Automatic Acoustic Modeling using
Tied-Mixture Successive State Split Algorithm*

Alexandre Girardi

Abstract

This thesis describes an automatic acoustic model generation algorithm. The
new algorithm extends the work of state-of-the-art algorithms, like Maximum
Likelihood Successive State Splitting (ML-SSS) algorithm and Phonetic Decision
Trees (PDT) algorithm.

ML-SSS and PDT use top-down clustering algorithms to produce their acous-
tic model topologies. Initially in this approach a set of states representing a set
of triphones (or contexts in a more generic case) are divided successively until an
acoustic model topology is produced.

The problem with ML-SSS and PDT is that the cost function they use to take
the decision on how and where to split a state needs to be restricted to states
modeled by single Gaussians. The more natural and complete representation,
namely, a continuous density (Gaussian Mixture - GM) representation of the
probability density function (pdf) is simply too expensive computationally.

Attempts have been done to solve this problem in GM representation too, but
without success. A tied-mixture (TM) representation is also a rich representation
for the pdf of a candidate state for splitting, but in its original format this is also
computationally expensive. In this thesis we propose a simplification to the TM
approach which yields a computationally less intensive algorithm.

The main focus of this thesis is therefore this simplification that makes TM
top-down clustering feasible. In this thesis we also present speech recognition ex-
periments which compare state-of-the-art algorithms, such as ML-SSS and PDT,
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with the proposed Tied-Mixture Successive State Splitting (TM-SSS) algorithm.

Tt is expected that, despite the simplification, a richer representation of the pdf of

candidate state splits will impfove the final acoustic model topology. The exper-

iments presented in this thesis confirm this hypothesis with a significant increase
- of the recognition rate.

The thesis is divided in two parts. The two parts combined result in the
proposed Fast Tied-Mixture Successive State Splitting (FTM-SSS) algorithm. In
the first part it is proved that the new algorithm results in a significant increase
in accuracy as compared to ML-SSS. However, the algorithm is still slow and
hence is demonstrated with speaker-dependent experiments only. In the second
part, which is the final version, a few more simplifications lead to an algorithm
which is fast enough for large dictation tasks. This is then compared to PDT on
a speaker-independent large vocabulary task. Results for the final version show
that for equal conditions a better accuracy is achieved.
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1. Introduction

Automatic Speech Recognition (ASR) systems are becoming a reality in daily
life with applications that range from personal computers (command & control
to dictation), telephony services, mobile phones to even toys. Its importance is
self-evident.

The goals of a speech recognition engine are as diverse as its applications.
Some ASR systems are used in applications where accuracy is the most impor-
tant factor (i.e., in personal computers with dictation or in telephony services
with credit card transactions), others where speed or conversely minimum hard-
ware is the dominant factor, such as in toys and voice dialing systems for mobile
phones. ASR system goals are then speech recognition accuracy or speed (mini-
mum hardware).

The goals are clear. And ASR systems are out there working. But is the
problem solved? The answer is no. Most systems are full of wrong assumptions,
theoretical problems and practical problems. Theoretical problems are in the
center of most performance degradations of such systems, e.g., word error rate
versus speed characteristic curve degradation. Practical problems are the reasons
for many unused theory and hence constrained utilization of ASR systems.

On the theoretical problems we can point out that most commercial ASR
systems use Hidden Markov Models (HMM’s), despite the theoretical problems
that it carries. A few examples of problems with HMM’s are:

o HMM’s assume independent states, but states as they are trained in com-
mercial applications are not independent (they are trained with data that
is too correlated sample by sample).

o Most systems are trained based on the criterion of Maximum Likelihood.
This works reasonably, but is known not to provide the best answer.

e States in HMM’s are poorly represented by assuming that each dimension
of the input data is independent of each other by using diagonal covariance
matrices to represent the underlying model.

e When constructing the HMM topology, using a clustering algorithm, single
Gaussians are used to represent states. This is both a conceptual error and
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a mismatch with the HMM’s models representation eventually used.

On the practical or commercial aspect we are interested in minimizing the
resources needed for a certain task to be effectively accomplished. This translates
to minimum hardware or energy requirements for a certain task size and necessary
accuracy. In the case of hardware, constraints are a consequence of memory
or chip size. In the case of energy it is related to CPU speed, since energy
consumption grows‘with the speed of the CPU clock. We can further divide the

practical issues as follows:

e Memory: buffers (as synchronous as possible, also as short response delay as
possible), acoustic and language model sizes (as small as possible, provided

that there is no significant loss in accuracy).

e CPU speed: number of parameters to evaluate, representativeness of pa-

rameters (only relevant data should be addressed).

e Accuracy: should be as high as possible, but there is always a trade-off
with memory and recognition speed. Most applications will lie in between
the extreme points. As pointed out before, there are systems where ac-
curacy has more importance, such as dictation systems, and others where

recognition speed is more important, such as data retrieval systems.

A solution to the theoretical problem mentioned before exists (using Gaussian
Mixtures during the HMM topology construction), but it is too computational
intensive to be practically feasible. '

A partial solution to this problem is the construction of HMM topologies
based on states represented by single Gaussians. However this approach leads to

"a non optimal HMM topology. It is important to notice that the initial HMM
topology deals with the initialization of HMM’s which is usually immutable during
the acoustic model training process and any error in the HMM topology used is
propagated and it is difficult if not impossible to compensate later in most speech
recognition engines. This partial solution needs therefore be improved.

Concluding, there are a number of arguments for focussing efforts on the
construction of the initial HMM topology:




o HMM states are insufficiently represented by single Gaussians and a richer

representation must be used.

o It is crucial to construct the HMM topology in a limited time frame. More-
over it is a procedure that is reproduced many times during the development
and across multiple dialects and languages.

Because of these arguments this thesis aims at finding a solution for the con-
struction of initial HMM topologies that solves the theoretical problems and it is
practically feasible at the same time. It can be seen as speeding up recognition
time, increasing accuracy or even reducing hardware requirements. The focus
will be on acoustic model generation, more specifically in the HMM topology
generation, since it is important to be sure we are evaluating the relevant data

and only that.

1.1 HMM Topology Generation

Creation of precise and robust acoustic models for speech recognition, given a
limited amount of training data, has been an intensively studied field of research
over the last 10 years [16, 19]. Acoustic modeling is a important component
of the development of a recognition engine. Its implementation is done in three
main steps. We can name them as a first rougth estimate of context dependent
models, followed by HMM topology creation (where context dependent models
are estimated) and finally a training procedure.

HMM topology generation is the second of the three steps needed to create
acoustic models. It is the subject of this thesis and will be further explained in
more details in Sec. 3.1 and Sec. 4.

In order the three steps of acoustic model generation are:

e Context independent niodeling. First we produce context independent
acoustic models based in a uniform segmentation. The output of this step is
a first rough segmentation in terms of context independent acoustic models.
This segmentation is used to create the codebook used in the next step.

A typical list of phonemes for Japanese, that is also used in this thesis and
that is modeled in this step is:




N, Q, a, a-, aN, aa, ai, ao, b, by ,ch ,d ;e eN ee ei f.g.gy b by i it N
’ii )j 7k 7ky 7m ’my ’n 7ny ,0 ,0_ ,ON 700 ’Ou ,p 7pa'u 7I ,ry 73 7Sh 7t 7ts ,u )u+

,u- ,ue ,ui ,uu ,W,y 2.

Short silence ’sp’ and silence models 'pau’ are usually trained in separate
just after we have trained the rest of the phonemes, because its presence is

usually not known before hand.

Those models are useful also to help on identifying the acoustic space and

as initialization for the later Vector Quantization steps.

HMM topology generation. At this level we try to find context dependent
models, usually triphones (also the choice of this work). As the number of
triphones is large and normally we do not have training data for all possible
triphonés we need to model sets of triphones (allophones) that are close
together as if they were a single model.

That was in fact the direction followed in the first algorithms for HMM
topology generation [16, 19, 9]. More generically in HMM’s we can model
together parts of some phonemes as if the were one, i.e. tying states, Gaus-
sians, Gaussian weights and even parts of its topologies (transitions). This
way, if a set of phonemes start with statistically close frames we can model
those phonemes with the same state. A Similarly can be used also with the
center and the final states of phonemes.

To define how those states should be shared is a very complex task to be
reliably done by hand, so we need an automatic tool to produce those state
tying. Successive State Splitting (SSS) algorithm is one of the first and
successful attempts to do so [8]. Later this algorithm was consolidated by
using uniquely maximum likelihood (ML) as a criteria for HMM topology
generation. Also in the same line is Phonetic Decision Tree (PDT) algorithm
using phonetic questions [18, 14].

The result of this step is a HMM topology, were the unseen contexts (in
our case triphones) are modeled by sharing states, transition probabilities
and mixture weights.

Retraining. retraining is necessary, because usually after the HMM topology
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generation we have HMM states with a single Gaussian, due to limitation
on current automatic HMM topology algorithm generation.

The number of Gaussian used to represent a state is usually augmented
by duplicating a Gaussian (however changing slightly its values) and nor-
malizing the mixture weights so that the HMM re-estimation equations
stay valid. The number of Gaussians used to represent a state is usually
augmented to something between 4 and 32 Gaussians, depending on the
amount of training data available.

This process then requires some EM (estimation maximization) iterations
to converge the HMM models. Later on even discriminative training [13]
or adaptation can be used on top of the final HMM acoustic model in order

to improve recognition rate.

1.2 Thesis Structufe

This thesis is divided as follows: in Sec. 2 we shortly describe speech recognition
using Hidden Markov Models (HMM’s). The importance of feature extraction
is discussed in Sec. 2.1, the relationship between acoustic scores and language
models in Sec. 2.2, the importance and our choice for the language model used in
speech recognition in Sec. 2.3. Hidden Markov Models are explained in Sec. 2.4,
the way we represent our observation probabilities is also described and will play
a key role during the training procedure as we will see in Sec. 2.4.1.

Sec. 2.4.2 discusses the forward algorithm which is used for efficiently eval-
uating the probability of an observation given a model. Its reverse engineering
Viterbi algorithm which is used to recover the best state sequence for a given
model is discussed in Sec. 2.4.3. The backward algorithm with which we can
derive the re-estimation formulas needed to estimate the acoustic models is de-
scribed in Sec. 2.4.4.

This section concludes with an introduction to the recognition engine Julius
Sec. 2.5 used in this thesis.

After this HMM introduction we introduce the reader to the first part of the
thesis in Sec. 3. ,

Sec. 3.1 points out the problems addressed by the proposed automatic HMM




topology training Tied-Mixture Successive State Split Algorithm. It is then
showed how we improve the base Maximum Likelihood Successive State Split
Algorithm Sec. 3.2. The algorithm is summarized in Sec. 3.2.1.

The theoretical development of its extension to a contextual split is discussed
in Sec. 3.2.2. The quantitative preliminary results in speaker dependent data is
shown in Sec. 3.3, Sec. 3.3.1 and also the qualitative results in Sec. 3.3.3. This
is followed by a summary of this first part in Sec. 3.3.2 and Sec. 3.4.

The description of the second part of the training algorithm starts in Sec. 4.
Some additional assumptions are described in Sec. 4.1. These are explored in
Sec. 4.1.1, leading to a faster TM-SSS algorithm, the so called Fast Tied-Mixture
Successive State Split Algorithm. Due to the assumption the codebook do not
need to be updated during state split in TM-SSS the new algorithm is now faster
enough to be tested in large amounts of training data (in a speaker independent
experiment). The data itself is discussed in Sec. 4.2, and the experiments carried
out and their results in Sec. 4.2.1. Finally the partial results from the second
part are summarized in Sec. 4.3. ’

Finally Sec. 5 concludes the thesis and Sec. 6 gives directions for future work.




2. Speech Recognition using Hidden Markov Mod-

- els

In this section, we will briefly describe speech recognition using Hidden Markov
Models or simply HMM’s. In the first part we will describe how a speech signal
is modeled Sec. 2.2. This contains a description of language modeling Sec. 2.3.
Next we describe how observations are modeled Sec. 2.4.1. The next three parts
are the three basic problems efficiently handled by the Estimation Maximization
(EM) algorithm, namely the forward (Sec. 2.4.2), the Viterbi (Sec. 2.4.3) and the
backward (Sec. 2.4.4) problems. Those three algorithms are the answer respec-
tively to how to effectively compute P(Y|W) (the probability of the observation
sequence Y given the model W), how to choose a state sequence that is optimal
in some sense (Maximum Likelihood in our case), given the observation sequence
Y = {y1,¥2,...,yr} and finally how to adjust the model parameters W to maxi-
mize P(Y|W). The last subsection describes the Julius Recognition Engine used
in this thesis Sec. 2.5.

2.1 Sampling and Feature Vectors

Speech has much more information than a speech recognition engine can handle,
but we can reduce significantly the amount of data we need to process, without
loosing a significant part of the information that we are looking for (for example
if we can reconstruct the speech signal in such a way that a human being can still
recognize what has being said, as much as in the original data).

Among those data reduction techniques we can mention:

e sampling the speech signal at a bit more than twice its Niquist frequency
is enough to ensure that we can reproduce the original signal.

e working with a Cepstral representation of the signal (the signal viewed in its
log frequency domain) is quite independent of the exact point in time when
the window of the signal to be analyzed is extracted. In the time domain
we would need to know when the pitch is available and take windows (set
of samples) always in the same position. Besides it would be only possible




at points in time when the pitch information. In practice the time domain

approach results in unreliable recognition engines.

e also it is important to notice that the human ear is more sensitive to smaller
frequency ranges for low frequencies than it is for high frequencies. A well
know method is to consider frequency bands, depending on how our human
ear processes speech, in other words to consider a MEL-scale frequency
range for each band.

On top of that we could use Cepstral mean normalization, because it com-
pensates channel distortions like microphone or even telephone line distortions.
Cepstral mean normalization estimates the Cepstral frequency of the noise from
the silence part (non-speech) and subtracting that from the Cepstral representa-
tion of the speech part. That can be done because in this domain noise can be
considered additive.

After processing the signal in the time domain X, with a preprocessor similar
to one on Fig. 1 we end up with the feature vectors Y.

input time > Log Raw > output frame
signal X Energy signal Y
y A A
Pre-emphasis |—> H:V':":;‘:f > FFT _l VAD
\
Mel Filter |_ > Cepstral Mean
o > > g
Bank DCT Delta Normalization

Figure 1. Signal preprossessing: sampling, windowing, Cepstral transformation,
normalization and channel compensation for efficient speech frame extraction.

In Fig. 1,‘ FFT stands for Fast Fourier Transform, DCT stands for Discret
" Cossine Transform and VAD stands for Voice Activity Detection.

From this point on we will not refer directly to the input signal X = z1,%2,..., 2T
in the time domain, but to it’s equivalent in the frame domain Y =wy,y2,..., YF-
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2.2 Modeling the Speech Signal

The goal of speech recognition is to find the most likely word sequence W for a
given speech frame sequence Y. This is the word sequence for which

P(W)P(Y|W)

POWIY) = =355 (1)

is largesf.

P(W) gives the probability of a particular word sequence, and is independent
of the actual input signal.

P(Y) is the probability of observing the frame sequence Y.

P(Y|W) is the probability of observing the frame sequence Y given that the
actual word sequence is W.

Recognition is then performed comparing P(WY') with all possible word se-
quences. As P(Y') is the same for all hypotheses we can consider this term con-
stant and the largest P(W|Y") reduces to simply looking for the largest P(W)P(Y|W).

P(Y|W) can be statistically represented by Hidden Markov Models (HMM’s),
see Sec. 2.4. Its evaluation is a problem to be solved by the Estimation Maximiza-
tion (EM) algorithm, described in the forward (Sec. 2.4.2), backward (Sec. 2.4.4)
and Viterbi (Sec. 2.4.3) sections.

The next section will describe how to estimate the P(W).

2.3 Language Models

The language model probability P(W) is the probability of a given word sequence
W which is commonly represented by n-grams such as bigrams and trigrams [3].
P(W) is estimated using large amounts of text data, where usually units, in
particular words, have not only been identified but also annotated with their
syntactical classification.

In general an n-gram is used to compute P(W) as

Ptri_qram = H;'N=1P(wi|wi—1a Wi—2y .-y wi—n+1) (2)

There is never enough text material to estimate all possible n-grams, and even
if there was, we would have too many parameters to store.

9




For the problem of insufficient text material a common practice is to employ
back-off smoothing techniques, such as the discounting in the Witten-Bell [6]
method.

To alleviate the second problem of large language model file sizes we used
an n-gram language model with the smallest set of probability parameters that

minimizes the training set perplexity [12].

2.4 Hidden Markov Models

The probability P(Y|W) of observing the frame sequence Y given that the actual
word is W can be statistically represented by a state machine or Markov chain
with states and transitions. Each state s can produce an observed frame y with
a certain probability p(y|s). Using threse probabilities, the probability P(Y|W)
of a frame sequence Y produced by the Markov chain corresponding to the word
sequence W can be evaluated. A graphical representation of such a Markov Chain
can be seen in Fig. 2. '

£-00-

/000000

Chain

]

Figure 2. Set of Markov Chains with 3 states left to right, input frames in the
bottom and in shaded boxes the best state/frame sequence for that particular
model.

In speech recognition a Markov Chains represents a phoneme (context depen-
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dent case) or a triphone set (context independent case). Sets of Markov Chains
are aligned to form each transcription of a word, as given by a dictionary.

A speech recognition system works by comparing the probability that the
observed sequence of frames was produced by the Markov Chain representing a
given word, against other words in the dictionary.

2.4.1 Observation Probabilities

The computation of P(Y|W) for the observation sequence Y = y1,Y2, -, Yss - YF>

considering all possible state sequences Vs¥ = s1,82,..., 85, ..., SF, is given by:

P(Y|W) = Syrp(st[W)p(yils1, W) (3)
(4).
In equation 4 we assume statistical independence of observations frames y;.

Also, because it is modeled by a Markov chain, the state s; depends only on its
predecessor state s;_;. Equation 4 therefore becomes

P(Y|W) = Dy p(sslss-1, W)p(ysls;, W) (5)

It is also clear from equation 5 that as part of the computation of P(Y|W)
it is necessary to compute the probability density function p(yys|ss, W) of a given
feature vector y; being generated by a single state s;. When modeling speech
with Hidden Markov Models (HMM), it is assumed that p(ys|s;, W) only depends
on the current feature vector and state. The probability density function can be
approximated by a superposition of L Gaussian distributions. If the coefficients
in the feature vectors are not correlated, this probability density is computed as
a Tied-Mixture system:

P(Y|s,W) = TIFSfbi(ss)N(yslm,Zi) (6)

or as a Gaussian Mixture:

P(Y|s,W) = TFSFbi(ss)N(yslu(ss)i, Z(s5)) (7)
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The difference between a Tied-Mixture system and 3 Gaussian Mixture system
is that in the first case the Gaussians are shared among states, while in the
Gaussian Mixture there is a set of Gaussians per state.

In both equations the Gaussian N (y|p, L) is normally evaluated as a multi-
variate Gaussian distribution as in equation 8 below, where D is the number of

dimensions of the frame vector y.

1 1 To-1
Nylp,Z) = s 3e-wTE ) 8
WD) = = ®)

The equation 8 is normally responsible for much more than half of the com-
putation required from a speech recognizer. To reduce the computational com-
plexity, the covariance matrix ¥ is normally assumed to be a diagonal one. This
approximation is normally reasonable, and can be even reinforced by some LDA
transformation of the input frames y. In such a case equation 8 simplifies to

(vg—pg)®
-%Eixﬂpf"—

N(ylp,Z) = \/@W);Hilage (9)

It is also important to notice that by using a full covariance matrix we increase
the number of free parameters we need to estimate. This will then require a larger
training database (in other words, it is inefficient).

2.4.2 Forward Algorithm

With a little effort we can see that equation & has many redundancies and we
can be more efficiently evaluated using the following algorithm

12




Forward Algorithm
e initialize (f = 0)
a1(s) = p(yols, W)ms, 1 < s < 5
o iteratefor f =1,2,...,F —1
ar41(8) = p(ys+1ls, W) 5104 (s)p(sls’, W),
s=385,8 =35
. terminate

P(Y|W) = Z5_ ar(s)

s=1

where S is total number of states in the model W and , is the initial transition
probability for the first state s, which is 1 for the initial state and 0 otherwise.

With this algorithm we efficiently evaluate the probability of a certain model
W, given an observation frame yf . a;(s) is therefore the probability of the partial
observation y! given the model W. However we also need to know the best state
sequence in some sense (e.g. in the Maximum Likelihood sense) that best explains
the observation. The next algorithm Sec. 2.4.3 shows how to do this.

2.4.3 Viterbi Algorithm

In order to obtain the state sequence which in some sense best explains the
observation a common solution is to take the path that maximizes a;(s). This is
known as the Viterbi algorithm. This algorithm is in fact the Forward algorithm,
but replacing the summation by a maximization step, as shown by the description
of the Viterbi algorithm below.

13




Viterbi Algorithm
o initialize (f =0)
ay(s) = pyols, W)ms, 1 <5< 5
e iteratefor f=1,2,...,F—1
asp1(s) = p(ys+1ls, W) argmaxgiy oy (s)p(sls', W), s = 55,8 =851

¢ terminate

P(Y|W) = argmax;_; ar(s)

2.4.4 Backward Algorithm

We still need to address the problem of re-estimating the model parameters W =
{a(s,$"),bi(s),n}. Here as, s') = p(84]84+41, W) is the transition probability from
state s; to frame sj41, and bi(s) = p(n|ss, W) is the probability of Gaussian [ or
simply the Gaussian weight for state sy, mixand ! and model W, and v, = {1, 01}
is the set of means and variances of mixand [.

In order to solve this problem we must first define a few new expressions:

o the backward probability 3;(s,) that is the partial probability of the obser-
vation sequence Y from frame f until the last frame F'.

The backward probability can be solved efficiently in a way analogous to the
forward probability by using the following algorithm

Backward Algorithm
e initialize (f = F)
Br(ss) =1,1<8< S

o iteratefor f=F-1,F-2,...,1
B;(s) = S5o1p(sls', W)p(ys1ls's W)Br41(s)

14




We also need to look for P(yy|ss,vi, W), the probability of an observation y;
given the state s¢, the mixand v = {u, 01} and the model W, and P(yslsgy sp41, W),
the probability of an observation sequence during the transition from state sy to
the next state s;,;. This can be calculated as follows:

pyslsp v, W) = 4(s5,1) o (10)

_ P(yf|Vl,W p Vlls 7W) ‘

v1(s5,l) = aysy) p(yf'SI,W)f Bs(s5) (11)

vi(sp D) = as(sp)bi(ss)N(yslm, Z0)Bs(sy) (12)

P(yilss, 541, W) = €5(s5,8441) (13)

Er(ss,8701) = ap(sp)p(spaalss, W)P(Ysrlsse1, W)Braa(ss41) (14)

p(yslss, W) = Efvs(ssl) (15)
where

b(sy) = p(ulss, W) (16)

a(sg,8p41) = p(sylsy, W) (17)

We can than, from the model parameters W = {a(sy, 841), bi(ss), 1} estimate
the new models a(ss,8741), bi(s5), 11} as a function of 74(sy, 1) and £1(8sy8441)-

_Ef.—?f €s(s5,8%41) an
D1 5mbs (s 5)4a)
Ziars(s,0)
bi(s) = _____f:__l____j_'__’__ o
1(3) 2 SFs(ss, D) (19)
z§=125=1’7f(3j, l)yf
2.1;=12§=17f(8f, l)
p = ZEaSElen D~ m)(a — m)” (21)
S Sae175(81,1)
The symbols in bold are used to indicate the estimated values that will be

used for the next iteration.

a(s,s') =

I

H (20)
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2.5 Julius Recognition Engine

This work makes use of the Julius recognition engine. The Julius recognition
engine is a two pass recognition engine that uses the concept of a word trellis
index [2]. A word trellis index consists of a first pass where paths of Viterbi
scores of word-end nodes within a predefined beam are kept. In a second pass
word boundaries are determined using stack decoder, in which the trellis from
the first pass is connected as backward heuristic, since also the word beginning
frame corresponding to each end node of a survived word (word not prunned) is

stored.
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3. Acoustic Modeling by Tied-Mixture Succes-
 sive State Split Algorithm

In this section we will describe the proposed Fast Tied-Mixture Successive State
Split algorithm (FTM-SSS) and point out the differences in respect to the original
TM-SSS algorithm, during the description.

This section shows how a divisive state clustering algorithm that generates
acoustic Hidden Markov Models (HMM) can benefit from a tied-mixture repre-
sentation of the probability density function (pdf) of a state and increase the
recognition performance.

Popular decision tree based clustering algorithms, like for example the Succes-
sive State Splitting algorithm (SSS) make use of a simplification when clustering
data. They represent a state using a single Gaussian pdf. We show that this
approximation of the true pdf of a state by a single Gaussian is too coaise, for
example a single Gaussian cannot represent the differences in the symmetric parts
of the pdf’s of the new hypothetical states generated when evaluating the state
split gain (which will determine the state split).

The use of more sophisticated representations lead to intractable computa-
tional problems that we solve by using a tied-mixture pdf representation of a
state. Additionally, we constrain the codebook to be immutable during the split.
Between state splits, this constraint is relaxed (the codebook is updated).

The proposed algorithm is then an extension to the SSS algorithm, the so-
called Tied-mixture Successive State Splitting algorithm (TM-SSS).

3.1 Tied-Mixture Successive State Splitting (TM-SSS)

Creation of precise and robust acoustic models for speech recognition, given a
limited amount of training data, has been an intensive field of research over the
last 10 years [16, 19]. The approach in most successful speech recognition systems
has been based on some type of decision tree based splitting or clustering to auto-
matically find an efficient parameter sharing structure, i.e. tying states, sharing
transition probabilities, tying mixtures and so on. Examples of successful algo-
rithms for this type of automatic acoustic modeling are decision tree clustering
using phonetic questions [18, 14] and ML-SSS [5].
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Of particular interest in this thesis is the robustness and degree of represen-
tation that a tied-mixture representation yields in an HM)M, in particular at the
clustering phase. During the clustering phase all states are hypothetically splited
in two. The process consists in matching the pdf of the data against the hypo-
thetical pdf’s, evaluating a split (match) gain for each state that we consider for
split. The data is assigned to the hypothetical state that best matches its pdf
and the state to split is the one that offers the highest split gain.

The problem is the error in the clustering process we may be committing
when we ignore the Gaussian indistinguishable component that any pdf has. The
previous algorithms work as if the pdf of the split state were well behaved as in
Fig. 3. In this figure we show a triphone set whose center phonemes b,d,g are
considered for a split (state S). In this example the phonemes b, d (state S1) have
quite different mean values if compared to phoneme g (state S2). The two new
hypothetical states can thus be distinguished by single Gaussians.

However Fig. 4 shows an extreme case where the resulting two new Gaussians
are not distinguishable by a single Gaussian. In Fig. 4 the triphone set to be split
represents a state with center phonemes m,n, preceded by phoneme a and suc-
ceeded by phoneme e. When this triphone set is split the two center phonemes m
and n are more and less influenced, respectively, from the neighboring phonemes
a, e, resulting in two new states with same mean and variance.
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Gaussian distinguishable pdf’s

= triphone set (state) pdf
_ «  phoneme pdf component
‘the gain for splitting state Sin Sjand S
depends on pdf(S;) and pdf(S, ) difference

S pdf

similar gains for both ML-SSS and TM-SSS

Figure 3. State split with only Gaussian distinguishable pdf’s. Here a single
Gaussian is enough to distinguish the two new hypothetical states. Here, the R
dimensional observation vector y is plotted as a single dimension to simplify the

plot.
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Despite their different true pdf’s, they are indistinguishable from the point of
view of a single Gaussian distribution representation and thus the split gain will
be zero. However, if we could calculate the gain using the true pdf’s and not the
approximation using a single Gaussian, this state split might give us the maximal
gain. In other words, the state split order might be different.

ML-SSS uses a single Gaussian during the state split gain evaluation and hence
its split gain is not affected by the differences that are Gaussian indistinguish-
able in the resulting pdf’s of the two new states. Obviously, using a Continuous
Density (CD) mixture representation with a sufficiently large number of mixands
(Gaussians of a state) would result in a more realistic gain calculation. However,
the CD implementation would be computationally non-tractable as the necessary
sufficient statistics would have to be recalculated from the data samples for each
hypothetical split. In this thesis, we therefore propose a tied-mixture (TM) rep-
resentation. As we will show in later sections, the TM representation makes it
computationally feasible to evaluate the split hypotheses.
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Gaussian indistinguishable pdf's

= triphone set (state) pdf
«w  phoneme pdf component

the gain for splitting state Sin Sjand S
depends on pdf(Sl) and pdf(82 ) difference

S pdf S pdf
? ' a/m,n/e a/m,n/e
y g
ML-SSS TM-SSS
Slpdf Slpdf
a/m/e a/m/e
e a
vy ™y
Szpdf , Szpdf e
a/n/e A
’y A’y
zero gain for ML-SSS non zero gain for TM-SSS

Figure 4. State split with only Gaussian indistinguishable pdf’s. Here we see an
example of resulting new hypothetical pdf’s that a single Gaussian representation
is not capable to distinguish. Here the R dimensional observation vector y is
plotted as a single dimension to simplify the plot.
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The rest of this section is divided as follows: in Sec. 3.2.1 we describe the TM-
SSS algorithm to solve the pdf representation problem and the clustering process
in more detail. In Sec. 3.3.1 we apply the new algorithm to a word recognition
task in order to verify its usefulness and discuss the results. Finally, in Sec. 5 we

draw conclusions.

3.2 Reformulation of ML-SSS

In order to represent the pdf of a state during the split phase by a tied-mixture
representation, the proposed algorithm, from now on called Tied-Mixture Succes-
sive State Splitting algorithm (TM-SSS), introduces several changes to the basic
algorithm (ML-SSS).

3.2.1 TM-SSS algorithm

The TM-SSS algorithm starts with a simple HMM constructed to represent all
the phonemes in the database. In our case a three state left-to-right HMM is
used. The Baum-Welch algorithm is applied to the initial HMM to get the state
occurrence counts and to update the HMM parameters.

From the statistics of the re-estimation, a split gain is evaluated simulating
a state split. For each candidate state split s°, a gain G(s°) is obtained that
is dependent on the pdf that this state represents. The state that gives the
maximum expected likelihood gain s* = argmax¢ G(s°) is split and all the affected
states are re-estimated with the Baum-Welch algorithm. Affected states are all
states in HMM’s which contain the split state. The process is repeated, i.e. the
HMnet is grown until it reaches a pre-defined state number, the increase in gain
is negligible or there are no more states to split. Detailed figures and formulas
will be shown in Sec. 3.2.2.

Finally, triphone contexts that are lost during the split, the so-called unseen
triphones, are placed in the resulting HMnet structure. This is performed using
a tree of non overlapping phoneme space environments [19]) that is produced as
a result of the TM-SSS training. The unseen triphones (gaps and holes of the
phoneme space environment) are placed in the leaves of this tree, based on the
co-occurrence counts of phoneme labels collected from the split history.
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The proposed algorithm is as follows:

TM-SSS Algorithm

1. create a codebook

(a) flat start (estimate means and variances)

(b) vector quantization to get the codebook

(c) Baum-Welch (BW) of initial HMM
9. iterate over the candidaté states:

(a) get state split information for each domain and factor
(b) find best split for each domain and factor
(c) split the state with the highest expected likelihood gain

(d) if update codebook (state split pertain to affected states since last
codebook update)

i. run BW, train means, variances, weights and transitions for all
states

ii. use only the most significant L mixands
else
i. run BW over affected states (states in HMM’s which contain the

split state), only train weights and transitions

3. repeat last step until number of states reached or increase in gain is negli- |
gible

4. recover unseen triphones contexts based on split history
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Get State Split Information

1. iterate over the domains and factors

(preceding, center or succeeding phonemes):

(a) from original state create two new hypothetical states
(b) iterate until convergence is met
i. for all data
A. assign data to the more likely state

ii. estimate new states and split gain

For a given data sample, there is a unique path through the HMnet. It means
that when we split a state we are assigning the data that is passing that state to
either of the two new states. As the number of possible combinations of splits
may be too large, a recursive algorithm [15, 22] is used to find the optimal split:
the initial state is copied to provide two new states to start the recursion, one
which is a copy of the original state and a second that is a perturbed copy of it.

All the data that passed through the original state is assigned one by one to
the most likely state to represent it. From the two sets of data the pdf parameters
for the new states are re-estimated and the process is repeated until a convergence
criterion is met. '

What simplifies the use of a tied-mixture system is that we constrain the code-
book to be immutable during the estimation of the gain G(s°) of the candidate
state split s°. Hence just adjusting the mixture weights is enough to evaluate the
state split. This constraint may be considered well satisfied when we have a large
number of states in the HMnet, but might be too strong a constraint when the
state split process is still at the beginning.

More often we update the codebook, better the final HMnet is, however for
computational reasons the codebook is updated only if the current state split s*
pertains to one of the affected states since the last codebook update. By doing so,
we carry out a full BW (Baum—Welch) more often when we have a small number
of states (when a state split affects more the codebook) and less vice-versa.
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The training algorithm follows the classical tied-mixture BW algorithm [7]. It
is used after a state split to accommodate small differences that may arise from
the fixed codebook constraint during the split and the influence of the split in
neighboring states.

In order to derive the gain function we define the observed data y7 as yT =
{y1,¥2,- - - ,yr} and the related hidden states s¥ as s] = {s1,82,...,57}-

Requiring that means and variances of the codebook are constant during the
split, as stated above, the gain function is expressed as a difference of the expected
log likelihood before and after the split. For each state split iteration k the
expected log likelihood becomes:

-

Q(6%+)|6®) = Ellog P(v7, ST|o+0) T, 0]
= 3 p(sT1v7,0¥) log P(v], 5T 16%+7)
sf

S

= > zt: £i(s,s") log a(s, s)

S:S:st,glzgg-_‘

s
+ 33 7i(s,1) log bu(s)

g:8=8: t 1

S
+ 3 Y > mlsh)log N (yslm, 21) (22)

g:8=8: t 1

where

4(s,)) = P(s: = s,mlyf,0%)
£(s,8") = P(si =s,5-1=5y],0%)
a(s,s') = p(3t|3t_1,g(k+l))
b(s) = P(ulse, 0%+))
N(yp, Z) = P(yq v, 0F)
and a(s, s’) is the transition probability from the state s = s;-; to state s = s,
bi(s) is the weight of the codebook vector v and N(y:w,Li) is the Gaussian

mixture of the observation y; with respect to v;. 6 are the HMnet parameters.
Note that this equation allows us, assuming that the transition probabilities
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are fixed as in ML-SSS[5], to consider only the contribution to Q(#(*+1)|6(*)) that
comes from the candidate split state s°. Hence, our gain G(s°) resumes to:

G(s?) = Q(6%*1|6%))(s1,52) — Q(O**V]9P)(s°)
= X, Mi(s,s')]loga(s,s') — M;(s°, s°)log a(s°, 5°)
+ i[5, Ma(s, f,1) log bi(s) — My(s®, £, 1) log bi(s°)]
4+ Ti(ee,r) [Ma(s1,5) + Ms(s2,3) — Ma(s°, )]
(23)

where

Mi(s,s') = Y &jp(s,s)
i)

M2(s’fal) = Z Z 'ﬁ(sal)

3(8,f) tTt=Tj(s,f)

Ms(s,5) = > Y- w(s,1)log N(yelw, =)

t::cg::cj(,,f) ) .

and j represents a phoneme, with j € j(s, f), where j(s, f) represents all the
generalized allophones [19] in a certain factor f € {preceding, center, succeeding}
phonemes for state s. With (s,s’) € {(s1,81)} for the contextual domain split
and (s,s’) € {(s1,51), (1, 52), (82,52)} for the temporal domain split (see Fig. 5).

The first term M;(), in equation 23 is independent of the chosen factor f and
constant due to the constraint of fixed transition probabilities during the split.
Additionally due to the constraint of constant codebook during the state split,
the last term Mj() is constant too. These constraints reduce the calculation of
the gain to the evaluation of the term M,().

3.2.2 Contextual Split

In the contextual split as used in TM-SSS, the aim is to split a state s® in two
new states s; and s; based on the observation data y associated with the split
‘state s°. Associated with the split state is the phoneme space A. Accordingly
the two new phoneme subspaces A; and A; with A,c = A; U A, refer to s; and

82, respectively.
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Figure 5. Example of split of state s* into states s; and s, for contextual and

temporal domains.

Each observation is described by a set of factors, i.e., its preceding, center and
succeeding phonemes. A contextual split may only be performed on a factor at
a time. Additionally let us group the observation data y, by phonemes j with
Y; € Yj(s.5)> Where j (s, f) represent a set of phonemes in a certain factor f and
state s.

As in TM-SSS the purpose is to represent the HMnet using tied-mixtures. A
state s will be represented by its output distribution vector b(s) with L compo-
nents b(s) = (b1(s),--- ,bi(5),- .- ,br(s)), where | represents one of the codebook
indices of the VQ (Vector Quantization). The goal is then to estimate two new
vectors of output distribution coefficients b(s1),b(s2), so that the maximum like-
lihood criterion is observed. This is basically a divisive clustering problem. To
solve this problem we use Chou’s partitioning algorithm [15] as in ML-SSS [11],

choosing the loss function

L(y],b) = —log P(47 V) (24)

Chou’s partitioning algorithm is applied here, since it assures that the optimal
partition in the sense of maximal likelihood will be selected and that it is linear
on the number of clustered phonemes j (s, f). We perform clustering of the data
taking into account the whole phoneme, i.e. we do not use Viterbi alignment to
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extract the data for the split state. In fact we are clustering phonemes between
two HMM’s which differ only on the split state s that may take values in si
where k =1, 2.

Under this objective equation 24, the “centroid” function becomes

b(sk) = arb%il)in E[L(y, b(sk))|s]

= argmax Eflog P(y[b(sk))|s]

b(sk)

= argmax Z E 7:(s%,0) log bi(sk) + K

(sx) ¢t 1

(25)

K turns out to be constant for state s° due to the unaffected terms depending
on constrained fix states, transition probabilities and Gaussian probabilities. The
new transition terms and Gaussian terms sum their counts to the same value
before the hypothetical split.

The maximum in this function is given by the re-estimation formulas of b(s)
evaluated from the clustered data. The divergence function, not considering the
constant terms for s;, becomes

d(y,b(s1)) = E[L(y,b(s1))|s] — i(s)
=— 3 > > (s 1) log P(y:lbi(s1))

J€j(s1,f) tye€y; 1

+ 20 22 2om(s(4), 1) log P(uelbi(s(5)))

j€j(sc.f)tve€y; 1

(26)

The phonemes j € j(s, f) are clustered matching them to its nearest neighbor
b(sk). i(s) is the minimum impurity as defined in Chou’s theorem [15].
For a single phoneme j € j(s, f) the divergence becomes

d(y;,b(s1)) = E[L(yj,b(s1))]s] — ii(s)
= - Z nyt(sc,l) log P(y:|bi(51))

ty€y; |
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+ 3 T (s(5), 1) log P(y:li(s(5)))

tiyt€y; |

(27)

The inequality used to split the phoneme j from space A to the spaces Ay,
according to Chou’s theorem is defined as ‘

jeA i dy;b(s1)) < dy;, b(s2))
j € A; otherwise (28)

Substituting the distance equation 27 in the inequality 28 we get, for the ith
clustering iteration, the split equation

S 55, D log 0 (81) > 3o 3(s%, 1) log b (s2)
1 )
(29)

where

7.1'(571) = Z Y:(s,1)
EEt=Tj(s,1)

In this equation we are not considering the minor effects that fixed mean y;
and variance ¥; may have on the divergence as a distance function.

The state split is performed, from the split state s°, initially by creating two
states s; and s;, i.e. two new set of mixture weights. |

In the contextual domain the initial weight vector for state s; is obtained
by copy ( to assure that the likelihood will not decrease) and for state s; by
disturbing the original weights b(s°) by (1+ (—1)!¢'). The new weights obtained
are then renormalized, so that they still sum up to 1. €' is arbitrarily chosen,
typically 1.0e72.

From the clustered data new tied-mixtures weights for the two new hypo-
thetical states are re-estimated, constituting the two new centroids for the next
iteration. The clustering is iterated until the change in the state split gain be-
comes smaller than an arbitrarily chosen ¢, typically 1.0e~5. If there is no positive
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split gain, the value of € is reduced by a factor of 10 as many times as necessary
until a gain is achieved.
The split design algorithm may be summarized as follows.
Split Design Algorithm for Factor f
(All the terms below depend on f, but f is fixed here so it will be omitted)

e Initialization (iteration ¢ = 0) Initialize the distribution parameter cen-

troids for the two new hypothetical states:

b sr) = B0 (s1), -5 (61), 8 (o)

[Bi(5°), ---bi(s%), ---bi(s7)] = b(s?)
bO(ss) = [6{7(s2), - (87), -85 (s2)]
5 (s2) = (1+(-1)'e)b (s

(30)
e Iterate fori=1,2,...
1. Find new binary partition {Agi) , Ag)}:
For each j : j € j(s, f), assign all the y; : y; € y; to Agi) if
3o i(s, 1) log b (s1)
]
> 3 5% log b (s2) (31)
]
otherwise, assign all the y, to Agi).
2. Find new centroids {6()(s) : k = 1,2}.
; cita.® Vi (8,1
b§ )(Sk) — 2j€i(sn,f)t) 73(8,1) (32)

T Tieitenn® L1 7i(850)

where 7;(s,!) have been stored during the previous BW re-estimation.
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3. Test for convergence: stop if the partition does not change or if

G(sc)(i) - G(sc)(i—l)
G( sc)(i—l)

<n

where G(s°) is the contextual gain (Equation 23) and 7 is an heuristi-
cally chosen convergence threshold. Note that G(s°)® > G(s°)¢D,

3.3 Experimental Data

Isolated word recognition experiments for one male Japanese speaker (speaker
MHT of ATR database [4]) were performed to show the effectiveness of the TM-
SSS algorithm. The database consists of one utterance each of the most frequent
5240 Japanese words labelled with 55 phoneme labels. E

We use the ML-SSS algorithm as a baseline for comparison with the TM-555
algorithm in the experiments that follow.

A codebook size common to both TM-SSS and ML-SSS models was set to
1024 Gaussians. In order to keep the codebook size fixed among all models, ML~
SSS HMnets were retrained with multiple mixands per state. For example, the
956 state ML-SSS HMnet was retrained with 4 mixands per state, resulting in a
comparable number of 1024 Gaussians per HMnet.

Table 1. Feature extraction.

parameter Value
sampling rate 16000 Hz
frame shift 10 ms
frame length 25 ms

pre-emphasis coef. || 0.97
parameters 12 MFCC, 12 A MFCC,
1 A log power

Table 1 describes the feature extraction.
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3.3.1 Speaker-dependent HMnet Experiments

The experiments were conducted under the following conditions:

e The initial HMnet consists of 3 states aligned left to right, representing all
the phonemes in all the contexts.

e Only contextual split was performed.
e TM-SSS is performed with codebook of 1024 Gaussians.
- o HMnets are split up to 256 and 512 states.

e ML-SSS HMnets are retrained with 4 and 2 Gaussians per state, respec-
tively.

o Embedded re-estimation, i.e. not using time information of the phoneme
labels, is performed to compensate for l'qbeling €errors.

Up to here we have trained two sets of models, one a set of TM (Tied-Mixture)
models, obtained using the TM-SSS algorithm and another a set of GM (Continu-
ous Density Gaussian Models) models, constructed using the ML-SSS algorithm.

For a fairer comparison between the TM-SSS and ML-SSS algorithms we also
estimated a TM model from a GM model and vice-versa. In this case, neither a
difference in the number of parameters, nor a difference in the HMM structure
exists at all. These converted models were created as follows:

e TM-SSS models are converted to GM models, by constraining the number
of mixands per state to 4 and 2, for HMnets with 256 and 512 states per

model, respectively.

e Similarly, ML-SSS models are converted to TM models, by initially taking
10% of the mixand weights and distributing them uniformely as mixands

weights for the mixands of the remaining states.

All converted models are ﬁnally retrained using embedded re-estimation with
the training data, in order to optimize the model parameters to the new model

structure.
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3.3.2 Word Recognition Results

Recognition results for TM-SSS and ML-SSS algorithms and their respective con-
verted models are summarized in Table 2 and Table 3. The training data are the
9620 even-numbered words and the test data are the 2620 odd-numbered words.

Table 2. Word recognition error (%) for ML-SSS and TM-SSS with 1024 Gaus-
_sians and 256 states each. |

training | final topology
algorithm || TM | GM
TM-SSS || 2.79 | 3.74
ML-SSS || 5.27 | 5.27

Table 3. Word recognition error (%) for ML-SSS and TM-SSS with 1024 Gaus-
sians and 512 states each.

training | retrain topology
algorithm | TM GM
TM-SSS | 2.21 3.63
ML-SSS “|| 4.08 4.08

In Table 2 and Table 3 training algorithm refers to the algorithm used to
get the first HMM topology, in the case of TM-5SS resulting in a tied-mixture
topology (TM) and in the case of ML-SSS in a continuous density Gaussian
mixture topology (GM). The results of TM-SSS algorithm with a GM topology
and of ML-SSS with a TM topology refer to the converted models.

Table 2 and Table 3 show that an HMM model constructed using the TM-SSS
algorithm nearly halves the recognition error rate compared to an HMM model
created using the ML-SSS algorithm. This holds true for splitting up to 256 states
and 512 states.

For a meaningful analysis, the two approaches have to be compared within
the same topology type, i.e. TM and GM, respectively, so that the total number

33




of free parameters is the same even at the level of the number of mixand weights.

For the GM topology, when the TM topology obtained using TM-SSS was
converted to a GM topology, the TM-SSS algorithm still did better (3.74% vs
5.27% for 256 states, 3.63% vs 4.08% for 512 states).! This proves that TM-SSS
algorithm is effective on its choice of final shared state triphones for the HMnet.

Taking the TM topology as a point for comparison, we also did better with the
TM-SSS algorithm, because the GM model obtained using the ML-SSS algorithm
did not show a decrease in the error rate, because of the well-known sensitivity
of HMM’s to initial values. In other words, although more free parameters are
available in the TM topology, these parameters are not used efficiently and the
error rate remained at 5.27% for 256 states and 4.08% for 512 states. In both
cases the corresponding TM-SSS trained models outperform the ML-SSS trained
models (2.79% vs 5.27% for 256 states, 2.21% vs 4.08% for 512 states).

3.3.3 Center Phoneme

Another way to measure the effectiveness of the new approach is to analyze how
the phonemes have been split. In an HMnet, every state path defines a model
representing a set of triphones (or generalized allophones). In SSS these sets of
triphones are convex spaces which may be represented by sets of phonemes, each
one representing one context (preceding, center and succeeding phoneme set).

For an HMnet with 256 states, almost all the center phonemes should have al-
ready been split. Table 4 and Table 5 shows the triphones whose center phonemes
remain unsplit in the final HMnet, as well as their occurrence for 256 and 512
states respectively.

We can see from Table 4 and Table 5 that using the TM-SSS algorithm almost
all the center phonemes have been split. With ML-SSS an important amount of
unsplit center phonemes, equivalent to 27.2% of all triphones contexts, remains.
We think that the improvement with TM-SSS is due to the more accurate split
gain calculation.

1The increase in error rate from 2.79% to 3.74% for 256 states, 2.21% to 3.63% was somehow
expected as the total number of free parameters is reduced by the conversion.
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Table 4. Unsplit center phonemes for HMnet with 256 states (speaker MHT).

ML-SSS % TM-SSS % |
(a0, 0, 0-) (0, 0-) (e, ee)

(a, a-, aa) (ou, 00)

(e, €, ee) (ei ee)
(m, g) (g, ny) (¢, )
(k, t, p) (ch, hy)

27.18% 2.96%

Table 5. Unsplit center phonemes for HMnet with 512 states (speaker MHT).

ML-SSS % TM-SSS %

(a0, 0, o-) (o, o-)

(a, a-, aa) (ou, 00)
(ei, ee)

(m, g) (8, ny) (t, p)
(k, t, p) (ch, hy)
(a, aa) (a0, 0)

21.02% 0.0%

3.4 Summary

In this section we proposed a new algorithm named TM-SSS (Tied-mixture Suc-
cessive State Splitting). This new algorithm extends the use of tied-mixture rep-
resentation not only to the final phase of an acoustic model generation algorithm,
but also to its topology training phase.

For the same number of Gaussians the results using TM-SSS are about 31%
(relative decrease in error rate) better than using the ML-SSS algorithm.

The superiority of the TM-SSS algorithm is shown not only by its recognition
rate but also by the visible quality of the final phoneme split, as attested by its
performance on splitting the center phonemes.
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Despite its good performance it has a major draw back that is its computa-
tional cost for large tasks. That is exactly the problem we tackle in the next

section.
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4. TFast Tied-Mixture Successive State Splitting
(FTM-SSS)

TM-SSS (Tied-Mixture Successive State Splitting) is an algorithm that automat-
ically generates context dependent HMM’s with shared states, transition proba-
bilities and a Gaussian codebook. This algorithm proved to achieve higher recog-
nition rates than ML-SSS (Maximum Likelihood Successive State Splitting) for
a single speaker, but the algorithm was too slow for speaker independent tasks.
The most demanding computational task was to update the codebook every time
a state is split. Previous attempts to reduce the number of splits resulted in
poorer recognition rates.

However we found that once the codebook provides an unbiased representa-
tion of the acoustic space we can keep it constant during the state split process,
updating it just once the HMM’s set is defined and thus saving a lot of computa-
tion, without significantly affecting the recognition rate. Besides this reduction,
further improvements were possible due to this approach, which allowed us to
train speaker independent male and female acoustic models in a reasonable time.

In this section, we thus propose an extension to the TM-SSS algorithm, the
so-called Fast Tied-Mixture Successive State Splitting algorithm (FTM-SSS). The
recognition results for similar number of free parameters between monophone and
FTM-SSS triphone (FTM-SSS based) acoustic models showed about the same
recognition rate for male and an increase of about 3.6% for female, requiring only
1.5 times the computation amount of a monophone acoustic model.

As a result the FTM-SSS has been applied to the ASJ (Acoustic Society
of Japan) and JNAS (Japanese Newspaper Article Sentences) database (more
than 60 hours). Recognition results for the 100 sentences taken from the IPA
(Information—technology Promotion Agency) CD-ROM, for both male and female
acoustic models are reported. The performance is also compared to the models
present in the distribution that had been generated with the HTK toolkit. The
FTM-SSS acoustic models represent an increase in recognition accuracy of 2%

when compared to monophones, with a similar number of free parameters.
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4.1 Speeding up TM-SSS

In this section we will describe the proposed FTM-SSS algorithm and point out
the differences in respect to the original TM-SSS algorithm, during the descrip-
tion.

Of particular interest in this thesis is the behavior of the Gaussian codebook
during the state split process in the case of the TM-SSS [1] algorithm. In Fig. 6a
we see a set of allophones being split a couple of times, according to the TM-SSS
algorithm. Trying to reduce the number of times we update the codebook has an
adverse effect as shown in Fig., 6b. The idea is then to keep the error caused by
the codebook constant, so that the state split order is minimally affected by the
codebook, Fig. 6¢ shows how the proposed method behaves.

XeoeX XeooX oo X - mixand
ok xex gELgE e
I) o ¢Oe & — 0 & 6 ¢ m=p 0 0 0 06 =p o 0 o o e - acoustic space
e o o o o o o o e o o o e o o S - state split
X e X X O X X <O X b o S ¢ -codebook update
X e o X o o o o e o o o o o o » o MO o

X e oX *XXe g o 's'n’ o MK o
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Figure 6. State split and means of codebook moves with Baum Welch (BW)
re-estimation. a) just splits ending with BW, b) BW alternated with more than
one state split, c) alternated BW and state split. a and ¢ behave similarly, but b
leads to non optimal acoustic model structures.

With the original TM-SSS we needed to train all the data together, i.e. we
couldn’t separate data in its central phoneme and train it in separate processes,
because the codebook was shared among all the data. Now with a fixed codebook
this is possible, so we can take advantage of multiprocessor computers to speed

up the acoustic model generation.
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4.1.1 FTM-SSS Algorithm

The original TM-SSS algorithm starts with a simple HMM constructed to repre-
sent all the phonemes in the database. In FTM-SSS we start with all the center
phonemes split so we can process different phonemes in parallel. In TM-SSS it
is in fact a disadvantage to split in advance the center phonemes, because the
codebook must be updated during the state split process, so we can not benefit
from splitting in advance the center phonemes for parallel processing purposes.

Both algorithms are usually initialized with a three state left-to-right HMM
for representing its initial allophones. In TM-SSS the Baum-Welch algorithm is
applied to the initial HMM to get the state occurrence counts and to update the
HMM parameters. In FTM-SSS the codebook is just the result of the VQ (Vector
Quantization) of the database.

From the statistics of the re-estimation, a split gain is evaluated simulating
a state split. For each candidate state split s, a gain G(s°) is obtained that
is dependent on the pdf that this state represents. The state that gives the
maximum expected likelihood gain s* = argmax¢ G(s°) is split and all the affected
states are re-estimated with the Baum-Welch algorithm. Affected states are all
states in HMM?’s which contain the split state. The process is repeated, i.e. the
HMnet is grown until it reaches a pre-defined state number, the increase in gain is
negligible or there are no more states to split (the gain function is below 1.0e-5).

The difference between TM-SSS and FTM-SSS is that in the first the Baum-
Welch procedure over the affected states updates all the parameters of the acoustic
model, including the codebook, while in the second only the transition probabil-
ities and mixand weights are updated.

Finally, triphone contexts that are lost during the split, the so-called unseen
triphones, are placed in the resulting HMnet structure. This is performed using
a tree of non overlapping phoneme space environments [19]) that is produced as
a result of the TM-SSS training. The unseen triphones (gaps and holes of the
phoneme space environment) are placed in the leaves of this tree, based on the
co-occurrence counts of phoneme labels collected from the split history.

At the end of the acoustic model generation in case of FTM-SSS a couple of
Baum-Welch interactions are carried out to also accommodate the codebook to
the final acoustic model.
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The original TM-SSS and the proposed FTM-SSS algorithms are described

below in a compact form:

TM-SSS Algorithm

1. create a codebook

(a) flat start (estinia,te means and variances)
(b) vector quantization to get the codebook

(c) Baum-Welch (BW) of initial HMM
2. iterate over the candidate states:

(a) get state split information for ‘each domain and factor
(b) find best split for each domain and factor

(c) split the state with the highest expected likelihood gain
(d) if update codebook 2

i. run BW, train means, variances, weights and transitions for all

states
ii. use only the most significant L mixands
else
i. run BW over affected states (states in HMM’s which contain the

split state), only train weights and transitions

3. recover unseen triphones contexts based on split history

2 As stated at the beginning of the Sec. 4 it is beneficial, from the point of view of recognition
accuracy, to always update the codebook (and that is the approach used in TM-SSS when
comparing with FTM-SSS).
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FTM-SSS Algorithm

1. create a codebook

(a) flat start(estimate means and variances)

(b) vector quantization to get the codebook

9. iterate over the candidate states:

(a) get state split information for each domain and factor
(b) find best split for each domain and factor
(c) split the state with the highest expected likelihood gain

(d) run BW over affected states, only train weights and transitions

3. iterate over all data

(a) run BW, train means, variances, weights and transitions for all states

4. recover unseen triphones contexts based on split history

Both TM-SSS and FTM-SSS algorithm share the same procedure to get the
state split information as follows: :

Get State Split Information

1. iterate over the domains and factors

(preceding, center or succeeding phonemes):

(a) from original state create two new hypothetical states

(b) iterate until convergence is met
i. for all data
A. assign data to the more likely state

ii. estimate new states and split gain
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For a given data sample, there is a unique path through the HMnet. It means
that when we split a state we are assigning the data that is passing that state to
either of the two new states. As the number of possible combinations of splits
may be too large, a recursive algorithm [15, 22] is used to find the optimal split:
the initial state is copied to provide two new states to start the recursion, one
which is a copy of the original state and a second that is a perturbed copy of it
(mixand weights multiplied by 1.0e-3).

All the data that passed through the orlgmal split state is assigned to the
most likely hypothetical state. From the two sets of data the pdf parameters for
the new states are re-estimated and the process is repeated until a convergence
criterion is met.

What simplifies the use of a tied-mixture system is that we constrain the code-
book during the state split to be immutable. Hence just adjusting the mixture
weights is enough to evaluate the state split. :

The training algorithm follows the classical tied-mixture BW algorithm [7].

In order to derive the gain function we define the observed data y{ as y =
{v1,Y,--.,yr} and the related hidden states s as 5] = {51,52,-..,57}-

Requiring that means and variances of the codebook are constant during the
split, as stated above, the gain function is expressed as a difference of the expected
log likelihood before and after the split. For each state split iteration k the
expected log likelihood becomes: :

Q(6%+119®) = Ellog P(y7 , 7 16*+1) Iy, 6]
= ZP(S Iyl ’a(k) log p(yl » 51 lo(k+1))

S

= X zt:ft(S,S') log a(s, s")

8:8=8¢,8'=8¢-1

s
+ z_:s 21;27’(3 ,1) log by(s)
s
+3§;s ;Z%(S »1) log N (y|p1, Tn) (33)
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where

Y(s,l) = P(st=s,wlyf,0(k))
£(s,s) = DP(si=88-1= s'lyf,0®)
a(s,s) = P(s,lst,l,e("“))
bi(s) A

Ny, 5) = Pluilon,0%)

and a(s,s’) is the transition probability from the state s = s;—1 to state 8 =84
bi(s) is the weight of the codebook vector ¥ and N(ys|p, Z) is the Gaussian
mixture of the observation y; with respect to 1. 0 are the HMnet parameters.
Note that this equation allows us, agsuming that the transition probabilities
are fixed as in ML-SSS[5), to consider only the contribution to Q(0%+1)|(¥)) that
comes from the candidate split state s°. Hence, our gain G(s°) resumes to:

1l

() = QUEF+18%)(s1,52) — QOFHIIIR)(S)
= Y. Mi(s,s")loga(s,s) — M;(s¢,5°) log a(s°, 5°)
SIS, Ma(s, 1) logbi(s) — Ma(s®, f 1) log bi(s%)]

+  Tite) [Mals1,5) + M;(s2,3) — M3(s%,7)]
(34)

where

Mi(s,s) = Zﬁ,‘(s,f)(sas')
i(a.f)

MZ(S)f’l) = z Z 7*(511)

i(8.f) tze=2(0.1)

Ms(s,j) = 2 S n(s, 1) log N (ye 1, Z1)
LLL=T (s, f) 1
and j represents 2 phoneme, with j € j(s, f), where j(s, f) represents all the
generalized allophones [19] in a certain factor f € {preceding, center, succeeding}

phonemes for state s. With (s,') € {(s1,81)} for the contextual domain split
and (s,s") € {(s1, s1), (51,52) (s2,52)} for the temporal domain split (see Fig. 7).

43




State Split

" from “ to
preceding succeeding
states states

\J / \ temporal

e domain split
contextuat \AAT
= kb B

Figure 7. Example of split of state s* into states s; and s; for contextual and

temporal domains.

The first term M;(), in equation 34 is independent of the chosen factor f and
constant due to the constraint of fixed transition probabilities during the split.
Additionally, due to the constraint of constant codebook during the state split,
the last term Mj3() is constant too. These constraints reduce the calculation of

the gain to the evaluation of the term M;().

4.2 Experimental Data

Speaker independent continuos speech recognition experiments for male and fe-
male speakers (ASJ [17] and JNAS [10] database) were carried out with the same
training data that had been used to construct the acoustic models of the IPA [20]
distribution. The training database consists of 20414 sentences uttered by male
speakers and 20958 sentences uttered by female speakers. Separate 100 male sen-
tences and 100 female sentences were used for testing from speakers not present
in the training database. The sentences were labeled with 43 phoneme labels.

As baseline, we used monophone HMM’s, with 16 mixtures per state for com-
parison with the FTM-SSS algorithm in the experiments that follow. All the
models have around 2000 Gaussians whether it is a tied-mixture or a Gaussian
mixture structure. _

Table 6 describes the feature extraction. The experiments were conducted

44




Table 6. Feature extraction.

parameter Value
sampling rate 16000 Hz
frame shift 10 ms
frame length 25 ms

pre-emphasis coef. 0.97
parameters 12 MFCC, 12 A MFCC,
1 A log power

under the following conditions:

e Monophone models are trained with 3 state aligned left to right per phoneme.
o FTM-SSS models are trained with a codebook of about 2000 mixands

o Embedded re-estimation, i.e. not using time information of the phoneme
labels, is performed to compensate for labeling errors, for all acoustic mod-

els.

4.2.1 Speaker-independent HMnet Experiments

For the following experiments, we have been using version 2.2b of Julius, that,
among other things, recognizes tied-mixture acoustic models in HTK format and
takes left and right intra-word contexts, and right inter-word contexts into ac-
count. From now on whenever we mention Julius we are referring to version
9.9b. A new feature in this version is pruning the number of mixands that will
be evaluated in order to speed up recognition.

For our experiments we used the ASJ and JNAS male and female training sen-
tences described in the IPA distribution CD and the test data with 100 sentences
for each gender, used for IPA acoustic models evaluation.

Acoustic models for monophones, FTM-SSS and PDT (Phonetic Decision
Trees) were generated. The PDT model was trained using the HTK toolkit[14]
and was then converted to a tied-mixture format by merging all the Gaussians and
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applying a standard flooring of 1.0e-5 to all mixand weights, properly rescaling
the mixand weights to make them sum up to 1.0. All models are finally retrained
with at least 3 Baum-Welch iterations to deal with differences that may arise

from structure conversion.
Word recognition results for female acoustic models for FTM-SSS and PDT

algorithms are summarized in Table 7 for different pruning levels to verify the
effect of pruning in both algorithms.

Table 7. Word recognition correct/accurate (%) for FTM-S5S and PDT for dif-
ferent levels of pruning (tmix represents the number of most significant mixands

that must be evaluated)

tmix algorithm

I FTM-SSS PDT
32 | 91.00/89.92 | 82.48/78.68
64 90.55/89.22 83.54/79.94
128 || 90.93/89.73 | 84.18/81.90
256 || 90.93/89.66 | 85.33/83.24
512 || 90.93/89.66 | 86.82/84.35

As we can see from Table 7 the FTM-SSS algorithm produces an acoustic
model that is more resistant to pruning, because it builds its structure based on
a tied-mixture codebook, while in case of the PDT generated acoustic model, it
is artificially generated by merging the mixtures.

From now on we will use the monophone acoustic models as baseline. Results
for male and female models are summarized in Table 8. '

Table 8 shows that an HMM model constructed using the FTM-SSS algo-
rithm leads to about 2% increase in the recognition rate while only increasing
the decoding time by 50%. Table 8 also shows that the HMM model constructed
using the FTM-SSS algorithm achieves a higher recognition rate than using the
acoustic model generated using PDT algorithm for this task. For tmiz = 32
obtain increase of more than 10% in both genders for FTM-SSS when compared
with PDT.
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Table 8. Word recognition correct/accurate

(%) for monophone, FTM-SSS and

PDT, pruning up to the first highest 32 and 512 mixtures present in the codebook
training tmix gender relative

algorithm male female time
monophone | - | 83.34/82.46 | 87.20 /86.25 | 1.0
FTM-SSS 32 | 84.56/82.53 | 91.00/89.92 | 1.5
PDT 32 |79.68/74.11 | 82.48/78.68 | 2.2
FTM-SSS || 512 | 83.65/82.31 | 90.93/89.66 | 4.3
PDT 512 | 84.84/79.76 | 86.82/84.35 | 5.7

4.3 Summary

In this second part of the thesis we proposed a new algorithm named FTM-
SSS (Fast Tied-Mixture Successive State Splitting). FTM-SSS works also for
and thus allows to apply the benefits of TM-SSS
(Tied-Mixture Successive State Splitting) without sacrificing recognition perfor-

speaker-independent tasks,

mance. It is one step forward for using context-independent, speaker independent
acoustic models in real-time applications.
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5. Conclusion

This thesis has to cope with a problem found in speech recognition systems that
has both a theoretical and practical aspect. The essence of this problem is the
representation of HMM states by single Gaussians during the HMM topology
generation. Theoretically this is insufficient as a representation, and resulting
errors are propagated into the system. The pure application of the theoretical
solution, namely the Gaussian Mixture approach is not practically feasible at the
state of HMM topology design.

Tt is known that in the Gaussian Mixture case a state split would have a strong
impact in the Gaussians of the split state. However in the Tied-Mixture case that
effect is exactly the opposite. A state split in the TM case produces just a slight
change in the Gaussian codebook. It was observed that most of the computation
cost is due to updating the codebook while performing the state split. Both Tied-
Mixture and Gaussian Mixture pdf representations are equivalent and richer than
a single Gaussian representation. This lead to the hypothesis that it is possible
to use a Tied-Mixture representation keeping the codebook unmutable during a
state split.

In this thesis we examined this hypothesis and proposed an automatic algo-
rithm named FTM-SSS (Fast Tied Mixture Successive State Split) algorithm for
HMM topology construction that solves the problems mentioned earlier. We have
been able to draw the following conclusions about this approach:

o FTM-SSS solves a theoretical problem of previous automatic acoustic model
algorithms, namely the representation of the pdf of a state by a single
Gaussian, during the construction of the HMM topology. Moreover it is
practical in the sense that it does so without being as computationally
expensive as the approach of representing states by Gaussian Mixtures.

o FTM-SSS reduces the error rate by about 31% compared to the original
ML-SSS algorithm and by about 10% compared to the Phonetic Decision
Trees (PDT) based algorithms. This comparison was done with models
of complexity similar to a baseline monophone HMM set and fast pruning
applied to both FTM-SSS and PDT (in order to be competitive in terms of
speed).
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o FTM-SSS makes distinctions in the early stages of the HMM topology con-
struction that are more consistent with phonetic knowledge. These distinc-
tions were observed in FTM-SSS but not in previous algorithms such as
Moaximum Likelihood Successive State Split (ML-SSS).

Both quantitative and qualitative results show that a better HMM topology
was achieved by using FTM-SSS. This is important to the performance a speech
recognition system, since any error in the HMM topology is propagated and it is
difficult if not impossible to compensate for this at later stages.

The results of the second part of the thesis also show that:

o the algorithm is fast enough to be applied to large tasks such as the J NAS
and IPA databases, which contain together more than 60 hours of training
data.

e training data speech should be as equally distributed in the acoustic space
as possible, such that it does not affect the decisions taken by the HMM
state clustering algorithm when producing the HMM topology.

The contribution of this thesis is then to show that it is possible to grow a
cluster tree with a very rich representation of the probability density function
(pdf) of a candidate state split (with a Tied-Mixture representation) and at the
same time be computationally feasible, given the assumption that the codebook
change during the split can be neglected. 4

It has been demonstrated that the proposed approach is effective for large
context-independent, speaker independent databases such as the JNAS and the
IPA databases.
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6. Future Work

Suggestion of directions that can be taken follow the work presented in this thesis

are:

e acoustic duration models. Should them also be included in the cluster tree?

Should we also consider its dependency?

e dimensioning of the HMM topology tree. In particular to better understand
when we should to stop splitting a state, in order to avoid undertraining
problems later. It is specially important when looking for highest possible
accuracy that can be achieved. Should it be in terms of occurrence counts,

mass occurrence, or what?

e design a recognition engine that chooses the degree of dependency of the
acoustic models based on its duration (at run time). For example, inves-
tigating whether we should use full/left/right context dependent models
(a cluster tree leave) or context independent models, based on the state

occurrence during training/recognition.
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