NAIST-IS-DT9761016

Doctor’s Thesis

Model Based Projeét Management for

Software Development

Noriko Hanakawa

February 1, 2000

Department of Information Systems
Graduate School of Information Science
Nara Institute of Science and Technology

Doctor’s Thesis
submitted to Graduate School of Information Science,
Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of
DOCTOR of ENGINEERING

Noriko Hanakawa

Thesis committee: Katsuro Inoue, Professor
Koichi Nishitani, Professor
Ken-ichi Matsumoto, Associate Professor

Model Based Project Management for

Software Development*

Noriko Hanakawa

Abstract

This thesis proposes a project management method based on a new pro-
cess model and a new simulation model. The proposed method is adaptable
to paradigm shifts in software development. In the proposed method, a software
development process model is generated from software development methodology.
The development methodology defines relationships between activities and prod-
ucts. Development phases and the sequence of the phases of the process model
are identified on the basis of the definitions of the methodology. Moreover, the
process model includes milestones that are established just behind the identified
phases. Even if a conventional methodology is shifted to a new one, a develop-
ment process model with relevant milestones against the new methodology can
be generated. In addition, more accurate development periods can be estimated
using a new simulation model in the project management method, when new de-
velopment environments and techniques are applied to projects. The simulation
model considers productivity’s variation that is caused by developers’ learning
effect. Productivity increases as an activity progresses because the developers
become more familiar with the new environments and technologies over time.
The thesis also presents a new prototype tool based on the proposed project
management method. The established plans in the prototype can define a more
exact sequence of development phases and milestones, moreover, the plans show
development periods which are influenced by variation of productivity by devel-

opers’ learning.

*Doctor’s Thesis, Department of Information Systems, Graduate School of Information Sci-
ence, Nara Institute of Science and Technology, NAIST-IS-DT9761016, February 7, 2000.

i

Chapter 1 clarifies problems of project management for software development.
Especially, adaptability of conventional development process to new development
methodology such as object-oriented development methodology is discussed, dif-
ficulty of estimation of development periods based on productivity’s variation
which is caused by developers’ learning is shown. Chapter 2 shows conventional
project management methods, especially, generation of process and estimation
of development periods. Chapter 3 describes a method for generating correct
development process model as a framework. The framework gives us a guide-

line for generating process model with relevant milestones for object-oriented
| projects. Chapter 4 proposes a method for estimating correct periods as a simu-
lation model. The model can simulate progress and periods based on variation of
productivity by developers’ learning. In addition, to apply the model to indus-
try, the model is customized for easy use, the model is evaluated for assurance
of the reliability of the simulation results. Chapter 5 presents a prototype tool
based on the proposed method and model. Chapter 6 concludes this thesis with
a summary and future topics. - '

Keywords:

Software development process, simulation, learning model, project mana,gemenf,
virtual project

ii

List of Major Publications

1. Noriko Hanakawa, Hajimu Iida, Ken-ichi Matumoto, Koji Torii: “A Model
for Managing Projects in the Various Software Development Processes,”
Japan Society for Software Science Technology, SP-96-10,pp.59-66, Mar.
1996.

2. Noriko Hanakawa, Hajimu lida, Ken-ichi Matumoto, Koji Torii: “A frame-
work of generating software process including milestones for object-oriented

development method,” Information of Processing Society of Japan, SE-96-
110, pp.55-62, Jul. 1996.

3. Noriko Hanakawa, Hajimu [ida, Ken-ichi Matumoto, Koji Torii: “A frame-
work of Generating Software Process including Milestones for Object-Oriented
Development Methods,” Proceedings of Asia-Pacific Software Engineering
Conference, pp.120-130, Dec. 1996.

4. Shuuji Morisaki,Noriko Hanakawa, Ken-ichi Matumoto, Koji Torii: “A
learning curve based simulation model for software development,” Proceed-
ings of Foundation of Software Engineering 97, no.19, pp.75-82, Dec. 1997.

5. Noriko Hanakawa, Shuji Morisaki, Ken-ichi Matumoto: “A learning curve
based simulation model for software development,” Proceedings of 20th
International Conference of Software Engineering Vol.1, pp.350-359, Apr.
1998. '

6. Noriko Hanakawa: “A simulation model for software development based on
developer’s learning curve,” Proceedings of 20th International Conference
of Software Engineering Vol. 2, pp.168-169, Apr. 1998.

7. Noriko Hanakawa, Ken-ichi Matumoto, Koji Torii: “Evaluation of a learn-
ing curve based simulation model for software development,” the Institute
of Electronics, Information and Communication Engineers, Information and
Systems Society, KBSE98-28, pp.49-55, Nov. 1998

8. Noriko Hanakawa, Ken-ichi Matumoto, Koji Torii: “Application of learn-
ing curve based simulation model for software development to industry,”

il

Proceedings of the 11th Intemé,tional Conference on Software Engineering
and Knowledge Engineering, pp.283-289, Jun. 1999.

Noriko Hanakawa, Hajimu Iida, Ken-ichi Matumoto, Koji Torii: “Gener-

- ation of object-oriented software process using milestones,” International

10.

Journal of Software Engineering and Knowledge Engineering, Vol.9, No.4,
pp.445-466, Aug. 1999. |

Noriko Hanakawa, Ken-ichi Matumoto, Katsuro Inoue, Koji Torii: “A
software development progress simulator based on developer’s learning ef-
fects,” (Submitted to Transactions of the Institute of Electronics, Informa-
tion and Communication Engineers) (in Japanese).

v

" Contents

1. Introduction

1.1 Software development paradigm shifts e 1
1.2 Software development project management 2
1.3 Problems of planning by the paradigm shifts 3
1.4 Outlineofthethesis 6

2. Project Management . 8
2.1 Software development process 8
2.1.1 Method and process 8

2.1.2 Project milestones L. 10

2.1.3 Problems of control in object-oriented development projects 11

2.2 Resource estimation 12
2.2.1 Estimating methods P b

2.2.2 Problems of estimating models 13

3. Generation of Software Development Process 15
3.1 Proposed framework 15
3.2 Application L 23
33 Conclusion. e e e e e e 34

4. Estimating Model based on developer’s learning 35
4.1 Theproposed model e 35
41.1 The three submodels 35

4.1.2 Simulation using the proposed model 39

42 Casestudy L e 42
4.3 Customization and evaluation 48
431 Approach L. 48

432 Customization 49

433 Evaluation., 53

44 Application 58
441 A Simulator 58

442 Casestudy . . . - - . . . oo e 58

45 ConcluSion . . - « « v v v e e e e e e e e e e e e e 63.

5. The Project Planning Prototype
5.1 The four components L. L.,
5.2 A feature of the prototype e e e e e .

5.3 Conclusion

6. Conclusion and Future Resea_rch
6.1 Summaryof majorresults
6.2 Futureworks e

- Acknowledgements
References
Appendix

A. Managers’ responses of quetions

vi

65
65

68

70

71
71
72

75

7

81

81

List of Figures

1

10
11
12
13
14
15

16
17

18

Relationship among a method, a process, and constraints
The object-oriented development process with traditional phases
and milestones e e e e e e e e e e e e e e e
The proposed framework of generating software development pro-
cess with milestones e e e e e
DFD of the Structured Development Method
ALGORITHM 1: Algorithm for phase identification along with its
input and output data structures. L.
Phases of the Structured Development Method identified by AL--
GORITHM 1 o i i e e e e PP
The Phase Sequence of the Structured Development Method iden-
tified by ALGORITHM1 o o i ..
ALGORITHM 2: Algorithm for baseline product identification

along with its input and output data structures

A unit process model of the phase and milestone based management
PTOCESS + o v v v e
A model of the phase and milestone based management process for
the Structured Development Method
The object diagram of phase and milestone based management pro-
CESS '« v v e e e e e e e e e e e e e e e e e
The event trace diagram of the phase and milestone based manage-
MENE PTOCESS . « « « « v v i v e e e et e e e e e e e e e e e e
The state diagram of the phase and milestone based management
PPOCESS + . o v e v v e e e e e e e e e e e e e e e e
The data flow diagram of the phase and milestone based manage-

TENE PTOCESS . « « « v v e e e e et e e e e e e e e e
Phases and baseline products of OMTidentified by ALGORITHM1

and ALGORITHM2 i e i e e e e
The phase sequence of OMT identified by ALGORITHM 1. .

A general model of the phase and milestone based management

processfor OMT
Phase of the modified OMT R A A PR

vii

19
20

21
22

23
24
25
26
27
28
29
30
31
- 32
33
34
35
36
37
38
39
40
41

The phase sequence of the modified OMT 30
Phases and baseline products of OOSFE'identified by ALGORITHM]1,2
31

The phase sequence of OOSE identified by ALGORITHM! 32
A general model of the phase and milestone based management

processfor OOSE e e e e 33
Outline of the proposed model 36
Activitymodel 37
Productivitymodel 37
Knowledge model e e e e e e e 38
Learning curve in the simulation 42
Resultof Casel 0.... 44
Result of Case2 45
Result of Case3 A 46
Resultof Case4 47
Managers’ estimation e e e e e e e e e e e ... 55
Results of simulation with managers’ responses 55
Result of evaluation LY
Simulator 59
Result of Casel 60
Resultof Case2 62
The outline of Project planning prototype e e 66
Assignment of resources, 67
Schedule for software development 69
Re-schedule for software development 69

List of Tables

1

The default values of the parameters 42
Estimation and results of simulation with “all revised constants =
1 e e e e e e e e e e e 51
Results of tuning for revised constants of extended equations in
stepd . . . L 52

N S Ov

Virtual Project No.1 54

Responses about Virtual Project No.1 56
Results of estimation 58
The values of the engineerrank 68

1. Imntroduction

1.1 Software development paradigm shifts

In the fast changing Information Technology society of today there have been
various paradigm shifts almost daily in software development projects. For ex-
ample, a development methodology has shifted from a conventional structured
development method to an object-oriented development method. According to
the changes in the development methodologies, developers have to execute differ-
ent activities(e.g., discovering objects rather than creating bubbles in a data flow
diagram) and, produce different products(e.g., class diagrams rather than a mod-
uler based design structure) and, design by different development perspectives
(e.g., object-oriented rather than function-oriented).

On the other hand, software development environments are shifting from

. “Text editor & compiler” to CASE tools which support many useful functions

(e.g., automatic correction of programs during editing). In different development
environments, developers need to change their development style. The develop-
ment style means: “a kind of development in which forms are not defined in de-
velopment methodologies”. For example, about twenty years ago, when there was
only one computer shared among members of a project, developers of the project
had to produce complete products(e.g., programs) on their desks using paper
and pencil. The developers then asked a typist to punch many cards based on
the programs which the developers believed where perfect on paper. The punched
cards where then inputted to the computer by a card reader. After that, at last,
the developers could compile their programs and test the programs. Because the
developers required so much effort until the testing of the programs, the devel-

~ opers’ test chances were two or three times a day. Grammatical errors within

the programs could not be found until after compiling the programs. However,
now, developers develop products(programs) based upon the CASE tool approach
which supports many useful functions. The developers do not need to produce
perfect products on their desks, because the CASE tool can correct many errors
such as grammatical errors in the programming language automatically, e.g., if a
developer edits “ fi ” in a program on the tool, the tool corrects from “fi” to “if”
automatically. In addition, even if the programs are not complete, the dévelopers

will be able to test parts of the programs repeatedly with the debugging system
on the CASE tool.

1.2

Software development project management

Management activities of software development projects are as important as the

technical activities[34]. Some typical reasons people give when software is not
delivered on schedule, are exemplified by the following[31):

the programmers did not tell the truth about the actual status of their code;
management grossly underestimated the time needed to complete project;
management did not allow sufficient time to carefully plan the project;

the real status of the project was never made clear;

.the programmers’ productivity turned out to be considerably lower than

expected;

the customer did not know what he wanted.

In addition, software development project management activities are classified

into these categories[32]:

Planning: Predetermining a course of action for accomplishing organiza-
tional objective;

Organization: Arranging the relationships among work units for accom-
plishment of objective and the granting of responsibility and authority to
obtain those objectives;

Staffing: Selecting and training people for positions in the organization;

Leading: Creating an atmosphere that will assist and motivate people to
achieve desired end results; ‘

Controlling: Measuring and correcting performance of activities toward ob-
jectives according to plan.

Especially, the planning of a project may be the most important management
activity[1]. Without a proper plan, no real monitoring or controlling of the project
is possible. Many failures caused by mismanagement can be attributed to lack of
proper planning[6]. Under a disagreeable project plan, even if all developers of a
project are mature, the project will fall into utter confusion.

1.3 Problems of planning by the paradigm shifts

Activities of planning are exemplified by the following [32]:

e The tasks to be performed by the software development staff in order to
develop and deliver the final software product. This endeavor requires par-
titioning of the project activities into small, well-specified work packages.
We call the work package as “phase”.

e The cost and resources necessary to accomplish the overall project and each
project phase.

e The development process to specify the periods of the phases, dependencies
among phases, establishes project milestones.

A main problem of planning a software development project is indifference
to paradigm shifts within the field of software development. The shifts of soft-
ware development mean “changes of development methodologies and development
styles”, as mentioned in section 1.1. If a conventional planning technique does not
adapt to the new development methodology and style, the project will fall into
utter confusion using a disagreeable project plan. There are two main reasons for
the confusion. The following paragraphs show these reasons.

(1) Not adaptive development process to new methodologies

The first reason is that managers can not comprehend and control their
Projects, because they tend to use incorrect processes of software development.
Especially, the traditional phases(software requirement specification, preliminary
design, detailed design, coding, unit test and integrated test) which are de-
fined in the conventional planning technique are not adaptable to new develop-
ment methodologies such as object-oriented development methodologies. Your-
don notes that in the past few years many software managers have said, “Look, I

3

don’t care which object-oriented methodology we use -It doesn’t matter whether
it’s Coad-Yourdon, Booch, Rumbaugh, Martin-Odell, Shlaer-Mellor, Jacobson, or
someone else. What I want to know is whether the project is under control and
whether my people are doing the right thing at the right time [35].” The behavior
of the project team members is the antithesis of what the manager wants to see:
when the manager asks the team members what they are doing, the answer is,
- “A little bit of everything: some analysis, some design, a little coding, and a
little testing.” The manager naturally worries that such behavior may lead to
the worst characteristic of a software project [35].

In order to comprehend and control the development progress, a phased devel-
opment is typically employed by using a number of clearly identifiable milestones
which are established between the start and end of the project [34]. In software
development a typical milestone is the date on which coding is completed and the
codes pass reviews. Once a work product has been reviewed and agreed upon, it
becomes a baseline product and can be changed only through formal procedures
[28]. A good milestone is characterized by finished documentation, for example,
“High—level design complete” or “Test plan formulated.” A poor milestone, in
contrast, is “Coding 80% complete,” since there is no objective way of telling
if coding is 80% complete [30]. A good reason for the widespread adoption of
the ’waterfall’ model of the software process is that it allows for the straightfor-
ward definition of milestones throughout the course of a project. In alternative
approaches, such as exploratory programming, milestone definition is a more diffi-
cult and a less certain process [30]. The project manager’s “road map” is likely to
be different with different phases, different milestones, and different checkpoints
[35].

This thesis proposes a new framework which gives us a guideline for generat-
ing a software development process with relevant milestones for object-oriented
development methods. The framework provides algorithms for identifying devel-
opment phases and baseline products based on relationships among activities and
products of the development method. The baseline product is a work product to
be checked at a milestone, and is referred to by the activity of subsequent phases.
In addition, the framework defines a software development process to manage de-
velopment progress in which milestones are established at the end of each phase

in order to check the baseline product and establish goals of the following phase.

(2) Not accurately predicted periods '

The second reason is that the predicted periods to execute phases are not
accurate. Usually, managers tend to estimate shorter periods[34]. Even if the
software development process is correct, developers will not be able to develop
complete products during too short a period. At the end stage of the project,
the incomplete activities by reason of too short periods make the final product’s
quality low. Especially, it is important for managers to estimate the periods with
productivity’s variation which occurs by developers’ learning, because it takes
much time to be familiar with a new software paradigm such as CASE tools,
OSs, hardwares and object-oi‘iented development methods.

In recent years, many software developers are under the pressure of keeping
update with new development environments, and chasing after the latest version
for software packages. As sufficient training for a particular development envi-
ronment such as a CASE tool, before its initial application, becomes costly and
-impractical, the developers have to use the new environment without sufficient
previous training for the environment.

In such a sitvua,tion, the productivity of the software may increase as the devel-
opment activity progresses. In the early stage of the project, the productivity is
low, since the developers need to be familiar with the new environment and they
may have to re-execute a part, or some parts, of their activities for a shortage
of the required skills[4](13][25]. The need of such learning processes is reduced
as their activities progress, as well as the need of re-execution of a part, or some
parts, of the activity. That’s why the productivity becomes higher and higher.
The variations of the productivity depend on the developers’ knowledge and ex-
perience and their learning curves.

The variation of the productivity in the project makes it complicated to es-
timate and/or predict periods of phases in projects. That is, we have to take
into account the effect of developer’s learning during the project in estimating
and /or predicting the development periods and the total work efforts. However,
the conventional estimation technique for software development claims that there
is no variation in the productivity of the execution of an activity[14] [17] [19].

This thesis also proposes a new software development simulation model which
considers the variance of the developer’s productivity during software develop-
ment. The proposed model assumes that the developer’s knowledge of an activity
increases by executing the activity, and the productivity in executing an activity
and the quantity of gain to the developer’s knowledge are determined based on
the relationship between the levels of the developer’s knowledge and the required
knowledge to execute the activity. Especially, to compute the productivity, a
cumulative normal model Ogive model is used, thus the productivity drastically
changes even if the levels of two kinds of knowledge are almost the same. By
plotting the level of the developer’s knowledge in time sequence, we can obtain
the developer’s learning curve during the execution of the activity. In addition,
to apply the simulation model to industry, the model is customized and evalu-
ated. As a result, project managers can predict accurate periods of phases in
their projects with only answering some questions about the projects.

14 " Outline of the thesis

Chapter 2 shows conventional methods of project management, in section 2.1,
conventional methods of generating a process for software development is shown
and presents problems in progress control of an object-oriented software project.
Section2.2 describes conventional methods for estimating resources and presents
problems of estimating. In chapter 3, a new method for generating processes is
introduced. Section 3.1 describes algorithms for identifying software development
phases and baseline products, and a software process model for managing develop-
ment progress with milestones. Section 3.2 presents applications of the proposed
framework to two well-known object-oriented development methods: OMT [27]
and OOSF [15], and discusses adjustment of the length and/or the number of
phases. Section 3.3 summarizes the ideas discussed in this framework. Chapter
4 shows a new model for estimating periods of development projects. Section 4.1
describes the proposed model with its assumptions and parameters, and how to
estimate the development time and the total work effort. Section 4.2 presents
applications of the proposed model to four cases in which the characteristics of
activities and developers may influence the software productivity and the devel-
opment progress. The proposed model’s characteristics and implications will be

discussed based upon the case study. Section 4.3 presents the customization and
the evaluation of the model for applying the model to industry. Section 4.4 shows
a new simulator based on the model. Applications of the simulator are presented
in six cases in which the characteristics of activities and developers may influence
the software productivity and the development progress. The simulation model’s
usefulness and characteristics will be discussed based on the cases. In section 4.5,
the summary of the model is shown. Chapter 5 describes a prototype of project
planning based on these proposed methods. Chapter 6 summarizes the finding
and presents some possible areas for future researches.

2. Project Management

A management model comes from management science[18]. It is universal model
in the sense that:

e Management performs the same functions(planning, organizing, staffing,
leading, and controlling) regardless of position in the organization or the

enterprise managed.;

e Management functions are characteristic duties of managers; management
practices, method, activities, and tasks are particular to the enterprise or
job managed.

The universality of this management model allows us to apply it to project
management of software development. Software development project manage-
ment also involves the activities undertaken by one or more persons for purpose
of planning and controlling the activities of others in order to achieve objectives
that could not be achieved by the other acting alone. A project is a one-time
effort having well-defined objectives and occurring within a specific time frame.
A project plan is prepared, people are assigned to the project, resources are al-
located, and success criteria are specified. A software development project is a
project in which the objective is to produce a software product, on schedule and
within budget, that satisfies a set of requirements[32].

Especially, project planning is the most important management activity. The
project plan consists of two components; a development process which defines
phases and the sequence of the phases, and the estimated period to execute each
phase. The following sections discuss software development process and model

for estimating development periods.

2.1 Software development process
2.1.1 Method and process

Figure 1 shows the relationships among a software development method, a
software process, and the software project constraints. A method is a planned
procedure by which a specified goal is approached step by step [15]. Most work

ProductA ProductB ProductE ProductD

| D G ey D> oS

t F
Method Product B Product C Produc Product E

Constraint

Process

Evaluating &
Avoiding
Risk

Process

Figure 1. Relationship among a method, a process, and constraints

descriptions for program development are method descriptions. They describe,
often in a very abstract manner, how one should think and reason in developing a
software system, and products to be referred and /or created in these steps. Most
methods also indicate the sequence of steps to be followed. A method is based
on a preconceived notion of the architecture of the working system. This means
that the description of the method is formulated in terms of the concepts of the
architecture to be realized [15].

On the other hand, a process is generated from the method by taking con-
straints in real software development projects into consideration, e.g., constraints
about cost, schedule, software quality and so on. For example; if we have to de-
velop software in a relatively short period, we would generate a process including
concurrent sub-processes among which activities are mutually independent and
can execute concurrently. If we have to achieve high software reliability, we would
generate an appropriate process by adding managerial activities, e.g., reviewing
un-executable product and testing executable product to the method. If the user
requirements are not clear and stable, we would generate an iterative process,
€.g., a spiral process, in order to evaluate and avoid risk of requirement change.

9

The manageria.l aspect is one of the most important ones in the process gener-
ation, because we can consider the process to be a natural scaling-up of a method
[15]. Let us consider an analogy. Producing a new chemical substance in the lab-
oratory differs greatly from producing the same chemical on an industrial scale in
a factory. In the laboratory, the goal is to find a method to produce the chemical.
To make this method appropriate for large-scale industrial use, a process must be
defined. This usually means changing the working method. Nobody would dream
of industrializing the laboratory method by simply building a larger laboratory
with gigantic test tubes and Bunsen burners [15]. |

2.1.2 Project milestones

Effective management relies on information. As software is intangible, this infor-
mation can only be provided in the form of documents describing the work which
has been carried out. Without this information, control of the project is lost, and
cost estimations and schedules cannot be updated [30].

Progress control with milestones is one of the well-known approaches to man-
aging software development. The date on which a work product is deemed to
be completed is termed a milestone. In general, the milestones identified in a
software development project correspond to points in time at which certain doc- .
uments become available [34]:

e after requirements analysis, there is a requirement specification;
e after the design phase, there is a (technical)'speciﬁcation of the system;
o after implementation, there is a set of programs;

e after testing has been completed, there is a test report.

A typical example of a milestone is the date on which coding is completed and the
codes pass reviews. Once a work product has been reviewed and agreed upon, it
becomes a baseline product and can be changed only through formal procedures
[28].

In order to determine whether a work product has reached a milestone, it
must first pass a series of reviews performed by fellow team members, managers,
and/or the clients [28]. Reviews at milestones should show whether the actual

10

| Analysis

I Design
L Program
i!MiIestone l Test

Figure 2. The object-oriented development process with traditional phases and

milestones

work done is less than what was expected; whether there is a trend for milestones
(representing completed work or reviews) to fail to be met; and whether the plans
themselves keep changing so that completion dates are pushed further back or
the time allocated to activities such as testing is being shortened to preserve the
final delivery date [5].

2.1.3 Problems of control in object-oriented development projects

In the object-oriented approach, software development is inherently iterative and
seamless [24]. That is, the same portion of the system is usually worked on a num-
ber of times with each iteration. Prototyping and feedback loops are standard.
The seamlessness is accounted for in the lack of distinct boundaries between the
traditional phases of analysis, design, and coding. The reason for removing the
boundaries is that the concept of object permeates; objects and their relationships
are the medium of expression for each of analysis, design and implementation [24].
The seamless nature of object-oriented development makes progress control
with traditional milestones ineffective. If we apply milestones established for tra-
ditional software development to object-oriented projects then most such mile-
stones are likely to be set in the second half of development (see Figure 2). |
Several methods and tools have been proposed to generate development pro-
cesses including project management activities. Katayama et al. proposed the
Hierarchical and Functional Software Process (HFSP) model and applied it to the
design process of a real project for developing a system for Artificial Spacecraft
[16] [23]. They succeeded in extracting phases from the actual design process of
the project, but they did not generalize the procedure of extracting phases and

milestones from the project.

11

Hirayama et al. proposed a hierarchical model for software project which can
evaluate the software process from the viewpoint of quality, cost and development
period [12]. In this model, software development activity is expressed by an
extended Generalized Stochastic Petri-net with some attributes. These attributes
are used to represent the current status of software development, but a concrete
procedure for progress control based on the current status of software development
is not discussed.

Booch discussed a process model for object-oriented development process
which provides a set of milestones for each phase [3]. However, he did not gener-
alize the procedure of identifying phases, milestones, and baseline products. '

Although we think that progress control with milestones is adaptable to
object-oriented development, new milestones or new mechanisms of establishing
milestones must be devised specifically for object-oriented development.

2.2 Resource estimation

2.2.1 Estimating methods

There are six primary methods used to develop software resources estimation [26].

e Analogy: Resource estimates are developed based upon past experience
with similar systems.

e Bottom-up: Resource estimates are developed by tasks (design, code, test,
etc.) or component level(program, release, delivery, etc) using analogy,
PERT, parametric modeling or the Delphi technique.

e Parametric model: Resource estimates are developed using prediction mod-
els which mathematically relate effort and duration to those parameters
which influence them.

o PERT: Resource estimates are developed assuming a normal or other (beta,
etc.) probability distribution from estimates of the ({)worst possible, (m)most
likely and (h)best possible effort or duration using the following formula;
EFFORT=(l+ 4m + h)/6

12

o Top-down: Resource estimates are allocated to specific WBS activities
based on past experience.

o Delphi technique: Resource estimates are developed using a team of experts.

Depending upon the circumstances, each of these methods may have merit.
On a small project, analogy method seems to work the best. For larger jobs,
parametric models seem to do best because they codify experience and address
scaling laws. For risky projects, Delphi is preferred because it allows you to use
many experts to bound the risk via ranges|26].

2.2.2 Problems of estimating models

To estimate large projects, many parametric models and methods of modeling
have been proposed. Although developers require much time to become familiar
with a new development environment, these models and methods do not consider
variation of productivity by developers’ learning. Kellner proposed a method of
modeling the software development process with three separate points of view:
structural, functional, and behavioral[17]. The process simulation is based on the
behavioral model mainly, and it executes STATEMATE which is one of the CASE
tools used to design software for communication networks. It can establish the
‘schedule for software development and can estimate work effort. Since STATEM-
ATE is based on the behavioral mdde_l, productivity and learning curves might be
calculated from probability of state-transition. But it does not take variations of
productivity and learning curves into account. In addition, users need deep un- -
derstanding to make the behavior model because the simulation can be executed
after the users make the behavioral model.

Kusumoto et al. proposed a development model using an extended General-
ized Stochastic Petri-net[19]. In this model, development period, work effort, and
quality of software are estimated from assigning developers to the activities. The
model has a parameter of the experience level of the developer. This parameter
is important to determine the probability of the injection and removal of a fault
and firing rate of a Petri-net. But the experience level parameter is constant for
each developer, which does not change during the simulation. More, as the anal-
ysis needs good knowledge of the simulation model, the users require extensive

13

knowledge of the model to assign values to the parameters.

Iida et al. presented an overlapping developmentA process model based on
progress of activities[14]. In this model, development period and work effort can
be estimated under overlapped activities. The model has a parameter which is the
developer’s ability. This parameter is significant to determine the productivity
of the'a,ctivity. But the developer’s ability is also a constant for each developer

and, it is not clear how values of the parameters should be determined.

14

3. Generation of Software Development Pro-
cess |

In this chapter, a new method for generating process is proposed as a new frame-
work which gives us a guideline for generating ,especially, object-oriented devel-
opment process with relevant milestones. Section 3.1 describes the framework.
Application of the framework to two well-known object-oriented development
methods is shown in section 3.2. Section 3.3 summarizes.

3.1 Proposed framework

We propose a framework which gives us a guideline for generating software devel-
opment processes with relevant milestones for object-oriented development meth-
ods. As mentioned in section 2.1, the software development process should be
generated from the development method and the specific project constraints. But
we are not concerned here with the constraints in the process generation. It is
because we believe that the main structure of the process can be constructed only
based on the method and the constraints are used for customizing the generated
process for the specific project.

The proposed framework consists of four steps: (1) Method analysis, (2) Phase
identification, (3) Baseline product identification, and (4) Process construction
(see Figure 3). The main point of this proposed framework is that software
development phases and baseline products are identified based on the definition
of software development method in an algorithmic way. That is, the proposed
framework does not use traditional (and fixed) phases in generating software
process, but establishes phases and baseline products customized to different
types of development methods. The remainder of this section describes the four
steps of the proposed framework.

(1) Method analysis

Method analysis is a procedure to clarify relationships among activities and
products of the development method for which we generate software process.
Data Flow Diagram(DFD) [8] is used to express the relationship. Activities and
products of the method are expressed as “bubble” and “data stores” in DFD,
respectively. An arc from a bubble to a data store means that the bubble produces

15

Step1 : Method Analysis

Step2 : Pha
Identification

Step3 : Baseine Product
dentification

Step4 : Process
Construction

Figure 3. The proposed framework of generating software development process

with milestones

the data store, i.e., the data store is the output product of the activity. On the
other hand, an arc from a data store to a bubble means that the bubble refers to
the data store, i.e., the data store is the input product of the activity. We believe
that it is not so difficult to extract such information from the definition of the
development method. '

Figure 4 shows an example of Method analysis in which relationships among
activities and products of the Structured Development Method [7] are depicted as a
DFD. The DFD consists of eight activities and twelve products. The relationship
among activities and products are relatively straightforward, which matches the
fact that Structured Development Method is a traditional development method
suitable to the waterfall process model.

(2) Phase identification

In the proposed framework, development phases are considered to be distinct
stages of the project, at the end of which we can establish milestones. Some
software development methods were developed with such phases already in mind.
But most of the methods do not provide definite description of the phase. At
first, the proposed framework clarifies the relationship between the activities and
- the phases.

To establish a milestone at the end of each phase, we do not allow any activities
in a phase to create and/or update any products in the other phase. That is, an

16

/ Requirement \

Partition Detect The States Detect The Data
The System of The System of The System

State Transtion Hierarchical Data
Data Flow Diagram Diagra Structure Diagram
Logical Deslgn
Logical Desu Logical Desi
Structured Chart
State Transition Hierarchical
Structures English “Hja0am /S"”d“'e—n'ag’a"‘
Physical Desugn
Physical Desugned Mapped Hierarchical
Moduling State Transition DataStructure Diagram
Structured Chart Diagram to DBMS

Program

Tested Program

Figure 4. DFD of the Structured Development Method

17

activity can create or update products in the current phase but can only refer
to products in the previous phases. Activities which create and/or update the
same product must be members of the same phase. If this relationship between
activities and products is satisfied, a formal progress report can be presented to
management and a work product can be reviewed at the end of each phase in
order to produce a baseline product which can only be changed through formal
procedures in subsequent phases. In addition, the efforts of the reviews decrease
since all we have to do is to review baseline products.

‘Figures 5 shows the input data structure, the output data structure, and the
algorithm for phase identification. We call the phase identification algorithm
ALGORITHM]1. Input data Dev_Method corresponds to an array of the devel-
opment activities defined in the development method and includes information
about input and output products of each activity. We can easily get information
for the input data from the DFD constructed in Method analysis. Output data
Dev_Process corresponds to an array of the phase identified by ALGORITHM]1
and includes information about input and output products, activities of each
phase, and order of phase execution. In ALGORITHM], first, development activ-
ities with common output products are collected into a set. Each set corresponds
to a phase to be identified. Then the order of phasé execution is determined."

Figures 6 and 7 show the result of the application of ALGORITHM]1 to Struc-
tured Development Method. Five phases were identified: Analysis, Logical Design,
Physical Design, Programming, and Testing. From the result, we can conclude
that the waterfall process model is suitable to Structured Development Method,
since these phases have to be executed sequentially.

(3) Baseline product identification

We only have to check whether a product is referred to by activities in the
subsequent phase in order to identify the baseline products among all products in
the phase identified by ALGORITHM]. It is because that the baseline products of
a phase can be changed in the subsequent phases only through formal procedures
[28], and ALGORITHM]1 can identify phases in which no product is updated by
activities in subsequent phases.

Figure 8 shows the algorithm for baseline product identification along with its
input data structure and its output data structure. We call the baseline product

18

Input: (* Software development method information *)
Dev_Method:array[1l..act_max] record of
{ Input_Products:set;
Output_Products:set;
‘ Activity:string; }
Output:(* The generated process information in algorithm 1%)
Dev_Process:array[1..phase_max] record of
{ Input_Products:set;
Output_Prbducts:set;
Activities:set;
Next_phases:set;}
algorithmi:
index:=0;
for i:=1 to act_max do
{ if Dev_Method[i] # nil{
index:= index+1;
Add members of Dev_Method[i] to members of Dev_Process[index].

for j:=i+1 to act_max do
{ if (Dev_Method[i].Output_Products N
Dev_Method[j].Output_Products) #+ ¢ {
Add members of Dev_Method[j] to members of Dev_Process[index].
Dev_Method[j]l=:nil;} ‘
1}
} |
for i:=1 to phase_max do
{ for j:=i+1 to phase_max do
{ if (Dev_Process[i] .Output_Priducts N
Dev_Process[j].Input_Products) # ¢
Add Dev_Process[j] to Dev_Process[i] .Next_phases.

Figure 5. ALGORITHM 1: Algorithm for phase identification along with its
input and output data structures

19

@) Analysns equirement
Partition The States Detect The Data
he System f The System of The System
[oata Fiow Diagran] | “origrecr "] [Binietors Diagrem

\ (> /

. . S /
(®Logical Design Logical
/

Structured Chart dl § Logical esign
i hical Data
I;ructures English || Diagram g:m:;ﬁrécgiagaram

e

R |
@ Physical Desigfl\@ e

e | B e | e S
Structured Chart | [Diagram Datastry g

—~——

@ Programming -

Programming

(;) Testing

[Tested Program | : Baseline Product

Figure 6. Phases of the Structured Development Method identified by ALGO-
RITHM 1

Logical Physical rogra- Test
Analy3|sI Design I Design Immg ing

Milestone

Figure 7. The Phase Sequence of the Structured Development Method identified
by ALGORITHM1

20

Input:(* The generated process information in Algorithml *)
Dev_Process:array[l..phase_max]

Qutput:(* The milestone information *)

Dev_milestone:array[l..milestone_max] record of

{
milestone_date:DATE;
Baseline_Products:set;
check_phase:index;
}
algorithm2: .
for i:=1 to phase_max
c :

Dev_milestone[i].check_phase:=i; -
for j:i+1 to phase_max
{
if (Dev_Process[i].Output_Products [
Dev_Process[j].Input_Products) + ¢ then{
Add (Dev_Process[i].Output_Products N
' Dev_Process[j].Input_Products)
to Dev_milestone[i] .Baseline_Products.}

Figure 8. ALGORITHM 2: Algorithm for baseline product identification along
with its input and output data structures

21

Phase

+

—
= : T~
S~

not pass review | =
;
- ile~
S e (&
‘ “’—'g‘%%ﬂ' pass review
A unit process model

Figure 9. A unit process model of the phase and milestone based management

process

identification algorithm ALGORITHM?2. Input data Dev_Process is the same as
the output data of ALGORITHM1. That is, ALGORITHM2 receives the output
data of ALGORITHM]1. Output data Dev_milestone corresponds to an array of
the milestone of each phase and includes information about the baseline product
identified by ALGORITHM2 and the milestone date which will be set during
the project planning. ALGORITHM?2 compafes input and output products of all
activities, and finds the products to which are referred by the subsequent phases.
~ For the Structured Development Method shown in Figure 6, the application
of ALGORITHM? results in all products being baseline products except for the
initial work product “Requirement” which is an input to the software process. But
the initial products must be checked by hand before starting the software process,
and may be changed only through formal procedures. Thus, it can be considered
as a baseline product. Consequently, all products of the Structured Development
Method are baseline products. This is another good evidence to prove that the
waterfall process model is suitable to Structured Development Method.
(4) Process construction

Process construction is a procedure that builds a concrete software process for

22

Q []:Besdin
' product
@: Milestone
f Structured Chart N
Data Flow Diagram }|"structures English ns‘ggg::ﬂ,gd Chart I Program | [reSted ngmm]
State Transition ogical Designed State - . O Phase
Diagram transition Diagram Physical Design-
" ed State tran-
ierarchical Data |il ogical Designed Hierarchi- | |sition Diagram
tructure Diagram | {cal Data Structure Diagram

Figure 10. A model of the phase and milestone based management process for the
Structured Development Method

the corresponding method including managerial activities to control development
progress based on phases and milestones. We call such a software process phase
and milestone based management process. A unit process model of the phase and
milestone based management process consists of a phase, a milestone and baseline
products as shown in Figure 9. In the current version of the unit process model,
we have to re-enter the phase if we cannot pass review done at the milestone for
the phase. |

We have to replace an identified phase with a unit process model. Then we
can build a concrete phase and milestone based management process as shown in
Figure 10. It describes the order of phase execution and shows the products that
must be checked at each milestone.

To implement and execute the phase and milestone based management process
in real software projects, we need a more detailed description about the process.
In the proposed framework, a detailed description of the phase and milestone
based management process are given in the form of OMT documents. Figures
11, 12, 13 and 14 are the object diagram, event trace diagram, state diagram,
and data flow diagram of the phase and milestone based managemeht process,

respectively.

3.2 Application

In this section, we present examples of the application of the proposed framework.
We tried to generate software processes for two well-known object-oriented devel-

23

- excute
Project Manager
cost
time
c_af;f).ability
difficuity generate

: : Generate process
Process m Method

order
rocess Unit | control
Phase Managerial ‘ planning
re- Activity
excute

‘ : roduce
Activity Product
H’ fer » review

N

Baseline
Product

Figure 11. The object diagram of phase and milestone based management process

24

[Profect | |Managor | [Generate] [wemoa | [erocess | [Fpee™® | [[phase | [Mapedsrer| [Bezerms
start generate process
generate 1 activi roduct

oject constraint tivity&profluct

roject copstraint gener process GJ
set date
end

nd generate

start

start procers get process unit

R o Ty p——
process unit
~Star process|-detphase |

unit phase
start phase rodu
start eriew P d,e

>start checking

replannin end checking
yng

set date
end

re~-excute

startjreview produce

~|start checkir_hg

end checking

end
rocess unit end phdse

get next

end procesé no next

end
project

Figure 12. The event trace diagram of the phase and milestone based management

Drocess

25

Manager Class

Generate reached date/start review
lgenerate start project q
|
I | do: make ! do: excute —@
. T plan project
l .

replanning

setdate ¥

Managerial
Activity |

Managerial Activity Class

end phase

start o
¢ ‘ do:idling review do: review [pass review] | =©
[not pass review]
|
| replanning
Process unit
start
.Jrocess do:excute [no next)
¥ s8 [next process
unit]
Phase mre-excute
start
‘_Lhai,_ do: excute :@
phase

Figure 13. The state diagram of the phase and milestone based management

process

26

Method Project

relation— constraint
ship product

date of behind schedule
Milestone

Product

Figure 14. The data flow diagram of the phase and milestone based management
process

27

opment methods:. Object Modeling Technique (OMT) development method and
Object Oriented Software Engineering (OOSE) development method. In these ex-
amples, it is assumed that we cannot divide any products used in the development
method into smaller units such as modules and files.
(1) Example 1 : OMT
Figure 15 shows the DFD of OMT. The phases and the baseline products identified
by ALGORITHM1 and ALGORITHM? are also shown in Figure 15. Figure 16
shows the phase sequence of OM T identified by ALGORITHM]1. In addition,
Figure 17 depicts the general model of the phase and milestone based management
process customized for OMT by the proposed framework. It is not so difficult to
construct the DFD shown in Figure 15 by hand based on the description of OMT
[27]. |

As shown in Figure 15, fifteen activities are classified into six phases and seven
baseline products are identified out of sixteen products. The number of activities
varies among the phases: phase #1 and phase #5 consist of five and six activities,
respectively, and each of the other four phases consists of only one activity. The
number of products also varies among the phases: phase #1 and phase #5 both
include six products, respectively, and each of the other four phases includes only
one product. If there is an activity which refers to and updates many products
referred by other activities, the number of activities and/or products of the phase
tends to be large. For example, in phase #1, “Deciding behavior of system”
activity refers to and updates four products which are the output products of the
other four activities of the phase (see Figure 15). Such variations in the number
of activities and /or products among the phases results in variety of phase lengths.

If we intend to shorten the length of a phase, we would need to introduce
some restrictions on the updating of products by activities of the phase. For
example, if we prohibit the “Deciding behavior of system” activity from updating
“Object class of system”, “Object diagram” and “Object diagram with increased
inheritances”, we can divide phase #1 into four distinct phases and consequently
nine phases are identified for the whole process as shown in Figures 18 and 19.
(2) Example 2 : OOSE
Figure 20 shows the DFD of OOSE. The phases and the baseline products identi-
fied by ALGORITHM1 and ALGORITHM?2 are also shown in Figure 20. Figure

28

O < fegimen .
Findng ./ Optimize \(Polish up Grouping
Object of The Object inheritance Class
System Diagram
Objectof Optimized The Object Diagram Moduled
The System Object Diagram of Increasing Inheritance | Obiect Diagram
... X Association\ Associatio
— —Z Association Associatio
Deciding Behavior Program of
: of The System Association

[Event Trace Diagram}{ |Program of

State-Engine
® Clear Behavior \
of The Object
mplement
® \Control

[Event Flow Diagram |

Decidin
Internal State
of The Objec
; et Internal

Functions
of The Object

"State Diagram
of The Object

Baseline Afiribute ration
product of The Object of The Object
- Beston " Internal Class
Of The Attribute Algorithm

Figure 15. Phases and baseline products of OMT identified by ALGORITHM!1
and ALGORITHM?2 '

D ®
Make Object Diagram Integration
and Eﬁ Trace Diagram 'restg

Figure 16. The phase sequence of OMT identified by ALGORITHM 1

29

O : Phase @ :Milestone I: : Baseline product @__Evem Trace Diagram

Moduled Object Diagram
@T’lrogram of Association |
@l”rogram of State-Engine |
@ Event Flow Diagram |
@:Pl_ogram of The Object |

@ ‘ Program of The Syste ml

Figure 17. A general model of the phase and milestone based management process
for OMT

@ 3
Make Object Diagramé Machine Engine
vent Trace Diagram

/P@"m

.

Pon Groupma V) g @ /Poli ®
#) (@ /@ - e @ @ Sioupins
S The System 4 el
Object of Wﬁ%—‘ ject Diagram 4 /

‘meSystem Object Dnsﬁm of heresig iyertaes O_bjed_srsn The System ObgectDngram F.mmm.nm OEfctDisgram

ke - o
atiog Deciding Behavnor
‘“°°'°" n* of The System

‘/.

I
®

Deciding Behavior

M The System As-ocl-llm Program of

" sm.-Engin. Event Trace Dlagram of StateE ngim

\ N)
N Integration
ma‘m"""“l @_ ® m, * Jesting _
implement The Object | @ Jfmpleme
Contro / -y e e Control)]
Event Flow Diagram of The Sysiem i

Event Flow Diagram

) /5 o
T s o

Figure 18. Phase of the modified OMT |

o;

Eé

Finding Oblect Optlmlze

POIISI’IU
ofThe System [S2o%t,, [inheritarce

Deciding Implement Control Inte-
Behavior of Make Event gration
The Sysytem Flow Dlam.@ake Oblect Testlﬂg

Figure 19. The phase sequence of the modified OMT

Grouping Implement Association
I class & O ®©

30

Component
librai

ecide Bloc
Using

hanging

Y Blocked Design Model
In Inplementation

Identify Block

Draw
Interaction Object Participati
Relating InlheUse:Ease
the Use-Case | Adding
Interaction Diagram . Component
| of UseCase

® | =

State Trasition Interface of Block
Diagram of Objec]

N

Figure 20. Phases and baseline products of OOSF identified by ALGORITHM1 2

31

O =no® [® [® [® |© Grouping Object e @] |o
Get | horace | ract (3:_{_9 ate ISpectty | Goor - |® Inte—
Act{feecrn et ype foni Ch P - -
o:n 3 erp!ion gaso Object (Object ‘(’:la;; iBlocln:— tﬁolt?cr:(gh_ : g mte" Unit %ra- se‘.':
om m
Domain ng Eenitp TeSt Tg's..t Test
V) n—
@® Identify Implement environment ment
@ Investigate Component

Figure 21. The phase sequence of OOSE identified by ALGORITHMI1

21 presents the phase sequence of OOSE identified by ALGORITHM]I. In ad-
dition, Figure 22 depicts the general model of the phase and milestone based
‘management process customized for OOSE by the proposed framework. It is
not so difficult to construct the DFD shown in Figure 20 by hand based on the
description of OOSE [15].

As shown in Figure 20, thirty activities are classified into nineteen phases
and twenty-three baseline products are identified out of thirty-one products. The
number of phases and baseline products'a,re relatively large compared with OMT.
Although a large number of phases and/or baseline products results in precise
control of development progress, it also results in additional managerial cost and
strongly rigid development process. If we intend to reduce the number of phases
and/or baseline products, we need to integrate successive phases. There are three
criteria for determining which pair of phases is appropriate for being integrated:
(C1) Length of phase - - - Milestones established at irregular intervals prevent ef-
fective control of development progress. We have to avoid increasing the variation
in the length of the phases by phase integration.

(C2) Reliability of baseline product - - - When we integrate two successive phases
into one, the baseline product of the former phase is referred by the activity in
the latter phase without checking its correctness. We have to avoid increasing
the probability of rework by phase integration.

(C3) Concurrency of phase execution - - - When we integrate two successive phases
into one, the baseline product of the former phase is not authorized as a “real”
baseline product for other phases to refer until the baseline product of the lat-
ter phase has been authorized. Therefore, we can not concurrently execute an
integrated phase and phases which refer to the baseline product of the former

32

1

[Frogam] [oonTommaProg ||m-a~ |

e

O: Phase (i) : Milestone |::|: Baseline product

Figure 22. A general model of the phase and milestone based management process

for OOSFE

phase. For example, if we integrate phase #6 and phase #8 in Figure 21, we
could not start phase #7 until the integrated phase of phase #6 and phase #8
completes. We have to avoid decreasing the concurrency of phase execution by
phase integration.

- Such adjustment of length and/or the number of phases discussed in this sec-
tion may be reasonable from the viewpoint of project management. But there is
the possibility that the adjustment may be against the principle of the develop-
ment method and may not be acceptable to all managers and/or developers of

the project.

33

N

_'
i
!

r
1
]
1

3.3 Conclusion

This chapter proposed a new framework which gives us a guideline for generating
software processes with relevant milestones for object-oriented development meth-
ods. In the proposed framework, phases and baseline products can be identified
in an algorithmic way based on the definition of the development method. This
chapter also presents examples of the application of the proposed framework, in
which we generated software processes for two well-known object-oriented devel-
opment methods:OMT and OOSE. The examples show that the framework can
generate a software process customized for object-oriented development methods
in a systematic way. And discussion for adjustment of the length and the number
of phases is shown. |

The framework can be applied not only to object-oriented devélopment meth-
ods but all development methods where the relationships among activities and
products can be éxpressed in a DFD. In addition, the proposed framework can
be applied to the incremental development approach and the spiral development
approach. It is because each iteration process of these approaches can be con-
trolled by phases and milestones. We believe that the framework has potential
capability to generate software process with relevant milestones for various kinds
of software development methods and approaches.

34

4. Estimating Model based on developer’s learn-
ing

In this chapter, a new simulation model is propoéed. The model is useful for
estimating development periods in project planning. Especially, the model can
estimate and/or predict development periods which are influenced by variation
of developers’ productivity. The productivity varies with developers’ learning.
Section 4.1 describes the proposed model, applications of the model is shown in
section 4.2. Customization and evaluation of the model are described in section
4.3. Section 4.4 presents a new simulator based on the proposed model. Case
studies on the simulator are also shown. Section 4.5 summarizes.

4.1 The proposed model
4.1.1 The three submodels

The proposed model consists of three submodels: the Activity model, the Produc-
tivity model, and the Knowledge model. The relationship of the three submodels
* is shown in Figure23. The Activity model presents characteristics of an activity.
The Knowledge model presents characteristics of a developer. The Productivity
model presents the relationship between the activity and the developer, by using
the developer’s productivity during the execution of the activity.

(1)The Activity Model
In the proposed model, an é,ctivity of development is composed of a set of simple
activities called “primitive activity.” For example, a design activity is composed
of a set of primitive activities: architectural design, interface design, component
design, data structure design, and algorithm design[30]. A primitive activity has
a knowledge. level which is needed to execute this primitive activity. The model
is based on the following assumptions:
(i) an activity is set up on each project,
(ii) an activity is composed of a set of primitive activities,
(111) the primitive activities are put in order of the level of the required knowledge,
(iv) the high knowledge level requires more knowledge than the low knowledg

level, and

35

Developer’s
knowledge level

Figure 23. Outline of the proposed model

(v) the knowledge needed to execute a primitive activity of higher rank includes
all knowledge needed to perform a primitive activity of lower rank.

The Activity model shows the relationship between the primitive activity’s
quantity and the required knowledge level needed to execute the primitive activity.
The Activity model presents a distribution of knowledge levels needed to execute
the primitive activities(See Figure 24). The X axis of the Activity model in
Figure 24 means the knowledge levels needed to execute the primitive activities.
In Figure 24, the knowledge levels of the Activity model are divided into 256 levels.
The Y axis in Figure 24 means the total amount of the primitive activities which
~ require the same knowledge level. Assuming that the distribution of knowledge
level is normal distribution, the Activity model is defined as follows:

W;(0) = w; -]

W;(0) : total amount of primitive activities

(1)

e
where

which require knowledge level 6 un-
der an activity j
0 : required knowledge level to execute
a primitive activity of activity j
w; : total amount of activity j
u: average of 0
o : standard deviation of §

(2) The Productivity model
The Productivity model shows a developer’s productivity in the execution of an
activity. When the developer does a primitive activity A, the developer’s produc-
tivity is derived by processing the developer’s knowledge level and the required

36

Quankty of activty W,

Figure 25. Productivity model

knowledge level needed to execute the primitive activity A. The Productivity
model using a cumulative normal model Ogive model[20] is defined as follows(See
Figure 25):

a;(bi;—0) 2
’ 1 e dt (2)

P;(6) = C;; /

where —o0 27 .
P;;(6) : productivity of a developer i under a prim-
itive activity of an activity j, which has
knowledge level 8
C;; : maximum of the productivity of developer
1 under activity j '
a; : level of accuracy needed to execute activity
i (20)
b;; : knowledge level of developer ¢ about activ-
ity j
@ : required knowledge level to execute the
primitive activity of activity j

In Figure 25, the X axis of the Productivity model means the knowledge levels
heeded to execute the primitive activities. The knowledge levels of the Produc-
tivity model are also divided into 256 levels. The Y axis means a developer’s

37

Figure 26. Knowledge model

productivity. The variation of the productivity is shown as a curve in Figure 25.
Figure 25 depicts that, if the developer’s knowledge level b;; is higher than the
required knowledge level 8, the productivity is high. In contrast, if b;; is less than
0, the productivity is low. Productivity, especially, decreases in narrow limits.
The range is around a point where 6 is almost equal to b;;. And if 8 is equal to
b;j, the productivity is a half of the productivity’s maximum Cij.

The parameter a; is very important for determining the shape of the curved -
line in the model[20]. If a; is big, the curved line declines sharply within narrow
limits, a small gap in the developer’s knowledge can greatly change the produc-
tivity. On the other hand, if a; is small, the curved line goes down loosely within
wide limits. In particular, if a; is equal to 0, the productivity is always a half
of the maximum productivity C;; regardless of value of 6; a large gap in the de-
- veloper’s knowledge will only change the productivity slightly. For example, if
a developer does not know a “Is” command on text-command based OS such as
UNIX, he/she will not be able to display a list of files. In the UNIX OS, the value
of the parameter a; is big because the developer is required accurate knowledge
about UNIX commands such as “Is”. In contrast, even if a developer does not
know how to display a list of files on GUI based OS such as .Windows, he/she will
be able to display the list in some trials of clicking menus and buttons. In the
Windows OS, the value of the parameter a; is small because the developer does
not have to have accurate knowledge about the operational functions of listing
files.

(3) The Knowledge model
The Knowledge model shows quantity of gain to a developer’s knowledge by
executing an activity. Quantity of gain to the developer’s knowledge is derived

38

from the relationship between b;; and 6. b;; is the developer’s knowledge level
and 0 is the required knowledge level to execute the activity. This model is based
on the following assumptions,
o if b;; is more than 6, developer ¢ will not gain new knowledge by executing
the primitive activity, the developer’s knowledge level is not changed.

o if b;; is less than 0, developer ¢ will gain new knowledge by executing the
primitive activity, the developer’s knowledge level is increased. Provided
that, if the gap between b;; and 6 is small, developer i gains more new
knowledge; if the gap is large, developer i gains limited new knowledge.
In short, the developer has to do a difficult activity for him/her to gain
knowledge. But if the activity is too difficult for him/her, he/she gains
little knowledge.

The Knowledge model is defined as follows(See Figure 26):

(6 — bij) Kije BO=bi) (p,; < 9)

0 (bij > 9) (3)

Li;(0) = {
where
Li;(@) : quantity of gain to knowledge of a devel-
oper i by executing a primitive activity of
activity j, which has knowledge level 8
- K;; : maximum quantity of gain to knowledge of
developer i by executing activity j
 b;; : developer i’s knowledge level about activ-
ity j
E;; : developer’s efficiency of gain to knowledge
by executing activity j
0 : required knowledge level to execute the
primitive activity of activity j

'4.1.2 Simulation using the proposed model

The proposed model can be used to simulate a development progress. The fol-
lowing equation has been applied to compute the value of progress.

w; — ZeW;(0)

Progress =
wj

(4)

where

39

W;(6) : remaining quantity of primitive activities
which require knowledge level 6 under an
activity j
0 : the required knowledge level to execute
primitive activities of an activity j
wj : total amount of activity j’

“This simulation consists of the following steps:

Step 0

Step 1

Step 2

Step 3

Step 4

Initialization
Parameters(w;,b;;,1,0,a;,b:5,Cij, Kij, E;ij) of the three submodels are initial-
ized to the values determined by a user(e.g., a project manager). The time

t is initialized to zero.

Choice of a primitive activity

A primitive activity which is executed at time t is chosen randomly out
of the primitive activities with non-zero quantities in the Activity model.
Parameter 6 is determined by the chosen primitive activity.

Calculation of productivity F;;

The value of Productivity P;; is calculated by Equation(2) in the Produc-
tivity model. The Productivity model is given the values of the four pa-
rameters: Cj; which is determined on Step0, a; which is determined on
Step0, b;j(developer’s knowledge level) which is determined on StepO(only
in the first cycle) or Step5, and #(required knowledge level to execute the
primitive activity) which is determined on Stepl.

Renewal of the quantity of a primitive activity W;(0) in the Activity model
P;; which has already been calculated on Step2 is subtracted from the
amount of the primitive activity which has the 6 (required knowledge level
to execute the primitive activity). The Activity model is reset to the result
of this subtraction. Using mathematical term, it could be expressed as:

Wie)(t + 1) = Wje)(t) — Pijee) (5)

Calculation of quantity of gain to knowledge L;;
Quantity of gain to knowledge L;; is calculated by Equation(3)in the Knowl-
edge model which is given four parameters: K;; which is determined on

40

Step0, E;; which is determined on Step0, b;;(developer’s knowledge level)
which is determined on StepO(only in first cycle) or Step5, and (required
knowledge level to execute the primitive activity) which is determined on
Stepl.

Step 5 Renewal of the developer’s knowledge level b;;, and quantity of gain to
developer’s knowledge in the Knowledge model
The quantity of gain to knowledge L;; which has already been calculated
on Step4 is added to b;; (the developer’s knowledge level).

bij(t + 1) = bi;(¢) + Lyi(¢) | (6)
The knowledge level is reset to the developer’s new knowledge level b;;.

Step 6 Renewal of value of productivity in the Productivity model
The value of productivity is reset to the developer’s new knowledge level
b;; determined on Step5.

Step 7 Goto Stepl
In the Activity model, if the total amount of remaining activities L,W; is
equal to 0, the simulation is finished; if ¥4Wj is greater than 0, set the value
of time t to (¢+1), then go back to Stepl.

In the simulation, the developer’s knowledge level b;; is increased at Step 5.
The growth of the developer’s knowledge level b;; during the execution of activity
j shows the developer’s learning curve. Line(1) in Figure 27 shows the learning
curve in the simulation. The growth of the developer’s knowledge level b;; has a
great impact on the development progress.

The shape of the learning curve depends on four factors: F;; and K;; in the
Knowledge model, the way that the primitive activity is chosen (e.g., at random
on Stepl), and the shape of the Activity model(e.g., normal distribution). For
example, if the primitive activity is chosen in ascending order of the required
knovﬂedge level, the shape of the learning curve in early stage of the simulation
will be flat (See Line(2) in Figure 27). This is because that the L;; which is
calculated on Step 4 is equal to 0, when the b;; is greater than the 8 of the chosen
Primitive activity. In the latter half of the simulation, the shape of the learning

41

developer's 4.
knowiledge level “bij®

initial *bij* —

time

Figure 27. Learning curve in the simulation

Table 1. The default values of the pa,ra,meters
total amount of activity j(W;) 5000
developer #’s knowledge level(b;;) 125

average of the required knowledge level to execute primitive | 125
activities:0(pu)

maximum of the developer i’s productivity (C;;) 1
distribution of the required knowledge level to execute primitive | 40
activities:0(o)

developer i’s maximum quantity of gain to knowledge (Kj;) 1
level of accuracy needed to execute the primitive activities(a;) 1
developer i’s efficiency of gain to knowledge by executing(E:;;) 0.02

curve will go up sharply. This is because that the L;; which is calculated on Step
4 is almost equal to K;; which is maximum gain to knowledge, when b;; is slightly
less than the 6. '

4.2 Case study

In order to make clear the usefulness and characteristics of the proposed
model, we applied this model to four cases in which the development progress
is influenced by the characteristics of the activities and the developers. Table
1 shows the default values of the parameters. In the following applications, we
would refer to these values unless further notices are given. The value of b;; is
between 0 and maximum 250. The default knowledge level is set to 125, the

42

sufficient knowledge level is set to 175, and the insufficient knowledge level is set
to 75.

Casel: Three developers with different knowledge levels perform the same ac-
tivity.

In this case, we assume that the developers design software using a design method

which only used simple notations. The developers can design the software even if

they understand only the outline of the method and the notations. But it takes

a lot of training to design efficiently, which means that the design satisfies user’s

requirements, and has few defects. »

The first scenario is that a developer starts to design after studying the method
sufficiently. He/she can design with no defects. The second scenario is that a
developer starts to design after studying the method on average. He/she can
design with some defects. The third scenario is that a developer starts to design
with a little knowledge about the method. He/she can design with many defects.
All developers learn the method while they design the software using the method.

The developers’ progress is expected to be different in the three scenarios. The
proposed model has been evaluated against its ability to indicate the progresses
gap between three developers. Three scenarios are as follows:

(1-1) with sufficient knowledge(b;; = 175),
(1-2) with average knowledge(b;; = 125),
(1-3) with insufficient knowledge(b;; = 75).

Figure 28 shows the result of these scenarios. In this result, the developer with
sufficient knowledge makes greater progress in the activity, the developer with
insufficient knowledge makes poor progress. This outcome is in line with software
development intuition. If some information about the effort of the training is
given, the developer’s training period for the method before he/she starts to
design can be obtained.

By the same token, the proposed model shows a sudden change of productiv-
ity’s incline at around 90% in scenario(1-1)(Figure 28). There is a great variation
of the productivity of the experienced developer at different time blocks, one is in
the beginning, one is at the end of the development period. This gap indicates the
decrement in the developer’s productivity. For scenario(1-1), it is not necessary
to learn while the developer designs the software. However, as a few primitive

43

Progress (%)
100 115 165 221

80 |-----eeeeeee

L A A St

40 ---of-f--- —ee=(1=1)When the deveioper started to design with full knowiedes
HF=175
’ (1 ~2When the developer started to design with average knowiedgs
20 -AS S H=125
~— (1-3When the developer started to design with @ fttle knowledge
=75

o - 50 100 150 200 250
Development time (hour)

Figure 28. Result of Casel

activities which have greater 0 than his/her b;; have been left over at the end of
the development period the developer’s productivity P;; is small. At the end of
the development, it should be time consuming for the developer to learn when

doing such difficult primitive activities.

Case2: Two developers with different knowledge levels and different learning

curves execute the same activity.

The learning curve of a new programming language depends on the individual’s
knowledge level of the language theories and the experience with using other
similar programming languages. If there is a little knowledge about the language
theories and experience, it would be difficult for the developer to acquire more
knowledge.

We evaluated whether the proposed model had an ability to indicate a progress
gap between two developers. One developer has a high knowledge level of pro-
gramming language, but he/she can hardly learn the new technology or environ-
ment. Another developer has a low knowledge level of programming language,
but he/she can learn the new technology or environment easily.

(2-1) The developer has a high knowledge level of programming language, but
he/she has difficulties with learning new skills. (b;; = 150, Kj; = 1, E;; = 0.01)
(2-2) A developer has a low knowledge level of programming language, but he/she
has little difficulties with learning new skills. (b;; = 100, Kj; = 10, E;; = 0.1)

44

100 133 229
B
60 L L n Lo T Ty £ Uy g PP
L e 7 A
o (2-1)The developer had high knowledge level, but had difficulties with
20 771 ieoming new skils biF1 50KIF1, o001 :
—— (2-2The developer had low k dedge level, but hed little difficulties with
0 learning bi=100, Ki=10, eii=0. .
0 50 100 150 200 250

Development time (hour)

Figure 29. Result of Case2

- The consequence of these scenarios is shown in Figure 29. In the result, at
the beginning developer(2-1) makes better progress than developer(2-2). But
when the progress is at about 80% of the progress, developer(2-1)’s productivity
reduces, and when the progress is about at 85%, developer(2-2) makes a better
progress than developer(2-1). Finally, developer(2-1)’s effort (development time)
is about 1.7 times as much as developer(2-2)’s effort. If the result can be com-
pared to the actual effort of learning of a programming language, an effect of
learning language’s theories can be seen. Whether a new but similar program-
ming language should be used in a project or not can also be seen.

Case3: A developer does two activities, each activity has a different distribution
of knowledge levels.

Software development consists of various kinds of activities. Coding needs knowl-
edge of narrow limits, relatively, while testing needs knowledge of wide limits.
Because testing consists of various kinds of activities: creating test data, setting
up the test environments, executing, analyzing the test’s results, and debugging.
These activities have distinct goals, methods, and procedures.

The proposed model has shown its ability to indicate the different distribution
of the knowledge level. Three scenarios are given as below:
(3-1)Activity needed knowledge of wide limits.(c = 120)

45

Progress(%)
100 r

169 165 175

80

60

40

——(3-1)Ativity needed knowledge of wide limits ¢=120
——(3—2)Acti\(ity needed knowledge of average limits g=40
~— (3-8)Activity needad knowlecge of narrow limits o=1

20 [

0

(4] 100 . 200
Development time (hour)

Figure 30. Result of Case3

(3-2) Activity needed knowledge of average limits.(o = 40)

(3-3)Activity needed knowledge of narrow limits.(c = 1)

 Figure 30 depicts the result of these scenarios. The activity which needed
knowledge of wide limits takes more effort than the activity which needs knowl-
edge of narrow limits. But the disparity of their total efforts is very small, as
well as the disparity of the progress. As long as the distribution of knowledge is
a normal distribution, the difference in distributions of knowledge level will not
have a great impact on the development effort and the progress.

Case4: A developer performs two activities, each activity requires a different

level of accuracy.

On command based user interface such as UNIX system, if a developer knows
the correct commands, his/her productivity will be high. If the developer doesn’t
know the correct commands, his/her productivity will not only be low, but he/she -
can’t even perform the activity. However, on GUI based user interface such as X-
window system, if the developer doesn’t know the correct operation, he /she can
still complete the task by using the GUI and so on. Under such circumstances, de-
veloper’s productivity is low, because he/she may need to try the same operation
such as clicking menus in searching for the correct one.

The proposed model has shown its capability to differ between the activities
required different levels of accuracy. Two scenarios are as follows:

46

Progres
100

60

——(4~1)Activity needed high level of accuracy(command driven
activity such as UNDO @j=2.00]

— (4-2)Activity needed low level of accuracy(event driven such
as X~window) aj=0.02

20

0 50 100 150 200
Development time (hour)

Figure 31. Result of Case4

(4-1) Activity needed high level of accuracy. (a; = 2.00)
(4-2) Activity needed low level of accuracy.(a; = 0.02)

The result of the two scenarios is shown in Figure 31. In scenario(4-1), the
developer’s productivity is reduced in the later half of the development period
sharply. The activities in which the developer doesn’t have a high level of accuracy
are left over in the later half of development period. A little shortage in the
developer’s knowledge which has been left over reduce the productivity sharply.

Alternatively in scenario(4-2), the developer’s productivity is almost invari-
able during the development period. The productivity is always kept at about
half of the maximum productivity under any needed to knowledge levels. Because
the knowledge needed to execute the activity is not accurate, the productivity is
maximal or 0 rarely during development period.

Current simulation models for software development don’t take into account
the level of accuracy, as conventional tools always required high level of accuracy.
But new tools and development environments of software require low level of
accuracy for execution, because they will not only have GUI, but they will have
some functions such as online help, navigations and so on. Therefore we need
a model to consider the level of accuracy. The proposed model will be able to
apply to real projects widely, since the model has the ability to show the gap of
accuracy of knowledge in recent tools and development environments, and the

47

'development progress which is influenced by the gap of accuracy of knowledge.

4.3 Customization and evaluation

Although the proposed model is very useful to estimate progress and development
periods of projects where develbpers have to learn new technology, industrial
managers may not apply the model to their projects. We thought of two reasons
why the managers can not apply the model. The first reason is that managers
are required good understanding of the model, that is, the difficulty of assigning
values to the parameters of the model. The second reason is that managers don’t
know how reliable and accurate the results of the simulator are. This section
presents a way of applying our proposed model to industry using empirical data.
To apply the model to industry, we customize the model for the first reason, and

evaluate the model for the second reason.

4.3.1 Approach

There are two popular approaches for evaluation and customization of such mod-
els. One is usage of data which was collected from real life completed projects.
_Another is usage of data which was collected from experiments in laboratories.
However, both approaches include significant problems. In the first approach,
the data collected from completed projects is influenced by unexpected events
such as changes in requirements and hardware problems. The data influenced
by the events will confuse us in the evaluation and customization of information
or steps. In the second approach, the scale of the experiment is much smaller
than real life projects. If we evaluate the model using the data collected from the |
small scale experiments, we will not be able to evaluate whether the model will
compute accurate development periods of large scale projects or not.

Therefore, the new approach was chosen for the evaluation and customization
of the model. Because the people who determine the usefulness of the model
are industrial managers, we request the managers to cooperate to customize and
evaluate the model. The model is customized and evaluated using empirical data
which has been collected from the managers.

With the use of virtual projects, the customization and evaluations of the
model becomes feasible. Virtual projects are similar to real projects. A virtual

48

project includes Virtua,l'developers who could be in any projects, and virtual ac-
tivities that could be occurred in any projects. A different point is that virtual
projects are not executed actually. The non-execution of the virtual projects is
convenient for customizing and evaluating the model. As virtual projects don’t
involve real budget, time and human resources, the virtual projects could be set
as same as industrial projects which managers always control. Moreover,virtual
projects can involve intentionally specific problems that are taken up in the model.
The proposed simulation model focuses on developers’ learning. Assuming that
the virtual developers need to learn new technology, the model allows us to sim-
ulate their progress and show their learning curves. '

4.3.2 Customization

A purpose of the customization is to allow managers to give values to the pa-
rameters of the model easily. For this purpose, equations converting answers of

questions to the parameters’ values are generated.
The model has 8 parameters. Parameters related to activities are as follows:

a;j : level of accuracy needed to execute an activity
j .
wj : total amount of activity j
p: average of O(the required knowledge level to
execute primitive activities)
o: distribution of 6(the required knowledge level
to execute primitive activities)

Parameters related to developers are as follows:

C;j: maximum of developer ¢’s productivity
b;j: knowledge level of developer ¢
K;j: maximum quantity of gain to knowledge of de-
véloper 1 by executing an activity j
E;;j: developer i’s efficiency of gain to knowledge
by executing an activity j

To make discussion simple, equations of 4 parameters related to developers
are generated. The values of the other parameters related to activities are given
beforehand. However, only parameter w; (total amount of activity) becomes a
target of making extended equations(See stepl-3). The unit of the parameter w;

49

is important in the customization. The reason is that there is serious relationship
between the unit of the parameter w; and the units of the parameter Cj;. If the
unit of the parameter w; is “Function Point” and the unit of the parameter C;;
is “LOC/Month”, the results of the simulations will be nonsense. The conversion

equations are generated according to 3 steps.
Stepl-1 Désigning questions

According to each parameter, a corresponding questionnaire about virtual projects
is made. When designing these questionnaires, we tried to avoid the use of un-
familiar technical terminology and keep mané,gers away from the task of tedious
calculation. The questions of the parameters (C;;, b;j ,Kij, E;;) are shown as

follows:

o C;;: maximum productivity
“Assuming that the developer performs with his highest level of efficiency,

what is his maximum productivity?”

e b;;: knowledge level of developer _
“How much does the developer know about this new technology? Please
answer using percentage (from 0% to 100%).”

¢ K;;: maximum quantity of gain to knowledge of developer by executing an
activity
“How many days does the developer need to master the new technology?”

e E;; : developer’s efficiency of gain to knowledge by executing an activity
“Assuming the developer gives 1ip executing the activity, how difficult is it
for him to execute the activity? That is, what is the difference between
his knowledge and the required knowledge to complete the activity? Please
answer using percentage (from 0% to 100%).”

For some parameters, such as maximum productivity C;;, it is easy to de-
rive questions directly from them. In Cj; case, as managers are familiar with
“productivity,” the question is directly derived from the parameter. However,
for some parameters, such as maximum quantity of gain to knowledge Kj;, there

50

is no direct relationship between the parameters and the questions. There is a
need to devise the questions with commonly known terminology. In K;; case, as
experienced managers often consider time to learn a new technology in common
practice, the question is to ask the time to learn it. |

Stepl-2 Making basic equations

The theory of making basic equations is the same as designing questions. When
there is a direct relationship between the parameter and question, the parameter is
assigned value of the answer. In the other relationship, the parameter is assigned
a reciprocal of the value of the answer. The basic equations of the parameters
(Cij, bij ,K;j, E;j) are shown as follows:

e C;; = value of the answer.
o b;; = value of the answer.
¢ K;; = 1/(value of the answer)

o E;; = 1/(value of the answer)

Stepl-3 Making extended equa,tionsv

However, with the above basic equations, results of the simulation are very dif-
ferent from the results of managers’ estimation. This is because the model does

Table 2. Estimation and results of simulation with “all revised constants — 1”

Virtual ProjectNo. Virtual projectl Virtual project2
Manager No. 1 2 3 1 2 3
Managers’ 7.5 5.8 6.7 2.5 2.0 3.0
estimation(Month)
Results of 1.19 1.18 1.16 0.8 0.86 1.38
simulation(Month)
Gap of two 630.2 491.5 577.6 312.5 2326 217.4
periods(%)

o1

Table 3. Results of tuning for revised constants of extended equations in step3

Combination Revised constants for Average

No. w; by Ci; Kij E;; of gap(%)
1 1. 1 1 1 1 70.9

88 15 1 1 31.25 6.50 130.9
89 15 1 1 31.25 6.75 119.8
90 15 1 1 3125 7.00 100.64
91 15 1 1 3125 7.25 96.4
92 15 1 1

31.25 7.50 86.3

not consider the units of the parameters. In the above stepl-1 and stepl-2, the
units of the parameters are “hour” and “percentage”. We don’t know that the
model can compute accurate periods using “hour” and “percentage”. The basic
equations have to be tuned up for closer, accurate results. There are various
ways for the tune up. A simple approach is chosen. The extended equation is as
follows:

Extended equation = Basic equation * Revised constant

The determination of the above revised constants is a result of a series of tests.
The tests involve comparing managers’ estimation with the result of simulation
using different trial constants. When the difference is minimal, the constants are
optimal. The optimal values are chosen as revised constants. These tests are
based on the assumpfion that experienced managers always estimate accurate
development periods. Therefore results of the simulation should be same as the
managers’ estimation.

The extended equations of the parameters (wj, Cjj, bij ,K;j, F;;) are shown
- as follows:

e w; = LOC of program * 15
e C;; = value of the answer * 1
e b;; = value of the answer * 1

e K;; = 1/(value of the answer) * 31.25

52

o E;; = 1/(value of the answer) * 7.00

The bold numerical characters in the above equations are the revised constants.
In this step, three experienced managers estimated development periods of two
virtual projects. They answered the questions made in stepl-1. Table 2 shows
the managers’ estimations and the results of simulations in which all values of
the revised constants were set to 1. The gaps of two periods in Table 2 are
large (form 217.4% to 630.2%) because the model doesn’t consider the unit of the
parameters. Table 3 shows the results of the tuning for generating the revised
constants. The revised constant for w; is increased from 1 to 50. The quantity
of the increment is 1 on each trial test. The other revised constants for Cij, bij
K;; and E;; are increased from 1 to 50.0. The quantity of the increments is 0.25.
On Combination No.90 in Table3, the gap of two development periods was the
smallest: only 100.64%. Therefore, the revised constants were determined on the
above equations.

4.3.3 Evaluation

A pﬁrpose of the evaluation is that we give managers an assurance that the
model can compute development periods as accurately as experienced managers’
estimation. The customized model with the extended equations is evaluated.
Therefore the result of this evaluation means an assurance of the customized
model and not the original one. And that, experienced, independent managers
who did not generate the extended equations evaluate the customized model.

Procedures of the evaluation consist of 4 steps.
Step2-1 Setting up virtual projects

Virtual projects are set up to reflect the features of the model. In this case, virtual
Projects are set up in a situation that developers have to learn new technology. Be-
cause there are various domains which managers are good at, six virtual projects
were prepared. For example, in Virtual Project No.1, a virtual developer makes
a production management system in C language on WindowsNT. The virtual
developer has only experience of programming in COBOL. The virtual developer
has to learn C language in the virtual project. Some parts of Virtual Project
No.1 are described in Table 4.

53

Table 4. Virtual Project No.1

Software

Business application for production management.
Client and Server system on WindowsNT.

Activity

Input Product into the activity:Document of system design(50
pages). |
Output product from the activity:C programs (are completed unit
test and integrated test).

Activities:

~Structural design for programs.

—Detail design of function. |

—C programming.

—Unit test for Function.

—Integrated test for progi‘a.ms.

Developer

NAME: Taro Yamada

*His educational background:

He has a bachelor of Information Technology degree and majored
in Software Engineering.

*His education after graduation:

He had given training for 3 months. The contents of the training
are: an introduction of C language(for a month),

an introduction of JAVA language(for a month) and a fundamen-
tal knowledge of Software Engineering(for a month).
*Experience of software development:

(1)Banking system (MainFrame, 3 years)

—Design of program, programming, unit, integrated, total test
—Document for program design: 240 pages

—COBOL program:54KL.OC

—Document for Integrated test: 100pages

—Document for total test: 300pages COBOL

—Productivity of programming(COBOL) : 5KLOC/month
—Productivity of writing documents: 17.8 pages/month
Interview to the developer:

*Are you interested in new technology?

—TYes, I’'m interested in the latest technology.

*Do you have confidence in learning new technology ?

~T1 don’t have enough confidence.

54

Managers’
40 I Estimation(Month)

& Managers' estimation]

9.5month

VirtualProjecti VirtusiProject2 VirtualProject3 VirtuslProject4 VirtualProjects VirtusiProjects

Figure 32. Managers’ estimation

Estimation({Month)

30
25 [OResults of simulation] ~ 23month
fg 8. 6month 102month 69month 195 13month
s HifT TﬂﬁH siniiiii nlll rr”mm
5
: | T [l
VirtuaiProject] VirtuslProject? VirtuslProject3 VirtuslProject4 VirtualProject5 VirtualProjectt

Figure 33. Results of simulation with managers’ responses

Step2-2 Acquisition of managers’ knowledge

Managers who are not involved in the making of the extended equations are
asked to give estimation about. virtual projects. Table 5 presents five managers’
responses to the questions about Virtual Project No.1. For example, Manager
No.1 estimated that the virtual developer takes 10 months to execute the virtual
activity. And the manager decided that the developer’s maximum productivity
- using the new technology is 2.0 KLOC/month, the developer’s knowledge about
C language is 20%, the developer needs 90 days to master C language, and the
developer gives up executing the activity which is 20% more difficult than his/her
knowledge. Figure 32 shows 62 estimations of the managers. The broken lines
in Figure 32 mean medians of the estimations of virtual projects. The median of
Virtual Project No.1 is 9.5 months, the median of Virtual Project No.2 is 10.25
months and so on.

Step2-3 Simulation using managers’ knowledge

The responses from the managers become the input values of the corresponding
Parameters. The model then simulates development periods with the extended

95

Table 5. Responses about Virtual Project No.1

Manager No. 1 2 3 4 5
What is developer’s maximum 2.0 1.5 2.0 1.0 1.5
productivity? (KLOC/month) _
How much does the ,develbper 20% 10% - 30% 10% - 40%

" know about C language?
How many days does the devel- 90days 60days 200days 100days 100days
oper need to master C language?
What is difference between his 20% 30% 30% 30% 30% -
knowledge and the required ‘

knowledge to execute ?
Estimated ‘development 10 11 15 15 10
period(Month) ‘ v '

equations. Figure 33 shows results of simulation with managers’ responses. The
median of Virtual Project No.1 is 8.6 months, the median of Virtual Project No.1
is 10.2 months and so on.

Step2-4 Analysis of a gap of two development periods

The simulated development periods (from Step 2-3) are compared with the man-
agers’ estimations (from Step 2-2). The gap between the two periods is analyzed.

At first, a gap between each manager’s estimation and each result of simu-
lation is ana,lyzed. The results of the analysis are shown in Figure 34. In the
graph, the X-axis is the estimated development periods; the Y-axis is the sim-
ulated development periods. If the plots in the graph are on the dash line, the
gap of two development periods is very narrow; that is, the simulated period is
very close to the managers’ estimation. Every manager’s estimation of a virtual
project is different. Some tend to estimate a shorter development period; others
tend to estimate a longer development period. This is because of the difference
in everyone’s experience. As a consequence the estimated development periods of
a virtual project are not same. Therefore there are various gaps between the es-
timated development periods and the simulated development periods. Assuming
that the distribution of the gaps of the two development periods is a normal dis-
tribution, the criteria to judge how small the gap is based on X?2 test (chi-square

56

35 ~Results of

: simulation . g
30 = (Month) X VirtualProject 1.1~
25 O Virtuall_?roje’EtZ O
‘ A VirtdalProject3
20 . % VirtualProject4
15 : d + VirtualProject5
O Vitual Project8

10

5

o L=

0 5 10 15 20 25 30 35
Managers’ estimation(Month)

Figure 34. Result of evaluation

test)[29]. As a result of X? test (chi-square test), the value of X2 is 23.98. When
the degree of freedom is 50, the value of X2, is 29.71. That is, the results of
the simulations by the customized model fit managers’ estimation at 1% level of
statistical significance.

Next, a gap between the median of manager’s estimation and the median of
result of simulation is analyzed on each virtual project. For example, in Virtual
Project No.1, the median of managers’ estimation is 9.5 months, the median of
results of simulation is 8.6 months(See Table 6).. The gap between the median
of managers’ estimation and the results of simulation is 0.9 months. As a result
of X2test (chi-square test) of the gaps of the medians, the value of X2 is 0.64.
When the degree of freedom is 5, the value of X2 is 0.71. That is, from the
point of view of median on each virtual project, the results of the simulations
fit managers’ estimation at 5% level of statistical significance. Therefore we give
managers an assurance that the customized model can compute development
periods as accurately as experienced managers’ estimation.

57

Table 6. Results of estimation

Virtual Project No. 1 2 3 4 5 6
Medians of managers’ estimations(month) ~ 9.5 10.25 6.67 10.5 12.0 20
Medians of the simulated estimations(month) 8.6 102 6.9 10.5 13.0 23.0

4.4 Application

4.4.1 A Simulator

We provide a new software development simulator which is based on the cus-
tomized and evaluated model to industrial project managers (See Figure 35).
As the simulator is based on WWW, anyone can simulate a progress of his/her
projects from in different parts of the world. To help users understand results of
the simulation, the system produced three graphs. (See Figure 35). The progress
graph shows how the project progresses. The learning curve graph shows the
developer’s learning curve. The activity graph shows how the developer finishes
the activities.

4.4.2 Case study

We appliéd the simulator to six cases in which the development progress is in-
fluenced by the developers’ ‘learning. The parameters related to activities are
given beforehand. The parameter u (average of) is given 50, the parameter
o (distribution of #) is given 40, the parameter a; (level of accuracy needed to
execute an activity) is given 10.

Casel: Total amount of an activity(w;) is 10KLOC(line of code)

It assume that the activity includes design of programs, programming, program
tests and combination test.

Casel-1: Conventional technology

A developer makes software using conventional technology such as C language and
structured design/programming methodology. He/she has enough knowledge of

58

Figure 35. Simulator

59

- Figure 36. Result of Casel

the technology. An answer of the question to the parameter b;;(developer’s knowl-
edge level) is maximum (100%). An answer of the question for the parameter
C;;j(maximum of productivity) is 1.5 KLOC/Month. An answer of the question
to the parameter K;; (“How many days does the developer need to master the
new technology?”) is 100 days. An answer of the question to the parameter F;;
(“Assuming the developer gives up executing the activity, how difficult is it for
him to execute the activity?”)is 30%. The line “casel-1” in Figure 36 shows
the simulation result of Casel-1. We find that the developer takes 6.71 months
to execute the activity in Casel-1. Moreover the progress of Casel-1 goes up
straightly. In this case, managers can estimate and/or predict the progress and

development periods of their projects easily.
Casel-2: New technology

A developer makes software using new technology such as component-ware. He /she
has no knowledge about the new technology. An answer of the question for the
parameter b;; (developer’s knowledge level) is minimum (0%). An answer of the
question for the parameter C;; (ma.ximum of productivity) is 3.0 KLOC/Month,
because the productivity under the component-ware technology is higher than the
productivity under the conventional technology. The other answers are as same
as answers of Casel-1. The curve “casel-2” in Figure 36 shows the simulation
result of Casel-2. The developer takes 9.51 months to execute the activity. In
the early stage of the project, the productivity of Casel-2 is low, because the
developer needs to learn the new technology. However, in the middle stage, the
productivity becomes higher and higher. In this case, if managers can not predict

60

the variation of the productivity in the middle stage, they may misunderstand
that their projects will be behind schedule in the early stage of the project.

Casel-3: Difficult technology

A developer makes software using difficult technology such as object-oriented
method. He/she has the main part of knowledge of the technology. An answer
of the question to the parameter b;; (developer’s knowledge level) is 70%. If the
developer masters the technology, the developer’s productivity will be very high.
The answer of the question to the parameter C;; (maximum of productivity)
is 5.0 KLOC/Month, because the developer can reuse many objects which have
been developed in object-oriented technology. However, it needs long time for the
developer to master the technology. An answer of the question to the parameter
K;; (“How many days does the developer need to master the new technology?”)
is 300 days which is three times as much as the values of the parameter K;;
of Casel-1 and Casel-2. Moreover, it is difficult for the developer to learn the
technology during the execution of the activity. For example, when the required
knowledge level to execute the activity is even a little higher than the developer’s
knowledge level, the developer must give up executing the activity. An answer of
the question to the parameter E;; (“Assuming the developer gives‘ up executing
the activity, how difficult is it for him to execute the activity?”) is 10%. 10% is
less than the values(30%) of E;; in Casel-1 and Casel-2.

The curve “casel-3” in Figure 36 shows the result of Casel-3. The developer
takes 7.68 months to execute the activity. In the early stage of the project, the
productivity of Casel-3 is very high. However, in the middle stage, the produc-
tivity becomes lower and lower, because the developer can gain little knowledge
during the execution of the activity. In this case, if managers can not predict
the variation of the productivity in making schedule, their projects will be late
in delivering their software.

In Casel, because the scale of the software is small relatively, the developer
in Casel-1(usage of conventional technology) can complete the activity in the
shortest time(6.71 months). The reason is that time to learn technology is not
required in spite of the low productivity of conventional technology. That is, in
small scale software, if manager would like to complete their project as soon as
Possible, they should choose the conventional technology in their projects.

61

Figure 37. Result of Case2

 Case2: Total amount of an activity(w;) is 30KLOC(line of code)

In Case2, the total amount of the activity is larger than the total amount of the
activity in Casel. The other conditions of Case2 are same as the condition of
Casel. In addition, the values of parameters of Case2-1 are same as the values
of parameters of Casel-1, the values of parameters of Case2-2 are same as the
values of parameters of Casel-2, the values of parameters of Case2-3 are same as
the values of parameters of Casel-3. Results of Case2 are showed in Figure 37.
A developer of Case2-1(convei1tion technology) takes 20.1 months, a developer of
Case2-2(new technology) takes 15.9 months and a developer of Case2-3(difficult
technology) takes 11.8 months to complete the activity.

The most different point between the results of Case2 and the results of Casel
is that the developer of Case2-1(usage of conventional technology) needs the
longest time(20.1 months) to complete the activity in Case2. As the produc-
tivity of Case2-1(conventional technology) is lower than the productivities under
the other technologies, the influence of the low productivity on the completion
date is more than influence of the time to learn the technology. The time to learn
the technology in Case2-2 and Case2-3 is as same as the time to learn in Casel-2
and Casel-3, respectively. On the other hand, total work time of Case2 becomes
longer than total work time of Casel, because the scale of the software of Case2
is larger than it of Casel. Therefore, the ratio of the time to learn the technology
in the total work time of Case2 becomes low. As a result, the influence of the
time to learn the technology on the completion date is low.

62

Our simulator can make clear the gap of small project and large project in
using various technologies. That is, if the software is large enough, manager
should choose a new technology in which developers can achieve high productivity
in spite of needs to learn it. If the software is small, managers should choose a
conventional technology which does not require the time to learn it. The simulator
is useful when managers decide which technology should be chosen in various scale
projects.

4.5 Conclusion

In this chapter, a new simulation model is proposed. The model is based on the
developer’s learning during software development. Development progress can be
estimated in line with our proposed model. In order to prove the correctness
of our proposed model, software development in four cases in which the charac-
teristic of activities and developers may influence the development progress has
been simulated. As a result, our proposed model could be applicable to real life
projects, and the presented model has an ability to simulate various situations of
development progress.

In addition, the proposed model is customized and evaluated because indus-
try project managers can simulate their project progress in the model. The
customized and evaluated model is implemented as a project simulator. The
managers can estimate their progress and development periods with only an-
swering questions about their project in the simulator. Six case studies when
developers use conventional or new technology are also shown. Gaps of progress
in different technologies have been clear. As a result, the simulator helps the
manager to decide whether the new technology should be used in his/her project
or not.

In the future, the proposed model will be refined according to the following
topics.

(i) Developer’s knowledge is divided into static knowledge and dynamic knowl-
edge. Static knowledge means whether the developers know it or not. Dynamic
knowledge means whether the developers can use it or not.

(ii) Using the model, a clear order of primitive activities which will be executed
Will be defined as a project’s strategy.

63

(iii) Managers evaluate not only the development periods, but the halfway progress
in the simulation.
(iv) Some developers will not finish an activity because of limits of learning.

64

5. The Project Planning Prototype

This chapter presents a new project planning prototype tool based on the pro-
posed framework and simulation model. The prototype was implemented in
Visual Basic, and three package softwares: Visio[33], MS Access[21] and MS
Project[22]. Using the prototype, managers can make project plans based on
these proposed methods easily, and the prototype helps the managers decide
which technology should be chosen in their projects.

Figure 38 shows an outline of the prototype which consists of four compo-
nents: a generation of software process description, an assignment of resources, a
simulation based on the proposed model, and a generation of project plans using
an activity bar chart.

5.1 The four components

We describe the components of the prototype using a situation which is illustrated
in Figure 39 and Figure 40.

(1)The generation of software process description
The software process description can be generated automatically using our already
proposed framework[11]. In this framework, if a data flow diagram(DFD) of
development method is given on Visio, a software process description including
relevant milestones will be automatically generated as Visio’s charts.

(2)The assignment of resources
The assignment of resources could be entered by a project manager into the
prototype. The items which the manager should enter are the parameters of the
proposed model. In Figure 39, there are six activities which are named PHASFE1
to PHASEG in Activity Table, these activities have been already determined by
the generation of software process description.

Each activity has a Size which is entered by the manager in the Estimation
Table. Size is total amount of the activity w; of the Activity model(See Equa-
tion(1)). In this project, there are five developers: Developerl(Noriko), Devel-
oper2(Satiko), Developer3(Hiroko), Developer4(Kumiko), and Developer5(Reiko)
in the Developer Table. Each developer has an engineer rank Rank_Name. The
engineer rank consists of four parameters of the proposed model: the developer’s

65

(1) Generation of software

process description

(O .O) F IIIII 1
| anager ,
IH \ (2) Assignment of resources

f

activitysname | developers name size of assignment

order of aml developer's rank activities {o‘e”:'ope's

Activity Table Developer Table - Assignmnet Table

’ Estimation Table relationshi
activity name developer's name size of activities p

order of activity | | developer's rank between developery
and activities
\
activity's name estimated relationship
order of activities time between developers
] and activities
TR c; -
U - o S o0 v gt

| KnoMedgeModelJ [ProduamtyModel] | Activity Modef I rOPOﬁed

FE—e I

“Lij*) e
(3) Simulation p 1 estimated nmg of activities
- - m yl ——

Activity2) Generation of

i
project plans

" Project plan

Figure 38. The outline of Project planning prototype

knowledge level b;;, the developer’s maximal productivity Cj;, the developer’s
maximal quantity of gain to knowledge Kj;, and the developer’s efficiency of gain
to knowledge E;;. Table 7 shows the values of the engineer’s ranks. The manager
has to decide the developers’ ranks. Finally, the manager assigns the developers
to the activities in the Assignment Table.
(3) The simulation
The simulation starts after assignments of resources. The estimated time of each
activity is determined by the entered values, using the proposed model. Values
of the field Estimate_Time of Estimation Table in Figure 39 are the results of
this simulation. It takes thirteen days to complete the activity PHASE1 by three
developers; Developerl(Noriko), Developer2(Satiko),and Developer3(Hiroko).
(4)The generation of project plans

66

Activity ID|Activity Nama [Product Name |Baseline Product | -
2 1 PHASE 1 Evenrt Trace Yes -
|| 1 PHASE 1 Moduled Object Yes -
|| 1 PHASE 1 Object diagram No
|] 1 PHASE 1 Object diagram No
] 1 PHASE 1 Object classes of No
] 2 PHASE 2 Program of Yes
[] 3 PHASE 3 Event flow diagram Yes -
4 DHASE 4 D, of ctate Yoo
Assignment Table
Activity ID]Activity Name | Deve ID|Devel Name JRank_Name .
] 1 PHASE 1 T Noriko AT —
] 1 PHASE 1 2 Satko B1 —
|] 1 PHASE 1 3 Hiroko C1
] 2 PHASE 2 1 Noriko Al
[2 PHASE 2 2 Satikeo Bi
. 3 PHASE 3 3 Hiroko ct
3 PHASE 3 4 Kumiko Al hd
Developer Table
Developer ID]Developer Name JRank_Name | . Progress (0
D 1 Norko Al 1 ogy,
| 2 Satiko B1 — /
3 Hiroko Ct
] 4 Kumiko. Al €0
] 5 Beio B1 hd
601
Estimation Table
[TActity Name | Estimate Time]_Size_Ja]
[[PHASET 13 5000
[|pHasE2 15 2000— 2
[|PHASES 18 1000 N
PHASE4 15 1000 0 : b
- (1 5 10 15
| PHASB‘ 1 2000 Development Progress

day)

Figure 39. Assignment of resources

67

Activity bar charts are made in Microsoft Project[22] (See Figure 40). They have
the started date and the cdmpleted date of each activity. The started date and
the completed date of each activity are calculated by two factors. One is the
estimated time of the activities, the other is the order of activities which have
been already determined by the generation of software process description[9]. In
this case, The stated date of the activity PHASE1 is the 25th of August, the
completed date of the activity PHASE1 is the 10th of Sep. 1997. The due date
of the project is the 4th of Nov. 1997. |

5.2 A feature of the prototype

One of the important implications of the prototype is that, it indicates if a new
and unfamiliar software development environment is applied, the project will
have a high possibility to be late, in spite of the constancy of the quantity of
the activities and the assignment of resources. This is due to the fact that the
acquisition and application of the new environment is time consuming[2][35].
The prototype has demonstrated an ability to reschedule software projects.
Usually the developer’s knowledge level in the new software development environ-
ment is lower than the developer’s knowledge level in the conventional software
development environment. For example, under the new software developing envi-
ronment, Developer1(Noriko)’s rank changes from A1 to A2. The value of b;; of
rank A1is 78 %, the value of b;; of rank A2 is 58%. The other parameters such
as Cy;, K;j, and E;; have the same values.(See Table 7). A reduction of b;; means

Table 7. The values of the engineer rank

at giving up,

Rank Name | developer’s maximum days to mas-
knowledge productiv- ter (days) gap of two
level(%) ity (KLOC/ knowledge(%)

Month)

Al 78 3.0 42 49.0

A2 58 3.0 42 49.0

B1 58 3.0 69 24.5

B2 38 3.0 69 245

C1 38 2.0 83 21.0

C2 18 2.0 83 21.0

68

Figure 41. Re-schedule for software development

69

w || g [
1__|PHASE1 13d 97/08/25 97/09/10
2 |PHASE2 154 97/09/11 97/10/01
3 |PHASE3 18d 97/09/11 97/10/06 Hiroko,Kumik
4 |PHASE4 154 97/09/11 97/10/01 Reikr—]
5 |PHASES 11d 97/10/21 97/11/04 Reko.Satiko Kumiko,Hirolko
8 |PHASE6 10d 97/10/07 97/10/20 Hiroko Safiko,Kumiko,Norko
7 id 1
Figure 40. Schedule for software development
—J
- I start Icomp,m Sep Oct Nov Deo
data date__||[08724] 08/31] 09/07[09/14] 09721] 08/28] 10705] 10712] 16719] 10/26] 11702] 11709] 11/16]11723] 11730 12707] 12714] 1273
I |PHASE1 1ad 97/08/25 97/08/17 o,Norkp, Hiroko
2 |PHASE2 18d 97/08/18 97/10/13 Satko
3 |PHASE3 22d 97/09/18 97/10/17 | iwoko,Kumi
4_|PHASE4 18d 97/09/18 97/10/13 [oo Rk |
5 |PHASES 16d 97/11/06 97/11/27 { Reiko Satiko,Kumiko,Hiroko
6 |PHASES 13d 97/10/20 97/11/05 ! i ‘—m&rh

that Developerl(Noriko) is not familiar with the new software developing envi-
ronment. Similar phenomenon applies to other developers. Developer2(Satiko)’s
rank changes from BI to B2, Developer3(Hiroko)’s rank changes from C1 to C2,
Developer4(Kumiko)’s rank changes from A1 to A2, Developer5(Reiko)’s rank
changes from B1 to B2. The developers’ b;; are decreased to 20% respectively.

From Figure 41, we could see the result of such a simulation. It takes eighteen
days to do activity PHASFE1, which is a week more than the estimated time
“thirteen days” which was calculated in Figure 40. The due date of the project
is the 27th of November, it is twenty three days behind the calculated due date.
Therefore, if the manager has to complete the project by the 20th of November,
he/she should not use the new software environment in the project. The prototype
can be a good indicator to see whether a new software developing environment
should be used.

5.3 Conclusion

A new project planning prototype tool has been provided. The tool generates
project plans as bar-charts. We can compare a plan in conventional develop-
ment methods with a plan in new development methods. The tool helps project
managers decide which development methods are chosen in their projects.

70

6. Conclusion and Future Research

6.1 Summary of major results

This thesis has proposed a useful method for software development projects man-
agement. A basic reason of the proposed method is that the planning in the
management should be adaptable to software development paradigm shifts. If
managers make a plan using conventional phases without considering activities
of the new methodologies such as object-oriented development methodologies,
managers will not be able to comprehend actual progress of the project in their
unsuitable plan. The new framework can generate an object-oriented develop-
ment process with relevant milestones. The generated process in the framework
identifies management activities and phases that consist of development activi-
ties of object-oriented development methods. Moreover, the process defines the
sequence of these phases and these management activities. If project managers
make their plans using the clarified phases, activities and the sequence in the gen-
erated object-oriented process, the project plans will be more proper than plans
based on conventional phases. The new simulation model is useful for estimating
development periods of project plans using new development environments such
as CASE tools. Especially, when developers of the projects have to be familiar
with new environments and technologies, the simulation model can calculate more
accurate development periods than the calculated periods by fixed productivity.

In chapter 2, project management activities were described. Especially, in
planning, importance of generating the software process and difficulty of esti-
mating resources were explained. Moreover, related works to methods of process
generation and simulation models were shown

Chapter 3 describes the new framework which gives us a guideline for gener-
ating a software process with relevant milestones for object-oriented development
methods. The framework identifies phases which consists of development ac-
tivities of object-oriented development methods. Because the identified phases
include all activities which update the same products, the reviews at the end of
the phases will be good milestones. Managers will be able to comprehend their
Projects’ progress using the milestones. In addition, baseline products are iden-
tified in the framework. The identification of the baseline products will make

71

reviews’ low cost, because members of the reviews only judge the identified base-
line products among many products in projects. Application of the framework is
not limited only for object-oriented development methods. The framework has
potential ability to be able to apply to the other development methods which
define clear relationship among activities and products.

. Chapter 4 describes the new simulation model which can estimate develop-
ment periods by considering variations of productivity. In the new development
environment, developers’ productivity is low at the beginning of the project in
spite of high productivity of the new development environment, because it takes
much time to become familiar with the new environment. The model can cal-
culate the growth of a developers productivity as the project progresses. In
addition, the model can show a developers’ learning curve during the project.
To apply the model to industry, the model was customized and evaluated. In
the customization, five equations were added to the model. The equations could
calculate the values of the model’s parameters based on the answers of questions.
Therefore, the model was convenient and easy for project managers to use. In
the evaluation, results of simulation were compared with experienced managers’
estimations. As a result, simulated periods fit managers’ estimated periods at
5% level of statistical significance. Therefore, results of the simulation using the
model were as accurate as experienced managers’ estimations. '

Chapter 5 presented the project planning prototype based on the proposed
method and model. The prototype tool could generate project plans as bar
charts. Managers compared two plans: a plan using a conventional methodology
and/or conventional environment and a plan using a new methodology and/or
new environment. Usefulness of the prototype tool in deciding which methodology
and environment should be chosen was shown.

6.2 Future works

Taking a broad view is important in software development because many elements
influence software development projects. If you manage a software development
project shortsightedly, you will be not able to lead your project to success. We
think that a software development project mainly consists of three elements: hu-
man, methodology and environment. Human means developers, managers and

72

customers. Methodology means theories of how to develop software and how to
use it. The environment means hardware such as mainframe computers or net-
worked personal computers and software such as CASE tools and programming
languages. For example, human as a developer executes activity which is defined
in a methodology on a personal computer in a development environment. These
elements influence each other. If only one element is focused in software engi-
neering research area, the results of the research may not be useful for software
development projects. It is important for us to clarify the relationship among
these elements.

The proposed method considers the relationship among these elements. For
example, the estimating model has taken account of developers’ learning. The
learning is an important factor of the human element. Moreover, the develop-
ers’ learning is caused by the shifts of the methodologies and environments. The
model has clarified a relationship among the methodology element, the environ-
ment element and the human element .

Therefore, we have to focus more on the relationships among these elements.
For example, the influence of a transition from “Intel 8086 CPU” to “Pentium III
CPU” on the methodology element should be clarified. Probably, the transition
may change how to develop software. That is, developers can display many
windows at a time which display programs on a debugger, sample programs in on-
line help and documents on a computer, moreover, the developer copies and pastes
parts of sample programs to their own programs on the debugger. The “copy and
paste” activity may influence how to develop software. Software development
methodologies should be constructed by taking into account the influence of the
“copy and paste” a,ctivity. In addition, the transition of CPU may influence
the human element. For instance, a developer’s design ability may become low
because “copy and paste” activity of sample programs does not require design
ability. The reuse of the sample programs is not only code, but design of the
sample programs. This can lower the developers’ design ability by influencing
parts of the development methodologies.

In the future, a relationship model among these elements will be constructed in
development perspective and management perspective. If the relationship among
the three elements is clarified, more software development projects will succeed.

73

The relationship model will give answers to many questions: “why will many
software development projects fall into confusion?”, “what’s wrong?”, “who is
wrong?” and “which factor is the confusion caused by 7”.

74

Acknowledgements

During the course of this work, I have been fortunate to have received assis-
tance from many individuals. I would deeply like to thank Professor Katsuro
Inoue of Software Engineering Laboratory for his precious support and valuable
suggestions.

I am also very grateful to Professor Koichi Nishitani of Systems and Control
Laboratory for his invaluable comments and helpful suggestions concerning this
thesis.

I also wish to thank Associate Professor Ken-ichi Matsumoto of Software
Engineering Laboratory for the valuable suggestions and discussions.

I would especially like to thank Vice President Koji Torii for his continuous
support, encouragement and guidance for this work.

I would like to give thanks to Associate Professor Hajimu lida of Information
Technology Center for the useful leading and heated discussion. '

I would like to express my thanks to Research Associate Kazuyuki Shima
of Software Engineering Laboratory for his stimulating discussions and helpful
criticism.

I would like to acknowledge also the valuable suggestions of Research Associate
Akito Monden of Software Engineering Laboratory in preparing this thesis.

I also wish to express my gratitude Associate Professor Kumiyo Nakakoji of
Cognitive Science Laboratory for the instructive suggestions.

I would like to thank to Assistant Professor Singo Takada of Keio University
for the careful suggestions on the paper which formed the basis of Chapter 3 of
this thesis.

Iam also thankful to Professor Dieter Rombach, Dr.Frank Bomarius, Mr.Dietmar
Pfahl of Einrichtung Experimentelles Software Engineering, Mr.Raimund L.Feldman
and Jurgen Munch of AG Software Engineering Fachbereich Informatik for their
insightful comments and valuable discussions on the papers which formed the
basis of Chapter 4 of this thesis.

I would like to acknowledge also to the late Mr.Yamanouchi of Software Man-
agement Society, Mr.Tohru Matsuodani of NEC Corporation, Mr.Koji Kondo of
Sony Corporation and Mr.Hideo Kudo of Nara National College of Technology
for the cooperation of collecting responses which were used to evaluate the pro-

75

posed model in Chapter 4. I also thank to Mr.Akihiro Tamaki, Mr.Makoto Sakai,
Mr.Keishi Sakamoto, Mr.Yoshitomi Morisawa for the responses for the evaluation |
~ of the model.

I wish to express my gratitude to Mr.Reiken William for his careful reading
of a draft of this thesis. His suggestions were very helpful.

.Finally, my special thanks are express to Mr.Yoshimi Usui, Mr.Shuji Morisaki,
Mr.Yasuhiro Takemura, Mr.Masatake Yamato and Mr.Shohei Morikawa for their
help and cooperation. Also, I can never thank my son and my husband enoﬁgh.

76

References

[1] Abdel-Hamid T.and Mdnick S.E., “Software Project Dynamics an Integrated
Approach,” Prentice-Hall, 1991.

[2] Bochenski B., “Implementing Production-quality Client/Server Systems,”
~ John Wiley and Somns, 1994.

[3] Booch G., “Object. Solutions Managing the Object-Oriented Project,”
Addison-Wesley, 1996.

[4] Carnegie Mellon University Software Engineering Institute, “The Capability
Maturity Model: Guidelines for Improving the Software Process,” Addison-
Wesley, 1994.

[5] Clapp J.A., “Management Indicators,” in Encyclopedia of Software Engi-
neering, J. J. Marciniak, ed., New York, John Wiley and Sons, pages 637-644,
1994.

[6] Jalote P., “A Integrated Approach to Software Engineering,” Springer, 1997.

[7] DeMarco T., “Structured Analysis and System Specification,” Prentice-Hall,
1979.

[8] DeMarco T., “Controlling Software Projects,” Youdon Inc., 1982.

[9] Hanakawa N., Iida H., Matsumoto K. and K. Torii, “A Framework of Gen-
erating Software Process including Milestones for Object-Oriented Develop-
ment Method,” Proceedings of Asia-Pacific Software Engineering Confer-
ence, pages 120-130, 1996.

[10] Hanakawa N., Morisaki S. and Matsumoto K., “A Learning Curve Based
Simulation Model for Software Development,” Proceedings of 20th Interna-
tional Conference on Software Engineering, pages 350-359, 1998.

[11] Hanakawa N., Iida H., Matsumoto K., Torii K., “Generation of Object-
Oriented Software Process using Milestones,” International Journal of Soft-
ware Engineering and Knowledge Engineering, Vol.9, No.4, pages445—466,

-1999.

7

[12]

- [13]

[14]

[15]

[16]

[17]

[20]

[21]

Hirayama Y., Mizuno O., Kusumoto S., and T. Kikuno, “Hierarchical project
management model for quantitative evaluation of software process,” Pro-
ceedings of International Symposium on Software Engineering for the Next
Generation, pages 40-49, 1996.

Humphrey W. S., “A Discipline for Software Engineering,” Addison-Wesley,
1995. |

lida H., Eijima J., Yabe S., Matsumoto K. and Torii K., “Simulation model of
overlapping development process based on progress of activities,” Proceedings

of 1996 Asia-Pacific Software Engineering Conference, pages 131-138, 1996.

Jacobson I., Christerson M., Jonsson P. and Overgaard G., “Object-Oriented
Software Engineering,” Addison-Wesley, 1992.

Katayama T., “A hierarchical and functional software process description
and its enaction,” Proc. of the 11th International Conference of Software
Engineering, pages 343-353, 1989.

Kellner M. L., “Software process modeling support for management planning
and control,” Proc. of the 1st International Conference on Software Process,
pages 8-28, 1993.

Koontz H and O’Donnell C., “Principles of Management,” An Analysis of
Managerial Functions, 5th Ed., McGraw-Hill Book Co., Inc., New York,
1972.

Kusumoto S., Mizuno O., Kikuno T., Hirayama Y., Takagi Y. and Sakamoto

K., “A new software project simulator based on generalized stochastic,” Pro-

-ceedings of 19th International Conference on Software Engineering, pages

293-302, 1997.

Lord, F. M., Novick M.R., “Statistical Theory to Mental Test Scores with
Contributions by A-Birnbaum,” Addison-Wesley, 1968.

Microsoft corp., “Microsoft Office2000 programmer’s guide,” Microsoft corp.,
1999.

78

[22] Microsoft corp., “Microsoft Project for Windows95 user’s guide,” Microsoft
corp., 1995. '

[23] Mochizuki S., Yamauchi A. and Katayama T., “Analyzing and evaluat-
ing fundamental design process of checkout system for artificial spacecraft,”
Proc. of the Fifth Annual International Computer Software and Applications
Conference, 1991, pages 507-514.

[24] Northrop L.M., “Object-Oriented Development,” in Encyclopedia of Soft-
ware Engineering, Marciniak, J. J. ed., pages 729-737, New York, John
Wiley and Sons, 1994.

[25] Putnam L. H., Myers W., “Industrial Strength Software,” IEEE Computer
Society Press, 1996. |

[26] Reifer D.J., “Cost Estimation,” in Encyclopedia of Software Engineering,
Marciniak, J. J. ed., pages 209-220, New York, John Wiley and Sons, 1994.

[27) Rumbaugh J., Blaha M., Permerlani W., Eddy F. and Loresen W., “Object-
Oriented Modeling and Design,” Prentice-Hall, Englewood Cliffs, 1991.

[28] Schach S.R., “Software Engineering,” Richard D. Irwin Inc. and Aksen As-
sociates Inc., 1990.

[29] Snedecor G.W.and Cochran W.G., “STATISTICAL METHODS,” The IOA
state university, 1980.

[30] Sommerville I., “Software Engineering,” 4th Edition, Addison-Wesley, 1992.

[31] Tyayer A.B. and Pyster R.C., “Major Issues in Software Engineering
management,” JEEE Transactions of Software Engineering, Vol.7, No.4,
pages333-342, 1981.

[32] Thayer R.H., Fairley R., “Project Management,” in Encyclopedia of Software
Engineering, Marciniak, J. J. ed., pages 900-923, New York, John Wiley and
Sons, 1994.

[33] Visio corp., “User’s guide Visio 41,” Visio corp., 1995.

79

[34] van Vliet J.C., “Software Engineering - Principles and Practice,” John Wiley
and Somns, 1993.

[35] Yourdon E., “Object-Oriented System Design,” PTR Prentice-Hall, Engle-
wood Cliffs, 1994. ’

80

Appendix

A.

Managers’ responses of quetions

Meaning of tags of the following responée

NAME:Manager’s Name (anonymous).

N—Fr 70Tz 7 OVTFILTIENT BV 27 b OBHIEER: Experience of
similar system (“iZV>” means yes, “v>V*Z” means no.)

N=FxN7uTxs M COBMERBIENT TV 2 7 + OSIIHEE: Experience of similar
environment (“iZV>” means yes, “v>\>2” means no.)

EHREODEEERTORESIV 27 F ODZMEER: Experience of programming lan-
guage(“iZ\>” means yes, “v>V>2” means no.)

BEHE OZBRFEE Experience period of managing (years)

BHEEDASEMEATTEE ? :May I use your input data for analysis? (“iZV>” means yes,
“v3\12” means no.)

EstimateMonth:Estimated period (month)
EstimateMonth_Reason:Reason of the estimated period

Cij-Value KLOC:Maximum productivity (KLOC/ month)
Cij_Reason:Reason of the maximum productivity
bij_Value:Developer’s knowledge level (%)

bij_Reason:Reason of the developer’s knowledge level
Kij_Va.lue_MéxHour:How many day does a developer need to master?
Kij_Reason:Reason of the above “days”
Eij_Developer_ActName:contents of developer’s knowledge

Eij Developer_Value:How much is developer’s knowledge level? when a developer gives
up. (%) '
Eij_Required _ActName:contents of the required knowledge

Eij.Required_Value:How much is the required knowledge level? when a developer gives

up. (%)

SimulationResult:Simulation result

81

Virtual Project No.1;

:NAME:

N—=F XN TFAT 27 DV T FIITIENTOT 27 F OBIER: VW R

N=F N7 UV 27 MCOBEREICSENWT 0T 2 7 F OSIER: W 2

EBEORESETORRESUY 2 7 F OBIER: V0 2

EBEORBRER 10 £ E

EBEDOATMEFERTEE ? 13w

:x_comment:

:EstimateMonth:12.5 A

:EstimateMonth_Reason: - £EEBEOT7T 7 r—a 4ok v - CESExHI DI

nHT | '

:Cij_.Value_KLOC:0.95

:Cij_Reason: - FIRBEFHOT - R4 ¥ xHbhw

:bij_Value:20 '

:bij_Reason: COBOL & Visual Basic TOD7/ 1Y T LAKENDH %
(BAE10% L Vo TWBEDT, FREMEICLT)

:Kij_Value_MaxHour:25 »

:Kij_Reason: ®A Y ¥ L BRIBBCELLTERTALELD

:Eij_Developer_ActName: BEAMLZER DA LEH

:Eij_Developer_Value:20

:Eij_Required_ActName: R A ¥ L B

:Eij_Required_Value:80

:SimulationResult:11.1

:NAME: :

N=F N7 VT2 DV TR ILTISENT O 27 P OBIHER: W 2
N=F XN T 0T 27 MIOBERBISENT UV 2 7 F OBMRER: i3
EBEEOREEFTORRE 0TI = 7 F OSIHEE: iT v
EBEORBER 62051 04

EBEOANEFEATE? (3w

:EstJ:.ma’ceHonth:S-. 6

:EstimateMonth_Reason:

:Cij_Value_KLOC:2

:Cij_Reason:VB L FILC HbWnEEZ /-

:bij_Value:10

:bij_Reason: KAH 10 L LT3

:Kij_Value_MaxHour:18

:Kij_Reason: BRAABIEZILEHL

82

:Eij_Developer_ActName: 55 HI#&

:Eij _Developér_Value :80
:Eij_Required_ActName:0S (ZB39 % Az
:Eij_Required_Value:100
:SimulationResult:6.21

:NAME:

N=F XN TAT 27 DY TFIITIEVWT 0T 27 FOBIER: W R
N—F 7T 7 MZOBEREISEVTOY 2 7 P OSMER: 1T
EBEDREEBTCORRET Y =7 FOBIMER: TV '
CEHEORBER: 60061 04

EHEEOATMEERTTRE ? (13

:x_comment: b)AL ARZEOBHR LA, (P L TWiZiThT, b o LIEHEIC
REbNBLEVET,

:EstimateMonth:7.5

:EstimateMonth_Reason:C SREDEEREBETHNIIS ¥y ATH A, MILELDT
1. 5L 7,

:Cij_Value_KLOC:1.5

:Cij_Reason: 7B/ 7 IV L BET A DEEIT, &% 2.0KLOC/B L bW EEX %
DEH, TORRFELICSHEVHEDTLOT, bIPLI L REb o7, /2. BAE
DEFT VBEFES 2.0KLOC/ A2 DT, TN LY b L2nERDbRINL,

i/, AVE LY TCORRBRYFSELDT, FLVERLV-THIEZIEID
EEMIZRES LBbRb,

:bij_Value:10 '

:bij_Reason:C SFENERII L. HIABT 1y AEEDOAHABTLZDT, AANDT ~
F—bORENE I, 109 bVLAFIZOVTVAVERDbNIS,
:Kij_Value_MaxHour :25

:Kij_Reason:

:Eij_Developer_ActName: EX DE & WAIEE & 48 2 ik
:Eij_Developer_Value:20

:Eij_Required_ActName:® 1~ ¥ #fE

Ei j_Require&_Value :50

:SimulationResult:7.96

:NAME :

N—F AT 2 PDVTIIITIENWT OV 27 FOBIBER 2
N—F 70V 27 FICOBEREIEWT O 2 7 F OBMEE: W X
EBEOREESETOARE U 27 F OBIEE: 13

83

EEEBEORBRER: O

EREOATMEEATTE? (i3

:x_comment: E) L REREVIDLEEL WL DT T A,

:EstimateMonth:10

:EstimateMonth_Reason:

:Cij_Value_KLOC:2.5
:Cij_Reason:FZEEERIC BT 5 FE¥{EHT COBOL T 1.5KLOC,VB T 2KLOC Th 5 DT,
BEERENRL LD RENVEEZT.

:bij_Value:10 -

:bij_Reason: K ADT 104t BEoTHBY, MICESEL L AT — 71 L20nHhD.
:bij_SELECT:7 » 7 — MaIEE C ,
:Kij_Value_MaxHour:83

:Kij_Reason:

:Eij_Developer_ActName: ZHDH L MANEHE & XA 2
:Eij_Developer_Value:30

:Eij_Required_ActName: K 1 » ¥ #fF

:Eij_Required_Value:60

:SimulationResult:8.04

:NAME: A
N—=F N7 0T PDVT MIITIGEWT OV 27 b OSIEE: iTv
N=F NI T 27 MICOBEBRRICEWT UV 2 7 F OBIER: v X
EBREORESETCORRE/U 27 F DBIMBEER: 1 2
EHEOEBRFR 10 £ E

EBEDATIEFETTEE ? (i

:x_comment:

CEEORBINL VDT, BRICY TP oL)CBLETH. BHEP 72T,
e, NTA-FIHBTHLREDNIBREOREICOVWTE., BERELEY
Lo l2DTTH, RV FBDLPLT, BREFATLL, THIEA,

(" CEROFHEEREZREL L TEXTWARITE, ROBERPFLTD,
bIVLEDHBLAENTELPbLREVEBWE T, Lith <, %,
:EstimateMonth:8 ‘

:EstimateHonth_Rgason:

:Cij_Value_KLOC:3

:Cij_Reason:

:bij_Value:10

:bij_Reason:

:Kij_Value_MaxHour:83

:Kij_Reason:

84

:Eij_Developer_ActName:
:Eij_Developer_Value:30
:Eij_Required_ActName:
:Eij_Required_Value:60
:SimulationResult:7.60

:NAME:

N=F NI POV TIIITILENTOT 27 FOBIEER: VW Z
N=F N7V 27 FZOBEREISEWT Y 2 7 P OSIREER: i3
EBEORESHTOREI O 27 + OBIMER: 3w

EBREORBRER: 340 54

EBEOATEFERTE? (i

:EstimateMonth:6.7

:EstimateMonth_Reason:10K ~ 1.5K/ AAFH L VWX FRTLLTHVB LY CD
ANEEBREDLL EBbNS, R LERFERSFELEREL T, IAKOCOBOL
ERCEEHRE L,

:Cij_Value_KLOC:2.5

:Cij_Reason:fEEDNZITER/RICERLIZBE. FHO 240\ (B)) £EHIC
ZoTwWwah EBbhb, ‘
:bij_Value:8

:bij_Reason: FTAD & EDOHBELDT, EBRBIAXANB-TVE XD H H4LEV,
:Kij_Value_MaxHour:6€0

:Kij_Reason: 1 * AT1 0%EBELZL., &3 7ALHW
:Eij_Developer_ActName: A 722 i

:Eij_Developer_Value:10

:Eij_Required_ActName: ¥ 1 ¥ ¥ #fF

:Eij_Required_Value:50

:SimulationResult:6.41

® - - ——

:NAME:

N—F W 7aAT 2y POV T PIITIENTOY 27 P OSIEREE: i3

N—F 70T 27 FPCOBERRISENT OV 2 7 F OBIER: iE
EBEORESETOER IV 27 F OBMEE: 3w

EBEORBRER: 30 55

EBEOATMEFERATRE? (i

:EstimateMonth: 10 . ‘
:EstimateMonth_Reason: | EEEB I AT A | LI TCR#EHTELVL., PEMEREt
BEOREOTERSNFEZLTVRIOPLHEMNTET A, ERT 2 BROFHE.

85

Tl VAT LAMLRTATRELSP) TEADT, 1 BBICH L THRER~
TAMET (87X VIHEERS) 2. SHELREDL) FTTOM., £ED
RESTIIHBREERL ., BOWERINOERITONEE+ LET, 17K, COREREE
DEBRUFCEFZBLVIRETTIX, 1K/APFRETLI I,

2%hHh, 10000+-1000=10 '

:Cij_Value_KLOC:2

:Cij_Reason: Al DHEHLY R

:bij_Value:20

:bij_Reason: VB #—#LLCL I S 57, PCTORERLEIHZL TS
:Kij_Value_MaxHour:90

:Kij_Reason: [Z& | ICLWIBENDVEnLRiD, 90HEVIDEFni
%(xr%oTLE |
:Eij_Developer_ActName:VB L [HU &) %P CTORE
:Eij_Developer_Value:2
:Eij_Required_ActName:Z2¥ CEFETERT 22 DHAH
:Eij_Required_Value:22

:SimulationResult:10.2

o

BOLIELL»PEZTH W

:NAME:

N—=F XTI 27 DV T FIITIENTOT 2 7 P OBIER: 2
N=Fr V70V PCOBEBRRISENTOY 2 7 P OSIMRER: i3
HBEZORESHTCORAR/OI 27 F OBIEER: V2
JEREDRBRENR: 0 '
EBEOANEFERATEE ? (3w

:EstimateMonth:5

:EstimateMonth_Reason:#l.LE LD T, EBEOI—FT 1 v U0 s 5 L EE%:
FEYLIREPELL 2B LTFRL 2720,

:Cij_Value _KLOC:3

:Cij_Reason:

:bij_Value:60

:bij_Reason:

:Kij_Value_MaxHour:10

:Kij_Reason:

:Eij_Developer_ActName:ZE D EI L WANEE & A M 12 0HE
:Eij_Developer_Value:20

:Eij_Required_ActName:Bjfy X E) &) KT

:Eij_Required_Value:40

:SimulationResult:3.49

86

:NAME:

NA—=F VTV 27 POV T RIITIENWT OV 2 7 FOBIHEER: v 2
A= F 7OV s MCOBEREICEVT OV 27 P OBIER: W R
HEHEDIRESETORRE/ Y 27 FOSMER: v
EEEOREBRER 10 ELE

EBEOAEFERTEE? (3w

- ;:EstimateMonth:15

:EstimateMonth_Reason:

:Cij_Value _KLOC:0.95

:Cij_Reason:

:bij_Value:20

:bij_Reason:

:Kij_Value_MaxHour:200

:Kij_Reason:
:Eij_Developer_ActName: ZEFRM LMD LiFHE
:Eij_Developer_Value:20

:Eij _Required_ActName:# 1 ¥ ¥ L BiR
:Eij_Required_Value:80
:SimulationResult:14.6

:NAME:
NR—F V7OV 27 rDVTFIITIENTOT 2 7 P DEIEER: T
N—F N 7uT s MCOBEREIENT OV 27 FOSMER: w2
EBEORESETCORRESOY = 7 P OBIMER: 3w
EBEOBRBRER: 195 24

EBEOASMEFEATEE ? (13

:EstimateMonth:5

:EstimateMonth_Reason:

:Cij_Value_KLOC:2.5

:Cij-Reason:

:bij_Value:70

:bij_Reason:

:Kij_Value_MaxHour:200

:Kij_Reason:

:Eij_Developer_ActName:

:Eij_Developer_Value:20

87

:Eij_Required_ActName:
:Eij_Required_Value:50
:SimulationResult:5.16

:NAME:
N=FXNTUTI 27 POV T FIITISENT O 27 F OBIHER: TV
N=FANT OV 27 MCOBWEREBISEWSOY 2 7 OBIEE 1TV
EBEORESECOMRE 7O 2 7 F OBIEER: 13w
BHBEORBREH 605104
EHBOAEEHTEE ? 13w
:EstimateMonth:15
:EstimateMonth_Reason:34 A% & EEAREEICHEH 25
17 RiZ CSF/OEMRIEL TR
27 A% GUI bBEITHEH 1259 (FFRAA)
BRI AT cEEITOFED
37y REY— N AIOBEIHEHZS
:Cij_Value_KLOC:2
:Cij_Reaéon:
:bij_Value:30
:bij_Reason:
:Kij_Value_MaxHour:200
:Kij_Reason:
:Eij_Developer_ActName:
:Eij_Developer_Value:30
:Eij_Required_ActName:
:Eij_Required_Value:50
:SimulationResult:14.2

:NAME: '

N=F VT OUT 2 DV T FILTIENT O 27 F OSSR 11
N=F X N7 0V 27 MCOBERBIENT O = 7 F OSIHRER: 12 v
EBEORESECORARI IV 2 7 F OBIRE 13w
EBEEOBEBRER: 0

EBEDOATMEFEATEE ? i3 v

:EstimateMonth:6

:EstimateMonth_Reason: BENDEHIZE TN T,

:Cij_Value_KLOC:1

:Cij_Reason:

88

:bij_Value:10

:bij_Reason:

:Kij_Value_MaxHour:100

:Kij_Reason:

:Eij_Developer_ActName: EE D E & MRAIEE L EARM 2 30k
:Eij_Developer_Value:20 |
:Eij_Required_ActName:® 1 ¥ ¥ #1EF
:Eij_Required_Value:50

:SimulationResult:14.9

:NAME:

N=F X7V 27 DV TPIITIZENWT OV 27 + OEIER:
N=F 70TV 7 FMCOBERRISEWT OV = 7 P OSIER: 3w
EBEORESETORR IOV 27 L OBIEER: 3V
EHEORRER 10D L

EEZDOATMEEREE ? (i3

:EstimateMonth:4

:EstimateMonth_Reason: ZZ 2N/ 1753 —T5KL/MMEtEZ §2¢
SEMBA Ly OTD, 2EIEP L LFEAT LI

:Cij_Value_KLOC:3

:Cij_Reason:

:bij_Value:10

:bij_Reason:

:Kij_Value_MaxHour:40

:Kij_Reason: .

:Eij_Developer_ActName: & anftfk

:Eij_Developer_Value:10

:Eij_Required_ActName:&% B¥#F

:Eij_Required_Value:50

:SimulationResult:4.86

:NAME:

N—F) TOT 27 PDVTFIITITEVWT OV 27 P DSR2
N—F 70T 2y FCOBEREISEVT OV 2 7 F OSSR T
EHEDIRESECORRE/ U 27 FOBIMER: 13

EBEORBRER: 6001045

EBEDANELERTRE? (2

:EstimateMonth:11

89

:EstimateMonth_Reason: B 14 A + 1kstep/H
:Cij_Value_KLOC:1

:Cij_Reason:

:bij_Value:70

:bij_Reason:

:Kij_Value_MaxHour:90

:Kij_Reason:
:Eij_Developer_ActName:ZE4<H) 7% 3k
:Eij_Developer_Value:30
:Eij_Required_ActName:Ejfiy X €1 HH
:Eij_Required_Value:70
:SimulationResult:10.4

:NAME:

N=F XN 70T 27 POV T FPIITIZENTOT 27 F OBIHEE: i
N=F 70T 2y MNCOBEREIENTOY = 7 P OSBRIV
EBEEDRESHETORE Y =7 F DEMEER: 13w
EBEEDORBRER 10 £LE

EBEOANBEERATRE? (i3

:EstimateMonth:11
:EstimateMonth_Reason: BT E L T5 AR, ThiZ. 77U 7r—7 3 VB,
VAT LEEHERR. C SRERDOETRS % MK,

:Cij_Value_KLOC:1.5

:Cij_Reason:

:bij_Value:10

:bij_Reason:

:Kij_Value_MaxHour:60

:Kij_Reason:

:Eij_Developer_ActName:

:Eij_Developer_Value:20

:Eij_Required_ActName:

:Eij_Required_Value:50

:SimulationResult:9.50

:NAME:

N—=F XN T2 POV TFIITIENTOY 2 7 P DOEIRE 12w
N—=Fx 7T s MNIOBMERBIEVW OV =2 7 F OSMERE: 3w
EEHEDEBEEETCOBRRESOT 27 F OSSR 1Tv

90

EBEDEBRFR: 3O 55
EBBOASMEEATTEE ? (13w
:EstimateMonth:5
:EstimateMonth_Reason:&ZERMIC, COT T 7 LAREDEERNX—5HA2000
AF v TRELBESsTWERDb,
:Cij_Value_KLODC:2.5

:Cij_Reason:

:bij.Value:60

:bij_Reason:
:Kij_Value_MaxHour:10
:Kij_Reason:
:Eij_Developer_ActName:cobol
:Eij_Developer_Value:30
:Eij_Required_ActName: KAV ¥ &
:Eij_Required_Value:50
:SimulationResult:4.17

:NAME:

N—F NSO bDVT '7:-7m&w7'u Tzt DEINEEER: 1T
N—F ¥ N7uT s FCOBEREIOEWTSOY 2 7 P OSIER: v
BEHEOIRESBETCORE/OY =7 FOEMER: v
EREORBRER: 30 54

EEBEOATEFERTE? 13

:EstimateMonth:15.625

:EstimateMonth_Reason:640step/ A CRAMD N D LLFABTBHY 7 INTAD
25AT Y V- NEREE VAT LOFRREEN0.8
:Cij_Value_KL0C:0.8

:Cij_Reason:

:bij_Value:50

:bij_Reason:

:Kij_Value_MaxHour:60

:Kij_Reason:

:Eij_Developer_ActName: T T v 7 ZIEL {H® 5
:Eij_Developer_Value:50

:Eij_Required_ActName:/ 7 # =YY AFa—=r7
:Eij_Required_Value:90

:SimulationResult:13.3

® - ——— P i

91

Virtual Project No.2

:NAME: :

N—F N TOT 27DV T FILTIENT OV 2 7 FOSIHEE: 1T\
N=F V70T s FCOBEREISENTOY 2 7 P OSIER: i3
EHBORESHTORE U 27 P OBIEER: TV
EBEORBFH 64001 04F

EBEOANEREATE? (i

:EstimateMonth:10

:EstimateMonth_Reason:VisualBasic A3 KLOC/HTC #4%1 KLoOC/A & &z 72,
Mz T, FED7=DIZ 17 AEL o7,

:Cij_Value_KLOC:2

:Cij_Reason:

:bij_Value:40

:bij_Reason:

:Kij_Value_MaxHour:200

:Kij_Reason:

:Eij_Developer_ActName: &AL

:Eij_Developer_Value:10

:Eij_Required_ActName: KD S

:Eij_Required_Value:40
:SimulationResult:9.29

:NAME: '
N=FxNTUTV 27 DV T FIITIHENTOT 27 FOSIHRER: v\ 2
N=F N7 OV 27 FMCOBEREISENTSOY 2 7 F OB 1T
ERHEORESHTORRE O 2 7 F OSBRI
EEEORBRER 3L 64

EBEOANEFERATE? 13w

:EstimateMonth:30

:EstimateMonth_Reason:FAEZEDBEDER, L FF o AV MERICEE
VisualBasic #{5MCHE ¢ OBHICEE ¢ TORBIC1EDRE
:Cij_Value_KLOC:1

:Cij_Reason:

:bij_Value:30

:bij_Reason:

:Kij_Value_MaxHour:700

92

:Kij_Reason:

:Eij_Developer_ActName:JE4+ 7Y = 7 F BESHTORRE
:Eij_Developer_Value:30

:Eij_Required_ActName:* 7V x 7 FBEEN—A L L:7kE
:Eij_Required_Value:80

:SimulationResult:22.4

:NAME: :

N=F 270V bOVTFIITIENT OV 27 P OB 1T
N—F X V70T 7 MZOBERRIENTOY 2 7 FOSIER: TV
EREORETETORAE Y 27 F OSMER: 3TV
EBEOEBREH: 6001 04F

EEEOATMEFEATTE? 13w

:EstimateMonth:9

:EstimateMonth_Reason:VB iX 2k/MM C (I 1k/MM7EHEFIZ1.557 AP0 5
:Cij_Value _KLOC:1.5

:Cij_Reason:

:bij_Value:20

:bij_Reason:

:Kij_Value_MaxHour:180

:Kij_Reason:

:Eij_Developer_ActName:ZEZA 7% ik

:Eij_Developer_Value:20

:Eij_Required_ActName:Ejfy/Sf > 7 1 7

:Eij_Required_Value:50

:SimulationResult:13.5

:NAME:

N—F e 7Tz 7 DV T IILTITENTOT 27 F OBIMEE: X

N—F 7OV 2 MCOBEREIEV7 Y 2 7 P OBMEEER: 1T
EBEOREERTORREIUY 27 M OSMER: I

EREORREN: 100 2F

EHEEDOATEBBEEE? (1T

:EstimateMonth:12

:EstimateMonth_Reason:C EiENFH :0.5 AAKEN (FRAPa—741 vret):
1.5 AH VisualBasic 2—74>v7 .3 AAC a—7T14»7 . s A\BHE&TAF 2 AR
:Cij_Value_KLOC:2.0

93

:Cij_Reason:

:bij_Value:50

:bij_Reason:

:Kij_Value_MaxHour:30

:Kij_Reason:

:Eij_Developer_ActName:FEFILNOERE S & AN 2
:Eij_Developer_Value:10

:Eij_Required_ActName:'J X F %3k 9
:Eij_Required_Value:20

:SimulationResult:6.36

:NAME:

N—F XN T2 POVTFIITIENTUT 27 FOBIHER: VR
N=F N7 0V 27 MCOBEREISENWT O Y 2 7 F OBMER: 3
EBREORESHTORRE/ O 27 + OBMER: 12V

EBEORBRFE: 0

:%E%@}\jﬂﬁﬁﬁﬁifﬁﬁ ? 3w

:EstimateMonth:10.5

:EstimateMonth_Reason:If the number of the input character is too many,
it may be error of submitting.Please write briefly. If you want to describe
the reason, please use the comment spaceon the right side page.
:Cij_Value KLOC:2

:Cij_Reason:

:bij_Value:40

:bij_Reason:

:Kij_Value_MaxHour:120

:Kij_Reason:

:Eij_Developer_ActName:VisualBasic structure and grammer, WindowsNT
fundamentals, and basic grammar of C

:Eij_Developer_Value:40

:Eij_Required_ActName:C grammer, structure, and control flow
:Eij_Required_Value:50

:SimulationResult:13.8

:NAME:)

N=F XN T ATV 27 OV T IIITICEWT BV 27 F OB o x
N—=F ¥ V70T 7 MZOBMERIBISEVWTSOY 27 P OSIMEE: 13w
CEBEDRESETORES OV 27 FOSINEEE: 13w

94

EBEOBRBRFR:3,H5F

EBEDATMERERTEE ? (13w

:EstimateMonth:10

.EstimateMonth_Reason:C B2 1.5, VB BHIZ 0.5, C 705 5 LAKEIE RN
3.0, VB/ 077 ARREHLBARAT3.0, TAMBIUNITEIET 1.0,
JAZ4rELT 1.0

:Cij_Value_KLOC:1.1

:Cij_Reason:

:bij_Value:20

:bij_Reason:

:Kij_Value_MaxHour :40

EKij_Reason:

:Eij_Developer_ActName: KA ¥ Y BIEDULELZTOTFIV T
:Eij_Developer_Value:50

:Eij_Required_ActName: 7 7 A DERKL

:Eij_Required_Value:75

:SimulationResult:10.9

:NAME:

AN—=F N 7OT 2DV TRIITIENWT OV 2 7 P OBIIER: 2
N—F 70Tz MCOBERRIGEWS OV 2 7 P OBIER: T
EHEORESETORR/ OV 27 F OBMEER: 3w

EBEOBRBRER: 190 24

EBEOATMEFERATEE? 13w

:EstimateMonth:15.5

:EstimateMonth_Reason: Tt DL ELZHMBEBRRHE. BLU T urs/ 5307t
F&axy MeRROEESE, &5 ICHERBEBRENICED W,
:Cij_Value_KLOC:1.2

:Cij_Reason:

:bij_Value:25

:bij_Reason:

:Kij_Value_MaxHour:30

:Kij_Reason:

:Eij_Developer_ActName EHES - EELTUTILBEBLIUXE
:Eij_Developer_Value:30

‘Eij_Required_ActName:”7 FAB IV FAT T —
:Eij_Required_Value:60

:SimulationResult:9.47

95

:NAME:
N=F X V7OV 27 POV T FIZTILENTOT 27 F DSIHEER: VW X
N=F Y70V 27 FMCOBEBRRICENT OV 2 7 F OSIRER: kv
EBEOREERTORE O 27 + OBMEER: I3

EBBEORBFR: 6001 04F

EBEOAMEFEATEE? (i3

:EstimateMonth:9.1

:EstimateMonth_Reason: VB#4% . 2. 54, C++#%5:6. 67 A
:Cij_Value_KLOC:2
:Cij_Reason:

:bij_Value:50

:bij_Reason:
:Kij_Value_MaxHour:60
:Kij_Reason:
:Eij_Developer_ActName: =75
:Eij_Developer_Value:80
:Eij_Required_ActName: 2T (O S%)
:Eij_Required_Value:;100
:SimulationResult:6.55

Virtual Project No.3

:NAME:

N=FXNTUTZ 27 POV T FILTIENT OV 27 OBIEER: i3\
N=F X N7 0T 27 FCOBERRICENT OV 2 7 F OBIRER: w2
EHEOHRESETORRT U 27 F OBMBR: VW 2
EREOEBRFER 62561 04

EBEOANEEATE? iz

:EstimateMonth:6.67 _

:EstimateMonth_Reason:1.5KLOC/ A & # X 7z, COBOL %° Mainframe {2 8§ %MD
BRIZILALLERVWEEZ B, |
:Cij_Value_KLOC:1.5

:Cij_Reason:

:bij_Value:90

:bij_Reason:

:Kij_Value_MaxHour:200

:Kij_Reason:

:Eij_Developer_ActName:

96

:Eij_Developer_Value:20
:Eij_Required_ActName:
:Eij_Required_Value:50
:SimulationResult:6.90

:NAME:

N=F N7 T 27 DOVTEIITIENTOY 27 F OBIER: VWL
N=F X V70T 2y PCOBEREISENTOY 2 7 OBIER: v
EHEORESETCORE OV 27 F OBIEER: T

BHEORBREH: 300 54F

EEEBOANELRBTTRE? 13w

:EstimateMonth:7.5

:EstimateMonth_Reason: UEDHRBENIIFH1. S5ks BEE, ZOET
RKoHBL 10/1. 5=6. 578 EH/ VY /SHEIOVTIE, 3ERED
BBETHDH, HHEHICEEMERRDIICPITLE, HEIRBICTIFIT7VERRL,
FROVIEHFREELE .

:Cij_Value_KLOC:1.5

:Cij_Reason:

:bij_Value:50

:bij_Reason:

:Kij_Value_MaxHour:20

:Kij_Reason:

:Eij_Developer_ActName: Z=A[72 3 HEE

:Eij_Developer_Value:50

:Eij_Required_ActName:PEE[H £

:Eij_Required_Value:70

:SimulationResult:7.25

:NAME : :

IN—F VT AT DV T FPIITITEVWT O 27 N DEIRER 13

N—F 70Tz 7 MCOBERBIENT 0T 2 7 F OSIERER: 3w
EHEDORESECORR 7OV 27 FOSIEE v 2

EREORBREY: 0

EREOATMEFATE? (i 3w

:EstimateMonth:5.5

:EstimateMonth_Reason: LIV HEE~NHBEESTAPEITCERT IV,
SERTONLIED T 1.8KLOC/BDEEMUNH o012l b 2EDT S5 7
*EREL T2.0KLOC/BIZZoTWwa DL Bbhs, BBETAWHEAH 10KLOC 2D T,

97

BMCHYVEL TSy A, SORLELRADBEHEBRTHDICEALRTE.57 A
LRbhsb, _ '
:Cij_Value_KLOC:2.0

:Cij_Reason:

:bij_Value:40

:bij_Reason:

:Kij_Value_MaxHour:20

:Kij_Reason:

:Eij_Developer_ActName: 7 A + PJALE
:Eij_Developer_Value:40

:Eij_Required_ActName: K X b B DBEHH
:Eij_Required_Value:75

:SimulationResult:5.46

:NAME: :
N—F V7TV DV T FYITICENT OV 2 7 F OSIHEER: 13w
N=F v 7uT 7 MCOBEREISEV 7OV 2 7 F OSIERR 13
EBEOREEBECORRT UV =7 OBIHER: 3

EEEOEBRFEH 10 FL

EBEDOAJMEFERATEE ? (13w

:EstimateMonth:5

:EstimateMonth_Reason: (1)COLBOL DER#EERIZH 5 DT, AREEMRIIBU L LR
(2)10xk BEDEFHZIOWTIL, BADEZHTHAH (20 H) BMIETTE 2 EENEY D 2,
(3)COBOL D& BT OV F— L %2 2T EetA D %6

(4) E#*. T, working-storage NEFICDOVThH ., £HOTIBELIT

T&5,

(8) BHEIZOWVWTH, BADSTEP IZDOWTiE [F—IITEE T,

Fam e LTIE, RENC BB ZEY) . IO TIX COPY LEHRDFICT,
HDEHEFTZRELI DT 5, DLITDNVTH, A—T7,

2FD, EDXHICH, 2V IET, £4, 5kiFEDI-FAYTTL 5k,
20KeR, WSLTHHDT T, sMGS : IUIN@ Y &H . ZFEBHROBEF LY
:Cij_Value_KLOC:500

:Cij_Reason:

:bij_Value:35

:bij_Reason:

:Kij_Value_MaxHour:30

:Kij_Reason: 4

:Eij_Developer_ActName:COBOL SiE N A

:Eij_Developer_Value:40

98

:Eij_Required_ActName:DB EHX T
:Eij_Required_Value:20
:SimulationResult:1.17

- :NAME:

N=F 7Tz bOVTFIITITENT OV 27 P OBIHEER: TV
N=F X707 FCOBERKISEVTOY 2 7 + OSEER: TV
BBREOREERTORARE0Y 2/ F OBIER: 2 -
HEREOEBRFEE 10 £ E

EEEDANTEERATEE ? (13w

:EstimateMonth:7.0

:EstimateMonth_Reason: ki3 3EMHIC 54Kloc DIV F VTV ATADT T I 0%
BRL TS, COHEVHET L LHMBETELDT, (T AY MlIZ, EHICHER)
:Cij_Value_KLOC:1.5

:Cij_Reason:

:bij_Value:80

:bij_Reason:

:Kij_Value_MaxHour:15

:Kij_Reason:

:Eij_Developer_ActName:IRE DK

‘Ed j_Developer_Value:30

:Eij_Required_ActName:—#XD 7 7 1 V AN

:Eij_Required_Value:80

:SimulationResult:6.77

<NAME:
N—F 27OV DV T FITITITENT OV 2 7 P OBIER: X\
N=F N7V 7 FMCOBERRIGEVTOY 2 7 + DBINEER: i3\
EREORESETCORBEIOY 27 N OSINMER: 1TV
EBEORBER: 30 5F
EBEOATMEEATEE? 12w

. :EstimateMonth:5.5
:EstimateMonth_Reason:BAEHIBZ 5 r AL LT, 42D LA EENHH L RBEL
0. 5¥AmMAEL,
:Cij_Value_KLOC:2.0
:Cij_Reason:
tbij_Value:50
:bij_Reason:

99

:Kij_Value_MaxHour:25

:Kij_Reason:

:Eij_Developer_ActName: 472 30
:Eij_Developer_Value:50
:Eij_Required_ActName: KEE 77 1V
:Eij_Required_Value:80
:SimulationResult:5.49

:NAME: '

N=FXxN70T 27 DV FIITIENT OV 27 FOBIRER: VL
NA=F X700V 27 MCOBEREICEN 7OV 2 7 F OBIRER: i v
EHEOEESHTCORRES 0T = 7 F OSIEER 13w

EHEEORRER 10 F0 L

EBEDANEHEATEE? (i3 v

:EstimateMonth:4.5

:EstimateMonth_Reason:Bi% step 10000step, #XEF 0.7 AA, B%E 2.5 AA,
FAN 1.0AB, F¥22>F0.3A8 |
:Cij_Value_KLOC:3

:Cij_Reason:

:bij_Value:75

:bij_Reason:

:Kij_Value_MaxHour:50

:Kij_Reason:

:Eij_Developer_ActName: £, 74

:Eij_Developer_Value:20

:Eij_Required_ActName:Z B [EiRFME

:Eij_Required_Value:80

:SimulationResult:3.5

Virtual Project No.4

:NAME: v

N=F N7V 27DV T MIITITENTOT 27 P OBIEE: i3
N=F V70T 2 MCOBEREISEVT OV 2 7 FOSIRE v\ %
EBEORESETCORR/O 27 FOSINEE: 13w
EREORBRER 6 51 04

EBEDAEFERATEE? 13w

100

:EstimateMonth:15.5
:EstimateMonth_Reason:0.75/ A TR o7 L2 L, COEFD/-D 25 F{ bk o
:Cij_Value_KLODOC:1.0
:Cij_Reason:
:bij_Value:55
:bij_Reason:
:Kij_Value_MaxHour:200
:Kij_Reason:
:Eij_Developer_ActName:
:Eij_Developer_Value:10
:Eij_Required_ActName:
:Eij_Required_Value:30
:SimulationResult:13.9

:NAME:

N=F X 7OV 7 OV T FIITIZENTOY 27 P OSIEER: 3

N—=F 70T 7 MCOBEREIEVTOY = 7 P OSBIEER: 13V

EFHEOREESETORBTUY = 7 OEI#EER: 3w

EBEDEBRER: 37 54

EBBEDATEERATEE? 13

:EstimateMonth:15

:EstimateMonth_Reason:EH{I%¥E . 14 A, 3— 717 . 278, 67X+ 17 A,
 efTFAMI17A

:Cij_Value_KLOC:4

:Cij_Reason:

:bij_Value:30

:bij_Reason:

:Kij_Value_MaxHour:800

:Kij_Reason: :

:Eij_Developer_ActName: A TR L 7= X I ZELmM#E

:Eij_Developer_Value:30

:Eij_Required_ActNeme:BEBRZEKEI ¢ K —T 1 ¥/ Il% LT

:Eij_Required_Value:80

:SimulationResult:16.5

P o o e e e e o e e e S S o ——— T ———— ®

101

N=F N7V 27 DV T IIITITENTOY 2 7 P OBIIEER: 13w
RN=F V70T 27 FCOEBMEREICEV7 0V = 7 P OSIEE: 3w
HEEDRESHECORAR/ U 2 7 F OBMER: TV

ERBEORBRFEH 10 £ E

EBEDOANEEATE? 3w

:EstimateMonth:24

:EstimateMonth_Reason: 1 ¥ ADFHEEMEEZ500S t e p LH#Hl. ZDFE.
207 ATHRTEH., 27 AH2CEBOEELIEHMMB. 27 Bz 0L) HH
ELl7o

:Cij_Value KLOC:1

:Cij_Reason:

:bij_Value:10

:bij_Reason:

:Kij_Value_MaxHour:1000

:Kij_Reason:

:Eij_Developer_ActName:ZE¥ D H & MMANEH & 24 M 2 3 H:
:Eij_Developer_Value:20

:Eij_Required_ActName: v A7 LI —)V

:Eij_Required_Value:100

:SimulationResult:28.3

:NAME:

N=F V7T 27 POV T IPIITITEWT BT 2 7 P OBIEER: T
N=F V70V 27 FMCOBERRISENT UV 2 7 P OSBRI
EBEOEESRTORRE T/ 0 = 7 F OBIMEER: i\
EREOEBRFER: 6001 04

EBEOATMEFERTEE ? (12w

:EstimateMonth:13 :

:EstimateMonth_Reason: 7/ 07 J LA EREI=1w,

7077 LEMEREI=3w, U530 7=2w, BkTAlL=2w,
HWETAb=1w, Z0OMf HHER/ EE, 7TAMEOEEBEES 2w
:Cij_Value_KLOC:3

:Cij_Reason:

:bij_Value:10

:bij_Reason:

:Kij_Value_MaxHour:365

:Kij_Reason:

:Eij_Developer_ActName:Z:A L

:Eij_Developer_Value:20

102

:Eij_Required_ActName:v 7 1T (O S#flt), SVCHH. N—FiEgE
:Eij_Required_Value:80 '
-:SimulationResult:12.1

:NAME:

N=FANVFOT 2y bDV T FIITITENTOY 27 P OBIMER: 1T
IS=F N7 ul 7 MCOBERBEIEWT OV 2 7 P OSMER: 3
EBEEOERESHTORART OV 27 + OBMER: 13V

EHEORBER: 30 5 F

EBEOATMEFEATRE? i3 v

:EstimateMonth:8

:EstimateMonth_Reason: - CEBRIC1 7 A - VAT LT OS5 LADEEKBREZ
178 VATAYV 7 RARBCE»2Y)OEFAEBESLETHY., TSV r—ar
FRRDERRIET TRATT ARIC6 A . (BREDIE EEPLLo(DL
VB A T7DATHNE, ALERETS BREBEO2HEREL BRI LA,
COBEE3FE L, EERZEIA, TOAMICRIDHBIZITHA LIV,
:Cij_Value_KLOC:2 '

:Cij_Reason:

:bij_Value:10

:bij_Reason:

:Kij_Value_MaxHour:40

:Kij_Reason: |

:Eij_Developer_ActName: J {L¥Efi#

:Eij_Developer_Value:20

:Eij_Required_ActName:for(),signal() HD I X FAa—-VOFH
:Eij_Required_Value:80

:SimulationResult:6.02

:NAME:

N—F 7O 27 POV TINIITIEWT OV 2 7 P OBIRER: v
N—F AT OV 7 MCOBEBREIGEW T OV 2 7 OBINEER: i3
CBEBEDIRESECORRETOI 27 P OEIEE: W 2

EHEDEBRER: 0

EBEDOATMEFERATTRE? (i3

:EstimateMonth:7.0

:EstimateMonth_Reason: 8 0 B D FEF e & HI#EIIAZ T 5 A% Cobol THAEH
:Cij_Value_KLOC:1.5

:Cij_Reason:

103

:bij_Value:10 -

:bij_Reason:
:Kij_Value_MaxHour:20
:Kij_Reason:
:Eij_Developer_ActName:ZEAHEHE
:Eij_Developer_Value:20
:Eij_Required_ActName: &5 22 i A
:Eij_Required_Value:80
:SimulationResult:7.26

:NAME:

IN—F XN TV 27 DV T I IITIENT OV 27 F OEIEER: 1T
N=F 70T 27 MCOBERREITEVT Y 2 7 + OSIER: 13w
EBEORESETORRE7/OI 27 F OBMER: W 2
EBEORBRFR: 0

EBEZOANTMEFERTRE? (X

:EstimateMonth:7.0

:EstimateMonth_Reason: 8 0 R D FEEIFH L MFEEIIARE T 5 %% Cobol TOAEN
:Cij_Value_KLOC:1.5

:Cij_Reason:

:bij_Value:10

:bij_Reason:

:Kij_Value_MaxHour:20

:Kij_Reason:

:Eij_Developer_ActName: ZZi#5E

:Eij_Developer_Value:20

:Eij_Required_ActName: & 20 H

:Eij_Required_Value:80

:SimulationResult:7.22

O e o e e e s e S e e > o o, e o . e ey . ¥

:NAME:

N—=F N7V 27 POV T IMIITIENRTEY 27 FOSIRER: W 2
N=Fy 70T 27 MCOBEREBISEV TS OY 2 7 P DEIEER: 13w
EHEORESHTORRTOY = 7 F OBMER: 3w

EBBEORBRER 15756 24

EBEOASMEERTTEE? 13V

:EstimateMonth:8

:EstimateMonth_Reason: CEFENHEE. 707 7 LAFHEEMIZ 1.2KLoOC/B L £ %,

104

10KLOC TH 8 7T AdH B0 FHFa XY FHEERIERNIIEDLZ VDT 18
R=—T/BEEZ, BOR—TFTHITAPHD, NV FV T VAT IADREREIDL,
INLDIEEIZSTLNVICZ 2B ETFHEL, 8TAEHEL,
:Cij_Value_KLOC:1.2

:Cij_Reason:

:bij_Value:30

:bij_Reason:

:Kij_Value_MaxHour:14

:Kij_Reason:

:Eij_Developer_ActName:Hlf{#%. BF]. &

:Eij_Developer_Value:30 |

:Eij_Required_ActName: K1 ¥ ¥, #§&E 4

:Eij_Required_Value:50

:SimulationResult:8.91

Virtual Project No.5

:NAME: :

N—=F V70TV DV T IVIITITHENT OV 2 7 P OSIER W 2
N—=F 70V 27 PCOBERKISEWS O 2 7 OSB3
BEBREORESRTORETOY = 7 F OBIER: 2
EHEORBFE 67001 0F

EBEDOATELRTE? i3

:EstimateMonth:20

:EstimateMonth_Reason:HTML (&% 20 X—/H, JAVA & CGI %# 1 KLOC/B & L,
FERBMEsrAELTS

:Cij_Value KLOC: 2

:Cij_Reason:

:bij_Value:10

:bij_Reason:

:Kij_Value_MaxHour:360

:Kij_Reason:

:Eij_Developer_ActName:

:Eij_Developer_Value:10

:Eij_Required_ActName:

:Eij_Required_Value:40

:SimulationResult:24.7

P e > o o - —— — ——— - T ————
- :

105

:NAME:

N—F V7OV 2 OV T P IITISEVIOY 27 F OBMER: VW 2
N—F e N70T 27 FCOBERREISENWT OV 27 + OBMER: T
BEBEODIRESETCORRTUI 27 F OBIMRER: 1T
EEEOERER: 15b 24

EBEOATMEFERATTEE ? (i3

:EstimateMonth:9

:EstimateMonth_Reason:EXADWVIBNHFL VL DHF X TEH 5 & 7225,
HRLB LTHEMENCTE - LT, 7. ERARDIRITITVE0T, B0
ELRLFZWLNMICT 57201213 4 7 B EERERO 2 EEEF I,
Zﬁﬁéﬁﬁﬁﬁvﬂwwiﬁtﬁd‘S&H%%ﬁwﬁ% VAR] 1
UTHLEFHHEHERL I,

:Cij_Value_KLOC:2

:Cij_Reason:

:bij_Value:0

:bij_Reason:

:Kij_Value_MaxHour :252

:Kij_Reason:

:Eij_Developer_ActName : AT

:Eij_Developer_Value:20

:Eij_Required_ActName: FF 21 AV AT T 27 FPETFTNVNRA TV 27 +F DEIBIHEAEIC
BI¥ 5 mak

:Eij_Required_Value:70

:SimulationResult:13.7

:NAME:

N=F N7V DV T FPIITIZENT O 27 F OB L
N—=F e 70T 7 MZOBERBIEW 0T 2 7 FOSIER: kv
EFHEORESHTORRE 0 = 7 F OSMER: 1T
BEBEORBRER: 1 96 24

BBEOATEFERTTEE? (13w

:EstimateMonth:15

:EstimateMonth _Reason: & T# C¢ 14 A. JAVA 25 A HIML 0.548®
3.5y AL AMBOR IR+ I D 2EDNF AN TREZMA, 145 8
CIIEREBYM1 yAEmMAE15% A

:Cij_Value_KLOC:0.75

:Cij_Reason:

:bij_Value:20

:bij_Reason:

106

:Kij_Value_MaxHour:30

:Kij_Reason:
:Eij_Developer_ActName:Z:AA9 7% 30
:Eij_Developer_Value:20
:Eij_Required_ActName:fU4} L5
:Eij_Required_Value:70
:SimulationResult:14.2

* ——— -——

:NAME:

N=F XN TAT 27 POV T FIITISENTOY 2 7 L OBIHERR v
N=F V70T 7 FCOBEREISETOY 2 7 T OSHHER: 13\
FHEOREERTORRES 0T 2 7 F OBIER: 3V
EHEORBRER 10 £L 1

EEEOATMEERTE ? (kv

:EstimateMonth:12.8

:EstimateMonth_Reason:

:Cij_Value_KLDC:1.8

:Cij_Reason: ‘

:bij_Value:5

:bij_Reason:

:Kij_Value_MaxHour:180

:Kij_Reason:

:Eij_Developer_ActName:

:Eij_Developer_Value:20

:Eij_Required_ActName:

:Eij_Required_Value:60

:SimulationResult:13.0

:NAME:

N=F VT2 POV T IIITIENTOY 2 7 F OSMEEER: 1T

N—=F 7O 7 MIOBMERERISEVWT OV 2 7 FOSIRER: iTw

BEHEOREESETORRE IV 27 F OSIEER 3w
CEBEOBRBRFH: 670105

EBEOANEFERTE? (i3

:EstimateMonth:12.8

:EstimateMonth_Reason

:Cij_Value_KLDC:2.0

:Cij_Reason:

107

:bij._.Value:O
:bij_Reason:
:Kij_Value_MaxHour :200
:Kij_Reason:
:Eij_Developer_ActName:
:Eij_Developer_Value:30
:Eij_Required_ActName:
:Eij_Required_Value:60
:SimulationResult:iG.Q

:NAME:

N=F XV TF T2 7 DV T PIITIENTOT 27 P OBIHER: V2
R=F X NT OV 2 MCOBEREIGENT OV 2 7 P OBIHER: i3\
EBEORESRHECORES Y =7 F OEMER: 3w

ERBORBFER: 600104

EHEDOATMEFEATE? (13

:EstimateMonth:12

:EstimateMonth_Reason: § 3 1kstep 7XASC SEIC 15 A2 DH LI Java HF
17 ASSETML i3 1 BE I 262w LI L7,

:Cij_Value_KLOC:1

:Cij_Reason:

:bij_Value:0

:bij_Reason:

:Kij_Value_MaxHour:180

:Kij_Reason:

:Eij_Developer_ActName: A 72 30

:Eij_Developer_Value:20 ,

:Eij_Required_ActName: 7 7 AHEDEE

:Eij_Required_Value:80

:SimulationResult:15.4

:NAME:

N—F N7 T 27 DV I ITIEWT T 2 7 N OSIEER: i3
N—=F e N7aT 27 MCOBHERBIENWTOY 2 7 FOSINEE: 12w
EBEORRESHTORE /0T = 7 F OSMER: 3w
EREOBEREY: 0

EBEDANTMEEATTRE ? (13w

:EstimateMonth:7

108

:EstimateMonth_Reason:JAVA,cgi DEIRAS 1.5k/ B T. 67 H. #4T1 AD&t 77 A
:Cij_Value_KLOC:1.5

:Cij_Reason:

:bij_Value:50

:bij_Reason:

:Kij_Value_MaxHour:20

:Kij_Reason:
:Eij_Developer_ActName:» >~ ¥ v 7 A
:Eij_Developer_Value:20
:Eij_Required_ActName:F#k =, #iE1k
:Eij_Required _Value:50
:SimulationResult:7.07

:NAME:

NX—F V7B POV T I IITITENTOY 2 7 F OBIMAEER: 1T
N=F V70T 27 MCOBEREISEWT OV 2 7 F OEMER: 2w
EBEORESHTORRT Y 27 F OBIEER v
EHEORBRER: 190 24

EBEDNSEERATEE ? 12w

:EstimateMonth:8

:EstimateMonth_Reason:fiENEL XL 2 VWK ZIRET 5.
INETORBIILALEDPELVOT, i)BEEIP»S.
:Cij_Value _KLOC:2.5

:Cij._.Reason:

:bij_Value:15

:bij_Reason:

:Kij_Value_MaxHour:60

:Kij_Reason:

:Eij_Developer_ActName: XKEBH 2N EAM L ELT OS5I 7
:Eij_Developer_Value:30

:Eij_Required_ActName:BEMKFH DB VT DER
:Eij_Required_Value:70

:SimulationResult:6.11

2 o o o e e e e P o m §

:NAME: .

N—F 7T 27 DV T IPIITITEVWTSOT 27 FOSINEER: 2w
N—F e 70T 2/ MIOBEREIENWT 0D = 7 P OSIRER: 13w
BEBEORESECOBAR IO 2 7 F OBMEER: 11w

109

EBEORBRER: 1 90 24

CEEEOADEERTEE? (13w

:EstimateMonth:8 ‘ ,
:EstimateMonth_Reason: iGN PDEE 1 0 DEHLT R TL &,
:Cij_Value_KLOC:2

:Cij_Reason:

:bij_Value:20

:bij_Reason:

:Kij_Value_MaxHour:60

ﬁKij_Reason:

:Eij_Developer_ActName: X E&EARWT TS T IV TEE
:Eij_Developer_Value:20 ’
:Eij_Required_ActName: EEMKFEDO B VT 5 OMRET
:Eij_Required_Value:70

:SimulationResult:6.46

:NAME:
:Adress: k-ishidaQatomsystem.co.jp

N=F XN 70T 27 DYV T FPIITICEVWT Y 27 P OBMER: T
N=F e V70T s MZOBERRICSENT O 2 7 P OSIRE: i1
BBEORESHETORE/ 0T =7 P OEMEER: 3w
BHEORBREE 6200104 '
EBBEOATMEFEATTEE? 13V

:EstimateMonth:10.7

:EstimateMonth_Reason:

:Cij_Value_KLOC:0.952

:Cij_Reason:

:bij_Value:30

:bij_Reason:

:Kij_Value_MaxHour:30

:Kij_Reason:

:Eij_Developer_ActName: 4 FHREEREL CEFE
:Eij_Developer_Value:30

:Eij_Required_ActName: 7/ T 7 T ALEEE

:Eij_Required_Value:70

:SimulationResult:11.3

:NAME:

110

N=F Xy N7AT 27 bOVT FIITITEVWT 0T 2 7 P OSIHEER: i3
N=F 7T s MCOBERKIEN 70T 2 7 P OBIHEER: 1T
EREDIRESHCORE /0T 2 7 F OSIEE: iZv
EBEOEBRER: 32555

EEEOATMEFERATRE ? - 13

:EstimateMonth:12

:EstimateMonth_Reason:HTML iZ X A B%A 2 AA . JAVAIZ X 5FREY 5 AA.
cgi ARM¥3IARB. 7AM2 AR

:Cij_Value_KLOC:1

:Cij_Reason:

:bij_Value:20

:bij_Reason:

:Kij_Value_MaxHour :40

:Kij_Reason:

:Eij_Developer_ActName:7 — ¥ &l

:Eij_Developer_Value:20

:Eij_Required_ActName: Y)VF AL v NILHE

:Eij_Required_Value:60

:SimulationResult:11.3

:NAME:

N—F ATV POV T FPIITIENWT OV 2 7 OSBRI
N=F 70TV FCOBERRISENT OV 2 7 FOSIRER: T
EREORESETORRESIY 2 7 F OSIER: TV
EBEORBFH 10 D b

EBEEOANMEFERATEE? i3

:EstimateMonth:7.0

:EstimateMonth_Reason: &/ X 7 v 7#:10000step, BHEEXET:0.5 AA,
PG HTML:0.5 AR, 77V v }:2.5 KA, ceI:1.0 AA, TAF 1.0 AR,
F¥azxrF 0.5AA8

:Cij_Value_KLOC:1.5

:Cij_Reason:

:bij_Value:20

:bij_Reason:

:Kij_Value_MaxHour:200

:Kij_Reason:

:Eij_Developer_ActName:ZH(DFI & MANEE & HA MY 22 301k
:Eij_Developer_Value:20

:Eij_Required_ActName:EF|, &1 > &Rk

111

:Eij_Required_Value:70
:SimulationResult:11.2

Virtual Project No.6

:NAME:

N=FXxNTUT 27DV T FPIITIETOT 25 FOSIMER:
N=F 70T 2 MZOBEREISEWTOY 2 7 FOSIER: w2
EBEORESHTORRET/ O =7 F OBIER: 13w
EREORBRER: 6401 04

EBEOANEERTE? 13w

:EstimateMonth:24

:EstimateMonth_Reason:

:Cij_Value_KLOC:4.0

:Cij_Reason:

:bij_Value:0

:bij_Reason:

:Kij_Value_MaxHour:360

:Kij_Reason:

:Eij_Developer_ActName:

:Eij_Developer_Value:10

:Eij_Required_ActName:

:Eij_Required_Value:35

:SimulationResult:28.7

:NAME:

N—=F XN 7OV 27 DV T PIITITENWTOY 27 b OSEE: iT v
N—=F N7 27 MCOBEREBIEWTS O 2 7 POSIIEE: 2w
EEEDRESETCORRIuI 27 F OSIHEE: i3 v
EHEORBEH 645 1 04

EBEDOAIMEERTE ? ;i3

:EstimateMonth:15
E%mawmmann%%%H#%ﬁM%W%@@Eﬁﬁﬂé%vkaG
EN%%%5, —hH. 7757075 L3BREEFEoTOBERLY,
HNBEPRDOONDE Z EAE\V, BIREILZ, MainFrame BB Y Lizv 2
VM DBEBRETI TR o TV i3Aa LW (TEYT7I5EREIZREWV7?),
F7:. TRV TIRTRTOT T LHEHFE N, LWH T ET, BIELTL

112

SNTHELYFLTHREERN L SR, TV 15 A,
:Cij_Value _KLOC:2

:Cij_Reason:

:bij_Value:0

:bij_Reason:

:Kij_Value_MaxHour:250

:Kij_Reason:

:Eij_Developer_ActName: I —7 1 » 7 HHl
:Eij_Developer_Value:5
:Eij_Required_ActName:/ — N &I D AL HIH
:Eij_Required_Value:70
:SimulationResult:11.8

¢

:NAME:

N=F N2 DV 7P TITIEWTOT 2 7 P OEMER: 1T
N—=F N7 0T 27 MCOBEREITENWT OV 2 7 P OBIIER: VX
EEEORESHTORETUY = 7 F OBIEER: i1V
EEEDEBRER: 0 |

EHEDOANEEATRE? : 2

:EstimateMonth:14

:EstimateMonth_Reason:EHIZH T Hh DT A, &, T4,

:Cij_Value _KLOC:0.5

:Cij_Reason:

:bij_Value:0

:bij_Reason:

:Kij_Value_MaxHour:30

:Kij_Reason:

:Eij_Developer_ActName: 3k

:Eij_Developer_Value:30
:Eij_Required_ActName:&| N AARMEDF 7 = v 7 2TV F ¥ R 7 MBOEE
:Eij_Required_Value:70

:SimulationResult:21.5

® i e o o e i s o O . e s Gt s e s o e e

:NAME :
N—F A TOT 2 DY T P IITIENT O 2 7 b OBIHEE: 131>
N—F 70T 7 MIOBEBRRISEVT OV = 7 P OBIEER: 3w
BEEORESECORRE/UY 27 FOBMEE: V2

113

EHEOEBRFR 6001 04

EHEOATEEATEE? (13w

:EstimateMonth:20.5 :

:EstimateMonth_Reason: EAM ¥ BHEIX 0.5 A TR LB D I A5,
RBEBNRVWLI—FT 4T TNy FICEES PP BDT 1y A0 AT v T

CHLWTL LI

:Cij_Value_KLOC:0.5

:Cij_Reason:

:bij_Value:0

:bij_Reason:

: Kij _Value_MaxHour:30

:Kij_Reason:

:Eij_Developer_ActName: ¥

:Eij_Developer_Value:30

:Eij_Required_ActName:fIS\ DT /3y 7

:Eij_Required_Value:85

:SimulationResult:21.1

:NAME:

N=F N7V DV TIIITIZENTOT 27 F OBMER: 1TV
N—F T uT 2 s MCOBERRISENT OV 2 7 OBIHER: v 1
EEEORESHETORREI Y = 7 F OSIEER: 1T
EHEOBEREY: 3956 64

BHEBEOAMEEATRE? (13w

:EstimateMonth:29

:EstimateMonth_Reason: SieFBIC 14 A, HEKRENIC2 4B, a—F14 72

20478, B, HETAMI6 AL RAL, TV 7737 A THE
BRI L7 5 2T NITBERGGRIZB V72D, TAMBRIIR 25,
:Cij_Value_KLOC:0.5

:Cij_Reason:

:bij_Value:40

:bij_Reason:

:Kij_Value_MaxHour:365

:Kij_Reason:

:Eij_Developer_ActName: &%t v + DM

:Eij _Developer_Vélue :10

:Eij_Required_ActName: R ¥ v 7 £k

:Eij_Required_Value:50

:SimulationResult:26.3

114

:NAME:
N=F VT ATy POV T FIITITENT BV 2 7 P OBIER: L
N—F e 7ud s MCOBEREICGEV IOV 27 FOSMER: W2
:%ﬂ%@#mnm?oﬁ%7uyzyb®#m?ﬁtmﬂ
VEEEDORBREN: 0
BEBBEOATMEFEATRE? (i3
:EstimateMonth:20
:EstimateMonth_Reason: L4 & FHIZ T CHOLBEFICBIT 2 EEHIZ
400 ~ 500step/ A L HET D, TN/ T = 7 L H#KIZ 10000step Z DT,
TOEFEEIEL 20~257 b, BLAREE—ATHITINT, 33a=F—
Y araRidk {. —Ii500step/ A DEEHEERAL 720
(FEBICKMBBLRE) T, BL21LT,)
:Cij_Value_KLOC:0.5
:Cij_Reason:
:bij_Value:0
:bij_Reason:
:Kij_Value_MaxHour:30
:Kij_Reason:
:Eij_Developer_ActName: < —. 7)1/’5: HOITEITS
:Eij_Developer_Value:50
:Eij_Required_ActName: X €Y, HEDKHEIL
:Eij_Required_Value:70
" :SimulationResult:23.0

:NAME:

N—F 7OV 27 POV T I IITITENTOY 2 7 P OSIIEER: T
N—F 7Tz MCOBMEREISEVWT OV 2 7 FOBNMBER: V2
:Mﬂz‘@ﬁﬁnnni‘@gﬁ%ju VYA @%bﬂﬁgﬁ Twv
EBEOBRRFEHR: 0

EBEOANTEFEATEE? (i3

:EstimateMonth:20

:EstimateMonth_Reason:)

:Cij_Value_KLOC:0.5

:Cij_Reason:

:bij_Value:0

:bij_Reason:

:Kij_Value_MaxHour:30

115

:Kij_Reason:

:Eij_Developer_ActName: V=2 7 V¥ HDIIEIT S
:Eij_Developer_Value:50
:Eij_Required_ActName: A€, EEDRKHIL
:Eij_Required_Value:70
:SimulationResult:23.1

:NAME:

RN=F AN TOT 27 DOV T IIITICEVTOY 27 F OSIER: 2w
= F 2 TOT 2 MZOBMWERIBICENT OV 2 7 FOBINREE: v\
HHEORESECORESOY = 7 + OBMEER 13V
EBEDOREBRFR 10 FL L |
EBEOANEEATRE? (i3 v

:EstimateMonth:15

:EstimateMonth_Reason: ETHEDHAREEHE*400step / ABLRFEDL Y,
BERFDPOEET AL ETELHDE6 0% LEFKL o7,

:Cij_Value KLOC:0.8

:Cij_Reason:

:bij_Value:10

:bij_Reason:

:Kij_Value_MaxHour:30

:Kij_Reason:

:Eij_Developer_ActName: & ¥ D Al

:Eij_Developer_Value:0

:Eij_Required_ActName:/N— F 7 = 7 I

:Eij_Required_Value:50

:SimulationResult:13.4

:NAME: _
N—=F XN TUT 27 OV TV IITIERTOY 27 N OSIEE 12w
NX—F XN 70T 27 MICOBMEBRIBIZEWT OV 2 7 F DSIEER: 2w
FEEORESETCORE/ Y 27 F OBMER: iTv
EREOEBRER: 0

EBEOAIEERTEE? (13w

:EstimateMonth:36 .
:EstimateMonth_Reason: RIFEEEN TV 75 * BB THDIIENIHEBELET S,

F o THRELNISEMABI S I L 2b:0, BRBL-THHFRF v
(FLTRARSLF v T IZRBLELIC) o7y S5 LHABIEETH S,

116

FUINTOY 5 ARBREFLOBEOHEC Lo TOARE(RRS LEDNE,
ERICHRELTC—BOBBELL25DR T AMIETARBTH 545, 7AFAICHD
BREBTYIalL—2ETHALELHY, TV 7 IBNOSHERG AT %
BLFEELDH S,

:Cij_Value_KLOC:1

:Cij_Reason:

:bij_Value:30

:bij_Reason:

:Kij_Value_MaxHour:30

:Kij_Reason:

:Eij_Developer_ActName:EARMLZNELV I AV HA
:Eij_Developer_Value:20 ,

:Eij_Required_ActName : 55

:Eij_Required_Value:70

:SimulationResult:10.6

:NAME:

N=F N7V DV T PIITIENT DY 27 F OBIER: T
N—=Fx V70T 7 FMCOBEREICENTS OV 2 7 P OBIER: 3V
EBEORESHTORRE U 27 + OBMER: TV
EREORBRER 10 L E

EBEOADMEERTEE? -1

:EstimateMonth:10

:EstimateMonth_Reason: BEMNENOBVWIL.LEFEMTT 75TV 7 FRAE®R
79 EIRELTERBELIT T HERTNDIN—-FAH, ARXBEREOERL SO T,
BB, O R fToTFHEERZ 1KLL LTERIEL,

:Cij_Value KLOC:1

:Cij_Reason:

:bij_Value:0

:bij_Reason:

:Kij_Value_MaxHour:40

:Kij_Reason:

:Eij_Developer_ActName:[URIEHE, ZEF Lk

:Eij_Developer_Value:50

:Eij_Required_ActName: | 1) 52 % fll %

:Eij_Required_Value:80

:SimulationResult:12.4

117

