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Abstract

Recent developments in computer technology have made it possible to analyze

all the data in a huge database. Data mining is to analyze all the data in a huge

database and to obtain useful information for database users. One of the well-

studied problems in data mining is the search for meaningful association rules in

a market basket database which contains massive amounts of sales transactions.

The problem of mining meaningful association rules is to �nd all the sets of

correlated items �rst, and then to construct meaningful association rules from

the sets of correlated items. This thesis discusses the issues associated with the

problem of mining meaningful association rules.

The notion of support has been proposed as a measure which indicates a de-

gree of correlation among the items in a given itemset. An itemset is called large

if its support exceeds a given threshold. Although a number of algorithms for

computing all the large itemsets have been proposed, the computational com-

plexity of them is scarcely discussed. The performances of most of the algorithms

are estimated only by empirical evaluation through benchmark tests. This thesis

de�nes the large itemset problem formally as deciding whether there exists a large

itemset with a given size, and shows the NP-completeness of the problem. From

this result, it has become clear that �nding all the large itemsets (and there-

fore, all the meaningful association rules) is impossible in polynomial time in the

�Doctor's Thesis, Department of Information Processing, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DT9561209, February 7, 2000.
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size of a database unless P=NP. Furthermore, this thesis proposes a subclass of

databases for which we can e�ciently �nd all the large itemsets.

Also, several disadvantages of the support have been pointed out. For exam-

ple, the support of an itemset tends to be high if the itemset contains items with

high supports, regardless of the relationship among the items. This thesis pro-

poses alternative measures to the support, which are de�ned by the combinations

of the aspects such as

� the ratio of the actual value of the support of a given itemset to the expected

value of the support of the itemset, based on the assumption of statistical

independence,

� the fraction of transactions which do not contain any item in a given itemset,

and so on. For each measure, an itemset is called highly co-occurrent if the value

indicating the correlation among the items exceeds a given threshold. This thesis

de�nes the highly co-occurrent itemset problem formally as deciding whether there

exists a highly co-occurrent itemset with a given size, and shows that the problem

is NP-complete under whichever measure. Furthermore, this thesis proposes sub-

classes of databases for which we can e�ciently �nd all the highly co-occurrent

itemsets.

Keywords:

data mining, large itemset, highly co-occurrent itemset, meaningful association

rule, computational complexity
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Chapter 1

Introduction

Recent developments in computer technology have made it possible to analyze

all the data in a huge database. Data mining is to analyze all the data in a huge

database and to obtain useful information for database users. In this thesis, we

deal with so-called market basket databases. A market basket database consists

of transactions, where each transaction consists of a set of items. For example,

consider a market basket database D1 shown in Figure 1.1. A transaction t1

indicates that bread, ham, bacon, and milk were purchased together by a customer

in a single visit to a store. By examining D1, we can identify a rule that \if bacon

is purchased in a transaction, then it is likely that lettuce and tomato will also be

purchased in that transaction." This rule indicates the high correlation among

bacon, lettuce, and tomato. Such information is useful for marketing plans such

as price management and stock management, also the layout of items.

A set of items is called an itemset. An association rule is a formula of the

form X ) Y , where X and Y are disjoint itemsets. An intuitive meaning of this

formula is that if every item in X is purchased in a transaction, then it is likely

that every item in Y will also be purchased. For example, the rule stated above

can be represented as fbacong ) flettuce; tomatog. There are two important

measures for an association rule introduced by Agrawal et al. [1], called support

and con�dence. The support of an itemset is the fraction of transactions that

contain the itemset. An itemset is called large if its support exceeds a given

threshold. The support of a rule X ) Y is the fraction of transactions that

contain both X and Y . The con�dence of a rule X ) Y is the fraction of

1



t1 fbread; ham; bacon; milkg

t2 fbacon; lettuce; tomato; cornakes; milkg

t3 fcornakes; milkg

t4 fbacon; lettuce; tomato; eggsg

t5 fbacon; lettuce; tomatog

t6 fcornakes; milkg

Figure 1.1. A market basket database D1.

transactions containing X that also contain Y . For the association rule X ) Y

to hold, X [ Y must be large and the con�dence of the rule must exceed a given

con�dence threshold. In this thesis, we will refer to measuring an association rule

by support and con�dence as the support-con�dence framework.

Example 1.1 Consider D1 shown in Figure 1.1. Let X = fbacong and Y =

flettuce; tomatog. The number of transactions in D1 is 6. Transactions which

contain both X and Y are t2, t4, and t5, and then the number of transactions

which contain both X and Y is 3. Therefore, the support of a rule X ) Y is

1
=2. Transactions which contain X are t1, t2, t4, and t5, and then the number

of transactions which contain X is 4. Also, the number of transactions which

contain both X and Y is 3. Therefore, the con�dence of the rule X ) Y is 3
=4.

That is, 75% of transactions that purchase fbacong also purchase flettuceg and

ftomatog. 2

One of the well-studied problems in data mining is the search for meaningful

association rules in a market basket database which contains massive amounts

of transactions [1{4, 10, 11, 13{15, 17, 18, 20]. The problem of mining meaningful

association rules is to �nd all the association rules that have support and con-

�dence greater than or equal to certain user-de�ned thresholds called minimum

support and minimum con�dence respectively. This problem can be decomposed

into two subproblems:

1. Find all the large itemsets with support greater than or equal to the mini-

mum support.

2



t1 fcereal; bacon; eggs; milk; teag

t2 fcornakes; milk; bread; co�ee; eggsg

t3 fbread; co�ee; eggsg

t4 fcornakes; milk; bread; co�eeg

t5 fcornakes; milk; bread; co�eeg

t6 fbread; co�ee; eggsg

Figure 1.2. A market basket database D2.

2. Construct rules with con�dence greater than or equal to the minimum con-

�dence from the large itemsets in step 1. Having determined the large item-

sets, the second problem is rather straightforward. For example, if fx; y; zg

is a large itemset, then we might check the con�dence of fx; yg ) fzg,

fx; zg ) fyg, and fy; zg ) fxg.

Although a number of algorithms for computing all the large itemsets have

been proposed [1, 3, 4, 6, 7, 9, 15, 17, 20], the computational complexity is scarcely

discussed. The performances of most of the algorithms are estimated only by em-

pirical evaluation through benchmark tests. This thesis de�nes the large itemset

problem formally as deciding whether there exists a large itemset with a given

size, and shows that the problem is NP-complete. From this result, it has become

clear that �nding all the large itemsets (and therefore, all the meaningful asso-

ciation rules) is impossible in polynomial time in the size of a database unless

P=NP.

Furthermore, this thesis introduces the notion of (k; c)-sparsity of databases.

Intuitively, (k; c)-sparsity of a database means that the supports of itemsets of size

k or more are considerably low in the database. The value of c represents a degree

of sparsity. Using (k; c)-sparsity, this thesis proposes a subclass of databases for

which we can e�ciently �nd all the large itemsets.

Also, several disadvantages of the support have been pointed out in Refer-

ences [5, 6, 16]. For example, the support of an itemset tends to be high if the

itemset contains items with high supports, regardless of the correlation among

the items. We will explain this in the following example.

3



Example 1.2 Consider D2 shown in Figure 1.2. Suppose that the minimum

support is 0.3. The support of an itemset Z = fco�ee; eggsg is 0:5, and hence

Z is large. On the other hand, the supports of fco�eeg and feggsg are 5
=6 and

4
=6, respectively. Thus, the support of Z is smaller than the expected value of

the support of Z (5=6�4
=6 � 0:56) which is calculated under the assumption that

co�ee and eggs are purchased independently. That is, it cannot be said that the

items in Z have high correlation. 2

This thesis proposes alternative measures to the support, which are de�ned

by the combinations of the aspects such as

� the ratio of the actual value of the support of a given itemset to the expected

value of the support of the itemset, based on the assumption of statistical

independence,

� the fraction of transactions which do not contain any item in a given itemset,

and so on. Some of these measures are similar to the previous works such as

collective strength in Reference [5] and dependence in Reference [16].

For each measure, an itemset is called highly co-occurrent if the value indi-

cating the correlation among the items exceeds a given threshold. This thesis

also shows that �nding all the highly co-occurrent itemsets is still NP-hard under

whichever measure, including collective strength.

Furthermore, using (k; c)-sparsity, this thesis proposes subclasses of databases

for which we can e�ciently �nd all the highly co-occurrent itemsets.

The rest of this thesis is organized as follows. Chapter 2 formally de�nes the

large itemsets problem based on the support-con�dence framework and shows

the NP-completeness of the problem. Furthermore, we propose a subclass of

databases for which we can e�ciently �nd all the large itemsets. Chapter 3 de�nes

several alternative measures to the support. Then, we show that the problem of

�nding all the highly co-occurrent itemsets is NP-hard under whichever measure

we de�ne. Furthermore, we propose subclasses of databases for which we can

e�ciently �nd all the highly co-occurrent itemsets. Chapter 4 summarizes this

thesis.

4



Chapter 2

Computational Complexity of

Finding All the Large Itemsets

This chapter formally de�nes the large itemset problem based on the support-

con�dence framework and shows the NP-completeness of the problem. From this

result, it has become clear that �nding all the large itemsets (and therefore, all

the meaningful association rules) is impossible in polynomial time in the size of

a database unless P=NP. Furthermore, we propose a subclass of databases for

which we can e�ciently �nd all the large itemsets.

2.1 Large Itemsets and Meaningful Associa-

tion Rules

Let I be a �nite set of items. A subset X of I is called an itemset. The size of X,

denoted by jXj, is the number of items inX. A market basket database (MBD)D

is a �nite multiset of itemsets; that is, D may contain multiple occurrences of the

same itemset. An itemset in D is also called a transaction in D. Let jDj denote

the number of transactions in D. The size of D, denoted by jjDjj, is de�ned as

jDj � jIj (each transaction is supposed to be implemented by a jIj-digit binary

number).

We say that a transaction t in D supports an itemset X if X � t [1]. By

supD(X), we mean the number of transactions in D that support X. For a given

5



positive integer s (0 � s � jDj), called minimum support number, we say that

an itemset X is large in D if supD(X) � s. The support rate suprD(X) of an

itemset X in D is de�ned as follows:

suprD(X)
�

=
supD(X)

jDj
:

For a given real number r (0 � r � 1), called minimum support rate, we say

that an itemset X is large in D if suprD(X) � r. Note that when D is provided,

we can use the minimum support number s and the minimum support rate r

interchangeably by letting s = br � jDjc.

By �nding large itemsets inD, we can identify sets of items that are frequently

purchased together.

Example 2.1 Consider an MBD D1 shown in Figure 1.1. Suppose that the min-

imum support rate r is 0.3. Consider two itemsets X = fbread; ham; bacong

and Y = fbacon; lettuce; tomatog. X is supported only by t1, and hence

suprD1
(X) � 0:17 < r. Therefore, X is not large in D1. On the other hand,

Y is supported by t2; t4, and t5, and hence suprD1
(Y ) = 0:5 > r. Therefore, Y is

large in D1. 2

An association rule is a formula of the form X ) Y , where X and Y are

disjoint itemsets. An intuitive meaning of this formula is that if every item in X

is purchased in a transaction, then it is likely that every item in Y will also be

purchased. The support rate suprD(X ) Y ) of an association rule X ) Y in D

is de�ned as suprD(X [ Y ). For a given non-negative real number r (0 � r � 1),

called minimum support rate, we say that an association rule X ) Y is large in

D if suprD(X ) Y ) � r. The con�dence conf D(X ) Y ) of an association rule

X ) Y in D is de�ned as follows [1]:

conf D(X ) Y )
�

=
supD(X [ Y )

supD(X)
:

For a given non-negative real number f (0 � f � 1), called minimum con�dence,

we say that an association rule X ) Y is con�dent in D if confD(X ) Y ) � f .

The support and con�dence have been proposed as criteria for mining an

association rule by Agrawal et al. [1]. We propose another criterion, called right-

hand side size. The right-hand side (rhs) size of an association rule X ) Y is

6



the number of items in Y , i.e., jY j. For a given positive integer w (0 � w � jIj),

called minimum rhs size, we say that an association rule X ) Y has the rhs size

if jY j � w.

For a given r, f , and w, we say that an association rule X ) Y is meaningful

with respect to r, f , and w, or simply meaningful when r, f , and w are clear from

the context, if the rule satis�es all of the following conditions C1, C2, and C3.

C1. X ) Y is large.

C2. X ) Y is con�dent.

C3. X ) Y has the minimum rhs size.

The intuitive meaning of each condition is as follows. Condition C1 states

that X and Y are purchased together frequently. Condition C2 states that if X

is purchased, then Y is likely to be purchased together. Condition C3 is required

because we want to predict as much information as possible.

Example 2.2 Consider D1 shown in Figure 1.1. Suppose that the minimum

support rate r is 0.3, the minimum con�dence f is 0.6, and the minimum rhs size

w is 2. Let us consider the following four association rules.

1. ar1: fbreadg ) fham, bacong

ar1 is not large because suprD1
(ar1) = 1

=6 < r. That is, ar1 does not

satisfy C1. This indicates that bread, ham, and bacon are rarely purchased

together.

2. ar2: fbacong ) fmilkg

ar2 is large because suprD1
(ar2) = 1

=3 � r. That is, ar2 satis�es C1. How-

ever, ar2 is not con�dent because conf D1
(ar2) = 1

=2 < f . This indicates

that when bacon is purchased, the probability that milk is also purchased

together is not so high.

3. ar3: fbacon, lettuce, tomatog ) ;

ar3 is large because suprD1
(ar3) = 1

=2 � r, and also con�dent because

conf D1
(ar3) = 1 � f . That is, ar3 satis�es C1 and C2. However, it does

not have the given rhs size because its rhs size is 0 < w. That is, even if

we can predict that many customers purchase bacon, lettuce, and tomato

7



together (in such a situation that the store manager sells bacon, lettuce,

and tomato at a special bargain sale), there is no other item (in general,

less than w items) which can be expected to be purchased together. Thus,

ar3 can be considered to be useless.

4. ar4: fbacong ) flettuce, tomatog

ar4 is large because suprD1
(ar4) = 1

=2 � r, and is also con�dent because

conf D1
(ar4) = 3

=4 � f , and has the given rhs size because its rhs size is

2 � w. Since ar4 satis�es all of the conditions C1, C2, and C3, ar4 is a

meaningful association rule. 2

If we can obtain a meaningful association rule, then it is useful for the fol-

lowing case, for instance. Consider the case that we have obtained a meaningful

association rule fbacong ) flettuce, tomatog by analyzing an MBD of a grocery

store. Then, when the store manager sells bacon at a special bargain sale, he can

avoid being out of stock by having a lot of lettuce and tomato in stock.

In Figure 2.1, we propose an algorithm which computes all the meaningful

association rules in a given database.

Theorem 2.1 All the meaningful association rules can be computed using Pro-

cedure Find-Mar shown in Figure 2.1.

Proof: (soundness): We show that every association rule X ) Y obtained by

Procedure Find-Mar shown in Figure 2.1 satis�es all of the conditions C1, C2,

and C3. Since every rule X ) Y is obtained as a result of Procedure Find-Mar,

X ) Y must satisfy the if statement in step 9. That is, jY j � w, and X ) Y

satis�es C3. Since the if statement in step 9 is executed for each association rule

in AR obtained in step 7, X ) Y must be in AR. That is, X ) Y must satisfy

the if statement in step 5, and confD(X ) Y ) � c. Hence X ) Y satis�es C2.

Since the if statement in step 5 is executed for each itemset in LI, X [ Y must

be in LI. That is, suprD(X ) Y ) � r. Hence X ) Y is large, and satis�es

C1. Consequently, every association rule obtained by Procedure Find-Mar is

meaningful.

(completeness): We show that all the meaningful association rules can be obtained

by Procedure Find-Mar shown in Figure 2.1. Suppose that an association rule

8



procedure Find-Mar

Input : an MBD D, a set of items I, a minimum support rate r,

a minimum con�dence c, a minimum rhs size w

Output : all the meaningful association rules in D

begin

1: Compute the set LI of all the large itemsets

whose support rates are greater than or equal to r.

2: AR := ;;

3: for all Z 2 LI do

4: for all X � Z do

5: if
supD(Z)

supD(X)
� c then

6: Y := Z �X;

7: AR := AR [ fX ) Y g;

8: for all X ) Y 2 AR do

9: if jY j � w then

10: Output the association rule X ) Y ;

end

Figure 2.1. Procedure Find-Mar.

9



X
0 ) Y

0 satis�es all of the conditions C1, C2, and C3. By C1, X 0 ) Y
0 is large.

That is, suprD(X
0
) Y

0) � r. Since the support rate of X 0
[ Y

0 is at least r,

Z
0 = X

0[Y 0 is a large itemset. Thus, Z 0 is added to LI at step 1. By C2, X 0 ) Y
0

is con�dent. That is, confD(X
0 ) Y

0) � c. When Z = Z
0(= X

0 [ Y
0) 2 LI and

X = X
0 in step 5, the if statement holds. Thus, X 0 ) Y

0 (i.e., X ) Y ) is added

to AR in step 7. By C3, X 0 ) Y
0 has the minimum rhs size. That is, jY 0j � w,

and X ) Y is output at step 10. 2

As seen in Procedure Find-Mar, once we have obtained all the large itemsets,

then all the meaningful association rules can be easily constructed from the large

itemsets. Therefore, in the following sections, we concentrate on �nding all the

large itemsets.

2.2 NP-Completeness of the Large Itemset

Problem

This section de�nes the large itemset problem, and shows the NP-completeness

of the problem.

De�nition 2.1 (large itemset problem): Given an MBD D, a minimum support

rate r (or minimum support number s), and a positive integer h called minimum

itemset size, is there a large itemset in D of size at least h? 2

Let us �rst prove that the large itemset problem is in NP.

Lemma 2.1 The large itemset problem is in NP.

Proof: Note that if an itemset X is large in an MBD D, then every subset of X

is also large in D. Thus if there is a large itemset in D of size at least h, then

there must be a large itemset in D of size exactly h. We can guess an itemset of

size h in NP time. After that, it can be tested in a straightforward way in linear

time to jjDjj whether the itemset is large in D. Hence Lemma 2.1 holds. 2

In the following, we show the NP-hardness of the large itemset problem by

reducing the well-known clique problem [12] to the large itemset problem. To

make the reduction simple, we suppose that a minimum support number s is

given in the large itemset problem.

10



As an instance of the clique problem, let us consider an undirected graph

G = (V;E) and a positive integer k. Let V = fv1; . . . ; vng. From G and k, we

construct an instance of the large itemset problem; that is, a set of items I, a

minimum support number s, a minimum itemset size h, and an MBD DG, as

follows:

(1) Let I = fa1; . . . ; ang[f�a1; . . . ; �ang. Intuitively, ai and �ai mean that \vi is a

member of the clique" and \vi is not a member of the clique," respectively.

Thus, ai is incompatible with �ai. For example, when n = 3, an itemset

fa1; �a2; a3g means that \the clique consists of v1 and v3."

(2) Let s = k + (n+ 1)

 
n

2

!
.

(3) Let h = n.

To de�neDG, let ~[ denote the union operator to multisets (i.e., the union operator

which counts multiple occurrences of elements).

(4) Let DG = DV ~[DC ~[DC ~[ � � � ~[DC| {z }
n+1

, where DV and DC are sets of transac-

tions which will be de�ned later.

Before de�ning DV and DC, we provide their intuitive meanings. An itemset X

is called consistent if X contains exactly one of ai and �ai for each i (1 � i � n).

Note that the size of any consistent itemset is n. Then it will turn out that DV

and DC have the following properties, respectively.

Property 1 G has a k-clique if and only if there exists a consistent itemset X

such that supDV (X) � k. 2

Property 2 Let X be an itemset of size n. Then, supDC (X) =

 
n

2

!
if X is

consistent, and supDC (X) �

 
n

2

!
� 1 otherwise. 2

Since supDG(X) = supDV (X) + (n + 1)supDC (X) from the de�nition of DG, it

follows from the above properties that G has a k-clique if and only if there exists

11



an itemset X such that X is consistent and supDG(X) � k + (n + 1)

 
n

2

!
= s,

that is, X is large in DG. Hence we will have the desired result so that the large

itemset problem is NP-hard (the details will be given in Lemma 2.6). Now let us

de�ne DV and DC , as follows:

� DV
�

= fV1; . . . ; Vng,

where Vi = faig [ faj j (vi; vj) 2 Eg [ f�aj j i 6= j and 1 � j � ng.

� DC
�

= fI � f�1; �2g j �1; �2 2 I and �1 6= �2g � fI � fai; �aig j 1 � i � ng

That is, DC is the set of itemsets of size 2n� 2 other than I �fai; �aig with

i (1 � i � n). Then, the size of DC is

 
2n

2

!
� n.

Clearly, we can construct I; s; h, and DG in polynomial time in the size of G

and k.

Example 2.3 Consider the graph G = (V;E) in Figure 2.2. The constructed

transactions in DV are illustrated in Figure 2.3, and the transactions in DC are

in Figure 2.4 (DA and DI shown in Figure 2.4 will be de�ned later). 2

To prove Property 1, we provide the following lemma.

Lemma 2.2 For a consistent itemset X, let A = fi j ai 2 Xg and �
A = fi j �ai 2

Xg. Then, supDV (X) = jAj if and only if

(i) for every i 2 A, Vi supports X, and

(ii) there is no j 2 �
A such that Vj supports X.

Proof: The if part is obvious. We prove the only if part. Assume that

supDV (X) = jAj. Let j 2 �
A. Since �aj is in X but not in Vj, Vj does not

support X. Thus (ii) holds. Since supDV (X) = jAj = jV j � j �Aj, the fact (ii)

implies that for every i 2 A, Vi supports X. That is, (i) holds. 2

Now, we show Property 1 by the following lemma.

Lemma 2.3 G has a k-clique if and only if there exists a consistent itemset X

such that supDV (X) � k.
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v1

v2

v4

v3

Figure 2.2. A graph G.

a1 a2 a3 a4 �a1 �a2 �a3 �a4

V1 � � � � � � � �

V2 � � � � � � � �

V3 � � � � � � � �

V4 � � � � � � � �0
@ � : the transaction contains the item

� : the transaction does not contain the item

1
A

Figure 2.3. Transactions in DV .

DA

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

a1 a2 a3 a4 �a1 �a2 �a3 �a4

Va1a2 � � � � � � � �

Va1a3 � � � � � � � �

...

Va4�a3 � � � � � � � �

9>>>>>>>>>=
>>>>>>>>>;
DC

Va1�a1 � � � � � � � �

Va2�a2 � � � � � � � �

...

Va4�a4 � � � � � � � �

9>>>>>>=
>>>>>>;
DI

Figure 2.4. Transactions in DC .
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Proof: (Only if part): Assume that G has a k-clique. Without loss of generality,

let the clique consist of nodes v1; . . . ; vk. Let X = fa1; . . . ; ak; �ak+1; . . . ; �ang. Note

that X is consistent. Since v1; . . . ; vk form a clique in G, it holds that (vi; vj) 2 E

for all distinct i and j such that 1 � i; j � k. Thus it follows from the de�nition

of Vi that fa1; . . . ; akg � Vi for every i (1 � i � k). Furthermore, it also follows

that f�ak+1; . . . ; �ang � Vi for every i (1 � i � k). Therefore, all of V1; . . . ; Vk

support X. On the other hand, none of Vk+1; . . . ; Vn supports X since �ak+i is in

X, but not in Vk+i for i (1 � i � n � k). Thus, supDV (X) = k.

(If part): Assume that there exists a consistent itemset X such that supDV (X) =

u � k. Without loss of generality, we assume that X is supported by V1; . . . ; Vu

but not by Vu+1; . . . ; Vn. From the de�nition of Vi, �ai =2 Vi. Since X is consistent,

X contains exactly one of ai and �ai. From X � Vi (1 � i � u), we have ai 2 X.

Therefore, fa1; . . . ; aug � Vi. From the de�nition of DV , (vi; vj) 2 E for all

distinct i and j such that 1 � i; j � u. Consequently, the nodes v1; . . . ; vu form

a u-clique in G. Since u � k, G has a k-clique. 2

To prove Property 2, we de�ne DA and DI .

DA
�

= fI � f�1; �2g j �1; �2 2 I and �1 6= �2g

DI
�

= fI � fai; �aig j 1 � i � ng

Clearly, DC = DA �DI , and supDC (X) = supDA(X)� supDI(X) for all X.

Lemma 2.4 LetX be an itemset of size n. Then it holds that supDA(X) =

 
n

2

!
.

Proof: Note that DA is the set of all itemsets Y such that Y is obtained by

deleting two distinct items from I. If Y supports X, then the deleted two items

must be in I �X. Since jIj = 2n and jXj = n, it holds that jI �Xj = n. Thus

the number of possible deletions of two items from I � X is exactly

 
n

2

!
, and

hence Lemma 2.4 holds. 2

Next, we show Property 2 by the following lemma.

Lemma 2.5 For an itemset X of size n; supDC (X) =

 
n

2

!
if X is consistent, and

supDC (X) �

 
n

2

!
� 1 otherwise.
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Proof: Since (1) supDC(X) = supDA(X) � supDI (X) and (2) supDA(X) =

 
n

2

!

by Lemma 2.4, it su�ces to show that supDI(X) = 0 if and only if X is consistent.

(If part): Assume that X is consistent. Then X contains exactly one of ai and

�ai for every i (1 � i � n). Thus it follows from the de�nition of DI that no

transaction in DI supports X. That is, supDI (X) = 0.

(Only if part): Assume that X is not consistent. Then, there exists i (1 � i � n)

such that (i) ai; �ai 2 X or (ii) ai; �ai 62 X. Since jXj = n, if ai; �ai 2 X hold

for some i, then aj ; �aj 62 X hold for some j such that i 6= j. Thus, without

loss of generality, we assume that aj; �aj 62 X for some j. Then, the transaction

I � faj; �ajg in DI supports X. Therefore supDI(X) � 1. 2

Lemma 2.6 G has a k-clique if and only if there exists a large itemset of size n

in DG.

Proof: (Only if part): Assume that G has a k-clique. By Lemma 2.3, there

exists a consistent itemset X such that supDV (X) � k. Since X is consistent,

supDC (X) =

 
n

2

!
by Lemma 2.5. Since DG = DV ~[DC ~[DC ~[ � � � ~[DC| {z }

n+1

, it holds

that supDG(X) = supDV (X) + (n+1)supDC (X) � k+ (n+1)

 
n

2

!
= s. Thus, X

is large in DG.

(If part): Let X be a large itemset of size n in DG. Assume that X is

not consistent. Then, since (1) supDV (X) � jDV j = n from the de�nition,

and (2) supDC (X) �

 
n

2

!
� 1 by Lemma 2.5, it follows that supDG(X) =

supDV (X) + (n + 1)supDC (X) � n + (n + 1)(

 
n

2

!
� 1) = (n + 1)

 
n

2

!
� 1 < s.

This, however, contradicts that X is large in DG. Thus X must be consis-

tent. Hence supDC (X) =

 
n

2

!
by Lemma 2.5. Furthermore, since X is large

in DG, it holds that supDG(X) � s. From these two facts, supDV (X) =

supDG(X) � (n + 1)supDC (X) � s � (n + 1)

 
n

2

!
= k. By Lemma 2.3, G has

a k-clique. 2

NOTE: The proof of NP-completeness of the large itemset problem can be easily

shown by a reduction from the k-balanced complete bipartite subgraph (k-bcbs)
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problem [8]. However, the k-bcbs problem is not a well-known problem. More-

over, Reference [8] says that the NP-completeness of the k-bcbs problem can be

proved by a reduction from the k-clique problem, but the proof has not been pub-

lished. This is why we proved the NP-completeness of the large itemset problem

by the reduction from the k-clique problem.

Note that the number of transactions in DG is jDV j + (n + 1)jDC j = n +

(n+ 1)(

 
2n

2

!
� n) = 2n3

� n = O(n3). From the above discussions, we have the

following theorem.

Theorem 2.2 The large itemset problem is NP-complete even if the number of

transactions in a given MBD is O(jIj3).

NOTE: In the proof of Lemma 2.6, the minimum support rate of the constructed

instance (DG; s; h) is
s

jDGj
� 1

=4. However, this rate is not essential. When

we consider I as a transaction, I supports any itemset. Similarly, ; supports

no itemset. For a given minimum support rate r (0 < r < 1) and an instance

(D; s; h), by adding the adequate numbers of I and ; to D as transactions, we can

reconstruct an instance (D0
; r; h) preserving the reduction. For example, suppose

that r is a rational number b=a, where a and b are positive integers such that

a > b. Let x � 0 be the number of I added to D, and y � 0 be the number of ;

added to D. By solving the following equation:

s+ x

jDj+ x+ y

= r =
b

a

=
bjDj

ajDj
;

we have x = bjDj � s and y = (a � b� 1)jDj + s. Both x and y are polynomial

in jDj, s, a, and b.

From Theorem 2.2, we cannot compute the maximum number of the elements

of large itemsets in feasible time (i.e., polynomial time). Accordingly in Sec-

tion 2.3, we propose subclasses of databases of which the maximum number of

the elements of large itemsets can be computed e�ciently.

As a related problem to the large itemset problem, we will consider the fol-

lowing problem.
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De�nition 2.2 (large intersection problem): Given a �nite family S of �nite

sets, a positive integer l called minimum selection number, and a positive in-

teger c called minimum intersection size, are there l distinct sets s1; . . . ; sl in S

such that s1 \ � � � \ sl contains at least c elements? 2

Corollary 2.1 The large intersection problem is NP-complete.

Proof: It is easy to see that the problem is in NP. In order to prove NP-hardness

of the large intersection problem, we show a reduction from the large itemset

problem to the large intersection problem. Let (D; s; h) be an instance of the

large itemset problem. Let D = ft1; . . . ; tmg. First, we introduce new distinct m

items c1; . . . ; cm. For each transaction ti (1 � i � m) in D, let t0i = ti [ fcig. Let

us construct an instance (S; l; c) of the large intersection problem, as follows:

(1) Let S = ft
0
i j 1 � i � mg. Note that S is not a multiset but a set of itemsets

because of the unique item ci (1 � i � m).

(2) Let l = s.

(3) Let c = h.

Obviously (S; l; c) can be constructed in polynomial time in the size of (D; s; h).

The correctness of the reduction can be easily shown from the fact that for all

distinct i1; . . . ; ij such that 1 � i1; . . . ; ij � m, ti1 \ � � � \ tij = t
0
i1
\ � � � \ t

0
ij
. 2

2.3 Subclass of Databases for which All the

Large Itemsets can be Computed E�-

ciently

In this section, we introduce the notion of (k; c)-sparsity, where k is a positive

integer and c is a positive real number. Intuitively, (k; c)-sparsity of a database

means that the supports of itemsets of size k or more are considerably low in

the database. The value of c represents a degree of sparsity. Then, using (k; c)-

sparsity, we propose a subclass (k; c;M)-� of MBDs, where M is a positive
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real number. For a database in (k; c;M)-�, we can e�ciently �nd all the large

itemsets.

First, we de�ne the notion of (k; c)-sparsity as follows.

De�nition 2.3 ((k; c)-sparsity): A database D is called (k; c)-sparse if for any

itemset X such that jXj > k, there is some x 2 X which satis�es the following

inequality:

suprD(X) � c � suprD(X � fxg) � suprD(fxg):

2

Note that the in�nite union of (k; c)-sparse MBDs (1 � k < 1, 0 < c < 1)

coincides with the class of all the MBDs.

As an example, consider an MBD of a hot dog stand. In general, the number

of items which one customer purchases in a visit to a hot dog stand tends to be

smaller than that of items to a supermarket, a grocery shop and so on. Thus,

in an MBD of a hot dog stand, for a positive integer k, the support rates of

itemsets of size k or more may be considerably low. Such databases are probably

(k; c)-sparse.

Example 2.4 First, consider an MBD D3 shown in Figure 2.5. Let k = 2 and

c = 1. The only itemset of size 4 in D3 is X = fhot dog; popcorn; cola; beerg,

and

suprD3
(X) =

1

12
� suprD3

(X � fbeerg) � suprD3
(fbeerg) =

1

6
�
1

2
:

Therefore, X and x = beer satisfy the inequality in De�nition 2.3. It is easy

to see that the inequality in De�nition 2.3 holds for all the itemsets of size 3.

Therefore, D3 is (2; 1)-sparse.

Next, consider an MBD D2 shown in Figure 1.2. Let X
0 =

fbacon; eggs; milkg. Then, the inequality is not satis�ed for any x 2 X
0. That

is, X 0 does not satisfy De�nition 2.3. Hence, D2 is not (2; 1)-sparse. 2

Class (k; c;M)-� consists of all the (k; c)-sparse databases with the following

condition.
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t1 fhot dog; colag

t2 fbeerg

t3 fhot dog; popcorn; colag

t4 fpopcorn; beerg

t5 fpopcorn; colag

t6 fhot dogg

t7 fhot dog; beerg

t8 fhot dog; popcorn; cola; beerg

t9 fpopcorn; beerg

t10 fcolag

t11 fpopcorn; colag

t12 fhot dog; beerg

Figure 2.5. A market basket database D3.

Condition 2.1 For each item x 2 I,

suprD(fxg) �M:

2

When there is no such item that most of customers purchase in a visit, there

exists a small M such that for each item x, the support rate of fxg is at most

M . In such a case, we can assume Condition 2.1 with M .

In addition, we consider the following condition on the minimum support rate.

Condition 2.2 There exists some rm (0 < rm < 1) such that the given minimum

support rate r is at least rm. 2

Consider the case that a store manager has a policy that he never sells the items

whose support rates are less than r so far. As a result, the store only sells items

whose support rates are at least r. Then, in an MBD of the store, the support

rate of each item may be relatively large. In such a case, to obtain large itemsets,

we need the minimum support rate r which is large to some extent, where we can

assume Condition 2.2.
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When cM < 1, the size of any large itemset in a database in (k; c;M)-� is

bounded by a constant, which is determined by k, c, M , and rm.

Lemma 2.7 Suppose that a database D is in (k; c;M)-� with cM < 1 and

Condition 2.2 is satis�ed. Let X be a large itemset in D. Then, the following

inequality holds:

jXj � k +

$
log rm

log(cM)

%
:

Proof: Let D be a database in (k; c;M )-� and X be a large itemset in D. Let

X = fx1; . . . ; xtg where t > k. Then, since D is (k; c)-sparse, there is some x 2 X

such that

suprD(X) � c � suprD(X � fxg) � suprD(fxg):

Without loss of generality, let xt be such x. That is,

suprD(X) = suprD(fx1; . . . ; xtg)

� c � suprD(fx1; . . . ; xt�1g) � suprD(fxtg):

By repeating the same argument, we can obtain

suprD(X) � c
t�k

� suprD(fx1; . . . ; xkg) �
tY

i=k+1

suprD(fxig)

� c
t�k

�

tY
i=k+1

suprD(fxig)

� c
t�k

�M
t�k

:

From Condition 2.2, rm � r � suprD(X). Thus,

rm � c
t�k

�M
t�k

log rm � (t� k) log(cM)

t � k +

$
log rm

log(cM )

%

jXj � k +

$
log rm

log(cM )

%
:

2
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Theorem 2.3 Suppose that a database D is in (k; c;M )-� with cM < 1 and

Condition 2.2 is satis�ed. Then, all the large itemsets in D can be computed in

polynomial time in jjDjj.

Proof: From Lemma 2.7, it is su�cient to consider only itemsets of size at most

k +
j

log rm
log(cM)

k
. Let l = k +

j
log rm
log(cM)

k
. There are at most jIjl itemsets of size less

than or equal to l. It can be checked in O(jjDjj) time whether a given itemset

X is large in D. Therefore, all the large itemsets in D can be computed in

O(jjDjj � jIjl) time. Since l is a constant, all the large itemsets in D can be

computed in polynomial time in jjDjj. 2

Theorem 2.4 Suppose that a database D is in (k; c;M )-� with cM < 1 and

Condition 2.2 is satis�ed. Then, for a given minimum support rate r, a given

minimum con�dence f , and a minimum rhs size w, all the meaningful association

rules X ) Y can be computed in polynomial time in jjDjj.

Proof: From Theorem 2.1, all the meaningful association rules can be computed

by Procedure Find-Mar shown in Figure 2.1. From Theorem 2.3, for a database

D in (k; c;M)-� with cM < 1, step 1 can be executed in O(jjDjj � jIjl) time,

where l = k +
j

log rm
log(cM)

k
. The for loop in step 3 is iterated at most jIjl times, and

the for loop in step 4 is iterated at most 2l� 1 times. Since l is a constant, 2l� 1

is also a constant. Thus, step 3 through step 7 can be executed in O(jIjl) time.

Since the for loop in step 8 is iterated at most jIjl times, step 8 through step 10

can be executed in O(jIjl) time. Thus, this algorithm runs in polynomial time in

jjDjj. 2

2.4 Summary of This Chapter

As one way to �nd meaningful association rules, a method using large itemsets has

been considered. A number of algorithms for computing all the large itemsets

have been proposed. However, the large itemset problem is shown to be NP-

complete in Section 2.2. In fact, to compute all the large itemsets, these proposed

algorithms need exponential time in the size of a given database.

Section 2.3 introduced the notion of (k; c)-sparsity of databases and proposed

a subclass of MBDs, called (k; c;M )-�, which is de�ned using (k; c)-sparsity. For
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a database D in (k; c;M)-�, we can �nd all the meaningful association rules in

D in O(jjDjj � jIjl) time where l is a constant.

Whether a database satis�es Conditions 2.1 and 2.2 considered in Section 2.3

can be tested in O(jjDjj) time. A polynomial-time algorithm which determines

whether a database is (k; c)-sparse for a given positive integer k and a given

positive real number c is the future work.

22



Chapter 3

Computational Complexity of

Finding All the Highly

Co-occurrent Itemsets

3.1 Highly Co-occurrent Itemsets

Several disadvantages of the support have been pointed out in References [5, 6, 16].

For example, the support of an itemset tends to be high if the itemset contains

items with high supports (see Example 1.2). This chapter de�nes alternative

measures to the support, which are de�ned by the combinations of the aspects

such as

� the ratio of the actual value of the support of a given itemset to the expected

value of the support of the itemset, based on the assumption of statistical

independence,

� the fraction of transactions which do not contain any item in a given itemset,

and so on. By ocD(X), we mean a degree of the correlation among the items in

X in D. An itemset X is called highly co-occurrent in D if ocD(X) exceeds a

given user-de�ned threshold, called minimum co-occurrence.

In the next section, we provide several formal de�nitions of ocD(X). Before

proceeding, we introduce the notion of SDI division, which is used throughout

this chapter.
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 X 

 t 

DS(X)

 t  X 

DD(X)

 t  X 

D I (X)

Figure 3.1. SDI division of D with X.

Given an MBD D and an itemset X, the SDI division of D with X is to divide

D into the three disjoint subsets DS(X), DD(X), and DI(X) which are de�ned

below (see also Figure 3.1):

DS(X)
�

= ft j t 2 D and X � tg;

DD(X)
�

= ft j t 2 D and X \ t = ;g;

DI(X)
�

= D � (DS(X) [DD(X)):

Furthermore, we de�ne VSD(X), VDD(X), and VID(X) as follows:

VSD(X)
�

=
jDS(X)j

jDj
;

VDD(X)
�

=
jDD(X)j

jDj
;

VID(X)
�

=
jDI(X)j

jDj
:

Note that for any itemset X, VSD(X) = suprD(X).

In SDI division, transactions in DS(X) or DD(X) are considered to establish

high correlation among the items in X, while transactions in DI(X) are not.

Let X be an itemset. For a given transaction, the probability that the itemset

X occurs in the transaction under the assumption that each item occurs in D

independently is
Q
x2X VSD(fxg). The probability that none of the items in X

occurs in the transaction is
Q
x2X VDD(fxg). Thus the expected fraction of trans-

actions in which at least one of the items in X occurs in the transactions and
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at least one does not is given by 1 �
Q
x2X VSD(fxg) �

Q
x2X VDD(fxg). In what

follows, we use the following notations:

ESD(X)
�

=
Y
x2X

VSD(fxg);

EDD(X)
�

=
Y
x2X

VDD(fxg);

EID(X)
�

= 1�
Y
x2X

VSD(fxg)�
Y
x2X

VDD(fxg):

We omit a database name D in VD(X) and ED(X) if it is clear from the context.

For example, we write VS(X) shortly instead of VSD(X).

Example 3.1 Consider D2 shown in Figure 1.2. Let X = fcornakes; milkg.

The SDI division with X divides D2 into DS(X) = ft2; t4; t5g, DD(X) = ft3; t6g,

and DI(X) = ft1g. Thus, VS(X) = 1
=2, VD(X) = 1

=3, and VI(X) = 1
=6. Also,

ES(X) = 3
=6�4

=6 = 1
=3, ED(X) = 3

=6�2
=6 = 1

=6, and EI(X) = 1� 1
=3�1

=6 = 1
=2. 2

3.2 De�nitions of Co-occurrence

3.2.1 Type I

There may be a case that we want to measure the correlation among the items in

a given itemset by comparing the actual value to the expected value. Type I has

the simplest form of the rest of all the de�nitions which consider the expected

value.

De�nition 3.1 (type I):

ocD(X)
�

=
VS(X)

ES(X)
:

2

The denominator of this formula is the expected value of the support rate of X

under the assumption that each item in X occurs in D independently. When

there is no correlation among the items in X, the value of ocD(X) is equal to 1.
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t1 fbread; ham; milkg

t2 fbread; lettuce; tomato; co�eeg

t3 feggs; lettuce; milkg

t4 fcornakes; milkg

t5 fbread; lettuce; co�eeg

t6 fbread; eggsg

Figure 3.2. A market basket database D4.

Example 3.2 Consider D2 shown in Figure 1.2. Suppose that the minimum

co-occurrence c is 1.5. Let X = fcornakes; milkg and Z = fco�ee; eggsg. Since

VS(X) = 1
=2 and ES(X) = 3

=6�4
=6 = 1

=3,

ocD2
(X) =

1
=2

1
=3

= 1:5 � c:

Therefore, X is highly co-occurrent in D2. On the other hand, since VS(Z) = 1
=2

and ES(Z) = 5
=6� 4

=6 = 5
=9,

ocD2
(Z) =

1
=2

5
=9

= 0:9 < c:

Therefore, Z is not highly co-occurrent in D2. 2

Note that Z is large when the minimum support rate is 0.3 as seen in Example 1.2.

In this de�nition, Z is not considered to have high correlation because its actual

support rate is not su�ciently high compared to the expected value.

3.2.2 Type II

Consider an itemset X = fcornakes; milkg. Then a transaction which contains

neither cornakes nor milk can be considered to establish the correlation among

cornakes and milk. We incorporate the fraction of such transactions, that is,

VD(X) into the de�nition of ocD(X).

De�nition 3.2 (type II):

ocD(X)
�

= VS(X) + VD(X):
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2

Example 3.3 Consider D4 shown in Figure 3.2. Suppose that the minimum

co-occurrence c is 0.3. Let X = fcornakes; milkg and Y = fbread; milkg. The

SDI division with X divides D4 into DS(X) = ft4g, DD(X) = ft2; t5; t6g, and

DI(X) = ft1; t3g. Since VS(X) = 1
=6 and VD(X) = 1

=2,

ocD4
(X) =

1

6
+
1

2
� 0:67 � c:

Therefore, X is highly co-occurrent in D4. On the other hand, the SDI division

with Y divides D4 into DS(Y ) = ft1g, DD(Y ) = ;, and DI(Y ) = ft2; t3; t4; t5; t6g.

Since VS(Y ) = 1
=6 and VD(Y ) = 0,

ocD4
(Y ) =

1

6
� 0:17 < c:

Therefore, Y is not highly co-occurrent in D4. 2

In Example 3.3, let us consider the case that the minimum support rate is 0.3.

Then, X is not large because its support rate is less than the minimum support

rate, while X is highly co-occurrent in this de�nition. For database users who

want to obtain itemsets like X, this type of de�nition may be acceptable.

3.2.3 Type III

Type III is de�ned by the combination of type I and type II.

De�nition 3.3 (type III):

ocD(X)
�

=
VS(X) + VD(X)

ES(X) + ED(X)
:

2

Example 3.4 Consider D2 shown in Figure 1.2. Suppose that the minimum co-

occurrence c is 1.5. Let X = fcornakes; milkg and W = fcereal; teag. Then,

using values calculated in Example 3.1,

ocD2
(X) =

1
=2 + 1

=3

1
=3 + 1

=6

� 1:67 > c:
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Therefore, X is highly co-occurrent in D2. On the other hand, the SDI division

with W divides D2 into DS(W ) = ft1g and DD(W ) = ft2; t3; t4; t5; t6g. Since

VS(W ) = 1
=6, VD(W ) = 5

=6, and ES(W ) = 1
=6� 1

=6 = 1
=36, ED(W ) = 5

=6� 5
=6 = 25

=36,

ocD2
(W ) =

1
=6 + 5

=6

1
=36+ 25

=36

� 1:46 < c:

Therefore, W is not highly co-occurrent in D2. 2

3.2.4 Type IV

Type IV is also de�ned by the combination of type I and type II, but has the

slightly di�erent form from type III.

De�nition 3.4 (type IV):

ocD(X)
�

=
VS(X)

ES(X)
�

VD(X)

ED(X)
:

2

The reason why we consider type IV is that in the de�nition of type III, when

ED(X) is much larger than ES(X), VS(X)

ES(X)
may not be well reected in the result

value of ocD(X) even if it has very large value. For example, consider the case that

VS(fxg) = VS(fyg) = 10
=100, VS(fx; yg) = 10

=100, and VD(fx; yg) = 81
=100. Then,

ocD(fx; yg) = 10 in type IV, while ocD(fx; yg) � 1:11 in type III. Although type

I may also work in this example, type IV considers VD(X) while type I does not.

On the other hand, this de�nition does not work well for an itemset X such that

DD(X) = ; because in that case, ocD(X) is equal to 0 even if
VS(X)

ES(X)
is large.

Example 3.5 Consider D2 shown in Figure 1.2. Suppose that the minimum co-

occurrence c is 1.5. Let X = fcornakes; milkg. Then, using values calculated in

Example 3.1,

ocD2
(X) =

1
=2

1
=3

�
1
=3

1
=6

= 3 � c:

Therefore, X is highly co-occurrent in D2. Next, consider W = fcereal; teag,

which is not highly co-occurrent in D2 in type III. Then

ocD2
(W ) =

1
=6

1
=36

�
5
=6

25
=36

= 7:2 � c;

and hence, W is highly co-occurrent in D2 in this de�nition. 2
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3.2.5 Type V

This is an extension of type III. Type V is the same as collective strength [5],

which has been proposed as an alternative to the support. This can be expressed

in our notation as follows.

De�nition 3.5 (type V):

ocD(X)
�

=
VS(X) + VD(X)

ES(X) + ED(X)
�
EI(X)

VI(X)
:

2

Since transactions in DI(X) can be considered to be counterexamples of high

correlation among the items in X, the ratio of VI(X) to EI(X) is incorporated

inversely into the de�nition of ocD(X). More details of this formula is described

in Reference [5].

Example 3.6 Consider D2 shown in Figure 1.2. Suppose that the minimum co-

occurrence c is 1.5. Let X = fcornakes; milkg and Z = fco�ee; eggsg. Then,

using values calculated in Example 3.1,

ocD2
(X) =

1
=2 + 1

=3

1
=3 + 1

=6

�
1
=2

1
=6

= 5 � c:

Therefore, X is highly co-occurrent in D2. On the other hand, the SDI division

with Z divides D2 into DS(Z) = ft2; t3; t6g, DD(Z) = ;, and DI(Z) = ft1; t4; t5g.

Since VS(Z) = 1
=2, VD(Z) = 0, VI(Z) = 1

=2, and ES(X) = 5
=6� 4

=6 = 5
=9, ED(X) =

1
=6� 2

=6 = 1
=18, EI(X) = 1� 5

=9� 1
=18 = 7

=18,

ocD2
(Z) =

1
=2+ 0

5
=9+ 1

=18

�
7
=18

1
=2

� 0:63 < c:

Therefore, Z is not highly co-occurrent in D2. 2

3.2.6 Type VI

This is an extension of type IV. Like type V, the ratio of VI(X) to EI(X) is

multiplied inversely.
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De�nition 3.6 (type VI):

ocD(X)
�

=
VS(X)

ES(X)
�

VD(X)

ED(X)
�
EI(X)

VI(X)
:

2

Also, this does not work well for an itemsetX such thatDD(X) = ; orDI(X) = ;.

Example 3.7 Consider D2 shown in Figure 1.2. Suppose that the minimum co-

occurrence c is 1.5. Let X = fcornakes; milkg. Then, using values calculated in

Example 3.1,

ocD2
(X) =

1
=2

1
=3

�
1
=3

1
=6

�
1
=2

1
=6

= 9 � c:

Therefore, X is highly co-occurrent in D2. 2

3.3 NP-Completeness of the Highly Co-

occurrent Itemset Problem

This section shows that �nding all the highly co-occurrent itemsets is NP-hard

under whichever measure we de�ne.

Although there are several de�nitions of ocD(X), we de�ne the highly co-

occurrent itemset problem uniformly as follows.

De�nition 3.7 (highly co-occurrent itemset problem): Given an MBD D, a

minimum co-occurrence c in fractional representation in binary, and a positive

integer l in unary, is there a highly co-occurrent itemset in D of size l? 2

It is clear that the highly co-occurrent itemset problem is in NP under

whichever measure. Guess an itemset of size l, and then check whether the item-

set is highly co-occurrent in D. So, in the rest of this chapter, we concentrate on

proving the NP-hardness of the co-occurrent itemset problem.

By \the problem X", we mean the highly co-occurrent itemset problem which

adopts type X as the de�nition of ocD(X).
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3.3.1 Type I

We show the NP-hardness of the problem I by reducing the large itemset problem

to the problem I. To make the reduction simple, we suppose that a minimum

support number s is given in the large itemset problem. We construct an instance

(D0
; c; l) of the problem I from an instance (D; s; h) of the large itemset problem.

Here, we can assume h � 2 because the large itemset problem is NP-complete

even if h � 2. Let ~[ be the union operator on multisets (i.e., the union operator

which counts multiple occurrences of elements).

Construction method 1

� Let I be the set of all the items in D. Let Tx = ffxg; . . . ; fxg| {z }
jDj�jDS(fxg)j

g for each

x 2 I. Let DA =~[x2I Tx. Then, we de�ne D
0 as follows:

D
0 �

= D ~[ DA:

Note that jD0j is at most jIj � jDj = jjDjj.

� Let c =
s � jD0jh�1

jDjh
.

� Let l = h.

2

Since D0 can be constructed in O(jjDjj) time and c has at most h log jDj+log s+

(h� 1) log jjDjj digits, the above construction can be done in polynomial time in

jjDjj + s + h, which is the description size of the instance (D; s; h) of the large

itemset problem.

Lemma 3.1 Consider a database D given as an instance of the large itemset

problem and a database D0 constructed from D. Then, for any item x 2 I,

VSD0(fxg) =
jDj

jD0j
:
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Proof: Let x be an item in I. Then,

jD
0

S
(fxg)j = jDS(fxg)j+ jTxj

= jDS(fxg)j+ jDj � jDS(fxg)j

= jDj:

Thus,

VSD0(fxg) =
jD0

S
(fxg)j

jD0j
=
jDj

jD0j
:

2

Lemma 3.2 Suppose that (D; s; h) (h � 2) is given as an instance of the large

itemset problem. Let (D0
; c; l) be an instance of the problem I constructed from

(D; s; h). Then, the following 1 and 2 are equivalent.

1. There is an itemset X in D such that supD(X) � s and jXj � h.

2. There is an itemset X 0 in D
0 such that ocD0(X 0) � c and jX 0j = l.

Proof: From Lemma 3.1, for any itemset X 0,

ESD0(X 0) =
Y
x2X0

VSD0(fxg) =

 
jDj

jD0j

!jX 0j

:

(1 ! 2): Assume that there is an itemset X in D such that supD(X) � s

and jXj � h. If an itemset X is large, then all the subsets of X are also large.

Therefore, we can assume that there is an itemset X 0 such that supD(X
0) � s

and jX 0j = h. Since jX 0j � 2 and every transaction in DA consists of just one

item, no transaction in DA supports X 0. Thus,

jD
0

S
(X 0)j = jDS(X

0)j � s:

By dividing both sides of the above inequality by jD0jESD0(X),

ocD0(X 0) =
VSD0(X 0)

ESD0(X 0)
=

jD
0
S
(X 0)j

jD0jESD0(X 0)

�
s

jD0jESD0(X 0)

=
s

jD0j �

�
jDj

jD0j

�h
=

s � jD0
j
h�1

jDjh

= c:
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(2 ! 1): Assume that there is an itemset X 0 in D
0 such that ocD0(X 0) � c

and jX 0
j = l (= h). Then,

ocD0(X 0) =
VSD0(X 0)

ESD0(X 0)
� c

VSD0(X 0)�
jDj

jD0j

�h �
s

jD0j �

�
jDj

jD0j

�h
jD

0
S
(X 0)j

jD0j
�

s

jD0j

jD
0

S
(X 0)j � s

Since jX 0j � 2 and every transaction in DA consists of just one item, no transac-

tion in DA supports X 0. Thus,

jD
0

S
(X 0)j = jDS(X

0)j = supD(X
0) � s:

2

3.3.2 Type II

We show the NP-hardness of the problem II by reducing the large itemset prob-

lem, which is de�ned in De�nition 2.1, to the problem II. We construct an in-

stance (D0
;m; u) of the problem II from an instance (D; r;h) of the large itemset

problem, as follows.

Construction method 2

� Assume that D = ft1; . . . ; tng. Let I = fi1; . . . ; ikg be the set of all the

items in D. Let I� = fik+1; . . . ; i2kg be a set of new items, where I\I� = ;.

Let t0j = tj [ I
� be a transaction for each j (1 � j � n). Then, we de�ne

D
0 as follows:

D
0 �

= ft
0

1; . . . ; t
0

ng:

� Let m = r.

� Let u = h+ k.

2
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Figure 3.3. Construction method 1 of D0.
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The above construction can be done in polynomial time in jjDjj+ r+ h, which is

the description size of the instance (D; r;h) of the large itemset problem.

Lemma 3.3 Suppose that (D; r;h) is given as an instance of the large item-

set problem. Let (D0
;m; u) be an instance of the problem II constructed from

(D; r;h). Then, the following 1 and 2 are equivalent.

1. There is an itemset X in D such that suprD(X) � r and jXj � h.

2. There is an itemset X 0 in D
0 such that ocD0(X 0) � m and jX 0j = u.

Proof: (1 ! 2): Assume that there is an itemset X � I in D such that

suprD(X) � r and jXj � h. If an itemset X is large, then all the subsets of

X are also large. Therefore, we can assume that there is an itemset Xh such that

suprD(Xh) � r and jXhj = h. Let X 0 = Xh [ I
�. Then,

jX
0
j = jXh [ I

�
j = jXhj+ jI

�
j = h+ k = u:

From the construction method of D0, it is clear that

� if a transaction ti supports Xh in D, then the transaction t0i supports X
0 in

D
0. That is, t0i 2 D

0
S
(X 0); and

� otherwise, I� is contained in both of t0i and X
0, and there is at least one

item in X 0 which t0i does not contain. That is, t
0
i 2 D

0
I
(X 0) (see Figure 3.3).

Therefore,Xh � ti if and only ifX
0
� t

0
i for any i, and hence jDS(Xh)j = jD

0
S
(X 0)j.

Since any transaction t0i 2 D
0 andX 0 contain I�, t0i\X

0 6= ;. That is, D0
D
(X 0) = ;.

Thus,

ocD0(X 0) = VSD0(X 0) + VDD0(X 0)

=
jD0

S
(X 0)j

jD0j
+
jD

0
D
(X 0)j

jD0j

=
jD0

S
(X 0)j

jD0j
=
jDS(Xh)j

jDj

= suprD(Xh)

� r = m:
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(2 ! 1): Assume that there is an itemset X
0 � I [ I

� in D
0 such that

ocD0(X 0) � m and jX 0
j = u. Let X = X

0
\ I. Then,

jXj � jX
0
j � jI

�
j = u� k = h:

From t
0
i = ti [ I

�, X 0 � t
0
i if and only if X � ti for any i, and hence jD0

S
(X 0)j =

jDS(X)j. Furthermore, since

jX
0
j = u = h+ k > k = jIj;

X
0 contains at least one item in I

�.

Since any transaction t
0
i 2 D

0 contains all the items in I
�, t0i and X

0 contain

at least one common item. That is, D0
D
(X 0) = ;. Thus,

suprD(X) =
jDS(X)j

jDj
=
jD0

S
(X 0)j

jD0j
=

jD0
S
(X 0)j

jD0j
+
jD0

D
(X 0)j

jD0j

= ocD0(X 0)

� m = r:

2

3.3.3 Type III

We show the NP-hardness of the problem III by reducing the problem II to

the problem III. We construct an instance (D0
; c; l) of the problem III from an

instance (D;m; u) of the problem II, as follows.

Construction method 3

� Assume that D = ft1; . . . ; tng. Let I be the set of all the items in D. Let

t
0
i = I � ti for each i (1 � i � n). Let �

D = ft01; . . . ; t
0
ng. Then, we de�ne D

0

as follows:

D
0 �

= D ~[ �
D:

� Let c = m2u�1.

� Let l = u.

2
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Since D0 can be constructed in O(jjDjj) time and c has at most (u� 1) + logm

digits, the above construction can be done in polynomial time in jjDjj+logm+u,

which is the description size of the instance (D;m; u) of the problem II.

Lemma 3.4 Consider a database D given as an instance of the problem II and

a database D0 constructed from D. Then, for any item x 2 I,

VSD0(fxg) = VDD0(fxg) =
1

2
:

Proof: For any item x 2 I,

VSD0(fxg) =
jDS(fxg)j+ j �DS(fxg)j

jD0j

=
jDS(fxg)j+ jDj � jDS(fxg)j

jD0j

=
jDj

jD0j
=

1

2
:

The proof for VDD0(fxg) = 1
=2 is similar. 2

Lemma 3.5 Consider a database D given as an instance of the problem II and

a database D0 constructed from D. Then, for any itemset X, the following two

equations hold.

VSD(X) + VDD(X) = VSD0(X) + VDD0(X)

VID(X) = VID0(X)

Proof: From the construction method of �
D, it is clear that

� if a transaction ti supports X in D, then the transaction t
0
i and X are

disjoint in �
D;

� if a transaction ti and X are disjoint in D, then the transaction t0i supports

X in �
D; and

� if a transaction ti contains at least one item (but not all items) in X in D,

then the transaction t0i also contains at least one item (but not all items) in

X in �
D.
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Thus, jDS(X)j = j �DD(X)j, jDD(X)j = j �DS(X)j, and jDI(X)j = j �DI(X)j. There-

fore,

VSD0(X) + VDD0(X) =
jD

0
S
(X)j

jD0j
+
jD

0
D
(X)j

jD0j

=
jDS(X)j+ j �DS(X)j+ jDD(X)j+ j �DD(X)j

2jDj

=
jDS(X)j+ jDD(X)j

jDj

= VSD(X) + VDD(X):

Also,

VID0(X) =
jD0

I
(X)j

jD0j

=
jDI(X)j+ j �DI(X)j

2jDj

=
jDI(X)j

jDj
= VID(X):

2

Lemma 3.6 Suppose that (D;m; u) is given as an instance of the problem II.

Let (D0
; c; l) be an instance of the problem III constructed from (D;m; u). Then,

the following 1 and 2 are equivalent.

1. There is an itemset X in D such that ocD(X) � m and jXj = u.

2. There is an itemset X in D
0 such that ocD0(X) � c and jXj = l.

Proof: From Lemma 3.4, for any itemset X,

ESD0(X) + EDD0(X)

=
Y
x2X

VSD0(fxg) +
Y
x2X

VDD0(fxg) =

�
1

2

�jX j�1

:

Note that the de�nitions of ocD(X) and ocD0(X) are di�erent. ocD(X) has the

de�nition of type II, whereas ocD0(X) has the de�nition of type III.
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(1! 2): Assume that there is an itemset X in D such that ocD(X) � m and

jXj = u. From Lemma 3.5,

VSD0(X) + VDD0(X) � m:

Thus,

ocD0(X) =
VSD0(X) + VDD0(X)

ESD0(X) + EDD0(X)
�

m

(1
2
)jX j�1

= m � 2u�1

= c:

(2! 1): Assume that there is an itemset X in D0 such that ocD0(X) � c and

jXj = l (= u). Then,

VSD0(X) + VDD0(X)

ESD0(X) + EDD0(X)
� c

(VSD0(X) + VDD0(X)) � 2u�1
� m � 2u�1

VSD0(X) + VDD0(X) � m:

Thus, from Lemma 3.5,

VSD(X) + VDD(X) = ocD(X) � m:

2

3.3.4 Type IV

We show the NP-hardness of the problem IV by reducing the problem II to

the problem IV. We construct an instance (D0
; c; l) of the problem IV from an

instance (D;m; u) of the problem II, as follows.

Construction method 4

� Assume that D = ft1; . . . ; tng. Let I be the set of all the items in D. Let

t
0
i = I � ti for each i (1 � i � n). Let �

D = ft
0
1; . . . ; t

0
ng. Then, we de�ne D

0

as follows:

D
0 �

= D ~[ �
D:
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� Let c = m
2 � 22(u�1).

� Let l = u.

2

Since D0 can be constructed in O(jjDjj) time and c has at most 2 logm+2(u�1)

digits, the above construction can be done in polynomial time in jjDjj+logm+u,

which is the description size of the instance (D;m; u) of the problem II.

Lemma 3.7 Consider a database D given as an instance of the problem II and

a database D0 constructed from D. Then, for any item x 2 I,

VSD0(fxg) = VDD0(fxg) =
1

2
:

Proof: The proof of this lemma is similar to Lemma 3.4. 2

Lemma 3.8 Consider a database D given as an instance of the problem II and a

databaseD0 constructed fromD. Then, for any itemsetX, the following equation

holds.

VSD0(X) = VDD0(X) =
VSD(X) + VDD(X)

2

Proof: The proof of this lemma is similar to Lemma 3.5. 2

Lemma 3.9 Suppose that (D;m; u) is given as an instance of the large item-

set problem. Let (D0
; c; l) be an instance of the problem IV constructed from

(D;m; u). Then, the following 1 and 2 are equivalent.

1. There is an itemset X in D such that ocD(X) � m and jXj = u.

2. There is an itemset X in D
0 such that ocD0(X) � c and jXj = l.

Proof: From Lemma 3.7, for any itemset X,

ESD0(X) =
Y
x2X

VSD0(fxg) = EDD0(X)

=
Y
x2X

VDD0(fxg) =

�
1

2

�jX j

:
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Note that the de�nitions of ocD(X) and ocD0(X) are di�erent. ocD(X) has the

de�nition of type II, whereas ocD0(X) has the de�nition of type IV.

(1! 2): Assume that there is an itemset X in D such that ocD(X) � m and

jXj = u. Then, from Lemma 3.8,

ocD0(X) =
VSD0(X)

ESD0(X)
�
VDD0(X)

EDD0(X)

=

 
VSD0(X)

(1
2
)jX j

!2

=

0
@(VSD(X)+VDD(X)

2
)

(1
2
)jXj

1
A

2

�

 
m

2

(1
2
)u

!2

= m
2
� 22(u�1)

= c:

(2! 1): Assume that there is an itemset X in D0 such that ocD0(X) � c and

jXj = l (= u). Then, from Lemma 3.8,

ocD0(X) =
VSD0(X)

ESD0(X)
�
VDD0(X)

EDD0(X)
� c

 
VSD0(X)

(1
2
)jX j

!2

� c

0
@(VSD(X)+VDD(X)

2
)

(1
2
)jXj

1
A

2

� c

(VSD(X) + VDD(X))2 � 22(u�1)
� m

2
� 22(u�1)

(ocD(X))2 � m
2

(ocD(X) +m)(ocD(X)�m) � 0

ocD(X) � m:

2
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3.3.5 Type V

We show the NP-hardness of the problem V by reducing the problem II to the

problem V. We construct an instance (D0
; c; l) of the problem V from an instance

(D;m; u) of the problem II, as follows.

Construction method 5

� Assume that D = ft1; . . . ; tng. Let I be the set of all the items in D. Let

t
0
i = I � ti for each i (1 � i � n). Let �

D = ft01; . . . ; t
0
ng. Then, we de�ne D

0

as follows:

D
0 �

= D ~[ �
D:

� Let c =
m

1�m

� (2u�1
� 1).

� Let l = u.

2

Since D0 can be constructed in O(jjDjj) time and c has at most log(1 � m) +

logm+ (u� 1) digits, the above construction can be done in polynomial time in

jjDjj + logm + u, which is the description size of the instance (D;m; u) of the

problem II.

Lemma 3.10 Consider a database D given as an instance of the problem II and

a database D0 constructed from D. Then, for any item x 2 I,

VSD0(fxg) = VDD0(fxg) =
1

2
:

Proof: The proof of this lemma is similar to Lemma 3.4. 2

Lemma 3.11 Consider a database D given as an instance of the problem II and

a database D0 constructed from D. Then, for any itemset X, the following two

equations hold.

VSD(X) + VDD(X) = VSD0(X) + VDD0(X)

VID(X) = VID0(X)
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Proof: The proof of this lemma is similar to Lemma 3.5. 2

Lemma 3.12 Suppose that (D;m; u) is given as an instance of the problem II.

Let (D0
; c; l) be an instance of the problem V constructed from (D;m; u). Then,

the following 1 and 2 are equivalent.

1. There is an itemset X in D such that ocD(X) � m and jXj = u.

2. There is an itemset X in D
0 such that ocD0(X) � c and jXj = l.

Proof: From Lemma 3.10, for any itemset X,

ESD0(X) + EDD0(X)

=
Y
x2X

VSD0(fxg) +
Y
x2X

VDD0(fxg)

�
1

2

�jXj�1

:

Note that the de�nitions of ocD(X) and ocD0(X) are di�erent. ocD(X) has the

de�nition of type II, whereas ocD0(X) has the de�nition of type V.

(1! 2): Assume that there is an itemset X in D such that ocD(X) � m and

jXj = u. From Lemma 3.11,

VSD0(X) + VDD0(X) � m:

Then,

ocD0(X) =
VSD0(X) + VDD0(X)

ESD0(X) + EDD0(X)
�
EID0(X)

VID0(X)

=
VSD0(X) + VDD0(X)

VID0(X)
�
(1� (1

2
)jXj�1)

(1
2
)jX j�1

�
m

1� (VSD0(X) + VDD0(X))
� (2u�1

� 1)

�
m

1�m

� (2u�1
� 1)

= c:

(2! 1): Assume that there is an itemset X in D0 such that ocD0(X) � c and

jXj = l (= u). Then,

ocD0(X) =
VSD0(X) + VDD0(X)

ESD0(X) + EDD0(X)
�
EID0(X)

VID0(X)
� c
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VSD0(X) + VDD0(X)

VID0(X)
� (2u�1

� 1) �
m

1�m

� (2u�1
� 1)

VSD0(X) + VDD0(X)

1� (VSD0(X) + VDD0(X))
�

m

1�m

:

Thus, from Lemma 3.11,

VSD(X) + VDD(X)

1� (VSD(X) + VDD(X))
�

m

1�m

ocD(X) � (1�m) � m � (1 � ocD(X))

ocD(X)�m � ocD(X) +m � ocD(X)�m � 0

ocD(X) � m:

2

3.3.6 Type VI

We show the NP-hardness of the problem VI by reducing the problem II to

the problem VI. We construct an instance (D0
; c; l) of the problem VI from an

instance (D;m; u) of the problem II, as follows.

Construction method 6

� Assume that D = ft1; . . . ; tng. Let I be the set of all the items in D. Let

t
0
i = I � ti for each i (1 � i � n). Let �

D = ft
0
1; . . . ; t

0
ng. Then, we de�ne D

0

as follows:

D
0 �

= D ~[ �
D:

� Let c =
m

2

1�m

�

�
2u�2

�
1

2

�
.

� Let l = u.

2

Since D0 can be constructed in O(jjDjj) time and c has at most log(1 � m) +

2 logm + (u � 2) digits, the above construction can be done in polynomial time

in jjDjj+ logm+ u, which is the description size of the instance (D;m; u) of the

problem II.
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Lemma 3.13 Consider a database D given as an instance of the problem II and

a database D0 constructed from D. Then, for any item x 2 I,

VSD0(fxg) = VDD0(fxg) =
1

2
:

Proof: The proof of this lemma is similar to Lemma 3.4. 2

Lemma 3.14 Consider a database D given as an instance of the problem II

and a database D0 constructed from D. Then, for any itemset X, the following

equation holds.

VSD0(X) = VDD0(X) =
VSD(X) + VDD(X)

2

Proof: The proof of this lemma is similar to Lemma 3.5. 2

Lemma 3.15 Suppose that (D;m; u) is given as an instance of the problem II.

Let (D0
; c; l) be an instance of the problem VI constructed from (D;m; u). Then,

the following 1 and 2 are equivalent.

1. There is an itemset X in D such that ocD(X) � m and jXj = u.

2. There is an itemset X in D
0 such that ocD0(X) � c and jXj = l.

Proof: From Lemma 3.13, for any itemset X,

ESD0(X) = EDD0(X) =
Y
x2X

VSD0(fxg) =

�
1

2

�jX j

:

Note that the de�nitions of ocD(X) and ocD0(X) are di�erent. ocD(X) has the

de�nition of type II, whereas ocD0(X) has the de�nition of type VI.

(1! 2): Assume that there is an itemset X in D such that ocD(X) � m and

jXj = u. Then, from Lemma 3.14,

ocD0(X) =
VSD0(X)

ESD0(X)
�
VDD0(X)

EDD0(X)
�
EID0(X)

VID0(X)

=

 
VSD0(X)

(1
2
)jX j

!2

�

 
1� (1

2
)jX j�1

1� 2VSD0(X)

!
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=

0
@(VSD(X)+VDD(X)

2
)

(1
2
)jXj

1
A

2

�

0
@ 1� (1

2
)jXj�1

1� 2(
VSD(X)+VDD(X)

2
)

1
A

�

 
(m
2
)

(1
2
)u

!2

�

 
1� (1

2
)u�1

1� 2(m
2
)

!

=
m

2

1�m

� 2u�2

 
1�

�
1

2

�u�1
!

=
m

2

1�m

� (2u�2
�
1

2
)

= c:

(2! 1): Assume that there is an itemset X in D0 such that ocD0(X) � c and

jXj = l (= u). Then, from Lemma 3.14,

ocD0(X) =
VSD0(X)

ESD0(X)
�
VDD0(X)

EDD0(X)
�
EID0(X)

VID0(X)
� c

 
VSD0(X)

(1
2
)jX j

!2

�
1� (1

2
)jX j�1

1� 2VSD0(X)
� c

(VSD(X) + VDD(X))2

1� 2(VSD(X)+VDD(X)

2
)
� (2u�2

�
1

2
) �

m
2

1�m

� (2u�2
�

1

2
)

(VSD(X) + VDD(X))2

1� (VSD(X) + VDD(X))
�

m
2

1�m

(ocD(X))2 � (1�m) � m
2
� (1� ocD(X))

(1�m)(ocD(X))2 +m
2ocD(X)�m

2
� 0

((1�m)ocD(X) +m)(ocD(X)�m) � 0

ocD(X) � m:

2

3.4 Subclasses of Databases for which All the

Highly Co-occurrent Itemsets can be Com-

puted E�ciently

This section proposes subclasses of databases for which we can e�ciently �nd

all the highly co-occurrent itemsets. In this section, we consider type I, type II,
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and type IV as the de�nitions of ocD(X). Each subclass is de�ned based on the

notion of (k; c)-sparsity, which is de�ned in Chapter 2.

The following condition on the minimum co-occurrence is assumed throughout

this chapter.

Condition 3.1 There exists some bm (0 < bm < 1) such that the given minimum

co-occurrence b is at least bm. 2

3.4.1 Type I: Class (k; c; �)-�

Class (k; c; �)-� consists of all the databases which satisfy all of the following

conditions.

Condition 3.2 ((k; c)-sparsity): For any itemset X such that jXj > k, there is

some x 2 X which satis�es the following inequality:

VS(X) � c � VS(X � fxg) � VS(fxg):

2

Condition 3.3 For each item x,

� � VS(fxg);

where � is a positive real number. 2

When c < 1, the size of any highly co-occurrent itemset in a database in

(k; c; �)-� is bounded by a constant, which is determined by k, c, �, and bm.

Lemma 3.16 Suppose that a database D is in (k; c; �)-� with c < 1 and Con-

dition 3.1 is satis�ed. Let X be a highly co-occurrent itemset in D. Then, the

following inequality holds:

jXj � k +

$
log bm + k log �

log c

%
:
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Proof: Let D be a database in (k; c; �)-� and X be a highly co-occurrent itemset

in D. Let X = fx1; . . . ; xtg. Then,

ocD(X) =
VS(X)

ES(X)
=
VS(fx1; . . . ; xtg)Qt

i=1 VS(fxig)
:

Suppose that t > k. Then, since D satis�es Condition 3.2, there is some x 2 X

such that

VS(X) � c � VS(X � fxg) � VS(fxg):

Without loss of generality, let xt be such x. Thus,

ocD(X) � c �
VS(fx1; . . . ; xt�1g) � VS(fxtg)Qt

i=1 VS(fxig)

= c �
VS(fx1; . . . ; xt�1g)Qt�1

i=1 VS(fxig)
:

By repeating the same argument, we can obtain

ocD(X) � c
t�k

�
VS(fx1; . . . ; xkg)Qk

i=1 VS(fxig)

� c
t�k

� �
�k
� VS(fx1; . . . ; xkg)

� c
t�k

� �
�k
:

From Condition 3.1, bm � b � ocD(X). Thus,

bm � c
t�k

� �
�k

log bm � (t� k) log c� k log �

log bm + k log � � (t� k) log c

t � k +

$
log bm + k log �

log c

%

jXj � k +

$
log bm + k log �

log c

%
:

2

Let l = k +
j
log bm+k log �

log c

k
. For a given itemset, it can be checked whether the

itemset is highly co-occurrent in D in O(jjDjj) time. Since there are at most jIjl

itemsets of size less than or equal to l, all the highly co-occurrent itemsets can

be computed in O(jjDjj � jIjl) time.
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Theorem 3.1 Suppose that a database D is in (k; c; �)-� with c < 1 and Con-

dition 3.1 is satis�ed. Then, all the highly co-occurrent itemsets in D can be

computed in polynomial time in jjDjj. 2

3.4.2 Type II: Class (k; c;M )-�0

Class (k; c;M)-�0 consists of all the databases which satisfy all of the following

conditions.

Condition 3.4 For any itemset X such that jXj > k, there is some x 2 X which

satis�es the following inequality:

VS(X) + VD(X)

� c � (VS(X � fxg) + VD(X � fxg)) � (VS(fxg) + VD(fxg)):

2

Condition 3.5 For each item x 2 I,

VS(fxg) + VD(fxg) �M;

where M is a positive real number. 2

When cM < 1, the size of any highly co-occurrent itemset in a database in

(k; c;M)-�0 is bounded by a constant, which is determined by k, c, M , and bm.

Lemma 3.17 Suppose that a database D is in (k; c;M)-�0 with cM < 1 and

Condition 3.1 is satis�ed. Let X be a highly co-occurrent itemset in D. Then,

the following inequality holds:

jXj � k +

$
log bm

log(cM)

%
:

Proof: Let D be a database in (k; c;M)-�0 and X be a highly co-occurrent item-

set inD. LetX = fx1; . . . ; xtg where t > k. Then, sinceD satis�es Condition 3.4,

there is some x 2 X such that

VS(X) + VD(X) � c � (VS(X � fxg) + VD(X � fxg)) � (VS(fxg) + VD(fxg)):
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Without loss of generality, let xt be such x. That is,

ocD(X) = VS(X) + VD(X)

� c � (VS(X � fxtg) + VD(X � fxtg)) � (VS(fxtg) + VD(fxtg)):

By repeating the same argument, we can obtain

ocD(X)

� c
t�k

� (VS(fx1; . . . ; xkg) + VD(fx1; . . . ; xkg)) �
tY

i=k+1

(VS(fxig) + VD(fxig))

� c
t�k

�

tY
i=k+1

(VS(fxig) + VD(fxig))

� c
t�k

�M
t�k

:

From Condition 3.1, bm � b � ocD(X). Thus,

bm � c
t�k

�M
t�k

log bm � (t� k) log(cM)

t � k +

$
log bm

log(cM)

%

jXj � k +

$
log bm

log(cM)

%
:

2

Let l = k+
j

log bm
log(cM)

k
. For a given itemset, it can be checked whether the itemset is

highly co-occurrent in D in O(jjDjj) time. Since there are at most jIjl itemsets of

size less than or equal to l, all the highly co-occurrent itemsets can be computed

in O(jjDjj � jIjl) time.

Theorem 3.2 Suppose that a database D is in (k; c;M )-�0 with cM < 1 and

Condition 3.1 is satis�ed. Then, all the highly co-occurrent itemsets in D can be

computed in polynomial time in jjDjj. 2

3.4.3 Type IV: Class (k; c; c0; �;M )-�0

Class (k; c; c0; �;M)-�0 consists of all the databases which satisfy all of the follow-

ing conditions.

50



Condition 3.6 ((k; c)-sparsity): For any itemset X such that jXj > k, there is

some x 2 X which satis�es the following inequality:

VS(X) � c � VS(X � fxg) � VS(fxg):

2

Condition 3.7 For any itemset X such that jXj > k, there is some x 2 X which

satis�es the following inequality:

VD(X) � c
0
� VD(X � fxg) � VD(fxg);

where c0 is a positive real number. 2

Condition 3.8 For each item x,

� � VS(fxg) �M;

where � and M are positive real numbers. 2

When cc
0
< 1, the size of any highly co-occurrent itemset in a database in

(k; c; c0; �;M)-�0 is bounded by a constant, which is determined by k, c, c0, �, M ,

and bm.

Lemma 3.18 Suppose that a database D is in (k; c; c0; �;M )-�0 with cc0 < 1 and

Condition 3.1 is satis�ed. Let X be a highly co-occurrent itemset in D. Then,

the following inequality holds:

jXj � k +

$
log bm + k log(�(1�M))

log(cc0)

%
:

Proof: Let D be a database in (k; c; c0; �;M)-�0 and X be a highly co-occurrent

itemset in D. Let X = fx1; . . . ; xtg. Then,

ocD(X) =
VS(X)

ES(X)
�
VD(X)

ED(X)

=
VS(fx1; . . . ; xtg)Qt

i=1 VS(fxig)
�
VD(fx1; . . . ; xtg)Qt

i=1 VD(fxig)
:
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Suppose that t > k. Then, since D satis�es Condition 3.6, we can obtain the

following inequality by the same argument as in Lemma 3.16.

ocD(X) � c
(t�k)

� �
�k
�
VD(fx1; . . . ; xtg)Qt

i=1 VD(fxig)

Also, since D satis�es Condition 3.7, and VD(fxg) = 1 � VS(fxg) � 1 �M , we

can obtain the following inequality from the above.

ocD(X) � c
(t�k)

� �
�k
� c

0(t�k)
� (1�M)�k

= (cc0)(t�k) � (�(1�M))�k

From Condition 3.1, bm � b � ocD(X). Thus,

bm � (cc0)(t�k) � (�(1�M))�k

log bm � (t� k) log(cc0) � k log(�(1�M ))

log bm + k log(�(1�M)) � (t� k) log(cc0)

t � k +

$
log bm + k log(�(1�M))

log(cc0)

%

jXj � k +

$
log bm + k log(�(1�M))

log(cc0)

%
:

2

Let l = k +
j
log bm+k log(�(1�M))

log(cc0)

k
. For a given itemset, it can be checked whether

the itemset is highly co-occurrent in D in O(jjDjj) time. Since there are at most

jIjl itemsets of size less than or equal to l, all the highly co-occurrent itemsets

can be computed in O(jjDjj � jIjl) time.

Theorem 3.3 Suppose that a database D is in (k; c; c0; �;M)-�0 with cc0 < 1 and

Condition 3.1 is satis�ed. Then, all the highly co-occurrent itemsets in D can be

computed in polynomial time in jjDjj. 2

3.5 Summary of This Chapter

In Section 3.2, we have proposed several formal de�nitions of ocD(X). Of course,

no de�nition of ocD(X) achieves the best quality as we have seen in various ex-

amples in Section 3.2. In other words, database users have a chance to determine

which de�nition of ocD(X) they should use, including suprD(X).
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In Section 3.3, we have shown that �nding all the highly co-occurrent itemsets

is NP-hard under whichever measure we have de�ned in Section 3.2. From these

results, it has become clear that �nding all the highly co-occurrent itemsets is

impossible in polynomial time in the size of a database unless P=NP.

In Section 3.4, we have proposed subclasses of databases for which we can

e�ciently �nd all the highly co-occurrent itemsets of type I, II, and IV. These

subclasses are de�ned based on the notion of (k; c)-sparsity introduced in Chap-

ter 2.

As a future work, we intend to propose subclasses of databases for which

all the highly co-occurrent itemsets of type III, V, and VI can be computed

e�ciently.
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Chapter 4

Conclusions

In Chapter 2, we have formally de�ned the large itemset problem based on the

support-con�dence framework and shown the NP-completeness of the problem.

From this result, it has become clear that �nding all the large itemsets (and

therefore, all the meaningful association rules) is impossible in polynomial time

in the size of a database unless P=NP.

Also, we have introduced the notion of (k; c)-sparsity of databases. Intuitively,

(k; c)-sparsity of a database means that the supports of itemsets of size k or more

are considerably low in the database. The value of c represents a degree of

sparsity. Any database is (k; c)-sparse for some su�ciently high k or c. Thus, the

(k; c)-sparsity is a general condition on databases.

Based on the notion of (k; c)-sparsity, we have proposed a subclass of

databases. For a database in that subclass, we can e�ciently �nd all the large

itemsets. Because of the (k; c)-sparsity, the size of a large itemset is bounded

by a constant, and so we need not consider any itemset of size greater than the

constant. In fact, the test data in References [1, 3, 4, 6, 7, 9, 15, 17, 20] are all (k; c)-

sparse for some small k and c unless these algorithms need exponential time in

the size of databases.

In Chapter 3, we have de�ned alternative measures to the support, called

co-occurrence. Some of these measures are similar to the previous works such as

collective strength in Reference [5] and dependence in Reference [16] in that they

all consider the expected value of the support. Of course, no de�nition of the co-

occurrence achieves the best quality. In other words, according to the property
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of the database, database users have a chance to determine which de�nition of

the co-occurrence they should use.

However, we have shown that �nding all the highly co-occurrent itemsets is

NP-hard under whichever measure we have de�ned. From these results, it has

become clear that �nding all the highly co-occurrent itemsets is impossible in

polynomial time in the size of a database unless P=NP. It seems that the lack of

the monotonicity such as \if an itemset has some property, then all the subsets

of the itemset has the same property" makes the problem more di�cult than to

�nd all the large itemsets.

Furthermore, we have proposed subclasses of databases for which we can ef-

�ciently �nd all the highly co-occurrent itemsets. These subclasses are de�ned

based on the notion of (k; c)-sparsity. To propose weaker conditions on databases

is the future work.
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