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Complexity of the Type-Consistency Problem

in Object-Oriented Databases∗

Shougo Shimizu

Abstract

Method invocation mechanism is one of the essential features in object-

oriented programming languages. It is based on method name overloading and

dynamic binding by method inheritance along the class hierarchy. For a method

name m, different classes may have different definitions of m (method name over-

loading). When m is applied to an object o, one of its definitions is selected

depending on the class to which o belongs and bound to m in runtime (dynamic

binding). This mechanism is important for data encapsulation and code reuse,

but there is a risk of runtime type errors. For example, when a method m is in-

voked, the definition of m to be bound may not exist. Particularly, with queries

in object-oriented databases (OODBs), a runtime error causes rollback, i.e., all

the modification up to the error must be canceled. Therefore, for a given OODB

schema, it is desirable to ensure that no runtime type error occurs during the

execution of queries under any instance of the OODB schema.

An OODB schema is said to be consistent if no type error occurs during the

execution of any method under any database instance. The type-consistency

problem is to decide whether a given OODB schema is consistent or not. This

thesis discusses the computational complexity of the type-consistency problem.

As a model of OODB schemas, this thesis adopts update schemas. Update

schemas have all the basic features of OODBs, such as class hierarchy, inheritance,

complex objects, and so on. Method implementations are based on a procedu-

ral OOPL model. Therefore, updating database instances is simply modeled as

assignment of objects to attributes of objects.
∗ Doctor’s Thesis, Department of Information Processing, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DT9861011, February 5, 2001.
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The type-consistency problem for update schemas is known to be undecidable

in general. Furthermore, the following results of the complexity of the type-

consistency problem for subclasses of update schemas are known: The problem is

(1) solvable in polynomial time for flat schemas, i.e., schemas that have no class

hierarchy, (2) undecidable for non-flat schemas even if the height of the class

hierarchy is at most one, (3) solvable in polynomial time for terminating retrieval

schemas, and (4) coNEXPTIME-complete for recursion-free schemas.

This thesis shows that the type-consistency problems for terminating schemas

and retrieval schemas are both undecidable. From these results, it turns out that

recursion and update operations (only when the schema satisfies the termination

property), as well as non-flatness of the class hierarchy, each make the problem

difficult.

This thesis also introduces a subclass of update schemas, called acyclic

schemas, for which the type-consistency problem becomes decidable. A schema

is said to be acyclic if no instance of the schema contains a cycle which is formed

by attribute-value relationship among objects. A schema which represents an

organization of a company can be considered as an example of an acyclic schema.

Furthermore, a nested relational model is considered to be a special case of acyclic

schemas. This thesis shows the following results of the complexity of the type-

consistency problem for acyclic schemas: The problem is (1) in coNEXPTIME

for acyclic schemas, (2) coNEXPTIME-hard for recursion-free acyclic schemas,

and (3) PSPACE-complete for retrieval acyclic schemas.

Keywords:

complexity, type-consistency problem, object-oriented database, runtime type er-

ror, update schema, acyclic schema
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Chapter 1

Introduction

Among the many features of object-oriented programming languages (OOPLs),

method invocation (or message passing) mechanism is an essential one. It is

based on method name overloading and dynamic binding by method inheritance

along the class hierarchy. For a method name m, different classes may have

different definitions (codes, implementations) of m (method name overloading).

When m is applied to an object o, one of its definitions is selected depending

on the class to which o belongs and is bound to m in runtime (dynamic binding

or late binding). This mechanism is important for data encapsulation and code

reuse, but there is a risk of runtime type errors. For example, when a method

m is invoked, the definition of m to be bound may not exist. Particularly, with

queries in object-oriented databases (OODBs), a runtime error causes rollback,

i.e., all the modification up to the error must be canceled.

In this thesis, we discuss the computational complexity of the type-consistency

problem for queries in OODBs. A database schema S is said to be consistent if

no type error occurs during the execution of any method under any database

instance, i.e.,

1. for every method invocation m, the definition of m to be bound is uniquely

determined using the class hierarchy with inheritance; and

2. no attribute-value update violates any type declaration given by S.

The type-consistency problem is to decide whether a given database schema is

consistent or not. In order to check type-consistency, it is usually necessary to
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Figure 1.1. Complexity of the type-consistency problem.

perform type inference, i.e., to examine whether for each class c and program

construct x, e.g., a variable in method implementation bodies, the value of x can

be an object of class c or not. It is quite advantageous for a given database schema

to be consistent. First, since it is ensured at compile time that no type error

occurs under any database instance, runtime type check can be omitted. Another

advantage is an application to method-based authorization checking [5, 7, 18].

As a model of OODB schemas, we adopt update schemas introduced by Hull

et al [11]. Update schemas have all the basic features of OODBs, such as class

hierarchy, inheritance, complex objects, and so on. Method implementations are

based on a procedural OOPL model. Therefore, updating database instances is

simply modeled as assignment of objects to attributes of objects.

In Reference [11], it is shown that the type-consistency problem for update

schemas is undecidable in general. Reference [12] have introduced subclasses of

2



update schemas by the following three factors and shown the following results of

the type-consistency problem.

1. Non-flatness of the class hierarchy. Define the height of the class hierarchy

as the maximum length of a path in the hierarchy. If the height is zero,

then all classes are completely separated and there is no superclass-subclass

relation at all. For such “flat” schemas, consistency is solvable in polynomial

time. However, consistency for a non-flat schema is undecidable even if the

height of the class hierarchy is at most one.

2. Recursion. Consistency for recursion-free schemas is coNEXPTIME-

complete.

3. Update operations. Consistency for terminating retrieval schemas is solvable

in polynomial time.

This thesis shows the following two results of the type-consistency problem which

have been open in Reference [12] (see Figure 1.1).

1. Consistency for non-flat schemas is undecidable even if it is retrieval (i.e.,

no method definition in the schema contains any update operation) and the

height of the class hierarchy is at most one.

2. Consistency for schemas with recursion is undecidable even if it is terminat-

ing (i.e., the execution of every method terminates under every database

instance) and the height of the class hierarchy is at most one.

From these results, it turns out that recursion and update operations (only when

the schema satisfies the termination property), as well as non-flatness of the class

hierarchy, each make the problem difficult. When we classify update schemas

in view of non-flatness, recursion, and update operations, the type-consistency

problem is undecidable or intractable for most of practical update schemas.

This thesis also introduces a subclass of update schemas, called acyclic

schemas, for which the type-consistency problem becomes decidable. A schema

is said to be acyclic if no instance of the schema contains a cycle which is formed

by attribute-value relationship among objects. A schema which represents an

organization of a company can be considered as an example of an acyclic schema.

3



Furthermore, a nested relational model [1] is considered to be a special case of

acyclic schemas. The followings are the results of this thesis.

1. The type-consistency problem for acyclic schemas is in coNEXPTIME;

2. The problem for recursion-free acyclic schemas is coNEXPTIME-hard; and

3. The problem for retrieval acyclic schemas is PSPACE-complete.

The following three restrictions are placed on the model of OODB schemas in

this thesis. First, every method should be monadic (i.e., every method in a schema

should be unary). Thus, only a target object can be specified as an argument

of each method. Even if the arity is not bounded, consistency is expected to be

still decidable for a flat schema, a recursion-free schema, a terminating retrieval

schema, and an acyclic schema respectively. That is, in our conjecture, arity does

not affect the decidability of consistency as long as we consider only the subclasses

of schemas stated above. Second, this model has no program constructs such as

conditional branch and iterative statement. However, they can be simulated in

this model, as will be shown in Section 2.4. Thirdly, the class hierarchy should be

a forest (i.e., multiple inheritance is excluded). However, the results in this thesis

remain valid if an appropriate mechanism for multiple inheritance is incorporated

into the model. That is, the third restriction is merely for simplicity.

Related Work

There has been much research on the type-consistency problem for OOPLs. For

example, Abiteboul et al. have introduced method schemas and studied the com-

plexity of the type-consistency problem for many subclasses of them [2]. In

method schemas, each method is allowed to have more than one arguments. How-

ever, method schemas cannot represent updates of database instance since their

method implementations are based on a functional OOPL model. The followings

are some of the main results and open problems of Reference [2].

1. The type-consistency problem for method schemas is undecidable in general;

2. The decidability is open for a method schema with methods of arity at most

two;

4



3. The problem for recursion-free method schemas is coNP-complete; and

4. The problem for monadic method schemas, a proper subclass of retrieval

schemas of ours, is solvable in polynomial time.

Retrieval schemas of ours are a proper subclass of general method schemas and a

proper superclass of monadic method schemas. Moreover, retrieval schemas are

incomparable to method schemas with methods of arity at most two, and their in-

tersection is not empty. In this thesis, we prove the undecidability for a retrieval

schema which belongs to the intersection. That is, the open problem 2 above

is shown to be undecidable. For more details, refer to the end of Section 3.1,

where we briefly discuss the idea of how to translate a monadic retrieval schema

into a method schema of arity at most two. In Reference [19], an optimal incre-

mental algorithm for the consistency checking of a recursion-free method schema

is presented. In Reference [1], the complexity of type-consistency (and also the

expressive power) for both update and method schemas is summarized.

As already stated, type inference is closely related to type-consistency. In

Reference [15], a type inference algorithm for a procedural OOPL is proposed.

The language presented in the article is polyadic and can express recursion and

assignments to local variables. It also provides explicit new and if-then-else ex-

pressions. For each expression e of a program, a type variable [[e]] that denotes

the type of e is introduced, and a sufficient condition for type-consistency can

be examined by computing the least solution of the equations that denote the

relations among these type variables (also see References [14] and [16]). These

articles provide type inference algorithms that check type safety for sufficiently

practical languages, whereas this paper focuses on what properties of a language

make exact type inference possible or impossible.

Our OOPL model is untyped in the sense that each variable has no type dec-

laration. In contrast, type-consistency for typed OOPLs has been discussed in

several articles [4], [6], [8]. Since the language is typed in these articles, it can

be assumed that we know in advance the class to which the returned objects

should belong for every method implementation body. Therefore, the consis-

tency problem is simply to determine whether each method satisfies conditions

such as covariance and contravariance. Therefore, for typed OOPLs, behavioral

analysis of each method implementation body is unnecessary. These articles do
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not put an assumption to the ability of OOPLs for that reason. Type systems

for OOPLs have also been extensively studied [9], [10]. For example, in Refer-

ence [10], an elegant type system is proposed that relaxes contravariance restric-

tion. The language presented in the article is polyadic and can express recursion

and assignments to local variables, also providing explicit new expressions. In

these approaches, an object is basically defined as a record structure, each field

of which represents an attribute (a state component) or a method of the object.

The main focus is on providing a record structure with a static type system such

that (1) the type system reflects inheritance and dynamic method binding, and

(2) the type system is safe in the sense that the static type of an object o is always

a supertype of the type of o assigned at run-time. These static type systems are

defined provided that the signature of each method is statically given, that is, the

class to which the returned objects should belong is known in advance. Hence,

the computational complexity of type-consistency problem becomes trivial since

the analysis of method bodies is unnecessary, as is the case in the consistency

problem of typed OOPLs.

Outline of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we provide

several preliminary definitions such as database schemas, database instances, the

type-consistency problem and so on. In Chapter 3, we show the undecidability of

the type-consistency problem for retrieval and terminating schemas. In Chapter 4,

we discuss the computational complexity of the type-consistency problem for

acyclic schemas. Lastly, we summarize this thesis in Chapter 5.

6



Chapter 2

Preliminary Definitions

2.1 Object-Oriented Database Schemas

2.1.1 Syntax

A database schema is a 6-tuple S = (C,�,Attr ,Ad,Meth, Impl), where:

1. C is a finite set of class names.

2. � is a partial order on C representing a class hierarchy. If c′ � c, then we

say that c′ is a subclass of c and c is a superclass of c′. For simplicity, we

assume that the class hierarchy is a forest on C , i.e., for all c1, c2, c ∈ C ,

either c1 � c2 or c2 � c1 whenever c � c1 and c � c2. That is, we do not

consider the existence of multiple inheritance. This is not an essential for

our results if a proper mechanism is provided for the multiple inheritance.

3. Attr is a finite set of attribute names.

4. Ad : C ×Attr → C is a partial function representing attribute declarations.

By Ad(c, a) = c′, we mean that the value of attribute a of an object of class

c must be an object of class c′ or its subclasses.

5. Meth is a finite set of method names.

6. Impl : C ×Meth → WFP is a partial function representing method imple-

mentations, where WFP is the set of well formed programs defined below.

7



A sentence is an expression which has one of the following forms:

1. y := y′, 4. y := m(y′),

2. y := self, 5. self.a := y′,

3. y := self.a, 6. return(y′),

where y, y′ are variables, a is an attribute name, m is a method name, and self

is a reserved word that denotes the object on which a method is invoked. A

sentence of type 5 is called an update operation. A program is a finite sequence of

sentences. We say that a program s1; s2; · · · ; sn is well formed when the following

three conditions hold:

• No undefined variable is referred to. That is, for each si (i ∈ [1, n]), if si

is one of y := y′, y := m(y′), self .a := y′, and return(y′), then there exists

a sentence sj (j < i) that must be one of y′ := y′′, y′ := self, y′ := self.a′,

and y′ := m′(y′′), where y′′ is a variable, a′ is an attribute name, and m′ is

a method name.

• Only defined attributes are used. That is, for any sentence of type 3, a

must be defined at that class or its superclasses. The formal definition of

inheritance of attribute declarations will be described later.

• Only the last sentence sn must have the form return(y′) for some variable

y′. Thus the other sentences s1, s2, . . ., sn−1 must be one of types 1 to 5.

Example 2.1: Consider the three programs in Figure 2.1. Program (a) is well

formed while (b) is not, since sentence s23 refers to variable y but no value is

assigned to y in any of the preceding sentences s21 and s22. Neither is program (c)

since the last sentence s34 is not in the form of return(y′). ✷

Without loss of generality, we often omit temporary variables for readability.

For example, we write “y := m(self.a)” instead of “y′ := self.a; y := m(y′),”

where y′ is a temporary variable.

The description size of S, denoted ||S||, is defined as follows:

||S|| = |C |+ |Attr |+ |Meth|
+(the number of attribute declarations given by Ad)

+(the total number of sentences given by Impl),

8



s11 : y := self.a;

s12 : self.a′ := y;

s13 : y′ := m(y);

s14 : return(y′).

s21 : y′ := self.a;

s22 : self.a′ := y′;

s23 : y′ := m(y);

s24 : return(y′).

s31 : y := self.a;

s32 : self .a′ := y;

s33 : return(y);

s34 : y′ := m(y).

(a) (b) (c)

Figure 2.1. Example of programs.

where |X| is the cardinality of a set X.

2.1.2 Semantics

The inherited implementation of method m at class c, denoted Impl∗(c,m), is

defined as Impl (c′, m) such that c′ is the smallest superclass of c (with respect

to �) at which an implementation of m exists, that is, c′ � c′′ for any c′′ such

that Impl(c′′, m) is defined and c � c′′. If such an implementation does not exist,

then Impl∗(c,m) is undefined. Similarly, the inherited attribute declaration of

attribute a at class c, denoted Ad∗(c, a), is defined as Ad(c′, a) such that c′ is the

smallest superclass of c at which an attribute declaration of a exists. If such an

attribute declaration does not exist, then Ad∗(c, a) is undefined.

A database instance of S is a pair I = (ν, µ), where:

1. To each class c ∈ C , ν assigns a disjoint finite set, denoted ν(c), as object

identifiers for c. Each o ∈ ν(c) is called an object of class c. Let OS,I =
⋃

c∈C ν(c). By cl(o), we denote the class c such that o ∈ ν(c).

2. To each object o ∈ ν(c) and each attribute a ∈ Attr such that Ad∗(c, a) is

defined, µ assigns an object, denoted µ(o, a), which is the value of attribute

a (or simply a-value) of o. If Ad∗(c, a) = c′, then µ(o, a) must belong to

ν(c′′) for some c′′ (c′′ � c′). Hereafter, we often denote µ(o, a) by o.a.

A method execution under a given database instance is formally defined in

References [11] and [12]. Here, we do not repeat the formal definition. Instead,

9



we briefly explain its intuitive meaning. As stated before, self represents the

object on which a method is invoked; it is called a self object.

1. The meaning of a sentence y := y′ is obvious.

2. y := self means that the self object is assigned to variable y.

3. y := self.a means that the a-value of the self object is assigned to y.

4. If the control reaches a sentence y := m(y′), then method m is invoked on

the object assigned to y′ and the returned value is assigned to y. Let o be

the object assigned to y′. If Impl∗(cl(o),m) = α, then o is bound to self in

α, α is executed, and the returned value is assigned to y. If Impl∗(cl(o),m)

is undefined, then a runtime type error occurs.

5. Consider a sentence self.a := y′, and let o be the object assigned to y′ when

the control reaches this sentence. Assume that the self object is in ν(c) and

Ad∗(c, a) = c′. If cl(o) = c′′ and c′′ � c′, then the a-value of the self object

becomes o. Otherwise, a runtime type error occurs.

A method execution is said to be terminating if it terminates successfully or it

is aborted due to a runtime type error. Otherwise, it is said to be nonterminating.

We often say that S is terminating if every method execution is terminating under

every instance of S. If S is not terminating, then we say that S is nonterminating.

2.2 The Type-Consistency Problem

Let S be a database schema and I be a database instance of S. We say that I is

consistent under S when the following condition holds:

Let m be an arbitrary method of S and o ∈ ν(c) be an arbitrary

object in OS,I. If Impl∗(c,m) is defined, then no runtime type error

occurs during the execution of m on o.

Note that if the execution of m on o is nonterminating, then no runtime type error

occurs during the execution. If I is not consistent under S, then we say that I is

10



inconsistent under S. We often say that S is consistent if there is no inconsistent

instance under S. If S is not consistent, then we say that S is inconsistent.

The type-consistency problem is to decide whether a given database schema

is consistent or not.

2.3 Subclasses of Database Schemas

In this section, we define several notions to introduce subclasses of database

schemas.

Definition 2.1: The height of � in a schema is the maximum integer n such

that there exist distinct c0, c1, . . ., cn ∈ C satisfying c0 � c1 � · · · � cn. ✷

If the height of � is zero, then the class hierarchy is flat. That is, all classes are

completely separated and there is no superclass-subclass relation at all. We often

say that S is flat if � is flat.

Definition 2.2: Impl is retrieval if it includes no update operation (i.e., sentence

in the form of “self.a := y”). We often say that S is retrieval if Impl is retrieval.

✷

Definition 2.3: The method dependency graph G = (V,E) of Impl is defined as

follows [2]:

• V = Meth; and

• An edge from m to m′ is in E if and only if there is a class c such that m

appears in Impl(c,m′).

If the method dependency graph of Impl is acyclic, then Impl is recursion-free.

We often say that S is recursion-free if Impl is recursion-free. ✷

Definition 2.4: Ad is acyclic if there exists a partial order 	 on C such that

Ad∗(c, a) = c′ implies c′′ 	 c and c′′ 
= c for all c′′ � c′. We often say that S is

acyclic if Ad is acyclic. ✷

Suppose that S is acyclic. Then, for every o ∈ ν(c) and every nonempty sequence

a1, . . . , an of attributes, o.a1. · · · .an 
∈ ν(c). In this case, S can be regarded as a

nested relational database schema [1], where each class represents a relation.

11



2.4 Examples

In this section, we provide three examples. The first example shows how to

represent Boolean values in update schemas. In the example, a method that

calculates NOR and a method that simulates if-then statements are presented.

These methods imply the powerful expressiveness of update schemas. The sec-

ond example shows how to simulate conditional statements in acyclic schemas.

Conditional statements can be simulated in acyclic schemas using method name

overloading, that is, adopting different method definitions according to the class

to which a target object belongs. The third example shows how to simulate

iterative statements in acyclic schemas. Iterative statements can be simulated

in acyclic schemas using recursive calls and conditional branch described in the

second example.

Example 2.2: Let us consider the following schema SE = (C,�,Attr ,Ad,Meth,

Impl), where

• C = {c, ct, cf} such that ct � c and cf � c (i.e., c is a superclass of both ct

and cf , see Figure 2.2(a)); and

• Ad is shown in Figure 2.2(b).

We adopt the following Boolean-value representation: Let o be an object of class

ct. Each attribute a ∈ {a1, a2, a
′, a′′, af} of o represents true if o.a = o, and

false otherwise. Note that o.af always represents false because of the declaration

Ad(ct, af ) = cf .

Then, we define two methods nor[a1, a2] and if then[a1, m] as shown in Fig-

ure 2.2(c). Method nor[a1, a2] calculates NOR of o.a1 and o.a2, and returns o if

the result is true and o.af otherwise. Here a′ is being used as a form of scratch

paper. First, o.a′ is initialized with o, i.e., true. Then, o.a′ is set o.af , i.e., false if

and only if either o.a1 or o.a2 represents true. Since every Boolean operator can

be represented by NORs, we can construct a method which calculates a given

Boolean formula using nor[a1, a2]. On the other hand, if then[a1, m] simulates

if-then statements: m is invoked on o if and only if o.a1 = o. By the first two

lines of (ct, if then[a1, m]), o.a′′ is “normalized” so that o.a′′ = o.af (and hence

cl(o.a′′) 
= ct) whenever o.a1 represents false. ✷

12



c

tc fc

(a)

Class ct

a1, a2, a
′, a′′ : c

af : cf

(b)

(ct, nor[a1, a2]) :

self.a′ := self;

y := nor′(self.a1);

y := nor′(self.a2);

return(self.a′).

(ct, nor′) :

self.a′ := self.af ;

return(self).

(c, nor′) :

return(self).

(ct, if then[a1, m]) :

self.a′′ := nor[a1, a1](self);

self.a′′ := nor[a′′, a′′](self);

y := if then′[m](self.a′′);

return(y).

(ct, if then′[m]) :

y := m(self);

return(y).

(c, if then′[m]) :

return(self).

(c)

Figure 2.2. Definition of SE.
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(c, if then) :

y := if then(self.a);

return(self).

(ct, if then) :

y := action(self);

return(self).

(cf , if then) :

return(self).

Figure 2.3. Definition of Impl of SI.

Example 2.3: Let us consider the following schema SI = (C,�,Attr ,Ad,Meth,

Impl), where

• C = {c, ct, cf};

• cf � ct;

• Attr = {a};

• Ad(c, a) = ct, and both ct and cf have no attribute declarations;

• Meth = {if then, action}; and

• Impl is shown in Figure 2.3, where the definition of action is omitted. Any

method can be action as long as it is well defined.

Here, class ct represents true, and class cf represents false. Note that the Boolean-

value representation used here is different from that in Example 2.2. Consider

the execution of method if then on o ∈ ν(c). Then, it is easy to see that method

action is invoked on o.a if and only if o.a is in ν(ct), that is, o.a represents true.

In this way, conditional branch can be expressed by utilizing the class to which

a target object belongs. ✷

Example 2.4: Let us consider the following schema SW = (C,�,Attr ,Ad,Meth,

Impl), where

14



for each i ∈ [0, n− 1]

(ci,t,while) :

y := check con(self .a);

return(self).

(cn,t,while) :

return(self).

for each i ∈ [1, n]

(ci,t, check con) :

y := body(self);

y := while(self);

return(self).

(ci,f , check con) :

return(self).

Figure 2.4. Definition of Impl of SW.

a

a

a a a

a

a . . . 

c
0,t

c
1,t

c
2,t

c
3, f

c
4,t

c
n,t

c
n-1 ,t

o0 o1 o2

o3

o4 onon-1

Figure 2.5. Example of a database instance of SW.

• C = {c0,t, c1,t, . . . , cn,t, c1,f , . . . , cn,f}, where n is a positive integer;

• ci,f � ci,t for each i ∈ [1, n];

• Attr = {a};

• Ad(ci,t, a) = ci+1,t for each i ∈ [0, n− 1];

• Meth = {while, check con, body}; and

• Impl is shown in Figure 2.4. Also, the definition of body is omitted.

An example of a database instance of SW is shown in Figure 2.5. Iterative

statements can be expressed by the combination of recursive calls and conditional

branch. Consider the execution of method while on o0 ∈ ν(c0,t). As stated before,

if o0.a = o1 is in ν(c1,t), that is, if o0.a represents true, then method body is
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performed. After that, method while is invoked recursively on o1. When the

a-value of a target object of method while represents false or the “tail” object

becomes a target object, the method execution terminates. In the above example,

the execution terminates when while is invoked on o2.

In summary, method while, method check con, and method body each can be

considered as a while statement, a condition of the while statement, and a body

of the while statement, respectively. ✷
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Chapter 3

Undecidability Results of the

Type-Consistency Problem

3.1 Retrieval Schemas

Theorem 3.1: The type-consistency problem for retrieval schemas is undecid-

able, even if the height of the class hierarchy is one. ✷

This theorem is proved by showing a reduction from the Post’s Correspondence

Problem (PCP) to the consistency problem for a database schema with the con-

ditions in the theorem. Let 〈w, u〉 (w = 〈w1, . . . , wn〉, u = 〈u1, . . . , un〉) be an

instance of the PCP over alphabet Σ = {0, 1}. We construct a database schema

Sw,u = (C,�,Attr ,Ad,Meth, Impl) such that

• Sw,u is retrieval;

• the height of � of Sw,u is one; and

• Sw,u is inconsistent if and only if 〈w, u〉 has a solution.

The idea for Sw,u to satisfy the last condition is as follows. Let post be a method

in Sw,u, which plays the principal role in the reduction. Each pair of a database

instance I and an object o1 ∈ OSw,u,I is regarded as a candidate for a solution

of 〈w, u〉. If (I, o1) is actually a solution of 〈w, u〉, then the execution of post for
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c

0′cnc2c1c c1′

c′

Figure 3.1. Definition of � of Sw,u.

for each i ∈ [1, n]

Class ci

a→ : c

Class c

a⇒ : c′
Class c′0, c

′
1

a⇒ : c′

Figure 3.2. Definition of Ad of Sw,u.

o1 under I is aborted. Otherwise, the execution of post for o1 under I is non-

terminating (therefore no type error occurs during the execution). By ensuring

that no type error occurs during the execution of any method except post, we

can conclude that Sw,u satisfies the last condition.

Now we show the construction of Sw,u. Suppose that

w1 = w1,1w1,2 · · ·w1,d1, . . . , wn = wn,1wn,2 · · ·wn,dn ,

u1 = u1,1u1,2 · · ·u1,e1, . . . , un = un,1un,2 · · · un,en ,

where all of the wi,j’s and ui,j’s are in Σ.

Figures 3.1 and 3.2 show the definitions of � and Ad of Sw,u, respectively.

Class ci (i ∈ [1, n]) represents the i-th pair 〈wi, ui〉, and class c′0 (resp. c′1) rep-

resents symbol 0 (resp. 1). Next, define methods post, mw, is0, is1, and isc′ as

Figures 3.3–3.6 (also define method mu similarly to mw). The underlined part

(e.g., the second line of (ci,mw)) is a macro notation, and all of them can be

expanded when 〈w, u〉 is reduced to Sw,u. Note that Sw,u is retrieval (i.e., there

is no sentence in the form of self.a := y). Moreover,

• each method except post and test has its definition at every class;

• method post is not invoked by another method; and
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for each i ∈ [1, n]

(ci, post)

y := mw(self);

y := isc′(y);

y := mu(self);

y := isc′(y);

y := test(self);

return(self).

Figure 3.3. Definition of method post.

• method test, which appears at the fifth line of (ci, post), has no definition

at any class, and can be invoked only by post.

Thus, a type error occurs if and only if the control reaches the fifth line of (ci, post)

during the execution of post. Therefore, in order to prove the correctness of the

reduction, it suffices to show that 〈w, u〉 has a solution if and only if there is

an instance I such that the control reaches the fifth line of (ci, post) during the

execution of post for some o1 ∈ OSw,u,I under I.

Let I = (ν, µ) and o1 ∈ ν(c1) ∪ · · · ∪ ν(cn). In what follows, we explain the

behavior of the execution of post for o1 under I. First, assume that I is in the

following form (F1) (see also Figure 3.7):

(F1) • oi.a→ = oi+1 ∈ ν(c1) ∪ · · · ∪ ν(cn) (i ∈ [1, k − 1]),

• ok.a→ = ok+1 ∈ ν(c),

• ok+1.a⇒ = o′1 ∈ ν(c′0) ∪ ν(c′1) and o′j .a⇒ = o′j+1 ∈ ν(c′0) ∪ ν(c′1) (j ∈
[1, l − 1]),

• ol.a⇒ = o′l+1 ∈ ν(c′).

In I, sequence o1 · · · ok represents a candidate for a solution of 〈w, u〉, and sequence

o′l · · · o′1 represents a word over Σ. Let woi and uoi denote the words represented by

oi (i.e., woi = wh and uoi = uh if oi ∈ ν(ch)), and xj denote the symbol represented

by o′j (i.e., xj = 0 if o′j ∈ ν(c′0), and xj = 1 if o′j ∈ ν(c′1)). The following two

19



for each i ∈ [1, n]

(ci,mw) :

y := mw(self.a→);

if wi,di is 0

then y := is0(y);

else y := is1(y);
...

if wi,1 is 0

then y := is0(y);

else y := is1(y);

return(y).

(c,mw) :

return(self.a⇒).

(c′,mw) :

return(self).

Figure 3.4. Definition of method mw.

lemmas claim that the execution of the first two lines of (cl(o1), post) terminates

if and only if wo1 · · ·wok
= xl · · ·x1.

Lemma 3.1: Suppose that I is in the form of (F1). If there is l′ (l′ ≤ l) such that

wo1 · · ·wok
= xl′ · · · x1, then the execution of mw for o1 terminates and returns

o′l′+1. Otherwise, the execution of mw for o1 does not terminate.

Proof: The lemma is proved by induction on k. Without loss of generality, o1 is

assumed to be an object of class c1.

[Basis] Suppose that k = 1. By the first line of (c1,mw), method mw is recursively

invoked on o1.a→, which is an object of class c since k = 1. By (c,mw), this

invocation results in o′1, and it is assigned to y at the first line of (c1,mw). Suppose

that w1,d1 = 0. By the second line of (c1,mw), method is0 is invoked on o′1. From

the definition of is0, the execution of is0 for o′1 terminates and returns o′1.a⇒
(= o′2) if o′1 ∈ ν(c′0), and does not terminate if o′1 ∈ ν(c′) ∪ ν(c′1). Since a similar

property holds when w1,d1 = 1, we can conclude that the execution of the second

line of (c1,mw) terminates and o′2 is assigned to y if and only if w1,d1 = x1. By

induction on d1, we can show that the execution of mw for o1 terminates and

returns o′d1+1 if wo1 = xd1 · · ·x1 and d1 ≤ l, and does not terminate otherwise.
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(c′0, is0) :

return(self.a⇒).

(c′1, is1) :

return(self .a⇒).

(c′, is0) :

loop forever.

(c′, is1) :

loop forever.

(c, is0) :

return(self).

(c, is1) :

return(self).

Figure 3.5. Definitions of methods is0 and is1.

(c′0, isc
′) :

loop forever.

(c′1, isc
′) :

loop forever.

(c′, isc′) :

return(self).

(c, isc′) :

return(self).

Figure 3.6. Definition of method isc′.

[Inductive Step] Suppose that k > 1. By the first line of (c1,mw), method mw is

recursively invoked on o1.a→ (= o2). From the inductive hypothesis, the execution

of mw for o2 terminates and returns o′l′′+1 if wo2 · · ·wok
= xl′′ · · · x1 and l′′ ≤ l,

and does not terminate otherwise. In and after the second line of (c1,mw), it is

checked that wo1 = xl′′+d1 · · · xl′′+1 and l′′ + d1 ≤ l. Thus, the lemma holds when

k > 1. ✷

Lemma 3.2: Suppose that I is in the form of (F1). The execution of isc′ for

o′l′+1 terminates if and only if o′l′+1 = o′l+1 (i.e., l′ = l).

Proof: Obvious from the definition of isc′. ✷

Thus, the third line of (cl(o1), post) is executed if and only if wo1 · · ·wok
=

xl · · ·x1. Similar properties hold for the third and fourth lines of (cl(o1), post).

Therefore, the control reaches the fifth line of (cl(o1), post) if and only if

wo1 · · ·wok
= uo1 · · ·uok

= xl · · ·x1.
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⇒a: attribute: attribute a→

: an object of class cc

ci 1 i n(  )  ≤    ≤  : an object of class

′cj j(  )  =  0, 1: an object of class

Figure 3.7. Database instance of Sw,u.

Next, suppose that I is not in the form of (F1). Then, I must be in one of the

forms (F2) and (F3):

(F2) The “a→-chain” forms a cycle. That is, there is o ∈ ν(c1)∪ · · · ∪ ν(cn) such

that o1.a→ . . . a→ = o and o.a→ . . . a→ = o.

(F3) The “a→-chain” does not form a cycle but the “a⇒-chain” forms a cycle.

That is, there are o ∈ ν(c) and o′ ∈ ν(c′0)∪ν(c′1) such that o1.a→ . . . a→ = o,

o.a⇒ . . . a⇒ = o′, and o′.a⇒ . . . a⇒ = o′.

In the case of (F2), the recursive call of mw at the first line of (ci,mw) does not

terminate. In the case of (F3), the execution of is0 or is1 in (ci,mw), or isc′ in

(cl(o1), post) does not terminate. Therefore, if I is not in the form of (F1), then

the control does not reach the fifth line of (cl(o1), post).

Suppose that 〈w, u〉 has a solution. Then, there is an instance I in the form

of (F1) such that wo1 · · ·wok
= uo1 · · · uok

= xl · · ·x1. During the execution of

post for o1 under I, the control reaches the fifth line of (cl(o1), post). Conversely,

suppose that there is an instance I such that the control reaches the fifth line

of (cl(o1), post) during the execution of post for o1 under I. Then, I must be
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in the form of (F1) and satisfy that wo1 · · ·wok
= uo1 · · ·uok

= xl · · ·x1. Ob-

viously, o1,. . . , ok represent the solution of 〈w, u〉. This concludes the proof of

Theorem 3.1.

As stated in Chapter 1, method schemas [2, 3] are based on a functional OOPL

model. Since Sw,u is retrieval, it can be translated into a method schema. For

example,

Impl (ci, post) = test(isc′(mw(self)), isc′(mu(self))),

Impl(ci,mw) = isXi,1(· · · isXi,di(mw(ma→(self))) · · ·),

where isXi,j is either is0 or is1 according to wi,j, and ma→ is a method which

returns the a→-value of the argument object. It is easily verified that Sw,u can

be translated into a method schema with methods of arity two. Thus, we have

the following result, which was open in [2]:

Corollary 3.1: The type-consistency problem for method schemas with methods

of arity at most two is undecidable. ✷

3.2 Terminating Schemas

Theorem 3.2: The type-consistency for terminating schemas is undecidable,

even if the height of the class hierarchy is one. ✷

To prove Theorem 3.2, for a given input string x of a fixed deterministic

Turing machine M , we construct a schema SM,x = (C,�,Attr,Ad ,Meth, Impl)

satisfying the following conditions:

• SM,x is terminating;

• the height of � of SM,x is one; and

• SM,x is inconsistent if and only if M accepts x.

First of all, we define a Turing machine and an instantaneous description.

Definition 3.1: A deterministic Turing machine M is a triple (Q,Σ, δ), where
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• Q is a finite set of states. Q contains two special states: the initial state q0

and the accepting state qyes;

• Σ is a finite set of symbols. Σ contains two special symbols: the blank

symbol B and the first symbol ✄. The first symbol is always placed at the

leftmost cell of the tape;

• δ is a function which maps (Q − {qyes}) × Σ to Q × Σ × {←,→,−}. We

assume that if δ(q,✄) = (q′, γ, d), then γ = ✄ and d = →. Therefore, the

tape head never falls off the left end of the tape.

An instantaneous description (ID) I of M is a finite sequence 〈q1, γ1〉,. . . ,〈qk, γk〉,
where qi ∈ Q ∪ {⊥} and γi ∈ Σ. It is required that γ1 = ✄, and exactly one qi is

in Q (i denotes the head position). The i-th pair 〈qi, γi〉 of an ID I is denoted by

I [i]. The transition relation |
M

over the set of IDs is defined as usual. ✷

We only describe the outline of the reduction (see Appendix A for a complete

proof). First, in order to ensure that the execution of each recursively-defined

method m is terminating, we use an attribute, say aws, which “marks” an object.

Suppose that an object o is visited by a recursive invocation of m. If o.aws repre-

sents true (see Example 2.2), then m sets o.aws false and continues the execution.

Otherwise, m returns from the invocation. Consequently, o.aws represents true

only if o has not been visited. Since the set OSM,x,I of objects is finite, it can be

shown that SM,x is terminating. Moreover, by setting o.aws true when m returns,

other recursively-defined methods can reuse aws. See Lemma A.1 in Appendix A

for a formal description of this technique.

Let TM be a method in SM,x, which plays the principal role in the reduction.

TM simulates M on x as follows. Each database instance I of SM,x is considered

as a working space to compute the IDs of M on x. TM simulates M on x

exactly r steps, where r (≥ 0) is a constant dependent on I. If the ID after

r-step transitions contains the accepting state qyes, then TM causes a type error.

Otherwise, the execution of TM is successful. By ensuring that no type error

occurs during the execution of any method except TM, the following property

holds: If M accepts x, then there is an instance I such that both the number of

steps r and the size of the working space determined by I are large enough to
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fctc tc′

Figure 3.8. Definition of � of SM,x.

Class ct

a⇒ : c

&a,&a′,&a′′ : c

acont : c

ayes, a
′
yes : c

af : cf

aws, a
′
ws : c

Class c′t
a′yes : c

af : cf

Class c

a′t : c′t

Figure 3.9. Definition of Ad of SM,x.

find an aborted execution of TM under I (i.e., SM,x is inconsistent). Otherwise,

there is no aborted execution of TM under any instance (i.e., SM,x is consistent).

Define � and Ad of SM,x as shown in Figures 3.8 and 3.9, respectively. In

Figure 3.9, &a denotes a tuple (a1, . . . , aK) of attributes, where K = �log((|Q| +
1)|Σ|)� (i.e., the number of bits to represent an element of an ID). Ad(ct,&a) = c

means that Ad(ct, ai) = c for each i ∈ [1, K]). An element of an ID is stored in &a

as the binary encoded form stated in Example 2.2. Attributes &a′ and &a′′ are used

for storing intermediate results during the computation of an ID. Attribute acont

is used for determining r, i.e., the number of steps to be simulated. Attributes

ayes and a′yes are used for checking whether M is in the accepting state or not

after the simulation. Note that the height of � is one. Next, define method TM

as shown in Figure 3.10. All the methods except test is defined at every class.

Method test is defined only at class cf . Since we can define all the methods so that

no update operation causes a type error (see the method definitions presented in

Appendix A), a type error occurs if and only if the control reaches the fifth line
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(ct,TM) :

y := get ws(self);

y := initws(self);

y := step(self);

y := accept(self);

y := test(y);

return(self).

Figure 3.10. Definition of method TM.

of (ct,TM) and test is about to be invoked on an object of class c, ct, or c′t.

In what follows, we explain the behavior of TM. Let I = (ν, µ) be a database

instance of SM,x and o1 ∈ ν(ct). Suppose that TM is invoked on o1. Then get ws

is executed for o1 by the first line of (ct,TM). This obtains objects o2,. . . , ok+1

satisfying oi.a⇒ = oi+1 (i ∈ [1, k]) by following attribute a⇒ of each oi, where k

is a constant dependent on I and satisfies k ≥ 1. The objects o2,. . . , ok+1 will

be used as a working space to simulate M . Since attribute a⇒ is defined only at

class ct, the class of o2,. . . , ok must be ct. By a technical reason, we want ok+1

to be an object of class c′t. To achieve this, if the a⇒-chain from o1 (1) ends up

with an object of class cf or c, or (2) forms a cycle, then get ws changes the value

of ok.a⇒ to an object of class c′t (see Figure 3.11). Lemma A.3 in Appendix A

provides a formal description of the behavior of get ws.

Let I0 be the initial ID of M on x, and n be the length of I0. By executing

initws for o1 at the second line of (ct,TM), each I0[i] (i ∈ [1, k]) is stored in oi.&a,

where oi.&a denotes the tuple (oi.a1, . . . , oi.aK). Therefore, if k < n, then elements

I0[k + 1],. . . , I0[n] are abandoned. Conversely, if n < k, then 〈⊥, B〉 is stored in

on+1.&a,. . . , ok.&a (Actually, this is done by get ws; see the definitions of get ws and

initws presented in Appendix A). Lemma A.4 in Appendix A provides a formal

description of the behavior of initws.

Method step simulates r-step transitions of M . Let Ij denote the j-th ID

of M on x (counting from zero). Suppose that the first k − j elements of Ij

are stored in oj+1.&a,. . . , ok.&a. More precisely, Ij[i] (i ∈ [1, k − j]) is stored in
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: attribute at′

⇒a: attribute onget_wsbefore invoking o1

⇒a: attribute onget_wsafter invoking o1

o1 o2 ok(1)

tc cftctc tc

tc′

o3

ok+1

o1 o2 ok

tc tc tc

(2) o3

ok+1 tc′

tc

Figure 3.11. Database instance after invoking method get ws on o1.

oj+i.&a. Note that the initial ID I0 satisfies this condition. Consider a database

instance shown in Figure 3.12(a). Let us compute the next ID Ij+1. Note that

Ij+1[i] can be computed from Ij[i − 1], Ij[i], and Ij[i + 1]. Therefore, if these

three adjacent elements are stored in one object, we can compute Ij+1[i] using

nor[∗, ∗] stated in Example 2.2. To do this, for every object o in the a⇒-chain,

we copy the element of the ID stored in o to o.a⇒ and o.a⇒.a⇒ as shown in

Figure 3.12(b). (It seems impossible to copy the data in o.a⇒ to o, although we

do not know its formal proof.) Method copy[a1, a2] defined in Figure 3.13 copies

the Boolean-value represented by o.a1 to o.a⇒.a2 when it is invoked on o. Thus

we can obtain the next ID, and the place where the ID is stored is “shifted to

right” (see Figure 3.12(c), where δ(q, 1) = (q′, 0,→)). Next, we explain attribute

acont. This attribute indicates whether the simulation should be continued or

not. Let o be the object in which the first element of the current ID is stored.

If o.acont represents true, then the simulation of M is continued. Otherwise, the

simulation stops. For example, in the case of Figure 3.12(c), the simulation stops
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⊥ 0〈 〉, ⊥〈 〉,1 q〈 〉,1 ⊥ 0〈 〉, B⊥ 〉,〈 B⊥ 〉,〈
⊥ 0〈 〉, ⊥〈 〉,1 q〈 〉,1 ⊥ 0〈 〉, B⊥ 〉,〈

⊥ 0〈 〉, ⊥〈 〉,1 q〈 〉,1 ⊥ 0〈 〉,

⊥ 0〈 〉, ⊥〈 〉,1 q〈 〉,1 ⊥ 0〈 〉, B⊥ 〉,〈 B⊥ 〉,〈

ctctctct ctct ct

: an object of classct ct

ctctctct ctct ct

⊥ 0〈 〉, ⊥〈 〉,1 ⊥ 0〈 〉, B⊥ 〉,〈

ctctctct ctct ct

q〈 〉,0′

⇒a: attribute

B⊥ 〉,〈

ct

B⊥ 〉,〈

ct

B⊥ 〉,〈
B⊥ 〉,〈

ct

B⊥ 〉,〈

B⊥ 〉,〈
B⊥ 〉,〈

ct

B⊥ 〉,〈

B⊥ 〉,〈

ct

B⊥ 〉,〈

ct

(a)

(b)

(c)

⊥ 0〈 〉, ⊥〈 〉,1 ⊥ 0〈 〉,

ctctctct ctct ct ct

B⊥ 〉,〈

ct(d)

q〈 〉,1′′

〈 〉⊥, 
〈 〉⊥, 

〈 〉⊥, 

〈 〉⊥, 

〈 〉⊥, 

〈 〉⊥, 

′→
a

′′→
a

→
a

( ) : attribute acont whose value is true (false)

+8jo+7jo+6jo+5jo+4jo+3jo+2jo+1jo

jI  = 

+1jI  = 

 = +3jI

oj+9

Figure 3.12. Working space to simulate M .
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(ct, copy[a1, a2]) :

y := set f[a2](self.a⇒);

y := if then[a1, set t[a2]](self);

return(self).

(ct, set t[a2]) :

y := set t′[a2](self.a⇒);

return(self).

(ct, set f[a2]) :

self.a2 := self.af ;

return(self).

(ct, set t′[a2]) :

self .a2 := self;

return(self).

(c, set f [a2]) :

return(self).

(c, set t′[a2]) :

return(self).

Figure 3.13. Definition of method copy[a1, a2].

after two steps (Figure 3.12(d)). See Lemmas A.5 and A.6 in Appendix A for a

formal description of the behavior of step.

Method accept checks whether qyes is in the last ID by using nor[∗, ∗] and

copy[∗, ∗]. It returns ok+1 ∈ ν(c′t) if qyes is in the last ID, and ok+1.af ∈ ν(cf)

otherwise. See Lemma A.7 in Appendix A for a formal description of the behavior

of accept.

Method test is invoked on the returned value of accept. Since test is defined

only at class cf , this invocation causes a type error if and only if qyes is in the last

ID.

Suppose that M accepts x. Then, M halts after finite steps. Therefore, there

is a database instance I such that both k and r are large enough to cause a

type error under I. Conversely, suppose that M does not accept x. Since qyes

never appears in the a⇒-chain, invocation of test causes no type error. Thus,

Theorem 3.2 has been proved.
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Chapter 4

Complexity of the

Type-Consistency Problem for

Acyclic Schemas

4.1 The Upper Bound for Acyclic Schemas

In this section, we show that the type-consistency problem for acyclic schemas is

in coNEXPTIME.

Lemma 4.1: Let S be an acyclic schema. For any occurrence of any variable y

in any method definition, the value of y is

• always a self object under any instance of S; or

• always a non-self object under any instance of S

in the occurrence.

Proof: Assume that there is an occurrence of a variable in Impl∗(c,m) such that

the variable can take both of the values in the occurrence, a self object and a

non-self object, depending on database instances. Let s1 be the first sentence

in Impl∗(c,m) among the sentences which contain such occurrences. If s1 had

the form “y := y′”, then another sentence which assigns objects to y′ would be

the first one which contains such occurrences. If s1 had the form “y := self” or
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“y := self.a”, then the value of y would always be a self object or always be a

non-self object, respectively. Therefore, s1 must have the form “y := m′(y′)”. If

the value of y′ is always a non-self object, then the returned value cannot be a

self object because it is not reachable from a non-self object when Ad is acyclic.

Therefore, the value of y′ must be always a self object. If m′ = m, then the

execution of m falls into a loop, and no object is assigned to y. Thus, m′ 
= m.

Let return(y′′) be the last sentence in Impl ∗(c,m′). Then, the value of y′′ can

be both of a self object and a non-self object, so there is an occurrence of a

variable such that the variable can take both of the values, a self object and a

non-self object. Let s2 be the first sentence in Impl∗(c,m′) among the sentences

which contain such occurrences. By the same discussion, s2 must have the form

“y := m′′(y′)” and m′′ 
= m′, m′′ 
= m. By repeating this argument, we have a

contradiction of the finiteness of method names. ✷

Definition 4.1: Let S be an acyclic schema. A method m of S is said to be

strongly recursive w.r.t. c if there is a sequence m1, m2,. . . , mk, mk+1 = m1 such

that Impl∗(c,mi) includes “y′ := mi+1(y)” and the value of y is always a self

object for any i ∈ [1, k]. ✷

From the acyclicity of S and Lemma 4.1, the following two lemmas are derived.

Lemma 4.2: Let m be a method of an acyclic schema. If the execution of m(o)

does not terminate, then a strongly recursive method must be invoked during the

execution of m(o).

Proof: Suppose that the execution of m(o) does not terminate. Since every

method definition contains only a finite number of sentences, there must be in-

finite method invocations during the execution of m(o). Since the numbers of

methods and objects are both finite, there exist m′ and o′ such that m′ is invoked

on o′ infinitely often during the execution of m(o). From the acyclicity of the

schema, all method invocations during the execution m′(o′) are on o′, i.e., the

self object of method m′. (Otherwise, o′ could not be a target object of m′ after

the first invocation of m′ on o′.) Therefore, from Definition 4.1, m′ is a strongly

recursive method. ✷

Lemma 4.3: The execution of a strongly recursive method never terminates

unless it causes a type error.
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Proof: Let m1,. . . , mk be a sequence of methods which satisfies the condition of

Definition 4.1. Consider the execution of m1(o), where m1 is strongly recursive.

First, assume that the execution does not reach the sentence y′ := m2(y). In

this case, either a type error has occurred before the sentence or the execution

has already been in an infinite loop. Then, assume that the execution reaches

the sentence y′ := m2(y). In this case, from Definition 4.1, m2 must be invoked

on o. By applying the same discussion to m2 and all the subsequent methods

repeatedly, it can be shown that m1 is invoked on o recursively unless a type error

has occurred during the execution or the execution has already in an infinite loop.

Again, the same discussion can be applied to m1, and thus the lemma holds. ✷

Theorem 4.1: The type-consistency problem for acyclic schemas is in coNEX-

PTIME.

Proof: A database instance of an acyclic schema is represented as a directed

acyclic graph (dag), where nodes are objects and edges are attribute-value rela-

tionships between objects. The maximum length of a path of a dag is bounded

by |C | because of the acyclicity of a schema. And each node has at most |Attr |
edges. Thus, the total number of objects which are reachable from an object, that

is, the total number of nodes in a dag, is bounded by |Attr ||C|. So it suffices to

guess method m, object o, and instance I whose size is at most |Attr ||C|, and then

examine whether the execution of m(o) under I causes a type error. However, to

prevent the simulation of the execution from falling into a loop, we stop the sim-

ulation and decide the guess failed when m′ is invoked on o′ during the execution

of m′(o′) (that is, m′ is found to be strongly recursive w.r.t. cl(o′)). Thus, from

Lemma 4.2, the simulation always terminates. Furthermore, it is easily shown

that the simulation takes at most exponential time of ||S||.
In the following, we show that we never miss an instance which causes a

type error even if we stop the simulation. From Lemma 4.3, sentences after an

invocation of a strongly recursive method are never executed, and therefore it

suffices to check whether the invocation causes a type error. Assume that m′ is

strongly recursive w.r.t. c, and there exists an instance I such that a type error

occurs during the n-th execution of m′ on o′ ∈ ν(c). Then, a type error can be

detected when we guess m′, o′, and I′ which is an instance immediately before

the n-th invocation of m′ on o′ under I. ✷
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0 1 2 3

0 t0 t1 t3 t2

1 t2 t1 t0 t1

2 t1 t3 t2 t1

3 t1 t0 t1 t3

Figure 4.1. Example of a 4× 4 tiling.

4.2 The Lower Bound for Recursion-Free

Acyclic Schemas

In this section, we show that the type-consistency problem for recursion-free

acyclic schemas is coNEXPTIME-hard by reducing the complement of the

TILING problem, which is known to be NEXPTIME-compelete [13].

4.2.1 Overview of the Reduction

The TILING problem is defined as follows [13].

Definition 4.2: We are given a set of square tile types T = {t0, . . . , tk−1}, to-

gether with two relations H, V ⊆ T×T (the horizontal and vertical compatibility

relations, respectively). We are also given an integer n in binary. An n×n tiling is

a function f : {0, . . . , n−1}×{0, . . . , n−1} → T such that (t-a) f(0, 0) = t0, (t-b)

for all i, j, (f(i, j), f(i, j+1)) ∈ H, and (t-c) for all i, j, (f(i, j), f(i+1, j)) ∈ V .

TILING is the problem of deciding, given T , H, V , and n, whether an n × n

tiling exists. ✷

Example 4.1: Assume that we are given

T = {t0, t1, t2, t3},
H = {(t0, t1), (t1, t0), (t1, t3), (t2, t1), (t3, t2)},
V = {(t0, t2), (t1, t1), (t1, t3), (t2, t1), (t3, t0)},
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and n = 1002 (= 4). Then, the function shown in Figure 4.1 is a 4× 4 tiling. For

example, (f(0, 0), f(0, 1)) = (t0, t1) ∈ H, (f(0, 0), f(1, 0)) = (t0, t2) ∈ V and so

on. ✷

Theorem 4.2: The type-consistency problem for recursion-free acyclic schemas

is coNEXPTIME-hard even if the height of the class hierarchy is at most one. ✷

We construct a recursion-free acyclic schema ST such that ST is inconsistent

if and only if an n × n tiling exists. We can assume n = 2m for some integer

m because it can be shown that TILING is NEXPTIME-complete even when n

is a power of 2. Figure 4.2 shows an “ideal” instance of ST, where n = 4 and

k = 4. The meaning of “ideal” is formally defined later (see Section 4.2.2), but

its intuitive meaning is that we can construct methods such that a type error

occurs on an ideal instance if and only if n × n tiling exists. As we shall see,

if an instance is not ideal, then no type error occurs. The upper half of an

ideal instance represents a candidate for an n × n tiling, while the lower half

is used for checking the compatibility given by H and V . The result of the

compatibility check is stored as the a-value of the “tail” object of . Generally,

ST = (C,�,Attr ,Ad,Meth, Impl) is constructed as follows:

• Definitions of C and � are shown in Figure 4.3; and

• Definition of Ad is shown in Figure 4.4. Note that Ad is acyclic.

Each of classes ct
0,. . . , c

t
k−1 corresponds to a type of tiles, t1,. . . , tk−1, respec-

tively.

Classes which have subscripts t and f are used for representing the boolean

values, true and false, respectively. For example, let us consider classes ccom,t and

ccom,f . Let o be an object in ν(c′0). Then, by setting the a-value of o to o.at or

o.af depending on the situation, we can store one boolean value as the a-value

of o. That is, we can interpret that o.a represents true if o.a is in ν(ccom,t), and

false if o.a is in ν(ccom,f).

Classes c3,e, . . . , c2m,e are used for holding intermediate results of checking

whether an instance is ideal.

Classes that are not specified in Figure 4.4 have no explicit attribute declara-

tions. That is, classes c3,e,. . . , c2m,e, c
′
fin, c

′
fin,t and c′fin,f have no attributes, and the
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Figure 4.2. Ideal database instance of ST.
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C = { c0, . . . , c2m, c3,e, . . . , c2m,e,

c′0, . . . , c
′
2m−1, c

′
0,t, . . . , c

′
2m−1,t, c

′
0,f , . . . , c

′
2m−1,f ,

ccom, ccom,t, ccom,f , c
′
com, c′′com, cfin, cfin,t, cfin,f ,

c′fin, c
′
fin,t, c

′
fin,f , c

t
0, . . . , c

t
k−1, c

t′
0 , . . . , c

t′
k−1};

c fin

c ,tfin c ,ffin

c’i

c’i,t c’i,f

c com

c ,tcom c ,fcom

c’fin

c’ ,tfin c’ ,ffin

c

c ct

m2

0
t
k-1

c com

c c

’

t
0

t
k-1

’ ’

∈ [0, m2 -1]i

…

…

…

…

Figure 4.3. Definitions of C and � of ST.

other unspecified classes such as ccom,t, ccom,f , cfin,t and cfin,f inherit the attribute

declarations from their parent classes and have no extra attributes.

• Definition of method tiling is shown in Figure 4.5. Other method definitions

in Impl are omitted.

Intuitively, method tiling checks whether a candidate for an n×n tiling which

is represented by an instance of ST is actually an n×n tiling. As we have described

above, an instance needs to be ideal in order to be able to check this condition

properly. First, method icheck checks whether an instance is ideal. Next, method

tcheck, which is invoked only when the instance is ideal, checks whether the

candidate is an n×n tiling. If the instance is ideal and the candidate is an n×n

tiling, then a type error occurs at the invocation of method test.

Let I = (ν, µ) be a (possibly non-ideal) database instance of ST. The candi-

date function fI is defined as follows: Let i0 · · · im−1 be the binary representation
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for each i ∈ [0, 2m− 1]

class ci

a0, a1 : ci+1

for each i ∈ [0, m− 1]

and j ∈ [i + 1, i + m]

class cj

ai
0, a

i
1 : cj+1

for each i ∈ [2, 2m− 1]

class cj

a : ci+1

ae : ci+1,e

class c2m

a : c′2m−1

at : c′2m−1,t

af : c′2m−1,f

for each i ∈ [1, 2m− 1]

class c′i
a : c′i−1

at : c′i−1,t

af : c′i−1,f

class c′0
a : ccom

at : ccom,t

af : ccom,f

class ccom

at
i : ct′

i (i ∈ [0, k − 1])

a : c′com

class c′com
a : c′′com

class c′′com
a : cfin

at : cfin,t

af : cfin,f

class cfin

a : c′fin

at : c′fin,t

af : c′fin,f

Figure 4.4. Definition of Ad of ST.
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(c0, tiling) :

y := fint(self);

y := icheck(self);

y := tcheck(self);

y := fin(self);

y := test(y);

return(self).

(c0, icheck) :

y := checkA1(self);

y := checkA2(self);

return(self).

(c0, tcheck) :

y := checkB1(self);

y := checkB2(self);

y := checkB3(self);

y := checkB4 exchange(self);

y := checkB5(self);

return(self).

Figure 4.5. Definition of method tiling.

of the first argument d of fI (which denotes the row number) and im · · · i2m−1 be

that of the second argument e (which denotes the column number). Assume that

o0.ai0. · · · .aim−1.aim. · · · .ai2m−1 ∈ ν(ct
j). Then, fI(d, e) = tj.

Hereafter, we write o.(a)i instead of o. a. · · · .a︸ ︷︷ ︸
i

.

Consider the execution of method tiling on o0 ∈ ν(c0) under I. The tail object

of is defined as o0.(a0)
2m.(af)

2m+1.at
0.a.af. As stated above, the a-value of of

plays an important role. First, method fint sets of .a to of .at ∈ ν(c′fin,t). Method

icheck checks whether I has the ideal form. If not, of .a is set to of .af ∈ ν(c′fin,f).

Method tcheck checks whether fI is an n × n tiling. If not, of .a is set to of .af .
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Method fin returns of .a. Since method test is defined only for class c′fin,f , a type

error occurs under I if and only if I has the ideal form and fI is an n × n tiling.

In the following, we explain how icheck and tcheck work.

4.2.2 Method icheck

Let oa = o0.(a0)
2m.(af)

2m and ot = oa.af.a
t
0.a (see Figure 4.2). Let O0 = {o0}

and for each k ∈ [1, 2m],

Ok = {o.α | o ∈ Ok−1 and α ∈ {a0, a1}}.

Definition 4.3: I is ideal if

(A1) for every o ∈ O2m−i (i ∈ [1, 2m]),

o.(a0)
i.(af)

i = o.a1.(a0)
i−1.(af)

i and

o.(a0)
i.(af)

i−1 
= o.a1.(a0)
i−1.(af)

i−1; and

(A2) for every i ∈ [1, k − 1], oa.af .a
t
i.a = ot. ✷

If I is ideal, then method tcheck can set of .a to of .af when it turns out that fI

is not an n × n tiling.

In what follows, we show that I is ideal if and only if of .a ∈ ν(c′fin,t) after

executing icheck on o0. Method checkA1 checks whether I satisfies (A1). The

algorithm of this method is shown in Figure 4.6.

Lemma 4.4: Let o ∈ O2m−i (i ∈ [1, 2m]) (see Figure 4.7). o.(a0)
i.(af)

i.a =

o.(a0)
i.(af)

i.at after the execution of checkA12m−i(o) if and only if for every oj ∈
O2m−j (j ∈ [1, i]) reachable from o,

1. oj .(a0)
j .(af)

j = oj .a1.(a0)
j−1.(af)

j; and

2. oj .(a0)
j .(af)

j−1 
= oj .a1.(a0)
j−1.(af)

j−1.

Proof: The lemma is shown by induction on i. We show only the inductive

step. Let o ∈ O2m−i, o′ = o.a0, o′′ = o.a1, o′i−1 = o′.(a0)
i−1.(af)

i−1, o′′i−1 =

o′′.(a0)
i−1.(af)

i−1, and o′i = o′i−1.af (see Figure 4.7).
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checkA12m−i(o) (i ∈ [1, 2m], o ∈ ν(c2m−i))

// define notations (see also Figure 4.7)

let o′ = o.a0;

let o′′ = o.a1;

let o′i−1 = o′.(a0)
i−1.(af)

i−1;

let o′′i−1 = o′′.(a0)
i−1.(af)

i−1;

let o′i = o′i−1.af;

// check recursively the smaller parts

1: if i ≥ 2 then

2: checkA12m−(i−1)(o
′);

3: checkA12m−(i−1)(o
′′);

// check whether o′′i−1.af = o′i
4: o′i.a := o′i.af ;

5: o′′i−1.af .a := o′′i−1.af .at;

// overwrite the checking results of the smaller parts

6: if i ≥ 2 then

7: if o′i−1.a ∈ ν(c′2m−i,f ) then

8: o′i.a := o′i.af ;

9: if o′′i−1.a ∈ ν(c′2m−i,f ) then

10: o′′i−1.af.a := o′′i−1.af .af ;

// check whether o′i−1 
= o′′i−1

11: o′i−1.a := o′i−1.at;

12: o′′i−1.a := o′′i−1.af ;

13: if o′i−1.a ∈ ν(c′2m−i,f ) then

14: o′i.a := o′i.af ;

// store the final result to of .a

15: if i = 2m and oa.a ∈ ν(ccom,f) then

16: of .a := of .af ;

Figure 4.6. Algorithm of method checkA1.

41



af af

a0 a1

o

o’ o’’

af

af

c m2

c m-i2

af

oi -1’’oi’ -1

c’ m-i2 oi’

Figure 4.7. Method checkA1.

[if part ] Suppose that both 1 and 2 hold for every oj ∈ O2m−j (j ∈ [1, i])

reachable from o. This implies that o′′i−1.af = o′i and o′i−1 
= o′′i−1. Consider the

execution of checkA12m−i(o). Since o′′i−1.af = o′i, o
′
i.a is set to o′i.at ∈ ν(c′2m−i−1,t)

in line 5. From the inductive hypothesis, o′i−1.a = o′i−1.at and o′′i−1.a = o′′i−1.at

after the execution of line 3, so the conditions of lines 7 and 9 do not hold.

Since o′i−1 
= o′′i−1, o′i−1.a = o′i−1.at ∈ ν(c′2m−i,t) after the execution of line 12,

the condition of line 13 does not hold. Thus, o′i.a = o′i.at after the execution of

checkA12m−i(o).

[only if part ] Suppose that o′i.a = o′i.at after the execution of checkA12m−i(o).

Then, by the algorithm and the inductive hypothesis,

• o′′i−1.af = o′i;

• o′i−1 
= o′′i−1; and

• 1 and 2 hold for every oj ∈ O2m−j (j ∈ [1, i− 1]) reachable from o′ or o′′.

Thus, 1 and 2 hold for every oj ∈ O2m−j (j ∈ [1, i]) reachable from o. ✷

By letting i = 2m, we can conclude that oa.a ∈ ν(ccom,f) (and therefore, of .a =

of .af by line 16) after the execution of checkA1(o0) if and only if I does not satisfy

(A1).
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Method checkA2 checks whether I satisfies (A2). Whenever I satisfies (A1),

of .a = of .af after the execution of checkA2(o0) if and only if I does not satisfy

(A2). This method can be constructed easily.

4.2.3 Method tcheck

In this section, we show that the following lemma holds.

Lemma 4.5: Suppose that I is ideal. Then, after executing tcheck on o0, of .a ∈
ν(c′fin,t) if and only if

(B1) fI satisfies (t-a) in Definition 4.2;

(B2) for every o ∈ O2m, o ∈ ν(ct
0) ∪ · · · ∪ ν(ct

k−1);

(B3) fI satisfies (t-b) in Definition 4.2;

(B4) I satisfies the exchangeability condition explained below. Informally,

the exchangeability condition means that I can be easily trans-

formed into I′ such that o0.ai0. · · · .aim−1.aim. · · · .ai2m−1 in I is equal to

o0.aim. · · · .ai2m−1.ai0. · · · .aim−1 in I′. Figures 4.8 and 4.9 are examples of

I and I′;

(B5) fI satisfies (t-c) in Definition 4.2. ✷

(B1)–(B3) and (B5) together mean that fI is a tiling, while (B4) is a technical

condition to be able to check (B5) in polynomial time. To check (B1)–(B3) is

comparatively easy if I has the ideal form. However, to check (B5), it may take

exponential time without any transformation of I such as (B4).

Method checkB1 checks whether I satisfies (B1). of .a is set to of .af if and

only if o0.(a0)
2m 
∈ ν(ct

0).

Method checkB2 checks whether I satisfies (B2). For every o ∈ O2m, if o 
∈
ν(ct

0) ∪ · · · ∪ ν(ct
k−1), that is, o does not represent any tile in T , then of .a is set

to of .af.

Method checkB3 checks whether I satisfies (B3). When checkB3 is invoked

on o ∈ O2m−i for some i ∈ [1, m], it checks whether the two tiles represented by

o.a0.(a1)
i−1 and o.a1.(a0)

i−1 have compatibility given by H. By invoking checkB3
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Figure 4.8. Method checkB3.

on every o ∈ O2m−i for each i ∈ [1, m], it can be checked whether I satisfies (B3)

(see Figure 4.8).

Here we explain how to check whether two tiles represented by o′, o′′ ∈ O2m

have compatibility given by H. First, if o′ ∈ ν(ct
x), then oa.af .a is set to

oa.af .a
t
x ∈ ν(ct′

x ). Next, if o′′ ∈ ν(ct
y), then method hargy

2 is invoked on oa.af .a.

Impl(ct′
x , hargy

2) is defined so that of .a is set to of .af if and only if (tx, ty) 
∈ H.

Thus, of .a is set to of .af during the execution of checkB3(o0) if and only if I does

not satisfy (B3).

Method checkB4 exchange updates I so that method checkB5, which is de-

fined similarly to checkB3, can check whether I satisfies (B5) (see Figure 4.9).

More precisely, it transforms I into I′ so that for every o2m ∈ O2m, if o2m =

o0.ai0. · · · .aim−1.aim. · · · .ai2m−1 under I, then o2m = o0.aim. · · · .ai2m−1.ai0. · · · .aim−1

under I′. That is, i0 · · · im−1 (the row number) and im · · · i2m−1 (the column num-

ber) are exchanged. Without checkB4 exchange, it seems impossible to construct

a method in polynomial time which checks the compatibility defined by V .

The transformation algorithm is shown in Figure 4.10. Let us consider how

the path expression from o0 to o2m is transformed. Let om−1 = o0.ai0. · · · .aim−2.

First, om−1.aim−1.aim and om−1.aim.aim−1 are swapped in line 4 when k = 1 and
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Figure 4.9. Method checkB5.

l = 0. Thus,

o2m = om−1.aim.aim−1.aim+1. · · · .ai2m−1.

Note that the position of aim−1 in the path expression is shifted to right by one.

Then, the same swap is done for om = om−1.aim when l = 1, and the position of

aim−1 is shifted to right by one again. By repeating this until l = m− 1,

o2m = om−1.aim. · · · .ai2m−1.aim−1.

Next, k is incremented. Let om−2 = o0.ai0. · · · .aim−3. om−2.aim−2.aim and

om−2.aim.aim−2 are swapped similarly when l = 0, and thus,

o2m = om−2.aim.aim−2.aim+1. · · · .ai2m−1.aim−1.

In a similar way to the above case, by repeating this until l = m−1, the position

of aim−2 is shifted to right by m, and thus,

o2m = om−2.aim. · · · .ai2m−1.aim−2.aim−1.

Similarly, by doing these swaps for all k and l,

o2m = o0.aim. · · · .ai2m−1.ai0. · · · .aim−1.
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let of = o.(a0)
m+k−l.(af)

2m.at
0.a.af;

1: for k := 1 to m do

2: for l := 0 to m− 1 do

3: for each o ∈ Om−k+l

4: swap o.a0.a1 and o.a1.a0

Figure 4.10. Transformation algorithm.

Unfortunately, the swap operation of line 4 is impossible in general because of

the ability of update schemas. However, if I satisfies the exchangeability condi-

tion, the swap operation becomes possible. Actually, method checkB4 exchange

checks (B4) (i.e., exchangeability condition) and transforms I simultaneously. If

it turns out that I does not satisfy (B4), then method checkB4 exchange sets of .a

to of .af . The exchangeability condition is complicated, so we omit its formal

definition here. See Reference [20] for details.

Method checkB5 sets of .a to of .af if and only if I does not satisfy (B5).

Thus, Lemma 4.5 holds.

From Theorems 4.1 and 4.2, the type-consistency problem for recursion-free

acyclic schemas is shown to be coNEXPTIME-complete.

4.3 The Upper Bound for Retrieval Acyclic

Schemas

In this and the following sections, we show that the type-consistency problem

for retrieval acyclic schemas is PSPACE-complete. First, we show that the type-

consistency problem for retrieval acyclic schemas is in PSPACE.

Let S be a retrieval acyclic schema and I be an arbitrary instance of S. Let o0

be an object in I. For I and o0, an instance which satisfies the following properties

is called a tree-shaped instance It with root o0:

• Let p be a path starting from o0 in I and o be the end point of p. Let o′ be

the end point of p in It. Then, cl(o) = cl(o′); and
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• For any o and o′ which are the end points of distinct paths p and p′ from

o0 in It, o 
= o′.

Since S is a retrieval schema, it can be shown that if the execution of m0(o0)

under I causes a type error, then that of m0(o0) under It also causes a type error.

Thus, only tree-shaped instances need to be considered to decide the consistency

of S. So we assume I is a tree in the following discussion.

A nondeterministic polynomial-space algorithm for deciding type-consistency

of a retrieval acyclic schema S is shown in Figure 4.11. The basic idea is that

guess an object o0, a method m0, and an inconsistent instance I, and then simulate

m0(o0) on I. However, to check the consistency of S in PSPACE, we cannot guess

an entire instance of S because it needs an exponential space to do so. Instead,

the proposed algorithm decides the consistency by guessing one path of I in an

on-line manner and executing m0(o0) on the path until all the paths of I are

guessed.

For a path p in I, we define a pseudo instance Ip as follows: (i) the objects on

p are the same as I and (ii) the other parts are all replaced with ω, where ω is

a special symbol. A method execution on a pseudo instance is done in the same

way as that on an ordinary instance except for method invocations on ω. If the

control reaches a sentence of the form “y := m(y′)” and ω is assigned to y′, then

ω is assigned to y without executing m.

Since S is a retrieval schema, it can be shown that an execution is nonter-

minating if and only if m is invoked on o during the execution of m(o) for some

m and o. Nonterminating executions can be detected in this way, and then the

procedure stops.

Now, assume that a type error occurs on some Ip and a nonterminating ex-

ecution is detected on another Ip′. Let stp and stp′ be the runtime stacks when

the executions are aborted and found nonterminating, respectively. If the run-

time stack of the execution of m0(o0) on I gets equal to stp′ before stp , then the

execution falls into a loop and no type error occurs. Therefore, we have to know

only the runtime stack that is reachable first among all the stp’s. Procedure Pre

provides the order among runtime stacks. Procedure Pre takes two arguments,

(i) the runtime stack of the previous execution and (ii) the runtime stack that is

reachable first until then, and returns the one that is reachable first.
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Procedure Dec-Consistency(S)

begin

guess an object o0 and m0 ∈ Meth;

st := undefined;

repeat

guess a path p from o0 of I in an on-line manner;

execute m0(o0) on Ip;

if the execution is aborted due to a type error

or it is found nonterminating then

st := Pre(st , the runtime stack of the execution);

until all the paths of I are guessed;

if st causes a type error then

output “S is inconsistent.”;

else

output “The guess failed.”;

end

Figure 4.11. Procedure Dec-Consistency.

We show the correctness of this procedure. Consider the executions of m(o)

on I and Ip, where o is an object in p. Then, the following statements hold.

• If the value of y′ is an object in p when executing some sentence of

Impl∗(cl(o),m) on I, then the value of y′ is the same object when executing

the same sentence on Ip; and

• If the value of y′ is an object which is not in p when executing some sentence

of Impl∗(cl(o),m) on I, then the value of y′ is ω when executing the same

sentence on Ip.

Suppose that a type error occurs when trying to invoke some method on an

object in p during the execution of m0(o0) on I. From the above statements,

when executing m0(o0) on Ip, a type error occurs at the same sentence because

the sequences of method invocations on objects in p are the same. For any p′ 
= p

48



of I, the execution of m0(o0) on Ip′ does not cause a type error at least until the

control reaches the sentence. Thus, the runtime stack of the execution on Ip is

stored in st after finishing the execution for all the Ip’s. The opposite direction

also holds, that is, if st after the execution for all the Ip’s causes a type error,

then a type error occurs on I.

Theorem 4.3: The type-consistency problem for retrieval acyclic schemas is in

PSPACE. ✷

4.4 The Lower Bound for Retrieval Acyclic

Schemas

Theorem 4.4: The type-consistency problem for retrieval acyclic schemas is

PSPACE-hard even if the height of the class hierarchy is at most one.

Proof: We show that the problem is PSPACE-hard by a reduction from the

well-known QBF problem.

Given a quantified boolean formula F , we construct a retrieval acyclic schema

SF such that SF is inconsistent if and only if F is true. Let

F = ∃x1∀x2 · · · ∃x2k+1ϕ,

where k is an integer, x1,. . . , x2k+1 are variables, and ϕ is a boolean formula in

3CNF on x1,. . . , x2k+1. Let n be the number of clauses in ϕ. Let Ci (i ∈ [1, n])

denote the i-th clause in ϕ. Let li,j (j ∈ [1, 3]) denote the j-th literal in Ci. Let

ind i,j denote the index of the variable appearing in li,j. Without loss of generality,

we assume that ind i,j ≤ ind i,j′ if j ≤ j′.

An example of a database instance of SF is shown in Figure 4.12. Assignments

to existentially quantified variables are determined by a database instance. Each

path from o1 to a leaf represents one possible assignment to all variables. We

define SF so that:

• a type error occurs when ϕ is satisfied for every path (that is, F is true),

and
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Figure 4.12. Example of a database instance of SF.

• the execution is nonterminating (therefore, no type error occurs) when ϕ is

not satisfied for some path (that is, F is false).

Formally, SF = (C,�,Attr ,Ad ,Meth, Impl) is constructed as follows:

• C = {c1,t, c2,t, . . . , c2k+2,t, c2,f , c3,f , . . . , c2k+2,f};

• c2i,f � c2i,t for each i ∈ [1, k + 1];

• Ad(c2i−1,t, a) = c2i,t for each i ∈ [1, k + 1],

Ad(c2i,t, at) = c2i+1,t for each i ∈ [1, k],

Ad(c2i,t, af) = c2i+1,f for each i ∈ [1, k]; and

• Definition of Impl is shown in Figure 4.13. The underlined part is a macro

notation, and all of them can be expanded when F is reduced to SF. Note

that method test is undefined for all classes.

Let I be a database instance of SF. Consider the execution of method qbf on

o1 ∈ ν(c1,t) under I. The a-value of an object in ν(c2i−1,t) or ν(c2i−1,f) represents

an assignment to an existentially quantified variable x2i−1. If it is an object in

ν(c2i,t) (resp. ν(c2i,f)), then true (resp. false) is assigned to x2i−1. Attribute at

(resp. af) of an object in ν(c2i,t) or ν(c2i,f ) represents that true (resp. false) is

assigned to an universally quantified variable x2i. Thus, each path from o1 to an
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(c1,t, qbf) :

for each i ∈ [1, n]

y := clausei,1(self);

y := test(self);

return(self).

for each i, j, l s.t.

2l ≤ ind i,j

(c2l,t, clausei,j) :

y := clausei,j(self.at);

y := clausei,j(self.af);

return(self).

for each i, j, l s.t.

2l + 1 ≤ ind i,j

(c2l+1,t, clausei,j) :

y := clausei,j(self.a);

return(self).

(c2l+1,f , clausei,j) :

y := clausei,j(self.a);

return(self).

for each i, j, l s.t.

l = ind i,j and

li,j is positive

(cl+1,t, clausei,j) :

return(self).

(cl+1,f , clausei,j) :

y := clausei,j+1(self);

return(self).

for each i, j, l s.t.

l = ind i,j and

li,j is negative

(cl+1,t, clausei,j) :

y := clausei,j+1(self);

return(self).

(cl+1,f , clausei,j) :

return(self).

for each i, l s.t.

l = ind i,3 + 1

(cl,t, clausei,4) :

loop forever

(cl,f , clausei,4) :

loop forever

Figure 4.13. Definition of Impl of SF.
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object in ν(c2k+2,t) or ν(c2k+2,f ) defines one assignment. For example, a database

instance shown in Figure 4.12 represents four assignments (from top to bottom):

σ1(x1, x2, x3, x4, x5) = (0, 1, 1, 1, 1),

σ2(x1, x2, x3, x4, x5) = (0, 1, 1, 0, 0),

σ3(x1, x2, x3, x4, x5) = (0, 0, 0, 1, 0),

σ4(x1, x2, x3, x4, x5) = (0, 0, 0, 0, 1).

Let AI be the set of such assignments under I.

Method qbf checks whether all the clauses are satisfied by every assignment

AI. Method clausei,j checks whether li,j is true under each assignment. If so, it

just executes return to evaluate li+1,1. Otherwise, it invokes clausei,j+1 to check

whether li,j+1 is true. Thus, the invocation of clausei,4 means that Ci is false.

In this case, the execution is nonterminating (therefore, no type error occurs).

When all the clauses are true by every assignment in AI, method test is invoked,

and then a type error occurs. Note that there exists such I that all the clauses

are satisfied by every assignment in AI if and only if F is true. ✷

From Theorems 4.3 and 4.4, the type-consistency problem for retrieval acyclic

schemas is shown to be PSPACE-complete.
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Chapter 5

Conclusions

In this thesis, we have discussed the complexity of the type-consistency problem

for several subclasses of update schemas.

In Chapter 3, we have shown that the type-consistency problems for retrieval

and terminating schemas are both undecidable. By these results, the complexity

of the type-consistency problem for all the subclasses introduced by Reference [12]

have been obtained. Moreover, by comparing the results, it turns out that non-

flatness of the class hierarchy, recursion, and update operations each make the

problem difficult. When we classify update schemas in view of these factors, the

problem is undecidable or intractable for most of practical cases.

In Chapter 4, we have introduced another subclass of update schemas, called

acyclic schemas, which is practical and for which consistency is decidable. We

have shown that the type-consistency problem for acyclic schemas is in coNEXP-

TIME in monadic cases. The problem remains to be decidable in polyadic cases

because a type error can be detected by guessing an instance and simulating the

execution on the instance, as in Theorem 4.1. It is open whether the problem for

polyadic acyclic schemas is still in coNEXPTIME. Furthermore, we have intro-

duced two subclasses of acyclic schemas, called recursion-free acyclic schemas and

retrieval acyclic schemas, and shown that the type-consistency problems for these

two subclasses are coNEXPTIME-hard and PSPACE-complete, respectively.

To propose other subclasses of update schemas for which the type-consistency

problem is solvable more efficiently is the future work. It is also important to

develop an incremental algorithm for type-consistency checking.
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(cf , test) :

return(self).

Figure A.1. Definition of method test.

(ct, get ws) :

self.aws := true;

y := get ws′(self);

return(self).

(c, get ws) :

return(self).

(c, get ws′) :

return(self.a′
t).

(c, get ws′′) :

return(self).

(ct, get ws′) :

y := self if self.aws = true

and y := self.a′
t otherwise;

y′ := if then[aws, get ws′′](self);

return(y).

(ct, get ws′′) :

self.aws := false;

y := get ws′(self .a⇒);

self.a⇒ := y;

self.aws := true;

self.a′
ws := true;

set self.&a to 〈⊥, B〉;
return(self).

Figure A.2. Definition of method get ws.

Appendix

A Complete Proof of Theorem 3.2

Let M be a Turing machine and x = x1 · · ·xn an input string for M . We ab-

breviate self.a := self and self.a := self.af to self.a := true and self.a := false,

respectively. Methods test, get ws, initws, step, accept are defined as shown in

Figures A.1–A.5, respectively.

First, we show that SM,x is terminating.
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Lemma A.1: Let I = (ν, µ) be an arbitrary database instance of SM,x, and o1

be an arbitrary object in OSM,x,I. The execution of get ws for o1 is terminating

under I.

Proof: If o1 ∈ ν(c′t) ∪ ν(cf) ∪ ν(c), then the execution is terminating since

(c, get ws) is executed for o1. Thus in the following we consider the remaining

case, i.e., o1 ∈ ν(ct). First of all, by the first line of (ct, get ws), o1.aws is set to

true. Then, get ws′ is invoked on o1. By the second line of (ct, get ws′), get ws′′

is invoked on o1 since o1.aws is true. By (ct, get ws′′), get ws′′ sets o1.aws false and

recursively invokes get ws′ on o1.a⇒.

Consider the case that get ws′ is recursively invoked on an object o. There

are three cases to be considered:

(1) If o ∈ ν(c′t)∪ν(cf)∪ν(c), then the recursive invocation of get ws′ terminates

since (c, get ws′) is executed for o.

(2) If o ∈ ν(ct) and o.aws is false, then no more recursive invocation occurs from

the definition of (ct, get ws′).

(3) If o ∈ ν(ct) and o.aws is true, then get ws′′ is invoked on o by the second

line of (ct, get ws′). Method get ws′′ sets o.aws false and recursively invokes

get ws′ on o.a⇒. Thus, every time get ws′ is recursively invoked, the number

of objects o such that o.aws is true decreases. Since OSM,x,I is finite, one of

the conditions (1) and (2) above holds eventually.

Therefore, the execution of get ws on o1 is terminating. ✷

Similarly, it can be proved that the execution of every recursively-defined

method (such as step, delta, accept, etc.) in SM,x is terminating. Thus we have

the following lemma:

Lemma A.2: SM,x is terminating. ✷

In what follows, we show that TM simulates M on x correctly. Hereafter, we

mean o.a = o by o.a = true.

Lemma A.3: Let I = (ν, µ) be an arbitrary database instance of SM,x, and

o1 ∈ ν(ct) be an arbitrary object. After the execution of get ws for o1 under I,

there exists a positive integer k which satisfies the following condition (C1):
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(C1-1) o1 ∈ ν(ct), oi.a⇒ = oi+1 ∈ ν(ct) (i ∈ [1, k − 1]), and ok.a⇒ = ok+1 ∈
ν(c′t);

(C1-2) oi.aws = oi.a
′
ws = true (i ∈ [1, k]);

(C1-3) oi.&a (i ∈ [1, k]) represents 〈⊥, B〉.

Proof: Suppose that get ws′ is invoked k times by the second line of (ct, get ws′′)

during the complete execution of get ws for o1. In what follows, we show that k

satisfies condition (C1).

First, we prove that k ≥ 1. By the second line of (ct, get ws), get ws′ is invoked

on o1. Since o1.aws is true by the first line of (ct, get ws), get ws′′ is invoked on

o1 by the second line of (ct, get ws′). Then, by the second line of (ct, get ws′′),

get ws′ is invoked on o1.a⇒ = o2. Thus k ≥ 1.

Next, we prove (C1-1). Consider the i-th invocation (i ∈ [1, k − 1]) of get ws′

from the second line of (ct, get ws′′). Let oi+1 be the self object of the invocation.

Note that oi+1 ∈ ν(ct) and oi+1.aws is true since i < k (see the condition (3)

in the proof of Lemma A.1). By the first and third lines of (ct, get ws′), the

returned value of this invocation is oi+1. Therefore, by the second and third

lines of (ct, get ws′′), it holds that oi.a⇒ = oi+1 ∈ ν(ct). Next, consider the k-th

invocation of get ws′, and let o be the self object of the invocation. In this case,

one of the conditions (1) and (2) in the proof of Lemma A.1 holds. If (1) holds,

then o.a′t is returned as the returned value of this invocation since (c, get ws′) is

executed for o (see also Figure 3.11(1)). If (2) holds, then o.a′t is returned by the

first and third lines of (ct, get ws′) (see also Figure 3.11(2)). Thus, in either case,

o.a′t ∈ ν(c′t) is returned and assigned to ok.a⇒ by the third line of (ct, get ws′′).

By letting ok+1 be o.a′t, condition (C1-1) is satisfied.

Conditions (C1-2) and (C1-3) hold by the fourth, fifth, and sixth lines of

(ct, get ws′′). ✷

The following lemma holds evidently from the definition of method initws (see

Figure A.3).

Lemma A.4: Suppose that I = (ν, µ) satisfies condition (C1) for some k (k ≥ 1).

Then, after the execution of initws for o1 under I, the following condition (C2)

holds:

59



(ct, initws) :

set self.&a to 〈q0,✄〉;
y := initws1(self.a⇒);

return(self).

(c, initws) :

return(self).

(ct, initws1) :

set self.&a to 〈⊥, x1〉;
y := initws2(self.a⇒);

return(self).

(c, initws1) :

return(self).

...
...

(ct, initwsn) :

set self.&a to 〈⊥, xn〉;
return(self).

(c, initwsn) :

return(self).

Figure A.3. Definition of method initws.

(C2-1) The same as (C1-1);

(C2-2) The same as (C1-2);

(C2-3) For each i ∈ [1, k], oi.&a represents the i-th element I0[i] of the initial

ID of M on x. ✷

The following lemma, which states the behavior of method delta (see Fig-

ure A.4), is also easily obtained from the explanation in Section 3.2. Intuitively,

it states that delta computes a one-step transition of M correctly.

Lemma A.5: Suppose that I = (ν, µ) satisfies the following condition (C3) for

some k (k ≥ 1):

(C3-1) The same as (C2-1);

(C3-2) oi.a
′
ws = true (i ∈ [1, k]);
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(ct, step) :

y := if then[acont, step′](self);

return(self).

(ct, step′) :

y := if then[aws, step′′](self);

return(self).

(ct, step′′) :

self.aws := false;

y := delta(self);

y := step(self.a⇒);

self.aws := true;

return(self).

(c, step) :

return(self).

(c, step′) :

return(self).

(c, step′′) :

return(self).

(ct, delta) :

y := if then[a′
ws, delta′](self);

return(self).

(c, delta) :

return(self).

(c, delta′) :

return(self).

(ct, delta′) :

self.a′
ws := false;

y := copy[&a,&a′](self);

y := copy[&a′,&a′′](self);

Compute 〈q, γ〉 from &a, &a′, &a′′

and assign the result to &a;

y := delta(self.a⇒);

self.a′
ws := true;

return(self).

Figure A.4. Definitions of methods step and delta.

(C3-3) There exists j ∈ [0, k − 1] such that for each i ∈ [1, k − j], oj+i.&a

represents Ij[i].

Then, after the execution of delta for oj+1 under I, the following condition (C3′)

holds:

(C3′-1) The same as (C3-1);

(C3′-2) The same as (C3-2);

(C3′-3) For each i ∈ [1, k − (j + 1)], o(j+1)+i.&a represents Ij+1[i]. ✷

Lemma A.6: Suppose that I = (ν, µ) satisfies condition (C2) for some k (k ≥ 1).

Then, after the execution of step for o1 under I, the following condition (C4) holds:
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(C4-1) The same as (C2-1);

(C4-2) The same as (C2-2);

(C4-3) Let r be the largest index such that for each l ∈ [1, r], ol.acont is true,

i.e., r = max({0} ∪ {j | ∧j
l=1(ol.acont = ol)}). Then, for each i ∈ [1, k − r],

or+i.&a represents Ir[i].

Proof: From the definition of methods step and delta, the value of oi.a⇒ (i ∈
[1, k]) is never altered. Thus, (C4-1) holds by the assumption (C2-1).

Next, we show that (C4-3) is satisfied. By (C2-2), oi.aws is true for each

i ∈ [1, k]. Therefore, by the definitions of (ct, step), (ct, step′), and (ct, step′′), it is

easily verified that delta is sequentially invoked on o1,. . . , or during the execution

of step for o1. Moreover, we claim that:

• (C2) implies (C3) since (C2-3) is obtained by letting j = 0 in (C3-3); and

• (C3′) implies (C3) since (C3-3) is obtained by replacing j + 1 in (C3′-3) by

j.

Since step can alter oi.&a and oi.a
′
ws only by invoking delta, Lemma A.5 can be

applied r times. Consequently, after the execution of step for o1 under I, or+i.&a

represents Ir[i] for each i ∈ [1, k − r]. That is, (C4-3) holds.

Lastly, (C4-2) is satisfied because of (C3′-2) and the fourth line of (ct, step′′).

✷

Lemma A.7: Suppose that I = (ν, µ) satisfies condition (C4) for some k (k ≥ 1).

Then, the returned value of the execution of accept for o1 under I is ok+1 if there

is some object oi (i ∈ [1, k]) such that oi.&a contains the accepting state qyes, and

ok+1.af otherwise.

Proof: By the first line of (ct, accept), o1.a
′
yes is set to false (i.e., o1.af). Then,

accept′ is invoked on o1. Since o1.aws is true by (C4-2), accept′′ is invoked on o1.

Inductively, consider the execution of accept′′ for oj (j ∈ [1, k]). By the second

line of (ct, accept′′), oj.ayes is set to true (i.e., oj) if oj .&a contains qyes, and false (i.e.,

oj .af) otherwise. By the third and fourth lines, oj+1.a
′
yes is set to oj .ayes ∨ oj.a

′
yes.

Therefore, by the inductive hypothesis, oj+1.a
′
yes is set to true (i.e., oj+1) if there
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(ct, accept) :

self .a′
yes := false;

y := accept′(self);

return(y).

(ct, accept′) :

y := if then[aws, accept′′](self);

return(y).

(ct, accept′′) :

self.aws := false;

self.ayes := true if qyes is stored in self.&a,

and self.ayes := false otherwise;

Calculate self .ayes ∨ self .a′
yes and

assign the result to self .ayes;

y := copy[ayes, a
′
yes](self);

y := accept′(self.a⇒);

return(y).

(c, accept) :

return(self).

(c′t, accept′) :

return(self.a′
yes).

(c, accept′) :

return(self).

(c, accept′′) :

return(self).

Figure A.5. Definition of method accept.

is some object oi (i ∈ [1, j]) such that oi.&a contains qyes, and oj+1.a
′
yes is set to

false (i.e., oj+1.af) otherwise.

Lastly, since ok+1 ∈ ν(c′t) by condition (C4-1), (c′t, accept′) is executed for

ok+1. Therefore, the returned value of the execution of accept for o1 is ok+1.a
′
yes.

Thus, the lemma holds. ✷

By Lemmas A.3–A.7 and the explanation in Section 3.2, the following lemma

holds.

Lemma A.8: SM,x is inconsistent if and only if M accepts x. ✷

Theorem 3.2 is obtained by Lemmas A.2 and A.8.
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