Chapter 7.
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2. Related Work

2.1 Statistical Dependency Structure Analysis
2.1.1 Lexical Preference and Structural Preference

One of the major ambiguity of syntactic analysis of English sentences is the PP
attachment ambiguity. In general, the following construction of a sentence has
an ambiguity whether (prep npz) modifies the verb or np;

verb np; (prep npz)
Consider the following examples, with the preposition “with”:

(a) These examples consist of two sentences with the prepositional phrase.
(b) I go to Tokyo with him.

In the example (a), the prepositional phrase “with the prepositional phrase”
attaches the noun phrase “two sentences”, while in (b), the prepositional phrase
“with him” attaches the verb phrase “go to”.

Hindle and Rooth [18] use a statistical measure of lexical association to solve
the structural ambiguity of prepositional phrase attachment. They propose to
use co-occurrence of verbs and nouns with prepositions in a large body of text as
an indicator of lexical preference.

Li [30] proposes statistical priority measures based on two psycholinguistic
principles in English:

e Right Association — a constituent tends to attach to another constituent
immediately to its right [24]
e Lexical Preference Rule — a case frame and its constituent tend to preserve

coherent relations [13]

As a statistical model of Lexical Preference Rule, he introduces the following
conditional probability:

P(n]|v,s)
where v is a verb, s is a case frame of the verb, and n is one of the arguments of the
verb in the case frame. He assumes the independency of arguments case frames
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and defines “lexical preference” as the geometric mean of these probabilities.
To incorporate Right Association Principle into a statistical model, Li uses a
distance measure in each CFG rule, For instance, for the CFG rule L — H, M,
the distance is defined by the length of words dominated by the non-terminal
H. This definition reflects the distance property of the dependency relation in
English. The priority of each CFG rule is formulated as a function of the CFG
rule and the distance of H (d), such as S(d, (L — H, M)). Li combines these two
priority measures by using the back-off method.

Shirai.K [43] presents a probabilistic language model which integrates lexical
preference and structural preference in a consistent way. Lexical preference is
defined based on a case frame model, and structural preference is based on a
 distance measure.

2.1.2 Grammar Extension Approach

‘It is often said that the basic framework of PCFG is not enough for disam-
biguating syntactic structure of an input sentence, because the probability of
each PCFG rule does not reflect a syntactic/lexical context, and hence cannot
capture non-local lexical information which is crucial for disambiguation of syn-
tactic structures.

To take more contextual information into account, several studies extended
PCFG in some way.

Magerman and Marcus [32] describe Pearl system, a probabilistic chart parser.
While simple PCFG assumes the independence of the probability of CFG rules,
their model assumes the dependence of CFG rules on the part-of-speech trigram
centered at the beginning of the rule, and the dependence on the parent CFG
rule.

Black et al. [2] propose the history-based grammar (HBG), that takes into
account the derivation history of a parse tree. Consider the following left-to-right
derivation:

S — ASB| AB
A—>a
B—b
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S ASB 3 0SB % aABB ™ aaBB ™5 aabB =5 aabb (1)

In each derivation step, they define that the partially parsed tree up to that

LT

, a a b b

Figure 3. Derivation step of HBG.

point is a history. For instance, the history when applying 73 is a partial parsed
tree aSB. The difficulty in applying probabilistic models to natural language
processing is to decide what features of the sentence are relevant to the model.
To tease out the relevant features of a parse tree that will contribute to syntactic
disambiguation of a sentence, they used decision tree model. However for the
limitation of computational resources, they only use the path from the current
node to the root in the derivation tree.

Magerman [31] considers that a parsing of a sentence is a sequence of decisions
of disambiguation, such as part-of-speech tags, hierarchical constituent structures,
non-terminal labels (np, vp etc.). He uses the decision tree learning technique to
learn criteria for disambiguation of those linguistic constituents, and propose the
statistical parser SPATTER.

A decision tree is a decision making device which assigns a probability to each
of the possible choices based on the context of the decision: P(f | h), where f
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is-an element of the future (the set of choices) and h is a histroy (the context
of the decision). The probability P(f | h) is determined by asking a sequence
of questions ¢igs...g, about the context, where the i-th question is uniquely
determined by the answer to the ¢ — 1 previous questions. Figure 4 gives an
example of a decision tree.

the

P(determiner | the) =1

P(noun | bear, determiner) = 0.8
P(verb | bear, determiner) = 0.2

Figure 4. Pa.rtia]ly—grown decision tree for part-of-speech-tagging. -

The context of SPATTER is constructed from four elementary components:
words, tags, label, and extensions. The tags are part-of-speech tags, the labels
mean any non-terminals. An extension is shown in Figure 5. The name annotated
to an arrow is an extension. A parsing proceeds in a bottom-up, left-to-right
fashion based on the context determined by the decision tree model.

Stolcke [47] extends Earley’s parser for stochastic context-free grammars, and
uses the probabilities of successive prefixes in derivation of Earley’s parser, to
Capture the lexical context. |

Briscoe and Carroll [4] incorporate the probability of a lexical and structural
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right left
up

a brown cow

Figure 5. Representation of constituents and a labeling of extensions in SPAT-
TER.

context by assigning probabilities to the shift and reduce actions of LR table.

Tagami et al. [49] incorporate the number of modifiers to a non-terminal into
their parsing model. In their model, each non-terminal in a CFG rule has a
variable that expresses the number of modifiers to the non-terminal. This is
based on the assumption that modification likelihood to a certain modifiee is
influenced by the other modifiers to the modifiee.

Hogenhout et al. [19] defines the semantic-head for each CFG rule, and every |
non-terminal has the variable that keeps the semantic-head of the non-terminal.
For the rule Y — Y;...Y,,, they consider the conditional probability P(Y; :
hi,...,Ym : by | Y), which is dependent on semantic head h; of non-terminal
Y;. They also take into account the number of words that each non-terminal
dominates.

2.1.3 Lexicalization in Various Formalisms

Lexicalization is also the trend in other formalisms, such as Lexicalized Tree
Adjoining Grammars and Link Grammars. These approaches pursue to use highly
lexicalized information to construct more context-sensitive models.

LTAG is a tree-rewriting system that combines trees of a large domain with
adjoining and substitution. Figure 6 illustrates one derivation of the sentence
John eats peanuts hungrily. The mark o indicates substitution operation that
substitutes a subtree on the leftmost identically labeled leaf node of another
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subtree. The square mark indicates adjoining operation that insert the right
most subtree into the leftmost identically labeled internal node. Each subtree is
a lexicon for LTAG.

S
N\ VP

NP VP
AN 0 N\
v e O o 9 w VP AEI’V
eats John . peanuts hungrilyi
S
NP VP
| N
VP ADV
— John
= AN I
v NP hungrily

eats peanuts

| Figure 6. Example of a tree adjoining step.

Schabes [41] formally defines the notion of stochastic lexicalized tree-adjoining
grammar (SLTAG). In SLTAG, the lack of context-sensitivity is overcome by as-
signing probabilities to larger structural units. However, it is not always evident
which structures should be considered as elementary structures, and there are
ambiguities in the way to construct a whole tree structure. He presents an algo-
rithm for computing the probability of a sentence generated by a SLTAG, and
introduces an inside-outside-like iterative algorithm for estimating the statistical
Parameters for a SLTAG from a training corpus.

Bod [3] describes DOP (Data Oriented Parsing), which is different from other
statistical approaches in that it omits the step of inferring a grammar from a
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corpus. Instead, an annotated corpus is directly used as a stochastic grammar. An
input string is parsed by combining subtrees from the corpus, and the probability
of each parse tree is defined by the sum of the probabilities of all the possible
derivations for the tree. In this method, every subtree except the one constructed
from one node can be considered as an elementary structure. Calculating the
probability of a parse tree by exhaustively calculating all of its derivations makes
the time complexity to be exponential, since the number of derivations of a parse
tree of an input string grows exponentially with its length. To calculate the
* probability of a parse tree and to make its error arbitrarily small in polynomial
time, he applies the Monte Carlo technique.

Lafferty [29] presents a probabilistic Model of Link Grammars proposed in

[46]. What distinguishes this formalism from many other context-free models is
the absence of explicit constituents, as well as a high degree of lexicalization. In
Link Grammar, a sequence of words is accepted by the grammar if there exists at
least one valid linkage for all the words in the sentence. A linkage is a connected
‘graph structure of words by links (labeled arcs). A linkage is valid if the resulting
graph is connected and planar with arcs drawn above the words, and at most
one arc connects a given pair of words. Figure 7 shows a Link Grammar parse
(linkage) for an English sentence. They describe an algorithm for determining

/\\ o

hamburger a fork

Figure 7. A link grammar parse.

the maximuim-likelihood estimates of the parameters of their model.

Under the formalism of probabilistic Link Grammar, Fong and Wu [12] present
an Expectation Maximization training method for estimating the probabilities,
and give a procedure for learning some simple lexicalized grammar.
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As for a method to assign a probability to a derivation tree, there are top
down and bottom up approaches. Charniak [5] adopts a top down approach.
Consider the case to assign a probability to the noun phrase ” Corporate profits”.
In Figure 8, each non-terminal node of the parse tree is assigned with the phrase

s:rose
np:profit vp:rose fpunc:.
adj:corporate n:profit v:rose
Corporate profits rose .

Figure 8. Parse tree of a simple sentence.

type (e.g. a noun-phrase, np) and the head of the constituent (most important
lexical item). The probability of a parse tree is calculated in the following steps.

1. Calculate the probability of the phrase head

2. Calculate the probability of the form of the constituent, given the head of
a phrase ‘

3. Recursing to find the probabilities of sub-constituents

In Step 1, Charniak [5] assumes that the probability of a head only depends
~on its type (part-of-speech), head word of the parent node, and the type of the
parent node. In other words, the probability of the head word “profits” in the
Phrase “Corporate profits” can be defined P(profits | rose,np,s). In Step 2,
the probability of the form of the constituent given its head is defined as the
Probability that a constituent c is expanded using the grammar rule r given that
¢ is of type t, is headed by h, and has parent of type [, that is P(r | h,t,1).
Charniak compares his model with Collins’ and Magerman’s models and con-
cludes that statistics on individual words outperforms the models based on word
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classes, and that it is worth collecting statistics on some more detailed informa-
tion.

Collins [7] proposes three new parsing models. Model 1 is essentially a gener-
ative version of the model described in Collins 96 [6]. Model 2 is an extension of
Model 1 that makes the complement/adjunct distinction by adding probabilities
over subcategorisation frames for head words. Model 3 is an extension of Model
2 that gives a probabilistic treatment of wh-movement. He achieves 88.1 /87.5%
constituent precision/recall, an average improvement of 2.3% over Collins 96 [6].

Our statistical dependency analysis model is similar to Collins 96 model in
that both model use the word collocation directly. As for a comparison we explain
Collins 96 model in detail in section 3.3.3. |

2.1.4 Direct Use of Words Associations

As an extreme of lexicalization, there are parsing methods that do not use any
grammar rules.

Collins [6] describes a parser based on the probability of a dependency rela-
tion (defined by the collocation probability of head words) in the parse tree. The
correspondence between phrase structure (tree structure) and dependency pairs
is given in Figure 9. Standard bigram probability estimation techniques are ex-
tended to calculate probabilities of dependencies between pairs of words. In this
way, this approach is similar to Link Grammars but the word association proba- -
bility of a bigram is directory used. For the precise estimation of the collocation
probability of head words, he distinguishes the cases that have different distance
properties such as the number of words, verbs, and punctuations between a de-
pendency pair. Then the probability of each dependency pair that has different
distance properties is estimated from these separate data. Tests using Wall Street
Journal data show that the method performs at least as well as SPATTER|31],
in spite of the model being simpler than SPATTER.

The difference of our model to Collins’ model principally comes from the .
properties of a dependency structure of a Japanese sentence. First, the type of
modification relation (dependency relations) is unigly determined by the function
words or the ending form of the modifier. Second, the modifier always modifies
a phrase that follows itself, because Japanese is a head-final language.
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VP(announced)

/I\ VD e -
-

vBD(announced) NP(resignation) NP(yesterday) l VED VP NP

| |
NN NN
| | ‘ announced resignation Yyesterday

announced resignation yesterday

Figure 9. Each constituent with n children (in this case n = 3) contributes n— 1
dependencies.

Alves [1] uses mutual information drawn from a corpus to select the most likely
dependency structure of a Japanese sentence. He calculates mutual information
of each dependency relation and chooses the structure for which the product of
the mutual information of dependency relations is maximized.

2.1.5 Decision Tree Model

Haruno [17] applies the decision tree learning technique [38] to the task of se-
lecting effective features to be incorporated into the dependency analysis model
of [14]. In Fujio [14], various features including the lexical form of each word are
evaluated through dependency analysis performance test and an optimal set of
features is manually selected, while in Haruno [17], the optimal set of features is
automatically selected by using the decision tree technique, although only lexi-
cal forms of a few hundred frequent words are considered as feature candidates.
Both methods are evaluated using EDR bracketed corpus [9] and achieved about
85~86% accuracies of segment level dependencies (segment roughly corresponds
to the notion of chunk. For the details, see section 3.2.).

In the decision tree learning, a feature that most decreases the entropy on
target class is selected, and the training set is divided into subsets according to
the value of the feature. In Haruno’s study [17], in each step of decision tree
Construction, only one of the feature of the modifier or the modifiee is examined,
in other words, a set of features of the modifier and the modifiee that is effective
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when considered simultaneously, may be overlooked.

2.1.6 Maximum Entropy Approach

In English, Ratnaparkhi [39] uses the maximum entropy model for the statistical
parser. He defines the context predicate that capture the some aspect of the
derivation history, and estimate the probability of each derivation step by the
maximum entropy model.

Ehara and Uchimoto [10, 50] use the maximum entropy method to estimate
the probabilities of dependency relations of Japanese sentences.

The maximum entropy method estimates the most uniform probability dis-
tribution of stochastic variables under the constraint where the expected value of .
each stochastic variable calculated from observed data and calculated from the
estimated distribution are the same. |

Ehara [10] defines the conformity value by the probability that two bunsetsu’
are in a dependency relation and the probability that two bunsetsu’s are not
in a dependency relation. These probabilities are estimated by the maximum
entropy estimation based on the bunsetsu features. For the maximum entropy
" estimation, he uses maximally two combination of bunsetsu features. He evaluates
the precision of the modification of the bunsetsu which has. case particle “»¥ for
the sentences of TV news articles. |

 Tn Uchimoto [50], the probability of dependency relations are also defined

by bunsetsu features such as part-of-speech tags, head words and features which
appear between the pair of bunsetsu’s, such as the number of bunsetsu’s and
punctuations. But he applies the maximum entropy method to estimate the
probability distribution. He uses the combination of those features (lower than
5). Parsing accuracy on the Kyoto University corpus shows that conventional
precision is achieved from relatively small training data.

2.2 Statistical Partial Parser

A number of statistical parsing methods have been proposed. Most of the systems
focus on the performance of a full parsing of sentences, and do not discuss the
performance of a partial parsing (the method that achieves higher precision at
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e cost of lower recall) or a redundant parsing (the method that achieves higher
call at the cost of lower precision), which is crucial for some applications, such
 information retrieval, pre-processing of corpus annotation and acquisition of
1guistic knowledgé.

In Japanese text, Inui [20] and Fujio [14] pay attention to statistical partial
yusing methods. In Inui [20], after calculating n-best parses, a statistical parser
ums up the probabilities of the parse trees that contain a particular dependency
Jation. Then the parser normalizes the total sum of the probabilities of each
spendency relation by the sum total of the probabilities of n parses. If this
Jlue is higher than a particular threshold, the parser outputs these dependency
lations as a partial parse results. In section 4.1, we propose three partial parse
ethods including the same method used in Inui [20] and compare the perfor-
iance under our statistical model. Furthermore, in section 4.2, we propose
1e statistical redundant parsing method, and evaluate the performance by the
lation of bunsetsu level recall and coverage.

.3 Coordinate Structures

1 Japanese sentences, a coordinate structure is one of major causes of syntactic
mbiguity in a long sentence. The main problem is to 1dent1fy the scope of
nstituents of a coordinate structure.

Consider the following sentence.

o« BEZY -H 12

€071 P OECERY,, BEO B0 B CIIMRTEIIRMO EEEE

5’

BELTH S,

'he correct constituents that construct the coordinate structure are 4 and 5’ , but
lere are 4 x 5 = 20 ambiguities for the construction of a coordinate structure.

Kurohashi [26] focuses on this point. They propose the method to compare
te candidate constituents of the coordinate structure, and if they are sufficiently
lmllar their system marks the candldate constituents as the correct constituents
fthe coordinate structure. For the measure of segment similarity, they use cate-
Ty match, word match and semantic distance defined by a thesaurus, and then
lect the most likely constituent pair by using the dynamic programming method.
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Once the coordinate structure in a sentence is determined, the rest of dependency
structure is determined by conventional rules. They report 65%(97/150) accuracy
calculated by the number of correct sentences.

Suganuma [48] describes a method for extracting coordinate structures that
consist of noun phrases, and for estimating the coordinated constituents. He
‘estimates the constituents of a coordinate structure by using clues on Japanese
characters, heuristics to determine the coordinate structure, and structural sim-
ilarity between two constituents. His aim is to support a document writer by
indicating the presence of coordinate structures, which is a cause of communica-
tion gaps between the writer and the reader.

Nominal Coordinate A, [P, &, b, R, D0, BT () % {,B
Structure YU F, 6N, HAHwiE, B LI, KT,
X, Ui, B

Partial  Coordinate | [, 72T (1%) & <, BLU, 7213, 25 TIT,
Structure HHwiE, L, RO, i, FUUT, BUd

Table 4. Keys to coordinate structures

There are two disadvantages in these approaches. Both of these approaches
first identify the existence of coordinate structures by finding key ‘words or pat-
terns (see Table 4) that give an evidence of the existence of a coordinate structure,
and then identify the scope of coordinate structures by examining the words se-
quence similarity or structural similarity. However these keys to coordinate struc- .
tures or heuristics to find the scope of coordinate structures must be developed
by a language expert. Constructing and maintaining these rules are a laborious
task. The other disadvantage is that dependency analysis is performed based on
the identified coordinate structures. In other words, the process of coordinate
structure identification and dependency analysis is sequential.

Tn this dissertation, we do not resort to the extra heuristics for finding the
similarity between the constituents of a coordinate structure (see section 6). We
propose a method to treat the coordinate structure identification and the depen-
dency analysis in a uniform way.
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2.4 Subordinate Clauses
2.4.1 Scope Embedding Preference

By manually analyzing several raw corpora, Minami [34, 35] classifies various
types of Japanese subordinate clauses into three categories, which are assumed
to comply with a total ordering of the embedding relation of their scopes. Shirai
et al. [44] reclassified and specified the three categories of Japanese subordinate
clauses proposed in Minami [34, 35] in order to make them more suitable for
automatic processing by computer programs. In the following, we describe more
specified version of Japanese subordinate clause classification by Shirai et al. [44].
By manually analyzing 972 newspaper summary sentences, they extracted 54
clause final function expressions of Japanese subordinate clauses and classified
them into the following three categories according to the embedding relation of
their scopes. '

Category A: Seven expressions representing simultaneous occurrences such as
“Verb, to-tomoni (Clausey)” and “Verb; nagara (Clause;)” (both of these
two expressions mean that the events expressed by Verb, and Clause, occur
simultaneously).

Category B: 46 expressions representing cause and discontinuity such as “Verb,;
te (Clausey)” (in English “Verb, and (Clause;)”) and “Verb; node” (in
English “because (subject) Verb; ...,”). .

Category C: One expression representing independence, “Verb; ga” (in En-
glish, “although (subject) Verb; ...,”).

The category A has the narrowest scope, while the category C has the widest
Scope, i.e.,
Category A < Category B < Category C

where the relation ‘<’ denotes the embedding relation of scopes of subordinate
clauses. Then, scope embedding preference of Japanese subordinate clauses can

be specified as below: | .
Scope Embedding Preference of Japanese Subordinate Clauses
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1. A subordinate clause can be embedded within the scope of another subor-
dinate clause which inherently has a same or wider scope preference.

2. A subordinate clause cannot be embedded within the scope of another sub-
ordinate clause which inherently has a narrower scope.

For example, in the case of the above three classification, a subordinate clause of
Category B can be embedded within the scope of another subordinate clause of
Category B or Category C, but not within that of Category A.

2.4.2 Applying Scope Embedding Preference to Dependency Prefer-

ence
embedded structures
/
4
C
B B
A A
A ‘B ‘A iB iC iM
[ % I [} 4"‘I [}
dependency relation

A,B,C: category of clauses

PA
i Lclause final expression M: main clause

subordinate clause

Figure 10. Embedded structures of Japanese clauses and dependency relation-
ships between clauses. |

Scope Embedding Preference of Japanese Subordinate Clauses has the close
relation to Dependency Preference.
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Fukumoto et al. [15] and Shirai et al. [44] restate the relation between scope
embedding and dependency of two subordinate clauses as the form of the following
dependency preference of subordinate clauses, and apply the scope embedding
preference of'Japanese subordinate clauses to rule-based Japanese dependency
analysis

Dependency Preference of Japanese Subordinate Clauses

1. A subordinate clause can modify another subordinate clause which inher-
ently has a same or wider scope.

2. A subordinate clause cannot modify another subordinate clause which in-
herently has a narrower scope.

Shirai et al. [44] also added the following more specific classification of subor-
dinate clause types to the above three categories.

1. Whether the subordinate clause is punctuated or not. A punctuated clause
‘has a wider scope than non-punctuated ones of the same category.

2. Two level strength of discontinuity of subordinate clauses. A clause with
strong discontinuity has a wider scope than that of the same category with
weak discontinuity.

3. Four level distinction of state/action of the head predicates of subordinate
clauses. A clause with a more action predicate has a wider scope than that
of the same category with a more state predicate.

However, in those manual approaches, their coverage against a large corpus
containing more than 200,000 sentences such as EDR corpus is quite low? , since
categories of subordinate clauses are obtained by manually analyzing a small
number of sentences. In Chapter 5, we propose a method of learning dependency
preference of Japanese subordinate clauses from a bracketed corpus.

2 For example, in our implementation, the coverage of the categories of [44], which are more
specific than those of [34] and [35] and are designed for the purpose of automatic processing
by computer programs, is only 30% for all the subordinate clauses included in the whole EDR
corpus.
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2.5 Topicalization

Most of the Japanese dependency analysis systems assume that every segment '
except the last one in a sentence modifies one segment in the sentence. How-
ever, there are linguistic phenomena in which one segment modifies two or more |
segments or to modify no other segment. One of them is topicalization:

o KEBIZ Aix FHAZEH, /—MITII Lol
Taro read a book, but didn’t read a note.

w==Ek

In this example, “/AERIZ” is a topic phrase, and modifies both “GEA 724 and
“Z= % J2 Ao 727 Fukumoto [15] proposes a framework of Restricted Dependency
Grammar (RDG). An RDG consists of a set of simple rewriting rules including -
context dependent rules (type-1 rules), and can treat topic phrases naturally.
In the RDG formalism, one modifier can modify more than one modifiee. To
suppress the generation of useless solutions, she incorporates some types of con-
straints about how modifiers can modify modifiees. In the case of topicalization,

we assume that topics modify the last predicate.
In Japanese, there is another type of topicalization [25].

a-l) Bl BHF R

As for an elephant, the nose is long.
a-2) B3 P &V |

As for a nose, the elephant’s is long.

b-1) EFEIZ W * &v
As for Tokyo, the price is high.

b-2) Pl HED &V
As for the price, the Tokyo’s is high.

In both pairs of these examples, there are two grammatical subjects, only one of
which can semantically modify the predicate. This type of ambiguity depends on
the semantic relationship between the modifier and the modifiee. For instance in
a-1) and a-2), “%4% modifies “F&V>” and “HI3” does not modify “&\>”. In our
formalism, we do not deal with semantic interpretation, thus we simply assume
that both phrases modify the predicate.
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2.6 Ellipsis

Ellipsis is another phenomenon that causes multiple modification. In Japanese,
the subject is often omitted, when it is easily retained from the context. The
omitted subject is called a zero anaphora. In the following examples, ¢ denotes
zero anaphora. ‘

a) Va3t TEIE § THTLE Y,
If possible, John will do it.

b) bLIDEEBLEFoNEL, ¢ B LTI EAD.
If you can hold up this roék, please mo've it.

In the first example, ¢ is an ellipsis that refers to “Ja ~”, and this phrase
modifies both “TZMi¥” and “$H5TL & 9”. The second example, ¢ is an
ellipsis that refers to “&”, and this phrase modifies “%&5 LT A7 57 and “BiA L
T NFEFAD”. These phenomena are also treated in the RDG formalism [16].
By using context dependent rewriting rules (type-1 rules), the referent of an
omitted element can have more than one dependency relation.

In these cases, we consider that “¥ 3 » %% should modify the former predicate
“TENIT and in the same way “& %" should modify “FH LiF5”.
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3. Basic Dependency Analysis Model

This Chapter describes a statistical parsing model based on the features of seg-
ments (bunsetsw’). A segment (bunsetsu) is a unit of dependency analysis. We
aim to find out the most likely combination of dependency relations between -
segments (bunsetsu’). |

This Chapter presents the statistical dependency analysis of Japanese sen-
tences and is organized as follows: |
Section 3.1 defines the constraints on dependency structure. Section 3.2 defines
segments (bunsetsu’) and its features. Section 3.3 gives the statistical model of
dependency structure analysis. Section 3.4.4 describes the actual parsing algo-
rithm. | .

The model described here will be combined or extended in the later Chapter
to handle subordinate clauses and coordinate structures (see Chapter 5, 6).

3.1 Constraints

We place the following constraints on the dependency structure of sentences.

1. Every segment except the right most one modifies exactly one of its suc-
ceeding phrases in the sentence.

9. No two modification may cross each other (crossing constraint).

Those are acceptable constraints on Japanese dependency structure.

3.2 Definition of a Segment
3.2.1 Composition of a Segment

A segment is a unit of dependency structure analysis in this study. A segment

consists of one or a sequence of content words and its succeeding function words.

The composition of segments can be defined by regular expressions.
The following is sample definition of a segment:

&3/ /+ BE/ /%)
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This regular expression matches a sequence of nouns followed by zero or more '
particles. |

There is a room for users to customize the definition of segment in our system,
to take care of exceptional cases which do not fall into a general pattern, and to
manage conceptual differences between system designs.

3.2.2 Definition of Segment Features

For each segment, a set of features are assigned. Those features are used for the
estimation of the probability of a dependency relation.
The features of a segment are defined by the result of morphological a.naly51s

-They include part-of-speech (POS) tags, conjugation types, punctuation, and

other grammatical or surface information. Some features are determined not
directly from the modifier segments. and modifiee . For instance, the number
of segments between the modifier and the modifiee can also be a feature. In the
sequel, we use the following symbols to represent segment features:

e h;: head word

t;: head pos

¢;: head class

r;: relation type
e p;: punctuation
e d;;: the number of segments between the dependency pair

e p;;: the number of punctuations between the dependency pair

The basic rules for assigning segment features are as follows.
e The rightmost content word in a segment is the head feature.

¢ Morphological information (such as a word, tag, and conjugation form) of
function words constitutes the relation type.
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[PERCF IR L L [BEERI[E & O [AERERI(H 5.5
[no diffusion area); [incidence];[higher]s[a finding]4[there is]s

Modifier Modifiee
hi T pi|dij pij|hy T
1 —4 | FEEftbist XY 0 | B EXFE-L-0
2 — 3| BER i 0 | B EXE-E-0
34| BV EEXE-L-0 0 |5 EEXE
45 |RAEERX B 0 |»s EEXE

i

o o o+
O O R
MY o ol

Table 5. Examples of segment features.

The head feature takes the form of either the word form, part-of-speech, or |
the semantic class. We use the Japanese thesaurus 'Bunrui Goi Hyou’(BGH) [37]
to define the semantic class. |

If a segment has no function words, the relation type is defined by the pair of .
the tag and the conjugation form of the last content word in a segment.

The features d;; and p;; are defined by the sequence of Base Phrases, which -
introduce distance measures to the model.

Table 5 gives an example of the features of correct dependency pairs for the
‘sentence which consists of four segments. The first column denotes the depen-
dency relation in the sentence, and the rest of the columns shows the features
explained above. The fourth and ninth columns indicate the existence of punc-
tuation. The value 0 indicate there is no punctuation in the segments. The value
1 indicates that the last morpheme of the segment is a comma. The value 2
indicates that the last morpheme of the segment is a full stop.

When defining the features d;j;, pij, it is not necessary to use exact count
of phrases or punctuations. For example, while the distinction of dependency
relation of distances 1 and 2 may be important, the difference of distances 5 and.
6 is not big difference. The same value for the distance can be assigned when their -
distance is larger than 2. Table 6 shows the variations we used for the features
d,‘j and Dij-

Other conceivable distance measures are the number of case particles, or the
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variations for distance features dij Dij
dstl exact value | exact value
dst2 1,2, and f | exact value
dst3 1,2,and f 1,2,and £
dst4 : 1,2,B,C | exact value

Table 6. Variations of distance features. The sign “f” means larger than 2. The
sign “B” means more than 2 and less than 5. The sign “C” means larger than 5.

_be effective, when a modifier segment has a case particle as a relation type. But
as a result of repeating preliminary experiments, both of those distance measures
exhibited poorer performance than the case using d;;, p;; (We will discuss the
reason in Chapter 7). In section 3.6, we will only show the results of using d;;
and p;;.

3.3 Statistical Model

We propose a probabilistic model based on the features of segments defined in
the previous section. |

First, we introduce notational conventions. The symbol S denotes a sentence.
T = (wy,t1),..., {ws,ts) is a sequence of word and tag pairs, where w; is the i-th
word and #; is the i-th part-of-speech tag. F' = (by,f1), ..., (bm,fm) is a sequence
of pairs of segment and features, where b; represents a segment and f; represents
the features associated with b;. We use the notation Dep(i) = j to indicate that
the i-th segment in the sequence modifies the jth segment.

The subscripts m, and n stand for the number of segments and words in a sen-
tence, respectively. 'L is the sequence of dependencies: L = (Dep(1), Dep(2),..., Dep(m—
1). |
In general, a statistical parsing model estimates the conditional probability,
P(P, | §), for each candidate parse tree F; for a sentence .S. In the dependency
analysis, the final goal is to identify L rather than F;. Our aim is to find the
L, F, T that maximize the probability P(L, F,T | S).
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The most likely dependency analysis under the model is then:

argmax P(L, F,T|S) = argmax P(L|F,T,S) P(F|T,S) P(T|5) (2)
LFT LFT

We assume that the composition of a segment only depends on word /tag pairs,
hence P(F | T,S) = P(F | T), and assume that a dependency structure L can
be determined only by segment features, thus P(L | F,T,S) = P(L | F)). The

equation (2) is now written into:

argmax P(L|F) P(F|T) P(T|S)
L,FT

For simplicity, we assume that the morphological analysis and the segment

composition are both deterministic. For the morphological analysis, we use the .

most likely output of the Japanese morphological analyzer ChaSen [33]. For the

segment composition, we use a finite state transducer constructed from regular -

expressions of word/tag pairs (see section 3.2). In other words, we assume P(T |
S)=1and P(F|T)=1.

What we need to do now is to find Lpes: that satisfies the following equation.

Liest = argILnax P(L | F) (3)

Suppose that each dependency relations are mutually independent, the right
hand side of the equation (3) can be expanded as follows:

m—1
P(L|F)=T] PG |- f) - (4)

The term P(2 L j | fi1,...,fn) indicates the probability that the segment b;
modifies the segment b;, given the set of features, fi...fn, after segments are
constructed. ’

Our model defines the probability P(i * j | fi,...,fn) as the product of
Head Collocation Probability and Distance Probability. Those probabilities are
defined by the features described in section 3.2.

Pfij = 'P(Z 'r_e—%J ‘ hiariapiahjarjvpj) , (5)
P9 = P3| ripidijspis) (6)
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P;;j indicates Head Collocation Probability for the dependency relation pair b; and
b;. P? indicates Distance Probability for the dependency relation pair b; and b;.

Note that the definition of Distance Probability uses the relational and punc-
tuation features of the modifying side, r; and p;, not the modified side. This is
because the relation type, and the existence of a punctuation have close relation
to the distance of dependency pair of segments. At the same time, we assume
that the features r; and p; explain the tendency of the distance property of de-
pendency pairs well, thus Distance Probability is assumed to be independent from
other features. .

The product of Head Collocation Probability and Distance Probability defines
the probability of the dependency probability.

P(Z§J|f1)7fm)=P}:,JXP<;J

rel

The division of the probability P(i = j | f1,...,fx) into P and P? con-
tribute to reduce the sparseness of training data.
Those probabilities are estimated from the training corpus by the following
equations.
C(i ™ j, hi,Ti,p5, By, 75, D5)
C(h’i7 Ti, Pi, hj1 Ty, p])
. re]l .
ij ~ C(i = j, T4,Di, dij, Dij) (8)
C(rs, pi, dis Pij)
C(...) in the above equation represents the frequency of the set of features ap-

i
P =~

(7)

peared in the training corpus. C(i it j,...) represents the frequency of the set .
of features of dependency relation pair appeared in the training corpus.
3.3.1 Training of Head Collocation Probability

Ideally, the word form of the head word should be used as the head feature
h;. But, then, head collocation probability suffers from the problem of the data
Sparseness.

Variations of the _Head Feature

To cope with the problem of the data sparseness, we define the following five
Variations of Head Collocation Probability that differs in the head features used
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for the probability estimation.

P}z;j — 'P(iE’})jlhi,Ti,pi7hjsTj7pj) 9)
PJ = P Ll | hi, i, Dir 51 T4, D5) (10)
P? = P33 j|t,rp k7 05) | (11)
P79 = PGS | ci,ri,pi,Ci, T Dj) (12)
P = P j|ti,ri 00t 75 D5) (13)

The symbol t; is a part-of-speech tag of the head word h;, and the symbol ¢; is
the semantic class that h; belongs to. We use the Japanese thesaurus ‘Bunrui
Goi Hyou’(BGH) [36] for the semantic classes. There are many smoothing tech-
niques [11, 23]. We adopted a method similar to back-off [8] estimation for its N
simplicity of implementation. |

BGH is a thesaurus of six-layered abstraction hierarchy in a tree form, where
more than 80,000 words are allocated at the leaves. We use the classes at the
second layer from the bottom of the hierarchical tree for the semantic classes. For
the limitation of computational resources, we decided to select the semantic class
" at the same levels in the thesaurus, though various combinations of the selection
of semantic classes are possible. In other words, the model learns 5 variations
(from second to six-th layer) for the equation (12).

When training the model, we estimate all of the above statistics. The maxi-
mum likelihood estimation of those probabilities (from the equation (10) to (13))
can be calculated by the following equations.

. rel .
C(Z E’Ja hi7riapi=tj’rj7pj)

h C(hi, i, Di, 4, 75, P5) (
. rel .

PV~ C(i S j, ti, 7, Di, by, T4, Pj) (15)
C(tiari)pi’hj’rj’pj)
. rel .

ij C(Zﬁj; ciarhpiacjﬂrj’pj) 7 v

C(Ci,T,;,pi,Cj,Tj)pj) .
..rel .

pii s Q00 tTu Pty 7 P) (17)

C(ti, Ti, Di, tja Tj,pj)
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Table 7. Features used for estimating head-collocation probability.

[ ~ Modifier Modifiee
Head Relation Type Punctuation | Head Relation Type Punctuation
eI X b 1 B EAXRB-E-0 0
JERUHbIE XD 1 Bw EAR L 0
S XD ! B EABO 0
A L b 1 Bwv - 0
BEE A 0 B EEAR-LO 0
REE P 0 B EAR-E 0
BEE N 0 Bv EEE 0
B i 0 =2V N 0
=% EX-L-D 0 »H5H FEER 2
mv ERRE-L 0 bhbH BEE 2
=1 EXT 0 b5 EXE 2
=1 EXF-L-0 0 b5 - 2
(1% EAXF-L 0 b5 - 2
1% EAT 0 b5 - 2
MERBER B 0 b5 EXF 2
mERR B 0 b5 - 2

Variation of the Relation Type

If a segment has succeeding function words at the end, the relation type of the
-segment cannot be uniquely determined according to which combination of the
functional words are to be adopted.

For instance, the relation type of 3rd segment in Table 5 has at least three
variations, “&-M”, “?”, and “&”.

Table 7 shows the patterns of features for Head Collocation Probability estima-
tion for the dependency relations in Table 5. Note that modifier’s relation type
always has the right most function words of the modifier in its constituent, and
that modifiee’s relation type always has the left most function word (the conj uga-
tion form, if the head word has conjugation forms) in its constituent. We consider
that the right-most function word captures the modifier’s property, and the left
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Relation Type Punctuation Punctuation between Segments between De-
Dependency Pair pendency Pair
£ 1 0 1
i 0 0 0
KA 2 0 0 1
i 0 0 0

Table 8. Features used for estimating Distance probability.

- most function word (or the conjugation form, if the head word has conjugation
forms) captures the modifier’s property.

The model also counts the case where the modifiee does not take the relation
type. Those statistics are used in the way similar to back-off [8] method (see
section 3.4.2).

3.3.2 Training of distance probability

Distance probability also uses the modifier’s relation type as a feature of the
probability estimation. Then, if a modifier has succeeding function words at the
end, the model can learn a different set of features which differs in the portion of
relation type. ' '

Table 8 shows the patterns of features for Distance Probability estimation for
the dependency relations in Table 5. ’

Those statistics are used in the way similar to back-off [8] method (see section
3.4.3).

3.3.3 The Collins’ Model

There are several approaches to approximate the probability P(i e Flfi,. . fm)
in equation (4). In the field of statistical parsing of English text, Collins [6]
proposes the model based on the collocation probability of head words. As 2
comparison, we briefly explain the statistical model of Collins [6].

To approximate the probability P (% ™2 i | f1,...,fm) inequation (4), Collins [6]
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considered the probability Fe(R | (w;,t;), (wj,t;)). This is the probability that
(w;, ;) modifies (wj, t;) with relationship R, given that both (w;,t;) and (wj, t;)
appear in the same sentence. Then, the maximum-likelihood estimate of Fe(R |
(wi, t:)> (wj ) is as follows:
C(R, {w;, t:), (wj, t5))

C({wi, i), (wj, t5))
C({ws, t), (wj, t;)) is the number of times both (w;,t;) and (w;,t;) are seen

E.(R| (wi, ts), (wj, ) =

in the same sentences in the training data. C(R, (w;,t;), (wj,t;)) is the number
of times both (w;, t;) and (wj,t;) are seen in the same sentences in the training
data and simultaneously (w;, t;) modifies (wj,t;) with relationship R. -
_ Then he made the following approximation:

Fe(R | (wi, t:), (wj, t5))
Zk:l,...,m,k#i,pePFc(p I (wia ti>7 <’wka tk))
B stands for the set of BaseNP’s, which corresponds to segments in our model. P

IDC('l’r_el)JI‘Sva-B)z

stands for the set of dependency relationships. Figure 11 illustrates BaseNP’s and
dependency relations. Dependency structures are derived from tree structures in
Penn Tree Bank. Each dependency relation is labeled by a triple of a modifier’s
non-terminal, a parent’s non-terminal, and a head-child’s non-terminal.

NP S VP VBD VP NP
NP PP NP NP NP PP IN PP NP J VED VP NP
v Iv v ] ' |

John  Smith ] [the president ] of [IBM ] announced [his resignation ] [yesterday ]

B={ [John Smith], [the president], [IBM], [his resignation], [yesterday] }

Figure 11. An example of BaseNP and dependency analysis

The probability P,(4 LN S, B) in the Collins’ model is the counter part of
P; 9 | £1,...,fn) of our model in equation (4).

Collins’ model does not separate Head collocation probability and Distance
Probability in contrast with our model.

PG5\, fm)
*f p(i ¢ j | hi, T3, Dis B, 75, Dy iy Dij)
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Then, maximum likelihood estimation of P(i % | f1,...,fm) is done as
follows: '

PG| f,... fm)
. rel .

—~ C(Z = Js h’i: T3, Di, hj: Tj,DPj, dij’pij)
C(hi, Ti, Di, hj: LETY 21 dija pZJ)

3.4 Parsing Algorithm

In this section, we explain the parsing algorithm under the model described above.
First, we describe the actual parsing steps, and then describe back-off method to
estimate dependency probabilities.

3.4.1 Parsing Procedure

Dependency analysis is executed in the following order:
1. Tokenize and tag the input Japanese sentence.
2. Identify the segments and define their features.
3. Calculate the probability of each segment pair.

4. Compose the most likely (or n-best) dependency structure based on the
statistical model described in section 3.3. We use CKY algorithm in this
step.

At the first step, we use the morphological analyzer, ChaSen [33]. There is
an ambiguity when applying learned statistics at the third step. It comes from
the length of a relation name, and a head feature. See section 3.4.2 and 3.4.3, for
the detailed calculation method. In the fourth step, we can use CKY algorithm
(see section 3.4.4) to effectively select the most likely (n-best) combination of
dependency relations.

3.4.2 Back-Off Method for Head Collocation Probability

Because our model uses the statistics of lexical terms, the statistical model suffers
from the sparse data problem.
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By using the equation (9) ... (13) take up in section 3.3.1, we define the
following three models.

POS model (13)
LEX model (9),(10),(11),(13)
BGH model (9),(10),(11),(12),(13)

For each of the LEX, POS, and BGH models, the system searches the statis-
tical data usage in the following order in the way of back-off method.

e a head word — a pos tag
e a head word — a semantic class — a pos tag

For the length of each relation type, the system searches the statistical data
from longer relation types. The parser searches statistical data in the following
order.

Consider the case to estimate Head Collocation Probability of the relation
3 — 4 in the example in Table 5, under the LEX model. For the first time, our
parser searches the sets of features shown in the following order:

h; T Di h; T; Ppj | probability

1 Bw :t—0O 0 #ALZTER 5 2 | not found
BEEH -0 0 FAEER 2 0.7
Bw k=0 0 & A 2 0.6
3 |EHE &—0 0 &A@ O 2 0.6

4 | B & 0 FAEHEZR 5 2 | not found
5 | & E 0 REREE K 2 0.7
[=1% & 0 &F A 2 0.3
6 | EEEH & 0 &FE A 2 0.6
7 B &0 0 REER - 2 0.4
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1. Search three sets of features, “h;,7:,pi, hj,75,p;", and “h;, 73, pi, t5, 75, D57,
and “t;,7i, pi, hj, 7, p;”, that has at least one lexical terms.

2. IF (a probability is defined for those features,)
| {use the average of the found values as the Head Collocation Proba-
bility.}
ELSE
search “t;, 7, Di, 5,75, D5
IF (a probability is defined for the searched features,)
{use that value as the Head Collocation Probability.}
ELSE
~ IF (the modifiee’s relation type 7; not null,)

{delete the right most morpheme of 7; and repeat the ‘process
from 1~2.}
ELSE

IF (the modifier’s relation type r; consists of more than one
morpheme,)
{recover r; to the original length and delete the left most
morpheme of r;, and repeat the process 1~2.}

ELSE A
{use pre-determined probability® , as the Head Collocation
Probability.}
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The first column in Table 3.4.2 shows the order that the system searches the
statistical data for the features in the second column, and the third column indi-
cates the dependency probabilities for these features. Suppose the probabilities
are defined as shown above, the probability as Head Collocation Probability is
calculated by the average of found probabilities as (0.7 + 0.6)/2 = 0.65.

- 3.4.3 Back-Off Method for Distance Probability

The parser searches the data for Distance Probability that has longer relation type
with higher priority. |

| Consider the case to estimate Distance Probability of the relation 3 — 4 of
- the example in Table 5. For the first time, our parser searches the set of features
“n-% 9 72 (GEZH) 0 0 0”. If a probability is defined for these features, the parser
uses that probability as Distance Probability. If a probability is not defined, the
parser searches other features “X 9 72 (/) 0 0 0” (the left most morpheme of
the relation type is deleted). If no data is found for any variation of the relation
type, the parser assigns pre-determined probability* .

3.4.4 CKY Algorithm

Under the constraints in section 3.1, CKY algorithm (e.g. [22, 54]) is applicable
to find the most likely (or n-best) dependency structure. CKY algorithm requires
CFG rules to be in Chomsky Normal Form and not to contain ¢ transitions. By
regarding a dependency relation as a binary tree structure, it is straightforward
to'apply the CKY algorithm to dependency tree analysis.

Figure 12 illustrates the CKY algorithm for selecting the most likely combi-
nation of dependency relations of a sentence consisting of four segments. The
symbol ¢; ; specifies the segment sequence of length j starting from the i-th seg-
ment. The construction of ¢;; from ¢;; and ;4 ;i corresponds to adding new
dependency relation k—j.

In Table 12, construction of t; 4 from ¢; ; and ¢, 3 adds the dependency relation
1—4. The probability of that dependency structure is calculated from the product
of the probability of dependency structures Aof t1,1, t2.3 and the probability of

————

% we set this value to 0.00001
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4| t14

3| t1,3 to3

2| 112 22 32
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1 |2z |3 |4

Figure 12. CKY algorithm

dependency relation between the 1st segment and the 4-th Base Phrase. Each ¢;;
preserves the most-likely (or n-best) dependency structure and its probability.

3.5 Training and Test Corpora

For the training and evaluation of our model, we use EDR[9] bracketed corpus

and Kyoto University parsed corpus [27]. EDR corpus is mainly used for the
evaluation of basic statistical model and the subordinate clause model. Kyoto
University corpus is mainly used for the evaluation of the coordinate structure
model (Chapter 6).

3.5.1 EDR Corpus

EDR corpus contains about 208,000 sentences collected from newspapers and
magazine articles. We use morphological and structural (bracketing) information
contained in the corpus.

Figure 13 shows an example of a sentence from EDR corpus with the morpho-
logical, and structural annotations. The following syntactic categories are used
in EDR corpus:

25 (noun). BIF (verb). & (adjective). TEEEF (adjective).
Bk (adnominal). BIF (adverd). ¥EHEE (conjunction). BF (num).
FRENF (interjection). BhE (particle). BYEDF (auziliary).

SBR (inflection). HETEEE (prefiz). BRFE (suffiz). 5 (symbol)

Note that the category “BiF” is assigned to a verb-stem and conjugation part
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1 B £ & I & # . 20 o fE & #BE Lo I °
BT 47 &7 DR AFEBTEER LF BF HFE REH ZE® ¥ BEE PEE LT

Figure 13. Example of EDR bracketed sentence.

adjectives and auxiliary verbs.

Generally speaking, elements of bracketed EDR sentences are finer than seg-
ments produced by our parser. We decide to correct dependency relation of
segments in the following way:

1. If our segmentation of a segment and the segmentation of EDR corpus
conflicts, the segment is assumed to modify the next segment.

2. Otherwise, the modifiee of segment is defined by the bracketing assigned to
an element in EDR corpus that matches the last part of modifier string.

Figure 14 illustrates this process. The upper part of the Figure 14 indicates
the structure of a bracketing in EDR, and the lower part of the Figure 14 indicates
the dependency relation derived from the structure.

In Figure 14, you can see that the second element in EDR corpus matches
the last element of the first segment. Suppose that the second element in EDR
corpus modifies the sixth element in EDR corpus. Since the sixth element in EDR
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1-}2 2->6 3->4 4->6 5-6 6->9 7->8 8->9
EDR -——— ]-L —_ll. ﬂ ¥ vy
E % AN 12 AR & ¥ 74 Vs
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ﬁ%é%&w'

SCH

Figure 14. Extraction of a dependency relation from a bracketed EDR sentence.

corpus belongs to the third segment, we conclude that the first segment modifies
the third segment. |

Some EDR sentences have bracketing errors. Consider the example of Fig-
ure 13. The actual order of the morphemes “2 0 ® & & &2 72> 7z ” should be
“2 0 f& & O &= ¥ 5 72 7, which contains two segments “2 0 & ®D” and “
Fe#27% 572" . But in the bracketed structure, the order of word “®” is permuted,
thus the segment “2 0f&%& D" modifies itself, which is a wrong dependency
relation. We do not use these sentences for both training and evaluation.

We delete sentences that fail to segment. correctly by our segment transducer
(because of the error of the morphological analysis), or that has wrong depen-
dency relation because of the errors in EDR corpus or crossing of two dependency
relations. As the result, the number of the whole training and evaluation sen-
tences becomes 206381.

3.6 Evaluation

We divide the bracketed sentences obtained so far into twenty files. One of these
. files is held out for evaluation and others are used for training.
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3.6.1 Evaluation Measure

As the evaluation measures, we use the following segment level and sentence level

precisions.

The Number of Segments whose
Modifiee Segment is Estimated Correctly

The Number of Segments whose ,
Modifiee Segment is Estimated by the System

Segment Level Precision =

The Number of Sentences in which
Modifiees of all the Segments
are Estimated Correctly
The Number of Sentences in which
Modifiees of all the Segments
are Estimated by the System

Sentence Level Precision =

3.6.2 Results of Segment Level Precision

Figure 9 shows the results under our model. The row in which Distance Features
is “” jndicates the results without Distance Probability (in other words, Dis-
tance Probability is always “1”). Figure 10 shows the results under the Collins’
model explained in section 3.3.3. Both of the model are trained by about 19,000
sentences, and evaluated by held out 10,000 sentences.

BGH has a six-layered abstraction hierarchy, in which more than 80,000 words
are allocated at the leaves. For the limitation of computer resources, we cannot
use all the combination of word classes (the combination of a modifier and modi-
fiee). We test the combinations of same depth of layers from second to the six-th.

In either experiment, the Head Collocation Model using six-th layer of 'Bunrui
Goi Hyou’(BGH)[37] exhibited highest precision in the BGH model. Therefore
“BGH” in the rest of this Chapter means the BGH model which uses the six-th
layer of 'Bunrui Goi Hyou’.

As can be seen from Tables 9, the model under LEX + dst2 shows the highest
precision. But the difference between the result of the LEX model and the POS
model is not so large.

Unexpectedly, in either model of LEX, POS, BGH, the precision under the

| model using dst1 is lower than the model that does not use Distance Probability.

This may be because when using exact count of segments as the distance measure,
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‘Table 9. Precision of correct dependency relations under our statistical model.

Head Features

Distance Features | POS LEX BGH Base Line
- 0.7615 0.8001 0.7710

dstl 0.6670 0.6836 0.6633
dst2 0.8649 0.8689 0.8524  0.6237
dst3 0.8637 0.8675 0.8524

dst4 0.8626 0.8674 0.8534

Table 10. Precision of correct dependency relations. Under the model equivalent

to Collins’ model.
Head Features
Distance Features | POS LEX BGH
dst1 0.7954 0.8146 0.7666
dst2 0.8131 0.8189 0.8094
dst3 0.8021 0.8169 0.7775
dst4 0.7722 0.7987 0.7483

the problem of data sparseness becomes more apparent, and the plausibility of the
estimated probability may decrease. In fact, the frequency of usage of Distance
Probability estimated from the cases fewer than 10 was 4009 for the dstl, in
contrast to the 398 for the dst2® . |

For all the variations of distance measure we tested, the BGH model performed
poorer than the POS model. This result was constant for changing the amount
of training data. One reason will be that the hierarchy of Japanese thesaurus
‘Bunrui Goi Hyou’ does not reflect the head words’ preferences for the dependency
relation. _

When evaluating Collins’ Model, we tested smoothing methods such as linear
interpolation used in Collins[6], and back-off method used in our model. Table 10

5 Evaluated with 10,000 sentences.
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shows the results of the method that exhibited higher performance. Under the
Collins’ model, LEX + dst2 exhibited the highest performance too.

As can be seen from Tables 9 and 10, our model exhibited higher performance
than Collins’ model. In the training of dependency probabilities in Japanese,
relation types ® are included in the conditional part of the probability estimation
of a dependency relation, which makes the problem of data sparseness severer
than the case of training in English. As the result, our model that separated
Head Collocation Probability and Distance Probability shows higher precision in
dependency analysis of Japanese sentences.

The following is the examples that have the modifier whose modifiee estimated
~ correctly in the LEX model, but incorrectly in the POS model. The sign “O”
shows correct modifiee of the modifier surrounded by a box, and the sign “X”
shows the estimated modifiee by our model (POS model).

o ¥54 - 5w, [FTFE|RLC, BFNy MO BENE HoTE
( The Dalai Lama had influence on East Tibet, especially on Lhasa)

o [[FO| BN, HBeEs, BpIC S,

(The outstanding character of the furnace was revealed.)

In the first example, the high collocation of the dependency relation “ [44 ]
% (noun-+wo) — H.[»IZ” does not override the low collocation of case particle “
% (wo)” and “IZ (ni)”.

In the second example, the dependency relation “[&F] @ #H7z” is a nat-
ural expression as you can see in the expressions such as “MgED EMN 7z (high
performance)”. But when you look closer to the lexical level, “SF? #EN7z (77)”
is unnatural, and the probability of the dependency relation “}F® — HFE (the
property of a furnace)” becomes higher than that of “YED — ENTY

On the contrary, the following is the example that has the modifier whose
modifiee estimated correctly in POS model, but incorrectly in LEX model.

o [rozz iz |EA By EH, FEFICIE BRH bol.

———

® For the equivalence in Collins’ model, see section 3.3.3
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precision (sentence level)

Figure 15. Precision of correct parses within n-best parses.

In this case, the frequency of the appearance of the word “& 5 is very large,
- and a noun phrase or an equivalent to a noun phrase would modifies “&H BH" with
the high probability.

As can be seen in the above examples, there is a case that using lexical level
information leads to wrong estimation. But in average, we can say that lexical
level information allows the model more accurate estimation of the dependency
probability, leading to higher precision under the LEX model in segment level.

3.6.3 Precision of Correct Dependency Structures

We evaluate the sentence level accuracy in this section. A sentence is regarded as
correct if the totally correct dependency structure is found in the n—best parses
of the parser, where n is a predetermined value.
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For the evaluation of sentence level precision, we used the LEX model for
Head Collocation Probability and dst2 for Distance Probability. We trained the
model with about 19,000 sentences, and evaluated the model with held out 10,000
sentences. -

In Figure 15, the x-axis shows the value of n when calculating n-best parses,
and the y-axis shows the value of sentence level precision. Figure 15 shows the
results with distinct line graphs, according to the number of segments in a sen-
tence. The maximum number of segments of the sentences in the evaluation data
was 28.

The possible number of dependency structures changes in accordance with
the number of segments in a sentence. For instance, a sentence with 6 segments
has 42 possible dependency structures, a sentence with 6 to 9 segments has 163
to 1430 possible dependency structures 7 . The linear growing number of phrases
in a sentence leads to the exponentially growing number of analysis, leading to
exponentially growing degree of difficulties to estimate correct analysis of the
whole dependency relations in a sentence.

Figure 15 shows that the sentence level precision for sentences with 7 to 9
segments accomplishes over 75%, by considering 10-best parses. In the case of
shorter sentences, whose numbers of constituent phrases are lower than 6, the
sentence level precision accomplishes nearly 95%, by considering 10-best parses.

The sentence level precision for the sentences whose numbers of constituent
phrases are between 10 and 28 is poor. We can say that is the predictable result,
considering its huge number of possible parses (4,862 ~ 0.e x 10°).

3.6.4 Evaluation for Dependency Relations

We examine the precision for each relation type as shown in Table 11. The first
column shows the relation types, which consists of a word, a ta.g, an conjugation
form. The second column in Table 11 indicates precisions. The third column
indicates the frequency of correct relation types. The right most column is the
total number of dependency relations.

For the training and evaluation, we used the LEX model for Head Collocation
Probability and dst2 for Distance Probability. we trained the model with about

Tkin) =30 k(i—1)*k(n—i+1);k(1) =k(2) =1

7




Table 11. Precision examined by dependency types.

relation type (word/tag/conjugation form) precision | correct | total
JFo75 5 [ B4R (/adjective/attributive) 0.9558 | 1039 | 1087
% /#Bh 5/ (wo/ case-particle/) 0.9415 | 7178 | 7624
0 /% 548 7 / (no/noun-conjuncting-particle/) | 0.9251 | 11210 | 12118 |
(= /¥ Bh%/ (ni/case-particle/) 0.9197 | 5901 | 6416
- ¥ % /EhF /27 (suru/verb/sentence-final) 0.9047 503 556
o755 /# A (/adjective/conjunctive) 0.8923 978 | 1096
¥ /iREEHEHEBIF / (to/verb-conjuncting-particle/) | 0.8878 696 784
7% /¥ Bh 5 / (ga/ case-particle/) 0.8856 | 5115 | 5776
/877 /7K (/verb/sentence-final) 0.8828 | 1379 | 1562
JEIE ) ¥ F (/verb/takei) 0.8594 | 721 | 839
7% /iR EE 4B 5 / (ga/ verb-conjuncting-particle/) | 0.8529 580 680
L /#%Bh% /(to/case-particle/) 0.8450 | 1586 | 1877
b /ElBhE / (mo/particle/) 0.8412 | 1706 | 2028 |
T /#8038 /(de/case-particle/) 0.8306 | 1015 | 1222
7% |41 3 | 7 (da/declarative/tekei) 0.8263 980 | 1186
" 13/8IBh 3/ (ha/particle) 0.8037 | 6276 | 7809
/B /7T (/verb/tekei) 0.8033 960 | 1195 |
ReHi% 3/ (/temporal-noun/) 0.7973 | 1192 | 1495
/33845 /(/common-noun/) 0.7599 | 1190 | 1566 |
/EhEA /# F (/verb/conjunctive) 0.7516 838 | 1115 |
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19,000 sentences, and evaluated the model with held out 10,000 sentences.

The frequency of the segments whose relation types have “I3” (topic-marking
particle), B¥48% % (temporal-noun), ¥:&% % (common-noun), Eh% (verb) in
conjunctive-form (verb modification form), are high, but the precisions of these
relation types are low. We can safely say that those relation types have great
influence on the performance of dependency analysis.

" The temporal-noun (F§#8% ) sometimes modifies verbs appearing far in

distance, while time and date expressions such as E=3 (spring), #A (morning), 3 A

(March), sometimes constructs compound nouns with neighboring nouns. This
is one of the reason that the precision of temporal-noun(F#H%& ) is low.
A noun + punctuation pattern is also a problematic case, because it can be a

 constituent of a coordinate structure. While it behaves like an adverb (temporal

noun and adverbial noun) or forms subordinate clauses (“$%%&, ”(in case), “¥&
B2 (as a result)).

The particle “ha(i%)” and “verb/conjunctive” can construct subordinate clauses
in Japanese, and in some cases, it is difficult even for humans to consistently de-
termine its modifiee.

Almost all of the relation types whose precision are lower than 70% also have
lower frequency in a training corpus® . These are &A1& FBIZFE (nominal noun
unit suffix), %E#EHEENF (noun conjunction particle), EIFFKIEF (adverbial
noun), JEAFERIEER ¥ (adjectival predicate suffix), BFEEHEIG (predicate
conjunctive particle), BIFIPEEERF (verbal suffix). These are all function words.
In our current implementation, all function words are further ramified by lexical
terms when defining relation types. It may be effective to define relation types,
s0 as not to distinguish relation types for the function words whose frequency in
the training corpus are low.

The coordinate structure and subordinate clause are major causes of ambi-
guity in long Japanese sentences. It is also difficult for humans to decide correct
dependency relations for the sentences with many subordinate clauses or coor-
dinate structures, because of the ambiguities of semantic level. For the cases
of topicalization, some linguists say that these modifiers modify more than one

8 In these relation types, only the relation type “% &'/&FAMZF#E 5/ has more than
100 frequency. Many of them are lower than 10.
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modifiees on its right.

One approach is to leave the difficult cases unspecified. This does not conflict
the purpose of using the system for other application such as information retrieval,
knowledge acquisition, and machine translation, because it is favorable to output
reliable partial parses rather than output unreliable full parses. But to judge
which dependency relation is reliable and which is unreliable is another problem.
Section 4 discusses this problem. |
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4. Application of Dependency Probability

Sufficiently high performance of dependency analysis will be great help for appli-
cations such as acquiring linguistic knowledge, machine translation, information
extraction and so on. The performance of dependency analysis we achieved in
Chzipter 3 is about 87% by the segment level precision, which is not sufficient for
these applications.

In the rest of this section, we will propose extended usages of the probabili-
ties that the basic statistical model (see section 3.3) assign to each dependency
structures (relations).

Section 4.1 describes statistical partial parsing method based on the probabil- |
" ities of dependency relations. In this section, we propose three measures that will
be effective for judging the plausibility of each dependency relation, and shows

these measures function properly for the statistical partial parsing.
| Section 4.2 describes statistical redundant parsing method based on the prob-
abilities of dependency relations. In this section, we use three measures proposed
in section 4.1, and shows some of those measures function properly for the sta-
tistical redundant parsing as well.

These ways are adaptable for the parser based on other statistical models that
assumes independence between dependency relations.

4.1 Partial Parsing

- The partial parsing is the method to output only reliable dependency relations
and achieve higher precision under an available statistical parser. In other words,
partial parsing is the method that achieves higher precision at the cost of lower
recall. To select plausible dependency relations, we need some measures of relia-
bility.

We propose the following three measures to select plausible dependency re-
lations. These measures are also used in the Redundant Parsing in section
4.2.
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Figure 16. Measures to select plausible dependency relations




Global After calculating n-best parses, sum up the probabilities of all
dependency relation that appear in the n-best parses. Then
normalize the total sum of the probabilities of each depen-
dency relation by the total sum of the probabilities of n parses.

Ratio/next Sort candidate modifiees of each segment according to the

- probability of each dependency relation, then calculate the
ratio of the probability of the first candidate to that of the
second candidate.

Local/norm Divide the probability of each dependency relation by the to-

' tal sum of the probabilities of candidate dependency relation.

In Global® , we set the value of n to 50. In Ratio/next, we consider that
the ratio between dependency probabilities can be distinctive factor for judging
plausibility of each dependency relation. In Local /norm, we consider that the
proportion of a probability to the total probabilities of candidate dependency
relations would be a good indicator for judging plausibility than the probability
of a dependency relation as it is. Note that Ratio/next and Local/norm
calculate only one-best parse, whereas Global needs to calculate 50-best parses.

4.1.1 Algorithm

By using the measures defined above, partial parsing is done by the following
steps.

1. Calculate the measures defined above (In the rest of this dissertation, we
call these measures as “confidence value”).

2. For each segment, choose the dependency relation that has the highest
~ confidence value.

3. For each dependency relation chosen in the previous step, if the confidence
value is larger than the pre-determined threshold, output the dependency

relation.

—

® For the detail, see [20]
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4.1.2 Evaluation Measure

" The number of estimated dependency relations by using partial parsing method
changes in accordance with the threshold in step 3. We evaluate the performance
of partial parsing method by the following segment level precision and coverage.

The Number of Segments whose
Modifiee Segment is Estimated Correctly

The Number of Segments whose
Modifiee Segment is Estimated Uniquely

Segment Level Precision =

'The Number of Segments whose
Modifiee Segment is Estimated Uniquely

The Total Number of Dependency Relations

Segment Level Coverage =

4.1.3 Results

We used the LEX model for Head Collocation Probability and dst2 for Distance
Probability. Figure 17 shows the relationship between precision and coverage
when changing the threshold used in the step 3 in section 4.1.1. The z-axis
shows coverage and y-axis shows segment level precision.

Figure 17 shows that all three measures function properly for statistical partial
parsing. In other words, by changing the threshold value, we can achieve desirable
degrees of precision. | '

Comparing three measures defined above, Local/norm and Ratio/next be-
haves almost equally. Global exhibits a little lower precision in the range of 0.4
to 0.9 of the coverage, but a little higher precision in other range coverage. And,
when using Global, coverage does not become lower than 0.28, which means
28% of segments have unique modifiees in 50-best parses, thus confidence value
takes the maximum value “1”. As a result, these relations are always chosen as
a plausible dependency relations by the partial parser.

In terms of analysis speed, Local/norm and Ratio/next only need to cal-
culate the best analysis, whereas Global needs to calculate 50-best parses, and
results in slower partial parsing speed. We also test Global with 100-best parses;
but the precision does not improve so much (about 0.5 % at most), although the
analysis speed becomes much slower.
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Figure 17. Relationship between precision and coverage.
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In conclusion, at least under our statistical model, partial parser should use
Local/norm or Ratio/next than Global.

4.2 Redundant Parsing

The redundant parsing is the method to output all equally plausible dependency
relations of the same modifier, and achieve higher recall under an available sta-
tistical parser. In other words, redundant parsing is the method that achieves
higher recall at the cost of lower precision. To select equally plausiblé dependency
relations, we need some measures of reliability.r |

The same measures defined in section 4.1 can be used for Redundant Parsing.

4.2.1 Algorithm

1. Calculate confidence values (defined in section 4.1) for all the dependency
relations in a sentence.

2. Output all the dependency relations in the best parse of a sentence.

3. Output all the dependency relations whose confidence values are higher
than the pre-determined threshold.

4.2.2 Evaluation Measure

The number of over-generated dependency relations by using redundant parsing -
changes in accordance with the threshold in step 3. We evaluate the performance
of redundant parsing by the following segment level recall and redundancy rate.

The Number of Segments whose
Modifiee Segment is Estimated Correctly

The Total Number of Dependency Relations

Segment Level Recall =

The Number of Dependency Relations
that System Outputs

The Total Number of Dependency Relatio

Segment Level Redundancy Rate =
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4.2.3 Results

We use LEX model for Head Collocation Probability and dst2 for Distance Prob-
ability.. We use the plausibility measure defined in Chapter 4.1.
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Figure 18. Relationship between recall and redundancy rate.

Figure 18 shows the relationship between recall and redundancy rate when
changing the threshold used in the step 3 in section 4.2.1. The z-axis shows

‘redundancy rate and the y-axis shows segment level recall.

It is seen that Global and Ratio/next function properly for statistical redun-
dant parsing. In other words, by changing the threshold value, you can achieve
desirable degrees of recall. On the contrary to the Figure 17, Figure 18 shows that
Local/norm exhibits extremely poorer performance. Global achieves about 1
% higher recall than Ration/next. But when using Global, recall does not
become higher than 99%. This is because how lower the threshold value is set,
it cannot achieve 100% recall, if n-best parses do not include whole correct de-
Pendency relations. Because the linear growing number of segments leads to the
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exponentially growing number of possible analysis (see footnote in section 3.6.3),
using 100-best instead of 50-best in Global does not change so much the upper
limit of redundancy rate. In fact, comparing the redundancy rate between using
50-best parses and using 100-best parses in Global, the difference is only 0.6%.

In conclusion, ‘at least in our model, Ration/next performs best for the
purpose of partial or redundant parsing. Besides, if speed is not so important
and the accuracy does not need be more than 99%, we should use Global.
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5. Statistical Model for Subordinate Clauses

In dependency analysis of a Japanese sentence, among various source of ambi-
guities in a sentence, dependency ambiguity of subordinate clauses is one of the
most problematic ones. In general, dependency ambiguities of subordinate clauses
cause scope ambiguities of subordinate clauses, which result in enormous number
of syntactic ambiguities of other types of phrases such as noun phrases.

In this Chapter, we propose a statistical model of subordinate clauses which
takes into account the scope embedding preference of subordinate clauses manu-
ally analyzed by Minami [34], Minami [35] and Shirai [44] (see Chapter 2.4).

The most important point of the statistical model of subordinate clauses is
" that the model considers the “beyond” relation between two segments. Most of all
statistical parsing model including our basic statistical model defined in Chapter 3
consider the “modify” or “not modify” relations, but the model described here
considers “modify” or “beyond” relations.

The model learns the relation of scopes of two subordinate clauses (which one
of two scopes is wider or narrower) from a corpus, as a tendency of “beyond” or
“modify”, based on the combination of modifier’s features and modifiee’s features.

The other point is, we select effective set of features automatically by a sta-
tistical method. we employ the decision list learning method of Yarowsky [52],
where optimal combination of features are selected and sorted in the form of
decision rules, according to the strength of co-relation between features and the
dependency preference of the two subordinate clauses.

5.1 Definition of Subordinate Clauses

This Chapter gives the definition of what we call a “Japanese subordinate clause”
throughout this paper. First, as we described in section 3.4, an input sentence is
segmented into a sequence of segments. Then, a clause in a sentence is represented
as a sequence of segments.

Since the Japanese language is a head-final language, the clause head is the
final segment in the sequence. Each segment generally consists of a set of content
words and function words. For the detailed grammatical definition of a Japanese

subordinate clause, see Appendix.
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5.2 Learning Dependency Preference

In this Chapter, dependency preference between two segments means a tendency
whether anterior segment modifies or beyond posterior segment. This relation has’
a strong relation to scope embedding preference (see section 2.4) of subordinate
clauses. | |

Roughly speaking, the relation between scope embedding preference of sub-
ordinate clauses and dependency preference is as follows™®
Dependency Preference of Japanese Subordinate Clauses

1. A subordinate clause can modify another subordinate clause which inher-
ently has a scope of the same or a broader breadth.

2. A subordinate clause cannot modify another subordinate clause which in-
herently has a narrower scope.

5.2,1 Decision List Learning

A decision list [40, 52] is ‘a sorted list of the decision rules each of which decides
the value of a decision D given some evidence E. Each decision rule in a decision
list is sorted in descending order with respect to some preference value, and rules
with higher preference values are applied first when applying the decision list to
some new test data.

First, let the random variable D representing a decision varies over several
possible values, and the random variable E representing some evidence varies over
‘1’ and ‘0’ (where ‘1’ denotes the presence of the corresponding piece of evidence,
‘0’ its absence). Then, in the decision list learning method of [52], given some
training data in which the correct value of the decision D is annotated to each
instance, the conditional probabilities P(D=z | E=1) of observing the decision
D=z under the condition of the presence of the evidence E (E=1) are calculated
and the decision list is constructed by the following procedure.

1. For each piece of evidence, calculate the likelihood ratio of the largest con-
ditional probability of the decision D=z (given the presence of that piece

10 For a detailed discussion of the relation between scope embedding preference and mod-
ify /beyond relation of subordinate clauses, see Utsuro et al. [51].
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of evidence) to the second largest conditional probability of the decision

D=$22
P(D=z, | E=1)

Then, a decision list is constructed with pieces of evidence sorted in de-

log,

scending order with respect to their likelihood ratios, where the decision of
the rule at each line is D=z, with the largest conditional probability.!?

2. The final line of a decision list is always defined as ‘a default’, where the
likelihood ratio is calculated as the ratio of the largest marginal probability
" of the decision D = z; to the second largest marginal probability of the

decision D=1x:
P(D = .’Bl)

log: 5 (D=2,
The ‘default’ decision of this final line is D=z, with the largest marginal
probability. '

5.2.2 Model for Dependency Preference of Subordinate Clauses

In the model of dependency preference of subordinate clauses, decision D and
evidence E is defined as follows |

The decision D: represents the dependency relation of two subordinate clauses
in a sentence and varies over the two values “modify”, where the anterior head
segment modifies the posterior head segment, and “beyond”, where the anterior
head segment modifies the head segment of another subordinate clause which
follows the posterior head segment.

The evidence E: represents a pair (F1, F3), where as F; and F5, we consider
every possible subset of the feature sets F; and F, which Seg; and Seg, (the
head segments of the given two subordinate clauses) have, respectively.

Table 12 gives features of subordinate clauses used for decision list learning.

1 [52] discusses several techniques for avoiding the problems which arise when an observed
count is 0. Among those techniques, we employ the simplest one, i.e., adding a small constant
@ (0.1 < a < 0.25) to the numerator and denominator. With this modification, more fre-
quent evidence is preferred when there exist several evidences for each of which the conditional
Probability P(D=z | E=1) equals to 1.
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All the subset of features of modifier and modifiee segments can be sorted in
descending order with respect to the preference value defined in previous section,
and combination of features with higher preference values are applied first when
applying the decision list to some new test data. In other words, effective sets of
features among all possible sets of features are selected based on the likelihood
ratios between the probability of “beyond” or “modify” relation of two subor-
dinate clauses. Next section describes the way to use learned decision lists to
syntactic disambiguation of subordinate clauses in a Japanese sentence.

5.3 Calculation of Preference Value for Subordinate Clause

Dependencies

Next, we describes how to analyze dependencies of subordinate clauses in one
sentence according to the probabilities of the dependencies between two subordi-
nate clauses which are estimated from the decision list for dependency preference
of subordinate clauses. '

Suppose that an input sentence S contains n — 1 subordinate clauses and let
Segi,...,Segn_1, Segn be the head segments of those n — 1 subordinate clauses
plus the sentence-final segment. Let us denote the sequence of those segments as
Ssbi

Ss = Seg,...,Segn_1,5¢egn

Next, let mod(Seg;) be the segment which Seg; modifies. For simplicity, we
assume that the modifiee segment mod(Seg;) of Seg; is one of the subsequent
segments Se€git1, - - -, 5€Gn—1, 5€gn.

Then, we consider all the dependencies mod(Seg1), - - ., mod(Segn—1) among
the sequence Seg, . .., Segn_1, Segn of the head segments of subordinate clauses
in the sentence S, and denote them as Dep(Ss): '

Dep(Ss) = mod(Seg:), .- -, mod(Segn-1)

Here, we assume that no modification crosses to other modifications in a sentence-
In order to calculate the preference value of the dependencies Dep(Ss), first
we estimate the probability P(D =z | (Seg;, Seg;)) of the decision D=z given
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.

# of
Feature Type Features Each Binary Features
" Punctuation 2 with-comma, without-comma
adverb, adverbial-noun, formal-noun, temporal-noun,
quoting-particle, predicate-conjunctive-particle,
Grammatical 17 topic-marking-particle, copula, sentence-final-particle
(some of these features have distinction of
segment-final /middle)
onjugation Form of stem, base, mizen, ren’you, rentai, conditional,
Segment-final 12 imperative, ta, tari, te, conjecture, volitional
Conjugative Word
adverb (e.g., ippou-de, irai)

Lexical adverbial-noun (e.g., tame, baai, you, hou-ga)
lexicalized forms of formal-noun (e.g., no-ha, koto, koto-ga)
rammatical’ features, 235 temporal-noun (e.g., ima, shunkan, mae-ni),
with more than 9 - quoting-particle (%o),

occurrences predicate-conjunctive-particle (e.g., ga, kara, nagara),
in EDR corpus) topic-marking-particle (e.g., ha, mo, dake, nara),

copula (e.g., dearu), sentence-final-particle (e.g., ka, yo)

e

Table 12. Features‘of Japanese subordinate clauses
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- a pair (Seg;, Seg;) as the maximum of the probabilities P(D=z | (F;, Fj)) for
every possible pair of (F;, F;) and denote it as P(D=z | (Seg;, Seg;)):
P(D=z| (Segi, Seg;)) = max P(D=z|(F;F}))
o Fj
Then, we introduce the notion preference value of the dependency of Seg;’s modi-

fying Segy and denote it as Q(D= “modify” | (Segi, Segy))- The preference value
Q(D=“modify” | (Seg;, Segx)) is calculated by the procedure below:

1. In the case where k < n holds:
Q(D = “modify” | (Segi, Segx)) is calculated as the geometric mean of the
probability of Seg;’s modifying Seg and those of Seg;’s modification being
beyond Seg; (j=i+1,...,k—1).12 |

Q(D=“modify” | (Segi, Segr)) =
k-1
(P(D=“modify” | (Segi, Segr)) X [] P(D=“beyond” | (S’egi,Segj)))

j=it1

L
%=

2. In the case where k=n holds:
Since the segment Seg, is sentence-final, we can assume P(D= “beyond” |
(Seg;, Segn))=0 and P(D=“modify” | (Seg:, Seg))=1fori=1,...,n—1
Then, Q(D = “modify” | (Seg:, Segy)) is calculated as the geometric mean of
the probabilities of Seg;’s modification being beyond Seg; (j=1i+1,...,n—

1).

3
|
A

Q(D=“modify” | (Segi, Segr)) = ( 11 P(D="“beyond” | (Seg;, Ségj)))#

j=i+1

Finally, given the sequence Sy, of the head segments of subordinate clauses and
their dependencies Dep(Sy), its preference value Q(Ss, Dep(Sq)) is calculated
as the product of the preference value of each dependency:

n—2
Q(Sss, Dep(Sw)) = [ Q(D=“modify” | (Segi,mod(Seg;)))
i=1

12 We calculate the preference value by the geometric mean rather than the product in order
to make a fair comparison among the cases of different number of intermediate segments Seg;s-
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Table 13. Statistics of test sentences extracted from EDR corpus

T Subsets Full Set
‘ ~ Sentences Including Sentences Including
More Than One One or Zero
Subordinate Clauses Subordinate Clause
# of Sentences 3,128 (30.3%) 7,192 (69.7%) 10,320
4 of Segments 32,038 (39.9%) 48,281 (60.1%) 80,319

Ave. # of Segments
o / Sentence

# of Subordinate Clauses — —

Dependency Analysis Precision
of Basic DA Model (Chapter 3)

Segment Level 85.3% 86.7% 86.1%
Sentence Level (Best One) 25.4% 47.5% 40.8%
Sentence Level (Best Five) 35.8% 60.2% 52.8%

Then, the dependency which gives the highest preference value is selected as the
estimation DEp(Ssb) of the dependencies among the sequence Sy of the head
segments of subordinate clauses. .

D’ép(ssb) = argmax Q(Ss, Dep(Ssp))
Dep(Ssp) )

9.4 Experiments and Evaluation

54.1 Test Data

As shown in Table 13, 5% test data set of the whole EDR corpus consists of
about 10,000 sentences, and about 30% of them have more than one subordinate
clauses per each sentence, i.e., having ambiguities of dependencies of subordinate
clauses. The number of those ambiguous subordinate clauses is 4,207 in total.
As the test data sets, we use the following three subsets of 5% test data set
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of whole EDR corpus.

1. “Whole Data Set”

This is the collection of 3,128 sentences in Table 13, each of which includes
more than one subordinate clauses.

2. “Sentences with at least One Initial Dependencies”

This is a subset of the data set “Whole Data Set”, where each member of
it is a sentence which has at least one initial dependency with the fixed
probability 1.

3. “Sentences with Complete Initial Dependencies”

This is a subset of the data set “Sentences with at least One Initial Depen-
dencies”, where each member of it is a sentence for which all the dependen-
cies of its subordinate clauses have fixed probabilities 1.

5.4.2 Evaluation Method

We evaluate the estimated dependencies of subordinate clauses by integrating |
them into basic statistical dependency analyzer of a whole sentence described
in Chapter 3. sentence. First, we estimate the dependencies of subordinate
clauses in a sentence by the procedure of Chapter 5.3, then, regard them as
correct dependencies when parsing under the basic dependency analysis model*®
in Chapter 3. More specifically, we assign the probability 1 to the dependencies
of subordinate clauses estimated by the procedure of section 5.3, and fix this

probability during the statistical dependency analysis of the whole sentence.

5.4.3 Results

We change the threshold of the probability P(D | E) in the decision list and plot
the trade-off between threshold and precision 3.6.1. When we use the learned -
decision list, we ignore decision rules whose probabilities (conditional probabilities
for the decision D of each decision rule) are lower than the threshold. Figures 19

13 The basic statistical dependency analyzer in Chapter 3 is trained using the same training
data set as used in the decision list learning of section 5.2.1.
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and 20 show the results of the segment level and sentence level precisions for the
three test data sets as well as the upper and lower bounds of the precisions.

The upper bounds of the segment level and sentence level precisions are es-
timated by usmg basic dependency analysis model in Chapter 3 with correct
dependencies of subordinate clauses extracted from the bracketing of EDR cor-
pus. ,

The lower bounds of the segment level and sentence level precisions are ob-
tained by parsing under the basic statistical model in Chapter 3 with no initial
dependencies of subordinate clauses.

The result of evaluating segment level precision in Figure 19 shows that the
- precision for “Whole Data Set” is maximized when the threshold is 0.8, and
' its maximum is greater than the lower bound by about 1.7%, even though the
segment level coverage of estimating dependencies of subordinate clauses is about
80%. This result means that the partially estimated dependencies of subordinate
clauses are still useful for improving the segment level precision of the dependency
analysis of the whole sentence.

Next, the result of evaluating sentence level precision in Figure 20 shows that
- the partially estimated dependencies of subordinate clauses are also useful for
improving the sentence level precision of the dependency analysis of the whole
sentence. One surprising result is that the sentence level precision calculated using
top five results almost reaches the upper bound when the threshold is below 0.7.

5.4.4 Comparison between Related Works

This section discusses the merit of our method described in this Chapter compared
with the conventional statistical parser ([14, 17, 10, 51]). The main points of
conventional statistical parser that differs from our method are the following
three points. -

(1) Consider the cases where two segments are a dependency relation or not
dependency relation, and estimate the probability of dependency relation
by the following definition (or pursuant definition):

Two Segments are a Dependency Relation
The Frequency of Two Segments Appears in a same Sentence
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Figure 19. Changes of segment level precisions of dependencies of a whole sentence
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Figure 20. Changes of sentence level precisions of dependencies of a whole sen-

tence
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(2) Define the probability of dependency analysis of the sentence as a product
of the probabilities of all dependency relations in a dependency structure,
and find the dependency structure that has highest probability.

(3) Among the above conventional statistical model except Haruno [17], fea-
tures used for the estimation of the probability of a dependency relation is
fixed and there is no explicit way to select features automatically. And in
Haruno [17], they use decision tree learning [38] method, not decision list

learning.

To compare our method with the statistical model that satisfies above (1)
and (2) conditions, we consider the model that is added the following changes
to the decision list model defined in section 5.2.2 and the parsing framework of
subordinate clauses in a section 5.3.

e Add “end-of-sentence” features to the decision list model (conventional sta-
tistical models use this feature).

e Consider two value “modify” where the anterior head segment modifies the
posterior head segment, and “not modify” where the anterior head segment
modifies the head segment of another subordinate clause which follows the
posterior head segment, as the decision D.

e As a preference value of the dependency Q(D = “modify” | (Segi, Segr))
of Seg;’s modifying Segy, use the following equation: Q(D = “modify” |
(Seg;, Segr)) = P(D=“modify” | (Seg Segr))

For this model, decision list model was learned by the training data extracted
from 95% of EDR bracketed corpus. In the resulting decision list, D = “not
modify” becomes default rules, and the probability of this default rule is P(D =
“modify”) = 0.6180. By using this decision list, we evaluated the precision of
dependency analysis.

The resulting coverage of both segment level and sentence level were very low
compared with our model, for the same threshold P(D | E). From this result,
we can say that our model outperforms the conventional statistical models which
considers “modify” or “not modify” relation and only uses the probability of

“modify”.
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Next, we compare our method with Haruno [17] which uses decision tree model
to automatically select effective features.

In decision tree learning, features that decrease an entropy on target class
most are selecied, and a training set is divided to subsets according to the value
of the feature. In Haruno’s [17] study, each step of decision tree construction,
only one of the feature of modifier and modifiee is examined, in other words, a
set, of features of a modifier and modifiee that become effective for the first time
when combined may be overlooked. To examine the effect of the combination
of modifier’s features and modifiee’s features to the parsing accuracy, we applied
decision tree method (Quinlan [38)]) to learn dependency preference of subordinate
- clauses.

We configured the set of features based on the features used in Haruno [17].
The target class is “modify” and “beyond”, as is the case of decision list learning
in section 5.2.2. '

The resulting precision of the parsing of a whole sentence under decision tree
model was lower than that of decision list model for almost all the value of
coverage (defined by the threshold to the lower limit of probabilities at the leaf
nodes of a decision tree). The decision list model outperformed about 2~3% in
terms of segment level precision. This result suggests that in decision list learning,
the combination of modifier’s features and modifiee’s features contributes to the
accuracy of the parsing of a whole sentence.

5.5 Conclusion

In this section, scope embedding preference of subordinate clauses is exploited as
a useful information source for disambiguating dependencies between subordinate
clauses. |

We successfully increased the accuracies of both segment level and sentence
level dependencies thanks to the estimated dependencies of subordinate clauses.

In this Chapter, the model first (partially) disambiguated dependency rela-
tions of subordinate clauses, then performed the dependency analysis of a whole
sentence. But this is not necessarily the best way to integrate dependency pref-
erence of subordinate clauses with our statistical model (Chapter 3). We need to
study the best way to incorporate dependency preference of subordinate clauses
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into our statistical model.

Note that the segmentation of subordinate clauses in this Chapter is not
always the same as the segmentation used in Chapter 3. When considering to
construct a uniform statistical parser, we need the definition of the segment that
fits to the analysis of subordinate clauses.

Instead of using geometric mean of the probability of Seg;’s modifying. Seg;
and those of Seg;’s modification being beyond Seg; (j=i+1,...,k — 1) as the
preference value Q(D = “modify” | (Seg;, Segk)), the value of product exhibited
higher precision when the lower limit of the probability P(D | E) is high. One of
the reasons is that the product put a bias to the shorter distance of dependency
relations (because the number of probabilities multiplied is fewer). This result
suggests that considéring distance information on dependency relation in decision
list learning would result in higher precision of dependency analysis of subordinate
clauses in a sentence.
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6. Statistical Model for Coordinate Structure

In Japanese sentences, coordinate structure is one of the major causes of syntactic
ambiguity in long sentences, and leads to the difficulties in dependency analysis
of Japanese sentences. The main problem is to identify the scope of constituents
of coordinate structures.

A conventional rule based parser of Japanese sentences handles coordinate
structures by hand-coded heuristics (Kurohashi[26],Suganuma [48]). |

These approaches first identify the existence of coordinate structures by find-
ing key words or patterns that give an evidence of the existence of a coordinate
structure, and then identify the scope of the coordinate structure by examining

"~ the word sequence similarity or structural similarity. But these keys for coordi-

nate structures or heuristics to find the scope of coordinate structures must be
developed by a language expert. Constructing and maintaining these rules is a la-
borious task. Another disadvantage is that the processes of coordinate structure
identification and dependency analysis are sequential. In other words, depen-
dency analysis is performed based on the identified coordinate structures, then
the failure of coordinate structure identification, directly influences the accuracy
of dependency analysis.

In this Chapter, we do not resort to extra heuristics for finding the similarity
between the constituents of a coordinate structure. We propose a method to
handle the coordinate structure identification and the dependency analysis in a
uniform way. .

The final probability of dependency structure reflects the existence of the
coordinate structures from two reasons. The first reason is that the existence
of coordinate structures affects the distance features of dependent pairs. The
second reason is that a coordinate structure has multiple head words, and the
probability of dependency relation is calculated from the multiple probabilities
defined by these multiple head words. In this dissertation, we use the harmonic
mean of multiple dependency probabilities for such cases of multiple head words.
This comes from the natural intuition that every element of coordinate structure
have an equally high probability to modify the same modifiee or to be modified
from the same modifier. The harmonic mean has a tendency to get more influence
by the lower probability than the simple mean of probabilities.
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6.1 Definition of Coordinate Structures

According to Shutou [46], there are three types of coordinate structures.

(a) Predicate coordinate structure (constituents of a coordinate structure has
‘sentence form)

(b) Nominal coordinate structure (constituents of a coordinate structure are

noun phrases)

(c) Partial coordinate structure (constituents of a coordinate structure are a
sequence of segments except the right most segment in a sentence form)

The followings are examples of those coordinate structures. —

(a) 15FIIEHRDAI FTLH AL FOEEZDELT,, HIRASHER%E 2T,
ShuFurrxv 7., ' .
In fifteen minutes, they broke the scram of Meiji University, Izawa counter-atta
and Latu kicked long.,

(b) ST, FFHEGE., & 0D ERSH., BREACRE L., BH5HEE ¥,
K& 7 BEN b 5o

For a time, their are important problems such as political reform, deregulation,,

reformation of quasi-non-governmental organization,, and decentralization.,

() BREBOBES E BK, LZ0R EThE, BTV
Taiyaki of Naniwaya wears a yukata, and others a padded kimono.,

Among these coordinate structures, we deal with the coordinate structure of
type (b) and (c). In this dissertation, the dependency relation of type (a) is
treated as a dependency relation between clause level dependency.

6.2 How to Learn from Coordinate Structures

There are three important points in our framework of coordinate structure anal-
ysis.

e The model does not use any heuristics to calculate the similarity between
the constituents of a coordinate structure.
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e The model performs dependency analysis and coordinate structure analysis
at the same time, and selects the most likely structure.

e The model learns the probabilities defined in Chapter 3 (Head Collocation
Probdbilz'ty and Distance Probability). The method we explain in this Chap-
ter is available for other statistical dependency analyzer that assumes the
independency of dependency relations.

The existence of a coordinate structure influences the set of positive cases
(features set of dependency relations) in training data, in other words, we have
to reconstruct the training corpus so as to add new correct dependency pairs and
 change distance features used for the probability estimation of Distance Proba-
bility defined in Chapter 3.

Figures 21,22 and 23 give examples in which modifier or modifiee segments
have coordinate structures.

For instance, in Figure 21, both segment “4” and segment “7” modify the
segment 8. If the structure in Figure 21 has a flat structure, the distance of
dependency relation between the segment “4” and the segment “8” is “4”, but if
it constructs a coordinate structure, the distance becomes 1. At the same time,
the model learns a new dependency relation (coordinate relation) between the
segment “4” and segment “7”.

The coordinate structure also influences the features of dependency relations
between the segments before the coordinate structure and the elements in the
coordinate structure (Figure 22). The distance feature between the segment “0”
and “7” is 3 in Figure 22, but 7 if the structure in Figure 22 has a flat structure.

In case both the modifier and modifiee have coordinate structures (in Fig-
ure 23)), every possible combination of the elements in the modifier coordinate
structure and those in the modifiee coordinate structure becomes training data.

In the training phase, we have an option whether the model distinguishes
the statistics of coordinate relations and normal dependency relations or not. In
section 6.5, we evaluate the parsing accuracy for both of these cases.
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[1 segment(bunsetsu)
———— dependency relation

Figure 21. Modifier has a coordinate structure.

coordinate relatio

[ segment(bunsetsu)
—— dependency relation

Figure 22. Modifiee has a coordinate structure.
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[1 segment(bunsetsu)
—— dependency relation

Figure 23. Both modifier and modifiee have coordinate structures.

6.3 Parsing Algorithm

We extend the statistical CKY algorithm described in section 3.4.4 to handle
coordinate structures. ‘

To construct a parse tree for a particular range of a sequence of segments,
CKY algorithm combines two adjabent parse trees that cover the same range
of the sequence of segments, where the left most segment of the anterior parse
tree coincides with the left most segment of the target parse tree, and the right
most segment of the posterior parse tree coincides with the right most segment.
Figure 24 gives an example of this process. In Figure 24, the parser constructs
a parse tree that covers the segments from “1” to “7”, by considering two sub-
trees, the anterior one covers the segment from “1” to “4”, and the posterior one
covers the segment from “5” to “7”. To combine these subtrees means to add
a dependency relation from the head segment of anterior sub-tree to the head
segment of posterior sub-tree. In this example, there can be 5 more possible pairs
of sub-trees.

In addition to these normal structures, we consider the possibilities to con-
struct coordinate structures. Figure 25 gives the case to construct a coordinate
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head segment
[ 1 segment(bunsetsu)
—— dependency relation

Figure 24. Normal construction of a new candidate partial parse in CKY algo-
rithm.

88




structure from the same pair of sub-trees in Figure 24.

%5 o R S,

coordinate structure with 2 heads

head segment
1 segment(bunsetsu)
—— dependency relation

Figure 25. Coordinate structure construction in CKY algorithm.

Note that both parse trees in Figure 24 and Figure 25 have the same number of
dependency relations, which means the product of the probabilities of constituent
dependency relations can be used as a ranking measure to compare with the
competing syntactic structures.

By simply adding the possibility of a coordinate structure at each step of
CKY algorithm, we can achieve a uniform treatment of dependency analysis and
coordinate structure identification. Note that this procedure enables us to treat
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coordinate structure with 3 heads

head segment
segment(bunsetsu)
dependency relation
coordinate relation

Figure 26. Multiple coordinate structure construction in CKY algorithm.
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the coordinate structures which consist of more than two elements without any
other mechanism. The only thing to do for the coordinate structure is to keep
multiple heads for later use. Figure 26 illustrates this situation.

' 6.3.1 Calculation of the Dependency Probability

The difference of a coordinate structure and a normal structure appears when
- calculating the probability of dependency relations whose modifier or modifiee is
among the head segments of a coordinate structure (by changing Head Collocation
Probability (see Chapter 3)) or when there are coordinate structures between
modifier and modifiee (by changing Distance Probability (see Chapter 3)).

Figures 27, 28 and 29 give four possible cases, in which at least the modifier or
the modifiee is an element of head segments in a coordinate structure. Figure 30
gives the case where the modifiee substructure contains a coordinate structure in
it.

Figure 27 is the case that the root node of modifier structure has a coordinate
structure. Figure 28 is the case that the root node of the modifiee structure has
a coordinate structure. Figure 29 is the case that both of the root nodes of the
modifier structure and modifiee structure have coordinate structures.

In these Figures, the left structure (subtree) correspond to the modifier sub-
structure, and the right structure correspond to modifiee substructure. The ar-
rows indicate the dependency relations whose probabilities must be calculated
when constructing largér structures. The shaded rectangles indicate head seg-
ments in each substructure.

In the rest of this section, first, we explain the cases where the dependency
probability is calculated from multiple dependency relations (Figure 27, 28 and
29). Then, we explain the case where the coordinate structures appear inside
of the modifiee substructure, and has influence on the calculation of Distance
Probability (Figure 30).

Calculation of the Dependency Probability from Multiple Heads

Figures 27, 28 and 29 illustrate the basic patterns where coordinate structures
have influence on the calculation of dependency probabilities. we calculate the
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coordinate structure 1

head segment
segment(bunsetsu)
—» dependency relation

Figure 27. Modifier is a coordinate structure.

coordinate structure 1

head segment
segment(bunsetsu)
—» dependency relation

Figure 28. Modifiee is a coordinate structure.
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coordinate structure 1 coordinate structure 2

head segment
segment(bunsetsu)
dependency relation

Figure 29. Both modifier and modifiee are coordinate structures.

coordinate structure

O D f
A L .
eI

'head segment

; i segment(bunsetsu)

— dependency relation

Figure 30. There are coordinate structures between a modifier and a modifiee.
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dependency probability of every combination of head segments in the coordinate
structure of the modifier and the modifiee.

If the modifier is the structure that has n head segments and the modifiee is
the structure that has m head segments, the number of total dependency relations
becomes 1 X m.

When we calculate the probability of a dependency relation (at least either
the modifier or the modifiee has a coordinate structure), we must answer the
following questions: |

1. How can we define distance features, when calculating Distance Probability
defined in section 3.3, for the every possible combination of the modifier
head segments and the modifiee head segments ?

2. How can we calculate the final probability from all the possible combinations
‘of the modifier heads and the modifiee heads

Because Japanese is a head final language, the distance features depend on the
modifiee structure. Consider the example in Figure 29. In the case of dependency
relations that modify the segment “7”, we use the distance features of the upper
substructure (consisting of segments “5”, “6” and “7”) in the modifiee tree, while
in the case of dependency relations that modify the segment “9”, we use the
distance features of the lower one (consisting of segments “8” and “9”).

For the second points, we use the harmonic mean of the probabilities of possi-
ble dependency relations. The coordinate structure has multiple heads, and the
probability of dependency relation is calculated from the multiple probabilities
defined by these multiple heads. In this dissertation, we use the harmonic means
of multiple dependency probabilities. This comes from the natural intuition that
every element of coordinate structure should have close probability values to mod-
ify the same modifiee or to be modified from the same modifier. The harmonic
mean. has a tendency to get more influence by the lower probability than the
simple mean of probabilities.

For the n probabilities of dependency relations, the harmonic mean can be
calculated by the following equation:
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=1 1/p(3)

Py, : the harmonic mean of n probabilities.

th =

p(i) : the probability of n-th dependency relation

Influence on Distance Probabz’lity

Figure 30 illustrate the case where there are coordinate structures in the inside
(not the top node) of the modifiee structure. On the contrary to the above cases,
this pattern has single modifier and single modifiee, but the distance features
changes by the existence of the coordinate structures.

In our framework, each structure (including coordinate structure) has the dis-
tance features (information about the number of segments) in it. For the distance
features of a coordinate structure, we simply use the righf most substructure of
the coordinate structure.

6.4 Training and Test Corpora

For the training and evaluation for the statistical model of coordinate structures,
we use Kyoto University corpus [27]. Kyoto University corpus not only has anno-
tation of dependency relation, but also has annotation of coordinate structures,
while EDR corpus has no annotation of coordinate structures.

6.4.1 Kyoto University Corpus

Kyoto University parsed corpus consists of the articles of Mainichi newspaper
from ’January 1st to 10th, 1995 (about 10,000 sentences.), the editorial articles
from ’January 11th to June 30th, 1995 6/30 (about 10,000 sentences). These texts
are morphologically analyzed by JUMAN][28], and syntactically analyzed by KNP,
and then errors are corrected manually. Kyoto University corpus has segment
information, then we train the statistical model based on the segmentation of
Kyoto University corpus. We only need to assign segment features when learning
from Kyoto University corpus.
Kyoto University corpus distinguishes four kinds of dependency relations:
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Coordinate Relation

By F—A%+
X, *—P
¥— %
AT *

Dependency Relation in a Partial Coordinate Structure

oy FE—I

o8
KERIZ, *=——P
J—br&—1
5 0
=BRiZH
ALTWwA, *
Apposition

1) BEZ—
e, *—A |
D |

=4 T

AT, *

Normal modification relation

[#eAhsE > 7> (he wrote.)| (a case element modifies a predicate),
[B£ DA% (my book)] (a noun modifies a noun),
[ 2724 %T (written book)] (adnominal clauses modifies a noun),

[&71X, 5t b (If you write, the book would sell well)] (a subor-
dinate caluse modifies the predicate of a main clause)

The type “Coordinate Relation” includes, predicate coordinate and nominal
coordinate structures. These structures are marked by the sign “P” in Kyoto
University corpus. In this dissertation, we deal with nominal coordinate struc-
tures, and consider that predicate coordinate relations as a normal modification
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relations. The type “Partial Coordinate Structure” is the structure in which con-
stituents of the structure are the sequences of segments that share the common
modifiee. The segments inside such a constituent are marked by the sign “I” in
Kyoto University corpus. In the above example, the pair “&%” and “AERIZ”,
and the pair ./ — b} %” and “=ERIZ” are the partial coordinate structures. The
correct modifiee of “4&%” is not “AKBERIZ” but “4*L TV 5%. ” which is outside
of the partial coordinate structure. And the correct modifiee of “/ — } %” is not
“=HFRIZ” but “» L TVv>5.”. In general, a partial coordinate structure appears
with another partial coordinate structure to construct a coordinate structure,
and the broader coordinate structure modifies the common predicates (in the
above example, “%*L TV25”) which follows the coordinate structure. In this
dissertation, we do not deal with partial coordinate structures. The third type of
structure is “Apposition”. “Apposition” is marked by “A” in Kyoto University
corpus. The “Apposition” and “Nominal Coordinate” are sometimes vague, but
basically “Apposition” has some markers such as “% &” and “» 5~ FT” and
so on. We deals with “Apposition” as normal modification relation.

Because Kyoto University corpus does not distinguish predicate coordinate
and nominal coordinate structures, we use following heuristics to distinguish these

structures.

e If the head word of the elements of a coordinate structure is verb, we define
them as the predicate coordinate structure.

6.5 Experiment
6.5.1 Test Data

Both of the training and evaluation are done on the sentences extracted from
Kyoto University corpus. Table 14 gives the statistics of these sentences. We
divide these sentences into 10 groups and one of them was kept for the evaluation.

6.5.2 Evaluation Measure

For evaluation measures, we use the following two kinds of segment level precision.
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Table 14. Statistics of test sentences extracted from Kyoto University corpus

Subsets

Fu
Sentences Including Sentences Not Including
Nominal Coordinate = Nominal Coordinate
Structures Structures
# of Sentences 2,398 (26.1%) 7,192 (73.9%) 9,
# of Segments - 29,900 (33.1%) 60,384 (66.9%) 90
Ave. # of Segments , 12.5 8.4 (
/ Sentence ' B
Dependency Analysis Precision
of Basic DA Model (Chapter 3)
Segment Level 86.7% 8¢

85.3%

e evaluation measure (1)

Segment Level Precision =

e evaluation measure (2)

Segment Level Precision =

The Number of Segments whose
Modifiee Segment is Estimated Correctly

The Number of Segments whose

Modifiee Segment is Estimated by the System

The Number of Segments whose Modifiee Segmet
and the Type of Modification is Estimated Correc

The Number of Segments whose
Modifiee Segment is Estimated by the System

In the evaluation measure (2), the type of modification means whether the
modification is coordinate relation or normal dependency relation.

In the evaluation measure (1), we simply count the correct dependency rela-
tions regardless of the type of the dependency relation. In the evaluation measure
(2), we define the correct dependency relation as the relation that both the mod-

ifiee and the type of dependency relation are correct.
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Because it is difficult to discriminate coordinate relation or dependency re-
lation for the cases of predicate coordinate, we ignore the type of modification
relation for the predicate coordinate structure in evaluation measure (2).

6.5.3 Results

As training and evaluation data, we used the Mainichi news articles from ’January
1st to 9th, 1995’, which contain 9204 sentences (Table 14). We adopted 10-fold
cross validation by changing the held out data from 'January 1st to 9th, 1995’.
26% (2398 sentences) of the sentences have noun phrase coordinate structures.
Evaluation was done for the sentences that has noun phrase coordinate structures
(with NC), that has no noun phrase (without NC), and the whole set of sentences.
Table 15 and 16 shows the results. In-Table 15 and 16, Base Line is the basic
model explained in Chapter 3, but trained by the data explained above. Tables 15
and 16 gives the results by the evaluation measure (1) and (2) defined in section
6.5.2. |

As we mentioned in section 6.2, we have an option whether the model dis-
tinguishes the statistics of coordinate relations and dependency relations or not.
Modell does not distinguish the statistics learned from the inside of coordinate
structures and the statistics learned from the outside of coordinate structures,
while Model2 distinguishes those two statistics.

The result shows that both of Modell and Model2 outperforms the results of
the Base Line model. The second column in Table 15 shows that there seems to
be no side effect by incorporating coordinate structure analysis. Table 15 shows
that Modell slightly outperforms Model2 for both sentences with NC and without
NC. However, Table 16 shows that the performance of Modell for the sentences
with NC is quit low compared with the performance of Model2. This result means
that Modell outputs more correct dependency relations than Model2 does, but
outputs more incorrect “types” of dependency relations than Model2 does.

6.6 Conclusion

In this Chapter, we propose a method to treat the coordinate structure identi-
fication and the dependency analysis in a uniform way. The final probability of
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Table 15. Segment level precision by the evaluation measure (1).

Evaluation (1) | With NC | Without NC | Whole
Base Line 0.8122 0.8593 0.8428
Modell 0.8219 0.87630 0.8572
Model2 0.8195 0.87365 0.8533

Table 16. Segment level precision by the evaluation measure (2).
Evaluation (2) | With NC | Without NC | Whole
Base Line 0.70434 0.8593 0.8052
Modell 0.6959 0.8756 0.8182
Model2 0.7824 0.8699 0.8386

dependency structures reflects the existence of the coordinate structures from two -
reasons. The first reason is that the existence of coordinate structures changes
the distance features of dependency pairs. The second reason is that a coordinate
structure has multiple heads, and the probability of dependency relation is cal-
culated from the multiple probabilities defined by these multiple heads. In this
dissertation, we use the harmonic means of multiple dependency probabilities. |
This comes from the natural intuition that all dependency relations of the head
segments of a coordinate structure will have high probabilities. The harmonic
" mean has a tendency to get more influence by the lower probability than the
simple mean of probabilities.

By considering coordinate structures, when training the statistical model,
segment level parsing accuracy improved about 1% for both sentences with NC
and without NC.
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7. Conclusion

7.1 Summary

The claim of this dissertation is that statistics of surface features, such as part-
of-speech tags and head words, extracted from a large corpus of parsed sentences,
along with particular algorithm, can produce accurate parses.

If we want to achieve a higher rate of accuracy, it is necessary to use more
information. However, it causes a problem of increasing complexities of models
and the effect of sparse-data problem is also inevitable.

The basic statistical model is not so complex as other statistical parsers in the
literature of a computational statistical parser. We stick to a statistical model
of simple setting aiming at an easy implementation and efficiency of parsing.
Instead, we address the problem of subordinate clauses and coordinate struc-
tures, which are among the major causes of difficulty in the syntactic analysis
of Japanese sentences. We also propose statistical partial parse and redundant
parse methods.

In Chapter 5, the scope embedding preference of subordinate clauses is ex-
ploited as a useful information source for disambiguating dependencies between
subordinate clauses. |

We successfully increased the accuracies of both segment level and sentence
level dependencies thanks to the estimated dependencies of subordinate clauses.

The model first (partially) disambiguated dependency relations of subordinate
clauses, then performed the dependency analysis of the whole sentence. But this
is not necessarily the best way to integrate dependency preference of subordinate
clauses with basic statistical model (defined in Chapter 3). We need to study the
best way to incorporate dependency preference of subordinate clauses into our
statistical model. .

In Chapter 6, we propose a method to treat the coordinate structure identi-
fication and the dependency analysis in a uniform way. The final probability of
dependency structures reflects the existence of the coordinate structures from two
reasons. The first reason is that the existence of coordinate structures changes
the distance features of dependency pairs. The second reason is that a coordinate
structure has multiple heads, and the probability of dependency relation is cal-
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culated from the multiple probabilities defined by these multiple heads. In this
dissertation, we use the harmonic means of multiple dependency probabilities.
This comes from the natural intuition that all dependency relations of the head
segments of a coordinate structure will have high probabilities. The harmonic
mean has a tendency to get more influence by the lower probability than the
simple mean of probabilities.

By considering coordinate structures, when training the statistical model,
segmient level parsing accuracy improved about 1% for both sentences with NC
and without NC. o

We may achieve higher performance of the coordinate structure analysis by
the following facts. First in this experiment, we only used noun phrase coordi-
nate structure information (in Kyoto University corpus, marked by “P”). But
sometimes, dependency relations marked by “A” in Kyoto University corpus also
seem to construct noun phrase coordinate structures. To improve the precision
of coordinate structure analysis, using these data may be effective. Second, our
framework captures the adaptability of a coordinate structure indirectly by the
similarity of head segments in terms of modification relation to other segments,
and does not reflect the other constituents that construct the elements of coor-
dinate structures. By introducing structural similarity measure, we may improve
the accuracy much more.

7.2 Future Work

We need to study the best way to integrate the dependency preference of subor-
dinate clauses with the basic statistical dependency analysis model. Also we use
the distance features when learning scope embedding preference of subordinate
clauses.

To study how far the same technique can be applied to English sentences, we |
will implement a parser for an English sentence.

We also apply automatic feature selection by decision lists to the probabilistic
estimation of basic statistical dependency analysis model in Chapter 3. But to
learn decision lists for whole dependency relation needs vast amount of compu-
tational resources, and if there are many features, the combination of features
increases exponentially. Because distance features are continuous value, there are
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a many possibility to divide the range of value into discrete features (for instance,
see Table 6). This possibility also leads to the explosion of the combination of
features, and naive application of the decision list approach becomes impossi-
ble. Then we will first apply the decision list approach to estimate the Head

Collocation Probability. continuance
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Appendix

A Japanese subordinate clause is a clause whose head segment satisfies the

following properties. 4

1. The content words part of the segment is one of the following types:

(a) A predicate (i.e., a verb or an adjective).

(b) nouns and a copula like “Noun; dearu” (in English, “be Noun;”).
2. The function words part of the segment is one of the following types:

(a) Null.

(b) Adverb type such as “Verb; ippou-de (Clausez)” (in English,
“(subject) Verb; ..., on the other hand, (Clauses)”).

(c) Adverbial noun type such as “Verb; tame” (in English, “in order
to Verd,”).

(d) Formal noun type such as “Verb; koto” (in English, gerund
“Verb;-ing”).

(e) Temporal noun type such as “Verb; mae” (in English, “before
(subject) Verb; ...”).

(f) A predicate conjunctive particle such as “Verb; ga” (in English,
“although (subject) Verb; ...,”).

(g) A quoting particle such as “Verb; to (iu)” (in English, “(say)
that (subject) Verb; ...”).

(h) (a)~(g) followed by topic marking particles and/or sentence-final
particles.

14 This definition includes adnominal clauses or noun phrase modifying clauses “Clause;
- NP;” (in English, relative clauses “N P; that Clause;”). Since an adnominal clause does not
modify any posterior subordinate clauses, but modifies a posterior noun phrase, we consider
adnominal clauses only as modifiees when analyzing dependencies between subordinate clauses
in a sentence.
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