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Abstract

This dissertation focuses on similarity search for high-dimensional data. Fast

content-based retrieval is necessary to provide excellent human interface for large-

scale multimedia databases. Multimedia database systems are required to sup-

port not only retrieval using attached text description but also content-based

retrieval using feature vectors, which are extracted from multimedia data. For

example, content-based retrieval in image database systems needs selecting one

or more images which have features similar to the feature of a query image. Many

applications with multimedia data retrieval require spatial search techniques in

various dimensions since retrieval processing using feature vectors involves high

cost, especially, for large data set.

In this research, a new indexing scheme, the Subspace Coding Method (SCM),

is presented. The motivation of the SCM is based on the comparison and analysis

of the two best access methods proposed so far: the SR-tree and the VA-File.

Since no result on the comparison between the SR-tree and the VA-File is avail-

able, this dissertation presents experiments comparing these two access methods

�Doctor's Thesis, Department of Information Systems, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DT9661201, September 30, 1999.
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using synthetic and real data. The result shows that the SR-tree o�ers better per-

formance up to 40 dimension. However, as dimensionality increases, large volume

of entries in non-leaf nodes causes fewer fanout, which consequently degrades the

search performance of the SR-tree.

Based on the analysis of the experimental result, the SCM, a new indexing

scheme applicable to any tree indices employing MBR (Minimum Bounding Rect-

angle) and/or MBS (Minimum Bounding Sphere) is introduced. The basic idea

of the SCM is the introduction of Virtual Bounding Rectangle (VBR) and Virtual

Bounding quasiSphere (VBS), which contains and approximates MBR and MBS,

respectively. And also, the subspace code compactly represents VBRs/VBSs,

hence allows larger fanout of non-leaf nodes in indices. Unlike the approximation

of absolute vector positions used in the VA-File, the subspace code represents

the relative position of VBRs/VBSs in terms of parent's VBR/VBS. This feature

is e�ective especially for non-uniformly distributed vectors which are commonly

found in real applications. Nearest neighbor search is performed using the tree

index of which non-leaf nodes contain VBRs/VBSs.

The experimental results using real data set demonstrate the e�ectiveness of

the SCM. When applied to the SR-tree, the SCM outperforms both the original

SR-tree and the VA-File in all range of dimensionality up to 56 dimension, which

is the highest dimension in the experiments. The SCM achieves 71.9 % (74.7 %,

resp.) savings in page accesses compared to the VA-File (the original SR-tree,

resp.) for 56-dimensional vector data.

Keywords:

similarity search, high-dimensional data, spatial index scheme, multimedia database,

subspace code
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Chapter 1

Introduction

1.1 Data Retrieval in High-Dimensional Space

Fast content-based retrieval is necessary to provide excellent human interface

for large-scale multimedia databases. It needs selecting one or more objects in

multimedia database which have features similar to the feature of query data.

In many cases, feature vectors are extracted from multimedia data to perform

content-based retrieval. For instance, features extracted from images include

color, texture, structure and so on. Image database systems are required to sup-

port not only retrieval using attached text description but also content-based

retrieval based on similarity search using these features. Since retrieval of fea-

ture vectors incurs high cost for high-dimensional and large data set [NN96],

the need for spatial indices and search methods with the object of e�cient data

retrieval is envisaged. Developing techniques for storage and retrieval of high-

dimensional data is an important research issue. This dissertation is focused on

similarity search for multi-dimensional data, especially, high-dimensional data of

which search cost is higher.

Many applications of multimedia data retrieval systems require spatial search

1



techniques in various dimensions such as GIS (geographical information system)

[Li97] which handles 2-D or 3-D data, video library system with feature vectors

of which dimensionality is ten or tens [WKSS96], or image retrieval system by

hundreds dimension [Dim97]. Above all, on account of the reduction of compu-

tational cost and the raise of object recognition ratio, many recognition methods

[MN95] [PMS94] [TP91] [MCM92] or systems [WKSS96] using feature vectors of

which dimensionality is ten or tens are presented. Therefore, the main issue of this

dissertation is indexing and searching for feature vectors of which dimensionality

is ten or tens.

Various spatial indices [SRF97] [GG98] have been proposed so far, however,

they have various drawbacks. In this dissertation, a high-speed spatial search

method is proposed to accelerate search performance.

1.2 Contribution of the Dissertation

In this dissertation, a new indexing scheme named Subspace Coding Methods

(SCM) [SYU99] [SYU98] is proposed. The SCM is applicable to any tree in-

dices employing MBR (Minimum Bounding Rectangle) and/or MBS (Minimum

Bounding Sphere).

The introduction of the SCM is motivated by the comparison and analysis

of two excellent methods, the SR-tree and the VA-File. The SR-tree [KS97] has

a unique feature in that it uses both MBRs and MBSs, and reported to o�er

good performance. The other one is The VA-File [WSB98] which is a simple

yet powerful scheme. In the VA-File, data objects are approximated by the cell

beforehand, and then this approximation �le is used for search to select out

candidate data objects. Since no result on the comparison between these two

access methods is available, the experiments comparing the two access methods

2



are performed.

The result shows that the SR-tree o�ers better performance than the VA-File

for real data (color histogram vectors of images) up to 40 dimensions. However,

as dimensionality increases, the search performance of the SR-tree degrades. The

analysis of further experimental results reveals that large size of entries in non-

leaf nodes1 in high dimension causes fewer fanout and larger number of non-leaf

node accesses, which results in the performance degradation of the SR-tree.

To overcome this drawback, the SCM, which is a general indexing scheme

based on an approximated and relative representation of MBRs/MBSs is pro-

posed in this dissertation. The basic idea of the SCM is the introduction of

Virtual Bounding Rectangle (VBR) and Virtual Bounding quasiSphere (VBS),

which contains and approximates MBR and MBS, respectively. And also, the

subspace code which compactly represents VBRs/VBSs is introduced. Hence, the

SCM allows larger fanout of non-leaf nodes in indices. Unlike the approximation

of absolute vector positions used in the VA-File, the subspace code represents

the relative position of VBRs/VBSs in terms of parent's VBR/VBS. This feature

is e�ective especially for non-uniformly distributed vectors which are commonly

found in real applications. Spatial search is performed using the tree index of

which non-leaf nodes contain VBRs/VBSs. This dissertation gives the algorithms

for search, insertion and deletion for the SCM. The SCM is not \a yet another

tree index", but a general indexing scheme applicable to any tree indices employ-

ing MBR and/or MBS (e.g. R-tree, R*-tree, X-tree, SS-tree, SR-tree). Since

non-leaf nodes of the SR-tree have both rectangles and spheres, the SCM will be

most e�ective when applied to the SR-tree.

In this dissertation, performance evaluations using both synthetic and real

1In this dissertation, leaf node means a node which contains data objects on the lowest level

of tree structure, and non-leaf node means other nodes.

3



data are presented. The result demonstrates the e�ectiveness of the SCM in

high-dimensional nearest-neighbor search. When applied to the SR-tree, the SCM

outperforms both the original SR-tree and the VA-File in all range of dimension-

ality up to 56 dimension, which is the highest dimension in the experiments. The

SCM achieves 71.9 % (74.7 %, resp.) savings in page accesses compared to the

VA-File (the original SR-tree, resp.) for 56-dimensional vector data. As far as we

know, 56 is the highest dimension of real data used for performance evaluation

in high-dimensional access methods with the only exception of 100 dimensional

eigen-face data used in [WJ96b].

1.3 Outline of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 3, the

background of the research is presented. Chapter 4 presents a comparison and

analysis of the SR-tree and the VA-File based on experiments using real and syn-

thetic data. Based on the analysis, Chapter 5 describes the motivation, the de�-

nitions and the algorithms of the proposed method, the subspace coding method.

Chapter 6 presents the result of performance evaluation of the proposed methods

and conventional access methods, and the discussion. Finally, Chapter 7 presents

�nal discussion and concludes the dissertation.

4



Chapter 2

Experimental Con�guration

The experimental evaluation for the techniques and the algorithms shown in this

dissertation, is presented in each of Chapter 3, 4 and 6. In this chapter, the

experimental conditions on this dissertation are described.

2.1 Characteristics of the Data Sets

In this dissertation, the performance evaluation is based on three kinds of data

sets, real data sets, uniformly distributed data sets and cluster data sets. The

real data sets consist of feature vectors that are hue histograms extracted from

images using in [SAT99] and the uniformly distributed data sets are uniform

random point sets distributed in the range [0.1) on each dimension. As non-

uniformly distributed data set, not only real data sets but also cluster data sets

are created and used for the evaluation. For cluster data sets, the number of

cluster is 100 in each data set and the center of cluster is distributed uniformly in

the range [0.10). In addition, as the number of objects is N , N=100 objects are

gathered according to Gaussian distribution around the center of cluster. Figure

2.1 shows the distribution of cluster data for two dimension as the size of data

5
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Figure 2.1. Distribution of cluster data for two dimension.

set is 20,000.

Table 2.2, Table 2.1 and Table 2.3 show the average and the variance for the

distance between each nearest neighbor objects in three data sets as the size of

all data sets is 100,000. Unlike real data sets and uniformly distributed data

sets, cluster data sets are not distributed in the range [0.1) on each dimension.

Therefore, on Table 2.3, the average and the variance for nearest neighbor distance

are calculated by the location of each data object whose distribution is normalized

in the range [0.1) on each dimension.

These tables reveal the di�erence between the data sets as regards data distri-

bution. As shown in Table 2.1, nearest neighbor distance increases as dimension-

ality grows for uniformly distributed data sets. Despite the fact that the distance

of non-uniformly distributed data set also rises as shown in Table 2.2 and Table

2.3, the distance is extremely small when compared with uniformly distributed

6



Table 2.1. Average and variance of nearest neighbor distance in uniformly dis-

tributed data sets.

Dimensionality Average Variance

4 0.034690 0.000098

8 0.200570 0.001122

16 0.596733 0.003665

24 0.948192 0.005843

32 1.255998 0.007390

40 1.531881 0.007947

48 1.786691 0.008196

56 2.012652 0.008377

Table 2.2. Average and variance of nearest neighbor distance in real data sets.

Dimensionality Average Variance

4 0.004598 0.000023

8 0.023116 0.000326

16 0.042783 0.000654

24 0.053278 0.000724

32 0.058653 0.000709

40 0.062080 0.000668

48 0.063145 0.000627

56 0.063707 0.000616
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Table 2.3. Average and variance of nearest neighbor distance in cluster data sets.

Dimensionality Average Variance

4 0.020631 0.000076

8 0.077410 0.000413

16 0.162310 0.000629

24 0.231455 0.000723

32 0.291108 0.000761

40 0.342610 0.000787

48 0.389892 0.000802

56 0.433240 0.000854

data sets. Especially, for real data (i.e. histogram data), the average is small,

in addition, the variance for nearest neighbor distance is also small. Table 2.2

shows that neighbor objects are close each other for most of objects in the real

data sets.

2.2 Experimental Conditions for Search Meth-

ods

The dimensionality for synthesis and real data varies from 4 to 56. The size of

the data sets is 100,000. Page size is 4KB.

On search performance, the evaluation of page accesses and CPU-time are

based on the average number for 1,000 query points. 20-nearest neighbor queries

are used, and query data is not the point data included in indices, that is, query

points are generated randomly independent of data points. CPU-time was mea-

8



sured on SUN UltraSPARC-II 296MHz. The search performances of R-tree family

are measured by using the algorithm presented in [HS95] since the algorithm in

[HS95] outperforms the branch-and-bound R-tree traversal algorithm [RKV95] as

shown in Section 3.4.2.

As for the insertion, the average of 1,000 insertion cost is measured. These

1,000 objects are inserted into data sets of the size from 20,000 to 100,000.

9





Chapter 3

Background

3.1 Content-Based Retrieval for Multimedia

Databases

Content-based retrieval in multimedia databases is important research issue [Fal96].

It needs selecting one or more objects in multimedia database which have exact

or similar feature extracted by data processing. Examples of queries include 'col-

lect pictures with similar color distribution from image database', or '�nd beach

scenes in video databases using picture or sound'.

Figure 3.1 shows a simple example for content-based retrieval system. Mul-

timedia data set is transformed into feature data set by feature extraction, and

then index structure is constructed using the feature data set in advance of query

from users. On the other hand, through the user interface, query vector is calcu-

lated from the content of query. The vectors that are similar to the query vector,

are collected e�ciently by search algorithm using the index structure. Finally,

required multimedia data are reported based on the collected vectors. In these

descriptions, the scope of spatial search methods includes the indexing and the

11
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Figure 3.1. An example of content-based retrieval system.

search using the index structure.

Manymultimedia database systems, such as QBIC [NBE+93] [FBF+94] [FSA+95],

CORE [WNM+95], Virage [BFG+96] [HGH+97], present interfaces and mecha-

nisms of content-based retrieval. Various spatial queries have been presented for

adapting to many kinds of applications. And also, in order to accelerate search

performance, many multi-dimensional search methods have been proposed so far.

Many multimedia retrieval systems include di�erent kinds of feature vectors.

For instance, QBIC presents retrieval services based on color, texture and shape

for image or video databases, and also all vectors are stored in one index structure

together [NBE+93]. In [TY98], an index is created for each feature in order to

perform spatial search based on weighted Euclidean distance. Pruning strategy

is performed in each index based on assigned weight for the index. Unlike the

algorithm using more than one index, this dissertation is focused on algorithms

for e�cient spatial search using a single index.
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3.2 Queries for Multi-Dimensional Data

Many retrieval systems or applications with spatial data have need of various

search operations [GG98] [LJF94] [Fal97]. The following are several examples of

spatial query relative to the condition which data objects are points:

(1) Exact match query, Point query

Find all objects in the database that are equal to a given query object.

More formally, let q be an query point and o be an object included in the

database, �nd all objects o:

Queryexact(q) = fojDist(o; q) = 0g;

where Dist is the function reporting the distance for two given points. For

example, �nd the building in a given location from geographical database.

(2) Region query, Range query

Find all objects in the database that are included in a given region. More

formally, given a region R, �nd all objects o:

Queryregion(R) = fojo 2 Rg:

In particular, range query is the operation reporting all objects that are

within the distance d from a given query point:

Queryrange(q; d) = fojDist(o; q) � dg:

For example, �nd all buildings within a given area; �nd all pictures that

look like a sunset.

(3) Nearest neighbor query
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Find all objects in the database that are closer than the other objects

[FBY92]. That is, given a query point q, �nd k objects o:

QueryNN (q; k) = foj9d8o
0
Dist(o; q) � d � Dist(o0; q)

^Numberobject(Queryrange(q; d)) = kg;

where Numberobject is the function reporting the number of objects. As

k = 1, the formula is simpli�ed:

QueryNN(q) = foj8o
0
Dist(o; q) � Dist(o0; q)g:

For example, the image in the database that is most similar to the query

image which shows Mt. Fuji.

(4) Spatial join

Given a spatial predicate �, �nd all object pairs that satisfy the predicate

� from two data sets [Gue93] [BKS93] [BKSS94] [MP99]:

A 1
i�j

B = f(o; o0)jo 2 A ^ o
0
2 B ^ �(oi; o

0

j
)g;

where A and B are given relations, and also i�j is the spatial operator for

the i-th entry of A and the j-th entry of B. For example, given a map, �nd

all houses that are within 500 meters from a railroad station. This query

example is based on two relations, house and station.

(5) Sub-pattern matching

Find all objects that include a given sub-pattern [Fal96] [Fal97]. That is,

given a query pattern q that has k or more than k entries, �nd all objects

that include q or a part of q which has k continuous entries:

Querysub�pattern(q; k; �) = fojo�1 2 o ^ q�2 2 q ^Numberentry(�1) =

Numberentry(�2) = k ^Dist(o�1; q�2) � �g;
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where Numberentry is the function reporting the number of entries, and �1

and �2 has k continuous entries. In this formula, the query is allowed a

tolerance �. For example, �nd images that contain a given sub-pattern.

All these queries are fully workable on the structure of the method which

is proposed in the dissertation. In the queries, the performance evaluation is

based on nearest neighbor query which is one of the most useful query for many

applications and requires relatively high search cost.

3.3 Distance Functions

Manymultimedia applications use search algorithms based on Euclidean distance,

on the other spatial queries based on general quadratic distance are useful. For

Euclidean distance, the search area is formed the shape of a sphere of which

center point is the query point, moreover, Euclidean distance is the independence

of dimension. By contrast, in order to reect correlations of dimension, a distance

model that has the power of model dependencies between di�erent components of

feature, is provided by elliptical distance functions [SK97]. An elliptical distance

is a distance that has equi-distance surfaces with ellipsoidal shape [Ish99]. That

is, for given two N -dimensional vectors x and y, and N�N -matrix A, the general

quadratic distance between x and y is described as follows:

d
2

A
= (x� y) � A � (x� y)T :

This formula represents the Euclidean distance function when A is equal to the

identity matrix, and also A is called similarity matrix [SK97]. And also, the

formula represents the weighted Euclidean distance when the similarity matrix A

is diagonal. In the case that A is positive de�nite matrix, the formula includes

the elliptical distance between x and y on A (cf. Figure 3.2).
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(a) Euclidean distance (b) Weighted Euclidean distance (c) Elliptical distance

Figure 3.2. Query ranges for distance functions.

The general quadratic distance functions mentioned above are required for

various applications. For instance, in [HSE+95], image retrievals based on general

quadratic distance with arbitrary similarity matrix are performed. The similarity

matrix is determined by the users on each query, however, it is di�cult for them

to decide on the similarity matrix, especially, the correlations of dimension or

the weight of dimension. MindReader [ISF98] supports application users in the

attempt to determine their favorite similarity matrix using relevance feedback

techniques [Har92] in the information retrieval �eld.

Since spatial queries based on general quadratic distance are useful [HSE+95]

[ISF98], search algorithms for e�cient processing of ellipsoid queries using tree

structures have been proposed [SK97] [ABKS98] [Ish99]. The search cost on

[SK97] is seriously high since testing whether a data object is contained in the

query ellipsoid requires O(n2) time, where n is the dimensionality, and testing

the intersection of a MBR in the index structure and the query ellipsoid takes

O(n2 � i) for a small iteration factor i. The algorithms of [ABKS98] and [Ish99]

improve in search cost by using an approximation-based approach. These algo-

rithms can partly avoid calculating elliptical distance and lower search cost for

CPU-time by using approximation of elliptical distance. The Query region of the
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approximation distance by the algorithms contains the exact query region, thus

the algorithms guarantee no false drops. The algorithm of [ABKS98] approxi-

mates query region using MBR and MBS that contain the exact query region.

And also, the algorithm of [Ish99] approximates using ellipsoidal shape inscribed

in the MBS that approximates the exact query region. In [Ish99], the compu-

tation of the ellipsoidal shape is simpli�ed in connection with the dimensions of

which eigen-value [Oja83] [And84] [Fuk90] is relatively large.

The performance evaluation is based on Euclidean distance, however, all these

spatial search algorithms based on elliptical Distance are fully workable on the

structure of the method which is proposed in the dissertation.

3.4 Spatial Search Methods

3.4.1 Classi�cation of Spatial Search Methods

In order to perform the queries mentioned above e�ciently, various spatial in-

dices [SRF97] [GG98] have been proposed so far. In these methods, the grid �le

[NHS84], the kdb-tree [Rob81] and the R-tree [Gut84] are one of the methods

which was the base for all further developments in the �eld of spatial search. The

�eld of spatial search can be classi�ed in two broad categories, cell-based �les and

tree structures.

Cell-Based Files

As cell-based �le, �rst, the grid �le is discussed. The grid �le [NHS84] using

hasing technique covers whole data space with grid cells that are partitioned by

each dimensional axis. Each dimensional axis is divided by the scale for itself

and the division leads to generated grid cells as a result. For non-uniformly
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Figure 3.3. The grid �le.

distributed data set, split for grid block can be frequent in dense space and the

volume of grid cells in the space will became smaller than the other cells. On the

other hand, volume of cells gets larger in sparse space.

A grid directory consists cells, and each cell is associated with one bucket.

There is one-to-one correspondence between bucket and disk page block which

contains data records. One or more of adjacent cells are stored in one bucket

for e�cient page utilization. Figure3.3 shows an example of grid �le in two-

dimensional space. The grid directory is divided into nine grid cells by the x-

scale and y-scale, and also, each bucket contains one or more than one cell in this

�gure.

On the grid �le, split for bucket is performed by hyperplane. The problem in

the grid �le is that split is not local operation, that is, large part of grid directory

can be inuenced by bucket split and it can lead to superlinear directory growth.

The twin grid �le [HSW88b] [HSW88a] is one of the variants [Fre87] [KS88]
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primary file secondary file

Figure 3.4. The twin grid �le.

[Ouk85] [RLS93] on the grid �le. In this method, two grid �les, primary �le and

secondary �le are used and set of points are distributed among these grid �les

in order to increase space utilization as shown in Figure 3.4. As insertion or

deletion occurs, objects can be redistributed among two �les. The redistribution

leads to lowering the total number of buckets and higher space utilization. In

[HSW88b], 90 % space utilization for the twin grid �le and 69 % utilization for

the traditional grid �le are presented. This strong point, high utilization is useful

for range queries.

Cell-Based File for Nearest Neighbor Queries

Grid �le family is not suitable for nearest neighbor query, in addition, especially,

they do not work in high-dimensional space. The VA-File [WSB98] using cell

block attacks this problem. The VA-File divides the data space into cells and

allocates a bit-string for each cell. As shown in Figure 3.5, vectors inside a cell

are approximated by the cell, and the VA-File itself is simply an array of these

geometric approximations. For nearest neighbor search, the entire VA-File is

scanned to select out candidate vectors, then those candidates are veri�ed by

visiting the vector �les.
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Figure 3.5. The VA-File.

In concrete, the VA-File has three steps for searching data objects.

(1) Compressing vector data

At �rst, the code of length li is assigned for each dimension i in n-dimensional

space. The whole search space is divided into 2l cells which l =
P

n

i=1
li, and

all data objects are stored in the corresponding cell. As shown in Figure

3.5, the approximate value is calculated for the vector of each point.

(2) Filtering step

The entire VA-File is scanned in order to select out candidate vectors for

nearest neighbor query, and upper and lower bounds on the distance be-

tween the query point and each cell are computed as the approximate dis-

tance for the distance between the query point and an object in the cell.

Objects in the cell of which lower bound is larger than the smallest upper

bound found in this step, are excluded from the next step.

(3) Accessing candidate objects
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Only candidate objects that remain from the �ltering step are veri�ed that

whether the object is nearest neighbor for the query point by visiting the

vector �les. In the mechanism of the VA-File, all candidate objects do

not have to be visited. The objects are accessed in increasing order of their

lower bound on the distance between the query point and the corresponding

cell, and also the mechanism stops as the distance of lower bound to the

corresponding cell exceeds the nearest distance to accessed vector.

In these steps, k-th nearest neighbor query can be also performed in a similar

way.

Tree Structures without Overlapping Regions

The kdb-tree [Rob81] is a hierarchical tree structure using the ideas of the

B+-tree [Com79] and the kd-tree [Ben75], and focused on indexing point object

and point query. This structure is constructed by the node split policy which

current region is divided into two child regions without dead space and overlap

of child regions as shown in Figure 3.6. Since the kdb-tree does not allow overlap

between regions of nodes, the structure selects only one search path for point
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Figure 3.7. Structure of the PMR quadtree.

query, and is suitable for point query or region query which search region is quite

small. However, the utilization of this structure is low because of less exibility

relative to node split, thus, the kdb-tree does not work on nearest neighbor query.

The PMR quadtree [NS86] [NS87] [HS92] is one of quadtree variants [Sam84]

[SW84] [SW85]. This method is also tree structure such as the kdb-tree, however,

the structure is not balanced. Each block of the PMR quadtree is square for

two-dimension, cube for three dimension, or hypercube for high dimension. As a

node overows, the block is divided into 2n child blocks of which the size is equal，

where n is dimension. Figure 3.7 shows the structure in two-dimensional space.

For this structure, the depth of tree can be large in a dense space. This property

causes considerable inferior performance as using non-uniformly distributed data

set, thus, the structure is not �t for real data handling system such as an image

database.
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Figure 3.8. Structure of R-tree family using only MBR.

Tree Structures with Overlapping Regions

The R-tree [Gut84] has excellent mechanism for the circumvention of the problem

on the kdb-tree or the PMR quadtree. The R-tree is hierarchical structure, and

uses MBRs (Minimum Bounding Rectangles) as bounding regions for partition-

ing data objects. Unlike the kdb-tree or the PMR quadtree, the R-tree allows

the overlap between regions of node as shown in Figure 3.8. The utilization is

improved owing to overlapping MBR, and also, the exible node split policy in

the R-tree leads to higher search performance for region query.

It is composed of MBRs organized as tree structure in which geometrical

objects are packed in leaf nodes. Leaf nodes contain entries of the form

LeafNode = ("; Recordi) (i = 1; . . . ; ")

Recordi = (C; object� identif ier);
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where " is the number of entries in the leaf, and is bounded by minimum m and

maximum M (m � " � M). C is the MBR which approximates a geometrical

object or a spatial vector which represents a point. object � identifier refers to

contents of object. Non-leaf nodes contain entries of the form

Non� leafNode = (";Recordi) (i = 1; . . . ; ")

Recordi = (C; child� pointer);

where C is the MBR of a child node, and child�pointer refers to the child node.

The R-tree has had many variants and search algorithms using these struc-

tures. Since these variants have relation to the method proposed in the disserta-

tion, Section 3.4.2 presents detail explanation.

3.4.2 R-tree Family

Index Structures

The mechanisms of the R-tree are introduced in many structures, thus, the term,

R-tree family is used to generally represent these variants. Many index trees on

R-tree family have been proposed so far. They include the R-tree [Gut84], the

R*-tree [BKSS90], the Hilbert R-tree [KF94], the X-tree [BKK96], the SS-tree

[WJ96b], the SR-tree [KS97] and so on.

In the family, the R*-tree [BKSS90] has higher capability in searching than

the original R-tree according to improvement of insertion algorithm, and it is one

of the most common and successful structures for multi-dimensional searching,

especially, for low dimension. Although the structure of the R*-tree is similar to

that of the R-tree, the insertion algorithms are introduced newly for enhanced

search performance. The insertion algorithm of the R-tree is designed to minimize

area of MBR, whereas that of the R*-tree aims at three targets:
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(1) The overlap between MBRs is minimized.

(2) The margin of MBRs is minimized.

(3) The area of MBRs or dead space is minimized.

In particular, small overlap leads to the improvement of pruning for searching.

The forced reinsert, the algorithm which is to delete overowing node and

reinsert the orphaned entries in the corresponding level, invokes local reorgani-

zation of the tree structure. The reorganization keeps small overlap and high

utilization, and also it supports good search performance. Since the forced rein-

sert mechanism is reasonable, it is used for most of later search method in R-tree

family. Concretely, in the algorithm for overow handling, if the level of over-

owing node is not the root level and this overow handling is the �rst call on

the level during the insertion of one object, a portion of entries in the node is

reinserted. Otherwise, the node is split.

The improvement of utilization is e�ective in lowering search cost. The Hilbert

R-tree [KF94] achieves higher utilization. In the R-tree or the R*-tree, the over-

ow handling turns one node to two nodes, that is 1-to-2 split. The Hilbert

R-tree has s-to-(s + 1) split mechanism which the overow handling performs

split s nodes to s+1 nodes, or it moves the entries in overowing nodes to sibling

nodes. The overow handling accommodates some entries among sibling nodes, it

needs the information on positional relations between sibling nodes. The Hilbert

R-tree uses the Hilbert curve [FR89] as the information (see Figure 3.9). Owing

to the split policy with the Hilbert curve, the structure keeps almost 100 percent

utilization.

On the X-tree [BKK96], the insertion algorithms for the circumvention of the

overlap among nodes which constitutes the obstacle to pruning nodes in searching

relative to the R-tree and the R*-tree are introduced. Above all, the notion of
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Figure 3.9. An example of Hilbert curve.

supernode which occupies one or more disk pages is progressive and important

relative to the circumvention of bad node split. The mechanism of the X-tree

leads to higher performance than the R*-tree for high-dimensional data.

In [BKK96], the problem that overlap between MBRs of nodes frequently oc-

curs is indicated. The structure and algorithm for the X-tree are motivated by

this observation. The structure of the X-tree is an impressive combination of a

linear array-like organization and a hierarchical tree-like organization. In low-

dimensional spaces, the algorithm prefers a hierarchical tree-like organization as

shown in Figure 3.10 (a) due to the low overlap between MBRs of non-leaf nodes.

However, the superiority of a linear array-like organization grows as dimension-

ality increases. In marked contrast to low dimension, a linear organization is

more e�cient for very high dimension as shown in Figure 3.10 (c). Moreover,

for medium dimension, a combination of a linear array-like organization and a

hierarchical tree-like organization is required (Figure 3.10 (b)). In [BKK96], the

X-tree outperforms the R*-tree and the TV-tree[LJF94].

The SS-tree [WJ96b] is a tree structure using MBSs (Minimum Bounding

Spheres) for high-dimensional data objects as shown in Figure 3.11. MBSs consist
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Figure 3.10. The X-tree.

27



Figure 3.11. Data partitioning by MBS.

of the radius and the center point which is the average of all data objects enclosed

by the sphere. In the SS-tree, an insertion of objects and a split of overowing

node are performed as the variance of each node is minimized. For insertion, the

node of which its centroid is closest to the insert object, is chosen. If the number

of entries in a node exceeds threshold, i.e. fanout, forced reinsert or node split is

invoked.

In the node split of the SS-tree, �rst, the variance of the center point of

MBS for each dimension is calculated, and then, the dimension with the highest

variance is determined as the split dimension. Secondly, for the distribution of

the entries to two new created nodes, the split location on the split dimension is

chosen as the sum of the variances on each side of the split is minimized.

In addition, although the SS-tree uses the mechanism of forced reinsert, the

opportunity of the mechanism for the SS-tree is not the same as one for the R*-

tree. In the R*-tree, if the level of overowing node is not the root level and this
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overow handling is the �rst call on the level, the forced reinsert is invoked. By

contrast, the forced reinsert of the SS-tree is performed if the overowing node is

not the root and this overow handling is the �rst call on the node. As mentioned

above, the forced reinsert of the SS-tree is performed with higher frequency than

that of the R*-tree, and this superior mechanism is also adopted by the SR-tree.

In connection with the SS-tree, [KS97] indicates two strong points:

(1) The fanout is low since the representation cost of MBS is smaller than that

of MBR.

(2) Closer objects can be clustered since the index structure attaches impor-

tance to the variance of entries in a node or the distance from the centroid

of a node.

These strong points contributes to improving performance.

In the SR-tree [KS97], not only MBSs such as the SS-tree, but also MBRs are

introduced into the tree structure (cf. Figure 3.12). The non-leaf nodes of the

SR-tree contain entries of the form

Non� leafNode = ("; Recordi) (i = 1; . . . ; ")

Recordi = (CS; CR; !; child� pointer);

where CS and CR are the MBS and the MBR of a child node, respectively. !

is the total number of points contained in the subtree whose top is the child

pointed by child� pointer. Similar to the R-tree, " is the number of entries, and

child� pointer refers to the child node.

The region of a entry for the SR-tree is represented by the intersection of

MBS and MBR in the entry. Therefore, for the search algorithm in the SR-

tree, the minimum distance from query point to bounding rectangle and the

minimum distance from query point to bounding sphere are computed,then larger
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Figure 3.12. The SR-tree.

distance is chosen between these ones as distance of the region, and then, it is

used for pruning nodes. As a result of the smaller region, it causes higher search

performance. The SR-tree in R-tree family is one of the most excellent methods

and it has high capability for node pruning, especially in high-dimensional space.

Nearest Neighbor Search Algorithms using R-tree family

As mentioned in Section 3.2, several kind of queries are useful in the �eld of

spatial search. Relative to these queries, the nearest neighbor search algorithms

for R-tree family have been proposed [RKV95] [HS95] [AMN+94] [AMN+98].

One is the branch-and-bound R-tree traversal algorithm [RKV95] proposed

by Roussopoulos et al.. This algorithm based on ordering and pruning �nds de-

sired objects without missing out. In [RKV95], pruning MBR is based on the

following strategies. In these strategies, Q represents a query point, R and R0 rep-

resent MBRs, O and O0 represent objects. In each strategy, if the corresponding
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condition is satis�ed, R or O is pruned away.

Strategy1� a : MINDIST (Q;R) > MINMAXDIST (Q;R0)

Strategy2� a : kQ;Ok > MINMAXDIST (Q;R0) (O 62R
0)

Strategy3� a : MINDIST (Q;R) > kQ;O
0
k;

whereMINDIST (a;A) is the minimum distance from a point a to a rectangle A,

and ka; bk is Euclid distance between points a and b. MINMAXDIST (a;A) is

minimum distance which is guaranteed that at least one object enclosed by A ex-

ists in the hypersphere of which center point is a and radius isMINMAXDIST (a; A).

More concretely, observe that A in n-dimensional space is bounded by n pairs of

hyperplanes, ei and Ei(i = 1; . . . ; n), where each ei is the hyperplane of which the

distance from a is smaller than that of corresponding Ei. Let bi(i = 1; 2; . . . ; n) be

vertexes which is farthest, from the point a, in each of the hyperplane ei. Then,

MINMAXDIST (a;A) = min
i

ka; bik:

Figure 3.13 shows an example as n = 2. In this example,

MINDIST (a;A) = ka; b0k;

MINMAXDIST (a;A) = ka; b2k:

On [RKV95], the combination of three strategies leads to fewer disk accesses.

The description of the strategies presented above are mainly focused on near-

est neighbor search. Since the goal of this dissertation is to �nd the k-th nearest

neighbor objects as ranking query, Strategy1�a and Strategy2�a are extended

as follows:

Strategy1� b : MINDIST (Q;R) > D

Strategy2� b : kQ;Ok > D (O 62R
0)

31



E1

E2

e2

e1

a

A

b2

b1

MINDIST(a, A) MINMAXDIST(a, A)

b0

Figure 3.13. MINDIST and MINMAXDIST in two-dimensional space.

where

D =

8>>>>><
>>>>>:

NN:dist[k] if NN:dist[k] �MINMAXDIST (Q;R0)

^NN:number = k

MINMAXDIST (Q;R0) otherwise:

NN:number is the number of candidate objects collected during search process-

ing, and NN:dist[i] (1 � i � NN:number) is the i-th nearest neighbor distance

in the collections. If the number of collected objects is equal to k and NN:dist[k]

is not longer than MINMAXDIST (Q;R0), distance from the k-th object to Q

is adopted for pruning strategy. Otherwise, the strategy of Roussopoulos et al.

[RKV95] is adopted. Strategy1� b (and Strategy2� b, respectively) which sub-

sumes Strategy1�a (and Strategy2� b, respectively) is used in the performance

tests described below.

In [HS95], another method is proposed and applied to the PMR-quadtree

[NS87]. The di�erences between the nearest neighbor algorithms are as follows:
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Figure 3.14. Two nearest neighbor search algorithms, [RKV95] and [HS95].

(1) The branch list is used as local variable in [RKV95], whereas in [HS95], the

list is used as global variable. According as this change, the algorithm of

[HS95] includes no recursive procedure.

(2) The algorithm of [HS95] uses only Strategy3 � a. For Strategy3 � a, the

rectangle or the region R which the distance to query point Q is larger than

the distance from the object O to Q, is pruned and removed. The algorithm

in [HS95] does not use Strategy1� b or Strategy2� b since these strategies

make no sense for pruning on this algorithm.

Here, the di�erence between these algorithms is mentioned using Figure 3.14.

In this �gure, the query point Q, two nearest neighbor point from Q, P1 and

P2，several MBRs are presented. di is the distance value which is larger as i

(1 � i � 7) grows. On two-nearest neighbor query by [RKV95], the MBR R1 of

which MINDIST is smaller than that of R2, is accessed at �rst. And also, R5

and R3 are visited. Then, R4 is accessed since the MINDIST of R4 (i.e. the

distance is d5) is smaller than the MINMAXDIST of R3 (i.e. the distance is

d6). Finally, R2 and R6 are accessed. Moreover, the other MBRs are pruned away.
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Figure 3.15. Number of page accesses for [RKV95] and [HS95].

However, the algorithm in [HS95] shows di�erent behavior. In [HS95], R1 and R5

that have the smallest distance for MINDIST , are accessed at �rst. Then, R2,

R3 and R6 are accessed, however, R4 is not visited since the MINDIST of R4 is

larger than the distance between P2 and Q. In this case, the algorithm of [HS95]

achieves fewer page accesses than that of [RKV95].

Berchtold et. al. prove that the search algorithm of [HS95] is superior to that

of [RKV95] theoretically for page accesses in [BBKK97], however, no experimental

comparison between both algorithms has been reported so far. Thus, experiments

for investigating the di�erence of the algorithms on page accesses and CPU-time

as search performance, are performed in this research. Figure 3.15, Figure 3.16

and Figure 3.17 show the results for page accesses, CPU-time and total search

time, respectively. This experiment is performed under the conditions described

in Chapter 2. The size of data set is 100,000. The dimensionality varies from 4
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Figure 3.16. CPU-time on search processing for [RKV95] and [HS95].

to 56, and also this evaluation is based on the SR-tree with the real data sets.

Figure 3.15 shows that [HS95] is superior in all data sets ranging in dimension-

ality from 4 to 56, especially, in high-dimensional data sets. On the other hand,

in connection with CPU-time, the superiority of [RKV95] is con�rmed for 48 and

56 dimensions as shown in Figure 3.16. As total search time that is calculated by

the page access time, 25 ms in [BKK96], [HS95] outperforms [RKV95] (cf. Figure

3.17).

The following is this reason. Since nearest neighbor queries occur many access

paths to �nd required objects, the di�erence of the order of accessing nodes may

cause the di�erence of search performance. Since it is possible to distribute k

nearest neighbor objects into various leaf nodes or non-leaf nodes, the algorithm

[RKV95] which is a depth-�rst search according as the metricMINDIST , causes

not only necessary node accesses but also unnecessary accesses for sibling nodes.

35



  0

10000

20000

30000

40000

50000

60000

70000

8 16 24 32 40 48 56

S
ea

rc
h 

T
im

e 
(m

s)

Dimensionality

HS95
RKV95

Figure 3.17. Total search time for [RKV95] and [HS95].

It is considerable factor that increase search cost.

In contrast with this depth-�rst search algorithm, the algorithm [HS95] that

uses priority queue visits nodes in ascending order of MINDIST from query

point, irrespective of tree level for strati�ed structure. The way of node access

which the node with minimum distance has priority over the other nodes in

queue, �nds objects with small distance faster than that of depth-�rst search.

Thus, the pruning strategy of the algorithm [HS95] excludes unnecessary node

accesses using smaller distance based on collected objects, it leads to lower search

costs. Based on these descriptions, the algorithm of [HS95] is adopted into the

evaluations of this dissertation.
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3.4.3 Search Methods for High-Dimensional Data

Content-based retrieval uses many kind of features for excellent user interface.

However, search cost grows dramatically as dimensionality increases. Unlike the

methods which are workable only in low-dimensional space, the methods which

are focused on this problem, have been proposed. The conventional approach

to supporting similarity search in high-dimensional vector space can be broadly

classi�ed into two categories. As mentioned above, the �rst approach is using

tree structure such as R-tree family. For R-tree family, neighbor vectors are cov-

ered by MBRs (Minimum Bounding Rectangles) or MBSs (Minimum Bounding

Spheres), which are organized in a hierarchical tree structure. Two recently pro-

posed indices, the X-tree [BKK96] and the SR-tree [KS97], are reported to o�er

good performance. The X-tree [BKK96] introduces the notion of supernode, and

outperforms the R*-tree. The SR-tree [KS97] has a unique feature in that it

uses both MBRs and MBSs, and reported to outperform both the R*-tree and

the SS-tree. The second approach is the use of approximation �les. Among oth-

ers, the VA-File (Vector Approximation File) [WSB98] contained in the category

of cell-based �les, is a simple yet powerful scheme. In [WSB98], Weber et. al.

have reported that the VA-File outperforms both the R*-tree and X-tree when

the dimension becomes high (� around 6.) To sum up, among access methods

for high-dimensional vector space search, the SR-tree and the VA-File are two

methods which are not reported to be outperformed by other methods.
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Chapter 4

Analysis of Index Structures for

High-Dimensional Search

In [WSB98], the limitations of R-tree family for high dimensional space is pre-

sented. The SR-tree as one of R-tree family is no exception to this assertion.

In this chapter, performance evaluation of R-tree family, especially the SR-tree,

from di�erent point of view, and analysis of the properties and problems of them,

are presented.

4.1 R-tree Family v.s. the VA-File

This section shows evaluation for the performance of indices, R-tree family and

the VA-File, using synthesis and real data. The SR-tree which has a bene�cial

e�ect on high-dimensional search and the R*-tree as traditional methods are used

on behalf of R-tree family. The experimental conditions are shown in Chapter 2.

Fanout of nodes in the SR-tree and the R*-tree is shown in Table 4.1 and Table

4.2, and also height of these tree structures which are constructed using 100,000

real objects under the conditions is shown in Table 4.3. The data structure of leaf
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Table 4.1. Fanout of tree structures for leaf node.

Dim. 4 8 16 24 32 40 48 56

Fanout 113 60 30 20 15 12 10 9

Table 4.2. Fanout of tree structures for non-leaf node.

Dimensionality

Structure
4 8 16 24 32 40 48 56

R*-tree 60 30 15 10 7 6 5 4

SR-tree 36 19 10 6 5 4 3 3

Table 4.3. Height of tree structures.

Dimensionality

Structure
4 8 16 24 32 40 48 56

R*-tree 3 4 5 6 7 7 8 9

SR-tree 4 4 5 7 8 9 15 15

nodes in the SR-tree and the R*-tree are the same, and the fanout is set as shown

in Table 4.1. Also, the data structure of vector �le in the VA-File set exactly same

as that of leaf node in R-tree family. The search performances of R-tree family

are measured based on the algorithm presented in [HS95] (cf. Section 3.4.2).

Figure 4.1, Figure 4.2 and Figure 4.3 show the number of page accesses of the

VA-File, the SR-tree and the R*-tree, for uniformly distributed data, real data

and cluster data, respectively. As shown in Figure 4.1, for uniformly-distributed

synthetic data set, R-tree family is superior to the VA-File only in 4 and 8 di-
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Figure 4.1. Number of page accesses for the VA-File, the SR-tree and the R*-tree

(Uniform random data).

mensions. R-tree family deteriorates rapidly in higher than 8 dimension and this

result is in accordance with the indication of [WSB98]. In R-tree family, the

SR-tree has no superiority over the R*-tree for uniformly synthesis data sets.

On the other hand, for the results using real data in Figure 4.2 and cluster

data in Figure 4.3, the SR-tree overwhelms the R*-tree, and also provides bet-

ter performance than the VA-File up to 40 dimension. For realistic data set of

which distribution is not uniform, the volume of MBSs and MBRs in the SR-tree

becomes small exibly in dense local space, and then this exibility causes con-

siderable e�ect in search. For the VA-File, �ltering by approximation loses its

e�ect for non-uniformly distributed data, and the number of visiting the vector

�les increases. Since most practical applications use non-uniformly distributed

data set, the following discussion is focused on the SR-tree which shows desirable
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Figure 4.2. Number of page accesses for the VA-File, the SR-tree and the R*-tree

(Real data).

performance.

Despite the fact that the SR-tree is good at non-uniformly distributed data,

it degrades as dimensionality grows. In 48 dimension or higher, the SR-tree is

inferior to the VA-File for real data sets. To probe into the cause, the next section

shows a more detailed analysis.

4.2 Property of the SR-tree

Figure 4.4 shows the number of non-leaf and leaf accesses of the R*-tree and the

SR-tree using the real data set under the same conditions as Section 4.1. The

number of non-leaf accesses considerably increases as dimensionality becomes

large for both the SR-tree and the R*-tree. In particular, the SR-tree exhibits
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(Cluster data).

marked tendency. Increase of non-leaf accesses leads to higher page accesses

especially in over 40 dimension.

Non-leaf of both structures includes position coordinates of minimum bound-

ing regions. The volume of coordinates are directly proportional to dimensional-

ity, namely, fanout gets small with increase in dimensionality as shown in Table

4.2. Since the non-leaf nodes in the SR-tree include both MBRs and MBSs, the

fanout of them are especially small. This causes increase of non-leaf accesses.

To point out another property, the relation between fanout and subtree-

pruning capability is described. First, two SR-tree structures are constructed:

the tree structure of which fanout accords Table 4.2, and one whose non-leaf

nodes have ten times larger fanout than that shown in Table 4.2. In Figure 4.5,

the number of leaf accesses versus the number of dimension is shown. In this
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�gure, SR-tree(1) indicates the normal structure of the SR-tree, and SR-tree(10)

is the SR-tree with non-leaf nodes of ten times larger fanout. SR-tree(10) exhibits

smaller number leaf accesses in this �gure. The reason is explained as follows. In

the SR-tree, an object is inserted so as to minimize the variance of objects in each

node. However, owing to update of the tree structure after this insertion, pre-

viously inserted objects are forced to be located undesirable position1. Increase

of fanout leads to higher possibility that objects are located desirable position,

and then it causes to reduce number of leaf accesses. Therefore, the SR-tree has

the property that this method is liable to place objects on unsuitable position

because of its small fanout.

1Not all objects are located desirable position in tree structure by the forced reinsert.

44



  0

 50

100

150

200

250

300

8 16 24 32 40 48 56

Le
af

 A
cc

es
se

s

Dimensionality

SR-tree (1)
SR-tree (10)

Figure 4.5. Relation between fanout and leaf accesses.

4.3 Conclusions

The discussions in this chapter are summarized as follows:

(1) The SR-tree in R-tree family is superior in search performance. For non-

uniformly distributed real data, the SR-tree overwhelms the R*-tree and

o�ers better performance than the VA-File up to 40 dimension.

(2) The SR-tree has high pruning capability using its non-leaf nodes. How-

ever, large volume of non-leaf nodes causes to increase page accesses and

degrades the search performance. In addition, this tendency of performance

degradation becomes worse as dimensionality grows.

(3) Smaller fanout leads to lower pruning capability and increase of leaf ac-

cesses. As dimensionality grows, the inuence of this problem increases
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also.

Although the R*-tree is in a similar for the second and the third indication, the

SR-tree is more sensitive to the inuence.

Based on the analysis of the experimental result, the Subspace Coding Method

(SCM), a new indexing scheme which is applicable to many tree indices, is intro-

duced and presented in Chapter 5 for reducing number of non-leaf accesses and

improvement of pruning capability.
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Chapter 5

The Subspace Coding Method

5.1 Introduction

The experimental results in Chapter 4 suggest that the R-tree family, especially

the SR-tree, has the possibility to outperform the VA-File in high dimensionality

by increasing the fanout of non-leaf nodes. This observation is the motivation

for the introduction of the Subspace Coding Method (SCM). The basic idea of

the SCM is the introduction of VBR (Virtual Bounding Rectangle) and VBS

(Virtual Bounding quasiSphere), which covers and approximates MBR and MBS,

respectively. Since the required storage size for VBRs are1 much smaller than

that for MBRs, storing VBRs in non-leaf nodes increases the fanout by an order

of magnitude. This idea is analogous to the pre�x B-tree [BU77]; both the pre�x

B-tree and the SCM reduce the size of keys in non-leaf nodes thus making the

fanout larger and the size of entire tree smaller. However, unlike the pre�x

B-tree, VBRs have negative e�ects as well. Since VBRs cover and hence are

1The following discussion is focused on VBRs and MBRs for simplicity. Analogous discussion

applies to VBSs and MBSs as well. The formal de�nition of VBRs and VBSs is given in

Chapter 5.2.
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slightly larger than MBRs, the intersection of children's' VBRs are larger than the

intersection of corresponding MBRs. This factor possibly causes the degradation

of the power of pruning subtrees in searching. However, as presented in Chapter 6,

the performance evaluation shows the positive e�ect of VBRs overwhelms this

negative factor in practical situation.

One important feature of the SCM is the relative approximation of rectan-

gles. Since the overlap of MBRs are allowed in tree indices of the R-tree family,

the approximation error in non-leaf nodes near leaves signi�cantly a�ects the

search performance. Therefore, the coding scheme used for representing VBRs

should be compact, and approximation error should be independent to the size of

MBRs. The subspace code introduced in this chapter meets these requirements.

Unlike the approximation of absolute vector positions used in the VA-File, the

subspace code represents the relative position of VBRs/VBSs in terms of par-

ent's VBR/VBS. Since the approximation of absolute vector positions used in the

VA-File are independent of the data distribution, many dense data tend to be

approximated by same value, hence is not e�ective to non-uniformly distributed

data which are commonly found in real applications. By contrast, the relative

representation in the SCM is e�ective for non-uniformly distributed vectors.

In connection with the above discussion, Figure 5.1 shows the classi�cation of

spatial access methods from two viewpoints: representation of spatial objects and

index structure. Conventional spatial access methods can be roughly classi�ed

into the following three categories: (1) linear scan; (2) the VA-File, a sequential

�le of absolute approximation of feature vectors; and (3) R-tree family which has

tree structures. R-tree family can be further classi�ed into \pure" tree-structured

indices such as the R*-tree and the SR-tree, and \hybrid" of tree and sequential

structure such as the X-tree, which, with the notion of supernode, shows higher

property of sequential scan as dimensionality increases. The SCM does not belong
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to any of these categories and is unique in that i) the SCM, by itself, is not an

index but an index scheme applicable to any tree-structured index; and ii) the

representation of bounding regions is based on approximation relative to their

parent nodes. The SCM gives higher search performance from these properties.

In this chapter, the notion of VBR and VBS is introduced, and then the

SCM, the index structure using it, and the algorithms for searching, insertion

and deletion are described.

5.2 Preliminaries

A rectangle A in n-dimensional space is represented by the two endpoints a

and a
0 of its major diagonal: A = (a, a0), where a = [�1; �2; . . . ; �n]; a

0 =

[�01; �
0

2; . . . ; �
0

n
] and �i � �

0

i
for i 2 f1; 2; . . . ; ng.

Let B be a geometrical object in n-dimensional space. Here, let assume two

cases: one is the case B is a rectangle, the other is the case B is a point ob-
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ject. B � A is used to represent that B is contained in A. More formally, let

A = (a, a0) and coordinate values of a and a
0 be those given above. Also,

if B is a rectangle, let B = (b, b0) and coordinate values of b and b
0 be:

b = [ 1;  2; . . . ;  n]; b
0 = [ 0

1;  
0

2; . . . ;  
0

n
]: Then, B � A holds if and only if

�i �  i �  
0

i
� �

0

i
(i = 1; 2; . . . ; n): (5.1)

In addition, the case B is a point object satis�es b = b
0. Similarly, relationship

B � A holds in this case.

5.3 Virtual Bounding Region and Subspace Code

In R-tree family, the coordinate values of endpoints of MBRs or the coordinate

values of center points of MBSs are represented by absolute values in coordinate

system. Although absolute values represent exact positions, the required storage

size of absolute values grows in proportional to the number of dimension.

Bounding regions of child nodes are contained in a bounding region of the

parent node in R-tree family. Hence, a bounding region B of a child node can

be represented by the relative position in terms of a rectangle A in the parent

node. The basic idea of SCM is based on this observation. Moreover, by using

approximate relative positions, the length of bits required to represent positions

is substantially reduced.

De�nition 1 Let A and B be rectangles in n-dimensional space such that B � A.

Also, let q (� 1) be an integer. The virtual bounding rectangle (VBR for

short) of B (in A with radix q) is the rectangle

Vb = (v; v0)

where

v = [�1; �2; . . . ; �n]; v
0 = [� 01; �

0

2; . . . ; �
0

n
]; �i � �

0

i
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such that

�i = �i +

$
 i � �i

(�0
i
� �i)=q

%
� (�0

i
� �i)=q (5.2)

�
0

i
= �i +

&
 
0

i
� �i

(�0
i
� �i)=q

'
� (�0

i
� �i)=q (5.3)

(i = 1; 2; . . . ; n):

In particular, if B is a point object, the virtual bounding region Vb is de�ned under

the condition  i =  
0

i
. 2

Example 1 In Figure 5.2(a), rectangles A and B that satisfy B � A are given.

The rectangle Vb shown by the broken line is the VBR of B in A with radix 8. 2

Lemma 1 For a VBR V of B in A, the containment relationships B � V and

V � A hold.

Proof: Since B � A, the inequality (5.1) holds. Hence,

$
 i � �i

(�0
i
� �i)=q

%
� (�0

i
� �i)=q � 0

holds in (5.2), which implies �i � �i.

From (5.2),

�i = �i +

$
 i � �i

(�0
i
� �i)=q

%
� (�0

i
� �i)=q

� �i +
 i � �i

(�0
i
� �i)=q

� (�0
i
� �i)=q

=  i:

Hence, �i � �i �  i. Similarly  
0

i
� �

0

i
� �

0

i
holds. Therefore, B � V and V � A.

2
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Figure 5.2. Examples of spatial representation using virtual bounding regions.

De�nition 2 Let A be a rectangle and C be the sphere of which radius is r and

center point is B such that B � A. And then, let Vb be the VBR of B in A. Here,

the virtual bounding quasisphere (VBS for short) of C(in A with radix q)

is the geometrical object which represented by the Minkowski sum [BBKK97] of

C and Vb. 2

The term virtual bounding region will be used to generally represent both VBR
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and VBS.

Example 2 In Figure 5.2(b), a rectangle A and a sphere C are given. Also, r is

the radius of C and B is the center point of C that satisfy B � A. The rectangle

Vb shown by the broken line is the VBR of B in A with radix 8 and Vc is the VBS

of C in A. 2

Theorem 1 The nearest-neighbor search algorithms of [HS95] and [RKV95], ap-

plied to virtual bounding regions, obtain the same results as the case when they

are applied to minimum bounding regions.

Proof: Let Br be an MBR, and C be an MBS of which center point is Bp. Also,

let Vr, Vc and Vp be a VBR of Br, a VBS of C and a VBR of Bp, respectively.

From Lemma 1, Br � Vr holds. Similarly, since Bp � Vp, C � Vc holds. Hence,

the following relationship holds between minimum bounding region B and virtual

bounding region V of B at any query point Q in terms of the metricMINDIST .

(Given a point P and a geometrical region R, MINDIST (P;R) is the minimum

distance between P and R if P is not contained in R, and is 0 otherwise.)

MINDIST (Q; V ) �MINDIST (Q;B)

2

Theorem 1 guarantees that search algorithms based on virtual bounding re-

gions successfully �nd desired objects without missing out.

Next, the de�nition of subspace code is described. First, a simple example is

given, then a formal de�nition follows.

Example 3 Figure 5.3 gives a simple example to demonstrate how subspace code

is calculated. The line A occupies from 3 to 19 on a coordinate, and the line B
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Figure 5.3. An example of subspace code.

occupies from 6 to 10 on the same coordinate. In general, a binary code of length

l can represent one of 2l subintervals of the interval of A. Subspace code is used

to represent the subintervals to which start and end points of the interval of B

belong. In this way, the subspace code approximately represent B in terms of A.

Figure 5.3 shows the case when l = 3, namely the interval of A is divided into 8

sub-intervals. Since B occupies the second and fourth sub-intervals, the interval

of B is approximated as a pair of 8-ary code (1, 3) or binary code (001, 011). If

B is a point object, the code of half length is calculated similarly. 2

De�nition 3 Let A = (a, a0) and B = (b, b0) be two rectangles in n-dimensional

space and V = (v, v0) be the VBR of B in A with radix q such that B � V � A,

hence the following relationship holds.

�i � �i �  i �  
0

i
� �

0

i
� �

0

i
(i = 1; 2; . . . ; n):

Let �i and �
0

i
be q-ary code with �i � �

0

i
that represents a sub-intervals on the i-th

dimensional coordinate, such that

�i =
(�i � �i) � q

�
0

i
� �i

�
0

i
=

(� 0
i
� �i) � q

�
0

i
� �i

� 1:
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Also, let F2(�i; l) be the binary representation of �i by code of length l where

l = dlog2 qe. The subspace code of V in A is de�ned to be the binary code

S = (s; s0)

where

s = [F2(�1; l); F2(�2; l); . . . ; F2(�n; l)];

s
0 = [F2(�

0

1
; l); F2(�

0

2
; l); . . . ; F2(�

0

n
; l)]:

And also, if B is a point object (i.e. B = (b)), the subspace code is de�ned to be

S = (s) 2

In spite of fewer amount of information, subspace code has the capability to

reconstruct bounding rectangle.

In contrast to original rectangle based on absolute position, virtual bounding

region based on relative location with little error is restored by subspace code.

Example 4 Figure 5.2 is an example of subspace code in two-dimensional space.

In Figure 5.2(a), rectangles A, B and the VBR Vb of B in A that satisfy B �

Vb � A are given. The subspace code of Vb in A with radix 8 is

S = (010; 011; 101; 101):

And also, B is the center point of the sphere C in Figure 5.2(b). Here, the

subspace code of Vb is

S = (100; 011):

The VBS Vc of C is represented by S and the radius r of C. 2
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5.4 Tree Structure by Subspace Code

The di�erences between structure by the SCM and usual tree structure (i.e. R-

tree family) are the following.

(1) Not only the tree structure organized by subspace code but also traditional

tree is generated. Two structures that one called virtual part is organized

by subspace code and the other called real part is traditional structure in

order to distinguish these structures, are de�ned.

(2) Each non-leaf node in virtual part is created corresponding to non-leaf node

in real part of tree structure, however no leaf node is created in virtual part.

If the height of real part structure is s and the level of root node is s, the

node on second level of virtual part indicates the node on �rst level of real

part (i.e. leaf node) as child pointer.

(3) In structures of R-tree family except for X-tree [BKK96] and Hilbert R-

tree [KF94], one node mainly corresponds to one page. For the SCM, since

structure of virtual part is designed that one node corresponds to one page,

one node occupies more than one page in real part. This structure leads to

larger fanout.

(4) Index keeps size and position of root node that can show MBR.

(5) Subspace code representation of virtual bounding region of child node is

calculated by virtual bounding region of current node in virtual part and

minimum bounding region of child node in the other part. In addition,

subspace code which represents virtual bounding region of grandchild is

calculated by virtual bounding region of child node and minimum bounding

region of grandchild node, recursively. In more detail, on the tree structures
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of which node contains MBRs (e.g. the R*-tree, the X-tree), subspace code

which approximates MBR is calculated by VBR of current node and MBR of

child node. On the tree structure of which node contains MBRs and MBSs

(i.e. the SR-tree), the way of making subspace code which approximates

MBR is similar to that of the R*-tree or the X-tree, and also subspace code

which approximates center point of MBS is calculated by VBR of current

node and center point of MBS of child node. For the tree structure of

which node does not include MBR (e.g. the SS-tree), minimum bounding

rectangle which contains VBS of current node is calculated at �rst, then

subspace code is computed by the calculated rectangle of current node and

center point of MBS of child node.

(6) Exceptionally, in the case that current node is root, subspace code which

represents virtual bounding region of child node is calculated by MBR of

root and minimum bounding region of child node.

(7) In search processing, virtual bounding region of child node is calculated by

virtual bounding region of current node and subspace code of child node at

every node of virtual part, and then this virtual bounding region is used for

pruning.

For the SCM, a node in virtual part has the same structure as that of real part

except for that position coordinate is coded. Figure 5.4 explains the relationship

between real part and virtual part. In Figure 5.4(a), R means MBR of root node.

Also, M1 and M2 mean MBRs in R, and MBRs M3 and M4 are contained

in M1. In this structure, V 1, V 2, V 3 and V 4 are the VBR of M1 in R, the

VBR ofM2 in R, the VBR ofM3 in V 1 and the VBR ofM4 in V 1, respectively.

Structure of virtual part are similar to that of real part as shown in Figure 5.4(b).

Figure 5.4(c) is an example of the structure of the SCM applied to the SR-tree.
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Figure 5.4. Real and virtual part in tree structure.

In this �gure, V S1 is the VBS of S1 in R, and V 1 is the VBR of M1 in R. In

the tree index node of R, that is root node, V S1 and V 1 are packed in the same

entry.
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5.5 Searching

For search processing, nodes in virtual part and leaf nodes in real part are used

in order to �nd objects and prune nodes. Virtual bounding regions are applicable

to the algorithm presented in [HS95] or [RKV95] as shown in Theorem 1.

Figure 5.5 shows nearest neighbor search algorithm using VBRs and VBSs

which is improved on the algorithm in [HS95]. In the program codes, the de�nition

of variables is omitted for brevity. In steps 11 and 12, reconstruct is the function

which calculates the virtual bounding region R for a given rectangle A and a

subspace code S, i.e.

R = reconstruct(A;S):

This algorithm has the capability to collect k nearest neighbor objects for a given

query point.

In the procedure search, root node, zero distance and the MBR of root node

are inserted into priority queue as initial values (step 1). In step 3, the node which

is closer to a query point, query, is picked out from the queue. At every visited

non-leaf node, virtual bounding regions of all child nodes are computed with

bounding rectangles of current node taken from the priority queue and subspace

code of child node by the function reconstruct (steps 11 and 12). As the distance

from query to calculated virtual bounding region, the longer distance between the

minimum distance to VBR and the minimum distance to VBS is selected (step

13). The child pointer, the distance from query to virtual bounding region and

calculated virtual bounding rectangle are inserted into the queue if this distance

is less than or equal to the distance from query to the k-th nearest neighbor

(steps 14 and 15). If visited node is a leaf node, the distance between query and

data object is computed, then object and the distance are stored into nnlist as

candidate for nearest neighbor (step 8).
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Procedure search(Point query, Integer k)

// input data(node, distance, region) into priority queue

1. queueInput(root, 0, rootrectangle);

2. while emptyQueue() = false do

3. p = queueOutput();

4. if p.distance > nnlist[k].distance then break;

5. if p.node is a leaf node then

6. for each object 2 p.node do

7. if MINDIST(query, object) � nnlist[k].distance then

8. nnlistInput(object, MINDIST(query, object));

9. else // p.node is a non-leaf node

10. for each entry 2 p.node do

11. RV BR := reconstruct(p.rectangle, entry.codeV BR);

12. RV BS := reconstruct(p.rectangle, entry.codeV BS);

13. dist = max(MINDIST(query, RV BR), MINDIST(query, RV BS));

14. if dist � nnlist[k].distance then

15. queueInput(entry.node, dist, RV BR);

16. end;

17. end;

18. report(nnlist); // output answer

end.

Figure 5.5. Nearest neighbor search algorithm.
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Here, search algorithm is explained using Figure 5.4(a) as an example. First,

VBRs V 1 and V 2 are calculated by the position coordinates of R and the subspace

codes of V 1 and V 2. If the distance from a query point to V 1 is less or equal

to the distance to the k-th nearest neighbor, VBRs V 3 and V 4 are calculated by

the position coordinates of V 1 and the subspace codes of V 3 and V 4. Similarly,

the calculated VBRs are compared with the k-th nearest neighbor. In addition,

search using bounding sphere is performed with the same algorithm.

5.6 Insertion

In the SCM, it is necessary to update both of the real and virtual parts in a

structure. Insertion for real part is similar to one for structure of R-tree family.

Since overow handling for real part and one for virtual part are the same, nodes

in virtual part are updated as keeping structure which is similar to real part.

Process for updating subspace code in virtual part will start after object insertion

at real part and overow handling of real part and virtual part is �nished. The

following description accounts for update algorithm of subspace code. In this

description, update algorithm for the tree structure is explained using the SR-

tree which contains MBRs and MBSs.

Subspace codes in nodes of virtual part corresponding to nodes whose MBR or

MBS is updated in real part must be checked. Especially, for MBR, not only the

code corresponding to updated MBR but also the code in all descendants of the

updated node must be checked, and if necessary, be updated. Update of MBR

propagates upwards. In contrast, update of subspace code propagating down-

wards is not necessarily over even the process reaches a node of which subspace

code needs no renewal. Therefore, process further propagates to lower nodes. The

reason is as follows: since a VBR whose subspace code based on relative position
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Figure 5.6. Process for making VBR

contains error, regardless of necessity to update current node, lower nodes have

possibility that the subspace code of them needs correction. Here, the reason is

illustrated using Figure 5.6. In Figure 5.6(a)(b), let rectangles A, B and C be

root node, a child node and a descendant, respectively. Also, let Vb be the VBR of

B in A with radix four and Vc be the VBR of C in Vb. As compared with Figure

5.6(a), only rectangle A is enlarged for the x-axis in Figure 5.6(b). Although the

size of rectangle B is unchanged, enlargement of rectangle A leads to enlargement

of Vb. Moreover, although the size of the rectangle C is unchanged, enlargement

of rectangle Vb leads to decrease in size of Vc. In this case, the subspace code of

Vc needs to be adjusted, despite no necessity of updating the subspace code of

Vb.

Figure 5.7 shows the algorithm for updating subspace code in detail. In this

description, calculateRegion is the function, which calculates virtual bounding

62



region of child node using rectangle of current node and minimum bounding

region of child node (steps 5, 11, 13, 18 and 20). In addition, subspace code of

child node is computed by the function calculateCode (steps 6, 12, 14, 19 and

21). In order to update subspace code, the procedure update makes use of the

insert path, path. In this procedure, routeOutput is the function which outputs

the route from root to the top node of subtree for each level on insert path where

the top node has more than one entry of which MBR is updated.

The linkages between nodes in virtual part are similar to that of real part,

and also the access of node in real part is performed together with that of the

corresponding node in virtual part. Therefore, it is easy to �nd the entry in node

of virtual part which corresponds to the entry in that of real part, and there

is no need for special or complicated operation. There is one-to-one correspon-

dence between entryreal and entryvirtual in Figure 5.7, the function correspond is

described in order to show the correspondence.

In update, �rst, subspace codes of VBSs in the entries on the route from root

to the top of subtree are updated and the VBR of the top node is calculated

(from step 1 to step 8). Secondly, the codes for VBR and VBS in the top node

of subtree is updated using the VBR of the top node (from step 9 to step 14).

Thirdly, the recursive procedure adjustCode with VBR as parameter calculated

by calculateRegion is invoked for updating code sequentially toward lower nodes.

The procedure adjustCode using calculateRegion and calculateCode calculates

virtual bounding regions and subspace code by the rectangle of current node

generated in upper node and minimum bounding region of child node, and then

subspace code is updated. Moreover, adjustCode is invoked again with VBR as

parameter and code of descendants is updated.

Owing to the reference of MBRs for checking subspace code, insertion causes

accesses to both virtual and real parts. Concerning insertion costs, the SCM
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Procedure update(InsertRoute path)

1. Rp := rootrectangle;

2. while routeReachSubtree(path) = false do

3. entryreal := routeOutput(path, realpart);

4. entryvirtual := correspond(entryreal);

5. Rs := calculateRegion(Rp, entryreal.MBS);

6. entryvirtual.codeV BS := calculateCode(Rp, Rs);

7. Rp := reconstruct(Rp, entryvirtual.codeVBR);

8. end;

// the top of subtree is reached

9. entryreal := routeOutput(path, realpart);

10. entryvirtual := correspond(entryreal);

11. Rc := calculateRegion(Rp, entryreal.MBR);

12. entryvirtual.codeV BR := calculateCode(Rp, Rc);

13. Rs := calculateRegion(Rp, entryreal.MBS);

14. entryvirtual.codeV BS := calculateCode(Rp, Rs);

// adjust the code of descendant recursively

15. adjustCode(entryvirtual.node, entryreal.node, Rc);

end.

Procedure adjustCode(VirtualNode nodevirtual, RealNode nodereal, Region Rp)

16. for each entryreal 2 nodereal do

17. entryvirtual := correspond(entryreal);

18. Rc := calculateRegion(Rp, entryreal.MBR);

19. entryvirtual.codeV BR := calculateCode(Rp, Rc);

20. Rs := calculateRegion(Rp, entryreal.MBS);

21. entryvirtual.codeV BS := calculateCode(Rp, Rs);

22. if entryreal.node is a non-leaf node then

23. adjustCode(entryvirtual.node, entryreal.node, Rc);

24. end;

end.

Figure 5.7. Update algorithm.
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needs more accesses than the structure which does not use the SCM.

In this case that the SCM applies to the SR-tree which contains MBRs and

MBSs, coding not only MBRs but also MBSs is necessary for constructing virtual

part. However, if MBR is unchanged and only center point of MBS is changed

in an entry of node, only the entry must be updated. That is, because changes

of center point of MBS in current node have no e�ect on calculating the code of

lower nodes, descendants of the node do not have to be updated.

5.7 Deletion

Deletion needs update of both parts of structure just like insertion. Process for

updating subspace code in virtual part will start after object deletion at real part

and underow handling of real part and virtual part are �nished. Deletion uses

the algorithm shown in Figure 5.7 as insertion does for updating subspace code.

While insertion and deletion cause accesses to both parts that more costs are

required than usual, searching leads to fewer disk accesses with pruning by virtual

part. More detailed discussion with experimental results will be presented in the

next chapter.

5.8 Conclusions

In this chapter, the subspace coding method (SCM) has been proposed to acceler-

ate search performance. In Chapter 4, a result which small fanout is a signi�cant

factor in decline of search performance for R-tree family, especially the SR-tree,

was obtained. The SCM is motivated by this observation. Not only the number of

non-leaf nodes but also that of leaf nodes can be reduced by increasing the fanout

of non-leaf nodes for the SCM. In the concrete, for the SCM, virtual bounding
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region covers and approximates minimum bounding region and the required stor-

age size for virtual bounding regions is smaller than that for minimum bounding

regions. This leads to higher fanout, resulting in a superior search performance.

On the one hand higher fanout causes better performance, however on the

other hand, the approximation error of non-leaf nodes leads to decline in the

power of pruning subtrees in searching. Therefore, in the SCM, the subspace code

represents the relative position of virtual bounding regions in terms of parent's

region. Large reductions in approximation error can be achieved by the relative

approximation of regions.
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Chapter 6

Performance Evaluation

6.1 Introduction

To verify the e�ectiveness of the SCM, the SCM and competitive algorithms have

been implemented and the SCM has been compared with the VA-File, the SR-

tree and the R*-tree. The SR-tree and the R*-tree were used for constructing

the real part in the SCM.

The tests were conducted under the following conditions:

� Basically, the performance is measured under the conditions described in

Chapter 2. These conditions includes: the real data sets and synthesis data

sets, all parameters such as page size and fanout of the ordinary SR-tree

and the ordinary R*-tree; and the number of nearest neighbors in queries,

which is 20.

� The length l for the subspace code varies 4, 6, 8, 10, 12 (i.e. radix q varies

16, 64, 256 1024 and 4096).

� For the evaluations of the VA-File, the most superior approximation �le

from among the three variations, l = 4, l = 6 and l = 8, is chosen according
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Table 6.1. Fanout of non-leaf nodes (the SCM).

Dimensionality

Structure
4 8 16 24 32 40 48 56

l = 4 511 340 204 146 113 92 78 68

l = 6 409 255 146 102 78 63 53 46

R*-tree l = 8 340 204 113 78 60 48 40 35

l = 10 292 170 92 63 48 39 32 28

l = 12 255 146 78 53 40 32 27 23

l = 4 227 170 113 85 68 56 48 42

l = 6 194 136 85 61 48 40 34 29

SR-tree l = 8 170 113 68 48 37 30 26 22

l = 10 151 97 56 40 30 25 21 18

l = 12 136 85 48 34 26 21 17 15

to [WSB98].

� The fanout of non-leaf node, when the SCM applied to the R*-tree and the

SR-tree, is shown in Table 6.1. Table 6.2 shows the height of the structures

of the SCM for the code length l = 8 as an example.
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Table 6.2. Height of tree structures (the SCM for l = 8).

Dimensionality

Structure
4 8 16 24 32 40 48 56

R*-tree 3 3 3 4 4 4 4 4

SR-tree 3 3 4 4 4 4 5 5

6.2 Search Performance

6.2.1 Assignment of Code Length

Code Length for the SCM

Figure 6.1, Figure 6.2 and Figure 6.3 show the comparisons of the SCM with the

VA-File, the SR-tree. In the comparisons , the code length l(2 f4; 6; 8; 10; 12g) of

the SCM which gives the best search performance for each dimension, have been

examined. For the code of length l in Figure 6.2 and Figure 6.3, the optimum

code length is l = 12 for 4 and 8 dimensions, l = 6 for dimensionality from 16 to

56.

In Figure 6.1, the code of length l = 8 for 4, 8 and 16 dimensions, l = 4

for dimensionality from 24 to 56, have been chosen. As described in Chapter

4, uniformly distributed data sets degrade search performance of tree structure

indices, especially, for high dimension. The structure using the code of smaller

length can be more pro�table on high-dimensional space since most of non-leaf

nodes in tree structure are visited. According to this observation, in contrast

to real data set and cluster data set of which data objects are distributed non-

uniformly, the SCM has the disposition that the structure using the code of

smaller length saves more page accesses in uniformly data set.
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Figure 6.1. Number of page accesses with varying dimensionality for search (Uni-

form random data).

Code Length for the VA-File

For the VA-File, the most superior approximation �le from among the three

variations, l = 4, l = 6 and l = 8, is chosen. In the experience with real data

set, l = 8 is chosen for dimensionality from 4 to 8 and l = 6 is the best for

dimensionality from 16 to 56. In connection with cluster data set, the optimum

code length is l = 6 for all dimensions. And also, in Figure 6.1 by uniformly

distributed data set, the code of length l = 6 for 4 and 8 dimensions, l = 4 for

dimensionality from 16 to 56, have been chosen.

For uniformly distributed data set, each object which consists the data set

is stored in the corresponding cell and distributed uniformly. Therefore, the

mechanism of the VA-File has the suitability for uniformly distributed data and
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Figure 6.2. Number of page accesses with varying dimensionality for search (Real

data).

it shows high performance on the data as presented in these �gures. The code of

small length is preferred by the VA-File since uniformly distributed data objects

are pruned e�ciently by not only close approximation but also crude one.

On the other hand, for real data or cluster data, many objects can be assigned

to one cell since the distribution is non-uniform. The �lter step with crude

approximation in the VA-File can not prune objects e�ectively, thus, non-uniform

data sets make the mechanism of the VA-File choose longer code than uniform

data sets do. Non-uniform distribution leads to lowering performance in the VA-

File as a result. For instance, Figure 6.1 shows almost 1060 page accesses for

uniform data, however, Figure 6.2 and Figure 6.3 show almost 1250 page accesses

for non-uniform data in 56 dimension.
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Figure 6.3. Number of page accesses with varying dimensionality for search (Clus-

ter data).

6.2.2 Experimental Results

As Figure 6.1 presents, the SCM outperforms the SR-tree, however, it is inferior

to the VA-File for uniformly distributed data sets. In contrast to the data sets,

on Figure 6.2 by real data set and Figure 6.3 by cluster data set, the superiority

of the SCM can be con�rmed in all data sets ranging in dimensionality from 4

to 56. Although the performance of SR-tree degenerates in high dimensionality,

the SCM has superiority over the VA-File. For example, the SCM achieves about

62.0 % (74.7 %, resp.) saving over the SR-tree in 40 (56, resp.) dimension and

71.9 % saving over the VA-File in 56 dimension on real data set. The SCM is

highly e�ective for non-uniformly distributed data as real data in particular, and

it can support content-based retrieval powerfully.
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Figure 6.4. Number of page accesses with varying dimensionality for the R*-tree

and the SCM (Real data).

In addition, the SCM is also e�ective when applied to the R*-tree. In this

case, the SCM achieves about 32.4 % saving in 8 dimension and 46.0 % saving in

56 dimension over the ordinary R*-tree as shown in Figure 6.4. Next section is

described the reason for the superiority of the SCM in detail.

6.3 Superiority of the SCM

6.3.1 Superiority of the SCM over the VA-File

First, the reason of the superiority of the SCM over the VA-File is explained.

Approximation of position coordinate is the common idea of the VA-File and

the SCM. However, the data structures and the algorithms of the VA-File and
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Figure 6.5. Number of non-leaf accesses with varying dimensionality for search.

the SCM are completely di�erent, which results in much di�erence in search

performance. The approximation calculated in terms of bounding region of parent

nodes in the SCM has strati�ed architecture, which is in clear contrast to the

approximation computed by the whole search space in the VA-File. That is, in

the SCM, the approximation error becomes smaller as nodes become closer to

leaves; consequently, the number of leaf accesses becomes smaller and the search

cost is reduced.

6.3.2 Superiority of the SCM over the SR-tree

The comparison of the SCM with the original SR-tree is described as follows.

Figure 6.5 and Figure 6.6 show the node accesses of the SCM and the SR-tree.

As shown in Figure 6.5, the accesses of non-leaf nodes in the SCM are remarkably

saved when compared with the SR-tree. Moreover, the di�erence between two
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Figure 6.6. Number of leaf accesses with varying dimensionality for search.

curves grows as dimensionality increases. The reason is obvious from the second

and third indications in Chapter 4. Storage cost of virtual bounding regions is

small in connection with virtual part for search processing and this property for

virtual bounding regions carries two advantages. One is the decrease in volume

of non-leaf nodes and it leads to lower number of page accesses. The other is the

increase in fanout. As a result, pruning capability is improved and accesses of

non-leaf node are saved in tree structure as described in Chapter 4.

Moreover, Figure 6.6 shows that the SCM is superior to the SR-tree in leaf

accesses. Although virtual bounding regions calculated by subspace code include

error in size which causes lowering performance, increase in fanout of non-leaf

nodes as shown in Table 6.1 leads to higher pruning capability. The e�ect of

increase in fanout is larger than that of error for virtual bounding regions, and

as a consequence not only non-leaf accesses but also leaf accesses are saved.
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Figure 6.7. CPU-time for search with varying dimensionality.

6.3.3 Evaluation for CPU-time

Figure 6.7 shows measured the CPU-time for the VA-File, the SR-tree and pro-

posed method, the SCM. For the SCM and the VA-File, CPU-time is measured

under the same conditions as Figure 6.2. Since the VA-File requires calculating

approximated position coordinates for all objects, the CPU-time is much higher

as shown in Figure 6.7. On the other hand, although the SCM needs to calcu-

lation of virtual bounding regions by subspace codes, the CPU-time of the SCM

is lower than the VA-File. The lower CPU-time is achieved by high pruning

capability for the SCM. For the comparison of the SCM with the SR-tree, al-

though the performance of the SCM is almost equal to that of the SR-tree up

to 40, the SCM is highly superior to the SR-tree in 48 and 56 dimensions. In

each node access, the distance of all entries contained in the node from a query
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Figure 6.8. Total search time with varying dimensionality.

point, is calculated and inserted in priority queue, then the queue is sorted for

the SCM and the original SR-tree. And also, unnecessary nodes are pruned using

the queue. Since the number of node accesses is extremely low, calculations and

comparisons of the distance from a query point are saved. Therefore, the SCM is

fast for CPU-time although the SCM needs the calculation that bounding region

is created from subspace code.

In addition, the SCM is more superior than the other methods, the VA-File

and the SR-tree, relative to page accesses as shown in Figure 6.2. To discuss

the total search time, Figure 6.8 is presented as the measurement based on the

page access time which realistic system values is 25 ms in [BKK96]. Figure 6.8

shows prominent superiority of the SCM which achieves about 57.9 % saving in

40 dimension and 71.9 % saving in 56 dimension over the SR-tree, and also 72.3

% saving in 56 dimension over the VA-File.
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Figure 6.9. Number of page accesses with varying data set size for search.

6.3.4 Comparing with Varying Data Set Size

Figure 6.9 and Figure 6.10 show the comparisons of the SCM and the SR-tree

for 56-dimensional data sets with varying the size from 20,000 to 100,000. Figure

6.9 shows the improvement of the page accesses which the SCM reaches 67.8 %

saving for size 20,000 and 74.7 % saving for size 100,000. And also, on CPU-time,

Figure 6.10 shows highly superiority of the SCM, especially, for larger size of data

set. That is, since the performance of the SCM is more desirable as data size

grows, this property is appropriate for large multimedia databases.
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6.4 Inuence of Code of Variable Length on

Search Costs

In this section, new observation from measurement with code of variable length

is presented.

6.4.1 Approximation Error for Code of Variable Length

Figure 6.11 shows approximation error for VBRs against the number of dimen-

sionality, in the SCM whose code of length l = 4, l = 8 and l = 12, where

dimensionality is varied from 4 to 56 and data size is 100,000. Note that a log-

arithmic scale of the y-axis in this �gure. The approximation error � of tree
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structures is calculated as follows:

� = (r � 1) � 100

r =
1

P � n

PX
i=1

nX
j=1

Vij

Rij

;

where P is the number of non-leaf nodes and n is dimensionality. Vij
and Rij

are the length of edge on dimension j for the i-th VBR and the i-th MBR,

respectively.

In Figure 6.11, di�erences of approximation error arise between the structures

for l = 4, l = 8 and l = 12. In these structures, the edge length of VBRs for the

virtual part of l = 4 is two times as large as that of MBRs for the real part. The

error lowers pruning capability for search.

On the other hand, in spite of the code of small length, the structure of l = 8

has only about 3 % error. Since the approximation error is small, the structure
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Figure 6.12. Number of page accesses with varying code length for search.

of l = 8 can reduce the inuence of error on calculating the distance between a

query point and regions, and then node pruning in the search algorithm does not

reect the inuence of approximation error in this case.

6.4.2 Search Cost for Code of Variable Length

Figure 6.12 shows the number of page accesses against the number of dimension-

ality, for the SR-tree and each of 4, 8 and 12 bits as length of subspace code l in

the SCM, where dimensionality is varied from 4 to 56 and data size is 100,000.

Figure 6.13 and Figure 6.14 show the number of accessed non-leaf nodes and leaf

nodes under the same condition.

The structures l = 8 and l = 12 outperform the original SR-tree for non-

leaf nodes, leaf nodes, and page accesses. In contrast to these structures, l = 4
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Figure 6.13. Number of non-leaf accesses with varying code length for search.

requires higher cost than the SR-tree only for leaf accesses shown in Figure 6.14.

For non-leaf accesses shown in Figure 6.13 , the structure l = 4 achieves low cost

similar to the structures, l = 8 and l = 12, although l = 4 needs high cost for leaf

accesses. As a result of considerable low non-leaf accesses, l = 4 o�ers low cost

for page accesses and desirable search performance besides l = 8 and l = 12.

There are the following two competing factors which inuence search per-

formance relative to length of subspace code. First, constructing rectangles by

shorter code decreases the representation cost on position and size, and leads to

larger saving e�ect and higher performance. Secondly, VBRs and VBSs gener-

ated by subspace code include error in size that is larger as code length decreases

and causes lower performance. These factors cause to unusual appearance in two

�gures, Figure 6.12 and Figure 6.14. That is, although the number of visited

leaf nodes in length l = 4 is remarkably high in comparison with that of the SR-
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Figure 6.14. Leaf node accesses with varying code length for search.

tree on account of error of VBRs and VBSs, the structure of l = 4 outperforms

the original SR-tree in page accesses. This reason is that representation cost of

VBRs and VBSs is low; consequently, structure of virtual part takes small size

and larger fanout. In spite of the result that the curves of l = 8 and l = 12 are

relatively similar to that of the SR-tree in Figure 6.14, the searching costs are

lower in Figure 6.12. These things make it clear that virtual bounding regions of

l = 8 and l = 12 contain few errors; consequently, lower representation cost leads

to high performance.

It follows from what has been said that the e�ect of lower representation cost

for subspace code and the mechanisms accompanied by subspace code overcomes

the inuence of code error, and it leads to saving of page accesses and larger pro�t

in the SCM.
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Figure 6.15. Number of page accesses with varying dimensionality for insertion.

6.5 Insertion Cost

Figure 6.15 shows a comparison of the SCM with ordinary SR-tree regarding

insertion cost. The code length of the SCM in Figure 6.15 is the same as that

of Figure 6.2. Insertion cost is measured as the average cost of inserting 1,000

randomly-selected objects. In this experiment, random objects have been used,

since inserted objects are usually unpredictable in practical situation.

The SCM requires larger insertion cost than the SR-tree. In concrete, the

increment of insertion cost for size 100,000, in average, is about 3 times in terms

of the SR-tree for dimensionality from 16 to 56. For page accesses, if node split

or forced reinsert does not occur, insertion cost of the SR-tree is equal to the

height of tree, which implies only nodes on one insertion path are visited. In the

SCM, it is necessary to access both real part and virtual part for maintenance of
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structure and access real part for checking subspace code in virtual part. Hence

the SCM incurs higher cost than the original tree structure.

However, in many cases, reducing search cost in multimedia databases has

higher priority than reducing insertion cost. Thus, this method that can reduce

search cost �ts to the use in many practical situations.

6.6 Storage Cost

One of the strength of the SCM is low storage cost. Figure 6.16 shows a

comparison of the storage cost of the SCM and the SR-tree under the same

condition as Figure 6.2. In this �gure, the storage cost of the SCM includes both

the real and virtual parts. When compared with the SR-tree, the SCM incurs

similar storage cost for dimensionality from 4 to 40, and achieves 18.9 % saving
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for 56 dimension. The storage cost of the SCM is low in spite of the structure

that contains real and virtual part.

There are three reasons. First, the structure of virtual part does not include

nodes corresponding to leaf nodes in real part. Secondary, the volume of virtual

part is small. Thirdly, the number of non-leaf nodes in the SCM is extremely

small on account of larger fanout. Since the storage cost and the search cost are

low, the SCM is useful for various applications with content-based retrieval.

6.7 Conclusions

In this chapter, the performance of the SCM is compared with that of the com-

petitive spatial search methods, the VA-File, the original SR-tree and the original

R*-tree. For the comparisons, uniformly distributed data sets and real data sets

and cluster data sets are used.

For the SCM and the VA-File, approximation of position coordinate is the

common idea of these methods. However, the approximation calculated in terms

of bounding region of parent nodes in the SCM has strati�ed architecture, which

is in clear contrast to the approximation computed by the whole search space

in the VA-File. As shown in the experiment, the approximation error becomes

smaller for the SCM, thus, the search cost is markedly reduced.

Storage cost of subspace code for creating virtual bounding region is small.

Since the volume of non-leaf nodes decreases, the number of page accesses for

non-leaf nodes also declines. In addition, pruning capability for search grows on

account of increase in the fanout for non-leaf nodes. The SCM achieves higher

search performance than the original SR-tree for the advantages.

The SCM is an index scheme that applying to R-tree family using minimum

bounding regions. Various dynamic index structures are discussed in this disser-
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tation. By contrast dynamic index structure whose insertion or deletion cost is

low, static structures are un�t for cases not only search cost but insertion cost

is considered important. However, static structures can cut down search cost

exceedingly.

The VAMSplit R-tree [WJ96a] is one of static structures. Since inspection

of whole information for the position of each data object is required by this

method, the use of this method is restricted within narrow limits that are cases

where the volume of data set is small and the frequency of the update of database

is low, however, its search performance is high. In the construction algorithm of

the VAMSplit R-tree, a data set is partitioned into two child sets recursively by

information on the position of each data object. The algorithm for constructing

tree structure is similar to that of the k-d tree [Ben75]. The hyperplane which

is orthogonal to the dimension with the higher variance, is a split plane. Unlike

dynamic index structures, minimum bounding rectangles corresponding to entries

in a node are calculated from the top node to the leaf nodes in the structure of

the VAMSplit R-tree. [WJ96a] shows that the VAMSplit R-tree outperforms the

R*-tree and the SS-tree for search performance. In [KS98], the static structure

for the SR-tree is constructed by the algorithms, [Ben75] and [WJ96a], and it

achieves high search performance. The SCM can use the algorithms, and it may

be that the static structure for the SCM overcomes the dynamic one.

In addition, the evaluations of search performance in this dissertation are

based on Euclidean distance. On the other hand, since spatial search based

on general quadratic distance is useful [HSE+95] [ISF98], search algorithms for

e�cient processing of ellipsoid queries using tree structures have been proposed

[SK97] [ABKS98] [Ish99]. These algorithms based on general quadratic distance

can be also applied to the SCM and they may function e�ectively on the SCM.

The evaluation of search performance of the SCM on general quadratic distance
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is important issue.
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Chapter 7

Conclusions

7.1 Discussion and Conclusions

In this dissertation, spatial search methods for high-dimensional data have been

discussed. And furthermore, the SCM, the subspace coding method has been

proposed for high-dimensional spatial search, then the superiority of the SCM is

presented through performance evaluations with some di�erent conditions.

In Chapter 4, R-tree family and the VA-File that are useful spatial search

methods has been analyzed. Although the VA-File shows superior performance

for uniformly distributed data sets, the search cost slightly increases for non-

uniformly distributed data sets that include real data sets and cluster data sets.

By contrast, R-tree family degrades search performance for high-dimensional and

uniformly data sets, however, good performance is achieved as non-uniformly

data sets are used. For non-uniformly distributed data sets, especially, SR-tree

overwhelms the R*-tree and o�ers better performance than the VA-File up to

40 dimension on account of high pruning capability using its non-leaf nodes.

Despite the fact that the SR-tree is good at non-uniformly data, it degrades as

dimensionality grows. In 48 dimension or higher, the SR-tree is inferior to the
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VA-File. Through detailed analysis, it makes clear that large volume of non-leaf

nodes in the SR-tree causes to increase page accesses and degrades the search

performance.

In Chapter 5, the subspace coding method (SCM) is proposed. The SCM

is able to solve the problem discussed in Chapter 4 and achieves highly search

performance. Subspace code in the SCM is represented by relative positions in

terms of parent node. Virtual bounding regions are constructed based on the

subspace codes. One important feature of the SCM is the relative approximation

of regions. Unlike the approximation of absolute vector positions used in the

VA-File, the subspace code represents the relative position of regions in terms of

parent's region. This leads to extremely small approximation error, resulting in

a superior search performance. Moreover, the relative representation in the SCM

is e�ective for non-uniformly distributed vectors.

Chapter 6 shows that the algorithms for search and update using virtual

bounding regions achieve higher searching performance than ordinary methods,

the VA-File and the SR-tree, through the performance test. Experimental results

with real data set of which size is 100,000 show that the SCM outperforms the

SR-tree with reductions of 74.7 % and the VA-File with reductions of 71.9 % for

dimensionality 56.

The SCM is orthogonal to any other method using minimum bounding region

like as R-tree family in the �eld of spatial search. That is, the SCM is applicable

to all structures and algorithms that use minimum bounding region (i.e. the R-

tree, the R*-tree, the X-tree, the SR-tree and so on), and it causes improvement

of search performance.

Subspace code approximates a minimum bounding region, however, results

as searching is not approximate solution, that is, the SCM �nds desired objects

without missing out. The search performance is greatly improved by the SCM, on
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top of that, the storage cost is low. Thus, this method �ts to the use in practical

situation.

7.2 Future Work

In this dissertation, the SCM is proposed and the superiority of the SCM is

presented, and then various spatial search methods are discussed. However, there

still remain some issues. In the following, such issues are discussed.

7.2.1 Cost Model for the SCM

First issue is to provide cost model for accurate estimates of search cost on the

SCM. For nearest neighbor query, various cost models have been proposed so

far [FBF77] [Cle79] [BBKK97] [LCC99]. Cost models of index structure are

serviceable for estimates of execution time on search, optimizing the parameters

of structures and query optimization. Although the models proposed in [FBF77]

and [Cle79] are un�t for the estimate on high-dimensional spatial search, the

model of [BBKK97] which takes boundary e�ects into account and therefore also

works in high dimensions. Moreover, [LCC99] presents successful model for cost

estimation of k-nearest neighbor queries.

In connection with the SCM, a new model is required for the estimation of

search execution time and optimizing code length as the parameters of index

structure. In order to elaborate accurate model, two factors, approximation error

in virtual bounding region and e�ect of increasing fanout by coding, should be

considered.
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7.2.2 Spatial Queries Based on Elliptical Distance

The evaluations of search performance in this dissertation are based on Euclidean

distance. On the other hand, since spatial queries based on general quadratic

distance are useful [HSE+95] [ISF98], search algorithms for e�cient processing

of ellipsoid queries using tree structures have been proposed [SK97] [ABKS98]

[Ish99]. These algorithms based on general quadratic distance can be also applied

to the SCM and they may function e�ectively on the SCM. Moreover, the SCM

may be superior to other methods on elliptical distance like the superiority of

the SCM for search performance on Euclidean distance. The evaluation of search

performance of the SCM on elliptical distance is important issue.
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