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Soft-Decision Decoding Algorithms

for Binary Linear Block Codes�

Hitoshi Tokushige

Abstract

This thesis consists of two parts. In the �rst part, e�ective solutions are

presented for two basic problems related to the implementation of recursive max-

imum likelihood decoding (RMLD) of Reed-Muller codes. A (64; 40) subcode

of the third order Reed-Muller code of length 64 (RM3;6) is considered as an

inner code in a concatenated coding system for NASA's high-speed satellite com-

munications. In this system, because the error performance of the inner code

is ampli�ed by the outer code, a subcode with lower error probability is more

desirable. Furthermore, the overall decoder for the (64; 40) subcode of RM3;6

code consists of 32 identical RMLD decoders and each such decoder processes a

(64; 35) subcode or its coset parallel. The RMLD algorithm is computationally

more eÆcient than the Viterbi decoding algorithm. However, the computational

complexity of the RMLD algorithm depends on the sectionalization of a code

trellis. In general, minimization of the computational complexity results in non-

uniform sectionalization of a code trellis. From an implementation point of view,

uniform sectionalization of a code trellis and regularity among the trellis sections

are desirable.

First, we consider linear subcodes of RM
r;m

whose bases are formed from the

monomial basis of RM
r;m

by deleting �K monomials of degree r where �K <�
m

r

�
. For such subcodes, a procedure for computing the number of minimum

weight codewords is presented and we show how to delete �K monomials in

order to obtain a subcode with the smallest number of codewords of the minimum

�Doctor's Thesis, Department of Information Processing, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DT9861014, December 2000.
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weight. For �K � 3, a formula for the number of codewords of the minimum

weight is presented. For (64; 40) subcodes, there are three equivalent classes.

For each class, the number of minimum weight codewords, that of the second

smallest weight codewords and simulation results on error probabilities of soft-

decision maximum likelihood decoding are presented.

Second, we consider how to choose the (64; 35) subcode of RM3;6 whose bases

are formed from the monomial basis of RM3;6 by deleting seven monomials to

minimize the total number of additions and comparisons in ACS(add-compare-

select) procedure which roles a mainly part in RMLD.

In the second part, two new soft-decision iterative decoding algorithms are pre-

sented. Several iterative soft-decision decoding algorithms have been proposed to

achieve a good error performance and a small computational complexity. In these

decoding algorithms, an algebraic decoder with respect to chosen input words is

iteratively used. Their performances are degraded mainly by the decoding failure

of algebraic decoding and the duplication in generating candidate codewords.

We introduce \multiple GMD decoding" for binary linear block codes. In

this decoding algorithm, GMD-like decoding is iterated around a few appro-

priately selected search centers. The original GMD decoding by Forney is a

GMD-like decoding around the binary hard-decision sequence. Compared with

the original GMD decoding, this decoding algorithm provides better error per-

formance with increasing the number of iterations of erasure and error correc-

tion moderately. To reduce the number of iterations, we derive new suÆcient

conditions on the optimality of decoded codewords. For extended BCH codes,

EBCH(64, 24), EBCH(128, 85) and EBCH(128, 99), simulation results show that

the new approach provides better error performance than that of the original

GMD decoding by adding two GMD-like decoding around two appropriately

chosen centers to the original GMD decoding with relative small increment of

iteration number.

Finally, we present a new method of choosing a sequence of search centers

around which successive bounded distance-t0
4

=b(minimum distance � 1)=2c de-

codings are carried out. To reduce the number of iterations of bounded distance

decoding algorithm without any loss of error performance, we show new e�ective

suÆcient conditions on the optimality of decoded codewords as early termination
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conditions.
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Chapter 1

Introduction

The notation RM
r;m

denotes the Reed-Muller code (RM code) of length 2m and

degree r. A (64; 40) subcode of RM3;6 is considered as an inner code in a con-

catenated coding system for NASA's high-speed satellite communications [1, 3].

The inner code is decoded by a maximum likelihood decoder. Since the Reed-

Solomon(255; 223) code over GF(28) is used as the outer code, the number of

information bits must be a multiple of 8. This is the reason why a (64; 40) sub-

code of RM3;6 is used as the inner code. Therefore, the problem is how to choose

such a subcode. In this system, because the error performance of the inner code

is ampli�ed by the outer code, a subcode with lower error probability is more de-

sirable. The number of minimum weight codewords of the subcode is a reasonable

design index.

A trellis-based recursive maximum likelihood decoding (RMLD) algorithm has

been proposed [5]. This RMLD algorithm is more eÆcient than the conventional

Viterbi decoding algorithm in both computational complexity for software imple-

mentation and hardware requirement for IC (integrated circuit) implementation.

Furthermore, it allows parallel/pipeline processing to speed up the decoding pro-

cess. The RMLD algorithm is devised based on a divide-and-conquer approach.

A code trellis is �rst divided into appropriate sections. A metric table for each

trellis section is formed and each table contains only the metrics of the distinct

composite branches in the section and their labels. Metric tables for long trellis

sections are formed recursively from tables for shorter trellis sections. At the end

of the recursion process, there is only one table which contains only the most

1



likely codeword for a given received sequence and its corresponding metric. Com-

putational complexity of this decoding algorithm depends on the sectionalization

of a code trellis. Minimization of the computational complexity in general results

in non-uniform sectionalization of a code trellis in which the trellis sections are

not equal in length and do not have a regular structure. These facts cause imple-

mentation problems and require more circuits in IC implementation. Therefore,

in some applications, it is desirable to trade-o� computational complexity for

simplicity and regularity in the trellis to reduce circuit requirements and gain

decoding speed.

In chapter 2, we consider how to evaluate the number of codewords of the

minimum weight for linear subcodes of RM
r;m

whose bases are formed from the

monomial basis of RM
r;m

by deleting �K monomials of degree r where �K <�
m

r

�
. For �K � 3, a formula or an e�ective method which gives the number of

codewords of the minimum weight is presented. We also show how to delete �K

monomials in order to obtain the subcode with the smallest number of codewords

of the minimum weight. For (64; 40) subcodes, there are three equivalent classes,

each of which consists of all equivalent codes. For each class, the number of

minimum weight codewords, the number of second smallest weight codewords

and simulation results on error probabilities of soft-decision maximum likelihood

decoding are shown. The class with the smallest number of minimum weight

codewords provides the best error performance among three equivalent classes.

In chapter 3, we study the RMLD for a class of codes that are transitive

invariant. This class of codes includes RM codes, extended and permuted prim-

itive BCH codes (EBCH codes), and their subcodes. For this class of codes,

the binary uniform sectionalization of a code trellis results in a simple regular

structure among the sections so that the metric table construction procedure can

be applied uniformly at each decoding recursion level. The metric tables at the

same recursion level have the same size and structure. This simpli�es the imple-

mentation of an RMLD algorithm. Furthermore, for transitive invariant codes,

the binary uniform sectionalization of a code trellis results in almost the same

computational complexity as an optimum sectionalization does. This provides an

excellent trade-o� between computational complexity and code trellis regularity

for simple implementation.
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The overall decoder for the (64; 40) subcode of RM3;6 code consists of 32 identi-

cal RMLD decoders based on binary sectionalization, each such decoder processes

a (64; 35) subcode or its coset parallel. Then, the problem is how to choose a

subcode to minimize the computational complexity. Because ACS(add-compare-

select) procedure roles a main part in RMLD, the total number of additions and

comparisons in ACS procedure is used as an evaluation index. We consider how

to choose the (64; 35) subcode of RM3;6 whose bases are formed from the mono-

mial basis of RM3;6 by deleting seven monomials to minimize the total number

of additions and comparisons in ACS.

The iterative decoding algorithms, such as GMD and Chase II decoding al-

gorithms, use an algebraic decoder iteratively with respect to successively chosen

input words, called the search centers. Their performances are degraded by the

decoding failure of algebraic decoding and the duplication in generating candi-

date codewords as simulation results show. By these facts, they do not achieve

both a good error performance and a low computer complexity. We present new

two iterative decoding algorithms and suÆcient conditions on the optimality on

the decoded codeword to avoid these drawbacks.

In chapter 4, we present \multiple GMD decoding" [11, 13] for binary lin-

ear block codes. Some improved versions of GMD decoding have been pro-

posed [12, 17, 18] and performance analysis of GMD decoding has been pre-

sented [16]. Simulation results in [12] for several examples codes show that better

error performance than for that of the improved version in [17] is provided by

adding two bounded distance-t0(
4

=b(the minimum distance � 1)=2c) decodings

around two appropriately chosen centers to the original GMD decoding.

In this decoding algorithm, GMD-like decoding is iterated around a few ap-

propriately selected search centers. The original GMD decoding by Forney [15]

is a GMD-like decoding around the binary hard-decision sequence. For ex-

tended BCH codes, EBCH(64, 24), EBCH(128, 85) and EBCH(128, 99), com-

pared with the original GMD decoding, this decoding algorithm provides better

error performance by moderately increasing the number of iterations of erasure

and error correction. To reduce the number of iterations, several suÆcient con-

ditions on the optimality of decoded codewords have been introduced [12, 20,

21, 22]. We derive new e�ective suÆcient conditions and show the e�ectiveness

3



by simulation for EBCH(64, 24), EBCH(64, 45), EBCH(128, 78), EBCH(128, 85)

and EBCH(128, 99).

In chapter 5, we present a new method of choosing the search centers of

successive bounded distance-t0 decodings for binary linear block codes. For

BCH codes, BCH(63, 30), BCH(63, 45) and BCH(127, 92) codes, with the min-

imum distance, 13, 7 and 11, respectively, simulation results show the e�ec-

tiveness of the choice of search centers. To reduce the number of iterations

of bounded distance decoding algorithm without any loss of error performance,

we derive new e�ective suÆcient conditions on the optimality of decoded code-

words as early termination conditions and show the e�ectiveness by simulation

for BCH(63, 30), BCH(63, 45), BCH(127, 85) and BCH(127, 92).

4



Chapter 2

On the Number of Minimum

Weight Codewords of Subcodes

of Reed-Muller Codes

2.1 De�nitions

We consider the number of minimum weight codewords in (2m;
P

r

i=0

�
m

i

�
��K)

linear subcodes of RM
r;m

for 0 < �K <

�
m

r

�
. The notation Nmin(C) denotes

the number of minimum weight codewords in a subcode C. Let x1; x2; : : : ; xm be

m variables. Let P
r;m

denote the set of binary polynomials with m variables of

degree r or less and letM
r;m

denote the set of monomials in P
r;m

. For a codeword

of RM
r;m

, there is a unique polynomial in P
r;m

which represents the codeword [2,

Ch.13, x3]. Hereafter, the polynomial is used in place of a codeword.

For 0 < h � r, de�ne J
h

4

=ffj1; j2; : : : ; jhg : 1 � j1 < j2 < � � � < j
h
� mg,

J0
4

= f;(empty set)g and J

4

=
S

r

h=0 Jh. For �1 and �2 in J , let �1 \ �2 denote

the ordered set of those integers which are contained in both of �1 and �2. For

� = fj1; j2; : : : ; jhg 2 J
h
with 1 � h � r, de�ne m

�
as the product of variables

x
j1
; x

j2
; : : : ; x

jh
and letm;

4

=1. Polynomial f 2 P
r;m

can be expressed uniquely as

a linear sum of monomials inM
r;m

, and for � 2 J , let c
�
(f) denote the coeÆcient

of m
�
in the sum of f . For a set X, jXj denotes the cardinality of X. For a

binary r � n matrix B and � = fj1; j2; : : : ; jhg 2 J
h
with j

h
� n � m, let B

�

denote the submatrix of B consisting of the j1-th column, the j2-th column, : : : ,

5



the j
h
-th column of B.

2.2 Minimum Weight Codewords

Let P
r;m;min denote the set of those polynomials in Pr;m which represent codewords

of minimum weight 2m�r. Then, as shown in [2, Theorems 5, 7 and 8 in x4, Ch.13],

f 2 P
r;m;min if and only if f is of the following form :

f =

rY
i=1

(a
i
+

mX
j=1

a
ij
x
j
);

where

rank

0
B@

a11 � � � a1m

...
. . .

...

a
r1 � � � a

rm

1
CA = r: (2.1)

Let �
r;m

denote the set of those r � (m + 1) binary matrices whose submatrices

consisting of the �rst m columns have rank r. For A 2 �
r;m

, de�ne

p(A)
4

=

rY
i=1

(a
im+1 +

mX
j=1

a
ij
x
j
); (2.2)

where a
ij
denotes the (i; j) element of A for 1 � i � r and 1 � j � m + 1. For

two polynomials f and g in P
r;m

and 0 � i < r, we write f � g, mod P
i;m

if and

only if f + g 2 P
i;m

. Then, p(A) is uniquely expanded as follows:

p(A) =

rY
i=1

(a
im+1 +

mX
j=1

a
ij
x
j
)

�

X
�2Jr

det(A
�
)m

�
; mod P

r�1;m: (2.3)

2.3 The Number of MinimumWeight Codewords

of a Subcode Spanned by Monomials

For simplicity, we consider the case where the subcode C of a RM code is spanned

by monomials in M
r;m

n�M where �M �M
r;m

nM
r�1;m and j�M j = �K. Let

6



�J denote the subset of J
r
such that �M = fm

�
: � 2 �Jg. The subcode C is

denoted also by C(�M) or C(�J). Then, f = p(A) with A 2 �
r;m

is a codeword

in C(�J), if and only if

det(A
�
) = 0; for � 2 �J: (2.4)

For di�erent �1; �2; : : : ; �h 2 J , de�ne F (�1; �2; : : : ; �h)
4

=ff 2 P
r;m;min : c�i(f) =

1 for 1 � i � hg and �(�1; �2; : : : ; �h)
4

=jF (�1; �2; : : : ; �h)j. Then, for �J con-

sisting of di�erent �1; �2; : : : ; �h, Nmin(C(�J)) can be expressed by the principle

of inclusion and exclusion as follows:

Nmin(C(�J)) = 2r
m�r�1Y
i=0

2m�i
� 1

2m�r�i � 1
�

X
1�i�h

�(�
i
) +

X
1�i1<i2�h

�(�
i1
; �

i2
)

� � �+ (�1)s
X

1�i1<i2<���<is�h

�(�
i1
; �

i2
; : : : ; �

is
)

� � �+ (�1)h�(�1; �2; : : : ; �h); (2.5)

where the �rst term of the right-hand side is the number of minimum weight

codewords of RM
r;m

[2, Ch.13, x5].

We consider how to evaluate �(�1; �2; : : : ; �h) for 1 � h � �K. The following

lemma holds.

Lemma 1 �(�1; �2; : : : ; �h) is equal to the number of r�(m+1) binary matrices

A's such that

(1) A
�1

is the identity matrix,

and

(2) det(A
�i
) = 1, for 2 � i � h.

(Proof) (i) Let A be a matrix satisfying the above conditions. Then, p(A) 2

F (�1; �2; : : : ; �h). Let A and A
0 be two di�erent matrices satisfying the above

conditions. Let a
i;j

and a
0

i;j
denote the (i; j) elements of A and A

0, respectively.

Without loss of generality, let �1 = f1; 2; : : : ; rg. If the (m+ 1)-th columns of A

and A0 are di�erent, then substitute 0 for variables x
j
for r < j � m in p(A) and

p(A0). Then the resulting polynomials are di�erent polynomials
Q

r

i=1(xi+a
im+1)

and
Q

r

i=1(xi + a
0

im+1). If A and A0 have di�erent (i; j) elements, say a
ij
= 1 and

7



a
0

ij
= 0 where 1 � i � r and r < j � m, then substitute 0 for variables x

t
for

t 2 fig [ fr + 1; r + 2; : : : ; mg n fjg. Then, the resulting polynomial of p(A)

contains monomials x1 : : : xi�1xjxi+1 : : : xr of degree r and that of p(A0) contains

no monomial of degree r. Hence, p(A) 6= p(A0).

(ii) Let B be an r � (m + 1) binary matrix such that p(B) 2 F (�1; �2; : : : ; �h).

For 1 � i � r, let the i-th row of B be (b
i1
; b

i2
; : : : ; b

im
; b

im+1
). For 1 � i < i

0
� r,

let B0 denote the matrix obtained from B by replacing the i0-th row of B with

(b
i
0

1
+ b

i1
; b

i
0

2
+ b

i2
; : : : ; b

i
0
m
+ b

im
; b

i
0

m+1
+ b

im+1
+1). Then, p(B0) = p(B). By using

this kind of row operation and permuting the rows, we can derive a matrix A

such that p(B) = p(A) and A meets the above conditions. 44

Renumbering the suÆces of variables induces a permutation of the bit posi-

tions of codewords. Hence, an equivalent code is derived by the renumbering.

Since equivalent codes have the same weight distribution, there is no loss of gen-

erality in assuming that �1 = f1; 2; : : : ; rg. Hereafter in this section, we assume

this. For subsets H1 and H2 of f1; 2; : : : ; m+ 1g, A
H1;H2

denotes the submatrix

of A consisting of (i; j) elements of A where i 2 H1 and j 2 H2. For � 2 J , de�ne

�
0 4

=f1; 2; : : : ; m + 1g n �, �1 = � and �
�

4

= f1; 2; : : : ; m+ 1g. For a sequence

� = b1b2 � � � bh over f0; 1; �g with 1 � h � �K, de�ne

n
�

4

=�b11 \ �
b2

2 \ � � � \ �

bh

h
: (2.6)

(i) When �K = 1, from Lemma 1, �(�1) is given as follows:

�(�1) = 2(m�r+1)r
: (2.7)

From (2.5), we have that

Nmin(C) = 2r
m�r�1Y
i=0

2m�i
� 1

2m�r�i � 1
� 2(m�r+1)r

: (2.8)

(ii) Consider the case of �K = 2 and �J = f�1; �2g. De�ne l
4

=j�1 \ �2j.

By renumbering variables, we can assume that �1 = f1; 2; : : : ; rg and �2 =

fr + 1 � l; r + 2 � l; : : : ; 2r � lg where 0 � l < r. Then, det(A
�2
) = 1, if and

only if the (r � l) � (r � l) submatrix A
n10;n01

is regular (refer to Fig. 2.1). The

number of such regular submatrices is given by

r�l�1Y
j=0

(2r�l � 2j):

8



There is no restriction of submatrix A
n11;n01

. Then, the number of matrices A

such that A
�1

is the identity matrix and det(A
�2
) = 1 is

2rfm+1�(2r�l)g
� 2(r�l)l �

r�l�1Y
j=0

(2r�l � 2j):

From Lemma 1,

�(�1; �2) = 2rfm+1�(2r�l)g
� 2(r�l)l �

r�l�1Y
j=0

(2r�l � 2j): (2.9)

It follows from (2.5), (2.7) and (2.9) that

Nmin(C) = 2r
m�r�1Y
i=0

2m�i
� 1

2m�r�i � 1
� f�(�1) + �(�2)� �(�1; �2)g

= 2r
m�r�1Y
i=0

2m�i
� 1

2m�r�i � 1
� 2 � 2(m�r+1)r

+2rfm+1�(2r�l)g
� 2(r�l)l �

r�l�1Y
j=0

(2r�l � 2j); (2.10)

where �M = fm
�1
; m

�2
g and l denotes the number of integers appearing in both

of �1 and �2. The value of Nmin(C) in (2.10) takes the minimum, if and only if

l = 0, that is, �1 and �2 are disjoint. This result is generalized in Theorem 1.

(iii) Consider the case of �K = 3 and �J = f�1; �2; �3g. By renumbering of

variables, there is no loss of generality in assuming that �1 = f1; 2; : : : ; rg and

the integers in nonempty sets n100; n101; n110 and n111 are arranged as shown in

Fig 2.2, that is, for any i1 2 n100; i2 2 n101; i3 2 n110 and i4 2 n111, 1 � i1 <

i2 < i3 < i4 � r (for an empty set, skip it). Then, since A
�1
(= A

n1��;n1��
) is

an identity matrix and therefore A
n10�;n11�

is a zero matrix and A
n11�;n11�

is an

identity matrix, we have that det(A
�2
) = 1, if and only if

(L1) submatrix A
n10�;n01�

is regular.

Note that jn10�j = r � jn11�j = jn01�j. Similarly, det(A�3
) = 1 if and only if

(L2) submatrix A
n1�0;n0�1

is regular.

Note that jn1�0j = r � jn1�1j = jn0�1j (refer to Fig. 2.2). From (L1) and (L2), we

see that

9



0

0

1

1
1

1
An11;n01

An10;n01

�

�

�

�

�

�

�

�
n11

n10

8>>>>>><
>>>>>>:
r

n10 n11 n01 n00| {z }| {z }
r r � l

9>>=
>>;�
r � l

l

Figure 2.1. The matrix A by renumbering variables.

(L3) the columns of A
n10�;n011

are linearly independent, and

(L4) the columns of A
n1�0;n011

are linearly independent.

The submatrix which consists of common rows and columns of A
n10�;n01�

and

A
n1�0;n0�1

is A
n100;n011

. Let N23 denote the number of pairs of A
n10�;n011

and

A
n1�0;n011

satisfying (L3) and (L4). If one of jn100j, jn101j, jn110j and jn011j is

zero, N23 can be easily counted. For the case where they are all nonzeros, how

to evaluate N23 is shown in Appendix A.

Since the �rst to the jn010j-th columns of An10�;n01�
are linearly independent of

the jn011j rest linearly independent columns of A
n10�;n01�

, the number of A
n10�;n010

consisting of such columns is given by

jn01�j�1Y
j=jn011j

(2jn10�j � 2j) =

jn10�j�1Y
j=jn011j

(2jn10�j � 2j): (2.11)

Similarly, the number of A
n1�0;n001

is given by

jn0�1j�1Y
j=jn011j

(2jn1�0j � 2j) =

jn1�0j�1Y
j=jn011j

(2jn1�0j � 2j): (2.12)

The elements of the (m + 1)-th column and submatrices A
n11�;n010

, A
n111;n0�1

,

A
n101;n001

and A
n1��;n000

are arbitrary. The total number of these elements is given

by

2jn11�j�jn010j+jn111j�jn0�1j+jn101j�jn001j � 2r(jn000j+1): (2.13)

10



Then, it follows from the de�nition of N23, (2.11), (2.12) and (2.13) that the

number of matrices A such that A
�1

is the identity matrix, det(A
�2
) = 1 and

det(A
�3
) = 1 is

N23 �

jn10�j�1Y
j=jn011j

(2jn10�j � 2j)�

jn10�j�1Y
j=jn011j

(2jn1�0j � 2j)

� 2jn11�j�jn010j+jn111j�jn0�1j+jn101j�jn001j � 2r(jn000j+1); (2.14)

(refer to Fig. 2.2). From Lemma 1, �(�1; �2; �3) is equal to the value of the

formula (2.14).

For �K = 4, the evaluation of �(�1; �2; �3; �4) where �1 \ �2 \ �3 \ �4 6= ;

becomes more complicated. However, the method presented in Appendix A can

be applied to more general cases.

1

1
1

1
1

1
1

1

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

0

0
0

0

0

0

n111

n110

n101

n100

n100 n101 n110 n111 n010 n011 n001 n000

8>>><
>>>:

n10�

8>>>><
>>>>:

n11�

| {z }
n11�

| {z }
n01�

| {z }
n0�1

D0

D1

D2

?

An10�;n01�

B1

�

	

Y

�

B2

i

)

An1�0;n0�1

Figure 2.2. The matrix A by renumbering variables.
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2.4 Subcodes with the Smallest Number of Min-

imum Weight Codewords

We consider how to delete �K monomials in order to obtain the subcode with

the smallest number of minimum weight codewords. We �rst prove the following

lemma.

Lemma 2 We assume that (a) there is an integer, say m, which is not contained

in any � 2 �J and (b) there are two or more sets �1; �2; : : : ; �p in �J which

have a common integer, say m � 1, and no other sets in �J contain m � 1.

Let � 0

p
2 J

r
denote the set obtained from �

p
by replacing m � 1 with m and

�J 0
4

=(�J n f�
p
g) [

�
�
0

p

	
. Then, we have the following inequality:

Nmin(C(�J)) > Nmin(C(�J
0)): (2.15)

(Proof) For a subset J 0 of J , de�ne �(J 0)
4

=fA 2 �
r;m

: det(A
�
) = 0; � 2 J

0
g.

Then [2, Theorems 3 and 5, Appendix B],

Nmin(C(J
0)) = jfp(A) : A 2 �(J 0)gj

=
j�(J 0)jQ

r�1

i=0 (2
r � 2i)

:

Hence it is suÆcient to show that

j�(�J)j > j�(�J 0)j : (2.16)

For a binary r � (m + 1) matrix A, let A0 denote the r � (m � 1) submatrix

consisting of the �rst to the (m� 2)-th columns and the (m+1)-th column of A.

That is, A0 = Af1;2;::: ;m+1gnfm�1;mg. For a binary r � (m� 1) matrix D, de�ne

�(�J;D)
4

= fA 2 �(�J) : A0 = Dg ;

�(�J 0
; D)

4

= fA
0
2 �(�J 0) : A0

0 = Dg :

We will show that for any binary r � (m� 1) matrix D,

j�(�J;D)j � j�(�J 0
; D)j; (2.17)
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and that there are binary r � (m� 1) matrices D's such that

j�(�J;D)j > j�(�J 0
; D)j: (2.18)

Since j�(�J)j =
P

D
j�(�J;D)j and j�(�J 0)j =

P
D
j�(�J 0

; D)j, where
P

D

denotes the sum over all binary r�(m�1) matrices, (2.17) and (2.18) imply (2.16)

and therefore (2.15).

There are the following three cases of D to be considered. Let D
o
denote the

submatrix of D consisting of the �rst m� 2 columns of D.

(i) The rank of D
�pnfm�1g � r � 2: For any binary r � (m + 1) matrix A

such that A0 = D, det(A
�p
) = det(A

�
0
p
) = 0. Hence, if A0

2 �(�J 0
; D),

then A
0
2 �(�J;D). That is, (2.17) holds.

(ii) The rank of D
�pnfm�1g = r � 1:

(ii.1) First, we assume that the rank of D
o
is r. If there is a set � 2 �J n

f�1; �2; : : : ; �pg such that det(D
�
) = 1, then �(�J;D) = �(�J 0

; D) = ;. We

consider the case where for any set � in �J nf�1; �2; : : : ; �pg, det(D�
) = 0. Then,

for any binary r � (m+ 1) matrix A (or A0) such that A0 = D and det(A
�i
) = 0

with 1 � i � p (or A0

0 = D, det(A0

�i
) = 0 with 1 � i < p and det(A0

�
0
p
) = 0),

A 2 �(�J;D) (or A0
2 �(�J 0

; D)).

Let a
i;j

denote the (i; j) element of A and a0
i;j

denote the (i; j) element of A0.

We will compare j�(�J;D)j with j�(�J 0
; D)j. We can expand det(A

�i
) on the

(m� 1)-th column of A
�i
for 1 � i � p as follows:

det(A
�i
) =

rX
j=1

B
ij
a
j;m�1 = 0; for 1 � i � p; (2.19)

where B
ij
is a cofactor and is dependent on D only. There is no restriction on

a1;m; a2;m; : : : ; ar;m. Let � denote the rank of the coeÆcient matrix of (2.19) whose

(i; j) element is B
ij
for 1 � i � p and 1 � j � r. Since j�(�J;D)j is the number

of a1;m�1; a2;m�1; : : : ; ar;m�1; a1;m; a2;m; : : : ; ar;m satisfying (2.19),

j�(�J;D)j = 22r��: (2.20)
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We can expand det(A0

�i
) on the (m � 1)-th column of A0

�i
for 1 � i < p and

det(A0

�
0
p
) on the m-th column of A0

�
0
p
as follows:

det(A0

�i
) =

rX
j=1

B
ij
a
0

j;m�1 = 0; for 1 � i < p; (2.21)

det(A0

�
0
p
) =

rX
j=1

B
pj
a
0

j;m
= 0: (2.22)

Let �0 denote the rank of the coeÆcient matrix of (2.21) whose (i; j) elements is

B
ij
for 1 � i < p and 1 � j � r. Then,

�
0 = � or �� 1: (2.23)

The number of a01;m�1; a
0

2;m�1; : : : ; a
0

r;m�1 satisfying (2.21) is 2
r��

0

. Since the rank

of A0

�
0
pnfmg

(= D
�pnfm�1g) is r � 1, one of B

pj
with 1 � j � r is not zero. Hence,

the number of a01;m; a
0

2;m; : : : ; a
0

r;m
satisfying (2.22) is 2r�1. Consequently, we have

that

j�(�J 0
; D)j = 22r��

0
�1
: (2.24)

From (2.20), (2.23) and (2.24), we see that

j�(�J;D)j � j�(�J 0
; D)j : (2.25)

(ii.2) Next, we assume that the rank of D
o
is r � 1. It is suÆcient to consider

the case that the �rst r � 1 rows of D
o
are linearly independent and the last

row of D
o
is a zero row. Since the rank of D

�pnfm�1g is r � 1, if A 2 �(�J;D),

then a
r;m�1 = 0 from det(A

�p
) = 0 and a

r;m
= 1 from A 2 �

r;m
. Conversely,

if a
r;m�1 = 0 and a

r;m
= 1, then det(A

�
) = 0 for � 2 �J and det(A

�
0
p
) = 1,

that is, A 2 �(�J;D). Hence, j�(�J;D)j = 22r�2. Similarly, if A0
2 �(�J 0

; D),

then a
0

r;m
= 0 from det(A0

�
0
p
) = 0 and a

0

r;m�1 = 1 from A
0
2 �

r;m
. Hence,

j�(�J 0
; D)j � 22r�2. Consequently

j�(�J;D)j � j�(�J 0
; D)j: (2.26)

Note that if the rank of D
�p�1nfm�1g is r�1, then a0

r;m�1 = 1 implies det(A0

�p�1
) =

1. That is, �(�J 0
; D) is empty. Let D be a binary r� (m� 1) matrix as follows:

14



(a) the last row of D is a zero row, (b) the rank of D
�pnfm�1g is r�1 and (c) there

is a one-to-one correspondence between the set of columns of D
�pnfm�1g and that

of D
�p�1nfm�1g such that the corresponding columns are the same column vector.

Then, the rank of D
�p�1nfm�1g is r � 1, and therefore,

j�(�J;D)j > j�(�J 0
; D)j: (2.27)

44

Suppose that r�K � m. From Lemma 2, we can remove the overlap among

�J step by step to decrease the number of minimum weight codewords. Thus we

have the following theorem.

Theorem 1 For r�K � m, the value of Nmin(C(�J)) takes the minimum, if

and only if the sets in �J are mutually disjoint. 44

In case that �J consists of mutually disjoint sets, a formula for Nmin(C(�J))

is readily derived from (2.5) and Lemma 1.

RM
r;m

code is spanned by the set of codewords with the minimum weight [2,

Ch.13, x5]. We can consider subcodes of RM codes which are spanned by a set of

codewords with the minimum weight. The basis of this subcode is formed from

that of a RM code by deleting �K codewords of the minimum weight which are

linearly independent each other. Then, for r�K � m, we can replace the �K

codewords to �K monomials of degree r by an aÆne transformation. Hence, this

case is reduced to the case that we have considered in Sections 2.3 and 2.4.

Example 1 Consider the number of minimum weight codewords of (64; 40) sub-

codes of the (64; 42) RM code, that is, RM3;6. Table 2.1 shows the number of

minimum weight codewords of a subcode whose basis is formed from that of

the (64; 42) RM code by deleting two monomials. By renumbering the suÆces

of variables, there are exactly three cases, that is, �M0 = fx1x2x3; x4x5x6g,

�M1 = fx1x2x3; x3x4x5g and �M2 = fx1x2x3; x2x3x4g. The code C(�M0) with

the smallest number of minimum weight codewords has the smallest block error

probabilities at E
b
=N0 = 2:0; 3:0; 4:0 and 5:0dB as is shown in Table 2.1.

The result in Sections 2.3 and 2.4 can be generalized to the case where monomials

of degree r�1 may be deleted, that is, �M �M
r;m
nM

r�2;m, by using the following
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Table 2.1. Minimum Weight Codewords of (64; 40) subcode of RM3;6.

The number of The block error probabilities at E
b
=N0 for

�M minimum weight soft-decision maximum likelihood decoding

codewords 2:0dB 3:0dB 4:0dB 5:0dB

�M0 4312 8:54 � 10�2 1:33 � 10�2 9:68 � 10�4 2:93 � 10�5

�M1 4504 8:67 � 10�2 1:36 � 10�2 9:97 � 10�4 3:38 � 10�5

�M2 5016 8:99 � 10�2 1:46 � 10�2 1:09 � 10�3 3:66 � 10�5

fact: For � = (j1; j2; : : : ; jr�1) 2 J
r�1, let A�

denote the r � r submatrix of A

consisting of the j1-th, the j2-th, : : : , the jr�1-th and the (m + 1)-th columns of

A. Then, we have that

p(A) �
X

�2Jr�1[Jr

det(A
�
)m

�
; mod P

r�2;m: (2.28)

We consider the case where the subcode C of a RM code is spanned by monomials

inM
r;m

n�M where �M �M
r�2;m, j�M j = 2 and �M = f�1; �2g for �1 2 J

r�1

and �2 2 J
r
.

Consider the case of j�M j = 1 and �1 2 J
r�1. There is no loss of generality

in assuming that �1 = (1; 2; : : : ; r�1). The �rst to the r�1-th columns of A are

linearly independent and there exists unique j satisfying the following conditions:

(1) r � j � m,

(2) the �rst to the r� 1-th and the i-th columns of A for r � i < j are linearly

depend,

and

(3) the �rst to the r�1-th and the j-th columns of A are linearly independent.

For any j, we evaluate the number N
j
of matrices such that

(10) the submatrix consisting of the �rst to the r � 1-th and the j-th columns

of A is the identity matrix,

and

(20) the �rst to the r�1-th and m+1-th columns of A are linearly independent.
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Then, the total sum of N
j
for r � j � r is �(�1), that is

�(�1) =

mX
j=r

N
j
: (2.29)

Consider the case of j�M j = 2. Let l denotes the number of integer appearing

in both of �1 and �2. By renumbering variables, we can assume that �1 =

(r+1� l; r+2� l; : : : ; 2r� 1� l) and �2 = (1; 2; : : : ; r) where 0 � l < r. Then,

det(A
�1
) = 1, if and only if the (r � l)� (r � l) submatrix consisting of the �rst

r � l rows and the j1-th, the j2-th, : : : , the jr�1-th and the (m + 1)-th columns

of A is regular. There is no restriction of the submatrix consisting of columns of

A, excluding the �rst (2r� 1� l) columns an the (m+ 1)-th column. Then, the

number of matrices A such that A
�2

is the identity matrix and det(A
�1
) = 1 is

2rfm+1�(2r�l)g
� 2(r�l)l �

r�l�1Y
j=0

(2r�l � 2j): (2.30)

From Lemma 1,

�(�1; �2) = 2rfm+1�(2r�l)g
� 2(r�l)l �

r�l�1Y
j=0

(2r�l � 2j): (2.31)

It follows from (2.5), (2.7), (2.29) and (2.31) that

Nmin(C) = 2r
m�r�1Y
i=0

2m�i
� 1

2m�r�i � 1
�

mX
j=r

N
j
� 2(m�r+1)r

+2rfm+1�(2r�l)g
� 2(r�l)l �

r�l�1Y
j=0

(2r�l � 2j): (2.32)

Example 2 Consider the number of minimum weight codewords of (64; 40) sub-

codes of the (64; 42) RM code. Table 2.2 shows the number of minimum weight

codewords of a subcode of a RM code is spanned by monomials in M
r;m

n �M

where �M � M
r�2;m, j�M j = 2 and �M = f�1; �2g for �1 2 J

r�1 and �2 2 J
r
.

By renumbering the suÆces of variables, there are exactly three cases, that is,

�M = fx1x2x3; x4x5g, fx1x2x3; x3x4g and fx1x2x3; x2x3g.
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Table 2.2. Nmin(C(�M)) where �M � M
r;m

nM
r�2;m, j�M j = 2 and �M =

f�1; �2g for �1 2 J
r�1 and �2 2 J

r
.

�M
The number of

minimum weight codewords

x1x2x3; x4x5 4568

x1x2x3; x3x4 4760

x1x2x3; x2x3 5272

2.5 Conclusion

We have presented a formula or an e�ective method which gives the number of

minimum weight codewords in a (2m;
P

r

i=0

�
m

i

�
��K) linear subcode C of RM

r;m

code which is spanned by monomials with m variables of degree r or less over

GF(2) for �K � 3. Next, it has been shown in Theorem 1 how to delete �K

monomials in order to obtain the subcode with the smallest number of codewords

of the minimum weight for r�K � m. In Example 1, we have shown the numbers

of minimum weight codewords of all such (64; 40) subcodes of RM3;6 and those

error probabilities of soft-decision maximum likelihood decoding by simulation.
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Chapter 3

A Recursive MLD Algorithm for

Some Transitive Invariant Binary

Block Codes

3.1 A Review of RMLD Algorithm

Consider a binary (n; k) linear block code C for error control over an AWGN

channel using BPSK signaling.

For a positive integer n, let V n denote the vector space of all the n-tuples

over GF(2). For an n-tuple u = (u1; u2; : : : ; un) 2 V
n, let wt(u) be the Ham-

ming weight (or simply weight) of u. Let x and y be two nonnegative integers

such that 0 � x < y � n. For an n-tuple u = (u1; u2; : : : ; un) 2 V
n, de�ne

p
x;y
u

4

=(u
x+1; ux+2; : : : ; uy), and p

x;y
(C)

4

=fp
x;y
u : u 2 Cg. Then p

x;y
(C) is a

linear code of length y � x. Let C
x;y

denote the subcode of C which consists of

those codewords whose components are all zero except for the y� x components

from the (x + 1)-th bit position to the y-th bit position. For simplicity, we use

the notation Ctr
x;y
, for the truncated code p

x;y
(C

x;y
).

For a linear block code A and its linear subcode B;A=B denotes the set of

cosets of B in A, called partition of A with respect to B. For two binary tuples

u = (u1; u2; : : : ; ui) and v = (v1; v2; : : : ; vj), let u Æ v denote the concatenation

of u and v, (u1; u2; : : : ; ui; v1; v2; : : : ; vj), and for block codes A and B, A Æ B

denotes fu Æ v : u 2 A; v 2 Bg. For a set X, jXj denotes the cardinality of X.
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For integers x and y such that 0 � x < y � n, let L
x;y

denote the cosets of

C
tr
x;y

in the partition p
x;y
(C)=Ctr

x;y
, i.e.,

L
x;y

4

= p
x;y
(C)=Ctr

x;y
: (3.1)

L
x;y

plays a key role in RMLD algorithm.

Let D be a coset in L
x;y
. For a vector u 2 D, let m(u) denote the correlation

metric of u with the received sequence (from the (x + 1)-th bit position to the

y-th bit position). De�ne

m(D)
4

= max
u2D

m(u) (3.2)

which is called the metric of coset D. Let l(D) denote the vector in D that has

the largest (correlation) metric in D. This (y � x)-tuple l(D) is called the label

of coset D.

Form a metric table for L
x;y

which consists of the pairs,

(m(D); l(D));

for all the cosets in L
x;y
. This metric table is called L

x;y
-table. Note that for

x = 0 and y = n, L0;n = fCg. When L0;n-table is constructed, it stores the most

likely codeword and its correlation metric. The RMLD algorithm for decoding C

is simply a recursive procedure for constructing L
x;y
-tables for long trellis sections

from short trellis sections.

Assume that y � x � 2. Let z be an integer such that x < z < y. For each

D 2 L
x;y
, de�ne A

z
(D)

4

=fD
z
2 L

x;z
: D

z
� p

x;z
(D)g. Since D is in p

x;y
(C)=Ctr

x;y

and D
z
is in p

x;z
(C)=Ctr

x;z
, D

z
is in p

x;z
(p

x;y
(C)=(Ctr

x;z
ÆC

tr
z;y
)), that is, for each D

z
,

there is a binary (y� x)-tuple u such that D
z
= fp

x;z
u+ v : v 2 C

tr
x;z
g and there

is exactly one coset in L
z;y
, fp

z;y
u+v : v 2 C

tr
z;y
g, denoted adj(D

z
; D), such that

D
z
Æ adj(D

z
; D) � D: (3.3)

Hence jA
z
(D)j, denoted A

x;y;z, is given by

A
x;y;z = jC

tr
x;y
j=(jCtr

x;z
j � jC

tr
z;y
j): (3.4)

20



Then, it follows from (3.3) that

D =
[

Dz2Az(D)

D
z
Æ adj(D

z
; D); (3.5)

and

m(D) = max
Dz2Az(D)

fm(D
z
) +m(adj(D

z
; D))g; (3.6)

l(D) = l(D0

z
) Æ l(adj(D0

z
; D)); (3.7)

where the maximum of the right-hand side of (3.6) is taken by D
0

z
2 A

z
(D).

Note that m(D0

z
) and l(D0

z
) are stored in the L

x;z
-table and m(adj(D0

z
; D)) and

l(adj(D0

z
; D)) are stored in the L

z;y
-table. Therefore, from (3.6) and (3.7), L

x;y
-

table can be constructed from L
x;z
- and L

z;y
-tables.

The L0;n-table for C (or decoding C) can be obtained by executing the fol-

lowing recursive procedure RMLD-C(x; y):

(1) Construct L
x;x+1-table directly, or

(2) if y�x � 2, then choose an integer z such that x < z < y. Execute RMLD-

C(x; z) and RMLD-C(z; y) to form L
x;z
- and L

z;y
-tables. Construct the

L
x;y
-table from L

x;z
-table, L

z;y
-table and A

z
(D) by using (3.6) and (3.7).

44

A straightforward method for solving (3.6) is add-compare-select(ACS)

which is used in conventional Viterbi algorithm. Let 
(x; y; z) denote the number

of additions and comparisons in ACS for solving (3.6). Then


(x; y; z) =
X

D2Lx;y

(2jA
z
(D)j � 1)

= (2A
x;y;z � 1) jL

x;y
j : (3.8)

3.2 Transitive Invariant Block Codes

For a positive integer m, let P
m

denote the set of Boolean polynomials of m

variables, x1; x2; : : : ; xm, which take values 0 or 1. Consider a Boolean polynomial

f

4

= f(x1; x2; : : : ; xm) in P
m
. For each combination of values of x1; x2; : : : ; xm,
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the polynomial f takes a truth value either 0 or 1. For the 2m combinations of

values of x1; x2; : : : ; xm, the truth values of f forms a 2m-tuple over GF(2).

For a nonnegative integer l less than 2m, let (b
l1
; b

l2
; : : : ; b

lm
) be the standard

binary representation of l such that

l = b
l1
+ b

l2
2 + � � �+ b

lm
2m�1

: (3.9)

For a given Boolean polynomial f 2 P
m
, we form the following 2m-tuple:

v = (v1; v2; : : : ; v2m) (3.10)

where

v
l+1 = f(b

l1
; b

l2
; : : : ; b

lm
) (3.11)

with 0 � l < 2m. We say that the Boolean polynomial f represents the vector v.

We use the notation v
m
(f) (or simply v(f) when there is no confusion) for the

vector represented by f .

There are 22
m

Boolean polynomials in P
m
. It follows from (3.10) and (3.11)

that these polynomials uniquely de�ne all the 2m-tuples over GF(2). For a subset

X � P
m
, de�ne

v
m
(X)

4

= fv
m
(f) : f 2 Xg

which is a subset of the vector space of all the 2m-tuples over GF(2). Therefore,

for a binary block code C of length 2m, there exists a subset P
C
of P

m
such that

C = v
m
(P

C
). This Boolean polynomial representation of block codes of length 2m

is quite useful in analyzing their structural properties [2]. The most well known

example is the Boolean polynomial representation of RM codes. For 0 � r � m,

let P
r;m

denote the set of polynomials of degree r or less in P
m
. Let RM

r;m
denote

the r-th order RM code of length n
4

= 2m. Then, the RM
r;m

is given by v
m
(P

r;m
),

i.e.,

RM
r;m

= v
m
(P

r;m
) = fv

m
(f) : f 2 P

r;m
g: (3.12)

Let C be a binary block code of length 2m which is speci�ed by a subset P
C
of

polynomials in P
m
. We introduce the following de�nition:
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De�nition 1 C is said to be binary transitive invariant (or b-transitive invari-

ant), if and only if for any f(x1; x2; : : : ; xm) 2 P
C
and (a1; a2; : : : ; am) 2 V

m
,

f(x1 + a1; x2 + a2; : : : ; xm + a
m
) 2 P

C
: (3.13)

That is, if f 2 P
C
represents a vector v = (v1; v2; : : : ; v2m) 2 v

m
(P

C
), then for

(a1; a2; : : : ; am) 2 V
m
, f(x1 + a1; x2 + a2; : : : ; xm + a

m
) represents another vector

u = (u1; u2; : : : ; u2m) 2 v
m
(P

C
).

44

This transitive operation simply permutes the components of v
m
(f). For

0 � l < 2m, the component v
l+1 of vm(f) at the position l+ 1 =

P
m

i=1 bli2
i�1 + 1

is permuted to the position

l
0 + 1 =

mX
i=1

(b
li
+ a

i
)2i�1 + 1:

RM codes [4] and extended and permuted binary primitive BCH codes [9] are

b-transitive invariant. Let C
w
denote the set of codewords in C with weight w,

i.e.,

C
w

4

= fu 2 C : wt(u) = wg:

It is clear that, for a b-transitive invariant code C, the subcode C
w
is also b-

transitive invariant. For a polynomial f(x1; x2; : : : ; xm) 2 P
m
, de�ne @f as fol-

lows:

@f

4

=ff(x1 + a1; x2 + a2; : : : ; xm + a
m
)� f(x1; x2; : : : ; xm) : (a1; a2; : : : ; am) 2 V

m
g:

(3.14)

Then we have the following lemma:

Lemma 3 If C is a binary linear code of length 2m, then there is a subset Q
C

of P
m

such that C is spanned by v
m
(Q

C
). C is b-transitive invariant if and

only if for f 2 Q
C
, each polynomial in @f can be expressed as a linear sum of

polynomials in Q
C
.

44
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For two monomials t1 = x
i1
x
i2
� � �x

ip
and t2 = x

j1
x
j2
� � �x

jq
, t1 is said to be a

subterm of t2 or t2 is said to be a superterm of t1, if and only if fi1; i2; : : : ; ipg �

fj1; j2; : : : ; jqg. Then, for a monomial t in P
m
, each polynomial in @t (de�ned

by (3.14)) can be expressed as a linear sum of subterms of t other than t itself.

Suppose that a linear code C is spanned by v
m
(M

B
)(or simply M

B
), where M

B

is a set of monomials in P
m
. Then, it follows from Lemma 3 that C is b-transitive

invariant, if and only if the following closure condition (CS) on subterms holds:

(CS) For t 2 M
B
, all subterms of t are in M

B
.

Let f(x1; x2; : : : ; xm) be a polynomial in P
m
and fb1; b2; : : : ; bhg be a set of

binary constants (i.e. b
i
= 0 or 1 for 1 � i � h). Let f

b1b2���bh
be the polynomial

obtained from f(x1; x2; : : : ; xm) by setting x
m�h+1 = b1; xm�h+2 = b2; : : : ; xm =

b
h
. Then f

b1b2���bh
is a Boolean polynomial of m � h variables, x1; x2; : : : ; xm�h

in P
m�h. Let � represent the binary sequence b1b2 � � � bh, i.e., �

4

= b1b2 � � � bh. For

simplicity, we use the notation f
�
for f

b1b2���bh
. Let j be the integer de�ned by

� = b1b2 � � � bh as follows:

j

4

=

hX
i=1

b
i
2i�1: (3.15)

Then we can readily see that

p
j2m�h;(j+1)2m�h(vm(f)) = v

m�h(f�): (3.16)

For f(x1; x2; : : : ; xm) 2 P
m
, binary sequences � = b1b2 � � � bh and �

0 = b
0

1b
0

2 � � � b
0

h

with 1 � h � m, de�ne

f
0(x1; x2; : : : ; xm)
4

= f(x1; x2; : : : ; xm�h; xm�h+1 + b1 + b
0

1; xm�h+2 + b2 + b
0

2; : : : ; xm + b
h
+ b

0

h
);

(3.17)

j

4

=
hP
i=1

b
i
2i�1 and j 0

4

=
hP
i=1

b
0

i
2i�1. From (3.16), we have

p
j2m�h;(j+1)2m�h(vm(f)) = v

m�h(f�) = v
m�h(f

0

�
0)

= p
j
02m�h;(j0+1)2m�h(vm(f

0)): (3.18)
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If C is b-transitive invariant, then f
0
2 P

C
if and only if f 2 P

C
. Hence, from

(3.18),

p
j2m�h;(j+1)2m�h(C) = p

j
02m�h;(j0+1)2m�h(C): (3.19)

Similarly, we have that

C
tr
j2m�h;(j+1)2m�h = C

tr
j
02m�h;(j0+1)2m�h : (3.20)

From (3.1), (3.19) and (3.20), we have the following theorem.

Theorem 2 Suppose a linear block code C of length 2m is b-transitive invariant.

Then for 1 � h � m and 0 � j < 2h, L
j2m�h;(j+1)2m�h for C is the same for all j.

44

Theorem 2 says that for a b-transitive invariant code C of length 2m, if we

divide the code (or code trellis) into sections of length 2m�h, all the sections

have the same structural properties with respect to the operations of the RMLD

algorithm proposed in [5].

3.3 Decoding of Binary Transitive Invariant Codes

with the RMLD Algorithm

Let C be a binary linear block code of length 2m which is b-transitive invariant.

Suppose C is decoded with the RMLD algorithm. From Theorem 2, we see

that if we sectionalize the code uniformly at each recursion level, all the sections

will have the same L
x;y
. Consequently, the RMLD-C(x; y) procedure is applied

uniformly among all the sections to construct L
x;y
-tables from tables at a lower

level based on (3.6) and (3.7). This uniformity (or regularity) is very advantageous

in implementation. In hardware implementation, this results in identical circuits

for all the sections [1].

Based on Theorem 2, we propose the following binary (uniform) sectional-

ization. At each level, we always choose x and y such that 0 � x < y < 2m,

y � x � 2, x + y even and z = (x + y)=2. At the 0-th level (or top level), we set
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x = 0, y = 2m and z = 2m�1. At the �rst level, the code is partitioned into two

sections with

(x; y) 2 f(0; 2m�1); (2m�1
; 2m)g:

Each section is of length 2m�1. At the second level, each section at the �rst level

is partitioned into two equal sections, each section is of length 2m�2. This results

in four sections with

(x; y) 2 f(0; 2m�2); (2m�2
; 2m�1);

(2m�1
; 2m�2 + 2m�1); (2m�2 + 2m�1

; 2m)g:

For 0 � h < m, at the h-th level, the code is partitioned into 2h sections with

(x; y) 2 f(j2m�h
; (j + 1)2m�h) : 0 � j < 2hg: (3.21)

Each section is of length 2m�h. The above sectionalization process continues until

y � x = 2. At the bottom of the sectionalization, each section consists of two

code bits. This results in a sectionalization tree shown in Figure 3.1.

(0; 2m)

(0; 2m�1) (2m�1
; 2m)

(0; 2m�2) (3 � 2m�2
; 2m)

(0; 2) (2; 4) (2m � 2; 2m)

Figure 3.1. Binary Sectionalization.

In decoding C using the RMLD algorithm, all the L
x;y
-tables at the bottom

of the sectionalization tree are constructed directly using the methods proposed

26



in [5]. As the recursion moves up to higher levels of the tree, each L
x;y
-table is

constructed from two tables, L
x;z
-table and L

z;y
-table, with z = (x + y)=2 at a

lower level. Suppose the h-th level of recursion has been completed. We have all

the L
x;y
-tables for each (x; y) in the boundary of (3.21). The decoder moves up

to the (h � 1)-th level. At this level, the L
x;y
-table with x = j2m�h+1 and y =

(j+1)2m�h+1 is constructed from L
x;z
-table and L

z;y
-table with z = (2j+1)2m�h.

The recursion process continues until it reaches to the top of the tree. At this

point, L0;n-table is constructed, which contains only the most likely codeword

and its metric. Decoding is then completed.

The above binary sectionalization is most suitable for parallel/pipeline pro-

cessing, while the decoder is processing all the sections of a received word in

parallel at one recursion level, it is also processing other received words at other

recursion levels. This parallel/pipeline architecture is desired in high-speed data

communication where a decoder must operate at a high speed.

For a transitive invariant linear block code of length 2m using RMLD algorithm

based on binary sectionalization, it follows from (3.8) and Theorem 2 that the

total number of additions and comparison required to construct all the L
x;y
-tables

based on (3.6) using ACS procedure is given by


 =

m�1X
h=0

(2A0;2m�h:2m�h�1 � 1)
��
L0;2m�h

�� � 2h: (3.22)

For a given code C, the computational complexity can be evaluated once A0;2m�h;2m�h�1

and L0;2m�h for 0 � h < m�1 are known. For a nonlinear subcode C 0 of a binary

linear block code C, L
x;y

is de�ned as fD \ p
x;y
(C 0) 6= ; : D 2 p

x;y
(C)=Ctr

x;y
g.

Then RMLD can be generalized to decoding of C 0 [9]. If C and C 0 are transitive

invariant, then Theorem 2 can be extended to C 0. For example, Theorem 2 holds

for C
w
with 0 < w � 2m.

3.4 Structural and Computational Complexity

Analysis

In the following, we �rst analyze the structure of

L
x;y

= p
x;y
(C)=Ctr

x;y
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and A
x;y;z. Once their structures are known, the computational complexity of the

RMLD algorithm can be evaluated. The analysis is based on Boolean polynomial

representation of C.

Suppose that a binary transitive invariant linear code C is spanned by v
m
(M

B
)

where M
B
is a set of monomials in P

m
. Using binary sectionalization, we set(

x

4

= j2m�h
;

y

4

= (j + 1)2m�h
;

(3.23)

for 0 � h < m and 0 � j < 2h. Let 0
l
denote the all-zero l-tuple over GF(2). It

is easy to see that

(1) p
x;y
(C) is spanned by

M
B;0h

4

=fx
i1
x
i2
� � �x

ip
2M

B
: 1 � i1 < i2 < � � � < i

p
� m� hg (3.24)

and

(2) C
tr
x;y

is spanned by

M
B
=x

m�h+1xm�h+2 � � �xm
4

= fx
i1
x
i2
� � �x

ip
: 1 � i1 < i2 < � � � < i

p
� m� h

and x
i1
x
i2
� � �x

ip
x
m�h+1xm�h+2 � � �xm 2M

B
g: (3.25)

Then, it follows from (3.1) and (3.4) that for code C,

log2 jLx;y
j = jM

B;0h
j � jM

B
=x

m�h+1xm�h+2 � � �xmj; (3.26)

log2Ax;y;z = jM
B
=x

m�h+1xm�h+2 � � �xmj

�2jM
B
=x

m�hxm�h+1 � � �xmj: (3.27)

Now we consider RM codes. Recall that the RM
r;m

is speci�ed by the Boolean

polynomials in P
r;m

. Let M
r;m

be the set of all monomials in P
r;m

. Since RM
r;m

is spanned by the vectors in v
m
(M

r;m
), we obtain

M
r;m;0h

= Mminfr;m�hg;m�h (3.28)

M
r;m

=x
m�h+1xm�h+2 � � �xm = M

r�h;m�h

(empty for r < h): (3.29)

It follows from (3.24) to (3.29) that we have Theorem 3 which gives the structure

of L
x;y
.
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Theorem 3 For integers x and y de�ned by (3.23),

(1)

p
x;y
(RM

r;m
) = RMminfr;m�hg;m�h; (3.30)

(2)

[RM
r;m

]tr
x;y

=

(
RM

r�h;m�h; if r � h;

f02m�hg; otherwise.
(3.31)

(3) L
x;y

for RM
m;r

is the same for all j such that 0 � j < 2h, and

L
x;y

=

(
RMminfr;m�hg;m�h=RMr�h;m�h; for r � h;

RMminfr;m�hg;m�h=f02m�hg; otherwise:
(3.32)

(4)

log2Ax;y;z =

 
m� h� 1

r � h

!
: (3.33)
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Based on (3.22), (3.32), and (3.33), we can evaluate exactly the computational

complexity of the RMLD algorithm for a RM code with binary sectionalization.

Example 3 A (64; 40) subcode of RM3;6 is being considered as an inner code in a

concatenated coding system for NASA's high-speed satellite communications [3].

The overall decoder for the RM subcode consists of 32 identical maximum likeli-

hood decoding (MLD) decoders, each such decoder processes a (64; 35) subcode

C or its coset in parallel. In this example, we assume that an RMLD decoder

based on binary sectionalization is used, and consider how to choose the (64; 35)

subcode C of RM3;6 to minimize the total number 
 of additions and compar-

isons in ACS. We assume that a subset M of M
r;m

satis�es the closure condition

(CS). Let C(M) denote the subcode of RM
r;m

spanned by M , and let t be a

monomial in M whose superterms are not in M . For 0 � h < m, it follows

from (3.26) and (3.28) that the di�erence between the values of log2 jL0;2m�h j (or
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log2A0;2m�h;2m�h�1) for C(M) and C(Mnftg) is independent of M . Let 4L
(h)(t)

(or 4A
(h)(t)) denote the di�erence. Table 3.1 shows 4L

(h)(t) with 1 � h � 5

and 4A
(h)(t) with 0 � h � 5 for t 2 M3;6nM1;6. For a subset 4M of M con-

sisting of di�erent monomials t1; t2; : : : ; tk such that there is no superterm of

t
i
in Mnft1; t2; : : : ; ti�1g, the di�erence between the values of log2 jL0;2m�h j (or

log2A0;2m�h;2m�h�1) for C(M) and C(Mn4M) is given by
P

k

i=14L
(h)(t

i
), de-

noted 4L
(h)(4M) (or

P
k

i=14A
(h)(t

i
), denoted 4A

(h)(4M)). The total number


 for C(M6;3n4M) with j4M j = 7 is given by


 = (2 � 210�4A
(0)(4M)

� 1) � 20 � 20

+ (2 � 26�4A
(1)(4M)

� 1) � 210�4L
(1)(4M)

� 21

+ (2 � 23�4A
(2)(4M)

� 1) � 210�4L
(2)(4M)

� 22

+ (2 � 21�4A
(3)(4M)

� 1) � 27�4L
(3)(4M)

� 23

+ (2 � 20�0 � 1) � 24�4L
(4)(4M)

� 24

+ (2 � 20�0 � 1) � 22�0 � 25: (3.34)

There are two cases to be considered.

(i) From the closure condition (CS) and j4M j = 7,4M can contain at most

one monomial inM2;6. Consider the case where4M contains one monomial

t in M2;6. By considering the e�ect to 
 by t and its all superterms based

on Table 3.1, we see that we should choose x1x2; x1x2xi with 3 � i � 6,

and then x1x3x4 and x2x3x4. This choice of 4M , denoted �M1, yields the

smallest 
 = 7039. If we choose one monomial of form x
i1
x
i2
x5 other than

x1x2x5 instead of one of x1x3x4 and x2x3x4, then we have 
 = 8959, which

is the third smallest value of 
.

(ii) 4M � M3;6nM2;6: Since each monomial of degree 3 can be chosen

independently without violating the closure condition (CS), from Table 3.1

and (3.34) we see that we should choose x1x2x3 �rst, fxi1xi2x4 : 1 � i1 <

i2 < 4g next and any three monomials in fx
i1
x
i2
x5 : 1 � i1 < i2 < 5g. For

this choice of 4M , denoted �M2, 
 = 7807, which is the second smallest

value of 
.

Table 3.2 summarizes these choices of4M . An RMLD decoder for C(M3;6n4M2)

is designed with VLSI [1], and a decoder for C(M3;6n 4M1) is being designed.
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3.5 Conclusion

We have studied a class of linear block codes which are transitive invariant. A

condition for a code to be transitive invariant has been proved. We have shown

that transitive invariant block codes have uniform structure. This structure is

advantageous for implementation of the RMLD algorithm based on a binary

uniform sectionalization.

It follows from Examples 1 and 3 that C(M3;6 n �M
0

2) with the smallest

value of 
 and C(M3;6 n�M
0

3) with the second smallest value of 
 are subcodes

of C(M3;6 n �M1) which has the second smallest number of minimum weight

codewords and that C(M3;6n�M
0

1) with the third smallest value of 
 is a subcode

of C(M3;6 n�M0) with the smallest number of minimum weight codewords.
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Table 3.1. �L(h)(t) and �A(h�1)(t) with 1 � h � 5 for t 2M3;6 nM1;6.

�L(h)(t)y �A(h)(t)y

t n h 1 2 3 4 0 1 2 3

x4x5x6 �1 �1 �1 0 �1 �1 �1 1

x
i
x5x6

(1 � i < 4)
�1 �1 0 0 �1 �1 1 0

x
i1
x
i2
x6

(1 � i1 < i2 < 5)
�1 0 0 0 �1 1 0 0

x
i1
x
i2
x5

(1 � i1 < i2 < 5)
1 0 0 0 1 0 0 0

x
i1
x
i2
x4

(1 � i1 < i2 < 4)
1 1 0 0 1 0 0 0

x1x2x3 1 1 1 0 1 0 0 0

x5x6 �1 �1 0 0 �1 �1 1 0

x
i
x6

(1 � i < 5)
�1 0 0 0 �1 1 0 0

x
i
x5

(1 � i < 5)
1 0 0 0 1 0 0 0

x
i
x4

(1 � i < 4)
1 1 0 0 1 0 0 0

x
i
x3

(1 � i < 3)
1 1 1 0 1 0 0 0

x1x2 1 1 1 1 1 0 0 0
y�L(5)(t) = �A(4)(t) = �A(5)(t) = 0 for t 2M3;6 nM1;6.
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Table 3.2. �L(h)(�M 0) and �A(h�1)(�M 0) with 1 � h � 5 and 
 for

C(M3;6 n�M
0).

�L(h)(t)z �A(h)(t)z 


�M 0
n h 1 2 3 4 1 2

�M 0

1 5 4 2 1 5 1 8959

�M 0

2 5 5 2 1 5 1 7039

�M 0

3 7 4 1 0 7 0 7807
z�L(5)(t) = �A(3)(t) = �A(4)(t) = �A(5)(t) = 0 for C(M3;6 n�M

0).

33



Chapter 4

An Improvement to GMD-like

Decoding Algorithms

4.1 De�nitions

Suppose a binary (N;K) linear block code C with minimum weight dmin is used

for error control over the AWGN channel using BPSK signaling. Each codeword

is transmitted with the same probability. Let r = (r1; r2; : : : ; rN) be a received

sequence and let z = (z1; z2; : : : ; zN) be the binary hard-decision sequence ob-

tained from r using the hard-decision function: z
i
= 1 for r

i
> 0 and z

i
= 0 for

r
i
� 0.

For a positive integer n, let V n denote the vector space of all binary n-tuples.

For u = (u1; u2; : : : ; uN) 2 V
N , the correlation between u and the received

sequence r is given byM(u) =
P

N

i=1 ri(2ui�1). ThenM(z) =
P

N

i=1 jrij �M(u)

for any u 2 V
N . De�ne D�1(u) , fi : u

i
6= z

i
; and 1 � i � Ng and

L(u) ,
X

i2D�1(u)

jr
i
j = (M(z)�M(u))=2: (4.1)

L(u) is called the correlation discrepancy of u with respect to z. For a subset

U of V N , let L[U ] be de�ned as

L[U ] ,

(
minu2U L(u); for U 6= �;

1; for U = �:

(4.2)
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If U 6= �, let v[U ] denote an N -tuple in U such that L(v[U ]) = L[U ].

The maximum likelihood decoder decodes the received sequence r into the

optimal codeword copt for which

L(copt) = L[C]: (4.3)

If z is a codeword, then z is the optimal codeword. A candidate codeword c is said

to be better (or more likely) than another candidate codeword c0 if L(c) � L(c0).

A candidate codeword c is said to be the best if L(c) is the minimum among a

speci�ed set of candidate codewords.

For integers i and i
0 with 1 � i � i

0
� N , de�ne [i; i0] , fi; i + 1; : : : ; i0g,

and for u = (u1; u2; : : : ; uN) 2 V
N , de�ne p

i;i
0(u) , (u

i
; u

i+1; : : : ; ui0) and for

u
0
2 V

N , let dH;i;i0(u;u
0) denote the Hamming distance between p

i;i
0(u) and

p
i;i
0(u0). For simplicity, we assume that the bit positions 1; 2; : : : ; N are ordered

according to the reliability order given as follows:

jr
i
j � jr

j
j; for 1 � i < j � N: (4.4)

4.2 GMD-Like decoding

For nonnegative integers s and t such that s+2t < dmin and v 2 V
N , the decoding

which corrects s erasures in the �rst s bit positions and t or less errors in the

remaining bit positions of input v is called (s; t)-decoding with respect to v.

Then, the (s; t)-decoding with respect to v outputs a unique codeword, if exists,

in

R , fx 2 V
N : dH;s+1;N(x; v) � tg: (4.5)

R is called the search region of (s; t)-decoding with respect to v. De�ne

� , (dmin + p)=2; (4.6)

where

p =

(
0; for even dmin;

1; for odd dmin:

(4.7)
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For v 2 V
N , a GMD-like decoding with search center v, denoted GMD(v), is

de�ned as the iterative decoding consisting of � stages whose j-th stage is the

(2j � p� 1; �� j)-decoding with respect to v for 1 � j � �. The original GMD

proposed by Forney [15] is GMD(z). From (4.5), the search region of the j-th

stage, denoted R(v; j), is

R(v; j) = fx 2 V
N : dH;2j�p;N(x; v) � �� jg: (4.8)

Since the union of search regions from the �rst stage to the j-th stage, denoted

Rp(v; j), is

Rp(v; j) =

j[
j
0=1

fx 2 V
N : dH;2j0�p;N(x; v) � �� j

0
g; (4.9)

the region which has not been searched (for candidate codewords) yet up to the

j-th stage of GMD(v), denoted �
Rp(v; j), is given by

�
Rp(v; j) = fx 2 V

N : dH;2j0�p;N(x; v) > �� j
0 for 1 � j

0
� jg: (4.10)

De�ne �
RGMD(v) ,

�
Rp(v; �), which denotes the region which is not searched for

candidate codewords by GMD(v).

For a positive integer h, h-GMD decoding is de�ned as an iterative decoding

algorithm which consists of successive GMD(v(1)), GMD(v(2)), : : : , GMD(v(h)).

For i � 1, the N -tuple v(i) 2 V
N is called the i-th search center of the h-GMD

decoding. The �rst search center v(1) is chosen as the hard-decision sequence z,

i.e. v(1) , z. For i > 1, the i-th search center v(i) is chosen as the best word in

the region which has not been searched by (i� 1)-GMD decoding, that is,

v
(i) = v

"
i�1\
i
0=1

�
R
GMD(v(i

0))

#

= v[x 2 V
N : dH;2j0�p;N(x; v

(i0)) > �� j
0

for 1 � j
0
� j and 1 � i

0
< ig]: (4.11)

It is shown in [12] that v(2) = (v
(2)
1 ; v

(2)
2 ; : : : ; v

(2)

N
) is given by

v

(2)

l
=

(
z
l
+ 1; if l + p is even and 1 � (l + p)=2 � �;

z
l
; otherwise:

(4.12)
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A simple and eÆcient algorithm for �nding v(3) has been derived [23]. For 1 � i �

h and 1 � j � �, the j-th stage of the i-th GMD(v(i)) of h-GMD decoding is also

called the (i; j)-th stage. Let C
(i)

j
denote the set of candidate codewords obtained

from the (1; 1)-th stage to the (i; j)-th stage. If C
(i)

j
6= �, let c

(i)

best(j) be the best

candidate codeword in C

(i)

j
. If C

(i)

j
= �, for convenience, de�ne c

(i)

best(j) , � and

L(�) =1. Then

L(c
(i)

best(j)) = L[C
(i)

j
]: (4.13)

After the (h; �)-th stage, c
(h)

best(�) is output as the decoded codeword. If c
(h)

best(�) =

�, then the decoding fails.

4.3 Early Termination Conditions

To reduce the number of (s; t)-decodings without any loss of error performance,

we introduce new e�ective suÆcient conditions on the optimality of decoded code-

words as early termination conditions. Just after the (i; j)-th stage, (
T

i�1

i
0=1

�
R
GMD(v(i

0))
)\

�
Rp(v

(i)
; j), denoted �

R(i; j), is the region which has not yet been searched for can-

didate codewords. Suppose that c
(i)

best(j) 6= �. If there is a better candidate than

c
(i)

best(j), then it is in the following region:

�
R(i; j) \

\
c2C

(i)

j

�
O
dmin

(c); (4.14)

where �
O
dmin

(c) , fx 2 V
N : dH;1;N(x; c) � dming. Hence, the following condition

Cond
(i)

S (j) is a suÆcient condition on the optimality of c
(i)

best(j):

Cond
(i)

S (j) : L(c
(i)

best(j)) � L

2
64 �R(i; j) \ \

c2C
(i)

j

�
O
dmin

(c)

3
75 : (4.15)

Since simulation results show that two or more candidate codewords are generated

very rarely by GMD-like decoding, the following simpler condition has almost the

same e�ectiveness:

Cond
(i)

S;1(j) : L(c
(i)

best(j)) � L

h
�
R(i; j) \ �

O
dmin

(c
(i)

best(j))
i
: (4.16)
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For 1 � l � 4, the following suÆcient condition CondS;l on the optimality of

decoded codewords which are independent of search regions have been derived [14,

21, 22].

CondS;l : L(cbest) � L

"\
c2Cl

�
O
dmin

(c)

#
; (4.17)

where C
l
denotes the minfl; jC

(i)

j
jg best codewords among the candidate code-

words generated up to the current (i; j)-th stage and cbest denotes the best in

C
l
. CondS;1 is called Taipale-Pursley condition [14]. Cond

(i)

S;1(j) is stronger than

CondS;1, because �
R(i; j) is taken into account. As shown in Section 4.4, the

condition Cond
(1)

S;1(j) is more e�ective than the condition CondS;1.

For simplicity, the following suÆcient conditions on the optimality of decoded

codewords are used as early termination conditions at the (i; j)-th stage of 3-GMD

decoding in the simulation reported in Section 4.4.

(i) i = 1:

Cond
(1)

S;1(j), and CondS;2,

(ii) i = 2:

Cond
(2)

S;0:L(c
(2)

best(j)) � L[ �R(2; j)], and CondS;2,

(iii) i = 3:

CondS;2.

The above conditions will be called CondS;NEW. Simulation results show that

Cond
(1)

S;1(j) and Cond
(2)

S;0 are more e�ective than CondS;2.

4.4 Simulation Results of h-GMD decoding with

2 � h � 3

Figures 4.1 to 4.3 show simulation results of block error probabilities for EBCH(64, 24),

EBCH(128, 85) and EBCH(128, 99) with the minimum distance, 16, 14 and 10,

respectively. For comparison, the block error probabilities for bounded distance-

t0(
4

=b(dmin � 1)=2c) decoding and Chase decoding algorithm II [19] are shown.
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Tables 4.1 and 4.2 show the following statistics with respect to signal to noise ra-

tios 2.0 E
b
=N0 and 4.0 E

b
=N0 in dB for EBCH(64, 24), respectively. The number

of trials is 50000. In the �rst part, the number of trials in which z 2 C is shown.

The remaining parts concern those trials in which z 62 C. The second part con-

cerns bounded distance-t0 decoding with input z, and the numbers of decoding

failures, correct decoding and incorrect decoding are shown, respectively. The

third part shows the numbers of decoding failure, correct decoding and incorrect

decoding, respectively, of 3-GMD decoding. The �rst subpart shows the occur-

rence number of the event that the �rst candidate codeword is generated at the

(i; j)-th stage for 1 � j � dmin=2 and 1 � i � 3. The second to fourth subparts

show the occurrence number of the event that the best candidate codeword (=

the output of 3-GMD decoding) is generated at the (i; j)-th stage and the num-

bers of cbest(i)(j)'s which satisfy suÆcient conditions on the optimality of decoded

codewords CondS;1 and CondS;NEW, respectively. CondS;1 has e�ect only for early

stages.

The number of iteration of h-GMD decoding is at most h(dmin + p)=2. This

number of iteration can be reduced considerably by using CondS;NEW. De�ne

the rate of reduction as the ratio of the number of iterations of (s; t)-decoding

to 3�. Since suÆcient conditions can be used only when at least one candidate

codeword has been generated, rates �TP and �NEW are the averages of reduction

rates by using CondS;1 and CondS;NEW, respectively, as early termination con-

ditions over all the trials where at least one candidate codeword is generated.

Tables 4.3 lists �TP and �NEW in percentage for EBCH(64, 24), EBCH(64, 45),

EBCH(128, 78), EBCH(128, 85) and EBCH(128, 99) with respect to signal to

noise ratios 2:0E
b
=N0 and 4:0E

b
=N0.

4.5 Conclusion

We have introduced \multiple GMD decoding" for binary linear block codes. For

extended BCH codes, simulation results show that the new approach provides

better error performance than that of the original GMD decoding by adding two

GMD-like decoding around two appropriately chosen centers to the original GMD

decoding with relative small increment of iteration number.
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Figure 4.1. Block error probability of EBCH(64, 24)
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Figure 4.2. Block error probability of EBCH(128, 85)
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Figure 4.3. Block error probability of EBCH(128, 99)
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Table 4.1. EBCH(64, 24) at E
b
=N0 = 2:0 dB

z 2 C 4

bounded distance-b(dmin � 1)=2c decoding failure 33610

decoding correct decoding 16373

incorrect decoding 17

3-GMD decoding decoding failure 24104

correct decoding 25774

incorrect decoding 122

inj 1 2 3 4 5 6 7 8

the occurance of 1 19698 1481 882 485 292 140 38 9

the �rst candidate 2 1167 189 85 61 44 21 8 2

codeword 3 939 138 82 57 34 29 10 1

the occurance of 1 19690 1482 882 486 292 141 38 9

the best candidate 2 1166 189 85 61 44 21 8 3

codeword 3 944 138 82 57 34 29 10 1

the number of codewords c
(i)

best(j) 1 8800 135 57 22 7 2 0 0

which satisfy CondS;1 2 0 0 0 0 0 0 0 0

the number of codewords c
(i)

best(j) 1 8800 361 253 231 267 302 269 162

which satisfy CondS;new 2 47 9 3 2 0 0 1 1
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Table 4.2. EBCH(64, 24) at E
b
=N0 = 4:0 dB

z 2 C 192

bounded distance-b(dmin � 1)=2c decoding failure 8704

decoding correct decoding 41293

incorrect decoding 3

3-GMD decoding decoding failure 2780

correct decoding 47208

incorrect decoding 12

inj 1 2 3 4 5 6 7 8

the occurance of 1 43599 1068 622 391 227 110 45 13

the �rst candidate 2 366 73 32 40 17 11 4 2

codeword 3 276 51 28 25 7 10 9 2

the occurance of 1 43595 1067 623 392 227 111 45 13

the best candidate 2 368 73 32 40 17 11 4 2

codeword 3 275 51 28 25 7 11 9 2

the number of codewords c
(i)

best(j) 1 37162 318 123 35 13 1 0 0

which satisfy CondS;1 2 0 0 0 0 0 0 0 0

the number of codewords c
(i)

best(j) 1 37162 653 400 342 389 426 314 186

which satisfy CondS;new 2 88 9 4 4 2 4 1 0

Table 4.3. The average number of iteration (%) of 3-GMD

Code E
b
=N0 = 2:0dB E

b
=N0 = 4:0dB

�TP �NEW �TP �NEW

EBCH(64, 24) 66.7% 61.6% 23.6% 19.8%

EBCH(64, 45) 65.0% 59.1% 17.8% 15.0%

EBCH(128, 78) 78.8% 73.2% 21.6% 18.6%

EBCH(128, 85) 78.4% 74.3% 21.1% 18.1%

EBCH(128, 99) 82.2% 78.3% 24.8% 20.9%
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Chapter 5

An Improvement to Chase-like

Decoding Algorithm

5.1 De�nitions

Suppose a binary linear (N;K; dmin) block code C is used for error control over

the AWGN channel using BPSK signaling. Each codeword is transmitted with

the same probability. For a positive integer n, let V n denote the vector space

of all binary n-tuples. Let r = (r1; r2; : : : ; rN) be a received sequence and let

z = (z1; z2; : : : ; zN) be the hard-decision sequence from r by using hard-decision

function, z
i
= 1 for r

i
> 0; z

i
= 0 for r

i
� 0. For simplicity, we assume that the

bit positions 1; 2; : : : ; N are ordered according to the reliability order given as

jr
i
j � jr

j
j, for 1 � i < j � N . For u = (u1; u2; : : : ; uN) 2 V

N , the correlation

between u and the received sequence r is given byM(u) =
P

N

i=1 ri(2ui�1). Then,

M(z) =
P

N

i=1 jrij � M(u) for any u 2 V
N . For u 2 V

N , de�ne D�1(u)
4

=fi :

u
i
6= z

i
; and 1 � i � Ng and

L(u)
4

=
X

i2D�1(u)

jr
i
j = (M(z)�M(u))=2:

L(u) is called the correlation discrepancy of u with respect to z. For U � V
N ,

let L[U ] be de�ned as

L[U ]
4

=

(
minu2U L(u); for U 6= ;;

1; for U = ;:

45



The maximum likelihood decoder outputs the optimal codeword copt which

L(copt) = L[C]

from the received sequence r. A codeword c is said to be better than another

codeword c0 if L(c) � L(c0). For a nonempty subset U � V
N , a codeword c is said

to be the best in U if L(c) = L[U ]. For U 6= �, let v[U ] denote a binary N -tuple in

U such that L(v[U ]) = L[U ]. For integers i and j such that 1 � i < j � N , de�ne

[i; j]
4

=fi; i + 1; : : : ; jg. For u = (u1; u2; : : : ; uN) and v = (v1; v2; : : : ; vN) 2 V
N ,

de�ne d
H;[i;j](u; v)

4

=jfk 2 [i; j] : u
k
6= v

k
gj and for a nonnegative integer t,

O(v; t)
4

=fu 2 V
N : d

H;[1;N ](u; v) � tg and �
O(v; t)

4

=V N

nO(v; t).

For a nonnegative integer l =
P

N

i=1 bi2
i�1 with b

i
2 f0; 1g, de�ne b(l)

4

=(b1; b2; : : : ; bN).

For 0 � l < 2N , de�ne E
l

4

=fb(i) : 0 � i < lg. For a positive integer l less than

N� t0+1, a Chase-like decoding algorithm, denoted Chase(l), is de�ned as an it-

erative decoding algorithm which performs bounded distance-t0 decoding around

z + b(i) for 0 � i < l. The original Chase decoding algorithm II introduced by

Chase [24] is Chase(2bdmin=2c).

5.2 Decoding algorithm

If z 2 C, then L(z) = L[C], that is, z is the optimal decoded codeword. Assume

that z 62 C.

For v 2 V
N , the bounded distance-t0 decoding around the vector v, denoted

BDD(v), outputs a unique codeword in O(v; t0), if it exists.

In this paper, we consider the following iterative decoding algorithm. For

a positive integer h, a nonnegative integer t and v
(i)

2 V
N with 1 � i � h,

(h; t)-IBDD decoding is de�ned as an iterative decoding algorithm which consists

of successive BDD(v(1)), BDD(v(2)); : : : ;BDD(v(h)), where v(i) is called the i-th

search center of the (h; t)-IBDD decoding. De�ne R(i)
4

=[1�i0�iO(v
(i0)
; t0) as the

region which has been searched up to the i-th stage of (h; t)-IBDD decoding and

�
R(i)

4

=V N

nR(i).

We adopt the following choice of search centers, called Selection(t). The �rst

search center v(1) is z. For i > 1, search center v(i) is chosen as

v
(i) = v[\1�i0�i�1

�
O(v(i

0)
; t)]:
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If t = t0, then v
(i) = v[ �R(i� 1)]:

Let C(i) denote the set of candidate codewords obtained from the �rst stage

to the i-th stage. If C(i) 6= ;, let cbest(i) be the best codeword in C(i). If

C(i) = ;, de�ne cbest(i)
4

=� and L(�) = 1. Then L(cbest(i)) = L[C(i)]. After

the h-th stage, cbest(h) is output as the decoded codeword. If cbest(h) = �, then

the decoding fails.

5.3 Early termination conditions

To reduce the number of bounded distance-t0 decodings in (h; t)-IBDD without

any degradation of error performance, we present new e�ective suÆcient condi-

tions on the optimality of decoded codewords as early termination conditions.

Suppose that cbest(i) 6= �. If there is a better codeword than cbest(i), it is in the

following region: �
R(i)\

T
c2C(i)

�
O(c; dmin� 1). The following condition Cond

S
(i)

is a suÆcient condition on the optimality of cbest(i),

Cond
S
(i) : L(cbest(i)) � L[ �R(i) \

\
c2C(i)

�
O(c; dmin � 1)]:

For 1 � l � 4, the following suÆcient condition Cond
S;l

on the optimality of

decoded codewords which are independent of search regions have been derived.

Cond
S;l

: L(cbest(i)) � L

�
\c2Cl

�
O(c; dmin � 1)

�
;

where C
l
denotes the minfl; jC(i)jg best codewords among the candidate code-

words generated up to the current i-th stage. Cond
S;1 is Taipale-Pursley condi-

tion [12], denoted CondTP. Cond
S
(i) is stronger than Cond

S;1, because �
R(i) is

taken into account. Cond
S
(i) is denoted CondNEW.

5.4 Simulation results

By simulation, we have evaluated the e�ectiveness of the choice of parameter

t in Selection(t) with 1 � t � t0 for several BCH codes [31]. For t = t0,

v
(i) is the best in the region which was not searched before the i-th stage of

(h; t0)-IBDD decoding. From this fact, t0 was thought to be a reasonable choice.
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The simulation results show, however, that it is better to choose t somewhat

smaller than t0. Figures 5.1, 5.2 and 5.3 show simulation results of block error

probabilities of (h; t)-IDD with properly chosen parameter t for BCH(63, 30, 13)

code, BCH(63, 45, 7) code and BCH(127, 92, 11), respectively. For comparison,

the block error probabilities for bounded distance-t0 decoding and Chase(h) are

shown.

The reduction rate of (h; t)-IBDD is de�ned as 1 � (�=h), where � is the

number of iterations of bounded distance-t0 decoding. Since suÆcient conditions

can be used only when at least one candidate codeword has been generated,

rates �TP and �NEW denote the averages of reduction rates by using CondTP and

CondNEW, respectively, as early termination conditions over all the trials where

at least one candidate codeword is generated. Figures 5.4, 5.5, 5.6 and 5.7 show

simulation results of the average of reduction rates of (32; 4)-IBDD decoding

for BCH(63, 30, 13), BCH(63, 45, 7), BCH(127, 85, 13) and BCH(127, 92, 11).

To compute search centers v(i) and the right-hand side of Cond
S
(i), an integer

programming approach [18] is adopted and lp solve 3.0 is tentatively used.
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Chapter 6

Conclusion

In this thesis, �rst, we have presented a formula for an e�ective method which

gives the number of minimum weight codewords in a (2m;
P

r

i=0

�
m

i

�
��K) linear

subcode C of RM
r;m

code which is spanned by monomials with m variables of

degree r or less over GF(2) for �K � 3. Next, we have shown in Theorem 1 how

to delete �K monomials in order to obtain the subcode with the smallest number

of codewords of the minimum weight for r�K � m. In Example 1, we have shown

the numbers of minimum weight codewords of all such (64; 40) subcodes of RM3;6

and those error probabilities of soft-decision maximum likelihood decoding by

simulation.

Second, we have studied a class of linear block codes which are transitive in-

variant. A condition for a code to be transitive invariant has been proved. We

have shown that transitive invariant block codes have a uniform structure. This

structure is advantageous for implementation of the RMLD algorithm based on a

binary uniform sectionalization. We have shown that the binary sectionalization

results in almost the same computational complexity as an optimum sectional-

ization for many transitive invariant example codes.

Third, we have introduced \multiple GMD decoding" for binary linear block

codes. For extended BCH codes, simulation results show that the new approach

provides better error performance than that of the original GMD decoding by

adding two GMD-like decodings around two appropriately chosen centers to the

original GMD decoding with a relatively small increment of iteration number.

Finally, we have presented a new method of choosing a sequence of search
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centers around which successive bounded distance-t0 decodings are carried out.

For BCH codes, simulation results show that the new approach provides better

error performance than that of Chase-like decoding which consists of the same

number of bounded distance-t0 decodings. To reduce the number of iterations of

bounded distance decoding algorithm without any loss of error performance, we

show new e�ective suÆcient conditions on the optimality of decoded codewords

as early termination conditions.
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Appendix

A Formula for Evaluation N23

In this Appendix, we consider the evaluation of N23 in a somewhat general

framework. In the evaluation of N23, the following B1; B2; D0; D1 and D2 rep-

resent A
n10�;n011

A
n1�0;n011

; A
n100;n011

; A
n101;n011

and A
n110;n011

, respectively. For h 2

f0; 1; 2g, let D
h
be a binary w

h
� l matrix where w

h
> 0 and l > 0, and for

i 2 f1; 2g, let B
i
denote the binary (w0 + w

i
) � l matrix whose submatrix con-

sisting of the �rst w0 rows is D0 and whose submatrix consisting of the last w
i

rows is D
i
, that is,

B
i

4

=

�
D0

D
i

�
; for i 2 f1; 2g : (A� 1)

We consider the following condition:

rank(B
i
) = l; for i 2 f1; 2g ; (A� 2)

that is, the l columns of B
i
are linearly independent.

The following conditions is necessary for the condition (A� 2). Hereafter, we

assume it.

w0 +min fw1; w2g � l: (A� 3)

For the evaluation of N23, w0, w1, w2 and l represent jn100j; jn101j; jn110j and jn011j,

respectively, and since jn100j+ jn101j = jn10�j = jn01�j and jn100j+ jn110j = jn1�0j =

jn0�1j as shown in Section 2.3, jn100j + minfjn101j; jn110jg � jn011j, that is (A� 3)

holds.

For 1 � j � l, let '
D0
(j) denote the number of linearly independent columns

in the �rst j columns of D0. De�ne �'D0
(j)

4

='
D0
(j)�'

D0
(j� 1) for 1 � j � l,
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and '
D0
(0)

4

=0. Since 0 � �'
D0
(j) � 1 for 1 � j � l and '

D0
(l) � min fw0; lg,

�'
D0

4

=(�'
D0
(1);�'

D0
(2); : : : ;�'

D0
(l)) is a binary l-tuple of weight min fw0; lg

or less.

Conversely, for a binary l-tuple v = (v1; v2; : : : ; vl) of weight minfw0; lg or

less, de�ne �v(j) for 0 � j � l recursively as follows:

�v(0) = 0; (A� 4)

�v(j) = �v(j � 1) + v
j
: (A� 5)

Let V l

w0
denote

�
v 2 V

l : the weight of v � w0

	
where V l denotes the set of bi-

nary l-tuples. Then, the following lemma is a direct consequence of the de�nition

of '
D0
.

Lemma 4 For v 2 V
l

w0
, the number of binary w0 � l matrices D0's such that

'
D0

= �v is given by

lY
j=1

N
�v
(j); (A� 6)

where

N
�
(j)

4

=

(
2w0 � 2�v(j�1); if �v(j) > �v(j � 1), (A� 7)

2�v(j�1); if �v(j) = �v(j � 1). (A� 8)
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Next, we consider the condition on D
i
with i 2 f1; 2g that rank(B

i
) = l for a

given D0. For 1 � j � l and h 2 f0; 1; 2g, let d
h;j

denote the j-th column of D
h
,

and for i 2 f1; 2g, let b
i;j

denote the j-th column of B
i
. For 1 � j � l, there are

two cases:

1. '
D0
(j) > '

D0
(j � 1): Then, d0;j is linearly independent of d0;1; : : : ;d0;j�1,

and therefore, for any d
i;j
, b

i;j
is linearly independent of b

i;1; : : : ; bi;j�1.

2. '
D0
(j) = '

D0
(j� 1): Then, there is a binary (j� 1)-tuple (c1; c2; : : : ; cj�1)

such that

d0;j =

j�1X
s=1

c
s
d0;s: (A� 9)
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Let �
j
denote the set of all binary (j�1)-tuples (c1; c2; : : : ; cj�1)'s for which (A� 9)

holds. Then,

j�
j
j = 2j�1�'D0

(j�1)
: (A� 10)

For B
i
to satisfy (A� 2), the following inequality must hold for any j such that

'
D0
(j) = '

D0
(j � 1):

d
i;j
6=

j�1X
s=1

c
s
d
i;s
; for (c1; c2; : : : ; cj�1) 2 �

j
: (A� 11)

Conversely suppose that for any j 0 such that 1 � j
0
< j and '

D0
(j 0) = '

D0
(j 0�1),

d
i;j

0 6=

j
0
�1X

s=1

c
s
d
i;s
; for (c1; c2; : : : ; cj0�1) 2 �

j
0: (A� 12)

Then, b
i;1; bi;2; : : : ; bi;j�1 are linearly independent. Since (A� 9) holds for any

(c1; c2; : : : ; cj�1) 2 �
j
, we see that for di�erent (c1; c2; : : : ; cj�1) and (c

0

1; c
0

2; : : : ; c
0

j�1)

in �
j
,

j�1X
s=1

c
s
d
i;s
6=

j�1X
s=1

c
0

s
d
i;s
; (A� 13)

that is,�����
(

j�1X
s=1

c
s
d
i;s
: (c1; c2; : : : ; cj�1) 2 �

j

)����� = j�
j
j = 2j�1�'D0

(j�1)
: (A� 14)

In order that (A� 11) holds, the following inequality must hold from (A� 10):

w
i
> j � 1� '

D0
(j � 1): (A� 15)

Suppose that (A� 15) holds for any j such that 1 � j � l and '
D0
(j) = '

D0
(j�1).

Then, for such j, d
i;j

satisfying (A� 11) can be chosen. Summarizing the above

argument, we have the following lemma:

Lemma 5 For a given D0, there are binary w1 � l matrix D1 and w1 � l matrix

D2 for which (A� 2) holds, if and only if for any j such that 1 � j � l and
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'
D0
(j) = '

D0
(j�1), (A� 15) holds for i 2 f0; 1g. If this condition holds, then the

number of pairs of matrices D1 and D2 satisfying (A� 2) is given as follows:

lY
j=1

N
0

1(j)N
0

2(j) (A� 16)

where for i 2 f0; 1g,

N
0

i
(j)

4

=

(
2wi

; if '
D0
(j) > '

D0
(j � 1), (A� 17)

2wi � 2j�1�'D0
(j�1)

; if '
D0
(j) = '

D0
(j � 1). (A� 18)
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Since '
D0
(j) � '

D0
(j � 1) is 0 or 1 for 1 � j � l, j � 1 � '

D0
(j � 1) is

monotonously nondecreasing as j increases. If '
D0
(j) > '

D0
(j � 1) for all j less

than l, then '
D0
(l � 1) = l � 1. Hence, (A� 15) can be replaced by

'
D0
(l � 1) > l � 1�min fw1; w2g : (A� 19)

De�ne

V
l

w0;w1;w2

4

= fv 2 V
l; the weight of v � w0;

the weight of the �rst to the (l � 1)-th component

� l �minfw1; w2gg: (A� 20)

From (A� 3), V l

w0;w1;w2
is not empty. Then, for a given D0, there are D1 and D2

satisfying (A� 2), if and only if

'
D0

2 V
l

w0;w1;w2
: (A� 21)

From the de�nition (A� 20), we have that

��
V
l

w0;w1;w2

�� = 2

w0�1X
i=l�minfw1;w2g

�
l � 1

i

�
+ "

�
l � 1

w0

�
; (A� 22)

where if w0 +minfw1; w2g = l, " = 1 and otherwise, " = 0.

The number of matrices D0; D1 and D2 satisfying (A� 2) is obtained by mul-

tiplying (A� 6), (A� 16) and (A� 22). By substituting jn100j; jn101j; jn110j and jn011j

for w0; w1; w2 and l, respectively, N23 is derived.
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