
Acceleration of WWW Service

with Distributed Cache Technology

Eiji Kawai

Department of Information Systems

Graduate School of Information Science

Nara Institute of Science and Technology

abstract:

Acceleration of WWW Service with

Distributed Cache Technology

Great varieties of cache technologies are applied to improve the quality of WWW

services. A distributed WWW cache system is such a strong solution where cache of

a single proxy server is shared by other proxy servers. It can reduce WWW service

latency, traÆc on the Internet, load of WWW servers, etc. Internet cache protocol

(ICP) is one of the protocols widely employed by the distributed WWW cache systems.

Using ICP, the proxies scattered all over the world can easily cooperate with each other

and increase their cache hit rate. On the other hand, the traÆc generated by ICP

might cause a consumption of network resources because it does not usually convey

any WWW object data. Despite this disadvantage, ICP has been employed even in

inappropriate situations because there is no quantitative analysis of the ICP traÆc.

Obviously, a system analysis based only on the hit rate, which is the most frequently

used index for performance of a cache system, is inadequate to evaluate the e�ect of

the distributed WWW cache system.

In this dissertation, �rstly I give quantitative traÆc analyses of distributed WWW

cache systems especially focused on local area networks (LANs) and wide area networks

(WANs). From a viewpoint of LAN, ICP simply increases the amount of ICP traÆc

passing through the boundary router that connects the LAN and the rest of the world.

Because the network bandwidth between the LAN and the WAN is highly limited in

many cases, ICP can cause a severe performance degradation. From a viewpoint of

WAN, ICP can actually decrease the HTTP traÆc on the Internet by retrieving HTTP

objects not from distant origin servers but from possibly closer proxy servers. However,

the ICP traÆc on the Internet might cancel the traÆc reduction. In my analysis, I

�gure out the communication model of the system and investigate the in
uence of

several parameters on the traÆc. The contribution of this dissertation includes that

it speci�es the proper and improper situation where ICP can be employed. With

this analysis, WIDE cache bone, one of the largest distributed WWW cache systems

in Japan operated by WIDE project, is recon�gured at many proxy servers to cease

i

sending ICP queries.

Next, I propose a new algorithm for a distributed cache system in place of ICP.

ICP is a loosely coupled distributed cache system, i.e., cache nodes work independently

of each other. On the other hand, tightly coupled systems where each cache node is

assigned a portion of name space of WWW objects and caches only the objects whose

names are in the assigned space. Hash routing is an algorithm for a tightly coupled

cache system that achieves a high hit rate by preventing overlaps of objects between

caches. One of the drawbacks of hash routing, however, is its weakness against failure.

When one of the cache nodes fails, all the users using the system su�er from the

performance degradation. In this dissertation we propose a duplicated hash routing

algorithm that achieves high tolerance against the failure of cache nodes. Duplicated

hash routing introduces minimum redundancy to keep system performance when some

cache nodes are crashed. In addition, each node caches objects requested by its local

clients (local caching), which may waste some portion of system cache capacity but it

can cut down the network traÆc between cache nodes. We evaluate various aspects of

the system performance such as hit rates, error rates and network traÆc by simulations

and compare them with those of other algorithms. The results show that our algorithm

achieves both high fault tolerance and high performance with low system overhead.

keywords: distributed WWW cache systems, Internet Cache protocol, traÆc analysis,

hop count, fault tolerance, hash routing, cache redundancy

ii

World Wide Web

WWW

WWW

WWW

WWW WWW

(ICP) ICP WWW

Harvest Squid

ICP

ICP

WWW WWW

(HTTP)

ICP

ICP

ICP

(LAN) (WAN)

LAN ICP LAN

ICP

WAN ICP

HTTP

ICP

WWW

iii

ICP

WWW WIDE cache bone

ICP ICP

ICP

ICP

WWW

() ICP

: WWW

iv

Acknowledgements

I wish to express my gratitude to professor Kotaro Minato, my advisor and committee

chairman, for his support, advice and encouragement. Without his kind cooperation, I

could not complete this dissertation. I would also like to thank professor Akira Fukuda

for his helpful support on my committee. His useful comments helped me to �nish my

work. My special thanks go to professor Suguru Yamaguchi for his continuous support

and assistance with his great patience. He read my research papers carefully and gave

me a lot of useful comments. I wish to thank associate professor Hideki Sunahara for

his long sustained support to my work. His kind support encouraged me to make my

research a fruitful one.

I also thank assistant professor Ken-ichi Chinen for exciting discussion. He also

taught me a lot of programming techniques and I could implement various eÆcient

simulation programs. I thank assistant professor Katsuyoshi Iida and my colleague

Yutaka Nakamura for their friendly assistant and discussion that helped me to polish

my research ideas. Their continuous stimulation push me way to the goal. Special

thanks to Kadohito Osuga for his help to my research especially in the area of dupli-

cated hash routing. I also thank all the members of Information Technology Center

for their kind support and comments.

Finally I wish to thank my family. Their sincere encouragement and support enable

me to go through my degree.

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions of This Dissertation . 4

1.3 Contents of This Dissertation . 4

2 ICP TraÆc on LAN 7

2.1 Introduction . 7

2.2 Why do We Estimate the Number of Packets? 8

2.3 Modeling . 9

2.3.1 Network Environment . 9

2.3.2 Flow of HTTP Requests and ICP Queries 9

2.3.3 Estimation of the Number of Packets 10

2.4 Evaluation of the Number of Packets on the Model 12

2.4.1 Case 1: Proxy P does not Accept ICP Queries 13

2.4.2 Case 2: Cache P Accepts ICP Queries from External Siblings . 14

2.5 Evaluation of the Actual Proxies . 14

2.6 Concluding Remarks . 15

3 ICP TraÆc on WAN 17

3.1 Introduction . 17

3.2 Related Works . 18

3.3 The De�nition of PHI and BHI . 19

3.4 Communication Models . 20

3.5 Summary of Characteristics of WWW TraÆc 21

3.5.1 Object Size . 21

3.5.2 Number of Packets . 22

3.5.3 Hop Count . 23

3.5.4 Evaluation of PHI and BHI on Systems 24

3.6 Analysis . 24

3.6.1 Analysis Using PHI . 25

3.6.2 Analysis Using BHI . 27

vi

3.7 Concluding Remarks . 30

4 Duplicated Hash Routing 33

4.1 Introduction . 33

4.2 Background . 34

4.2.1 Hash Routing . 34

4.2.2 Robust Hash Routing . 36

4.2.3 Proxy Auto Con�guration . 36

4.3 Duplicated Hash Routing . 37

4.4 Simulation Model . 39

4.4.1 Workload . 39

4.4.2 Object Size . 40

4.4.3 Replacement Algorithms . 40

4.4.4 Failure Rates . 40

4.4.5 Copy Intervals . 41

4.4.6 The Number of Nodes and Cache Size 41

4.5 Results . 41

4.5.1 Hit Rates . 43

4.5.2 Cache Capacity . 45

4.5.3 Network TraÆc . 45

4.5.4 Summary . 51

4.6 Concluding Remarks . 51

5 Conclusion 53

6 Future Works 55

6.1 More Network Bandwidth . 55

6.2 Multimedia Streams . 56

6.3 Peer-to-Peer . 56

A Estimation of the Number of Packets per Request 61

A.1 Estimation of the Number of Packets per HTTP Request 61

A.2 Estimation of the Number of Packets per ICP Query 62

B Characteristics of WWW TraÆc 63

B.1 Object Size . 63

B.2 Number of Packets on HTTP . 66

vii

List of Figures

1.1 Systems connected in serial . 2

1.2 Systems connected in parallel . 3

2.1 Network Environment . 9

2.2 Flow of HTTP requests and ICP queries 10

2.3 The relation between hit rate and the number of packets 16

3.1 Basic model of a communication . 19

3.2 Communication environment of a distributed WWW caching system . . 20

3.3 Distribution of hop counts from our proxy to origin servers 23

3.4 Threshold (PHI) . 26

3.5 Threshold on Hs = 3 (PHI) . 28

3.6 Threshold (BHI) . 29

3.7 Threshold on Hs = 3 (BHI) . 30

4.1 Simple hash routing (upper: cache miss, lower: cache hit) 35

4.2 Duplicated hash routing (upper: cache miss, middle: cache hit and copy,

lower: failure and cache hit at the secondary cache) 38

4.3 Hit rates of robust hash routing (HR), duplicated hash routing (DHR),

duplicated hash routing with local caching (DHR with LC), internet

cache protocol (ICP), and stand alone caching (SA) with 64GB of cache

capacity . 42

4.4 Hit rates on failure (with 64GB of cache capacity) 43

4.5 Hit rate on failure and copy factor of duplicated hash routing (n is the

number of nodes and cache capacity is 64GB) 44

4.6 Hit rates with local caching disabled (upper: robust hash routing, lower:

duplicated hash routing) . 46

4.7 Hit rates with local caching enabled (upper: robust hash routing, lower:

duplicated hash routing) . 47

4.8 Hit rates of duplicated hash routing on failure with local caching 48

viii

4.9 Network traÆc between nodes with hash routing, duplicated hash rout-

ing, duplicated hash routing with local caching, and ICP (with 64GB of

cache capacity) . 49

4.10 Network traÆc and copy factor with duplicated hash routing (n is the

number of nodes and cache capacity is 64GB) 50

A.1 Models of an HTTP request (left) and a ICP query (right) 62

B.1 Distribution of object size (LOCAL HIT, May 1998) 64

B.2 Distribution of object size (LOCAL MISS, May 1998) 64

B.3 Distribution of object size (REMOTE HIT, May 1998) 65

B.4 Distribution of object size (ALL MISS, May 1998) 65

B.5 Distribution of size of URLs . 66

B.6 Distribution of number of packets (LOCAL HIT, May 1998) 67

B.7 Distribution of number of packets (LOCAL MISS, May 1998) 67

B.8 Distribution of number of packets (REMOTE HIT, May 1998) 68

B.9 Distribution of number of packets (ALL MISS, May 1998) 68

ix

List of Tables

2.1 list of parameters (part 1) . 11

2.2 list of parameters (part 2) . 11

2.3 list of �xed parameters . 12

2.4 Fixed value of parameters . 13

2.5 The value of N : case 1 (shown in millions) 14

2.6 The value of N : case 2 (shown in millions) 14

2.7 The values of parameters . 15

2.8 The number of packets (shown in millions) 15

3.1 Hit rate, average object size and average number of packets 22

4.1 Summary of hash routing, duplicated hash routing, duplicated hash

routing with local caching, ICP, and stand alone caching 49

B.1 Summary of WWW accesses at our institute (May 1998) 63

B.2 Number of ACK packets . 69

x

Chapter 1

Introduction

1.1 Motivation

Although World Wide Web (WWW) was designed and developed originally as a

medium for exchange of research information, its handy ways of publishing and re-

trieving various information have made its popularity fairly large. This enormous

popularity of WWW, however, has raised various problems such as traÆc congestion

on back bone networks and exceedingly high load on WWW servers. Because all these

problems increase service latency at clients, WWW is sometimes called cynically as

World Wide Wait.

One of the popular techniques applied to resolve this problem is caching [1, 2].

Once a WWW object is stored in a cache, the object can be retrieved not from the

origin server but from the cache. Thus the cache can reduce accesses to the origin

server, network traÆc on the Internet if the cache is near the clients, and also reduce

the service latency experienced by the clients.

There are many points where the caching technology can be applied. First, each

client (WWW browser) has its own cache. If the user revisits a WWW page, the

objects composing the page can be retrieved from the cache. A proxy server is another

point that can implement a cache. It is usually settled near the boundary between

a local area network (LAN) and a wide area network (WAN) and relays the HTTP

traÆc crossing the boundary. Many organizations protect their LAN with a �rewall

that �lters out any traÆc other than that from/to permitted hosts and ports. In

such case, aggregating the traÆc from scattered clients at the proxy server makes the

management of the �rewall more simple and keeps the high security. These proxy

servers with a cache are referred to as caching proxies. The caching proxy has an

advantage that an object stored in the cache as a result of some client's request can

be shared by other clients. On the other hand, a caching proxy server on the side of

servers, a reverse proxy, also can alleviate some bottlenecks. The reverse proxy reduces

2 CHAPTER 1. INTRODUCTION

Origin Server

Proxy Server

Client

Figure 1.1: Systems connected in serial

the requests arriving at the servers, that is, the load of the servers.

In this dissertation, we focus on caching proxies, especially, distributed caching

systems composed by scattered caching proxies on the Internet. With a distributed

caching system, higher hit rate can be achieved than with a single caching proxy. The

distributed caching systems can be classi�ed into two categories, systems connected

in serial and systems connected in parallel. Figure 1.1 and Figure 1.2 depict these

systems.

In a system connected in serial, each caching proxy server receives HTTP requests

and searches its local cache for the requested object. If the object is found in the cache,

it is returned to the client. Otherwise, the request is forwarded upstream to the next

proxy server, which is called a parent, or the origin server.

In a system connected in parallel, if a caching proxy server that receives an HTTP

request does not have the requested object, it broadcasts queries to a set of neighbor

proxy servers, which are called siblings. Each sibling returns the reply to the query

and the proxy server can retrieve the object from one of the siblings that returned

aÆrmation. If no aÆrmation is returned from the siblings, the proxy server forwards

the HTTP request to the origin server.

In practical operation, a hybrid topology is usually employed. From a global view-

point, each proxy server is serially connected and organizes a hierarchical tree structure.

On the other hand, from a local viewpoint, some of them are interconnected in parallel

with a relationship of siblings.

Not only a strict tree structure, but also a non-tree structure might also be employed

1.1. MOTIVATION 3

Origin Server

Sibling Server Sibling Server

Proxy Server

Client

Figure 1.2: Systems connected in parallel

on a hybrid system. When a proxy server forwards an HTTP request upstream because

all of the responses to the queries sent to the siblings are negative ones, it can choose

one of the sibling proxies that returned the response fastest to the query as the next

parent server. In this case, some scheme that avoids HTTP requests to be forwarded

permanently is required.

Many researchers have worked hard to hatch out more eÆcient algorithms, more

scalable architectures, and implementations with higher performance of distributed

caching systems. Internet cache protocol (ICP) [3] is a protocol widely employed by

the distributed WWW caching systems and currently it gains a position of de-facto

standard. Using ICP, the proxies scattered all over the world can cooperate easily with

each other and increase their cache hit rate. On the other hand, the traÆc generated

by ICP might be considered as a waste of network resources because it does not usually

convey any WWW object data. Despite this disadvantage, ICP has been employed

even in inappropriate situations because there is no quantitative analysis of the ICP

traÆc. Obviously, a system analysis based only on the hit rate is inadequate to evaluate

the e�ect of the distributed WWW caching system.

Categorizing the distributed cache systems from a di�erent viewpoint, ICP is a

loosely coupled distributed caching system, i.e., caching nodes work independently of

each other. On the other hand, tightly coupled systems where each caching node is

assigned a portion of name space of WWW objects and caches only the objects whose

names are in the assigned space. Hash routing [4] is a convincing algorithm for a

tightly coupled caching system that achieves a high hit rate by preventing overlaps of

4 CHAPTER 1. INTRODUCTION

objects between caches. A drawback of hash routing, however, is its weakness against

failure. When one of the caching nodes fails, all the users using the system su�er from

the performance degradation.

1.2 Contributions of This Dissertation

This dissertation focuses on distributed WWW caching systems composed by scattered

caching proxies on the Internet from various aspects such as network traÆc, architec-

tural scalability and fault tolerance. Especially the contributions of this dissertation

include the following.

� Quantitative evaluation of the traÆc on a distributed caching system

� Distinct guideline to decide the proper and improper situations for adoption of

ICP

� Improvements of fault tolerance and eÆciency of hash routing by introducing

exibility and redundancy

1.3 Contents of This Dissertation

This chapter, Chapter 1 gives a brief introduction of this work. It includes motivation,

problems to be solved, and contributions.

Chapter 2 gives quantitative traÆc analyses of distributed WWW caching systems

especially focused on local area networks (LANs). From a viewpoint of LAN, ICP

simply increases the ICP traÆc passing through the border gateway that connects

the LAN and the rest of the world. Because the network bandwidth between them

is highly limited in many cases, ICP can cause a severe performance degradation. In

our analysis, we �gure out the communication model of the system and investigate the

in
uence of several parameters on the traÆc. As a conclusion of this analysis, we give

a distinct con�guration guideline of a distributed caching system using ICP.

In Chapter 3, the HTTP traÆc on the WAN with a distributed caching system is

focused on. From a viewpoint of WAN, ICP can actually decrease the HTTP traÆc

on the Internet by retrieving HTTP objects not from distant origin servers but from

possibly closer proxy servers. However, the ICP traÆc on the Internet might cancel

the traÆc reduction. In this analysis, we introduced the concept of network distance

between caching proxies and origin servers. Thus, the e�ectiveness of ICP can be

evaluated quantitatively.

Chapter 4 proposes a duplicated hash routing algorithm that achieves high toler-

ance against the failure of caching nodes. Duplicated hash routing introduces minimum

1.3. CONTENTS OF THIS DISSERTATION 5

redundancy to keep system performance when some caching nodes are crashed. In ad-

dition, each node can cache objects requested by its local clients (local caching), which

may waste some portion of system cache capacity but it can cut down the network

traÆc between caching nodes. We evaluate various aspects of the system performance

such as hit rates, error rates and network traÆc by simulations and compare them

with those algorithms.

Finally, Chapter 5 concludes this dissertation and Chapter 6 suggests future works.

As a supplement of our argument, we show how IP packets are exchanged between

a client and server using HTTP, and between a proxy and a sibling using ICP in

Appendix A. In Appendix B, we show the typical WWW traÆc patterns using an

actual log data generated by Squid cache system operated at our institute. All our

analysis is based on these traÆc models.

Chapter 2

ICP TraÆc on LAN

A distributed WWW caching system based on Internet Cache Protocol (ICP) is a

system where a cache of a single proxy server is shared by others. When a proxy

server receives an HTTP request for an object but it does not store the object locally

in its cache, it sends queries to other proxies. However, the system causes a problem

that many ICP messages, i.e., many ICP packets, are exchanged between proxies. The

increase of ICP packets cause various problems such as network congestion and high

load on routers.

In this chapter, we focus on the in
uence of a distributed WWW caching system

using ICP on network traÆc of a LAN. we �gure out the communication model of the

system and analyze the traÆc, especially the number of packets, on the LAN. With

our analysis tracing the log data of an actual system, we reveal that ICP increases

substantially the number of packets on a border gateway. Finally we conclude our

argument with guidelines on organizing the distributed WWW caching system.

2.1 Introduction

One of the popular caching proxy servers used to form a globally distributed caching

system is Squid [5]. When a Squid proxy server receives a request for an object it has

not stored locally in its cache, it sends queries to other caching proxy servers. If one of

the proxies has the requested object in its cache, the request is forwarded to the proxy

and the object is retrieved from the proxy. The communication protocol to send queries

to other proxy servers, called siblings, is Internet Cache Protocol (ICP) [3]. Because

ICP uses UDP and is designed as simple, ICP is considered an eÆcient protocol.

Cache hits on a distributed caching system are classi�ed into two kinds. One is a

local hit and the other is a remote hit. An operator of a caching proxy server tends to

set up the proxy to send ICP queries to many siblings for achieving a higher remote

hit rate. In this case, many ICP messages are sent on small IP packets at a burst when

8 CHAPTER 2. ICP TRAFFIC ON LAN

an HTTP request makes a local cache miss. However, the remote hit rate is much

lower than the local hit rate. Since the caches of browsers and the proxy �lter out the

requests for frequently accessed objects, most ICP queries are ones for objects which

are rarely requested. Therefore, most of these ICP messages can be considered as a

waste of network resources.

A large number of ICP packets increase loads of routers, especially the border

gateway between LAN and WAN where all the ICP packets are relayed. The load of

the router depends on not only the total traÆc volume but the total number of packets

it processes. In addition, many organizations connect their LANs to the Internet with

low bandwidth. Consequently, numerous ICP packets force a high load on a border

gateway.

In past studies, many researchers argued about a hit rate [6, 7] and traÆc volume [8,

9, 10]. We took a new approach: estimation of the number of packets which caching

proxies and origin servers exchange with each other. In this paper, we introduce a

communication model of a distributed caching system and evaluate the e�ect of several

con�guration factors. Furthermore, we investigate the number of packets based on the

log data of actually working system. Finally we give some suggestions on con�guring

and managing a distributed caching system.

2.2 Why do We Estimate the Number of Packets?

Although ICP is considered to have few problems from a viewpoint of the amount of

traÆc because of its simple and small messages, it can make a high load on routers.

A router has two time-consuming tasks to process a packet. One is a routing table

look up for the next hop to deliver the packet. The other is copying the packet from

the bu�er of the incoming interface to that of the outgoing interface. Therefore, a

large number of packets give a high load to the router even if the size of each packet is

small. To make matters worse, the remote hit rate is usually low. For these reasons, it

is important to examine the number of exchanged packets and make e�orts to reduce

them.

To obtain the number of the packets, there are two approaches: estimation and

monitoring. We face, however, diÆculties when we actually observe the number of

packets. In order to show the e�ect of con�guration parameters of caching proxies upon

the number of packets they exchange, the observations must be done for many times

changing the parameters. However, frequent con�guration changes are not allowed at

the systems that actually provide service to users. Even if such con�guration changes

are allowed, the HTTP requests the proxy receives and the state of its cache are

changing every moment, therefore each observation is inevitably made in di�erent

condition. These are the reasons why we take an estimation approach.

2.3. MODELING 9

Internet

Caching Proxy

Sibling Proxy

Origin Server

Clients (Browsers)

Sibling Proxy

Border Gateway

Figure 2.1: Network Environment

2.3 Modeling

As preparation for our estimation, we introduce a model of message
ow on the system.

Based on this
ow model, we estimate the number of packets.

2.3.1 Network Environment

Figure 2.1 depicts the typical network environment. A caching proxy server is settled

on the LAN of an organization. Many clients are connected to the LAN and they

use the caching proxy server to access WWW servers on the Internet. This proxy

exchanges ICP messages with several siblings on the Internet. In this study, we focus

on the number of packets which pass through the border gateway since it relay all the

ICP messages from or to the proxy on the LAN.

2.3.2 Flow of HTTP Requests and ICP Queries

In this subsection, we describe the
ow model of HTTP and ICP messages. As Fig-

ure 2.2 shows, HTTP requests from a set of clients C = fC1; :::; Cwg are sent to the

caching proxy P . If the proxy P has the requested object in its local cache, no more

messages are generated outside the organization. Otherwise, the proxy P sends ICP

queries to the set of siblings S = fS1; :::; Sug and each of them returns reply, a hit or

a miss, to the proxy P . If some siblings return hits, P forwards the HTTP request to

10 CHAPTER 2. ICP TRAFFIC ON LAN

S = {S1, ... , Su}

Sibling

Sibling

Client
Caching

Proxy
Origin
Server

S’ = {S1’, ... , Sv’}

C = {C1, ... , Cw} OP

HTTP HTTP

ICP HTTP

ICP HTTP

Figure 2.2: Flow of HTTP requests and ICP queries

the sibling that returns the hit �rst. If no siblings return hits, P forwards the HTTP

request to its origin server O.

Independent of the
ow of these HTTP and ICP messages, the proxy P receives

ICP queries from a set of siblings S 0 = fS 0

1
; :::; S 0

v
g. We call these siblings external

siblings. If the �rst hit response they receive is from the proxy P , they forward the

HTTP request to P .

In our model, all the messages except for HTTP messages exchanged between the

clients C and the proxy P are relayed on the border gateway.

2.3.3 Estimation of the Number of Packets

Based on our model, we formulate the number of packets which pass through the border

gateway. Let N be the number of all packets which pass through the gateway during

a certain time T . We classify these N packets into two categories. The �rst is for

the packets generated to process HTTP requests from the clients on the organization

network. The second is for the packets generated to process ICP queries and HTTP

requests from the external siblings on the Internet. NI and NE denote the numbers of

packets fall into the former and the latter category, respectively.

The Number of Packets NI

2.3. MODELING 11

Table 2.1: list of parameters (part 1)

R the number of HTTP requests which the proxy P receives from clients

during T

p the local hit rate of the proxy P for HTTP requests

q the remote hit rate of the proxy P for HTTP requests

u the number of siblings to which P sends ICP queries

n the average number of packets generated in a single HTTP transaction

m the average number of packets generated in a single ICP transaction

Table 2.2: list of parameters (part 2)

R0

i
the number of HTTP requests sent to the external sibling S 0

i
during

T (i = 1; :::; v)

v the number of external siblings which send ICP queries the proxy P

p0
i

the local hit rate of the external sibling S 0

i
(i = 1; :::; v)

q0
i

the remote hit rate of the external sibling S 0

i
(i = 1; :::; v)

u0
i

the number of siblings to which the external sibling S 0

i
(i = 1; :::; v)

sends ICP queries

ki the rate of remote hits from the proxy P in all the remote hits of the

external sibling S 0

i
(i = 1; :::; v)

First, we formulate NI , the number of packets generated to process the local clients'

HTTP requests. We use the parameters described in Table 2.1 to obtain NI .

The set of clients C send HTTP requests to the proxy P . Since the local hit rate

of the proxy P is p, it sends ICP queries to u siblings with the probability of (1� p).

One of these ICP queries makes a hit at a sibling with the probability of q, and in such

case the HTTP request is forwarded to the sibling. The probability that all the ICP

queries make misses is (1� p� q), and in such case the HTTP request is forwarded to

the origin server. Consequently, we obtain NI as follows:

NI = Rf(1� p)um+ qn+ (1� p� q)ng
= R(1� p)(n+ um)

The Number of Packets NE

Next, we formulate NE. We assume the proxy P is not a parent proxy of any other

proxy. We take this assumption for the simplicity of our model. A parent may receive

HTTP requests from other proxies even if it returns misses to the ICP queries. This

behavior makes our model more complicated.

12 CHAPTER 2. ICP TRAFFIC ON LAN

Table 2.3: list of �xed parameters
R, R0

i
depends on the number of clients or characteristics of the

clients

n depends on characteristics of the HTTP requests from

clients (see Appendix)

m depends on the speci�cation of ICP (see Appendix)

p0
i
, q0

i
, ki depends on the con�guration of the cache S 0

i

In addition to the parameters described in Table 2.1, we use the extra parameters

described in Table 2.2. The external sibling S 0

i
receives R0

i
HTTP requests and its local

hit rate is p0
i
. If S 0

i
does not have the requested object in its local cache, it send ICP

queries to u0
i
siblings and one of the ICP queries is for the proxy P .

The remote hit rate of S 0

i
is q0

i
. When ICP queries from S 0

i
make hits at its siblings,

S 0

i
forwards the HTTP request to the sibling which returns the hit �rst. The conditional

probability that P returns the �rst hit is ki.

Now, we can obtain NE:

NE = m
vX
i=1

(1� p0
i
)R0

i
+ n

vX
i=1

(1� p0
i
)R0

i
q0
i
ki

=
vX
i=1

(1� p0
i
)R0

i
(m + nq0

i
ki)

2.4 Evaluation of the Number of Packets on the

Model

We evaluate the number of total packets on our model and investigate the e�ect of the

changes in parameters to the number of packets. The total number of packets N is as

follows:

N = NI +NE

= R(1� p)(n+ um) +
vX
i=1

(1� p0
i
)R0

i
(m + nq0

i
ki)

Since one of our objectives is to reveal the in
uence of the con�guration of the

proxy P on the number of packets, we �x the parameters which are independent of the

con�guration of the proxy P . Table 2.3 describes the �xed parameters. The parameters

p, u, and v get in
uenced by con�guration changes of the proxy P .

We set the values of R and R0

i
at 1 � 105. This is because the system that is in

operation at our institute receives this order of HTTP requests from the clients. For n

2.4. EVALUATION OF THE NUMBER OF PACKETS ON THE MODEL 13

Table 2.4: Fixed value of parameters
R, R0

i
n m p0

i
q0
i

ki
1� 105 18.35 2 0.4 0.1 0.25

and m, we adopt the values which we describe in Appendix, that is, n is 18.35 and m

is 2. For p0
i
and q0

i
, it is reported that a local hit rate is about 30-50% and a remote hit

rate is about 10%1 in general [11] and our study based on log data of Squid systems

which are in operation at several sites con�rms it. Therefore, we substitute 0.4 and

0.1 for p0
i
and q0

i
respectively. The value of ki depends on many factors such as the

distance between the P and S 0

i
, the local hit rate of S 0

i
, the number of siblings of S 0

i
,

and so on. Since our purpose of this investigation is to estimate the e�ect of the system

con�guration to the number of packets, we set the value of ki at 0.25. We summarize

the values of �xed parameters in Table 2.4. Now, We can obtain the value of N as

below.

N = 1� 105f(1� p)(18:35 + 2u) + 1:47vg

Here, we investigate the total number of packets in two cases. One is the case

that the proxy P sends ICP queries to siblings but does not accept ICP queries from

external siblings. In this case, the value of the parameter v is 0. The other is the

case that proxy P both sends and accepts ICP queries. In that case, the value of the

parameter v is larger than 0. We argue both cases respectively.

2.4.1 Case 1: Proxy P does not Accept ICP Queries

In this case, the proxy P does not accept ICP queries from external siblings. The

external siblings does not give any bene�t to the clients in the organization which owns

the proxy P . Particularly at an organization which has low-bandwidth connectivity

to the Internet, the server administrator prefers to give high priority to local users

on bandwidth utilization. In such an organization, it is agreeable to prohibit accesses

from the external siblings.

Table 2.5 shows our estimation result. The total number of packets increases as

the number of siblings to which P sends ICP queries increases. The increase rate

gets high when the local hit rate is low. This indicates importance of server tuning.

Supplementing the low local hit rate with remote hits by increasing the number of

siblings makes the load of the border gateway high.

1This value is slightly higher than that of our observation.

14 CHAPTER 2. ICP TRAFFIC ON LAN

Table 2.5: The value of N : case 1 (shown in millions)

p n u 0 2 4 6 8 10

0.3 1.28 1.56 1.84 2.12 2.40 2.68

0.4 1.10 1.34 1.58 1.82 2.06 2.30

0.5 0.92 1.12 1.32 1.52 1.72 1.92

Table 2.6: The value of N : case 2 (shown in millions)

p n u 0 2 4 6 8 10

0.3 1.28 1.86 2.43 3.01 3.58 4.15

0.4 1.10 1.64 2.17 2.70 3.24 3.77

0.5 0.92 1.41 1.91 2.40 2.89 3.39

2.4.2 Case 2: Cache P Accepts ICP Queries from External

Siblings

In this case, the proxy P both sends and accepts ICP queries. For example of this case,

an organization connected to the Internet with high network bandwidth can provide

WWW caching service to external siblings. A distributed WWW caching system where

several proxies send ICP queries to each other is also the case.

Here, we take one more assumption that the number of the siblings v and the

number of the external sibling u are same. Under this assumption, several proxies

make a group and they all sends ICP queries to each other.

The estimation result is shown in Table 2.6. The increase rate of the total number

of packets is much higher than that in the case of v = 0. Therefore, a server operator

in an organization where the load of the border gateway is an important issue has to

be cautious about accepting ICP queries form external siblings.

2.5 Evaluation of the Actual Proxies

In this section, we evaluate the number of packets based on our model and access log

data of a Squid proxy server system which was in operation at our institute for a month

in May 1998. The average values of parameters in a day derived from the access log

are shown in Table 2.7. Since the number of ICP queries this proxy accepted is very

small, we can neglect NE. Therefore, we can consider this proxy is an example of the

case 1 described in subsection 2.4.1.

Since over 10% improvement on local hit rate through server con�guration tuning

2.6. CONCLUDING REMARKS 15

Table 2.7: The values of parameters
R p u q n m NI NE N

106545 0.34 8 0.065 18.35 2 2415481 3784 4312464

Table 2.8: The number of packets (shown in millions)

p n u 0 2 4 6 8

0.34 1.29 1.57 1.85 2.13 2.42

0.39 1.19 1.45 1.71 1.97 2.23

0.44 1.09 1.33 1.57 1.81 2.05

has little reality, we evaluate the total numbers of packets respectively in the cases

that the increase of local hit rate is 0%, 5%, and 10%. We also change the number

of siblings and evaluate the number of packets in each case. The result is shown in

Table 2.8.

From this result, we can point out that our proxy achieves remote hit rate of 6.5%

although the number of packets increases from 1.29 millions to 2.42 millions (87%

increase). One of the approaches to reduce the total number of packets is to increase

the local hit rate. A 10% increase in the local hit rate cuts o� 16% of total packets.

This is one instance that shows importance of system tuning.

Next, we consider the e�ect of siblings. This proxy sends ICP queries to 8 siblings

and the remote hit rates qi(i = 1; � � � ; 8) are 0.031, 0.013, 0.010, 0.006, 0.002, 0.001,
0.000, 0.000, respectively. Figure 2.3 shows the relation between the total hit rate

(p + q) and the total number of packets N . In this graph, the number of siblings u

works as a parameter, and we adopt siblings in order of higher remote hit rate as u

increases. We can conclude that many ICP messages waste network resources and give

a high load to the border gateway. Clearly, it is a good idea to cease sending ICP

queries to the siblings that rarely return hits.

2.6 Concluding Remarks

Distributed caching systems which use the ICP protocol come into wide use. ICP

is considered to be simple and eÆcient. However, there is a problem that numerous

packets caused by ICP increases the load of border gateways.

To clarify this problem, we estimated the total number of packets sent to the

network and showed that the more siblings a caching proxy sent ICP queries to, the

more packets were exchanged on the network. The increase rate of the number of

packets is high when the local hit rate is low. This situation gets worse when the

16 CHAPTER 2. ICP TRAFFIC ON LAN

0

5

10

15

20

25

30

0.3 0.35 0.4 0.45 0.5 0.55

T
ot

al
 N

um
be

r
of

 P
ac

ke
ts

 N
(x

10
00

00
)

Total Hit Rate (p + q)

p = 0.34
p = 0.39
p = 0.44

u = 8
u = 8

u = 8

u = 0
u = 0

u = 0

Figure 2.3: The relation between hit rate and the number of packets

proxy accepts ICP queries from external siblings. Our analysis based on the actual log

data made it clear that many ICP packets wasted network resources.

Finally, we conclude our argument with suggestions on con�guring a distributed

caching system, especially on making the load of border gateways low.

Minimize the number of siblings, especially, external siblings: Since HTTP requests

are forwarded to the sibling which returns the hit to the ICP queries �rst, distant

siblings may not contribute to the remote hit rate even if they return a lot of hits to ICP

queries. Consequently, we should check the remote hit rate of each sibling. Moreover,

ICP queries from external siblings never contribute to the clients of the organization

and drastically increase the number of packets relayed at the border gateway. We

should count the number of relayed HTTP requests from each external sibling, which

indicates the contribution to the remote hit rate of the external sibling.

Improvement of the local hit rate is the most important : Increase of the local hit

rate decrease the number of HTTP requests and ICP queries. Con�guring the cache

parameters (cache size in memory or disks, time out limit, etc) to match the charac-

teristics of HTTP requests is important.

Chapter 3

ICP TraÆc on WAN

In this chapter, we discuss the scalability issues arising in distributed WWW caching

systems that exchange meta information among caching proxies using Internet Cache

Protocol (ICP). One of the main objectives of WWW caching systems is to reduce

WWW traÆc on the Internet. Since the traÆc generated by ICP does not usually

convey WWW objects, it might be considered as a waste of network resources. How-

ever, ICP is expected to improve the hit rate so that the system would in turn reduce

WWW traÆc on the Internet. Obviously, a system analysis based only on the hit rate

is inadequate to evaluate the e�ect of the distributed WWW caching system. There-

fore, it is indispensable to examine quantitatively how much the traÆc is reduced or

conversely increased by the system. For the quantitative analysis of the system e�ect,

we evaluate the amount of overall traÆc generated by ICP and HTTP in the system

with siblings as well as in the system without siblings. From the results, we derive the

requirements of the system for substantial traÆc reduction. Considering the fact that

the remote hit rate of a single sibling proxy is usually very low, we conclude that the

distributed WWW caching system using ICP can hardly contribute to the reduction

of WWW traÆc.

3.1 Introduction

One of the main goals of WWW caching system is to reduce WWW traÆc on the

Internet. Since a local cache hit at a caching proxy does not produce any further

traÆc between the proxy and the origin server, the local cache hit has an advantage in

the amount of traÆc generated on the Internet. On the other hand, if the proxy does

not have the requested object in its local cache, ICP messages, i.e., ICP queries and

ICP replies, are exchanged over the Internet. The ICP messages usually do not convey

any WWW objects so that they are just overhead of the system from the viewpoint

on the amount of traÆc. As mentioned in Chapter 2, the remote hit rate produced by

18 CHAPTER 3. ICP TRAFFIC ON WAN

ICP messages is very low in many cases. The number of accesses to WWW pages as

a function of its access ranking is well known to follow the Zipf distribution [12, 13],

which indicates that most objects are accessed only once and are never accessed after

that. In other words, most objects cannot be shared among the proxies. Consequently,

most of the ICP messages can be considered as a waste of network resources from the

viewpoint of the Internet.

According to these complex circumstances, we can conclude that the hit rate is not

adequate for the evaluation of distributed WWW caching systems. In fact, even if the

total hit rate increases due to remote hits, it is likely that ICP generates more traÆc

than the traÆc reduced by remote hits.

In this chapter, we focus on the total amount of traÆc over the Internet generated

by a distributed WWW caching system. In general, communication cost is evaluated

by means of traÆc volume or number of packets. For the evaluation of total traÆc on

the Internet, however, we de�ne new indices which allow for hop count. By considering

hop count, we can evaluate total communication cost quantitatively. The goal of this

paper is to make it clear that the distributed WWW caching systems using ICP can

hardly decrease the network resource utilization on the Internet.

In Section 3.3, we introduce Packet-Hop Index (PHI) and Byte-Hop Index (BHI) as

measures of communication cost. In Section 3.4, we describe a model of the communica-

tion environment. The characteristics of WWW traÆc on the Internet are summarized

in Section 3.5. Finally, we evaluate the distributed WWW caching system and discuss

several design issues arising there.

3.2 Related Works

Several works closely related to the performance evaluation of the WWW system in-

cluding the caching proxy services have been done so far. However, there are few

reports covering the proxy caching systems.

Some researchers have argument that ICP degrades the system performance [14, 15].

However, they only pointed out that ICP added an extra RTT to the object retrieval

time in a case of a remote cache miss. Since WWW users usually mind how much

service delay of WWW accesses is, its reduction will bene�t them. However, the

extra RTT is not so signi�cant for WWW users because the extra RTT is only in the

order of hundreds milliseconds. Normally WWW users are irritated by the service

delay which is in the order of seconds or more. Therefore, the performance evaluation

mentioned in [14, 15] is not enough to reveal reasons why the service delay is quite

large. Furthermore, bene�ts and/or drawbacks of the caching proxy servers are still

not clear.

In general, the network performance is going to degrade drastically in the situation

where the network is highly loaded, as mentioned in [16]. Today, the Internet can

3.3. THE DEFINITION OF PHI AND BHI 19

Client Server
 Communication

 Hop Count = H

Router 1 Router H - 1

Number of Packets = Tp
Number of Bytes = Tb

Figure 3.1: Basic model of a communication

be considered as a highly loaded network because of the rapid growth of the WWW

services on the Internet. Therefore, we can suppose that reducing the WWW traÆc can

help much on the decrease of the service delay. Originally, the caching proxy system

as well as the ICP is designed as a simple, small, and eÆcient system for reducing the

WWW traÆc over the Internet [17]. However, there are few reports on the analysis

of how much the caching proxy system can reduce the WWW traÆc precisely. These

are the reasons why our research is focused on both the quantitative analysis of ICP

traÆc and the total traÆc reduction by the caching proxy systems.

3.3 The De�nition of PHI and BHI

In this section, we introduce two indices, Packet-Hop Index (PHI) and Byte-Hop Index

(BHI). Figure 3.1 gives a basic model of a communication between two entities: a client

and a server. In this model, H denotes the hop count between the client and the server.

The hop count is de�ned as the number of network segments in the route from the

client to the server. In a single communication, we assume Tp packets are exchanged

between the client and the server, and the total amount of exchanged data is Tb bytes.

With this model, we can de�ne PHI and BHI of the communication between the client

and the server as follows:

PHI = TpH

BHI = TbH

Next, we de�ne a task. For example, a single access to a WWW object consists

of ICP message exchanges and several HTTP sessions. With this observation, we

can model that a task (WWW object access) is a set of communications (ICP message

exchanges and HTTP sessions). As the de�nition of PHI and BHI for a communication,

20 CHAPTER 3. ICP TRAFFIC ON WAN

Internet

Caching Proxy

Sibling ProxyOrigin Server

local hit rate =
remote hit rate =

hop count =
hop count =

p
q

Ho
Hs

Figure 3.2: Communication environment of a distributed WWW caching system

we expand the de�nition to both PHI and BHI of a task; the PHI and BHI of a task

are de�ned as the sum of PHI and BHI of each communication, respectively.

PHIT =
X
i

PHIi

BHIT =
X
i

BHI i

3.4 Communication Models

In this section, we describe the communication model of a distributed WWW caching

system. Our simple model depicted in Figure 3.2 consists of three components: a

caching proxy server, a sibling proxy server, and an origin server. When the caching

proxy receives an HTTP request for the object which is not kept in the local cache,

the caching proxy sends an ICP query to the sibling proxy. If the sibling proxy has

the requested object in its cache, the sibling proxy makes an ICP reply for indicating

that the sibling proxy has the object. In this case, the caching proxy forwarded the

HTTP request originally sent by the client to the sibling proxy to obtain the object.

When any sibling proxies do not have the requested object locally, however, the HTTP

request is forwarded to the origin server.

3.5. SUMMARY OF CHARACTERISTICS OF WWW TRAFFIC 21

Here, we let Ho be the hop count from the caching proxy to the origin server. Also,

Hs denotes the hop count from the caching proxy to the sibling proxy. We suppose p

and q are the local hit rate and the remote hit rate of the caching proxy, respectively.

More precisely, q is the ratio of the HTTP requests for the objects which make cache

hits at the (remote) sibling proxy to all the HTTP requests received by the caching

proxy.

With these de�nitions mentioned above, we de�ne a task of a caching proxy as a

series of communications necessary to retrieve a requested object. There are three cases

on the WWW object retrievals: (1) a local hit in the caching proxy, (2) a remote hit at

the sibling proxy, and (3) a remote miss at the sibling proxy. In the case (1), the caching

proxy returns the requested object locally, therefore, no further communications are

required. In the case (2), two communications between the caching proxy and the

sibling proxy are required: one is for an exchange of ICP messages (a query and a

reply), and the other is to obtain the object from the sibling proxy through the HTTP

connection between the caching proxy and the sibling proxy. In the last case (3),

there are two communications required: one is for ICP with the sibling proxy, and

the other is for HTTP with the origin server. Note that we do not discuss the case

where multiple sibling proxy servers are con�gured for the caching proxy server. It

is popular to use the multiple sibling proxy servers, however, it can be considered as

just an additional overhead on the process of ICP message handling. In this case,

communications corresponding to each sibling proxy are simply added cumulatively.

Hence, the PHI and BHI may be larger than ones in the case where only a single sibling

proxy is used.

3.5 Summary of Characteristics of WWW TraÆc

As a basis for the quantitative analysis of the caching proxy system, we examined the

statistical characteristics of the WWW traÆc. The statistical analysis shown in this

section is based on the log data generated by Squid caching proxy system which was in

operation at our institute for a month in May 1998. During this period, the local hit

rate of our Squid was 34% and the total remote hit rate was 6% with the con�guration

where the number of siblings was 8. The details of this analysis are also shown in

Appendix.

3.5.1 Object Size

For estimations of Tp and Tb, we carefully did examinations on the size of WWW

objects and the size of both ICP messages and HTTP requests. We observed that the

average size of WWW objects handled by our Squid was 7356 bytes and its median

was 1460 bytes. For our further analysis, we classi�ed the WWW objects into four

22 CHAPTER 3. ICP TRAFFIC ON WAN

Table 3.1: Hit rate, average object size and average number of packets

result rate object size

number

of

packets

local hit 34.3 % 4606 bytes 14.84

local miss 65.7 % 8790 bytes 18.21

remote hit 6.5 % 6958 bytes 16.92

all miss 59.2 % 8993 bytes 18.35

categories based on their cache status, and examined the average size for each category.

In case of local hit, the average size of the objects obtained from the local proxy was

4606 bytes. In case of local miss, which means the local proxy does not have the

requested object in the local cache, the average was 8393 bytes. In case of remote hit,

which means the local proxy does not have the requested object but the sibling proxy

has it, the average was 6958 bytes. In case of all miss, which means the local proxy

as well as the sibling proxy does not have the requested object, the average size of the

objects in this category was 8538 bytes. In this paper, BLH , BLM , BRH , and BAM

denote these average size, respectively.

The other important number we have to know is the average size of ICP messages.

Since there is no information on the size of ICP messages in Squid's log data1, we had

to estimate the size based on the retrieved URL. In brief, a single ICP message de�ned

in [3] has its header and the payload in which a retrieved URL is stored as an ASCII

text. With this observation, we can derive that the average size of the ICP messages

is about 70 bytes.

3.5.2 Number of Packets

The data exchanged between a client and a server is divided into several packets. The

number of packets, however, depends on many factors: (1) implementation of protocols

such as ICP, HTTP, TCP, UDP, and IP, and (2) underlying datalink technologies, and

(3) the conditions of the network such as congested or not. We've make a rough

1Squid can record only the size of ICP reply messages corresponding to the ICP queries that the

Squid receives.

3.5. SUMMARY OF CHARACTERISTICS OF WWW TRAFFIC 23

0

5

10

15

20

25

0 5 10 15 20 25 30

nu
m

be
r

of
 a

cc
es

se
s

hop count of the origin server

(x 100000)

Figure 3.3: Distribution of hop counts from our proxy to origin servers

estimate of the number of packets P for the object size B as follows:

P =

8>>>>>>>>>>><
>>>>>>>>>>>:

11 (0 < B � 1460)

13 (1460 < B � 2920)

14 (2920 < B � 4380)

16 (4380 < B � 5840)

17 (5840 < B � 7300)

18 (7300 < B � 8760)

18 +
ll

B�8760

1460

m
� 5

4

m
(8760 < B)

(3.1)

Using this estimation, we can calculate the average number of packets exchanged

for a retrieval of a single WWW object over HTTP. In case of local hit, local miss,

remote hit, and all miss, the average number of packets is 14.87, 18.21, 16.92 and 18.35

respectively. In this paper, PLH , PLM , PRH and PAM denote these average numbers of

packets, respectively. The summaries of the results are shown in Table 3.1.

3.5.3 Hop Count

Figure 3.3 shows the distribution of the hop counts from our institute to origin servers

measured by traceroute program. In this measurement, we listed up origin servers

24 CHAPTER 3. ICP TRAFFIC ON WAN

from Squid's log data, and tried to apply traceroute for each origin server. Because

several WWW servers do not permit ICMP probes by some security reasons, our

measurements for more than 20% of origin servers failed. Figure 3.3 does not include

any measurements for this kind of WWW servers.

Obviously, there is an argument that the hop counts to each origin server may vary,

because there are several alternative routes from our institute to the origin server.

However, the hop counts we measured can be considered accurate enough to make our

analysis, because of the stable operation of the Internet. It is not likely to change the

count frequently. Note that the distribution of hop counts to origin servers from any

other sites may change drastically. In spite of a certain level of inaccuracy, we can �nd

a tendency in the distribution of hop counts; the most hop counts range roughly from

5 to 20, and its mode is 10.

3.5.4 Evaluation of PHI and BHI on Systems

The goals of our performance evaluation of the distributed WWW caching system are

to examine whether the WWW caching proxy system actually reduces the WWW

traÆc on the Internet and to estimate the threshold where bene�t produced by the

system exceeds the communication overhead for WWW cache system itself. For these

goals, we apply both PHI and BHI to tasks we observed.

With our observation on our Squid, we can assume that there is no correlation

between the hop counts to the origin servers Ho and the distribution of the packet

size P as well as the object size B. In other words, this assumption means that the

distributions of both P and B do not depend on Ho. With this assumption, we are

going to use the average PHIT and BHIT of tasks whose objects are retrieved from

origin servers with the hop count Ho as the performance index of the WWW caching

proxy system.

PHI(Ho) = Average
Ho

(PHIT)

BHI(Ho) = Average
Ho

(BHIT)

3.6 Analysis

In this section, we discuss our quantitative analysis on the cost associated with commu-

nications among a caching proxy, a sibling proxy, and an origin server in the distributed

WWW cache architecture. Our approach is to use both PHI and BHI. Furthermore,

we derive the boundary conditions where the bene�t produced by the system exceeds

the communication overhead for WWW cache system. Based on these analyses, we

point out the drawbacks of the distributed WWW cache system using ICP.

3.6. ANALYSIS 25

3.6.1 Analysis Using PHI

As this article is focused on the bene�t/drawbacks of the distributed WWW caching

proxy system, we apply the PHI to two cases: a caching proxy with a sibling proxy

and one without a sibling proxy.

Without a Sibling Proxy

In the case with no sibling proxy, all the HTTP requests that make local cache misses

are forwarded to their origin servers. Therefore, there is no overhead for handling ICP

messages. We de�ne PLM as the average number of packets exchanged between the

caching proxy and the origin server. The PHI can be formulated as follows:

PHI(Ho) = (1� p)PLMHo (3.2)

With a Sibling Proxy

A caching proxy with a sibling proxy acts more complicated. When an HTTP request

misses the local cache at the caching proxy, an ICP query is sent to a sibling proxy.

Since the average size of ICP queries is about 70 bytes as mentioned in Section 3.3, a

single UDP packet can carry each ICP query. The ICP query makes the remote hits at

the sibling proxy with the probability q. In this case, the HTTP request is forwarded

to the sibling proxy. If the ICP query makes a miss, on the other hand, the HTTP

request is forwarded to the origin server. The average number of packets exchanged

between the caching proxy and the origin server is de�ned as PAM . Therefore, the PHI

is derived as follows.

26 CHAPTER 3. ICP TRAFFIC ON WAN

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20 25 30

q
(r

em
ot

e
hi

t r
at

e)

Ho (hop count to origin server)

Hs = 1
Hs = 2
Hs = 3
Hs = 4
Hs = 5
Hs = 6
Hs = 7
Hs = 8

Figure 3.4: Threshold (PHI)

PHI(Ho) = (1� p)(2� 1)Hs + qPRHHs

+ (1� p� q)PAMHo

= (2(1� p) + qPRH)Hs

+ (1� p� q)PAMHo (3.3)

Threshold

It is obvious that the communication cost for ICP messages is inversely proportional

to the hop counts to the origin server. The underlying idea of the sibling proxy is to

obtain WWW objects from a proxy closer than the origin server in order to reduce the

data transfer overhead. If the origin server is closer than the sibling proxy, there is

no advantage to use the sibling proxy; getting WWW objects directly from the origin

server is more eÆcient in terms of communication overhead. The remote hit rate is

also an important factor. The higher the remote hit rate is, the more bene�t the

caching proxy can get. Therefore, from Equation 3.2 and Equation 3.3, we can derive

the boundary condition where the ICP overhead is equal to the bene�t of the sibling

proxy:

(1� p)PLMHo = (2(1� p) + qPRH)Hs

+ (1� p� q)PAMHo

3.6. ANALYSIS 27

We can get the minimum requirement of remote hit rate q by solving this equation for

q.

q =
(1� p)(2Hs + (PAM � PLM)Ho)

PAMHo � PRHHs

As shown in Table 3.1, the value of p, PLM , PRH and PAM to 0.34, 18.21, 16.92 and

18.35, respectively. With these numbers, we examine the relation between Ho and q.

The Hs is varied from 1 to 8, as a parameter. Figure 3.4 depicts the relation.

q =
0:66(2Hs + 0:14Ho)

18:35Ho � 16:92Hs

Note that the total remote hit rate more than 10% cannot be achieved even if we

use the multiple sibling proxy con�guration2 in the ordinary environment. With our

evaluation of log data of Squid operated at many sites, few sibling proxies achieve high

remote hit rate more than 2% individually.

Figure 3.4 shows the break-even condition between q and Ho, in terms of communi-

cation cost based on the PHI. For example, considering WWW servers within 15 hops

from the caching proxy, we can conclude that the sibling proxy whose sole remote hit

rate is less than 2% has no advantage unless the sibling proxy is within 2 hops away

from the caching proxy.

Next, we examine the impact of the local hit rate p to the performance; we vary the

local hit rate p. The results are shown in Figure 3.5. Here we set Hs to 3 (the minimum

hop count in the model shown in Figure 3.2). In general, the higher a caching proxy

achieves the local hit rate, the lower the remote hit rate becomes. It is the most likely

that we can't �nd out the WWW object in the sibling proxy if we can't �nd it in the

local caching proxy, since the distribution of accesses to WWW objects follows the

Zipf distribution as mentioned in Section 3.1. Therefore, even when we improve the

local hit rate, it becomes more hard to ful�ll the requirement on the remote hit rate.

As our conclusion, it is hard to achieve the traÆc reduction on WWW accesses in

the architecture of the WWW caching proxy with sibling proxies. Especially, it is not

practical to use siblings in other organizations where their networks are normally far

with the hop count more than 3.

3.6.2 Analysis Using BHI

Most of these evaluations can be done in the same way as those of PHI.

2In the case we observe the total remote hit rate more than 10%, we suppose that the (local)

caching proxy is not con�gured appropriately or it is in an exceptional environment.

28 CHAPTER 3. ICP TRAFFIC ON WAN

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20 25 30

q
(r

em
ot

e
hi

t r
at

e)

Ho (hop count to origin server)

Hs = 3, p = 0.20
Hs = 3, p = 0.30
Hs = 3, p = 0.40
Hs = 3, p = 0.50

Figure 3.5: Threshold on Hs = 3 (PHI)

Without a Sibling Proxy

The average number of bytes exchanged between the caching proxy and the origin

server in case of local miss is denoted as BLM . The BHI is formulated shown below:

BHI(Ho) = (1� p)BLMHo (3.4)

With a Sibling Proxy

The average sizes of both ICP queries and replies are about 70 bytes, as mentioned in

Section 3.5. To make the calculation simple, we �x them to 70 bytes. BRH denotes the

average number of bytes transferred between the caching proxy and the sibling proxy

in case of remote hit. The BHI is formulated as below:

BHI(Ho) = (1� p)(2� 70)Hs + qBRHHs

+ (1� p� q)BAMHo

= (140(1� p) + qBRH)Hs

+ (1� p� q)BAMHo (3.5)

3.6. ANALYSIS 29

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20 25 30

q
(r

em
ot

e
hi

t r
at

e)

Ho (hop count to origin server)

Hs = 1
Hs = 2
Hs = 3
Hs = 4
Hs = 5
Hs = 6
Hs = 7
Hs = 8

Figure 3.6: Threshold (BHI)

Threshold

Similar to the analysis on PHI, we derive the boundary condition. From Equation 3.4

and Equation 3.5, the boundary condition is expressed as follows:

(1� p)BLMHo = (140(1� p) + qBRH)Hs

+ (1� p� q)BAMHo

Now, we can obtain the minimum requirement of the remote hit rate q by solving

this equation for q.

q =
(1� p)(140Hs + (BAM � BLM)Ho)

BAMHo � BRHHs

As shown in Table 3.1, we can set the value of p, BLM , BRH and BAM at 0.34,

8790, 6958 and 8993, respectively. Hs is a parameter varied from 1 to 8. Figure 3.6

shows the boundary conditions.

q =
0:66(140Hs + 203Ho)

8993Ho � 6958Hs

In comparison with the case of PHI, the required remote hit rate q decreases rapidly

as Ho increases. We can point out from this result that a sibling proxy whose remote

hit rate is less than 2% has almost no advantage on reducing WWW traÆc even if

30 CHAPTER 3. ICP TRAFFIC ON WAN

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20 25 30

q
(r

em
ot

e
hi

t r
at

e)

Ho (hop count to origin server)

Hs = 3, p = 0.20
Hs = 3, p = 0.30
Hs = 3, p = 0.40
Hs = 3, p = 0.50

Figure 3.7: Threshold on Hs = 3 (BHI)

the sibling proxy is hooked up to the same network segment with the caching proxy.

As mentioned in the previous subsection, sibling proxies rarely achieve the remote hit

rate higher than 2%. Therefore, this result indicates that most of the sibling proxies

cannot provide any bene�t for a caching proxy, in terms of reduction of the WWW

traÆc.

Similar to the PHI analysis, we vary the local hit rate p, and �gure out how much

the boundary condition between Ho and q is changed, in Figure 3.7. In this analysis,

the Hs is �xed at 3. From this analysis, even in the case that the local hit rate is

50%, the sibling proxy has to achieve the remote hit rate more than 2%. With the

same reasons described in the case of PHI, we can conclude again that most of these

siblings are useless and ICP messages can be considered completely as waste of network

resources.

3.7 Concluding Remarks

The essential drawback of ICP is that ICP queries are invoked every time when any

HTTP requests make local miss at the caching proxy. Though ICP uses UDP as its

transport layer service and its message size is fairly small, it is too expensive to provide

any improvements in terms of the WWW traÆc reductions. RFC2187 [17] asserts the

advantages of ICP such as:

3.7. CONCLUDING REMARKS 31

� ICP can make reductions of the delay on the deliveries of WWW objects.

� ICP can be used as an indicator of the reachability to neighboring proxies.

� ICP can achieve the load balancing among sibling proxies.

Some of these would be correct, however, our analysis con�rms that the performance

advantages described in [17], especially on both traÆc and delay reductions, cannot

be achieved by almost all of the sibling proxies in the ordinary environment of the

Internet.

Other approaches can be taken for making improvements on the distributed WWW

caching proxy system. One of them is to use the �xed con�guration for forwarding

the HTTP requests, such as a hierarchical \tree" con�guration among caching proxies.

The purpose of ICP is to identify the hosts to which the HTTP requests are forwarded

in case of local miss at the local caching proxy. Since the \on-demand" cache query

scheme implemented as ICP can be considered as a waste of network resources, using

the �xed con�guration for forwarding the HTTP request might be a possible solution

because of eliminating any uses of ICP. This approach can help on reduction of the

ICP traÆc, however, it is still too hard to achieve the remote hit rate higher than one

using ICP. Consequently, it is more likely that the forwarded HTTP requests cause

the cache misses at the remote proxy. Therefore, this approach cannot make much

di�erence from the case of ICP.

The other approach is to use a \transparent" caching system. Recently, several

networking equipment vendors released their new WWW cache products in which

they are using the \transparent" caching scheme. Their basic idea is to sneak and

cache the WWW transactions at the router. Such kind of system resides with a router

where the system always monitors any HTTP requests and replies crossing through

the router. If an HTTP reply including a WWW object, the system copies and puts

the object into its cache. If the system �nds out an HTTP request for an object stored

in its cache, then the system intercepts the request and returns the object back to the

client who claims the object. This approach can achieve the traÆc localization and

may reduce the overall traÆc for WWW in the Internet, however, other kinds of issues

may arise such as security issues, a waste of cache storage, etc.

The demands for the capacity of the backbone network have been increasing, and

it is no exaggeration to say that this demand is caused by the growth of the WWW

utilization. However, the actual backbone capacity is not suÆcient for all the demand

in the Internet. Accordingly, it becomes more signi�cant that any schemes to make

reduction on the WWW traÆc are developed. As discussed in this article, caching

proxy systems using ICP cannot contribute to the reductions of the WWW traÆc.

Therefore, it is necessary to develop a practical, scalable, and eÆcient cache mechanism

for this goal.

Chapter 4

Duplicated Hash Routing

Hash routing is an algorithm for a distributed WWW caching system that achieves a

high hit rate by preventing overlaps of objects between caches. However, one of the

drawbacks of hash routing is its lack of robustness against failure. Because WWW

becomes a vital service on the Internet, the capabilities of fault tolerance of systems

that provide the WWW service come to be important. In this paper, we propose

a duplicated hash routing algorithm, an extension of hash routing. Our algorithm

introduces minimum redundancy to keep system performance when some caching nodes

are crashed. In addition, we optionally allow each node to cache objects requested by

its local clients (local caching), which may waste cache capacity of the system but it can

cut down the network traÆc between caching nodes. We evaluate various aspects of

the system performance such as hit rates, error rates and network traÆc by simulations

and compare them with those of other algorithms. The results show that our algorithm

achieves both high fault tolerance and high performance with low system overhead.

4.1 Introduction

The distributed WWW caching systems are put into two categories from a viewpoint

of a role of each caching node: loosely coupled systems and tightly coupled systems.

In a loosely coupled system, each caching node caches all the objects requested by

its local clients. A local client of a caching node means a client that sends requests

directly to the node. If the caching node which receives a request does not have the

requested object in its local cache, it tries to retrieve the object from the other nodes

by some method. Internet cache protocol (ICP) [3] is one of the protocols used in this

kind of systems.

In a tightly coupled system, each caching node is assigned a portion of name space

of WWW objects and caches only the objects whose names are in the assigned space.

All the requests for a WWW object are forwarded to a single caching node and cached

34 CHAPTER 4. DUPLICATED HASH ROUTING

there. Because these systems optimize their whole storage capacity, they can achieve

higher hit rates than loosely coupled systems. There are several systems put into this

category and some of them are implemented [18, 19, 20, 4].

There are two major disadvantages in a tightly coupled system. One is its poor

scalability. A tightly coupled system cannot be employed in an environment with low

bandwidth between caching nodes. Advances in backbone network technology will

make it possible to operate the tightly coupled caching system over a distributed area

in the near future. However, even if such a desirable situation comes true, a kind of

localization of communication, which reduces network traÆc between caching nodes,

is desirable.

The other disadvantage is its lack of robustness. Because each caching node has to

handle the requests from all clients in the system, failure of a single node inevitably has

in
uence on all the clients. This drawback can be removed by introducing redundancy

to the system.

In this paper, we propose a duplicated hash routing algorithm, an extension to the

simple hash routing [4]. Hash routing is a simple and eÆcient algorithm for tightly

coupled caching systems. By introducing cache redundancy to the system, our algo-

rithm can keep its high hit rate even when some caching nodes are in failure. The

redundancy of our system is moderate, i.e., decrease of the hit rate and increase of the

network traÆc between caching nodes is small. In addition, we optionally enable local

caching at each caching node to cut down much of the network traÆc.

Section 4.2 describes hash routing and other backgrounds. In section 4.3, we in-

troduce and give details of the duplicated hash routing algorithm. We evaluate its

performance and compare it with that of other algorithms. We describe simulation

models of these systems in section 4.4, and examine the relationship among various

parameters such as the number of caching nodes, the disk size of each node, frequency

of duplication, network traÆc, and hit rates in section 4.5. Finally, we conclude this

paper with a summary of our results and a discussion of some open issues.

4.2 Background

A variety of technologies for distributed caching systems are being developed. We

describe some of them within the scope of our study.

4.2.1 Hash Routing

Hash routing requires neither a query to a neighbor nor an exchange of an object list.

Figure 4.1 depicts a basic model of hash routing, called a simple hash routing. A client

sends an HTTP request to its local caching node. All the caching nodes in a system

share a single hash function and are assigned a part of name space of WWW objects

4.2. BACKGROUND 35

Cache
Cluster

Client

Cache
Cluster

Origin
Server

Client

Figure 4.1: Simple hash routing (upper: cache miss, lower: cache hit)

36 CHAPTER 4. DUPLICATED HASH ROUTING

without overlaps by the hash function. Thus the local caching node calculates a hash

value of the request and forwards it to some node according to the hash value. After

the object is cached at one of the caching nodes, requests for the object from any

clients in the system make cache hits.

Because an object is cached at only one caching node, hash routing can achieve

a higher hit rate. On the other hand, it has two drawbacks as we mentioned in

section 4.1. One is its large network traÆc between caching nodes. Because a client

cannot retrieve objects directly from the cache of its local caching node in most cases, a

large number of object transmissions between caching nodes occur in the hash routing

system. Therefore hash routing requires the situations that all the caching nodes are

within short distance and connected to each other by networks with high bandwidth.

The other drawback is its lack of fault tolerance. Because an object is only cached

at one node, all clients can su�er from errors or cache misses even when just a single

caching node in the system gets failure.

4.2.2 Robust Hash Routing

There are many possible points of failure in a distributed WWW caching system. In

our study, we focus on failures at caching nodes. We do not discuss other points such as

networks or origin servers because a failure on a network can be counted in a failure of a

caching node and a failure at an origin server has little impact on the total availability

of service compared with that at a proxy server.

When a failure occurs at a caching node of a hash routing system, rebuilding its

hash function is a straightforward way to recover. However, there is a weak point

that the fraction of objects no longer in correct caches can be large [21]. This leads

to performance degradation of the whole system during and after failure of a caching

node. To overcome such weakness, robust hashing was proposed [4] and actually im-

plemented [20].

With robust hashing, the URL of a requested object and the name of each sibling

cache together are used to generate a hash value or score; the object is then mapped

to the sibling cache with the highest score. This technique keeps all cached objects

valid. However, a certain degree of performance degradation is still inevitable.

4.2.3 Proxy Auto Con�guration

As a client-side technology to evade failure of a local caching node, the Proxy Auto

Con�guration (PAC) technology is widely used. When PAC is used, a client receives

a list of proxy servers. If the local proxy is in failure, the client can bypass it and

forward its requests to one of other caching proxies according to the proxy list. In our

study, we assume all clients use the PAC technology.

4.3. DUPLICATED HASH ROUTING 37

In case of hash routing, PAC is not suÆcient. For example, if a remote caching

node gets failure, the objects cached at the node cannot be retrieved from the cache.

All the requests for such objects result in error or cache miss depending on system

implementation. In our study, we assume that such errors are avoided by forwarding

the requests to the origin servers directly or to some other caching nodes.

4.3 Duplicated Hash Routing

The goal of hash routing is to optimize system cache capacity. The key idea in our

algorithm, duplicated hash routing, is introducing minimum redundancy to keep its

high hit rate when some of the caching nodes are in failure. Our algorithm di�ers

from robust hash routing, mentioned in section 4.2.2, in the point that our algorithm

prepares for system failure and keeps its performance during the failure period.

As illustrated in �gure 4.2, an object is cached at a single node in the same way

as the simple hash routing algorithm. We call this caching node a primary cache of

this object. When a following access to the object makes a cache hit at the primary

cache, it duplicates the object to another cache, which we call a secondary cache of

the object. If the primary cache gets failure, the request for the object is forwarded to

the secondary cache and makes a cache hit.

In our system, all the caching nodes share two hash functions. One is used to decide

the primary cache of an object and the other is to decide the secondary cache of the

object. By this cache redundancy, we can achieve robustness against failure.

Besides object duplication, we optionally enable local caching at each node. Lo-

cal caching can reduce network traÆc between caching nodes. Here, we discuss hit

duplication and local caching in our system.

Hit Duplication With duplicated hash routing, each caching node copies its cached

object to the secondary node. If the object duplication is performed frequently, the

traÆc between caching nodes gets increased signi�cantly. Moreover, these duplications

introduce some overlap between caches; this algorithm wastes system cache capacity.

Because these copies are only for fault tolerance capability, we have to minimize the

frequency of copying.

At this point, we can consider two types of solutions. One is avoiding the object

duplication when the object is not expired at the secondary node. With this technique,

we can reduce the network traÆc caused by the object copies. However, to know

whether the secondary cache has the object, some kind of querying protocol such as

ICP is required, which makes the system design and implementation complicated. The

other solution is taking long intervals between object duplications. If this technique can

suppress the network traÆc to a permissible degree without performance degradation,

the querying protocol is not necessary.

38 CHAPTER 4. DUPLICATED HASH ROUTING

Cache
Cluster

Client

 Primay
Cache

Cache
Cluster

Origin
Server

Client

 Primay
Cache

Secondary
Cache

Copy

Cache
Cluster

Origin
Server

Client

 Primay
Cache

 Primay
Cache

Secondary
Cache

Figure 4.2: Duplicated hash routing (upper: cache miss, middle: cache hit and copy,

lower: failure and cache hit at the secondary cache)

4.4. SIMULATION MODEL 39

Local Caching The hash routing algorithms remove overlaps of caches among nodes

and optimize the system cache capacity. In compensation for its high hit rate, network

traÆc among caching nodes is fairly large. Though we assume the situation that the

caching nodes in the system are connected with each other by high speed networks,

traÆc localization in the system still has great signi�cance for system performance such

as reduction of service delay. For that reason, we can optionally allow each caching

node to cache objects requested by its local clients. Of course, local caching reduces

the system cache capacity. If the hit rate decreases substantially when local caching is

enabled, the bene�t of hash routing is spoiled. Therefore, we have to examine whether

the system has adequate cache capacity before enabling local caching.

4.4 Simulation Model

We evaluate the duplicated hash routing algorithm by simulation. In this section, we

describe some topics on the simulation to be considered.

4.4.1 Workload

Web accesses received at a caching proxy show distribution in conformity with Zipf's

law1 [1, 13]. More precisely, the number of requests f for an object is expressed

as f = C=rk, where r is the access ranking of the object and C and k are constants

depending on access characteristics of the user community. However, Zipf's law cannot

explain the characteristics of whole web accesses from various communities.

To simulate a distributed WWW caching system, we put a strong assumption that

the total set of requests from all clients in the system follows Zipf's law. Although

this assumption satis�es the requirement that the distribution of accesses received at

each caching node conforms Zipf's law, the suÆcient condition of this proposition is

not proved yet. Even if this assumption is somewhat di�erent from actual situations,

we can get some hints on the transition of hit rates or network traÆc according to the

variation of several parameters of the system.

In Zipf's law, k means the scatter of requests from clients and C means the order

of the total number of requests. In our simulation, we set the parameter of k at 0.66,

which is reported in [22]. From the parameter k and the total number of requests, we

can calculate the parameter C. In our simulation, we set C at 50,000 and generate

about 35,000,000 requests.

1This distribution is called a \Zipf-like" distribution in [13], because it does not follow strictly the

original Zipf's law.

40 CHAPTER 4. DUPLICATED HASH ROUTING

4.4.2 Object Size

The distribution of WWW object size conforms log-normal distribution [23]. Its prob-

ability distribution function is expressed as follows.

f(x) =
1p
2��x

exp

�(log x� �)2

2�2

!

We set the parameters of � and � at 7.3 and 1.7 respectively observed in [22] and get

the probability distribution of object size. Using this distribution, we choose the size of

each object within the limit of 100MB. Too large objects give not a small in
uence to

cache eÆciency especially when its capacity is relatively small, even though appearance

of such large objects is quite rare. Moreover, download of such a huge object through

WWW is unrealistic.

4.4.3 Replacement Algorithms

Dozens of object replacement algorithms for a cache are proposed, and developing

better algorithms is still one of hot topics in the �eld of WWW caching (for example,

see [24, 25, 26]). However, a better cache replacement algorithm is not the main

motivation of this study, we adopt a classical LRU algorithm in our simulation, which

is proved to achieve a moderate hit rate compared with other algorithms.

4.4.4 Failure Rates

System failure can be characterized by two factors, mean time between failures (MTBF)

and mean time to recover (MTTR). In our simulation, we take the number of requests

received by a caching node in substitution for passage of time at the caching node. In

other words, our simulation is request-driven.

We �x the parameters of C and k to produce about 35,000,000 requests in total and

assume that 2% of these requests meet failure at their local caching nodes2. We set

the mean number of request receptions between failure at 100,000; each caching node

recovers after a certain number of request receptions, which is determined randomly

from 0 to 200,000. Under this situation, the occurrence probability of failure at each

request is set at 0.02/100,000 (2� 10�7).

To discuss robustness against system failure, it is important to use realistic values

of parameters. In our simulation model, at a caching node which receives 100,000

requests per day from its clients, MTBF is 50 days and MTTR is one day (and this

node shall be repaired within two days from an occurrence of failure). We consider

this situation is typical of many organizations where caching proxies are operated.

2However, these requests are forwarded to some other nodes and do not result in errors by the

PAC technology.

4.5. RESULTS 41

4.4.5 Copy Intervals

With the duplicated hash routing algorithm, a cache hit may cause an object copy.

Each caching node has its threshold of a copy interval. When a cache hit occurs, the

node checks the time when it copied the object for the last time. If a longer period

than the threshold passes after the last copy, the node tries to copy the object to the

secondary node. A system with capability of querying an object to the secondary node

checks whether the object is cached at the secondary node; it can duplicate the object

only when the object is already expired.

In our simulation, the threshold of an interval between object duplications is decided

by the number of requests the caching node receives from its local client. By default,

object duplication can occur after d=s receptions of accesses, where d and s denote the

cache size of the node and the mean size of objects, respectively. Here, we introduce a

copy factor, a factor of the threshold, and examined the cases that the copy factor is

0.0, 0.25, 0.5, 1.0, 2.0, 4.0, and 8.0. The copy factor of 0.0 means that caching node

checks and/or duplicates the object every time a request makes a cache hit. The copy

factor of 8.0 means that a caching node duplicates an object after 8:0d=s receptions of

requests.

4.4.6 The Number of Nodes and Cache Size

In a simulation of a WWW caching system, it is important to choose appropriate disk

size against the number of requests processed by a caching node. In our study, the

system receives about 35,000,000 requests as a whole. This means that total of about

300GB of data is retrieved by clients. We set the total system cache capacity at 32GB,

64GB, 96GB, 128GB, and 160GB. We can examine both situations with poor and rich

cache capacity.

Cache capacity of each node is decided by this total capacity. For example, the

capacity of a single cache is set at 4GB when the system capacity is 64GB and the

number of nodes in the system is 16.

4.5 Results

We simulated caching systems, stand alone caching, ICP-based caching, robust hash

routing and our duplicated hash routing. We discuss the performance of these algo-

rithms in terms of hit rates, cache capacity, and network traÆc. Robust hash routing

and duplicated hash routing are examined in both cases with local caching enabled

and disabled. In case of ICP and stand alone caching, local caching is always enabled.

42 CHAPTER 4. DUPLICATED HASH ROUTING

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35

hi
t r

at
e

number of nodes

HR
DHR

DHR with LC
ICP
SA

Figure 4.3: Hit rates of robust hash routing (HR), duplicated hash routing (DHR),

duplicated hash routing with local caching (DHR with LC), internet cache protocol

(ICP), and stand alone caching (SA) with 64GB of cache capacity

4.5. RESULTS 43

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35

hi
t r

at
e

number of nodes

HR
DHR

DHR with LC

Figure 4.4: Hit rates on failure (with 64GB of cache capacity)

4.5.1 Hit Rates

Figure 4.3 depicts total hit rates with the robust hash routing algorithm, the duplicated

hash routing algorithm, the internet cache protocol, and the stand alone caching. As

this chart shows, distributed caching systems can achieve higher hit rates.

The algorithm that gets the highest hit rate is robust hash routing. Because over-

laps of caches between nodes are removed with robust hash routing, the hit rate is

kept high even if the scale of the system grows. Duplicated hash routing also attains a

hit rate as high as robust hash routing does. This implies that the decrease of system

cache capacity caused by cache duplications has almost no in
uence on the hit rate of

the system. However, when we enable local caching, the hit rate decreases about 10%.

This means that we cannot ignore the decrease of system cache capacity caused by

local caching. Here, we have to recall the suitability of system cache capacity to the

number of requests. The high hit rate of the hash routing algorithm indicates that this

capacity is large enough to produce ideal results. We will discuss the cache capacity

later in section 4.5.2.

Contrary to our expectation, the di�erence in hit rates of ICP and hash routing is

small. However, this high remote hit rate is obtained at the expense of large traÆc

between caching nodes, as we will mention later in section 4.5.3.

In case of failure at a caching node, both robust hash routing and duplicated hash

44 CHAPTER 4. DUPLICATED HASH ROUTING

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8

hi
t r

at
e

on
 fa

ilu
re

copy factor

n = 2
n = 4
n = 8

n = 16
n = 32

Figure 4.5: Hit rate on failure and copy factor of duplicated hash routing (n is the

number of nodes and cache capacity is 64GB)

4.5. RESULTS 45

routing can continue their services to their clients. The objects which are to be cached

at the failed node are cached at some other nodes decided by their scores or the

secondary hash function. In contrast to robust hash routing, duplicated hash routing

can prepare cached objects at secondary nodes for system failure. In other words, as for

failure, robust hash routing always makes a cold start. We extract requests for objects

which are to be cached at failed nodes and examine the hit rates of them. As �gure 4.4

shows, our algorithm keeps high hit rate even in case of failure. When local caching is

enabled, however, the hit rate degrades considerably. Local caching decreases system

cache capacity and that gives more in
uence on these hit rates than on the total hit

rates. We will discuss this topic later in section 4.5.2.

We also examine a relationship between hit rates in case of failure and copy factors,

and the result is depicted in �gure 4.5. Though we expected that the hit rate decreased

rapidly as we increased the copy factor, this result indicates that our expectation is

fortunately not true. The impact of the copy factor on the hit rate is turned to be

fairly small.

4.5.2 Cache Capacity

In the previous section, we mentioned that local caching wasted the cache capacity

of the system. This means that we can keep the high hit rate if we add extra cache

capacity to the system. We simulated the systems with robust hash routing and

duplicated hash routing in case with and without local caching.

Figure 4.6 shows the hit rates of two algorithms without local caching. From

this result, we can see that 64GB of system cache capacity is enough to this request

sequence. When we set the capacity at 32GB, the hit rate gets evidently lower than

the others. However, the hit rates with more than 64GB of cache capacity are almost

the same.

Figure 4.7 represents the cases we enable local caching. With low cache capacity,

local caching makes hit rates low. However, with larger cache capacity, we can prevent

the decline of hit rates caused by local caching. From the result, we can see that almost

the same hit rate as the case without local caching can be achieved with 128GB of

cache capacity in both hash routing systems and duplicated hash routing systems.

Figure 4.8 shows a correlation between the hit rate in case of failure and the total

cache capacity using our algorithm with local caching enabled. As we mentioned in

section 4.5.1, this hit rate degrades when local caching is enabled. However, this graph

indicates that a fairly high hit rate can be achieved with larger cache capacity.

4.5.3 Network TraÆc

Figure 4.9 shows the network traÆc between caching nodes. In this result, we count

neither the local traÆc between clients and their local caching nodes nor the traÆc

46 CHAPTER 4. DUPLICATED HASH ROUTING

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35

hi
t r

at
e

number of nodes

HR (32GB)
HR (64GB)
HR (96GB)

HR (128GB)
HR (160GB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35

hi
t r

at
e

number of nodes

DHR (32GB)
DHR (64GB)
DHR (96GB)

DHR (128GB)
DHR (160GB)

Figure 4.6: Hit rates with local caching disabled (upper: robust hash routing, lower:

duplicated hash routing)

4.5. RESULTS 47

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35

hi
t r

at
e

number of nodes

HR with LC (32GB)
HR with LC (64GB)
HR with LC (96GB)

HR with LC (128GB)
HR with LC(160GB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35

hi
t r

at
e

number of nodes

DHR with LC (32GB)
DHR with LC (64GB)
DHR with LC (96GB)

DHR with LC (128GB)
DHR with LC(160GB)

Figure 4.7: Hit rates with local caching enabled (upper: robust hash routing, lower:

duplicated hash routing)

48 CHAPTER 4. DUPLICATED HASH ROUTING

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35

hi
t r

at
e

number of nodes

DHR with LC (32GB)
DHR with LC (64GB)
DHR with LC (96GB)

DHR with LC (128GB)
DHR with LC (160GB)

Figure 4.8: Hit rates of duplicated hash routing on failure with local caching

between caching nodes and origin servers, because we focus on intra-system traÆc here.

When the number of caching nodes is small, ICP requires relatively small network

traÆc between nodes. However, ICP cannot adapt to a large scale system, because it

uses broadcast to send queries to all nodes. Even if each query is small in its size, the

total network traÆc between caching nodes gets explosively large as the system scale

grows up. On the other hand, the increase rates of network traÆc with robust hash

routing and duplicated hash routing are fairly low. The di�erence in the traÆc between

these two algorithms is caused by object duplication that is a feature of duplicated hash

routing. To make the network traÆc low, it is the best way to transmit an object to the

secondary node only when the object is not cached by the node. However, it requires a

querying protocol and takes some communication cost between caching nodes. Instead

of this querying technique, we take an approach of employing a large copy factor. In

our simulation, we set the copy factor of duplicated hash routing at 4.0 and it makes

the network traÆc between caching nodes fairly low. We will revisit this topic later.

When we enable local caching in a duplicated hash routing system, the increase rate

of network traÆc gets slightly increased. However, compared with the duplicated hash

routing algorithm without local caching, it signi�cantly reduces the network traÆc

especially in case with a small number of caching nodes.

As we mentioned before, we can decrease the traÆc between nodes by increasing the

copy factor. Figure 4.10 shows the relation between the copy factor and the network

4.5. RESULTS 49

0

5e+10

1e+11

1.5e+11

2e+11

2.5e+11

3e+11

0 5 10 15 20 25 30 35

tr
af

fic
 b

et
w

ee
n

no
de

s

number of nodes

HR
DHR

DHR with LC
ICP

Figure 4.9: Network traÆc between nodes with hash routing, duplicated hash routing,

duplicated hash routing with local caching, and ICP (with 64GB of cache capacity)

Table 4.1: Summary of hash routing, duplicated hash routing, duplicated hash routing

with local caching, ICP, and stand alone caching
total hit rate network traÆc scalability

hit rate on failure between nodes

HR high medium medium medium

DHR high high medium { large medium

(improvable)

DHR medium medium medium high

with LC (improvable) (improvable) (improvable)

ICP high high depends on the low

number of nodes

SA low nil nil {

50 CHAPTER 4. DUPLICATED HASH ROUTING

2e+10
3e+10
4e+10
5e+10
6e+10
7e+10
8e+10
9e+10
1e+11

1.1e+11
1.2e+11
1.3e+11

0 1 2 3 4 5 6 7 8

cu
m

ul
at

iv
e

tr
af

fic

copy factor

duplicate all (n = 2)
duplicate all (n = 4)
duplicate all (n = 8)

duplicate all (n = 16)
duplicate all (n = 32)

duplicate with query (n = 2)
duplicate with query (n = 4)
duplicate with query (n = 8)

duplicate with query (n = 16)
duplicate with query (n = 32)

Figure 4.10: Network traÆc and copy factor with duplicated hash routing (n is the

number of nodes and cache capacity is 64GB)

4.6. CONCLUDING REMARKS 51

traÆc between caching nodes. This graph shows two patterns: one is a case that each

node always duplicates an object without a query after an interval based on its copy

factor and the other is a case with a query. In the former case, unnecessary object

duplications raise the network traÆc when the copy factor is small. In the latter case,

we put the communication cost of sending a query to the secondary node is the same

as that of an ICP query. From the results, the di�erence between the two patterns is

neglectable if we set the copy factor larger than 4.0.

Considering the fact that the copy factor does not a�ect on the hit rate so much,

as we mentioned in section 4.5.1, it is unnecessary to send queries to secondary caches

if we set the copy factor at more than 4.0. If we avoid such queries, we can keep the

system design simple and its implementation easy.

4.5.4 Summary

We summarize the features such as total hit rates, hit rates on failure, network traÆc

between caching nodes, and system scalability of each algorithm in table 4.1. Our

extension to hash routing gains durability against system failure at a relatively small

expense of increased network traÆc. Moreover, this expense can be reduced by local

caching and a large copy factor. ICP also achieves both high durability and high hit

rates. However, its scalability is highly restricted by its large increase rate of network

traÆc.

4.6 Concluding Remarks

WWW becomes an indispensable service on the Internet and the fault tolerance of

systems which provide the WWW service has great importance. We have proposed

the duplicated hash routing algorithm for a distributed WWW caching system, which

has robustness against failure. Our simulation results suggest that our algorithm can

achieve a high hit rate even when some caching nodes are in failure. In addition,

optionally we can enable local caching at both robust hash routing system and our

duplicated hash routing system. If we enable local caching, the traÆc between caching

nodes is reduced, though the cache capacity of the system gets lower. Therefore, the

total hit rate also gets lower when local caching is enabled. This phenomenon can

be prevented as we add extra cache capacity to the system. If we increase the cache

capacity, we can both keep the high hit rate achieved by robust hash routing and

reduce network traÆc between caching nodes substantially. In duplicated hash routing

system, intervals between object duplications have great importance. With a relatively

long copy interval, we can omit the object querying mechanism from the system and

design the system to duplicate objects always after the interval because the increase

of network traÆc is small enough.

Chapter 5

Conclusion

Various cache technologies are applied to improve the quality of WWW services. It can

reduce WWW service latency, traÆc on the Internet, load of WWW servers, etc. This

dissertation focuses on the traÆc on distributed WWW caching systems. In Chapter 2,

we reached the conclusion that we have to minimize the number of siblings, especially,

external siblings from a viewpoint of the border gateway. ICP does not decrease any

traÆc on the border gateway. Therefore, if the performance bottleneck of WWW access

is on the low bandwidth of the connection between the local area network and the

Internet, the distributed WWW caching system scattered over the Internet with ICP

does not help any traÆc reduction on the bottleneck. In such a situation, improving

the local hit rate is more important. We have a lot of con�guration parameters such

as cache size in memory or disks and cache expiration strategies according to object

types. By tuning these parameters, we can possibly obtain several percent increase of

the local hit rate, which is more e�ective than that of the remote hit rate.

From a viewpoint of WAN, the traÆc analysis presents a di�erent picture. As we

mentioned in Chapter 3, ICP can decrease the WWW traÆc on the Internet though

the traÆc on the border gateway increases. In our analysis, we concluded that the

remote hit rate over 4 or 5 percent is required for the overhead of ICP traÆc to exceed

the amount of reduced HTTP traÆc by ICP. This is not a realistic situation if we use

a well-tuned proxy server. As a special case of ICP utilization, if we use ICP in the

situation that the distance between the proxy server and the sibling proxy server is

very small, the required remote hit rate becomes quite small. In other words, ICP is

suitable for clustering proxy servers in an organizational network composed by several

LANs. Because the interconnection bandwidth of LANs is relatively high compared

with that of WANs in many cases, the problem of border gateway bottleneck is small.

From those two chapters, we achieved two objectives of this dissertation, i.e., quan-

titative evaluation of the traÆc on a distributed caching system and distinct guideline

to decide the proper and improper situation for adoption of ICP. Although ICP is a

simple and easy protocol to use, its e�ect on the reduction of WWW traÆc is very

54 CHAPTER 5. CONCLUSION

diÆcult to attain and requires quite deep consideration.

Beside ICP, hash routing is an algorithm that does not exchange meta information

among caching proxies and removes object duplication among proxies. Thus, the total

logical cache size of the hash routing system can be larger than that of ICP. On the

other hand, hash routing has the problem of low tolerance to failure. Because each

caching node has to handle the requests from all clients in the system, failure of a single

node inevitably has in
uence on all the clients. In Chapter 4, we proposed duplicate

hash routing that introduced slight cache redundancy and achieved the third objective,

that is, the improvements of fault tolerance and eÆciency of hash routing.

In the traÆc analysis of the caching system using ICP, some works still remain to

be done both theoretically and practically as an open issue. Theoretically, we need

to analyze other algorithms such as cache digest [27], Crisp cache [28] and Summary

cache [29]. The essential drawback of ICP is the lack of scalability. As the scale of

the system grows, i.e., the number of siblings increases, the number of ICP queries

increases and most of them result in waste of network resources. Those algorithms

listed above avoid sending queries to each siblings per local cache miss and solve this

problem. They exchange a list of cached objects periodically in a highly eÆcient way.

The analyses of these algorithms are one of our future works.

Practically, we need to verify our model through experiments such as packet mon-

itoring, which can show the actual behavior of cache systems in more details. The im-

portant point is that our theoretical model gives suÆcient insight into the drawbacks

of ICP. However, in our analysis, we lack discussion about actual network traÆc. For

example, our model takes no account of packet retransmission. Moreover, the TCP

algorithms implemented in operating systems di�er slightly from each other. There is

a limit of analysis accuracy in the theoretical method.

We also need to verify our algorithm, duplicated hash routing, with actual imple-

mentation. Although the duplicated hash routing algorithm achieves high hit rate and

reduction of network traÆc between caching nodes, it requires complicated implemen-

tation. Because one of the major goals of WWW caching system is reducing the service

delay, the implementation should be eÆcient. Such implemention of duplicated hash

routing is our future work.

Chapter 6

Future Works

Currently, the distributed cache technology is applied in various situations and the way

the technology is applied has been changing every day. The infrastructure of informa-

tion distribution is becoming richer and getting more diversity. Here, I can enumerate

several trends that will have much in
uence on the next generation information distri-

bution systems and give some open issues about the trends.

6.1 More Network Bandwidth

The Internet gets more network bandwidth. There is an opinion that the cache technol-

ogy is no longer necessary if the network bandwidth becomes large enough. However,

the larger network bandwidth does not mean the extinction of performance bottleneck

in the network services. It means that the performance bottleneck has moved from

the past narrow backbone networks to the servers that host popular web sites. In this

situation, the cache technology can be applied to remove this bottleneck. To apply the

cache technology to a high-speed network environment, it is necessary to implement

a high-speed cache server. Expecially, bandwidth in the order of Gbps is available

but no single cache server can handle such large bandwidth. Such implementation of

a cache server requires various deep considerations about memory management, con-

nection/session management, thread/process management, cache expiration strategy,

etc. We need not only the consideration about software but about hardware. There

are many problems in the current computer hardware when we develop such high per-

formance servers. For example, the internal bus speed of server hosts is not enough

in many cases. Especially, the low bandwidth of peripheral bus such as PCI is one of

performance bottleneck of such high speed network services. In addition, we have to

pay attention to the interaction between the software and the hardware. The software

that manages the peripheral devices, that is, an operating system is also the perfor-

mance bottleneck. Development of an operating system for high speed I/O is my future

56 CHAPTER 6. FUTURE WORKS

research theme.

6.2 Multimedia Streams

Multimedia stream data becomes more popular and many people download stream

data through the Internet. There are several diÆculties in the application of the cache

technology to multimedia services. Because the size of multimedia data is large and its

download time is long, the traditional passive cache technology cannot be applied. In

this situation, how to distribute the multimedia data in advance to intermediate cache

servers on the Internet is important. This technology, called active cache compared

with the traditional passive cache, is a hot research topic. If only the popular contents

are concerned, the solution is simple. Because the number of popular contents is small

enough compared to that of all the contents on the Internet, it is relatively easy to

distribute them to the cache servers all over the world. However, if we apply the cache

technology to a video on-demand (VoD) system that serves various sorts of stream

data, there are a lot of problems. For example, a large number of non-popular stream

data should be distributed all over the world. In addition, the server has to handle the

service requests randomly. In this situation, we need more cooperative system that

scattered on the Internet to relieve these hardships.

6.3 Peer-to-Peer

Today, peer-to-peer (P2P) information systems get reality. As an extension of the

traditional client server communication model, a lot of peer-to-peer (P2P) informa-

tion systems are proposed and some of them are actually operated. With the P2P

communication model, the distinction between a client and a server does not make

sense because the P2P system is a truly distributed system where all the nodes work

together both as a client and as a server. The major problem of this communication

model, however, is its high consumption of resources such as computation power and

network bandwidth. Because each host relays a request to the next hop hosts blindly

with this P2P model, the request data can be duplicated many times on the Internet.

These requests put high load on many hosts. To solve this problem, meta data cache

technology can be applied on this model. For example, the meta data of popular con-

tents should be duplicated near clients. Because the communication cost of exchanging

meta data is far lower than that of exchanging the data itself, meta data of various

contents can be kept at many hosts.

Bibliography

[1] Ari Luotonen and Kevin Altis. World-Wide Web proxies. In Proceedings

of the 1st International WWW Conference, Geneva, Switzerland, May 1994.

http://www1.cern.ch/PapersWWW94/luotonen.ps.

[2] Anawat Chankhunthod, Peter B. Danzig, Chuck Neerdaels, Michael F. Schwartz,

and Kurt J. Worrell. A hierarchical Internet object cache. Technical Report

95-611, Computer Science Department, University of Southern California, March

1995. ftp://ftp.cs.colorado.edu/pub/cs/techreports/~schwartz/HarvestCache.ps.Z.

[3] Internet cache protocol (ICP), version 2. RFC 2186, September 1997.

[4] Keith W. Ross. Hash-Routing for Collections of Shared Web Caches. IEEE

Network, pages 37{44, November/December 1997.

[5] Squid internet object cache. http://squid.nlanr.net/Squid/.

[6] Marc Abrams, Charles R. Standridge, Ghaleb Abdulla, Stephen Williams, and

Edward A. Fox. Caching proxies: limitations and potentials. In Proceed-

ings of the 4th International WWW Conference, Boston, MA, December 1995.

http://www.w3.org/pub/Conferences/WWW4/Papers/155/.

[7] Bradley M. Duska, David Marwood, and Michael J. Freeley. The measured ac-

cess characteristics of World-Wide-Web client proxy caches. In Proceedings of

the 1997 Usenix Symposium on Internet Technologies and Systems (USITS-97),

Monterey, CA, December 1997. http://www.cs.ubc.ca/spider/marwood/Projects/

SPA/wwwap.ps.gz.

[8] D. J. Barnes and N. G. Smith. An analysis of world-wide web proxy cache perfor-

mance and its application to the modelling and simulation of network traÆc. In

Proceedings of the 4th International Conference on Telecommunication Systems

Modeling and Analysis, page 9, March 1996.

[9] Kenichi Yoshida. Distributed cache layout based on access patterns (in Japanese).

In Proceedings of Internet Conference '96, 1996.

57

58 BIBLIOGRAPHY

[10] Masahiko Nabe, Ken-ichi Baba, Masayuki Murata, and Hideo Miyahara. Analysis

and modeling of WWW traÆc for designing internet access network (in Japanese).

The Transactions of IEICE, J80-B-I(6):428{437, 1997.

[11] Duane Wessels and K Cla�y. ICP and the Squid Web cache. IEEE

Journal on Selected Areas in Communication, 16(3):345{357, April 1998.

http://www.ircache.net/ wessels/Papers/icp-squid.ps.gz.

[12] Steven Glassman. A caching relay for the World-Wide Web. In Proceedings

of the 1st International WWW Conference, Geneva, Switzerland, May 1994.

http://www1.cern.ch/PapersWWW94/steveg.ps.

[13] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching

and Zipf-like distributions: Evidence and implications. In Proceedings of the IN-

FOCOM '99 conference, March 1999. http://www.cs.wisc.edu/ cao/papers/zipf-

like.ps.gz.

[14] Michael Rabinovich, Je� Chase, and Syam Gadde. Not all hits are cre-

ated equal: Cooperative proxy caching over a wide-area network. In Pro-

ceedings of the Third International WWW Caching Workshop, June 1998.

http://www.cs.duke.edu/ari/cisi/crisp/neighbors.ps.gz.

[15] Renu Tewari, Michael Dahlin, Harrick Vin, and John Kay. Beyond

hierarchies: Design considerations for distributed caching on the Inter-

net. Technical Report TR98-0, University of Texas, February 1998.

http://www.cs.utexas.EDU/users/dahlin/papers/tr98-04.ps.

[16] Andrew S. Tanenbaum. Computer Networks. Prentice Hall PTR, third edition

edition, 1996.

[17] Application of Internet cache protocol (ICP), version 2. RFC 2187, September

1997.

[18] David Karger, Alex Sherman, Andy Berkheimer, Bill Bogstad, Rizwan Dhanidina,

Ken Iwamoto, Brian Kim, Luke Matkins, and Yoav Yerushalmi. Web Caching

with Consistent Hashing. In Proceedings of the 8th International World Wide Web

Conference, Toronto, Canada, May 1999.

[19] Cisco Systems Inc. Cisco Cache Engine, Version 2.0.

[20] Vinod Valloppillil and Keith W. Ross. Cache array routing protocol v1.0. Internet

draft, February 1998. http://www.ietf.org/internet-drafts/draft-vinod-carp-v1-

03.txt.

BIBLIOGRAPHY 59

[21] D. G. Thaler and C. V. Ravishankar. Using Name-Based Mappings to Increase

Hit Rates. IEEE/ACM Transactions on Networking, 6(1), February 1998.

[22] Ken-ichi Chinen. Studies on E�ective Methods of Providing and Retrieving In-

formation in the Internet. PhD thesis, Nara Institute of Science and Technology,

February 1998.

[23] Masahiko Nabe, Ken-ichi Baba, Masayuki Murata, and Hideo Miyahara. Analysis

and Synthesis of World-Wide-Web TraÆc (Japanese). Technical Report SSE96-

90, IN96-74, CS96-98 (1996-09), IEICE, 1996.

[24] Hyokyung Bahn, Sam H. Noh, Kern Koh, and Sang Lyul Min. Using Full Refer-

ence History for EÆcient Document Replacement in Web Caches. In Proceedings

of USENIX Symposium on Internet Technology and Systems, Boulder, Colorado,

USA, October 1999. USENIX Association.

[25] Madhukar R. Korupolu and Michael Dahlin. Coordinated Placement and Replace-

ment for Large-Scale Distributed Caches. In Proceedings of the IEEE Workshop

on Internet Applications, San Jose, CA , USA, July 1999. IEEE.

[26] B. Krishnamurthy and C. Wills. Proxy Cache Coherency and Replacement -

Towards a More Complete Picture. In Proceedings of the 19th International Con-

ference on Distributed Computing Systems, Austin, Texas, USA, June 1999. IEEE.

[27] Alex Rousskov and Duane Wessels. Cache digests. In Proceedings of

the 3rd International WWW Caching Workshop, June 1998. http://www-

sor.inria.fr/mirrors/wcw98/31/ rousskov@nlanr.net.ps.

[28] Syam Gadde, Je� Chase, and Michael Rabinovich. A Taste of Crispy Squid. In

Proceedings of Workshop on Internet Server Performance, Madison, Wisconsin,

USA, June 1998.

[29] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary Cache: A

Scalable Wide-Area Web Cache Sharing Protocol. In Proceedings of ACM SIG-

COMM'98 Conference, Vancouver, British Columbia, Canada, September 1998.

[30] Yusaku Hasegawa. Research on an e�ective mechanism to discovery path MTU

(in Japanese). Master's thesis, Nara Institute of Science and Technology, 1997.

[31] Bruce A. Mah. An emperical model of http network traÆc. In Proceedings of the

IEEE Infocom '97 Conference, Kobe, Japan, April 1997. IEEE.

[32] Alex Rousskov and Valery Soloviev. On peformance of caching proxies. In Pro-

ceedings of the Joint International Conference on Measurement and Modeling of

60 BIBLIOGRAPHY

Computer Systems (SIGMETRICS '98/PERFORMANCE '98), pages 272{273,

June 1998.

Appendix A

Estimation of the Number of

Packets per Request

We estimate the number of packets per HTTP request and per ICP query exchanged

among clients, proxies, and origin servers. In our estimation, some results of our log

analysis on several caching proxy servers are used. In this appendix, we show how the

number of packets is estimated on HTTP and ICP.

A.1 Estimation of the Number of Packets per HTTP

Request

HTTP uses TCP as its transport layer protocol. The number of packets exchanged by

a client and a server is modeled as Figure A.1. At �rst, a 3-way handshake is done to

open a TCP connection. Next, a GET request is sent from the client to the server and

its ACK packet is returned from the server to the client. Since most URLs have the

size under 100 bytes and the average size of URLs is about 50 bytes, we can assume

that the GET request is sent in one IP packet. Next, the requested WWW object is

returned from the server to the client. The object is fragmented into segments whose

size is the maximum segment size (MSS) of the connection and each segment is put

into a single IP packet with IP headers. It is known that the MSS is 1460 bytes in

most cases [30]. In our estimation, we assume the MSS is 1460 bytes. Considering

the distribution of object size derived from our log analysis and algorithm of TCP, we

estimate the average number of exchanged packets (including ACK packets not shown

in the �gure) for object transfer is 9.35. After object transfer from the server to the

client is completed, FIN packets and their ACK packets are exchanged to close the

connection.

The above is the typical model of packet exchange at an HTTP transaction. We

estimate the average number of packets per HTTP request is 18.35 altogether.

62

APPENDIX A. ESTIMATION OF THE NUMBER OF PACKETS PER

REQUEST

Client Server

...

SYN
SYNACK

ACK
REQ

DATA

FIN
FINACK
FIN

FINACK

Sibling
Query

Reply

Proxy

Figure A.1: Models of an HTTP request (left) and a ICP query (right)

A.2 Estimation of the Number of Packets per ICP

Query

ICP uses UDP as its transport layer protocol. The number of packets exchanged by

a caching proxy and a sibling is depicted in Figure A.1. The proxy send a ICP query

to the sibling. The sibling receives the ICP query, searches the requested object in its

cache and returns the result.

In the ICP message, a 20-byte header and a payload that contains the URL of the

requested object are placed. Because the average size of URLs is observed to be about

50 bytes, we assume each message is on just one IP packet. After all, 2 packets are

exchanged.

Appendix B

Characteristics of WWW TraÆc

We made statistical analysis on the log data generated by Squid operated at our in-

stitute for a month in May 1998. Many studies on the characteristics of the WWW

traÆc have been done so far, and many of them reported similar results (e.g., [31, 32]).

Here we show the details of our analysis as a help for your understandings of our

communication cost evaluation discussed in this dissertation.

B.1 Object Size

Our Squid caching proxy system is in operation on SUN Microsystems Ultra Enter-

prise 3000 server (4 CPU of Ultra Sparc 168MHz, 256MB of memory). Our Squid is

con�gured to use 60MB of memory and 2GB of hard disks for its operation. We also

set up that the Squid refers 8 sibling proxies on the Internet, however, this sibling

con�guration is only for the purpose to evaluate the ICP performance. More than

three million HTTP requests are processed for a month in this Squid server. Here,

we divided the results into 4 categories described in Section 3.5.1. Table B.1 shows

the summary of our statistical analysis. The distribution of the object size for each

category is depicted in Figure B.1, B.2, B.3, and B.4.

Table B.1: Summary of WWW accesses at our institute (May 1998)

Result
number of

requests
rate

average

object size

LOCAL HIT 1132961 0.34274 4606 bytes

LOCAL MISS 2172607 0.65726 8790 bytes

REMOTE HIT 215376 0.06516 6958 bytes

ALL MISS 1957231 0.59210 8993 bytes

64 APPENDIX B. CHARACTERISTICS OF WWW TRAFFIC

1

10

100

1000

10000

100000

1e+06

1 100 10000 1e+06 1e+08

nu
m

be
r

of
 r

eq
ue

st
s

(o
bj

ec
ts

)

size of objects

Figure B.1: Distribution of object size (LOCAL HIT, May 1998)

1

10

100

1000

10000

100000

1e+06

1 100 10000 1e+06 1e+08

nu
m

be
r

of
 r

eq
ue

st
s

(o
bj

ec
ts

)

size of objects

Figure B.2: Distribution of object size (LOCAL MISS, May 1998)

B.1. OBJECT SIZE 65

1

10

100

1000

10000

100000

1e+06

1 100 10000 1e+06 1e+08

nu
m

be
r

of
 r

eq
ue

st
s

(o
bj

ec
ts

)

size of objects

Figure B.3: Distribution of object size (REMOTE HIT, May 1998)

1

10

100

1000

10000

100000

1e+06

1 100 10000 1e+06 1e+08

nu
m

be
r

of
 r

eq
ue

st
s

(o
bj

ec
ts

)

size of objects

Figure B.4: Distribution of object size (ALL MISS, May 1998)

66 APPENDIX B. CHARACTERISTICS OF WWW TRAFFIC

0

50000

100000

150000

200000

250000

0 50 100 150 200

nu
m

be
r

of
 o

bj
ec

ts

size of URLs

Figure B.5: Distribution of size of URLs

In order to estimate the average size of ICP messages, we investigate the average

size of URLs in HTTP request. An ICP message consists of a 20-byte header and a

URL in an ASCII text. The distribution of the size of URLs is shown in Figure B.5.

The average size of the URL we observed is about 50 bytes. Consequently, about 70

bytes can be given as an estimation of the average size of ICP messages.

B.2 Number of Packets on HTTP

Based on the actual observations on the number of the packets through our operation

of Squid, we plot its distribution in Figure B.6, B.7, B.8, and B.9. Note that this

distribution has interesting characteristics. The log of the number of requests in which

requested objects are divided into P packets is almost proportional to logP .

We estimated the number of packets exchanged on HTTP with two assumptions:

(1) the maximum segment size (MSS) of TCP is 1460 bytes, and (2) any packets

for the retransmission due to network congestion are ignored. In the TCP connection

establishment phase, three packets are transferred between a server and a client. Then,

the client sends an HTTP request in a single packet and the server sends an ACK packet

back to the client. Here, we de�ne B as the size of the WWW object the client requests.

The object is divided and stored in packets. For each data packet, a single ACK packet

is sent from the client to the server. With our analysis on the implementation of the

HTTP, the number of the ACK packets can be supposed as described in Table B.2.

B.2. NUMBER OF PACKETS ON HTTP 67

1

10

100

1000

10000

100000

1e+06

1e+07

10 100 1000 10000 100000

nu
m

be
r

of
 r

eq
ue

st
s

(o
bj

ec
ts

)

number of packets

Figure B.6: Distribution of number of packets (LOCAL HIT, May 1998)

1

10

100

1000

10000

100000

1e+06

1e+07

10 100 1000 10000 100000

nu
m

be
r

of
 r

eq
ue

st
s

(o
bj

ec
ts

)

number of packets

Figure B.7: Distribution of number of packets (LOCAL MISS, May 1998)

68 APPENDIX B. CHARACTERISTICS OF WWW TRAFFIC

1

10

100

1000

10000

100000

1e+06

1e+07

10 100 1000 10000 100000

nu
m

be
r

of
 r

eq
ue

st
s

(o
bj

ec
ts

)

number of packets

Figure B.8: Distribution of number of packets (REMOTE HIT, May 1998)

1

10

100

1000

10000

100000

1e+06

1e+07

10 100 1000 10000 100000

nu
m

be
r

of
 r

eq
ue

st
s

(o
bj

ec
ts

)

number of packets

Figure B.9: Distribution of number of packets (ALL MISS, May 1998)

B.2. NUMBER OF PACKETS ON HTTP 69

Table B.2: Number of ACK packets

Tb
Number of

ACK Packets

0 - 1460 1

1261 - 4380 2

4381 - 8760 3

over 8760
an additional ACK

per 4 data packets

Consequently, we can formulate the number of all the packets exchanged between the

client and the server as Equation 3.1 in Section 3.5.2.

