
NAIST-IS-DT0061207

Doctor’s Thesis

Text Categorization

using Machine Learning

Hirotoshi Taira

February 5, 2002

Department of Information Processing

Graduate School of Information Science

Nara Institute of Science and Technology

Doctor’s Thesis

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

DOCTOR of ENGINEERING

Hirotoshi Taira

Thesis committee: Yuji Matsumoto, Professor

Hiroyuki Seki, Professor

Shin Ishii, Professor

Text Categorization

using Machine Learning∗

Hirotoshi Taira

Abstract

With the rapid spread of the Internet and the increase in on-line information,

the technology for automatically classifying huge amounts of diverse text infor-

mation has come to play a very important role. In the 1990s, the performance

of computers improved sharply and it became possible to handle large quantities

of text data. This led to the use of the machine learning approach, which is a

method of creating classifiers automatically from the text data given in a cate-

gory label. This approach provides excellent accuracy, reduces labor, and ensures

conservative use of resources.

This paper discusses the following three points related to text classification

using machine learning.

1. How to perform highly precise classification by using a large number of word

attributes (Chapter 3).

2. How to utilize the distribution of unlabeled examples for high precision

when there are few labeled training examples (Chapter 4).

3. How to achieve a highly precise and efficient classification by assuming the

existence of sub-categories and using active labeling (Chapter 5).

∗ Doctor’s Thesis, Department of Information Processing, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DT0061207, February 5, 2002.

i

ABSTRACT ii

Before discussion of the above three points, I describe the present state of

text classification technology in Chapter 1. In Chapter 2, I briefly explain a

mathematical definition of text classification and the data set used in this paper,

as well as the evaluation method, and the feature selection method.

In Chapter 3, text classification using a support vector machine is described.

Many word features are generally required to perform highly precise text classifi-

cation by machine learning. However, when many word features are used as the

input of conventional learning techniques, they overfit the training data, and the

classification accuracy for unknown data decreases.

Therefore, it is necessary to reduce the dimension of features used in learning

by selecting about several hundred features which contain much information.

However, it is difficult for the classifier to learn with a high enough accuracy from

several hundred features. Consequently, text classification is performed by using

a support vector machine, which is a new machine learning technique developed

to avoid overfitting. Furthermore, when the support vector machine is used, it

evaluates whether feature selection would be effective.

In Chapter 4, text classification using transductive boosting is described.

Large margin classifiers such as support vector machines and boosting algo-

rithms are effective in generating classifiers with a high classification accuracy

when training data is fully available. However, training data is not sufficiently

available in many cases because we have to label the training data by hand and

the cost of this is high.

Transduction is a method that takes into consideration the distribution of the

unknown data for which a classification label is not given. I investigate trans-

duction as a solution for text classification when training data is not sufficient.

Specifically, I propose how to use the transductive method with the boosting

algorithm, AdaBoost.

In Chapter 5, text classification using the extended tied mixture model is

described. We can often assume a potential sub-category for a given category,

for example, the “sports” category could have the sub-categories “baseball” and

“soccer.” I describe such categorization in this thesis. Furthermore, when there

is little training data, a small number of unknown data regarded as important

ABSTRACT iii

for classification are mechanically chosen and the “active labeling” technique is

applied. This technique efficiently creates a highly precise classifier by assigning

the categories for a small number of data by hand.

Finally, in Chapter 6, I conclude this paper and describe future work and

directions.

Keywords:

natural language processing, machine learning, stochastic information, text cate-

gorization, support vector machine, boosting, extended tied mixture model, EM-

algorithm, transduction, feature selection

Acknowledgements

I would like to express my sincere appreciation to Professor Yuji Matsumoto

of Nara Institute of Science and Technology for supervising this dissertation.

I appreciate the continuous support and timely advice he has given me. His

encouragement helped shape the direction of my work.

I would like to express my gratitude to the members of my dissertation com-

mittee: Professor Hiroyuki Seki and Professor Shin Ishii of Nara Institute of

Science and Technology for their valuable suggestions and helpful comments.

I am deeply indebted to Dr. Masahiko Haruno of ATR. Since the day I

joined the NTT Communication Science Laboratories (NTT CS Labs.), he has

continuously encouraged me and generously guided me on the fundamentals of

natural language processing as well as machine learning. Without his guidance,

this thesis would not have been written.

I would like to express my gratitude to Associate Professor Tsuneaki Kato

of University of Tokyo, our former group leader. He supported my research and

helped me with various aspects.

I am also indebted to Dr. Naonori Ueda of NTT Communication Science

Laboratories. He has continuously encouraged me and generously guided me on

probabilistic mixture models.

I am grateful to my colleagues in the Computational Linguistics Laboratory

at Nara Institute of Science and Technology. They stimulate me and give me

valuable comments.

I completed this thesis at the Intelligent Communication Laboratory (ICL)

of NTT CS Labs. I would like to give my appreciation to Dr. Ken’ichiro Ishii,

v

ACKNOWLEDGEMENTS vi

Director of NTT CS Labs., Dr. Noboru Sugamura, Vice-director of NTT CS

Labs., Mr. Toshifumi Yamaki and Dr. Toshiro Kita, the former Director of the

ICL and Dr. Shigeru Katagiri, Director of the ICL, for providing me with the

opportunity to complete my thesis here at NTT CS Labs.

I wish to thank my colleagues in the ICL, especially Dr. Eisaku Maeda,

our group leader and Dr. Yutaka Sasaki. Dr. Maeda supported me and gave me

valuable comments. Dr. Sasaki encouraged me and discussed many problems with

me. My appreciation also goes to Dr. Hideki Isozaki, Mr. Mitsunori Matsushita,

Mr. Tsutomu Hirao, Mr. Hideto Kazawa and members of the ICL. Especially,

Mr. Hirao and Mr. Kazawa encouraged me to work and research.

I would also like to thank Mr. Takefumi Yamazaki, a former member of the

ICL of NTT CS Labs. He suggested to me how to utilize the text corpus and gave

me some text data he processed when I began my research of text categorization.

Special thanks are also due to all of the people who gave me valuable commnets

and continuous encouragement. They include Jun’ichi Tsujii, Masaaki Nagata,

Gunnar Rätsch, Torsten Joachims, Hang Li, Kazumi Saito, Francis Bond, Jun

Muramatsu, and Takafumi Mukouchi. Although I cannot list all of their names,

I would like to express my thanks all of them.

Finally, I wish to thank my parents for their continuous encouragement and

support.

Contents

Abstract i

Acknowledgements v

1 Introduction 1

2 Text Categorization 7

2.1 A mathematical definition of the text classification task 7

2.2 Data Set . 9

2.3 Feature Selection . 10

2.3.1 Mutual Information . 10

2.3.2 Part of Speech . 11

2.3.3 Evaluation Method . 12

3 Text Categorization Using Support Vector Machines 15

3.1 Support Vector Machines . 15

3.2 Experimental Results . 19

3.2.1 Experimental Setting . 20

3.2.2 Mutual Information Filtering 20

3.2.3 Part-of-Speech Filtering 22

3.3 Summary . 23

4 Text Categorization Using Transductive Boosting 31

4.1 Boosting . 31

4.2 Transductive Methods and Text Categorization 34

4.2.1 Transductive method used in TSVM 34

vii

CONTENTS viii

4.2.2 Explanation of Boosting using Gradient Descent

Methods . 35

4.2.3 Transductive Boosting Method 36

4.3 Experimental Results . 40

4.3.1 Experimental Settings . 40

4.3.2 Relation between Number of Training Data and

Accuracy . 40

4.4 Summary . 43

5 Text Categorization Using Extended Tied Mixture Models 45

5.1 Extended Tied Mixture Models 45

5.2 Bayesian Learning Algorithm . 47

5.3 Active Labeling . 48

5.4 Experiments . 50

5.5 Summary . 52

6 Conclusions 53

6.1 Summary . 53

6.2 Future Directions . 55

Bibliography 57

List of Publications 61

List of Figures

2.1 Vector representation of two documents. 8

3.1 Support Vector Machines. 16

3.2 Recall with MI features on C4.5 (top) and on SVMs (bottom). . . 25

3.3 Precision with MI features on C4.5 (top) and on SVMs (bottom). 26

3.4 Recall with POS features on C4.5 (top) and on SVMs (bottom). . 29

3.5 Precision with POS features on C4.5 (top) and SVMs (bottom). . 30

4.1 Boosting. 32

4.2 AdaBoost algorithm . 33

4.3 TSVM (a) and Transductive Boosting (b). 34

4.4 Effect of unlabeled samples. 39

4.5 F-measure and the number of training data. 44

4.6 F-measure and the ratio of positive and negative examples in the

training data. 44

5.1 Recognition error rates of QBC-based method and proposed method 51

ix

List of Tables

2.1 RWCP corpus for training and test. 9

2.2 Words selected with MI. 13

2.3 POS distribution of training data. 14

3.1 F-measures with MI on C4.5. 20

3.2 F-measures with MI on SVMs. 24

3.3 F-measures with POS filtering on C4.5. 27

3.4 F-measures with POS filtering on SVMs. 28

4.1 F-measure for the number of training data (Transductive Boosting). 41

4.2 F-measure for the number of training data (Boosting). 42

xi

Chapter 1

Introduction

With the rapid growth of the Internet, it has become natural that we handle a

text not as printed but as online information. Today, we can search books and

news electronically. Almost all companies and individuals have their own web

pages and dispatch their information. When there is some information to find,

it is usual to search for the information on the Internet. In this way, a lot of

information has become open to the public.

If you have much information, you would need to classify it. When the scale of

the target is small or the target is written by yourself, it is possible to classify it.

However, in the current situation that many and ordinary people electronically

post a lot of texts to the Internet, it is becoming impossible to classify them by

hand. Then, it is necessary to classify text information automatically into various

fields.

Moreover, new services that have never been considered before appeared along

with the growth of online information. They include mail filters, web filters, and

online help desks. Mail filters shut out unsolicited business e-mails or spam e-

mails sent to many unspecified persons, by classifying e-mail into “ordinary mail”

or “spam mail.” Web filters mainly prevent children from accessing undesirable

website content, such as violence and pornography, by classifying web sites into

“harmless” or “detrimental” categories. Online help desks that distribute elec-

tronic mails from customers to operators may belong to a very special field. Text

classification technology is essential to these services.

1

CHAPTER 1 2

In looking back upon the historical development of text classification technol-

ogy, we find that the rule-base approach, i.e., the method of writing classification

rules, was mainly used until the second half of the 1980s. This approach is simple

but difficult to create rules by hand for high accuracy, and have to write many

rules, as we change the domains. However, in the 1990s, the performance of

computers improved rapidly and it became possible to handle a great amount of

text data. This led to the use of the machine learning approach, which creates

classifiers automatically from the text data which were previously labeled with

categories by hand. This approach became popular because of its high classifica-

tion accuracy, reduction of labor, and conservative use of resources.

Various machine learning methods have been applied to text categorization

until today. These include k-nearest-neighbor [Yang94], decision trees [Lewis94]

and naive-Bayes [Lewis94]. Using a large number of words as features in these

methods, which can potentially contribute to the overall task, is a challenge into

machine learning approaches. More specifically, the difficulties in handling a large

input space are twofold:

• How to design a learning algorithm with an effective use of large scale

feature spaces.

• How to choose an appropriate subset of words for effective classification.

These two factors are interdependent [Yang97]. We should develop learning

machines with feature selection criteria because the suitable set of words greatly

differs depending on the learning method [Lewis94].

Support Vector Machines (SVMs) [Vapnik95] [Cortes95] construct the opti-

mal hyperplane that separates a set of positive examples from a set of nega-

tive examples with a maximum margin. A margin is intuitively the distance

from a data point to the classification boundary. SVMs have been shown to

achieve a good generalization performance for a wide variety of classification prob-

lems that require large-scale input space, such as handwritten character recogni-

tion [Vapnik95] and face detection [Osuna98].

Two studies have explored the use of SVMs for text categorization [Joachims98]

[Dumais98]. Although they both achieve promising performances, they use com-

CHAPTER 1 3

pletely different feature (word) selection strategies.

In [Joachims98], words are considered features only if they occur in the train-

ing data at least three times and if they are not stop words such as “and” and “or.”

This approach, then, employs the inverse document frequency (IDF) [Salton88]

as a value for each feature. In contrast, [Dumais98] considers only 300 words

for each category, which are handled by a threshold for high mutual informa-

tion [Cover91]. The feature value in this case is assigned as a binary value to

indicate whether a word appears in a text or not. A natural question about SVM

text categorization occurs to us: how much influence do different feature selection

strategies have? Is there one best strategy for choosing appropriate words?

Feature selection becomes especially delicate in agglutinative languages such

as Japanese and Chinese because in these languages word identification itself is

not a straightforward task. Unknown words output by word-segmentation and

part-of-speech tagging systems contain both important keywords (like personal

and company names) and useless portions of words. The selection of these un-

known words is crucial to these languages.

To address these questions, this thesis investigates the effect of prior feature

selection in SVM-based text categorization using Japanese newspaper articles.

In our experiments, the number of input spaces was gradually increased by two

distinct criteria: mutual information (MI) filtering and part-of-speech (POS)

filtering. MI filtering selects discriminating words for a particular category from

an information-theoretical viewpoint. Words with higher mutual information are

more highly representative in a specific text category. In contrast, POS filtering

constructs word input space based on parts of speech.

SVMs [Joachims98] [Dumais98] [Taira99] have been applied to text categoriza-

tion with remarkable success. However, the inductive approach cannot guarantee

a sufficiently high accuracy when there is a great difference between the train-

ing and test data distributions. This problem becomes extremely serious if the

amount of training data is small. This is often the case under many practical

conditions such as the classification of on-line Internet texts. Therefore, it is

reasonable to utilize the distribution of unlabeled test data for training as well

as the distribution of a small number of labeled training data. Nigam et al.

proposed an EM-based method with naive-Bayes to take account of the distribu-

CHAPTER 1 4

tion of test data under the condition where there is a small amount of training

data [Nigam00]. Although the method shows substantial improvement over the

performance of the standard naive-Bayes classifier, one of its limitations is the

tendency to fall into a local optimum.

In contrast, Joachims adapted a transductive method to SVMs [Joachims99]

and obtained an improvement in classification performance．Transduction is a

general learning framework that minimizes classification errors only for the test

data, while induction tries to minimize classification errors for both the training

and test data [Vapnik98]．Transductive SVM (TSVM) achieves a high perfor-

mance by assuming that the portion of unlabeled examples to be classified into

the positive class is determined by the ratio of positive to negative examples in

the training data. Nevertheless, the possibility of a decrease in performance re-

mains under different but typical conditions when the ratio of positive to negative

examples in the training data is very different from that in the test data, e.g.,

when a classifier, which learned from articles in 1995, is applied to classify articles

related to the Internet in 2000.

The boosting algorithm, AdaBoost [Freund97] is an alternative large margin

classifier to SVM also recently noted for its high generalization ability in NLP

applications [Haruno99] [Schapire00]. It produces highly accurate classification

rules by combining a number of weak hypotheses, each of which is only mod-

erately accurate. The advantage of AdaBoost over SVM is that we can choose

any classifier suitable for our own classification applications. Since the original

AdaBoost is an inductive learning method, I propose here a novel transductive

boosting algorithm to cope with a small number of training data; in particular,

under the condition where the ratio of positive to negative examples greatly dif-

fers between the training and test data. The experimental results demonstrate

that the proposed algorithm not only outperforms SVM and AdaBoost, but is

also comparable and sometimes superior to TSVM. The advantage of the method

is significant when the number of training data is small and the ratio of positive

examples to negative ones in the training data is different from that in the test

data. These results confirm that the usefulness of the transductive approach is

not limited to SVM but is also effective with a variety of learning methods.

For statistical classifier design using a large number of unclassified text exam-

CHAPTER 1 5

ples and sub-categories, I also apply a probabilistic model, called an Extended

Tied Mixture (ETM) model [Ueda01], with a Bayesian learning algorithm. I also

apply a confidence-based “active labeling” method [Ueda01] for text categoriza-

tion to efficiently select informative samples for labeling. The usefulness of the

method is assessed through experimental results.

Recently, based on probabilistic classifier design, several methods using a large

number of unlabeled samples gathered at little cost have been proposed to over-

come the small sample size problem [Shahshahani94][Miller97][Nigam00]. Before

those methods were developed, McLachlan et al. [McLachlan87] originally for-

mulated this kind of problem as partial nonrandom classification. In this thesis,

to overcome this small sample size problem, I utilize ETM models, which are nat-

ural extensions of McLachlan’s basic model, for text categorization. In addition,

we can often assume a potential sub-category for a given category, for exam-

ple, the “sports” category could have the sub-categories “baseball” and “soccer.”

The ETM models also contain the idea of latent sub-categories. Furthermore, I

consider the issue of how we should select informative samples for new labeling

from unlabeled samples to be an important practical problem. Active labeling is

required when the number of labeled samples is initially too small or the current

classification performance is unsatisfactory. This active labeling technique is es-

sentially different from conventional active learning for pattern recognition (e.g.,

[Cohn96]) in the sense that the label information is completely missing.

Chapter 2

Text Categorization

2.1 A mathematical definition of the text clas-

sification task

The text classification task is defined as the automatic classification of a document

into two or more predefined classes. Generally, in the text classification task, a

document is expressed as a vector of many dimensions,

x = (x1, x2, . . . , xl).

Each feature of a document vector has two values: whether a certain word

appears in the document and the real value that is weighted by a suitable method,

for example, TF-IDF.

For example, the following two documents,

“All-star game will be held in Boston” (document 1)

and

“Chess is the champion of games” (document 2)

are expressed as x1, x2 (Fig. 2.1)

using the four word features “all-star”, “Boston”, “chess” and ”game”.

In the example above, the document is expressed by a 4 dimensional feature

vector. However, it is desirable to use at least 10,000 features, or as many as

possible, to classify various documents at a high accuracy. However, when most

7

CHAPTER 2 8

“all-star” “Boston” “chess” “game”

document 1 (x1) 1 1 0 1

document 2 (x2) 0 0 1 1

Figure 2.1: Vector representation of two documents.

machine learning techniques are used, having many features causes overlearning

and a very long calculation time. In order to avoid these problems, several fea-

ture selection methods have been proposed to cut down the features from 100 to

10,000 by using various evaluation standards such as word appearance frequency,

document frequency, mutual information, and information profit. On the other

hand, a class label y is given, which stands for which class the document belongs

to. The number of classes can be two or more. A two-class case, which solves

whether a document belongs to a class or not, is the easiest case and is called a

“binary-class problem.” A three-class or more case is called a “multi-class prob-

lem.” Also, the problem can be divided into two cases; namely, the case where

a document has only one label and the case where a document has two or more

labels, called “multi-label.” Generally, multi-class or multi-label classification

problems are solved by combining many binary-class classifiers. For example,

in Reuters-21578, which is one of the typical benchmarks of text classification,

12,902 news articles of 200 words on average were classified into 118 categories

such as corporate, acquisitions, earnings, money market, and grain. One article

has 1.2 categories on average. Under the above setup, text classification can be

formalized as the problem that calculates function f(x), such that the number of

the predicted label different from a true label minimizes,

∑
f(xi) �=yi,(xi,yi)∈S

1

when training data S

S = {(x1, y1), (x2, y2), . . . , (xn, yn)}

is given. In addition, class label y equals −1 for a positive example and +1 for

a negative example in binary classification, and the reliability of prediction for a

CHAPTER 2 9

label equals |f(x)| and the predicted label equals sign(f(x)) .

2.2 Data Set

Table 2.1: RWCP corpus for training and test.

Category training sets test sets

sports 161 147

criminal law 156 148

government 135 142

educational system 110 124

traffic 112 103

military affairs 110 118

international relations 96 97

communications 76 83

theater 86 95

agriculture 78 72

Experiments were performed using the RWCP corpus [Toyoura96] and the 20

Newsgroups data set [CMUdata]. The RWCP corpus contains 30,207 newspaper

articles taken from the Mainichi Shinbun Newspaper published in 1994 [Mainichi95].

Each article was assigned multiple Universal Decimal Classification (UDC) codes,

each of which represented a text category. UDC is a hierarchical classification

system that has about 60,000 main categories. The text collection has a total

of 97,095 categories, among which there are 14,407 different categories, i.e., 3.2

categories per article.

In the rest of this thesis, I will focus on the ten categories that appeared most

often in the corpus: sports, criminal law, government, educational system, traffic,

military affairs, international relations, communications, theater, and agriculture.

The results for other categories were very similar to those of these ten categories.

We made binary classifiers for each of the categories whether a sample belonged

CHAPTER 2 10

to the category or not. The total number of articles used for both training and

test were 1,000. Table 2.1 summarizes the number of training and test articles in

each category.

These articles were word-segmented and POS tagged by the Japanese morpho-

logical analyzing system, Chasen [Matsumoto97]. The process generated 20,490

different words.

The 20 Newsgroups data set consists of 20,017 articles collected from UseNet.

They are divided almost evenly among 20 different UseNet discussion groups,

postings over a period of several months in 1993. [Nigam00] An article belongs

to one newsgroup of twenty: alt.atheism, comp.sys.ibm.pc.hardware,

soc.religion.christian, sci.space, sci.med, sci.electronics, rec.sport.hockey,

rec.sport.baseball, rec.motorcycles, rec.autos, misc.forsale,comp.sys.mac.hardware,

talk.religion.misc, talk.politics.misc, talk.politics.mideast, comp.graphics,

comp.os.ms-windows.misc, comp.windows.x, sci.crypt, and talk.politics.guns. I

removed common short words including “and” and “or” using a stoplist As a

result, there are 62,258 unique words that occur more than once.

In order to compare with Nigam’s experiment result, test data was created as

follows. A test set of 4,000 articles is selected by posting date, the last 20% of the

articles from each newsgroup. An unlabeled set is formed by randomly selecting

10,000 documents from those remaining. Labeled training sets are formed by

randomly selecting from the remaining 6,000 documents. The sets are created

with equal numbers of documents per class. In this thesis, I will focus on 5

comp.* categories, i.e., comp.windows.x, comp.graphics, comp.sus.mac.hardware,

comp.sus.ibm.pc.hardware, and comp.os.ms-windows.misc.

2.3 Feature Selection

2.3.1 Mutual Information

The mutual information (MI) between a word ti and a category c is defined in

equation (2.1). Here, P (ti) is the probability of the existance of a word ti in an

article, P (c) is the probability that an article belongs in a category c, P (ti, c)

CHAPTER 2 11

is the joint probability of ti and c. MI becomes large when the occurrence of ti

is biased to one side between a category c and other categories. Consequently,

it can be expected that the words with high mutual information in a category

c are keywords in that category. The question we would like to discuss here is

whether words with a fixed number of high mutual information can achieve a

good generalization over all text categories.

MI(ti, c) =
∑

ti∈{0,1}

∑
c∈{+,−}

P (ti, c) log
P (ti, c)

P (ti)P (c)
(2.1)

Table 2.2 shows 300th, 500th, 1,000th, 5,000th and 10,000th terms of mutual

information in each category. In general, up to the 500th or 1,000th term, the

words were specific to each category. For example, “screwball” and “golfer,”

“peace” and “Moscow” are specific to sports and military, respectively. It is

also interesting to note that “Kazakhstan” is an unknown word that plays an

important role in the category of military affairs. In contrast, after the 1,000th

term, words do not seem to be specialized to any specific category.

2.3.2 Part of Speech

I tested the following five feature sets based on parts of speech. The number of

different words for each part of speech is summarized in Table 2.3. The total

number of different words of these parts of speech is 18,111.

set 1: common nouns

set 2: set 1 + proper nouns

set 3: set 2 + verbal nouns

set 4: set 3 + unknown words

set 5: set 4 + verbs

CHAPTER 2 12

2.3.3 Evaluation Method

The F -measure was used as the evaluation measure. For every classification, we

can calculate

a = (the number of data the classifier evaluates positive for positive data),

b = (the number of data the classifier evaluates positive for negative data),

c = (the number of data the classifier evaluates negative for positive data).

Then, we can calculate precision (P) and recall (R) as

P =
a

a+ b
, R =

a

a+ c

By combining precision and recall, the F-measure is defined as follows:

F =
1 + β2

1
P
+ β2 1

R

The F-measure varies between 0 and 1. The larger the F-measure becomes, the

higher the classification accuracy gets. β is a weight parameter, and we set β = 1.

CHAPTER 2 13

Table 2.2: Words selected with MI.

words

Feature 300th 500th

sports 変化球 (screwball) 応援 (cheering)

criminal law 疑惑 (suspicion) 送検 (commit for trial)

government 議会 (parliament) 運輸省 (The Ministry of Transport)

educational system 塾 (cram school) 文相 (Minister of Education)

traffic 大型車 (large-size car) 配達 (delivery)

military 平和 (peace) モスクワ (Moscow)

international 有事 (emergency) 各国 (countries)

communications 会議 (meeting) 衛星通信 (satellite communications)

theater 台本 (play script) 終演 (the end of a show)

agriculture イモ (potato) 砂糖 (sugar)

words

1,000th 5,000th 10,000th

ゴルファー (golfer) アンケート (questionnaire) 目安 (standard)

地下 (underground) 売る (sell) 増進 (increase)

約束 (promise) 根幹 (basis) さえぎる (interrupt)

理想的だ (ideal) 涙 (tear) 即 (immediately)

速さ (speed) 池 (pond) 双方向 (bi-direction)

カザフスタン (Kazakhstan) 実際 (practical) 降下 (descend)

大筋 (outline) 年内 (within the year) 裁く (judge)

伝送 (transmission) 正常 (normal) 慎重 (careful)

賞 (prize) 要素 (element) ロイ (Roy)

飼料 (livestock feed) 改善 (improvement) 変貌 (look different)

CHAPTER 2 14

Table 2.3: POS distribution of training data.

POS (part of speech)

common noun proper noun verbal noun unknown verb

Number of words 8629 2725 2829 1634 2294

Percentage (%) 47.6 15.0 16.0 7.4 12.7

Chapter 3

Text Categorization Using

Support Vector Machines

3.1 Support Vector Machines

A support vector machine (SVM) is a machine learning method that divides

space into a training positive examples side and a negative examples side. It also

creates hyperplanes as the margin between the positive and negative examples

which becomes the maximum. These hyperplanes serve as the optimum solution

based on the concept of structural risk minimization.

The conceptual structure of SVM is shown in Fig. 3.1. SVM calculates

the hyperplanes that separate a positive example from a negative example in

hyperspace. We call the distance between the positive-side hyperplane nearest the

negative examples and the negative-side hyperplane nearest the positive examples

the margin. SVM calculates the optimal hyperplanes that supply the maximum

margin, where w ·x+ b = 0 is the final border hyperplane for classification. The

training examples on w ·x+b = 1 and w ·x+b = −1 are called “support vectors.”

However, when positive and negative examples cannot be separated completely,

separated hyperplanes are determined by also taking errors into consideration.

The problem that maximizes the margin in training data can be converted to

the problem of quadratic programming that minimizes the purpose function (for-

15

CHAPTER 3 16

: positive samples
: Negative samples

margin

support vectors

wx+b=1
wx+b=0
wx+b=-1

error

Figure 3.1: Support Vector Machines.

mula 3.1) under the restricted condition of formula (3.2) by introducing Lagrange

multiplier αi.

−
l∑
i=1

αi +
1

2

l∑
i,j=1

αiαjyiyjxi · xj (3.1)

l∑
i=1

αiyi = 0, ∀i : αi ≥ 0 (3.2)

Here, yi is a variable showing the label of the example xi, which is positive or

negative. When xi is a positive example, yi = +1, and when xi is a negative

example, yi = −1. We can determine w and b as follows using solved αi, positive

support vectors xa, and negative support vectors xb by quadratic programming:

w =
l∑
i=1

αiyixi (3.3)

b = −1

2
(wxa + wxb) (3.4)

CHAPTER 3 17

Moreover, SVM can also solve nonlinear hypotheses by replacing inner product

xi,xj in formula (3.1) by nonlinear function K(xi,xj), which is called a kernel

function.

When learners learn the parameters of a classification model, the phenomenon

called “overfitting” arises, where the more complicated the model is, the larger

the error classification for new data becomes. On the other hand, when the

model better suits the training data, it gets a smaller error for training data. The

complexity of a model in SVM is mathematically defined by the measure called

VC dimension (Vapnik-Chervonenkis dimension), and an optimum solution can

be calculated based on the concept called structural risk minimization [Vapnik95],

which minimizes the sum of the classification error and the complexity of the

model for training data without overfitting.

Moreover, in machine learning methods before SVM, when the dimension

of the data increases, the amount of calculation and storage capacity required

increases abruptly, and the so-called “curse of dimensionality” occurs. For this

reason, we could not handle high-dimensional space. SVM uses only support

vectors for calculation. Thus, SVM excels over conventional machine learning

methods in that it can also handle very-high-dimensional input. It has been

reported that SVM surpasses Rocchio, decision tree, naive-Bayes and Bayes net

in accuracy. [Dumais98]

In addition, SVM is a large margin classifier like boosting. However, the

margin in boosting is expressed by the sum of the distance costs of all samples

to the classification border, whereas the margin in SVM is the distance between

two hyperplanes along support vectors.

SVMs are based on Structural Risk Minimization. The idea of structural risk

minimization is to find a hypothesis h for which we can guarantee the lowest

generalization error. The following upper bound (3.5) connects errorg(h), the

generalization error of a hypothesis h with the error of h on the training set

errort(h), and the complexity of h [Vapnik95]. This bound holds with a proba-

bility of at least 1− η. In the second term on the right-hand side, n denotes the

number of training examples and λ is the VC dimension, which is a property of

CHAPTER 3 18

the hypothesis space and indicates its complexity.

errorg(h) ≤ errort(h) + 2

√
λ(ln 2n

λ
+ 1)− ln η

4

n
(3.5)

Equation (3.5) reflects the well-known trade-off between the training error

and the complexity of the hypothesis space. A simple hypothesis (small λ) would

probably not contain good approximating functions and would lead to a high

training (and true) error. On the other hand, a too-rich hypothesis space (high

λ) would lead to a small training error, but the second term on the right-hand side

of (3.5) would be large (overfitting). The right complexity is crucial for achiev-

ing good generalization. In the following, we assume that the linear threshold

functions represent a hypothesis space in which w and b are parameters of a

hyperplane and x is an input vector:

h(x) = sign{w · x + b} =

{
+1, if w · x + b > 0

-1, else

Lemma 1 clarifies the relationship between the dimension of the input space

x of a set of hyperplanes and its VC dimension λ.

Lemma 1 (Vapnik) Consider hyperplanes h(x) = sign{w ·x+b} as a hypothe-

sis. If all example vectors xi are contained in a ball of radius R and the following

is required such that for all examples xi

|w · x + b| ≥ 1, with ||w|| = A,

then this set of hyperplanes has a VC dimension λ bounded by

λ ≤ min([R2A2], n) + 1 (3.6)

Note that the VC dimension of these hyperplanes does not always depend

on the number of input features. Instead, the VC dimension depends on the

Euclidean length ||w|| of the weight vector w. equation (3.6) supports the pos-

sibility that SVM text categorization achieves good generalization even if a huge

CHAPTER 3 19

number of words are given as an input space. Further experimental evaluations

are required because Equations (3.5) and (3.6) both give us only a loose bound.

Basically, SVM finds the hyperplane that separates the training data with the

shortest weight vector (i.e., min||w||). The hyperplane maximizes the margin

between the positive and negative samples. Since the optimization problem is

difficult to handle numerically, Lagrange multipliers are introduced to translate

the problem into an equivalent quadratic optimization problem. For this kind of

optimization problem, efficient algorithms exist that are guaranteed to find the

global optimum. The result of the optimization process is a set of coefficients

α∗i for which (3.7) is minimum. These coefficients can be used to construct the

hyperplane satisfying the maximum margin requirement.

Minimize −
n∑
i=1

αi +
1

2

n∑
i,j=1

αiαjyiyjxi · xj

s.t.
n∑
i=1

αiyi = 0 ∀i : αi ≥ 0 (3.7)

SVMs can handle nonlinear hypotheses by simply substituting every occur-

rence of the inner product in equation (3.7) with any kernel function K(x1, x2) .

More precisely, any function which satisfies the Mercer’s condition [Vapnik95] can

be a kernel function. Among the many types of kernel functions available, I focus

on the dth polynomial functions:

Kpoly(x1, x2) = (x1 · x2 + 1)d (3.8)

3.2 Experimental Results

This section describes our experimental results for two feature selection meth-

ods in SVM text categorization: mutual information filtering and part-of-speech

filtering. For comparison, we also tested a decision tree induction algorithm

C4.5 [Quinlan93] with default parameters. Before going into the details of the

results, we first explain the experimental setting.

CHAPTER 3 20

3.2.1 Experimental Setting

I performed our experiments using the RWCP corpus (see Section 2.2). In the

rest of this chapter, I focus on the ten categories that appeared most often in the

corpus: sports, criminal law, government, educational system, traffic, military

affairs, international relations, communications, theater, and agriculture. The

results for other categories were very similar to those of these ten categories. The

total number of articles used for both training and test were 1,000.

I used all types of parts of speech in the mutual information filtering and used

only common nouns, proper nouns, verbal nouns, unknown words, and verbs (to-

tal number of subset words was 18,111) in the part-of-speech filtering. Through-

out our experiments, various subsets of these extracted words were used as input

feature spaces, and the value for each feature was a binary value that indicated

whether a word appeared in a document or not. A binary value was adopted to

study the pure effects of each word.

3.2.2 Mutual Information Filtering

Table 3.1: F-measures with MI on C4.5.

Feature 300 500 1000 5000 10000 15000

sports 87.5 86.2 85.2 83.6 83.6 83.6

criminal law 67.9 70.8 68.9 68.8 68.8 68.8

government 65.5 63.0 58.0 57.9 57.9 57.9

educational system 72.0 69.2 70.1 70.1 70.1 70.1

traffic 63.0 61.0 61.0 61.0 61.0 61.0

military affairs 75.9 73.3 69.1 68.8 68.8 68.8

international relations 50.0 45.6 42.4 42.4 42.4 42.4

communications 52.7 50.3 50.3 50.3 50.3 50.3

theater 80.9 80.9 79.5 79.5 79.5 79.5

agriculture 84.4 84.4 84.4 83.8 83.8 83.8

avg. 70.0 68.5 66.9 66.6 66.6 66.6

CHAPTER 3 21

Tables 3.1 and 3.2 show the averages of the recall and precision on C4.5

and SVMs, respectively, when the number of words is changed by using various

MI thresholds. The order of polynomial d (see equation (3.8)) used is 1 and

2. The boldface values in the tables represent the best performance for each

category. It can be easily seen that the best number of words differs greatly from

category to category in SVMs, while the best performance in C4.5 is achieved

with the smallest number of words. The average performance is best for SVMs

when the number of words is 15,000; however, in C4.5 an abrupt drop in average

performance is seen at 500 words. It is also notable that on average SVMs

significantly outperform C4.5, which indicates that SVMs can make better use of

a huge number of input words.

Let us now look more closely at the recall and precision for this data. Fig-

ure 3.2 plots the recall on C4.5 and SVMs with d = 1. On C4.5, recall is the

highest for a small number of features (such as 300 and 500), drops after that,

and then maintains a low level. This indicates that it is no use to adopt large

input spaces of over 1,000 features for C4.5. On the other hand, recall on SVMs

tends to improve as the number of words increase except for the “international

relations” category, which monotonically decreases. Thus, we can safely say that

increasing the number of words improves recall on SVMs.

In contrast to recall, the change in precision on SVMs is more complicated

(Figure 3.3, bottom). For the five categories with the highest precision, the curves

decline continuously but only slightly. This is a reasonable phenomenon because

the excessive number of keywords may extract irrelevant documents. The other

five categories with middle precision differ greatly. Two curves increase mono-

tonically and two others drift, while the remaining one has a peak at 10,000

features. This shows that the increase in features does not involve a large de-

crease in precision. In other words, the feature selection ability inherent in SVMs

can prevent precision from dropping abruptly with an increase in feature space.

These results show that good generalization performance with a large number of

features (15,000) depends on achieving good precision on SVMs. These results

contrast with those on C4.5 in that lower precision continues after 1,000 features.

The flatness of recall and precision over 1,000 features on C4.5 means that the

words after the 1,000th term are regarded as useless words for recognizing slight

CHAPTER 3 22

differences in the characteristics among the categories in the measure of mutual

information. It is clear that SVMs have much higher ability in finding important

words for categorizing texts than MI or the gain ratio used in C4.5.

3.2.3 Part-of-Speech Filtering

Tables 3.3 and 3.4 show the F-measures on C4.5 and SVMs, respectively, when

each of the five features mentioned in Section 3.2.1 are used. Boldface numbers

represent the best value in each category. It is clear that the best feature set

greatly differs from category to category in both cases. The best average perfor-

mance is achieved on SVMs when all of the words are used (Feature Set 5).

What are the contributions of each part of speech in SVM text categoriza-

tion? In Table 3.4, common nouns are so powerful that near-optimal performance

can be achieved with only one part of speech. Proper nouns, verbal nouns, and

verbs improve results in more than half of the categories, while unknown words

contribute to improving only three categories. This is probably because the un-

known words contain irrelevant portions of a word as well as important keywords

for a category. Note that there is no abrupt drop in performance as a result of

incrementally adding any parts of speech.

Let us now consider the recall and precision results for this data. Figure 3.4

plots the recall on C4.5 (top) and SVMs (bottom). The situation looks completely

different from that of the MI filtering experiment because the number of terms

in Feature Set 1 (common nouns) reaches 8,629. Looking at the case for SVMs

in Figure 3.2, only after 10,000 features do we notice that POS filtering and MI

filtering have the same tendencies: precision curves increase monotonically while

recall curves differ among categories. This monotonic increase in the precision

curve shows that every part of speech contains powerful keywords specific to one

category. This fact was unknown for C4.5 because the huge input space of C4.5,

which has a worse generalization ability than SVMs’, causes a drop in precision

by overfitting, hiding the effect of POS. The recall curve shows not only that the

increase in features above 10,000 words does not always improve recall but also

that the drop in recall is not serious on SVMs.

CHAPTER 3 23

3.3 Summary

This paper investigates the effect of prior feature selection in Support Vector

Machine (SVM) text categorization. The input space was gradually increased

by using mutual information (MI) filtering and part-of-speech (POS) filtering,

which determine the portion of words that are appropriate for learning from

information-theoretic and linguistic perspectives, respectively. We tested the two

filtering methods on SVMs as well as on a decision tree algorithm C4.5. The

SVMs’ results common to both types of filtering are that 1) the optimal number of

features differed completely across categories, and 2) the average performance for

all categories was best when all of the words were used. In addition, a comparison

of the two filtering methods clarified that POS filtering on SVMs consistently

outperformed MI filtering, which indicates that SVMs cannot find irrelevant parts

of speech. These results suggest a simple strategy for SVM text categorization:

use all of the words found through a rough filtering technique such as part-of-

speech tagging.

This chapter has described various aspects of feature selection in SVM text

categorization. My experimental results clearly show that SVM text categoriza-

tion handles large-scale word vectors well but is limited for finding irrelevant

parts of speech. This suggests a simple but highly practical strategy for organiz-

ing a large number of words found through a rough filtering technique such as

part-of-speech tagging.

CHAPTER 3 24

Table 3.2: F-measures with MI on SVMs.

Order of polynomial

d = 1

Feature 300 500 1000 5000 10000 15000

sports 91.9 89.5 90.9 90.8 90.0 90.4

criminal law 71.5 69.2 68.2 72.2 74.3 75.5

government 66.6 68.4 74.4 79.3 76.8 78.2

education 68.4 69.1 71.7 78.1 80.0 80.1

traffic 66.6 70.5 72.1 70.7 71.0 71.0

military affairs 66.3 71.3 74.5 74.6 75.6 77.1

international relations 54.3 60.1 62.9 61.6 61.0 57.1

communications 64.0 65.7 59.3 55.7 53.6 58.2

theater 83.9 88.7 86.2 83.6 83.8 83.8

agriculture 85.9 87.5 85.7 85.0 85.9 84.1

avg. 71.9 74.0 74.5 75.1 75.2 75.5

Order of polynomial

d = 2

Feature 300 500 1000 5000 10000 15000

sports 91.9 89.5 90.9 90.0 89.6 89.6

criminal law 70.7 71.0 70.3 73.0 74.1 76.4

government 66.1 68.2 76.4 79.0 78.0 79.8

education 68.2 69.7 73.5 77.8 79.8 79.6

traffic 66.6 71.6 71.8 68.3 69.1 71.1

military affairs 68.3 71.9 75.7 74.7 75.9 76.3

international relations 56.9 61.9 63.5 60.4 59.2 58.9

communications 64.9 66.6 59.3 53.3 50.0 50.0

theater 84.0 83.9 88.2 86.2 82.2 82.4

agriculture 85.2 86.6 85.7 83.2 85.0 84.1

avg. 72.2 74.0 75.5 74.5 74.2 74.8

CHAPTER 3 25

0.4

0.5

0.6

0.7

0.8

0.9

0 2000 4000 6000 8000 10000 12000 14000

R
ec

al
l

Feature

sports
criminal law
government

education
traffic

military affairs
international relations

communications
theater

agriculture

0.4

0.5

0.6

0.7

0.8

0.9

0 2000 4000 6000 8000 10000 12000 14000

R
ec

al
l

Feature

sports
criminal law
government

education
traffic

military affairs
international relations

communications
theater

agriculture

Figure 3.2: Recall with MI features on C4.5 (top) and on SVMs (bottom).

CHAPTER 3 26

0.4

0.5

0.6

0.7

0.8

0.9

2000 4000 6000 8000 10000 12000 14000

P
re

ci
si

on

Feature

sports
criminal law
government

educational system
traffic

military affairs
international relations

communications
theater

agriculture

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2000 4000 6000 8000 10000 12000 14000

P
re

ci
si

on

Feature

sports
criminal law
government

education
traffic

military affairs
international relations

communications
theater

agriculture

Figure 3.3: Precision with MI features on C4.5 (top) and on SVMs (bottom).

CHAPTER 3 27

Table 3.3: F-measures with POS filtering on C4.5.

Feature set 1 set 2 set 3 set 4 set 5

sports 84.7 82.9 83.4 83.0 83.4

criminal law 61.5 59.3 71.3 71.3 71.3

government 58.0 62.8 62.7 62.7 60.4

education 60.2 63.5 62.8 70.2 70.2

traffic 58.2 56.4 58.1 58.1 59.4

military affairs 75.5 71.8 71.8 71.8 71.8

international relations 49.3 44.1 48.9 46.4 46.4

communications 49.6 48.5 51.0 44.6 44.6

theater 79.7 71.3 79.2 79.2 79.2

agriculture 81.2 81.4 81.4 81.4 81.4

avg. 65.8 63.9 67.1 66.9 66.8

CHAPTER 3 28

Table 3.4: F-measures with POS filtering on SVMs.

Order of polynomial

d = 1

Feature set 1 set 2 set 3 set 4 set 5

sports 92.2 93.2 92.9 92.0 90.5

criminal law 74.0 73.3 72.5 73.0 75.2

government 76.9 78.4 79.3 78.9 79.6

education 81.4 80.8 81.4 81.4 81.2

traffic 72.8 76.0 74.8 74.8 73.0

military affairs 80.1 76.1 78.8 77.0 80.1

international relations 54.5 59.2 60.7 61.2 64.0

communications 65.7 63.8 69.3 68.9 65.7

theater 83.8 82.4 85.2 85.2 87.0

agriculture 87.5 88.3 87.5 86.6 85.0

avg. 76.9 77.5 78.0 77.9 78.1

Order of polynomial

d = 2

Feature set 1 set 2 set 3 set 4 set 5

sports 91.4 92.4 92.4 92.0 90.8

criminal law 73.0 73.6 73.3 73.3 74.9

government 76.7 78.7 79.0 78.2 79.2

education 81.4 80.3 80.9 81.8 80.3

traffic 72.0 74.5 76.0 75.2 72.2

military affairs 77.3 76.1 76.2 77.0 77.9

international relations 54.6 60.2 61.4 62.2 64.0

communications 67.6 62.3 68.0 67.1 63.2

theater 83.8 82.4 85.2 85.2 85.0

agriculture 87.5 88.3 86.6 86.6 84.8

avg. 76.5 77.2 77.9 77.8 77.2

CHAPTER 3 29

0.4

0.5

0.6

0.7

0.8

0.9

set1 set2 set3 set4 set5

R
ec

al
l

Feature

sports
criminal law
government

education
traffic

military affairs
international relations

communications
theater

agriculture

0.4

0.5

0.6

0.7

0.8

0.9

set1 set2 set3 set4 set5

R
ec

al
l

Feature

sports
criminal law
government

education
traffic

military affairs
international relations

communications
theater

agriculture

Figure 3.4: Recall with POS features on C4.5 (top) and on SVMs (bottom).

CHAPTER 3 30

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

set1 set2 set3 set4 set5

P
re

ci
si

on

Feature

sports
criminal law
government

educational system
traffic

military affairs
international relations

communications
theater

agriculture

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

set1 set2 set3 set4 set5

P
re

ci
si

on

Feature

sports
criminal law
government

education
traffic

military affairs
international relations

communications
theater

agriculture

Figure 3.5: Precision with POS features on C4.5 (top) and SVMs (bottom).

Chapter 4

Text Categorization Using

Transductive Boosting

4.1 Boosting

Boosting is a technique for creating a highly precise classifier by combining weak

learners with somewhat better prediction than random prediction. A conceptual

diagram of boosting is shown in Fig. 4.1. In boosting, the same weak learner

is repeatedly called T times and hypotheses ht(t = 1 . . . T) are generated while

changing weight Dt for training data. A single operation is called a “round.”

Finally, boosting linearly sums hypotheses ht weighted by αt, which is calcu-

lated based on the classification error of each hypothesis εt, to generate the final

hypothesis H, where the sign of the sum is the predicted class label.

AdaBoost, which is one of the boosting algorithms, is shown in Fig. 4.2. In

AdaBoost, the same weights are initially given to all training examples. In each

repetition, the weights for the misclassified examples are increased exponentially

and more difficult examples are concentrated on for learning. This is called Ad-

aBoost (Adaptive Boosting) because the algorithm adaptively decides the weights

for weak hypotheses αt and the weights in the following round for training exam-

ples Dt by using the error rate of classification, εt. AdaBoost can be implemented

easily and has excellent efficiency of calculation. It has been reported that the

combination of AdaBoost and a weak learner that tests the existence of a word

31

CHAPTER 4 32

Weak
Learner Hypothesis h1 x a1

D1

Training Data

Weak
Learner Hypothesis

D2

Training Data

Weak
Learner Hypothesis

DT

Training Data

.

.

.

h2 x a2

hT x aT
(+

t=1

T
atht(x)

Final Hypothesis: sign(
t=1

T
atht(x)) 1

-1

x

Y
Y=sign(x)

Figure 4.1: Boosting.

CHAPTER 4 33

training examples: (x1, y1), . . . , (xn, yn) yi ∈ {−1, 1}
Dt: distribution of weights at round t

Initializing D1(i) = 1/n

for t = 1, . . . , T

1. Calculating error εt using ht and Dt:

εt =
n∑
i=1

Dt(i)[ht(xi) �= yi]

2. Updating αt:

αt =
1
2
log

(
1− εt

εt

)

3. Updating Dt (Zt is normalizing factor):

Dt+1(i) = Dt(i)
Zt

×
{

e−αt if yi = ht(xi)
eαt if yi �= ht(xi)

= Dt(i)
Zt

× e−αt×yi×ht(xi)

Final hypothesis H

H(x) = sign

{∑
t

αtht(x)

}

Figure 4.2: AdaBoost algorithm

CHAPTER 4 34

(a) (b)

Margin
Margin

positive sample
negative sample
unlabeled sample

Figure 4.3: TSVM (a) and Transductive Boosting (b).

achieves the highest accuracy in the text classification task [Schapire00].

4.2 Transductive Methods and Text Categoriza-

tion

4.2.1 Transductive method used in TSVM

I illustrate transductive SVM (TSVM) and novel transductive boosting in Fig.

4.3. The circles, crosses, and triangles denote positive training data, negative

training data, and unlabeled test data, respectively. TSVM produces separated

hyperplanes by finding the positive examples closest to the negative side and the

negative examples closest to the positive side. The “margin” of TSVM is defined

as the distance between two separated hyperplanes. TSVM chooses separated

hyperplanes such that they maximize the margins while allowing classification

errors below some fixed rate.

TSVM first produces a classifier using only the training data by SVM. All of

the test data are given temporary classes by the classifier. Then classifiers are

iteratively constructed by focusing only on the temporary labeled data. As the

figure shows, if a pair of positive and negative examples can be found near the

CHAPTER 4 35

classification boundary such that an exchange of their temporary classes decreases

the classification error, they exchange their classes and re-learn the classifier by

SVM. The exchange of classes and re-learning are repeated until there is no pair

of test data for which labels have to be exchanged. Finally, a hyperplane fitting

the distribution of the test data is obtained.

On the other hand, the margin in boosting is the sum of the distances between

each example of every training data and the optimal classification bound, seen in

the right side of Fig.4.3. Switching labels is effective in TSVM because the labels

of samples near the separating hyperplanes are related to the margin deeply

in SVM. However, boosting tries to maximize the average of all margins. My

transductive method labels the single most reliable example in every round, and

is described in the following sections.

4.2.2 Explanation of Boosting using Gradient Descent

Methods

Recently, boosting has been regarded as an algorithm that chooses a weak hy-

pothesis in the direction of the gradient descent of cost functions in a function

space [Mason00]．

Mason et al. stated that the AdaBoost algorithm corresponds to the algorithm

that minimizes the cost function of the exp(−M) type in MarginBoost, whereM

is the margin. The cost function of the AdaBoost algorithm is

Cost(H(x)) =
1

m

m∑
i=1

exp(−yiH(xi))

The cost is taken as an average of margins for a power function measure. As a

result, a larger cost is given for more classification errors. Minimizing the value

of this cost function corresponds to maximizing the margins and to minimizing

the global errors as mentioned in the previous section.

Let us consider a class H of weak classifiers h : X → {+1,−1} (where X is

the space of feature vectors). lin(H) is the set of all linear combinations of the

functions in H. The inner product is defined by < F,G >
def
= 1

m

∑m
i=1 F (xi)G(xi)

for all F,G ∈ lin(H). We define the inner product space (X , <,>) using the

CHAPTER 4 36

inner product, where X is a linear space of functions that contains lin(H) and

<,> stands for the inner product. Now suppose we have a function H ∈ lin(H)

and we wish to find a new h ∈ lin(H) to add to H so that Cost(H+εh) decreases

for some small value of ε. We define the functional derivative of the cost function

of H as

∇Cost(H)(x)
def
=
∂Cost(H + α1x)

∂α

∣∣∣∣∣
α=0

where 1x is the indicator function of x. The cost function can be expanded to

the first order in ε,

Cost(H + εh) = Cost(H) + ε < ∇Cost(H), h >

Here, we can use the gradient descent method. That is, the greatest reduction in

cost will occur for the h maximizing − < ∇Cost(H), h >. After all, we wish to

find ht+1, αt+1 to minimize

m∑
i=1

Cost(yiHt(xi) + yiαt+1ht+1(xi))

in the function space to get the weak hypothesis ht+1 at round t.

4.2.3 Transductive Boosting Method

Let us consider the minimization of the cost function mentioned in the former sec-

tion within the framework of transductive methods. The cost function, including

n test examples xm+1, ...,xm+n, is described as

Cost(H(x)) =
1

m+ n
{
m∑
i=1

exp(−yiH(xi)) +
m+n∑
j=m+1

exp(−y∗jH(xj))}

where y∗j is a temporary class label for xj. y
∗
j is unknown, and the initial value

of y∗j is stored with 0. This algorithm aims to label +1(positive) or −1(negative)

correctly for y∗j . In the early rounds, the accuracy of the classifiers combining

linearly weak learners is low because learning is not sufficient, unlike in SVM.

If we labeled the classes for y∗j based on these classifiers, incorrect labels would

CHAPTER 4 37

be assigned to the data at a high ratio. Therefore, if boosting were performed

with this large amount of wrongly labeled test data, an incorrect gradient descent

would be obtained. Moreover, the accuracy of the final classifier would be low,

whereas we should perform labeling for the test data at a high accuracy.

Therefore, in every round, we label the class for only the most reliable test

data. We label this class assuming that the ratio of positive and negative examples

is the same as the ratio of positive and negative examples in the training data.

For the test data, we add (step 2) and (step 7) to the AdaBoost algorithm in

section 4.1 as follows.

(step 1) Given m training samples (x1, y1), ..., (xm, ym) with feature vectors

x1, ...,xm and classification classes y1, ..., ym (+1 for positive, −1 for nega-

tive).

Initialize the weights for training data D1(i) =
1
m
, where i = 1, ...,m．

(step 2) Given n test samples (xm+1, y
∗
m+1), ..., (xm+n, y

∗
m+n) with feature vec-

tors xm+1, ...,xm+n and classification classes y∗m+1, ..., y
∗
m+n whose initial

values are 0.

Initialize the weights for test data D1(j) = 0 (j = m+ 1, ...,m+ n) .

(step 3) For t = 1, ..., T , repeat (step 4)-(step 7)．

(step 4) A weak learner learns labeled data (that is, yi �= 0) under weight Dt,

and we get weak hypothesis ht(x), which outputs +1 for a positive evalua-

tion for x = xi; −1 for a negative evaluation.

(step 5) Calculate parameter αt based on αt = 1
2
ln(1−εt

εt
) , where εt denotes

weighted error rates calculated based on εt =
∑
i:ht(xi) �=yi Dt(i).

(step 6) Update every weight of the training data based on

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt

where Zt, the normalized factor for
∑m
i=1Dt+1, equals 1.

CHAPTER 4 38

(step 7) Let m+ be the number of training data with a positive class, nlabeled be

the number of test data with an already labeled class, and n+
labeled be the

number of test data with an already labeled positive class.

(i) If nlabeled = 0 or m+/m ≥ n+
labeled/nlabeled, then

we choose the test sample j that maximizes

H(xj) =
t∑
k=1

αkhk(xj)

in the test data such that yj = 0 and give yj = +1 and Dt+1(j) = ε (ε is

a small value, for example, ε = 0.01). Then, we update the weight of the

data already labeled as follows,

Dt+1(i) =
Dt(i)

Z ′
t

Here, Z ′
t is the normalizing factor such that the sum of the data without j

equals 1 − ε.
(ii) If nlabeled �= 0 and m+/m < n+

labeled/nlabeled, then we choose the test

sample j that minimizes

H(xj) =
t∑
k=1

αkhk(xj)

in the test data such that yj = 0 and give yj = −1 and Dt+1(j) = ε. Then,

we update the weight of the data already labeled as follows,

Dt+1(i) =
Dt(i)

Z ′
t

where Z ′
t is the normalizing factor such that the sum of the data without j

equals 1 − ε.

CHAPTER 4 39

positive sample
negative sample
unlabeled sample

margin

classification
boundary

Figure 4.4: Effect of unlabeled samples.

(step 8) Return the final hypothesis, merging weak hypotheses linearly as

H(x) =
T∑
t=1

αtht(x)

(step 2) is for initializing the labels and weights of the test samples. (step 7) is

for performing labeling such that the ratio of positive and negative test samples

always equals that of the training data. A small value is given for the weight for

the test samples selected in this step because the reliability of the labels is lower

than that of the training samples.

Taking these steps can produce classifiers that minimize the value of the cost

function because we can select data to lower the probability of labeling y∗j wrongly

and choose data to maximize y∗jH(xj) at a round in a hill-climbing manner with

the term of exp(−y∗jH(xj)) in the cost function (Figure 4.4).

Another option of our algorithm is that we can use the algorithm after weak

learners are produced using only labeled data several times. We can also choose

to label several test examples per round by executing (step 7) several times per

CHAPTER 4 40

round, although the algorithm would need more iterations than the number of

test examples.

4.3 Experimental Results

4.3.1 Experimental Settings

My experiments were conducted using the RWCP corpus. I made binary classi-

fiers for each of the categories, which determined whether a sample belonged to

the category or not. The total number of articles used for both the training and

the test was 1,000. Throughout my experiments, 1,000 words with high mutual

information were used as the input feature space because they were keywords

that sufficiently characterized the classes.

The iteration T was 1,000 in all of our experiments. The value of 0.01 was

used for ε in transductive AdaBoost. The value for each feature was a binary

value, which indicated whether the word appeared in a document or not. This

binary value was employed to study the pure effects of each word.

4.3.2 Relation between Number of Training Data and

Accuracy

First, when the ratio of positive to negative examples in the training data was

the same as that in the test data, I carried out experiments on text classification

using the transductive AdaBoost algorithm with a one-depth decision tree as a

weak learner. For comparison, I also performed experiments using the standard

AdaBoost with a one-depth decision tree (BoosTexter) [Schapire00], SVM, and

TSVM. I increased the number of training data from 75 to 1,000 and then I

classified the 1,000 test data. Figure 4.5 shows the results (F-measure) of the

averages among ten categories.

Accuracy for the distribution of the 1,000 test data increases significantly

when using the transductive method. In particular, when there is a small num-

ber of training data, the classification accuracy grows dramatically. When the

CHAPTER 4 41

Table 4.1: F-measure for the number of training data (Transductive Boosting).

Category \ # of training data 75 100 200 500 750 1000

sports 0.642 0.726 0.766 0.875 0.901 0.903

criminal law 0.600 0.571 0.663 0.656 0.743 0.750
government 0.723 0.560 0.622 0.689 0.727 0.722
educational system 0.459 0.624 0.661 0.675 0.762 0.778

traffic 0.495 0.493 0.500 0.638 0.680 0.698

military affairs 0.507 0.561 0.688 0.748 0.754 0.781
international relations 0.429 0.396 0.363 0.558 0.508 0.560

communications 0.493 0.523 0.641 0.612 0.703 0.692
theater 0.583 0.749 0.756 0.795 0.857 0.862

agriculture 0.750 0.817 0.831 0.805 0.761 0.853

avg. 0.569 0.602 0.649 0.705 0.740 0.760

number of training data is 75, the F-measure for boosting is 0.438 and that for

transductive boosting is 0.569, which is a difference of 0.131. The accuracy of

the classification using only 75 training data in the transductive method nearly

equals the accuracy of that using 200 training data in the inductive method.

This indicates that the transductive method is useful for improving the classifi-

cation accuracy for a small number of training examples. Compared with SVM

and TSVM with a linear kernel function, the classification using transductive

boosting is slightly weaker than TSVM but exceeds SVM. The increase in the

accuracy from boosting to transductive boosting decreases, while classification

accuracy increases monotonically without 1,000 training data in boosting. This

might be explained by the fact that when the number of training data is 1,000, the

distribution of the test data is similar to that of the training data. The executing

speed was from 10 seconds to 1 minute for SVM and TSVM, and several minutes

for boosting and transductive boosting using a Linux server with an Athlon 1GHz

cpu.

I show the details of the results for every category in Tables 4.1 and 4.2.

The boldface numbers denote the best accuracy in each category. The

categories with high classification accuracies sometimes show decreases using the

CHAPTER 4 42

Table 4.2: F-measure for the number of training data (Boosting).

Category \ # of training data 75 100 200 500 750 1000

sports 0.675 0.681 0.826 0.867 0.891 0.912

criminal law 0.561 0.402 0.649 0.664 0.681 0.723
government 0.607 0.524 0.580 0.683 0.692 0.670
educational system 0.287 0.525 0.563 0.646 0.667 0.714

traffic 0.514 0.510 0.493 0.647 0.658 0.579
military affairs 0.216 0.321 0.550 0.728 0.686 0.628
international relations 0.324 0.317 0.233 0.428 0.490 0.329
communications 0.119 0.220 0.528 0.576 0.561 0.559
theater 0.385 0.645 0.767 0.693 0.800 0.813

agriculture 0.690 0.643 0.734 0.855 0.864 0.850
avg. 0.438 0.479 0.592 0.679 0.699 0.678

transductive method, e.g., 0.912 to 0.903 for sports using 1,000 training data.

However, the categories of educational system, military affairs, international re-

lations, and communications, which have low classification accuracies using the

inductive method, show dramatic increases using the transductive method.

Let us move on to the second experimental condition. I changed the ratio of

positive to negative examples in the training data from 1:1 to 1:4 (the original data

distribution depicted in Fig. 4.5 is 1:9). The total number of training examples

was changed from 20 to 150. The results (averages of the ten categories) are

shown in Fig. 4.6. The performance of transductive boosting is almost the same

as that of TSVM and sometimes outperforms TSVM when the training and test

distributions are significantly distinct, for example, Np : Nn = 1 : 1 and 150

training samples. This indicates that the good performance of TSVM largely

depends on the ratio of positive and negative examples.

CHAPTER 4 43

4.4 Summary

In natural language tasks like text categorization, we usually have an enormous

amount of unlabeled data in addition to a small amount of labeled data. We

present here a transductive boosting method for text categorization in order to

make efficient use of the large amount of unlabeled data. Our experiments show

that the transductive method outperforms conventional boosting techniques that

employ only labeled data. We have proposed a transductive boosting method for

text classification problems. We carried out experiments in which we varied the

number of training data and compared the transductive method to the standard

AdaBoost, SVM, and TSVM methods. The results indicated that the trans-

ductive boosting method can improve the performance of text categorization in

situations where we have an enormous number of unlabeled data in addition to

a small number of labeled training data. When the ratio of positive to negative

examples in the training data differs from that in the test data, the advantage

of our transductive boosting method in terms of performance is significant. This

suggests that our transductive boosting method might be particularly useful when

we do not know the ratio of positive to negative examples in the test data. Over-

all, our results show that the transductive approach is effective for a variety of

learning methods and potentially promising for other applications.

CHAPTER 4 44

0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000

F
 m

ea
su

re

Number of examples in training set

Transductive Boosting
Boosting

Transductive SVM
SVM

Figure 4.5: F-measure and the number of training data.

Np : Nn
 = 1:4

Np : Nn
 = 1:2

Np : Nn
 = 1:1

Transductive SVM
Transductive Boosting

0 20 40 60 80 100 120 140 160 180
Number of examples in training set

0

0.2

0.4

0.6

0.8

1.0

F
 m

ea
su

re

Figure 4.6: F-measure and the ratio of positive and negative examples in the

training data.

Chapter 5

Text Categorization Using

Extended Tied Mixture Models

5.1 Extended Tied Mixture Models

I assume that the training data set D consists of the labeled subset Dl =

{(xlj, yj)}nj=1 and the unlabeled subset Du = {xuj }Nj=n+1, where xlj and xuj are

d-dimensional feature vectors and yj ∈ {1, . . . , Y } is the class label for the Y class

problem. In the conventional setting [McLachlan87][Shahshahani94][Nigam00], it

is further assumed that each class corresponds to a single component density of

a mixture model, p(x|Θ) =
∑Y
k=1 αkfk(x|θk). Here, αk is a non-negative mixing

parameter satisfying
∑Y
k=1 αk = 1. Therefore, in this case, the class label index

is equivalent to the component index. The unknown parameter Θ = {αk, θk}Yk=1

is then estimated by maximizing the joint-data log-likelihood function given by

Eq. (5.1) using the EM algorithm [Dempster77].

L(Θ) =
∑

xl
j∈Dl

logαyjfyj (x
l
j|θyj) +

∑
xu

j ∈Du

log
Y∑
k=1

αkfk(x
u
j |θk) (5.1)

On the other hand, Miller et al. [Miller97] generalized this model by intro-

ducing a new non-negative parameter βky, representing the probability that the

kth component density belongs to class y, so that one component density can

45

CHAPTER 5 46

be probabilistically assigned to multiple classes. In this case, the first term on

the right hand side of Eq. (5.1) is modified by
∑

xl
j∈Dl

log
∑K
k=1 αkβkyjfk(x

l
j |θk).

They experimentally showed the usefulness of this extension.

In the ETM model, the feature vectors are assumed to be generated from the

hierarchical mixture density given by

p(x|Θ) =
Y∑
y=1

ωy
K∑
k=1

cykfk(x|θk) (5.2)

where fk denotes the kth component density parameterized by θk, with non-

negative mixing parameter (Note that
∑
k cyk = 1 in this model, while

∑
y βky = 1

in Miller’s model) cyk, which corresponds to P (k|y). ωy is a prior for class y

satisfying
∑
y ωy = 1. Θ = {ωy, cyk, θk}K,Yk=1,y=1. The probability model of class y

is represented by a mixture model p(x|y, θy) = ∑
k cykfk(x|θk), while in Miller’s

model, p(x|y, θy) = ∑
k βkyαkfk(x|θk)/∑

k′ βk′yαk′. Clearly, since each class model

shares K component densities, labeled and unlabeled data can be simultaneously

utilized in the ETM model and the representation ability is potentially higher

than in McLachlan’s basic model. For simplicity, I used the maximum-likelihood

(ML) algorithm here. In the case of the ML algorithm, the log-likelihood function

is given by Eq. (5.3).

L(Θ|D) =
∑

xl
j∈Dl

log
Y∑
k=1

αkfk(x
l
j|θk) +

∑
xu

j ∈Du

log
Y∑
k=1

αkfk(x
u
j |θk) (5.3)

If we specify the component density fk in Eq. (5.2) with a multinominal

distribution over words, the model can be regarded as an extension of the naive-

Bayes model [Nigam00]. At that time, fk is,

fk(x|θk) =
T∏
t=1

θxt

t|k (5.4)

Here, t is the index of feature words and T is the number of different words.

Since this model presents each class (text category) by a mixture of multinominal

distributions, as shown later, it can achieve better classification performance than

the original naive-Bayes model.

CHAPTER 5 47

5.2 Bayesian Learning Algorithm

To overcome the overfitting problem associated with the maximum likelihood

approach, a variational Bayesian (VB) algorithm for the ETM model is pro-

posed [Ueda01]. In general, as described in [Attias00][Ueda00], the VB approach

tries to maximize the objective function given by

FK [q] =
〈
log
p(D,Z|θ,K)

q(Z|K,D)

〉
Z,θ

+
〈
log

p(θ,K)

q(θ|K,D)

〉
θ

(5.5)

with regard to the variational posteriors q(Z|K,D), q(θ|K,D) and the number of

mixture components K. The notation 〈f〉Z,θ denotes the expectation of f with

regard to the variational posterior distribution q(Z, θ|m,D) for simplicity.

Let Zl (Zu) denote the latent variable set corresponding to Dl (Du). In

the ETM model, the class index and component index are latent for the un-

labeled sample, while the component index is latent for the labeled sample. Let

p(D,Z|θ,K) be a complete data likelihood function with parameter θ and model

structure K (number of mixture components). Now, using the i.i.d. assumption

for the labeled and unlabeled samples, we have

p(D,Z|θ,K) = p(Dl, Zl|θ,K)p(Du, Zu|θ,K) (5.6)

q(Z|K,D) = q(Zl|K,D)q(Zu|K,D) (5.7)

Substituting Eqs. (5.6) and (5.7) into Eq. (5.5), we obtain the modified objective

function for the partial nonrandom classification:

FK [q] =
〈
log
p(Dl, Zl|θ,K)

q(Zl|K,D)

〉
Zl,θ

+
〈
log
p(Du, Zu|θ,K)

q(Zu|K,D)

〉
Zu,θ

+
〈
log

p(θ,K)

q(θ|K,D)

〉
θ

(5.8)

Once we have the objective function, according to the general procedure of

the VB approach [Attias00], we can derive the following iterative two-phase VB

algorithm for the ETM model to estimate variational posteriors [Ueda01]:

Updating posteriors over latent variables:

CHAPTER 5 48

q(k|dl,K,D)(t+1) ∝ exp
{
〈log cyk〉c(t)yk

+ 〈log fk(xl|θk)〉θ(t)k

}
(5.9)

q(k, y|du)(t+1) ∝ exp
{
〈logωy〉ω(t)

y
+ 〈log cyk〉c(t)yk

+ 〈log fk(xu|θk)〉θ(t)k

}
(5.10)

Updating posteriors over parameters:

q(ωy|K,D)(t+1)

∝ P (ωy)ω
∑K

k=1
(
∑

dl∈Dl=y
q(k|dl,K,D)(t+1)+

∑
du∈Du

q(k,y|du,K,D)(t+1))

y (5.11)

q(cyk|K,D)(t+1)

∝ P (cyk)c
(
∑

dl∈Dl=y
q(k|dl,K,D)(t+1)+

∑
du∈Du

q(k,y|du,K,D)(t+1))

yk (5.12)

q(θk|K,D)(t+1) ∝ p(θk) exp
{ ∑
dl∈Dl

q(k|dl,K,D)(t+1) log fk(x
l|θk)

+
∑
du∈Du

q(k, y|du,K,D)(t) log fk(x
u|θk)

}
(5.13)

Note that the notation 〈f〉s(t) denotes the expectation of f with regard to q(s|·)(t)
for simplicity. P (ωy), P (cyk) and p(θk) are priors.

In the Bayesian setting, an unknown sample x∗ is classified using the predic-

tive posterior classification probability defined by

P (y|x∗,K∗,D) = ωyp(x
∗|y,K∗,D)

/ Y∑
y′=1

ωy′p(x
∗|y,K∗,D) (5.14)

where ωy is the expectaion value of ωy, and p(x
∗|y,K∗,D) is the predictive

density for class y and is defined by

p(x∗|y,K∗,D) =
∫
p(x∗|y,K∗,Θ)q(Θ|K∗,D)dΘ (5.15)

If we assume that the component density of the ETM model belongs to the ex-

ponential family and the priors are conjugate priors, we can analytically compute

the integral.

5.3 Active Labeling

McCallum et al. have recently proposed a Query-by-Committee (QBC)-based ac-

tive labeling method and successfully applied it to text classification [McCallum98]

CHAPTER 5 49

using a mixture model [Nigam00]. The method first creates several sets of labeled

training samples according to the currently estimated model parameter distribu-

tion in order to train a committee of classifier variants. Next, each of the trained

committee members classifies unlabeled data and then the disagreements among

their classifications are measured. Finally, the sample with the largest disagree-

ment value is selected as a labeling request and the true (not estimated) class

label is assigned to the sample. The newly labeled sample is included in the

training data and the classifier is retrained to obtain a new classifier (model pa-

rameter distribution). These procedures are repeatedly performed until a certain

classification performance is reached.

Intuitively, this method tends to select samples near the current class bound-

aries since the variances of the class posterior probabilities near the class bound-

aries are large. However, when the current class boundary is far from the true

ones, the QBC-based method does not work well.

In addition, this method requires too many extra computational operations,

e.g., resampling, training several committee members, and the measuring of dis-

agreements. To overcome these problems, I use a new active labeling method

that is quite efficient and works well even when the current class boundaries

are far from the true ones. According to the predictive posterior classification

probabilities given by Eq. (5.14), it can be assumed that a class label y for x

is determined with probability πy(x) ≡ P (y|x,K∗,D) from a multinominal dis-

tribution, MultY (1,π(x)), consisting of one draw on Y categories (classes) with

probabilities π(x) = (π1(x), . . . , πY (x)). In other words, the classification prob-

ability for class y can generally be regarded as deriving from a Dirichlet random

variable with parameters {π1, . . . , πY }. This is because the Dirichlet distribution

is a conjugate distribution of the multinominal parameters.

Let y1(y2) denote the class index with the largest (the second largest) posterior

classification probability for x (i.e., y1 = argmaxy πy(x), y2 = argmaxy �=y1 πy(x)).

Therefore, considering that the mean value and standard deviation for x are then

given by πy(x) and
√
0.5πy(x)(1− πy(x)) and class boundaries are formed by the

intersection of functions πy1(x) and πy2(x), we define the following a-confidence

CHAPTER 5 50

region:

Rc =
{
x | πy1(x)− a

√
0.5πy1(x)(1 − πy1(x))

≤ πy2(x) + a
√
0.5πy2(x)(1− πy2(x))

}

Here, the constant a is usually set to one and can be modified depending on

the number of pooled unlabeled samples. We set a = 1 in our experiments.

Moreover, the flatter πy1(x) and πy2(x) are, the less unreliable the intersec-

tion of πy1(x) and πy2(x) becomes. To measure this, I simply use the gradient

information defined by G(x) = ||∂πy1(x)/∂x||+||∂πy2(x)/∂x||. Here, the symbol

|| · || denotes a vector norm. Based on these, in the active labeling method, we

select an x ∈ Du that belongs to Rc and minimizes G(x).

5.4 Experiments

Next, using multinominal distribution as a component density, I applied the ETM

model to “comp.*” (five class problem: a subset of the 20 Newsgroups data set).

For simplicity, I used the ML algorithm here. The dimensionality was reduced to

200 from about 60,000 by the mutual information criterion. Fifty labeled samples,

2,482 unlabeled samples, and 1,000 test samples were used. The obtained error

rate was 31.5% for the mixed data using the ETM model with the optimal number

of components (K∗ = 10). In contrast, the results from using the original model

[Nigam00] were 53.0% for the labeled data set and 32.1% for the mixed data.

In naive-Bayes, by taking unlabeled data into consideration, the accuracy rose

20.9% and the accuracy rose 0.6 % more by taking into consideration the 10

distribution component which exists potentially using ETM model.

The active labeling method was compared with the QBC-based one by using

the ETM model and another “comp.*” data set (sample size was the same as in

the experiment above). Fig. 5.1 shows the trajectories of recognition error rates

obtained by iteratively adding one sample by the two active labeling methods.

Fifty labeled samples, 2,482 unlabeled samples, and 1,000 test samples were used.

one unlabeled sample was selected and labeled per one active labeling. Ten active

labeling was done. Where the QBC-method could not reduce the error rate, the

CHAPTER 5 51

proposed method could reduce from 42.1% to 33% drastically. This indicates the

proposed method is effective when we have only the small amount of training set.

1 2 3 4 5 6 7 8 9 10
32

34

36

38

40

42

44

46

R
ec

og
ni

tio
n

E
rr

or
 R

at
e

(%
)

No. of Active Labeling

QBC-based method

proposed method

0

Figure 5.1: Recognition error rates of QBC-based method and proposed method

CHAPTER 5 52

5.5 Summary

The results above indicate that the ETM model can effectively utilize the un-

labeled samples to improve classification performance. Moreover, the active la-

beling method works well. In this chapter, to design a statistical classifier using

unlabeled data, I focused on an approach based on a mixture model.

Chapter 6

Conclusions

6.1 Summary

This thesis discussed the following three points related to text classification using

machine learning.

1. How to perform a highly precise classification by using a large number of

word attributes (Chapter 3).

2. How to utilize the distribution of unlabeled examples for high precision

when there are few labeled training examples (Chapter 4).

3. How to achieve a highly precise and efficient classification by assuming the

existence of sub-categories and using active labeling (Chapter 5).

In Chapter 3, text classification using a support vector machine was described.

Many word features are generally required to perform highly precise text classifi-

cation by machine learning. However, when many word features are used as the

input of conventional learning techniques, they overfit the training data, and the

classification accuracy for unknown data decreases.

Therefore, it was necessary to reduce the dimension of features used in learn-

ing by selecting a moderate number of features which contain much information.

However, it was difficult for the classifier to learn with a sufficiently high accu-

racy only with several hundred features. Consequently, text classification was

53

CHAPTER 6 54

performed by using a support vector machine, which is a new machine learning

technique developed to avoid overfitting. I evaluated how feature selection affects

performance of SVM.

Classification accuracy is very high without feature selection and the classifier

created by SVM with part-of-speech filtering has the highest accuracy.

In Chapter 4, text classification using transductive boosting was described.

Large margin classifiers such as support vector machines and boosting algorithms

are effective in generating classifiers with a high classification accuracy when

training data is fully available. However, a large size of training data is not

always available in many cases because we have to label the training data by

hand and the cost of doing this is high.

Transduction is a method that takes into consideration the distribution of

the unknown data for which a classification label is not given. I investigated

transduction as a solution for text classification. Specifically, I proposed how to

use the transductive method with the boosting algorithm, AdaBoost.

In Chapter 5, text classification using the Extended Tied Mixture model was

described. We can often assume potential sub-categories in a given category, for

example, the “sports” category could include the sub-categories “baseball” and

“soccer.” I described a method that takes into account such an assumption. Fur-

thermore, when the size of the training data is limited, adding a small number of

good unknown data is important to effectively improve the classification accuracy.

To mechanically chose such good examples the “active labeling” technique should

be applied. Such a technique could efficiently create a highly precise classifier by

assigning the categories for a small number of data by hand. I presented such a

method in that chapter.

What we could conclude from those results are the following: If we have a

sufficient amount of labeled samples and it is modeled as a binary-class problem,

it is better to use support vector machines with part-of-speech filtering. If we have

only a small amount of labeled samples, transduction for large margin classifiers

is effective. Furthermore, when we have a few labeled samples, active labeling for

ETM models is useful for improving the classification performance.

CHAPTER 6 55

6.2 Future Directions

Although all of the text classification methods introduced in this thesis are flat

or two-level layered classifications, it is natural that the structure of categories

forms a network such as the link structure of the Internet. Furthermore, although

I assumed only static structure of categories in this thesis, there are many cases

of changing the structure of categories and updating texts in the categories. I

intend to aim my research toward machine learning for the network structure of

texts and online learning for dynamic structures.

Bibliography

[Attias00] Attias, H.: A Variational Bayesian Framework for Graphical Models,

Proc. of the 12th Advances in Neural Information Processing Systems (NIPS-

99), pp. 209–215 (2000).

[CMUdata] 20 Newsgroups Data Set, http://www.cs.cmu.edu/textlearning.

[Cohn96] Cohn, D., Ghahramani, Z. and Jordan, M.: Active Learning with Sta-

tisticalModels, Journal of Artificial Intelligence Research, Vol. 4, pp. 129–145

(1996).

[Cortes95] Cortes, C. and Vapnik, V.: Support Vector Networks, Machine Learn-

ing, Vol. 20, pp. 273–297 (1995).

[Cover91] Cover, T. and Thomas, J.: Elements of Information Theory, John

Wiley & Sons (1991).

[Dempster77] Dempster, A. P., Laird, N. M. and Rubin, D. B.: Maximum Like-

lihood from Incomplete Data via the EM Algorithm, Journal of Royal Sta-

tistical Society, Series B, Vol. 39, pp. 1–38 (1977).

[Dumais98] Dumais, S., Platt, J., Heckerman, D. and Sahami, M.: Inductive

Learning Algorithm and Representation for Text Categorization, Proc. of

the Seventh International Conference on Information and Knowledge Man-

agement (CIKM-98), pp. 148–155 (1998).

[Freund97] Freund, Y. and Schapire, R.: A Decision-theoretic Generalization of

On-line Learning and an Application to Boosting, Journal of Computer and

System Sciences, Vol. 55, No. 1, pp. 119–139 (1997).

57

BIBLIOGRAPHY 58

[Haruno99] Haruno, M., Shirai, S. and Ooyama, Y.: Using Decision Trees to

Construct a Practical Parser, Machine Learning, Vol. 34, pp. 131–150 (1999).

[Joachims98] Joachims, T.: Text Categorization with Support Vector Machines:

Learning with Many Relevant Features, Proc. of 10th European Conference

on Machine Learning (ECML-98), pp. 137–142 (1998).

[Joachims99] Joachims, T.: Transductive Inference for Text Classification using

Support Vector Machines, Proc. of the 16th International Conference on Ma-

chine Learning (ICML’99), pp. 200–209 (1999).

[Lewis94] Lewis, D. and Ringuette, M.: A Comparison of Two Learning Algo-

rithms for Text Categorization, Proc. of Third Annual Symposium on Docu-

ment Analysis and Information Retrieval, pp. 81–93 (1994).

[Mainichi95] Mainichi Newspaper 94 CD-ROM, Nichigai Associates Co. (1995).

[Mason00] Mason, L., Baxter, J., Bartlett, P. and Frean, M.: Boosting Algo-

rithms as Gradient Descent, Proc. of the 12th Advances in Neural Informa-

tion Processing Systems (NIPS-99), pp. 512–518 (2000).

[Matsumoto97] Matsumoto, Y., Kitauchi, A., Yamashita, T., Hirano, Y.,

Imaichi, O. and Imamura, T.: Japanese Morphological Analysis System

Chasen Manual (1997), NAIST Technical Report NAIST-IS-TR97007.

[McCallum98] McCallum, A. K. and Nigam, K.: Employing EM and Pool-based

Active Learning for Text Classification, Proc. of the 15th International Con-

ference on Machine Learning (ICML’98), pp. 350–358 (1998).

[McLachlan87] McLachlan, G. J. and Basford, K. E.: Mixture Models, Marcel

Dekker (1987).

[Miller97] Miller, D. J. and Uyar, H. S.: A Mixture of Experts Classifier with

Learning Based on Both Labelled and Unlabeled Data, Proc. of the Ninth

Advances in Neural Information Processing Systems (NIPS-96), pp. 571–577

(1997).

BIBLIOGRAPHY 59

[Nigam00] Nigam, K., McCallum, A., Thrun, S. and Mitchell, T.: Text Classifi-

cation from Labeled and Unlabeled Documents using EM, Machine Learning,

Vol. 39, pp. 103–134 (2000).

[Osuna98] Osuna, E., Freund, R. and Girosi, F.: Training Support Vector Ma-

chines: An Application to Face Detection, Proc. of Computer Vision and

Pattern Recognition ’97, pp. 130–136 (1998).

[Quinlan93] Quinlan, J.: C4.5: Programs for Machine Learning, Morgan Kauf-

mann (1993).

[Salton88] Salton, G. and Buckley, C.: TermWeighting Approaches in Automatic

Text Retrieval, Information Processing and Management, Vol. 24, No. 5, pp.

513–523 (1988).

[Schapire00] Schapire, R. E. and Singer, Y.: BoosTexter: A Boosting-based Sys-

tem for Text Categorization, Machine Learning, Vol. 39, pp. 135–168 (2000).

[Shahshahani94] Shahshahani, B. and Landgrebe, D.: The Effect of Unlabeled

Samples in Reducing the Small Sample Size Problem and Mitigating the

Hughes Phenomenon, IEEE Trans. on Geoscience and Remote Sensing,

Vol. 32, No. 5, pp. 1087–1095 (1994).

[Taira99] Taira, H. and Haruno, M.: Feature Selection in SVM Text Categoriza-

tion, Proc. of 16th National Conference on Artificial Intelligence (AAAI-99),

pp. 480–486 (1999).

[Toyoura96] Toyoura, J., Tokunaga, T., Isahara, H. and Oka, R.: Development

of a RWC Text Database Tagged with Classification code (in Japanese),

NLC96-13. IEICE, pp. 89–96 (1996).

[Ueda00] Ueda, N. and Ghahramani, Z.: Optimal Model Inference for Bayesian

Mixture of Experts, Proc. of IEEE Neural Networks for Signal Processing

(NNSP2000), pp. 145–154 (2000).

[Ueda01] Ueda, N.: Extended Tied Mixture Models, Proc. of 2001 Workshop on

Information-Based Induction Science (IBIS-2001), pp. 89–94 (2001).

BIBLIOGRAPHY 60

[Vapnik95] Vapnik, V.: The Nature of Statistical Learning Theory, Springer-

Verlag, New York (1995).

[Vapnik98] Vapnik, V.: Statistical Learning Theory, John Wiley & Sons (1998).

[Yang94] Yang, Y.: Expert Network: Effective and Efficient Learning from Hu-

man Decisions in Text Categorization and Retrieval, Proc. of the 17th Annual

International ACM SIGIR Conference on Research and Development in In-

formation Retrieval, pp. 13–22 (1994).

[Yang97] Yang, Y. and Pederson, J.: A Comparative Study on Feature Selection

in Text Categorization, Machine Learning: Proc. of the 14th International

Conference (ICML’97), pp. 412–420 (1997).

List of Publications

Journal Papers

[1] Taira, H. and Haruno, M.: “Feature Selection in SVM Text Categorization

(in Japanese),” Journal of IPSJ, Vol. 41, No. 4, pp. 1113-1123, 2000.

[2] Taira, H. and Haruno, M.: “Text Categorization Using Transductive Boost-

ing (in Japanese),” Journal of IPSJ, 2002. (to appear)

Conference Papers

[1] Taira, H. and Haruno, M.: “Feature Selection in SVM Text Categorization,”

Proc. of the 16th National Conference on Artificial Intelligence (AAAI-99),

pp. 480-486, 1999.

[2] Taira, H. and Haruno, M.: “Text Categorization Using Transductive Boost-

ing,” Proc. of the 12th European Conference on Machine Learning (ECML-

2001), pp. 454-465, 2001.

Other Publications

[1] Taira, H., Mukouchi, T. and Haruno, M.: “Text Categorization Using Sup-

port Vector Machines (in Japanese),” IPSJ SIG-NLP, NL-128, pp.173-180,

1998.

61

LIST OF PUBLICATIONS 62

[2] Taira, H. and Haruno, M.: “SVM Text Categorization (in Japanese),” Proc.

of 1999 Workshop on Information-Based Induction Sciences (IBIS-99), pp.

233-238, 1999.

[3] Taira, H. and Haruno, M.: “Text Categorization Using a Transductive

Boosting Method (in Japanese),” IPSJ SIG-NLP, NL-139, pp. 69-76, 2000.

[4] Nagata, M. and Taira, H.: “Text Categorization - the Showcase of Learning

Theory - (in Japanese),” IPSJ Magazine, Vol. 42, No. 1, pp. 32-37, 2001.

[5] Taira, H. and Haruno, M.: “Text Categorization Using Transductive Boost-

ing (in Japanese),” Proc. of 2001 Workshop on Information-Based Induc-

tion Sciences (IBIS-2001), pp. 43-48, 2001.

[6] Taira, H., Matsushita, M. and Iida, T.: “Acquisition of Knowledge for

Specifying Users’ Requirements (in Japanese),” IPSJ SIG-NLP, NL-123,

pp. 41-47, 1998.

[7] Makino, T., Matsushita, M., Taira, H. and Iida, T.: “Requests Under-

standing Method on the Knowledge Provider (in Japanese),” 12th Annual

Conference of JSAI, 98-24-04, pp. 384-385, 1998.

[8] Sasaki, Y., Isozaki, H., Taira, H., Hirota, K., Kazawa, H., Hirao, T.,

Nakajima, H. and Kato, T.: “An Evaluation and Comparison of Japanese

Question Answering Systems (in Japanese),” Technical Report of IEICE,

NLC2000-10, pp. 17-24, 2000.

[9] Sasaki, Y., Isozaki, H., Taira, H., Hirao, T., Kazawa, H., Suzuki, J., Kokuryo,

K. and Maeda, E.: “SAIQA: A Japanese QA System Based on a Large-Scale

Corpus (in Japanese),” IPSJ SIG-NLP, FI-64/NL-145, pp. 77-82, 2001.

LIST OF PUBLICATIONS 63

Abbreviations

IEICE Association for Natural Language Processing

IPSJ Information Processing Society of Japan

SIG-NLP Special Interest Group on Natural Language Processing

JSAI Japanese Society for Artificial Intelligence

