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Abstract

E�cient algorithms for the maximum a posteriori (MAP) decoding of error

correcting codes are presented. The MAP decoding plays an essential role in

some iterative decoding algorithms including the turbo decoding. Since a MAP

decoder is used iteratively in such algorithms, small di�erence of the e�ciency

of the MAP decoder may a�ect the total e�ciency of the iterative decoding al-

gorithm much more than we can expect. An e�cient algorithm for the MAP

decoding contributes for the realization of high-speed and high-reliability com-

munication systems. In this thesis, two algorithms for the MAP decoding are

presented. The �rst algorithm, named recursive-MAP (rMAP) algorithm, is de-

vised based on the structural properties of linear block codes. The algorithm

performs the MAP decoding in a divide-and-conquer manner. The rMAP algo-

rithm has many implementation advantages compared to the BCJR algorithm,

which is the most widely known algorithm for the MAP decoding. For example,

the rMAP algorithm is suitable for the parallel and pipeline processing, and the

construction of a trellis diagram is not necessary. The latter property contributes

to reduce the decoding complexity of the algorithm. Actually, it is shown that

�Doctor's Thesis, Department of Information Processing, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DT9861010, December 14, 2000.
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the rMAP algorithm is more e�cient than the BCJR algorithm if the code rate is

low. The second algorithm proposed in this thesis is a \hybrid" of the rMAP and

the conventional BCJR algorithm. To perform the MAP decoding, the algorithm

uses a section trellis diagram instead of the usual entire trellis diagram. A sec-

tion trellis diagram has simpler structure than the usual trellis diagram, and the

construction of the former is much more e�cient and easier than the construction

of the latter. A BCJR-like algorithm is executed for the section trellis diagram,

where branch metrics of the trellis are computed by the rMAP algorithm. The

decoding complexity of the algorithm depends on how the sections of the section

trellis are chosen. The relation between the sectionalization of the trellis and the

complexity of the algorithm is investigated in detail, and a systematic way to

�nd the optimum sectionalization which minimizes the decoding complexity is

presented.

Keywords:

error-correcting codes, MAP decoding, trellis diagram, BCJR algorithm, recursive

decoding algorithm
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Chapter 1

Introduction

Coding theory treats source coding and channel coding. Source coding is im-

portant to manage digital data e�ciently, and channel coding is essential for

digital communication to obtain reliable communication channels. We focus on

the channel coding in this thesis.

For several decades, error control(/correcting) codes have been investigated.

Error control codes made it possible to detect or, moreover, remove the errors

occurred on the codewords through the communication channel. Coding is that

transforming messages into codewords, while decoding is that transforming code-

words into messages. Error detecting or error correcting is done in the decoding

phase.

Two general idea of (error correcting) decoding have been established. One

is maximum likelihood decoding (MLD) and the other is maximum a posteriori

(MAP) decoding. MAP decoding is considered more e�ective than MLD when

the a priori probabilities of transmitted codewords are known to the receiver in

advance, and the decoding ability of MAP decoding is similar to MLD if those

a priori probabilities are unknown to the receiver.

Since the a priori probabilities of transmitted codewords are usually unknown
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to the receiver, MAP decoding had not been very popular for a long time. How-

ever, the MAP decoding is widely noticed nowadays, because it plays an essential

role in iterative decoding schemes such as turbo decoding
[2], which is found exper-

imentally and indicates very good decoding parameters. Actually, for example,

turbo codes are decoded by iteratively executing a MAP decoding algorithm many

times. Therefore the complexity of a MAP decoding algorithm is signi�cant for

realization of e�cient turbo decoders.

The �rst MAP decoding algorithm was independently proposed by Bahl et

al.[1] and McAdam et al.[17], which are known as the BCJR algorithm nowadays.

Unfortunately, the BCJR algorithm is not appropriate for e�cient turbo decoders,

mainly by two reasons. The �rst reason of the inappropriateness is that we must

construct the entire trellis diagram of the code to use the BCJR algorithm. The

construction and implementation of the entire trellis diagram are both time and

space consuming especially for long practical codes. The second reason is that

the BCJR algorithm causes long decoding delay. The BCJR algorithm computes

some probabilities (� explained in Chapter 4) by using backward-recursion af-

ter the decoder has received entire vector from the matched �lter. Therefore the

decoding delay can be larger for longer codes. This property is critical for realiza-

tion of e�cient turbo decoders since turbo codes usually use very long constituent

codes to improve the error performance.

E�orts have been made to reduce the decoding complexity of the BCJR algo-

rithm. One of such attempts includes a suboptimum realization of the BCJR al-

gorithm. For example, the Log-MAP (MAX-Log-MAP) algorithm and the SOVA

(Soft-Output Viterbi Algorithm)[11] use log-likelihood ratios and some approxi-

mations to avoid calculating the actual probabilities, and simplify some compu-

tations. Franz and Anderson suggest to omit some insigni�cant computations

in the BCJR algorithm to reduce the complexity[8]. These approximation algo-
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rithms indeed have smaller complexity than the BCJR algorithm, though, their

error performance is not as good as that of the BCJR algorithm. Furthermore,

the construction of the entire trellis diagram is still necessary in these method.

Another approach for reducing the complexity is to investigate other algorithms

for the MAP decoding. Along this approach, the recursive-MAP (rMAP) algo-

rithm is proposed in Chapter 5, and another hybrid algorithm of the BCJR and

the rMAP algorithm is proposed in Chapter6.

Based on the structural properties of linear block codes, the rMAP algorithm

executes decoding in the divide-and-conquer manner, which results in many im-

plementation advantages. For example, the decoding complexity (measured by

the number of multiplications of probabilities) is signi�cantly reduced compared

to the conventional BCJR algorithm especially for low-rate codes. Simulation

results show that, the complexity of the rMAP algorithm is less than one-tenth

of that of the BCJR algorithm for some well-known codes. Other advantages of

the algorithm are also discussed in Chapter 5.

The rMAP algorithm is much more e�cient than the BCJR algorithm for

low-rate codes, but is also studied to be less e�cient than the BCJR algorithm

for high-rate codes. Mainly, for improvement of this defect, a hybrid algorithm

for the MAP decoding is investigated. The algorithm proposed in Chapter6

is, intuitively, a hybrid algorithm of the rMAP and the BCJR algorithms. The

proposed hybrid algorithm uses a section trellis diagram of the code instead of the

entire trellis diagram. The construction and implementation of the section trellis

diagram is much more easier than those of the usual trellis diagram. The (time-

)complexity of hybrid algorithm is no wronger than the BCJR and the rMAP

algorithms, and it consumes less space for decoding calculation than the BCJR

algorithm. It is important problem to prepare the best-sectionalized section trellis

diagram to have the least computational complexity. In Chapter6, the algorithm

3



to have such a sectionalization is also proposed.

It should be remarked that, di�erent from the other approximation approaches

such as the Log-MAP and SOVA, the proposed algorithms in this thesis is equiva-

lent to the BCJR algorithm in the sense that the output of the proposed algorithm

is completely the same as that of the BCJR algorithm. The only di�erence is

that the proposed ones are much more e�cient and suitable for implementation

than the BCJR algorithm.
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Chapter 2

Preliminaries

In this chapter, some preliminaries and ideas of coding and decoding are brie
y

introduced, to help the easier comprehension of the essence of this thesis.

2.1 Transmission Model

Codes are used for e�cient and reliable digital communication or information

storage. Information (data) is transmitted into codewords by a certain rule and

then the codewords will be restored later. The set of codewords and/or the rule

of generating codewords is the code.

Figure 2.1 shows the simpli�ed transmission model of coding system. A mes-

sage block represented by k-tuple u = (u1; . . . ; uk) from data source is called

a message. The encoder transforms a message u into n-tuple v = (v1; . . . ; vn)

which is called a codeword. The ration R = k=n is called code rate. A codeword v

transmitted through the channel (or storage medium) is called received sequence

r; it would be disturbed by various kinds of noise. The decoder transforms the

received sequence r into a sequence called estimate sequence u
0. It is required for

decoders to decode r into u if possible. Decoding strategy is basically based on

5
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Figure 2.1. Simple transmission model.

the encoding rule.

The channels are usually disturbed from various kind of noise, but for sim-

plicity we assume the additive white Gaussian noise (AWGN) model as the

noise/channel model. Since the AWGN model is simple and easily analyzed in

various contexts, and can provide an accurate model of what actually happens in

some communication systems, the AWGN model is very popular and often used

to discuss about the performance of the codes and decoding strategies.

The AWGN model assumes the chanel be memoryless, that means the noise

process a�ecting a given symbol during its transmission is independent of that

a�ecting preceding or succeedung symbols.

2.2 Binary Linear Block Code

We assume the output of the datasource is a sequence of binary digits b 2 GF (2),

that is \0" or \1". This sequence is segmented into message block u consists of

k information bits. The encoder transforms each message u into a codeword v, a

binary n-tuple, with certain encoding rules. Since there are 2k distinct messages,
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there are 2k codewords, and all of these codewords should be distinct for one-

to-one correnspondences with messages. The set of codewords is the block code

C.

It is favorable for a code to have the linearlity, since the linearity of the code

reduces the complexity of encoding and decoding. In many cases, the codeword of

length n is divided into two parts, the message part of k-length and the redundant

checking part of (n � k)-length; this property is called the systematic structure

and said favorable for a linear block code | but not necessary. The bit in

message part is called an information bit, and the bit in redundant checking part

is called a redundant (checking) bit or a parity (checking) bit. Intuitively, the

linear code is a code such that the parity bits are derived by the linear function

of k information bits. More formally, a code C of 2k codewords (of n-length) is

linear, if and only if the codewords form a k-dimensional subspace of the vector

space of all the n-tuple over GF (2).

Since an (n; k) linear block code C is a k-dimensional subspace of all the

n-tuple over GF (2), It is possible to �nd k linearly independent codewords

g1; g2; . . . ; gk, which are the basises of C, such that every codewords v is a linear

combination of these k codewords as follows.

v = u0g0 + u1g1 + � � �+ uk�1gk�1

where the message u = (u1; u2; . . . ; uk) and ui = 0 or 1 for 0 < i � k. Then the

following n� k matrix is called generator matrix of a code.

G =

2
666666664

g1

g2

...

gk

3
777777775
=

2
666666664

g1;1 g1;2 � � � g1;n

g2;1 g2;2 � � � g2;n

...
...

...

gk;1 gk;2 � � � gk;n;

3
777777775

where the message gi = (gi;1; gi;2; . . . ; gi;k) for 0 < i � k and gi;j = 0 or 1 for

7



1 < j � n. By using the generator matrix, every codeword v is derived easily

from input message u as follows.

v = u �G

In the later chapters, some popular linear block codes will appear as to verify

the performance of the proposed MAP decoding algorithms. So here those codes

are brie
y introduced just as examples of linear block codes. The Reed-Muller

(RM ) codes are popular linear block codes developed in 1950s. The structure

of the RM codes is simple so that the RM codes are easy to construct and de-

code. The generator matrix of the �rst-order RM code of length 8, denoted as

RM3;1(8; 4) or just RM(8,4), is very simple as follows.

G =

2
666666664

1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

3
777777775

The RM codes are known to be used in the Mariner spacecraft that explored

Mars. In these days, the RM codes are frequently used in the scene that the

high-speed decoding, which is easily realized, is needed. The binary BCH codes

are generally considered as the most powerful block codes, and said to be often

used in military and commercial satellite programs. The extended BCH (eBCH )

code is the code extended by an additional redundant bit. Generally, an (n; k)

block code becomes an (n + 1; k) extended code. Since the structure of original

eBCH codes is regarded not very good to be used, so the eBCH codes are, usually,

permuted for e�cient usages. Permutation on the columns of generator matrices

of the codes doesn't change the performance of codes, but only could make them

easy to be decoded.
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2.3 MLD and MAP Decoding

Every decoding strategy's aim is to transform a received sequence r into u, that

is u0 = u. Several decoding methods are well-known as to achieve this aim in

highly precise level; one most important is maximum likelihood decoding (MLD)

and the another is maximum a posteriori (MAP) decoding.

The MLD is a decoding strategy to choose a codeword v 2 C in order to

maximize Pr(rjv).

Pr(rjv) =
Pr(r;v)

Pr(v)
(2.1)

=
Pr(r) � Pr(vjr)

Pr(v)
: (2.2)

MLD is optimum decoding strategy if the a priori probabilities Pr(v) are equally

likely.

On the other hand, The MAP decoding has better decoding ability than the

MLD if a priori probabilities are known in advance. Actually, the MAP decoding

was originally de�ned as a decoding scheme to �nd a codeword v 2 C which

maximizes the a posteriori probability Pr(vjr) for a received sequence r. However,

in the context of an iterative decoding, the sum of the a posteriori probabilities

is more useful than the maximum a posteriori probability alone. Consequently,

the MAP decoding is regarded as a decoding scheme to compute the following

sum of probabilities for every bit position i with 1 � i � n and every symbol

b 2 GF (2). (Forney proposes to call this decoding as an APP decoding to avoid

confusion).
X

v2C;v[i]=b

Pr(vjr)

Since Pr(vjr) = Pr(v; r)=Pr(r) and Pr(r) can be regarded as a constant, the

9



Table 2.1. An example of a code.

codeword Pr(v; r)

(000) 0.01

(011) 0.05

(101) 0.03

(110) 0.02

essential part of the MAP decoding is the computation of

X
v2C;v[i]=b

Pr(v; r) =
X

v2C;v[i]=b

Pr(v) � Pr(rjv) (2:3)

For example, let C be a (3,2) single parity check code1 and the a priori proba-

bilities Pr(v; r) for C are given as Table 2.1 then the MAP decoder will compute

as follows.

X
v2C;v[1]=0

Pr(v; r) = Pr((000); r) + Pr((011); r) = 0:01 + 0:05 = 0:06;

X
v2C;v[1]=1

Pr(v; r) = Pr((101); r) + Pr((110); r) = 0:03 + 0:02 = 0:05;

X
v2C;v[2]=0

Pr(v; r) = Pr((000); r) + Pr((101); r) = 0:01 + 0:03 = 0:04;

X
v2C;v[2]=1

Pr(v; r) = Pr((011); r) + Pr((110); r) = 0:05 + 0:02 = 0:07;

X
v2C;v[3]=0

Pr(v; r) = Pr((000); r) + Pr((110); r) = 0:01 + 0:02 = 0:03;

X
v2C;v[3]=1

Pr(v; r) = Pr((011); r) + Pr((101); r) = 0:05 + 0:03 = 0:08:

And output them as a form of a table (called MAP table) as Table 2.2.

1The (k+ 1; k) codes with the codewords v consist of information bits vi = ui for 0 < i � k

and a parity bit vk+1 such that vk+1 is the modulo-2 summation of v0; . . . ; vk�1.

10



Table 2.2. A MAP table.

1 2 3

0 0.06 0.04 0.03

1 0.05 0.07 0.08

2.4 Iterative Decoding

Recently, the iterative decoding is investigated by many researchers, since it shows

very good decoding performance. The decoding strategy of the iterative decoding

is decoding the received sequence r once and then re-decoding the (intuitively)

same r some times using the result of last decoding.

Turbo code is the code with its exclusive iterative decoding method. Figure 2.2

is the model of turbo encoder. The encoder computes 2 di�erent sets of parity

bits A and B from the information part u and sends the concatenation M �

A � B as the codeword. Interleaver permutes the sequence of u. Note that

A = E(u); B = E(I(u)) and I
�1(I(u)) = u, where we denote encoding as E(�)

and interleaving as I(�). Figure 2.3 is the model of turbo decoding. The decoder

receives r = u
0 �A0 �B0 and devides it into r1 = u

0 �A0 and r2 = u
0 �B0. As the

initial step, the MAP decoding is executed for r1 with no a priori probabilities, i.e.

equal probabilities, and MAP table for the r1 is computed. Then the decoding

results, the MAP table, of r1 is used as the table of a priori probabilities for

MAP decoding r2. Similary the decoding results, the MAP table, of r2 is used

for MAP decoding r1 again. The MAP decoding (and interleaving) is repeated

several times for a received sequence r.

11
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Figure 2.2. Turbo encoder.
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Chapter 3

Trellis Diagram

The concept of trellis diagrams are useful to discuss about the structure of code.

For that reason, the trellis diagram and some of its properties are introduced in

this chapter.

3.1 Trellis Diagram

Let C be an (n; k) linear block code. A trellis diagram T of a code C is a transition

diagram of the �nite state machine with an initial state and a �nal state, and

the branches are labeled by symbol 0 or 1 such that the acceptable sequences are

corresponding to the codewords of C by one-to-one. Namely, a trellis diagram

represents a code C, therefore, the structure of a trellis diagram is often used for

analysis of a code, decoding of a code, and so on.

Figure 3.1 is a trellis diagram T corresponding to the codewords of RM3;1(8; 4)

14



0
1

Figure 3.1. The trellis diagram of RM3;1(8; 4).

code such as follows.

8>>>>>>>><
>>>>>>>>:

(00000000); (00001111); (00110011); (00111100);

(01010101); (01011010); (01100110); (01101001);

(10010110); (10011001); (10100101); (10101010);

(11000011); (11001100); (11110000); (11111111)

9>>>>>>>>=
>>>>>>>>;

:

For example, a path which appears with connected bold lines in Figure 3.2 rep-

resents a codeword v = (01010101). Obviously, every path in T corresponds

to a certain codeword, and there is no path which doesn't correspond to any

codeword.

3.2 Section Trellis Diagram

In this section, a section trellis diagram is introduced and its properties are dis-

cussed brie
y. De�ne a (n; k) linear block code C. A trellis diagram T of the

code C is said to be minimum if the number of states of T is minimum among

all trellis diagrams of C. Figure 3.3 shows the minimization of the trellis for a

15
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Figure 3.2. A codeword and a path in a trellis diagram.

simple (3,2) parity check code, and the most lower one in the �gure is the min-

imum trellis. Figure 3.1 is also minimum. For an integer t with 0 � t � n, let

�t be the state space of T at time-t. For two states � and �
0 of a trellis dia-

gram, let L(�; �0) be a set of vectors which are associated with the paths from

the state � to �
0. Thus, if � is the initial state and �

0 is the �nal state of the

trellis diagram, then L(�; �0) = C. Let B = fb0; b1; . . . ; bmg be a set of integers

satisfying 0 = b0 < b1 < � � � < bm = n. A section trellis diagram of C with

boundaries at B is a state diagram obtained from T by removing all states at

time-t with t =2 B, and by connecting every state pair � 2 �bj and �
0 2 �bj+1

with L(�; �0) 6= ; for 0 � j � m � 1. Furthermore, the path from � to �
0 is

associated with the set of vectors L(�; �0). Figure 3.1 shows that the minimum

trellis diagram of the RM3;1(8; 4) code, and Figure 3.5 shows the section trellis

diagram with boundaries at f0; 2; 4; 6; 8g.

The minimum trellis diagram and section trellis diagrams have strong relation

to a coset structure of a code. Let x = bj and y = bj+1 for 0 � j � m� 1, and let

Cxy be a set of codewords of C such that the �rst x and the last n � y symbols

16
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Figure 3.3. Minimization of the trellis for a simple (3,2) parity check code.
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are all zero. Also let pxy(C) be a set of vectors which are obtained by puncturing

the �rst x and the last n � y symbols of each codeword of C. pxy(C) is called a

punctured code of C. Obviously pxy(Cxy) is a linear subcode of pxy(C) and we can

partition the set pxy(C) into cosets of pxy(Cxy). De�ne Lxy be the set of cosets

of pxy(Cxy) in pxy(C). Figure 3.4 shows the relation of pxy(Cxy), pxy(C) and the

trellis diagram.

It is known that, if there is a branch from a state �x 2 �x to �y 2 �y in a trellis

diagram, then L(�x; �y) 2 Lxy. That is, each branch from a state in �x to a state

in �y is associated with a coset of Cxy. This implies that jLxyj di�erent sets are

associated with the branches from states in time-x to states in time-y. If we denote

the dimension of a set A as k(A), then some important parameters of a trellis

diagram is expressed in a simple way[9]. For example, jLxyj = 2k(pxy(C))�k(Cxy),

j�tj = 2k(C)�k(C0t)�k(Ctn) for t 2 B, and the total number of branches between

time-x and time-y is 2k(C)�k(C0x)�k(Cxy)�k(Cyn). Consequently, a coset is associated

to 2k(C)�k(C0x)�k(Cxy)�k(Cyn)
=jLxyj = 2k(C)�k(pxy(C))�k(C0x)�k(Cyn) di�erent branches.

Figure 3.6 shows that, for any integer z with x < z < y, there is a unique

integer mz(x; y), and any coset in Lxy can be represented as a union of mz(x; y)

concatenations of cosets in Lxz and Lzy
[9]. That is, for any Dxy 2 Lxy, there are

2mz(x; y) cosets D
i
xz 2 Lxz and D

i
zy 2 Lzy with 1 � i � mz(x; y) such that

Dxy = D
1
xz �D

1
zy [ � � � [D

mz(x;y)
xz �D

mz(x;y)
zy :

It is also known that Di
xz �D

i
zy \D

j
xz �D

j
zy = ; for di�erent i and j.

18
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Figure 3.4. pxy(Cxy); pxy(C) and the trellis diagram.
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Figure 3.5. The section trellis diagram of RM3;1(8; 4) with B = f0; 2; 4; 6; 8g.

Dxy

D
1
xz

D
1
zy

D
2
xz

D
2
zy

D
mz(x;y)
xz

D
mz(x;y)
zy

6 6 6

time-x time-z time-y

Figure 3.6. Decomposition of a coset Dxy.
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Chapter 4

MAP Decoding

With the change of the usage of the MAP decoding, the scheme of the MAP

decoding itself has changed. We treat only the MAP decoding of modern style,

and its essence is introduced in this chapter.

4.1 MAP Decoding

Assume that an (n; k) binary linear block code C is used for error control over

AWGN channel. The set of k information bit positions of C is denoted by I(C) �

f1; . . . ; ng. It is assumed that the symbols at information bit positions are chosen

independently, and it is also assumed that, for any i 2 I(C) and b 2 GF (2), we

know in advance the a priori probability Pri(b) that the symbol b is chosen as the

symbol at the i-th bit position. For a vector v = (v1; . . . ; vm) of length m, let v[i]

with 1 � i � m be the i-th symbol vi of v. For two vectors v1 and v2, the vector

obtained by concatenating v2 to v1 is denoted v1 � v2. For two sets of vectors A

and B, de�ne A �B
4
=fv1 � v2 : v1 2 A;v2 2 Bg.

For a received vector r, the most essential part of the MAP decoding is the
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computation of the following sum of probabilities

X
v2C;v[i]=b

Pr(v; r) =
X

v2C;v[i]=b

Pr(v) � Pr(rjv) (4:1)

for every bit position i with 1 � i � n and every symbol b 2 GF (2). Since each

symbol at the information bit position is chosen independently,

Pr(v) =
Y

j2I(C)

Prj(v[j]):

Since the a priori probabilities for redundant bits have no meaning for MAP

decoding, de�ne Prj(v[j]) = 1 for j =2 I(C), then

Pr(v) =
Y

1�j�n

Prj(v[j]): (4:2)

On the other hand, since the channel is assumed to be memoryless,

Pr(rjv) =
Y

1�j�n

Pr(r[j]jv[j]): (4:3)

Summarizing (4.2) and (4.3), we can write (4.1) as

X
v2C;v[i]=b

Pr(v; r) =
X

v2C;v[i]=b

Y
1�j�n

Prj(v[j]) � Pr(r[j]jv[j]): (4:4)

4.2 BCJR Algorithm

The �rst MAP decoding algorithm was independently proposed by Bahl et al.[1]

and McAdam et al.[17], which is known as the BCJR algorithm nowadays. The

BCJR algorithm is introduced brie
y in this section. Though some expressions

in the original papers are conformed in this thesis, to �t the arguments in the

later chapters, the general ideas are su�ciently kept.

The BCJR algorithm calculates (4.4) by using the trellis diagram T of the

code. First, de�ne and calculate

qj [0] =

8><
>:

Prj(0) � Pr(r[j]j0) if j 2 I(C)

Pr(r[j]j0) otherwise;
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qj [1] =

8><
>:

Prj(1) � Pr(r[j]j1) if j 2 I(C)

Pr(r[j]j1) otherwise

for simplicity, and associate those values with T . Then

Prj(v[j]) � Pr(r[j]jv[j]) = qj(v[j]):

For an integer t with 0 � t � n, let �t be the state space of T at time-t. Then

�(�), called the �-value at state �, where � 2 �t is de�ned as follows.

�(�) =
X

v=(v1;v2;...;vt)2L(�0;�)

Y
0<j�t

qj(v[j])

where �0 is the initial state.

Let �1; �2; . . . ; �m 2 �t�1 be states which are connected to � 2 �t in T . Then

we can write

L(�0; �) =
m[
s=1

L(�0; �s) � L(�s; �)

and �(�) is expressed as

�(�) =
X

v=(v1;v2;...;vt�1)2L(�0;�s)

Y
0<j�t�1

qj(v[j]) �
X

v=(vt)2L(�s;�)

qt(v[t])

=
mX
s=1

�(�s) �
X

v=(vt)2L(�s;�)

qt(v[t]):

Thus the computation of �-values is done recursively using the trellis diagram

T and branch probabilities qj(v[j]), as Figure 4.1 shows.

Similarly, �(�), called the �-value at state �, where � 2 �t is de�ned as

follows.

�(�) =
X

v=(vt+1;...;vn�1;vn)2L(�;�n)

Y
t<j�n

qj(v[j])

where �n is the �nal state. Also �-values are computed recursively.
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1

�1

�2

�(�1)

�(�2)

qt(0)

qt(1)

�

�(�) = �(�1) � qt[0] + �(�2) � qt[1]

time-t

Figure 4.1. The computation of �(�)

Finally, 
-value is computed for every branch of T (Figure 4.2), L(�t�1; �t) 2

Lt�1;t where �t�1 2 �t�1 and �t 2 �t for 0 < t � n, as follows.


(L(�t�1; �t)) = �(�t�1) � qj[L(�t�1; �t)] � �(�t):

Then

X
v[j]=b

Y
1�j�n

Prj(v[j]) � Pr(r[j]jv[j]) =
X

fbg2L(�i�1;�i)


(L(�i�1; �i))

and, thus, the MAP decoding is done.

4.3 Improvement on MAP Decoding

The BCJR algorithm needs to construct the entire trellis diagram of the code

C �rst, and then the computation for �-values, �-values and 
-values is done

next. The computational complexity is approximately linear to the number of

the branches in the minimum trellis of C. The number of the branches becomes

very large in the trellis diagram, even if it is minimum, when the code is large.
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�t�1

�t
L(�t�1; �t)

C
CCW

Figure 4.2. The branch L(�t�1; �t)

Therefore often it is almost impossible to construct the entire trellis diagram for

a long practical block codes.

E�orts have been made to reduce the decoding complexity of the BCJR al-

gorithm ever. One of such attempts includes a suboptimum realization of the

BCJR algorithm. For example, the Log-MAP (MAX-Log-MAP) algorithm and

the SOVA (Soft-Output Viterbi Algorithm)[11] use log-likelihood ratios and some

approximations to avoid calculating the actual probabilities, and simplify some

computations. Since those approaches adopt approximations, the decoding per-

formance have to be worse than the original (optimum) MAP decoding.

Another approach for reducing the complexity is to investigate other algo-

rithms for the MAP decoding. In Chapter5 and 6, the e�cient MAP decoding

algorithms are presented. The proposed algorithms have the identical decod-

ing performance with the original MAP decoding, that is the BCJR algorithm

introduced in this chapter.
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Chapter 5

rMAP Algorithm

5.1 Preliminaries

In this section, an important part of the last chapter is reviewed, just for the

con�rmation.

It is assumed that an (n; k) binary linear block code C is used for error control

over AWGN channel. The set of k information bit positions of C is denoted by

I(C) � f1; . . . ; ng. It is assumed that the symbols at information bit positions

are chosen independently, and it is also assumed that, for any i 2 I(C) and

b 2 GF (2), we know in advance the a priori probability Pri(b) that the symbol

b is chosen as the symbol at the i-th bit position. For a vector v = (v1; . . . ; vm)

of length m, let v[i] with 1 � i � m be the i-th symbol vi of v. For two vectors

v1 and v2, the vector obtained by concatenating v2 to v1 is denoted v1 � v2. For

two sets of vectors A and B, de�ne A �B
4
=fv1 � v2 : v1 2 A;v2 2 Bg.

For a received vector r, the most essential part of the MAP decoding is the

computation of the following sum of probabilities

X
v2C;v[i]=b

Pr(v; r) =
X

v2C;v[i]=b

Pr(v) � Pr(rjv) (5:1)
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for every bit position i with 1 � i � n and every symbol b 2 GF (2). Since each

symbol at the information bit position is chosen independently,

Pr(v) =
Y

j2I(C)

Prj(v[j]):

De�ne Prj(v[j]) = 1 for j =2 I(C), then

Pr(v) =
Y

1�j�n

Prj(v[j]): (5:2)

On the other hand, since the channel is assumed to be memoryless,

Pr(rjv) =
Y

1�j�n

Pr(r[j]jv[j]): (5:3)

Summarizing (5.2) and (5.3), we can write (5.1) as

X
v2C;v[i]=b

Pr(v; r) =
X

v2C;v[i]=b

Y
1�j�n

Prj(v[j]) � Pr(r[j]jv[j]):

5.2 Recursive MAPDecoding Algorithm \rMAP"

In this chapter, a recursive algorithm for the MAP decoding is proposed, that is

called \rMAP" algorithm in subsequent chapters.

5.2.1 MAP decoding as table construction problem

As same as de�ned in Chapter refchap:trellis, again let Cxy be the set of codewords

of C such that the �rst x and the last n � y symbols are all zero, for integers x

and y such that 1 � x < y � n. Also let pxy(C) be the punctured code of C

obtained by removing the �rst x and the last n�y symbols of each codeword in C.

Obviously pxy(Cxy) is a linear subcode of pxy(C). De�ne Lxy be the set of cosets

of pxy(Cxy) in pxy(C). It is known that, for any integer z with x < z < y, there is

a unique integer mz(x; y), and any coset in Lxy can be represented as a union of
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Table 5.1. A MAP table and MAP(Dxy; i; b).

bit position x+ 1 � � � i � � � y

0 � � � � � �

1 � � � � � �

C
C
CCO

�
�
���

MAP(Dxy; i; 0)

MAP(Dxy; i; 1)

mz(x; y) concatenations of cosets in Lxz and Lzy
[9]. That is, for any Dxy 2 Lxy,

there are 2mz(x; y) cosets D
i
xz 2 Lxz and D

i
zy 2 Lzy with 1 � i � mz(x; y) such

that

Dxy = D
1
xz �D

1
zy [ � � � [D

mz(x;y)
xz �D

mz(x;y)
zy : (5:4)

It is also known that Di
xz �D

i
zy \D

j
xz �D

j
zy = ; for di�erent i and j.

For a coset Dxy 2 Lxy, an integer i with x < i � y and a symbol b 2 GF (2),

de�ne

D
i=b
xy

4
=f(vx+1; . . . ; vi�1; b; vi+1; . . . ; vy) 2 Dxyg

and

MAP(Dxy; i; b)
4
=

X

v=(vx+1;...;vy)2D
i=b
xy

Y
x<j�y

Prj(v[j]) � Pr(r[j]jv[j]):

A MAP table for the coset Dxy 2 Lxy (Table 5.1) is a table which has y � x

columns and two rows. The columns are indexed by numbers from x + 1 to y,

and the rows are indexed by 0 and 1. The cell of a table whose column index

is i and row index is b is de�ned to be MAP(Dxy; i; b). Obviously, computing

the MAP table for C 2 L0;n yields the MAP decoding. Also de�ne the total
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probability of Dxy as

MAP(Dxy)
4
=

X
v2Dxy

Y
x<j�y

Prj(v[j]) � Pr(r[j]jv[j]):

It is easily understood that

MAP(Dxy) = MAP(Dxy; i; 0) + MAP(Dxy; i; 1);

and

MAP(Dxy; i; b) = MAP(Di=b
xy ): (5:5)

for an arbitrary x < i � y. Furthermore, the following lemmas and corollary can

be shown easily.

Lemma 5.2.1: If a set Dxy is written Dxy = D1 [ D2 such that D1 \ D2 = ;

with D1; D2 2 Lxy, then

MAP(Dxy; i; b) = MAP(D1; i; b) + MAP(D2; i; b);

and

MAP(Dxy) = MAP(D1) + MAP(D2):

Proof. Obvious from the de�nition of MAP(Dxy; i; b). 2

Lemma 5.2.2: If a set Dxy is written Dxy = D1 �D2 with D1 2 Lxz and D2 2

Lzy, then

MAP(Dxy; i; b) =8><
>:

MAP(D1; i; b) �MAP(D2) (x � i < z)

MAP(D1) �MAP(D2; i; b) (z � i � y);

and

MAP(D) = MAP(D1) �MAP(D2):
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Proof. If x < i � z then D
i=b
xy is written as Di=b

xy = D

i=b
1 � D2. Consequently the

following transformations are possible.

MAP(Dxy; i; b) =
X

v2D
i=b
xy

Y
x<j�y

Prj(v[j]) � Pr(r[j]jv[j])

=
X

v12D
i=b
1

X
v22D2

Y
x<j�z

Prj(v1[j]) � Pr(r[j]jv1[j])

�
Y

z<j�y

Prj(v2[j]) � Pr(r[j]jv2[j])

=
X

v12D
i=b
1

Y
x<j�z

Prj(v1[j]) � Pr(r[j]jv1[j])

�
X
v22D2

Y
z<j�y

Prj(v2[j]) � Pr(r[j]jv2[j])

= MAP(D1; i; b) �MAP(D2):

Therefore the lemma holds if x � i < z. The lemma can be shown similarly for

the case z � i < y.

2

Corollary 5.2.3: If Dxy is written as (5.4) then

MAP(Dxy; i; b) =
mzX
j=1

MAP(Dj
xz; i; b) �MAP(Dj

zy)

for x < i � z, and

MAP(Dxy; i; b) =
mzX
j=1

MAP(Dj
xz) �MAP(Dj

zy; i; b)

for z < i � y. 2

5.2.2 Recursive algorithm for MAP decoding

De�ne M(x; y)
4
=fMAP(Dxy) : Dxy 2 Lxyg. The following recursive algorithm

rMAP(x; y) computes M(x; y) for given x and y. In the proposed algorithm
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rMAP, the computation is carried out in a divide-and-conquer manner. To com-

pute the MAP tables for a long section, say from time-x to time-y, the section is

divided into two shorter subsections, say time-x to time-z and time-z to time-y

where x < z < y. The sets of MAP tables M(x; z) and M(z; y) for these sub-

sections are computed �rst, and then combined to obtain the �nal MAP tables

M(x; y). In this way, a section is divided until direct computation of the MAP

tables is computationally acceptable.

Algorithm 5.2.1: rMAP(x; y)

input: integers x and y with 0 � x < y � n

output: M(x; y)

If y � x = 1, then execute the following non-recursive step. If y � x > 1, then

execute either the non-recursive step or the recursive step.

non-recursive step: computeM(x; y) directly by the following procedure dMAP(x; y).

recursive step: choose an integer z such that x < z < y, execute rMAP(x; z)

and rMAP(z; y) to obtain M(x; z) and M(z; y), and combineM(x; z) and

M(z; y) to compute M(x; y) using Corollary 5.2.3.

The choice of the non-recursive or recursive step, and the choice of z in the

recursive step are made so that the total decoding complexity is the smallest. As

discussed later, the choice is uniquely determined for the code and the section

boundaries x and y. 2

Algorithm 5.2.2: dMAP(x; y)

This algorithm is to computeM(x; y) directly. Let K = I(C)\fx+1; . . . ; yg be

the set of information bit positions between the time-x and time-y. The algorithm

�rst computes

qj[0] =

8><
>:

Prj(0) � Pr(r[j]j0) if j 2 K

Pr(r[j]j0) otherwise;
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Figure 5.1. A MAP decoding for C by the rMAP algorithm.

qj[1] =

8><
>:

Prj(1) � Pr(r[j]j1) if j 2 K

Pr(r[j]j1) otherwise

for x < j � y, just as same as the BCJR algorithm (Chapter 4). Then it computes

Y
x<j�y

Prj(v[j]) � Pr(r[j]jv[j]) =
Y

x<j�y

qj(v[j]) (5:6)

for all vectors v in pxy(C). Next, MAP(Dxy; i; b) is computed by summing the

probabilities (5.6) for each coset in Dxy 2 Lxy, bit position i with x < i � y and

symbol b 2 GF (2). 2
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A MAP table for C is constructed as Figure 5.1, and thus the MAP decoding

for C is done.

5.3 Evaluation of the Algorithm

5.3.1 Complexity of the algorithm

The decoding complexity of the rMAP algorithm is investigated. As the measure

of complexity, we take the number of multiplications of probabilities necessary

for decoding, since multiplications of probabilities are the most costly operation

in the MAP decoding.

First, we consider the complexity of the non-recursive step of rMAP algorithm

(i.e. dMAP algorithm). Let �d(x; y) be the number of multiplications necessary

for computing M(x; y) by using dMAP algorithm. It is easily understood that

�
d(x; y) = 2jKj+ (y � x� 1) � jpxy(C)j

where the �rst term is to compute the values of qj's, and the second term is to

compute (5.6).

The complexity of the recursive step of rMAP is little more complicated.

Actually, it is the sum of the complexity necessary for constructing M(x; z)

and M(z; y), and the complexity necessary for combining the MAP tables. Let

�
r
z(x; y) be the number of multiplications necessary for combining the tables.

Note that the function is subscripted with z since the number of multiplications

is di�erent for di�erent choice of z.

A value MAP(Dxy; i; b) in a cell of a MAP table for Dxy 2 Lxy is determined

by using the equations in Corollary 5.2.3. Hence we need mz(x; y) multiplications

of probabilities for computing one cell of the table. Since a table has 2(y � x)
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cells, we need mz(x; y) � 2(y � x) multiplications to compute a MAP table in a

straightforward way.

However, by using the properties of the MAP table, we can reduce the number

of multiplications as follows. First of all, remark that MAP(Dxy; i; 1) with x <

i � y can be computed by subtracting MAP(Dxy; i; 0) from jMAP(Dxy)j, and no

multiplication is necessary. Since

MAP(Dxy) =

mz(x;y)X
i=1

MAP (Di
x;z)MAP (Di

z;y);

mz(x; y) multiplications are necessary to compute MAP(Dxy). Therefore we need

mz(x; y) +mz(x; y)� (y � x) multiplications in total to determine all values in a

MAP table.

Moreover, when cosets Dxz and Dzy contain only small number of vectors,

then more e�cient combination algorithm is applicable. Table 5.2 shows such

special cases. For example, if jDxzj = jDzyj = 1 (case 1), then Dxz � Dzy also

contains only one vector. In this case only mz(x; y) multiplications are su�cient

for making a MAP table. Similarly, if jDxzj = 2 and jDzyj = 1 (or jDxzj = 1 and

jDzyj = 2) (case 2), then Dxz �Dzy contains only two vectors. In this case only

2mz(x; y) multiplications are su�cient for making a MAP table. If jDxzj = 2 and

jDzyj = 2 (case 3), then Dxz �Dzy contains four vectors. Using the relation (5.5),

probabilities for those four vectors can be computed by only three multiplications.

Thus 3mz(x; y) multiplications are su�cient for making a MAP table.

Since there are jLxyj di�erent MAP tables, the number of multiplications
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Table 5.2. Special cases.

case 1

Dxz = flg; Dzy = frg )
0 0 a

a a 0
�

b 0 b

0 b 0
;

# #

Dxz �Dzy = flrg )
0 0 c c 0 c

c c 0 0 c 0

where c = a � b.

case 2

Dxz = fl1; l2g; Dzy = frg )
a 0 a+ b

b a+ b 0
�

c 0 c

0 c 0
;

# #

Dxz �Dzy = fl1r; l2rg )
d 0 d+ e d + e 0 d + e

e d+ e 0 0 d + e 0

where d = a � c;

e = b � c:

case 3

Dxz = fl1; l2g; Dzy = fr1; r2g )
a 0 a+ b

b a+ b 0
�

c + d d c

0 c d
;

# #

Dxz �Dzy = fl1r1; l1r2; l2r1; l2r2g )
e 0 e + f g + h h g

f e+ f 0 0 g h

where e = a � (c+ d);

f = b � (c+ d);

g = (a+ b) � c;

h = e+ f � g:
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necessary for combining the MAP tables is,

�
r
z(x; y) =8>>>>>>>><
>>>>>>>>:

jLxyj �mz(x; y) for case 1

jLxyj � 2mz(x; y) for case 2

jLxyj � 3mz(x; y) for case 3

jLxyj � (y � x+ 1)mz(x; y) otherwise.

Thus the number of multiplications necessary for executing the recursive step is

the sum of �rz(x; y) and the number of multiplications necessary for constructing

M(x; z) and M(z; y).

De�ne

�(x; y)
4
=8>>>>>>>>><

>>>>>>>>>:

�
d(x; y) if y � x = 1,

minf�d(x; y);

min
x<z<y

f�
r
z(x; y) + �(x; z) + �(z; y)gg

otherwise:

The function �(x; y) gives the smallest number of multiplications necessary for

constructing M(x; y), and consequently �(0; n) gives the number of multiplica-

tions necessary for the MAP decoding. Choosing the optimum dividing points,

such as z that gives minimum �
r
z(x; y) + �(x; z) + �(z; y), is done by a dynamic

programming. It calculates �(a; b)'s for shorter sections �rst, then choose the

best dividing point for longer sections by leveraging them. Since this algorithm

is equivalent to �lling half of the (n+1)� n-size table, each of whose elements is

�(x; y) for 0 � x < y � n, respectively, and each element is derived by comparing

computation at most n-times, the complexity of this dynamic programming is

O(n3). Table 5.3 shows the complexity of the rMAP algorithm and that of the

BCJR algorithm for some linear block codes. RM stands for the Reed-Muller

codes and eBCH stands for the extended and permuted[9] BCH codes. Results
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Table 5.3. The number of multiplications of probabilities necessary for decoding.

code rMAP BCJR ratio

eBCH(64; 7)a 736 10,920 6.7%

eBCH(64; 10)c 3,200 77,224 4.1%

eBCH(64; 16)a 124,288 3,073,000 4.0%

eBCH(64; 18)a 493,952 12,255,208 4.0%

eBCH(64; 24)a 694,656 5,963,752 11.6%

eBCH(64; 30)a 42,338,688 214,433,768 19.7%

eBCH(64; 36)a 105,056,640 108,527,592 96.8%

RM(64,22) 174,464 1,500,136 11.6%

RM(128,29) 10,799,872 185,000,936 5.8%

Table 5.4. The number of probabilities which must be recorded.

code rMAP BCJR ratio

eBCH(64; 7)a 769 5,272 14.6%

eBCH(64; 10)c 3,009 37,080 8.1%

eBCH(64; 16)a 107,969 1,438,200 7.5%

eBCH(64; 18)a 428,481 5,734,392 7.5%

eBCH(64; 24)a 321,985 2,580,472 12.5%

eBCH(64; 30)a 17,500,609 86,704,120 20.2%

eBCH(64; 36)a 4,524,481 33,357,816 13.6%

RM(64,22) 81,345 649,720 12.5%

RM(128,29) 4,672,385 86,143,480 5.4%
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for other codes appear in the next chapter 6. For low-rate codes, the proposed

rMAP algorithm is much more e�cient than the BCJR algorithm. However, for

relatively high-rate codes, the BCJR algorithm seems better than the rMAP al-

gorithm. This is because that mz(x; y) and jLxyj tend to be large in high-rate

codes. The next chapter presents the improved algorithm of the rMAP algorithm,

which is never ine�cient than the BCJR algorithm if you mind just the compu-

tational complexity. Or we may use dual codes instead of such high-rate codes,

as discussed in [11] to get around this matter.

5.3.2 Other advantages

The rMAP algorithm has a number of advantages for implementing e�cient

MAP decoders. For example, the trellis diagram is no longer necessary in the

rMAP algorithm. This property reduces the space complexity of the decoder.

As a measure of the space complexity, consider how many probabilities must be

recorded for the MAP decoding. In the case of the BCJR algorithm, the number

is approximately double of the number of states of the trellis diagram since we

need to record probabilities � and � for each state. In the case of the proposed

rMAP algorithm, the total number of cells of MAP table in M(x; y) is at most

2(y � x)jLxyj, which can be reduced by using the properties introduced at the

derivation of �rz(x; y). The total number of cells necessary for executing the pro-

posed algorithm is obtained by summing up the number of cells of MAP tables at

each divide-and-conquer stage. Table 5.4 shows the number of probabilities which

must be recorded for the MAP decoding. We can see that the space complexity is

considerably improved in the rMAP algorithm. This improvement enables VLSI

implementation of the decoder much easier.

Furthermore, the divide-and-conquer structure of the algorithm makes it suit-

able for parallel and pipeline processing, which speeds up decoding. Another ad-
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vantage of using the algorithm is that the decoding delay is much more smaller

than that of the BCJR algorithm since the rMAP algorithm does not require time

consuming backward recursion. This advantage is signi�cant when the decoder is

used iteratively, as in turbo decoding. In addition, the rMAP algorithm is used

in another e�cient MAP decoding algorithm proposed in the next chapter, and

help it to reduce the complexity.

5.4 Discussion

An e�cient algorithm for MAP decoding is presented. The algorithm is devised

based on the structural properties of linear codes, and has a number of advantages

for implementation of e�cient MAP decoder. It is also studied that the algorithm

is not e�cient for high-rate codes. Further investigation had been necessary for

improving the results for those high-rate codes, and it has done. The improvement

on this problem is seen in the next chapter 6, that is a hybrid of the BCJR and

the rMAP algorithms.
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Chapter 6

Hybrid Algorithm

6.1 Introduction to Hybrid Algorithm

The rMAP algorithm proposed in the previous chapter has a number of advan-

tages, however, it is not appropriate to decode high-rate codes. In the other

words, the original BCJR algorithm is more appropriate for such high-rate codes

than the rMAP algorithm, at least in the case we only count the computational

complexity. For such a reason, we came to the idea of a hybrid.

The algorithm proposed in this chapter is a hybrid of the BCJR and the rMAP

algorithms. This hybrid algorithm is making the most of two algorithms. The

weak point of rMAP algorithm is covered by being coupled with a BCJR-like way

of calculation. That is making use of the idea of section trellis diagram, which

reduces both the space and time complexity.

We can make any section trellis diagram at will with the section boundaries.

The complexity of the proposed hybrid algorithm highly depends on given sec-

tion boundaries, and it is not good idea to �nd the optimum sectionalization

(which minimizes the complexity) by a exhaustive search. Author found that

the approach by Lafourcade et al.[13], which is an e�cient algorithm to �nd the
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the optimum sectionalization of trellis for maximum likelihood decoding, is even

applicable to this problem.

6.2 Hybrid Algorithm

6.2.1 Overview

Roughly speaking, the proposed algorithm is a BCJR-like algorithm on a section

trellis diagram. Let B = fb0; b1; . . . ; bmg be a section boundaries and consider the

trellis diagram T of the code C with boundaries at B. The algorithm consists

of two steps. First, it decides branch probabilities of all branches of T . In other

words, it constructs MAP tables for all cosets D 2 Lbjbj+1 with 0 � j � m � 1.

Remark that, if the MAP table has been constructed for D 2 Lbjbj+1 , then we can

easily obtain MAP(D) and MAP(D; i; b) for any bj < i � bj+1 and b 2 GF (2).

The construction method of MAP tables is introduced in Section 6.2.2. The

second part of the algorithm is the construction of the MAP table for the code

C. A BCJR-like algorithm is used for the construction, and its detail is discussed

in Section 6.2.3.

6.2.2 rMAP algorithm

A recursive algorithm for the MAP decoding is proposed in previous chapter.

The algorithm rMAP(x; y) is used as a part of the proposed hybrid algorithm in

this chapter. The behavior of the rMAP algorithm used here is identical to the

one proposed in the previous chapter, however, it is used not for the entire code

but for cosets.
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6.2.3 BCJR-like algorithm

This is not identical to the original BCJR algorithm, however, the general idea

of the algorithm is very similar to that so we call this a BCJR-like algorithm.

Actually, it is possible to consider this is a BCJR algorithm on the section trellis

diagram as a substitute of the entire trellis diagram.

For each state � of T , de�ne �(�) = MAP(L(�0; �)) and �(�) = MAP(L(�; �n))

where �0 is the initial state and �n is the �nal state. The computation of �'s is

done recursively using the section trellis diagram and branch probabilities. As-

sume that �(�) has been computed for every state � 2 �bj with j < t, and now

we are going to compute �(�) for a state � 2 �bt. Let �1; �2; . . . ; �m 2 �bt�1 be

states which are connected to � in the section trellis diagram. We can write

L(�0; �) =
m[
s=1

L(�0; �s) � L(�s; �):

By using Lemmas 5.2.1 and 5.2.2,

�(�) = MAP(L(�0; �))

=
mX
s=1

MAP(L(�0; �s)) �MAP(L(�s; �))

=
mX
s=1

�(�s) �MAP(L(�s; �)):

Since MAP(L(�s; �)) is easily computed from the MAP table for L(�x; �), �(�) is

computed recursively using the section trellis diagram and branch probabilities.

Similarly, �(�) is computed as

�(�) =
mX
s=1

MAP(L(�; �s)) � �(�s)

where �1; �2; . . . ; �m 2 �bt+1 are states which are connected to �.

By using �'s and �'s, MAP(C; i; b) is computed as follows. Let x be the largest

boundary in B which is smaller than i, and let y be the smallest boundary in B

42



which equals to or more than i. Hence x < i � y. Remark that

C
i=b =

[
�x2�x

[
�y2�y

L(�0; �x) � L(�x; �y)
i=b
� L(�y; �n):

By using Lemmas 5.2.1, 5.2.2 and (5.5), we have

MAP(C; i; b) =
X

�x2�x

X
�y2�y

fMAP(L(�0; �x))

�MAP(L(�x; �y); i; b) �MAP(L(�y; �n))g

=
X

�x2�x

X
�y2�y

�(�x) �MAP(L(�x; �y); i; b) � �(�y): (6.1)

Figure 6.1 visualizes how the MAP table of C is constructed by (6.1), where

�
i
x 2 �x; �

j
y 2 �y with 1 � i � ml; 1 � j � mr and ml;mr are constants.

6.3 Complexity of the Algorithm

The decoding complexity of the proposed algorithm is investigated in this sec-

tion. As the measure of complexity, we take the number of multiplications of

probabilities necessary for decoding, since multiplications of probabilities are the

most costly operation in the MAP decoding.

6.3.1 Computation of branch probabilities

We brie
y review the complexity of the rMAP procedure. In Chapter 5, it is

shown that the complexity of rMAP(x; y) is given as

�
r(x; y)

4
=

8>>>>><
>>>>>:

�
d(x; y) if y � x = 1,

min
n
�
d(x; y);

min
x<z<y

f�
c
z(x; y) + �

r(x; z) + �
r(z; y)g

o
otherwise;

(6.2)

where �d(x; y) = 2jKj+(y�x�1)jpxy(C)j is the complexity for computing MAP

tables directly, and �
c
z(x; y) is the complexity for combining MAP tables, which
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L(�1x; �
1
y)

�(�1
x) � � �(�1

y)

L(�1x; �
2
y)

�(�1
x) � � �(�2

y)

L(�2x; �
1
y)

�(�2
x) � � �(�1

y)

...

L(�ml
x ; �

mr
y )

�(�ml
x ) � � �(�mr

y )+ )

MAP table of C

� � � � � �

� � � � � �

Figure 6.1. The construction of MAP table of C
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is de�ned as

�
c
z(x; y) =8>>>>>>>><
>>>>>>>>:

jLxyj �mz(x; y) jDxyj = 1

jLxyj � 2mz(x; y) jDxyj = 2

jLxyj � 3mz(x; y) jDxyj = 4

jLxyj � (y � x+ 1)mz(x; y) otherwise;

The function �
r(x; y) gives the smallest number of multiplications necessary

for computing branch probabilities between time-x and time-y. Hence, the com-

plexity for computing all branch probabilities is the sum of (6.2) of each section.

�
R =

m�1X
j=0

�
r(bj; bj+1): (6.3)

6.3.2 Computation of �'s and �'s

Note that no multiplication is necessary for computing �(�) for � 2 �b0[�b1 , be-

cause those values are obviously de�ned. Also we do not have to compute �(�bn)

since it is not used for constructing the MAP table for C. For computing �-values

for all states in �bj+1 with j � 1, one multiplication is needed for each branch be-

tween time-bj and time-bj+1. Since there are 2
k(C)�k(C0bj )�k(Cbjbj+1

)�k(Cbjn
)
branches

in this section, 2
k(C)�k(C0bj )�k(Cbjbj+1

)�k(Cbjn
)
multiplications are necessary for com-

puting �-values at time-bj+1. Then, the total complexity for computing �-values

are

�
� =

m�2X
j=1

2
k(C)�k(C0bj )�k(Cbjbj+1

)�k(Cbjn
)
:

It is easily shown that the complexity for computing �-values equals to ��, and

denoted as �� . Moreover, if we de�ne

�
�
bj ;bj+1

= �

�
bj ;bj+1

=

8><
>:

0 if bj = 0 or bj+1 = n

2
k(C)�k(C0bj )�k(Cbjbj+1

)�k(Cbjn
)

otherwise,

45



then

�
� =

m�1X
j=0

�
�
bj ;bj+1

(6.4)

�
� =

m�1X
j=0

�

�
bj ;bj+1

: (6.5)

6.3.3 Construction of the MAP table for C

In this section, we discuss the number of multiplications necessary for comput-

ing (6.1) for every bit position i and every symbol b. Since the equation (6.1)

contains many terms which have a common factor, we can reduce the number of

multiplications by using the distributivity property of multiplication operations.

Consider a coset D 2 Lxy. It is known that there are

mxy
4
=2k(C)�k(pxy(C))�k(C0x)�k(Cyn)

pairs of states �x 2 �x and �y 2 �y such that L(�x; �y) = D. Let P (D) be the

set of such pairs h�x; �yi. The equation (6.1) can be transformed as follows.

X
�x2�x

X
�y2�y

�(�x) �MAP(L(�x; �y); i; b) � �(�y)

=
X

D2Lxy

X
h�x;�yi2P (D)

�(�x) �MAP(D; i; b) � �(�y)

=
X

D2Lxy

MAP(D; i; b) �
X

h�x;�yi2P (D)

�(�x) � �(�y):

This means that the number of multiplications can be reduced by computing

�

4
=
P

h�x;�yi2P (D) �(�x) � �(�y) �rst. Furthermore, remark that the sum � is in-

dependent from the bit position i and the symbol b. Therefore, we can use the

sum � for the computation for every position i with x < i � y and every symbol

b. Actually, to compute MAP(C; i; b) for every position i with x < i � y and

every symbol b, we need mxy + (y � x) + 1 multiplications for each coset D in

Lxy, where the �rst term mxy is to compute the sum �, the second term y � x is
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to compute � �MAP(D; i; 0) for every i with x < i � y, and the third term 1 is

to compute � �MAP(D). Remark that we do not have to count the number of

multiplications for computing � �MAP(D; i; 1) since it is obtained by subtracting

� �MAP(D; i; 0) from � �MAP(D). Since there are jLxyj di�erent cosets, the total

number of multiplications necessary for computing MAP(C; i; b) for every i with

x < i � y and every symbol b is jLxyj � (mxy + (y � x) + 1). Furthermore, when

x = b0 = 0 or y = bm = n, the term mxy is not necessary since we do not have to

multiply � and �. Summarizing the above discussions, we need

�

 =

m�1X
j=0

�



bj ;bj+1

(6:6)

multiplications for constructing the MAP table for the code, where �
(bj; bj+1) is

de�ned as follows.

�



bj ;bj+1

=

8>>>>>>>><
>>>>>>>>:

0 if bj = 0; bj+1 = n

jLb0b1 j � (b1 � b0) if bj = 0; bj+1 6= n

jLbm�1bm j � ((bm � bm�1) + 1) if bj 6= 0; bj+1 = n

jLbjbj+1 j � (mbjbj+1 + (bj+1 � bj) + 1) otherwise.

(6.7)

Furthermore, if Dbjbj+1 � 2, then the term (bj+1� bj)+1 in (6.7) can be replaced

by jDbjbj+1 j since one multiplication for every vector in Dxy is su�cient.

Finally, the total complexity is the sum of (6.2), (6.4), (6.5) and (6.6) as

follows.

� = �
R + �

� + �
� + �




=
m�1X
j=0

�
r(bj; bj+1) +

m�1X
j=0

�
�
bj ;bj+1

+
m�1X
j=0

�

�
bj ;bj+1

+
m�1X
j=0

�



bj ;bj+1

=
m�1X
j=0

(�r(bj ; bj+1) + �
�
bj ;bj+1

+ �

�
bj ;bj+1

+ �



bj ;bj+1

:
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6.3.4 Optimum sectionalization for the hybrid algorithm

The decoding complexity of the hybrid algorithm depends on the sectionaliza-

tion of the trellis. Since there are 2n�1 di�erent sectionalizations for a code with

length n, it is not good idea to �nd the optimum sectionalization (which mini-

mizes the complexity) by a exhaustive search. In this section, we consider more

sophisticated and e�cient way for �nding the optimum sectionalization. Lafour-

cade et al. showed an e�cient algorithm to �nd the optimum sectionalization

of a trellis[13]. By their algorithm, the optimum sectionalization for the maxi-

mum likelihood decoding is found in O(n2). The object function which should

be minimized is di�erent between their case and our case, though, our problem

is solved in a similar way. The complexity � of the hybrid algorithm is expressed

as follows.

� =
m�1X
j=0

�bjbj+1 ;

where

�bjbj+1 =

8>>>>>>>><
>>>>>>>>:

�
r(bj; bj+1) if bj = 0; bj+1 = n

�
r(bj; bj+1) + jLbjbj+1j � (bj+1 � bj) if bj = 0; bj+1 6= n

�
r(bj; bj+1) + jLbjbj+1j � ((bj+1 � bj) + 1) if bj 6= 0; bj+1 = n

�
r(bj; bj+1) + �

�
bjbj+1

+ �

�
bjbj+1

+ �



bjbj+1

otherwise:

The total complexity is the sum of complexities of all sections, and com-

plexity of a section is independent from complexities of other sections. This

property helps us �nding the optimum sectionalization. For example, consider

two slightly di�erent sets of section boundaries B = fb0; . . . ; bi; bi+1; . . . ; bmg and

B
0 = fb0; . . . ; bi; b; bi+1; . . . ; bmg where b0 = 0; bm = n and b is an integer such

that bi < b � bi+1. If the complexity for the sectionalization B is expressed as

�bibi+1 +D with D a constant, then the complexity for the sectionalization B
0 is

�bib+�b;bi+1+D. Therefore, if �bib+�b;bi+1 < �bibi+1 , then we should put a section
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boundary at time-b to reduce the complexity.

Algorithm 6.3.1: Min-COMP(x; y)

input: integers x and y with 0 � x < y � n

output: �
min
x;y

If y � x = 1, then execute the following non-recursive step. If y � x > 1, then

execute the recursive step.

non-recursive step: �min
xy = �xy.

recursive step: choose the minimum value in f�xyg [ f�xz + �
min
zy : x < z < yg.

2

Remark that y should be �xed as n (or x should be �xed as 0), for the essential

purpose of this algorithm. This algorithm derives z for each x (0 � x < n). Since

comparing calculations are done at most n-times for each, this algorithm works

in O(n2).

Execute the algorithm Min-COMP(0; n) to have �min
0;n , then the optimum sec-

tionalization can be obtained by tracing the computation of �min
0;n in a reverse

way:

�
min
0;n = �0;t1 + �

min
t1n

= �0;t1 + �t1t2 + �
min
t2n

= �0;t1 + �t1t2 + �t2t3 + �
min
t3n

...

= �0;t1 + �t1t2 + �t2t3 + � � �+ �tm�1n:

In this case, the optimum sectionalization is

B = f0; t1; t2; . . . ; tm�1; ng:
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Table 6.1. The decoding complexity (i).

code� BCJR rMAP hybrid

RM(16,5) 676 120 120 B=f0,16g

RM(16,11) 996 424 352 B=f0,4,8,12,16g

RM(16,15) 228 186 136 B=f0,2,4,6,8,10,12,14,16g

RM(32,6) 2,724 304 304 B=f0,32g

RM(32,16) 25,572 5,888 4,288 B=f0,8,16,24,32g

RM(32,26) 4,708 5,840 2,080 B=f0,4,8,16,24,28,32g

RM(32,31) 484 506 296 B=f0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32g

RM(64,7) 10,916 736 768 B=f0,32,64g

RM(64,22) 1,500,132 174,464 116,096 B=f0,16,32,48,64g

RM(64,42) 2,197,476 4,492,672 529,792 B=f0,8,16,32,48,56,64g

RM(64,57) 20,324 55,200 10,528 B=f0,4,8,16,24,32,40,48,56,60,64g

If �min
0;n = �0;n = �

r(0; n), then B = f0; ng. This means that the code should not

be sectionalized. The rMAP algorithm should be used to construct the whole

MAP table for C to minimize the complexity.

6.3.5 Results

Tables 6.1{6.3 show the minimum complexity and the optimum sectionaliza-

tion for some well-known block codes. In this thesis, the number of multiplication

of probabilities as the measure of complexity. RM(n; k) and eBCH(n; k)p stand

for the Reed-Muller code and the extended BCH code with p-type permuta-

tion, respectively. The results show that the proposed algorithm needs smaller

computational complexity than the BCJR algorithm. The proposed algorithm

is especially e�cient for low-rate codes. And the results also show that the
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Table 6.2. The decoding complexity (ii).

code� BCJR rMAP hybrid

eBCH(64,7)
a

10,916 736 736 B=f0,64g

eBCH(64,7)
b

10,916 736 736 B=f0,64g

eBCH(64,7)
c

10,916 736 736 B=f0,64g

eBCH(64,10)
a

84,964 4,224 4,224 B=f0,64g

eBCH(64,10)
b

84,964 4,224 4,224 B=f0,64g

eBCH(64,10)
c

77,220 3,200 3,200 B=f0,64g

eBCH(64,16)
a

3,072,996 124,288 124,288 B=f0,64g

eBCH(64,16)
b

2,860,004 120,192 120,192 B=f0,64g

eBCH(64,16)
c

3,072,996 124,288 124,288 B=f0,64g

eBCH(64,18)
a

12,255,204 493,952 493,952 B=f0,64g

eBCH(64,18)
b

10,675,172 468,352 468,352 B=f0,64g

eBCH(64,18)
c

12,255,204 493,952 493,952 B=f0,64g

eBCH(64,24)
a

5,963,748 694,656 461,184 B=f0,16,32,48,64g

eBCH(64,24)
b

4,531,172 669,056 411,008 B=f0,16,32,48,64g

eBCH(64,24)
c

5,963,748 694,656 461,184 B=f0,16,32,48,64g

eBCH(64,30)
a

214,433,764 42,338,688 25,430,400 B=f0,16,32,48,64g

eBCH(64,30)
b

164,102,116 42,338,688 25,430,400 B=f0,16,32,48,64g

eBCH(64,30)
c

113,770,468 42,338,688 25,430,400 B=f0,16,32,48,64g
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Table 6.3. The decoding complexity (iii).

code� BCJR rMAP hybrid

eBCH(64,36)
a

108,527,588 105,056,640 44,173,712 B=f0,8,24,26,28,32,36,38,40,48,64g

eBCH(64,36)
b

108,527,588 105,056,640 44,173,712 B=f0,8,24,26,28,32,36,38,40,48,64g

eBCH(64,36)
c

56,098,788 105,056,705 20,579,792

B=f0,16,20,22,24,28,32,36,40,42,44,48,64g

eBCH(64,39)
a

394,788,836 831,063,352 201,591,184 B=f0,8,24,26,28,32,36,38,40,48,64g

eBCH(64,39)
b

461,897,700 839,649,664 251,922,832 B=f0,8,24,26,28,32,36,38,40,48,64g

eBCH(64,39)
c

107,479,012 444,744,424 58,328,480

B=f0,16,20,22,24,28,30,32,34,36,40,42,44,48,64g

eBCH(64,45)
a

7,063,524 27,567,392 3,402,128 B=f0,4,12,14,16,32,48,50,52,56,64g

eBCH(64,45)
b

8,112,100 35,334,528 3,402,128 B=f0,4,12,14,16,32,48,50,52,56,64g

eBCH(64,45)
c

3,000,292 15,525,680 1,625,440

B=f0,8,16,24,26,28,30,32,34,36,38,40,48,56,64g

eBCH(64,51)
a

1,132,516 6,082,856 775,504

B=f0,4,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,56,64g

eBCH(64,51)
b

923,620 5,459,192 618,832

B=f0,8,10,12,14,16,20,22,24,26,28,30,32,34,36,38,40,42,44,48,50,52,54,56,64g

eBCH(64,51)
c

1,034,212 5,786,848 701,808

B=f0,4,12,14,16,19,21,23,25,27,29,32,35,37,39,41,43,45,48,50,52,56,64g

eBCH(64,57)
a

20,324 55,200 10,528 B=f0,4,8,16,24,32,40,48,56,60,64g

eBCH(64,57)
b

20,324 55,200 10,528 B=f0,4,8,16,24,32,40,48,56,60,64g

eBCH(64,57)
c

20,324 55,200 10,528 B=f0,4,8,16,24,32,40,48,56,60,64g
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eBCH(64,36)a; B = f0; 8; 24; 26; 28; 32; 36; 38; 40; 48; 64g

0 32 64

eBCH(64,39)c; B = f0; 16; 20; 22; 24; 28; 30; 32; 34; 36; 40; 42; 44; 48; 64g

0 32 64

eBCH(64,45)c; B = f0; 8; 16; 24; 26; 28; 30; 32; 34; 36; 38; 40; 48; 56; 64g

0 32 64

Figure 6.2. Optimum sectionalizations.
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Table 6.4. The number of probabilities which must be recorded.

code BCJR hybrid ratio

eBCH(64; 16)b 1,331,765 103,938 7.8%

eBCH(64; 18)b 4,944,437 402,946 8.1%

eBCH(64; 24)b 1,876,533 24,001 1.3%

eBCH(64; 30)c 43,712,565 756,161 1.7%

eBCH(64; 36)c 18,677,813 4,457,889 23.9%

eBCH(64; 39)c 30,605,365 11,666,817 38.1%

eBCH(64; 45)c 836,149 252,801 30.2%

eBCH(64; 51)b 243,253 109,857 45.2%

eBCH(64; 57)a 5,333 1,969 36.9%

equally sectionalized trellis is not necessarily the best structure for the proposed

algorithm. Figure 6.2 visualizes the unequally but optimum sectionalization for

eBCH(64,36)a; eBCH(64,39)c and eBCH(64,45)c.

In addition, the space complexity is reduced by using the hybrid algorithm.

The space complexity is evaluated with the number of probabilities which must

be recorded for the MAP decoding as same as in Chapter 5. Table 6.4 shows the

space complexity of the hybrid algorithm for some extended BCH codes, com-

pared with the BCJR algorithm. For low-rate codes, the set of section boundaries

with B = f0; ng is adopted, that means the pure rMAP algorithm is applied. Re-

mark that the sectionalization for the hybrid algorithm is not optimized with the

view of the space complexity but of the number of multiplications.

It will be interesting if we can compare the e�ciency of the proposed algorithm

to that of the algorithm in [16]. Unfortunately, the measure of the e�ciency is

little bit di�erent between [16] and ours. In [16], they compute branch metrics by

using some exponential operations, which reduces the number of multiplications.

54



If we substitute the exponential operations by multiplications, then our approach

is more e�cient than [16].

6.4 Discussion

Another e�cient algorithm for the MAP decoding is proposed. The proposed

algorithm is a hybrid of the conventional BCJR and the rMAP algorithms, which

needs smaller decoding complexity than the BCJR algorithm.

Actually, the BCJR and rMAP algorithms can be regarded as special subcases

of the proposed algorithm with the section boundaries B = f0; 1; 2; . . . ; ng and

B = f0; ng, respectively. Hence, the e�ciency of the proposed algorithm is always

better than or equal to that of the rMAP and BCJR algorithms for any code.

The proposed algorithm highly depends on the sectionalization of a trellis,

and �nding the optimum sectionalization is essential. A systematic way to �nd

the optimum sectionalization for the hybrid MAP algorithm is investigated |

the approach by Lafourcade et al. [13] is applicable to our problem.

The decoding complexity for some well-known linear block codes are calcu-

lated and showed; the e�eciency of the proposed algorithm is con�rmed. In

addition, the proposed algorithm uses a section trellis diagram instead of the

entire trellis diagram, which is easier to construct and implement.
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Chapter 7

Conclusion

In this thesis, e�cient algorithms for MAP decoding is presented.

Since the conventional algorithm for MAP decoding, which is called the BCJR

algorithm, is considered incapable of applying to long practical codes, some kinds

of modi�cation has been requested.

The rMAP algorithm, presented in Chapter 5, needs no trellis diagram for

decoding; constructing of the trellis diagram is both time and space consuming

calculation and it is necessary for the BCJR algorithm. The number of calculation

is reduced for the low-rate codes but rather increased for the high-rate codes.

The algorithm presented in Chapter 6 is the hybrid algorithm of the BCJR

and the rMAP algorithm. This algorithm uses the section trellis diagram in place

of the entire trellis diagram of the BCJR algorithm. The table of probabilities,

called MAP table, is constructed on every branch of the section trellis diagram

by using the rMAP algorithm and a BCJR-like algorithm is executed to the

section trellis diagram. This hybrid algorithm has mainly two advantages. The

�rst advantage is that the number of calculation is no wronger than both of the

BCJR and the rMAP algorithms. The second one is the adoption of the section

trellis diagram, that is more easy to construct than the entire trellis diagram.
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The hybrid algorithm is suitable for all codes, and recommended to use in-

stead of the conventional BCJR algorithm. And the rMAP algorithm is still

recommendable for decoding the low-rate codes because it doesn't need even a

section trellis diagram.
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