
NAIST-IS-DT9861023

Doctoral Thesis

Hierarchical Decomposition and Min-max

Strategy for Fast and Robust Reinforcement

Learning in the Real Environment

Jun Morimoto

Department of Information Systems

Graduate School of Information Science

Nara Institute of Science and Technology

Doctoral Thesis

submitted to Graduate School of Information Science

Nara Institute of Science and Technology

in partial ful�llment of the requirements for the degree of

DOCTOR of ENGINEERING

Jun Morimoto

Thesis committee： Tukasa Ogasawara, Professor

Masatsugu Kidode, Professor

Hirokazu Nishitani, Professor

Mitsuo Kawato, Professor

Kenji Doya, Associate Professor

Hierarchical Decomposition and Min-max

Strategy for Fast and Robust Reinforcement

Learning in the Real Environment �

Jun Morimoto

Abstract

Humans can learn new behaviors through trial and error without any instruc-

tion. If we can understand this learning systems, we can develop robots and

softwares which can �nd the way to achieve their own goal without any control

policy designed by humans.

\Reinforcement Learning (RL)" is a framework in which an agent tries to maxi-

mize a certain evaluation through trial and error. Recently, there have been many

theoretical advances and application studies of RL.

In order to apply reinforcement learning to real world control problems, we

consider methods for achieving practical learning speed and robustness against

modeling errors or unknown disturbances. Speci�cally, we propose, a hierarchi-

cal reinforcement learning architecture for improving learning speed in a high-

dimensional state space, and a robust reinforcement learning algorithm accom-

modating modeling errors or the unknown disturbances.

In the hierarchical reinforcement learning architecture, we introduce a low-

dimensional representation of the state of the robot for higher-level planning.

The upper level learns a discrete sequence of sub-goals in a low-dimensional state

space for achieving the main goal of the task. The lower-level modules learn local

trajectories in the original high-dimensional state space to achieve the sub-goal

speci�ed by the upper level. We applied the hierarchical architecture to a three-

link, two-joint robot for a task of learning to stand up by trial and error. The

�Doctoral Thesis, Department of Information Systems, Graduate School of Information Sci-

ence, Nara Institute of Science and Technology, NAIST-IS-DT9861023, 0, 0.

i

upper-level learning was implemented by Q learning, while the lower-level learning

was implemented by a continuous actor-critic method. The robot successfully

learned to stand up within 750 trials in simulation and then in an additional 170

trials using real hardware.

In the robust reinforcement learning, we consider input disturbance as well

as modeling errors. The use of environmental models in RL is quite popular for

both o�-line learning by simulations and for on-line action planning. However, the

di�erence between the model and the real environment can lead to unpredictable,

often unwanted results. Based on the theory of H-in�nity control, we consider a

di�erential game in which a `disturbing' agent tries to make the worst possible

disturbance while a `control' agent tries to make the best control input. The

problem is formulated as �nding a min-max solution of a value function that takes

into account the changes in the reward due to the disturbance and the amplitude

of the disturbance. We derive on-line learning algorithms for estimating the value

function and for calculating both the worst disturbance and the best control in

reference to the value function. We tested the paradigm, which we call \Robust

Reinforcement Learning (RRL)," in the task of inverted pendulum.

Keywords:

reinforcement learning, hierarchical architecture, robust control, real robot, dy-

namic stand-up movement

ii

ACKNOWLEDGEMENTS

Acknowledgments

First, I would like to thank my supervisor, Dr. Kenji Doya for his support, his

patient guidance, and constant encouragement throughout this work. His valu-

able advice and detailed criticism have enabled me to complete this dissertation.

I also would like to thank Dr. Mitsuo Kawato for giving me a chance to study

at Kawato Dynamic Brain Project, ERATO, JST. I also wish to my gratitude

to Professor Tukasa Ogasawara, Professor Masatsugu Kidode, Professor Hirokazu

Nishitani, Professor Mitsuo Kawato, and Associate Professor Kenji Doya for their

constructive readings of this dissertation and their valuable advice. I would like

to thank Professor Minoru Asada and Professor Toyoaki Nishida gave me valu-

able advice and knowledge when I was bachelor and master course student. I

would like to thank Professor Yoh'ichi Tohkura who gave me valuable advice and

a chance to study at ATR Human Information Processing laboratories. Finally,

I would like to thank all members of the Robotics laboratory, the Kawato Dy-

namic Brain Project, ERATO, JST, and the ATR Human Information Processing

laboratories for their helpful discussion.

iii

ACKNOWLEDGEMENTS

iv

CONTENTS

Contents

Acknowledgments iii

1 Introduction 3

1.1. Hierarchical Reinforcemtn Learning 3

1.2. Imitation Learning . 4

1.3. Robust Reinforcement Learning 5

1.4. Outline . 6

2 Reinforcement Learning 7

2.1. Reinforcement Learning in Continuous Time and Space 7

2.1.1 TD-learning in Continuous Time and State System 8

2.1.2 Actor-critic . 9

3 Hierarchical Reinforcement Learning 13

3.1. Introduction . 13

3.2. Hierarchical Reinforcement Learning 14

3.2.1 Task decomposition by sub-goals 15

3.2.2 Upper-level learning . 17

3.2.3 Lower-level learning . 20

3.3. Simulations . 23

3.3.1 Stand-up task using a two-joint, three-link robot 23

3.3.2 The e�ect of step size in the upper level 25

3.3.3 Comparison between hierarchical and plain architectures . 27

3.3.4 The role of sub-goal reward Rsub 30

3.4. Real robot experiments . 30

3.5. Discussion . 32

3.5.1 Hierarchical RL . 32

v

CONTENTS

3.5.2 RL in real robots . 34

3.5.3 The stand-up task . 35

3.6. Conclusions . 35

4 Imitation Learning 45

4.1. Introduction . 45

4.2. Semi-Markov Decision Process . 46

4.3. Options . 46

4.4. SMDP learning in continuous time and space 48

4.5. Global Reward and Local Reward 49

4.6. Upper level learning . 50

4.7. Lower-level learning . 50

4.8. Simulation . 50

4.8.1 Learning Stand-up task . 50

4.9. Imitation Learning . 52

4.10. Conclusions . 54

5 Robust Reinforcement Learning 55

5.1. Introduction . 55

5.2. H1Control . 56

5.2.1 Min-max Solution to H1Problem 57

5.3. Robust Reinforcement Learning 58

5.3.1 Actor-Disturber-Critic . 60

5.3.2 Robust Policy by Value Gradient 61

5.3.3 Convex reward function with quadratic cost 62

5.3.4 Linear Quadratic Case . 63

5.4. Simulation . 63

5.4.1 Linear Case . 63

5.4.2 Applying Robust RL to Non-linear Dynamics 66

5.5. Implementation of the Robust Reinforcement Learning in the Hi-

erarchical Reinforcement Learning Framework 68

5.5.1 Simulation . 68

5.6. Discussion . 69

5.7. Conclusions . 69

vi

CONTENTS

6 Conclusions 75

6.1. Future work . 76

Bibliography 79

Achevements 85

Appendix 87

A. Normalized Gaussian Network (NGnet) 87

B. Continuous-time TD(�)-learning 88

C. Discrete and continuous time TD-learning 89

C.1 De�nition of TD-learning 89

C.2 Update rule for the value function 89

D. Implementation of continuous time TD-learning 90

vii

CONTENTS

viii

LIST OF FIGURES

List of Figures

2.1 Actor-critic architecture . 9

3.1 Robot con�guration. �0:pitch angle, �1:hip joint angle, �2:knee

joint angle, �m:the angle of the line from the center of mass to the

center of the foot. 15

3.2 Hierarchical reinforcement learning architecture 16

3.3 Upper level . 18

3.4 Lower level . 21

3.5 Time course of learning. Circles show 10th successful stand-up,

upon which a simulation run was terminated. (a)Performance in-

dex. (b)Average number of sub-goals in each set of 50 trials. . . . 26

3.6 (Top): Example of a sub-goal sequence after 300 trials (Bottom):

Example of a failed stand-up trajectory after 300 trials 27

3.7 (Top): Example of a successful sub-goal sequence (Bottom): Ex-

ample of a successful stand-up trajectory 27

3.8 One-joint, two-link robot con�guration 28

3.9 Comparison of the time course of learning with di�erent ��1. Cir-

cles show 10th successful stand-up, upon which a simulation run

was terminated. (a) Performance index, ��1 = 25 [deg] (b) Aver-

age number of sub-goals in each set of 50 trials, ��1 = 25 [deg] . . 37

3.10 Comparison of the time course of learning with di�erent ��1. Cir-

cles show 10th successful stand-up, upon which a simulation run

was terminated. (a) Performance index, ��1 = 30 [deg] (b) Aver-

age number of sub-goals in each set of 50 trials, ��1 = 30 [deg] . . 38

ix

LIST OF FIGURES

3.11 Comparison of the time course of learning with di�erent ��1. Cir-

cles show 10th successful stand-up, upon which a simulation run

was terminated. (a) Performance index, ��1 = 50 [deg] (b) Aver-

age number of sub-goals in each set of 50 trials, ��1 = 50 [deg] . . 39

3.12 Stand-up trajectories and sub-goals using di�erent ��1 40

3.13 Time course of learning with plain architecture. Circles show 10th

successful stand-up, upon which a simulation run was terminated. 40

3.14 Time course of learning withoutRsub. (a)Performance index. (b)Average

number of sub-goals in each set of 50 trials. 41

3.15 Real robot con�guration . 42

3.16 System con�guration . 42

3.17 Time course of learning with real robot. Circles show 5th successful

stand-up, upon which each experiment was terminated. 43

3.18 Example of a time course of a stand-up trajectory and a sub-goal

sequence (�0:pitch angle, �1; �2:joint angle). 43

3.19 An example of a stand-up trajectory using the real robot 44

4.1 Procedure of detecting via-points by using minimum jerk criteria . 53

4.2 Detected via-points, subgoal points and minimum-jerk trajectory . 54

5.1 Generalized Plant and Controller 56

5.2 Small Gain Theorem . 57

5.3 Actor-disturber-critic architecture 60

5.4 Time course of (a)elements of vector p = (p11; p12; p22) and (b)elements

of gain vector of the actor vu = (vu1 ; v
u

2) and the disturber vw =

(vw1 ; v
w

2). The dash-dotted lines show the solution of the Ricatti

equation. 65

5.5 Shape of the value function after 500 learning trials with m =

1:0[kg] and l = 1:0[m] . 70

5.6 Swing up trajectories with pendulum with di�erent weight and

friction. The dash-dotted lines show upright position. 71

5.7 Shape of the value function after 1000 learning trials with m =

1:0[kg] and � = 0:01 . 72

x

LIST OF FIGURES

5.8 Shape of the control and disturbance function after 1000 learning

trials with m = 1:0[kg] and l = 0:01[m] 73

5.9 Swing up trajectories with pendulum with di�erent weight and

friction. The dash-dotted lines show upright position. 74

xi

LIST OF FIGURES

xii

LIST OF TABLES

List of Tables

3.1 Task decomposition by sub-goals 17

3.2 Comparison with di�erent ��1 28

3.3 Physical parameters of the real robot 31

5.1 Comparison with di�erent robustness criteria 67

1

LIST OF TABLES

2

Chapter 1

Introduction

Recently, reinforcement learning (RL) is widely used in machine learning and

robotics studies. RL does not require explicit knowledge of the desired trajecto-

ries, but only requires a signal that evaluates if the action taken by the learning

agent is \good" or \bad". Then, RL is also attractive algorithm for modeling the

human brain function, because the human learns several movements or behaviors

through trail and error.

However, RL usually needs a huge amount of time for learning tasks in high-

dimensional state space because the size of the state space exponentially increase

according to the number of dimension. The other problem is that a policy learned

by RL is not robust against modeling error, environmental change, or unknown

disturbances compare to the control policy of the human.

1.1. Hierarchical Reinforcemtn Learning

Many RL studies focus on theoretical aspect using two-dimensional maze tasks.

However, the robot have to learn tasks in the real environment with high-dimensional

state space like humans do. In such a case, the humans use abstract representa-

tion of the state space for improving learning speed. Then, we �rst study how

the hierarchical architecture of the learning system works for improving learning

speed in RL framework.

Hierarchical RL methods have been developed for creating reusable behav-

ioral modules [31, 37, 7], solving partially observable Markov decision problems

(POMDPs) [39], and for improving learning speed [6, 16].

Many hierarchical RL methods use coarse and �ne grain quantization of the

3

CHAPTER 1 INTRODUCTION

state space. However, in a high-dimensional state space, even the coarsest quan-

tization into two bins in each dimension would create a prohibitive number of

states. Thus, in designing a hierarchical RL architecture in high-dimensional

space, it is essential to reduce the dimensions of the state space [23].

In this study, �rst, we propose a hierarchical RL architecture in which the

upper-level learner globally explores sequences of sub-goals in a low-dimensional

state space, while the lower-level learners optimize local trajectories in the high-

dimensional state space.

As a concrete example, we consider a \stand-up" task for a two-joint, three-link

robot (see Fig. 3.1). The goal of the task is to �nd a path in a high-dimensional

state space that links a lying state to an upright state under the constraints of the

system dynamics. The robot is a non-holonomic system, as there is no actuator

linking the robot to the ground, and thus trajectory planning is non-trivial. The

geometry of the robot is such that there is no static solution; the robot has to

stand up dynamically by utilizing the momentum of its body.

1.2. Imitation Learning

Second, we show how imitation learning improve the learning speed in the hierar-

chical reinforcement learning framework. Imitation learning[30, 21] is the learning

method in which learners acquire useful information for achieve tasks from their

teacher. However, di�erent from usual supervised learning, the learner can not

obtain full information of desired trajectories, but obtain the partial information

of desired trajectories. In such a case, the learner have to realize desired tra-

jectories from insu�cient information which acquired from their teacher. In this

study, we consider to use RL to construct desired trajectories or control policy

with using the information from their teacher. We can say that the hierarchical

architecture is a suitable representation for imitation learning, because the infor-

mation from their teacher can be consider as the upper-level state and construct

desired control policy by using the lower-level through trial and error.

We implement above ideas in the stand-up task using the 2-joint 3-link robot.

As a teacher information, we use the stand-up trajectory of the teacher in joint

and pitch angle space, and detect via-points from the trajectory. We �nd the

4

1.3. ROBUST REINFORCEMENT LEARNING

subgoal points by using detected via-points according to the distance between

subgoals and via-points. Then, we put the action value at the selected subgoal

sequence, in which the action value is calculated from reward model and teacher

trajectory.

1.3. Robust Reinforcement Learning

Third, we study how we can make the policy learned by RL more robust against

modeling error or environmental change. Then, we propose a new reinforcement

learning paradigm that we call \Robust Reinforcement Learning (RRL)." Plain,

model-free reinforcement learning (RL) is desperately slow to be applied to on-

line learning of real-world problems. Thus the use of environmental models have

been quite common both for on-line action planning [10] and for o�-line learning

by simulation [25]. However, no model can be perfect and modeling errors can

cause unpredictable results, sometimes worse than with no model at all. In fact,

robustness against model uncertainty has been the main subject of research in

control community for the last twenty years and the result is formalized as the

\H1" control theory [43].

In general, a modeling error causes a deviation of the real system state from

the state predicted by the model. This can be re-interpreted as a disturbance to

the model. However, the problem is that the disturbance due to a modeling error

can have a strong correlation and thus standard Gaussian assumption may not

be valid. The basic strategy to achieve robustness is to keep the sensitivity
 of

the feedback control loop against a disturbance input small enough so that any

disturbance due to the modeling error can be suppressed if the gain of mapping

from the state error to the disturbance is bounded by 1=
. In the H1paradigm,

those `disturbance-to-error' and 'error-to-disturbance' gains are measured by a

max norms of the functional mappings in order to assure stability for any modes

of disturbance.

We brie
y introduce the H1paradigm and show that design of a robust con-

troller can be achieved by �nding a min-max solution of a value function, which

is formulated as Hamilton-Jacobi-Isaacs (HJI) equation. We then derive on-line

algorithms for estimating the value functions and for simultaneously deriving the

5

CHAPTER 1 INTRODUCTION

worst disturbance and the best control that, respectively, maximizes and mini-

mizes the value function.

We test the validity of the algorithms �rst in a linear inverted pendulum task.

It is veri�ed that the value function as well as the disturbance and control policies

derived by the on-line algorithm coincides with the analytical solution given by

H1theory. We then compare the performance of the robust RL algorithm with

a standard model-based RL in a nonlinear task of pendulum swing-up [10]. It

is shown that robust RL controller can accommodate changes in the weight and

friction of the pendulum, which a standard RL controller cannot cope with.

1.4. Outline

This dissertation is organized as follows. In chapter 2, we explain the basic

framework of RL. In chapter 3, we explain the proposed hierarchical reinforcement

learning method. In chapter 4, we explain the imitation learning method in

the hierarchical reinforcement learning framework. In chapter 5, we explain the

proposed robust reinforcement learning method. In chapter 6, we conclude this

dissertation.

6

Chapter 2

Reinforcement Learning

Reinforcement learning (RL) does not require explicit knowledge of the desired

trajectories, but only requires a signal that evaluates if the action taken by the

learning agent is \good" or \bad". Agents acquire the desired trajectories through

trail and error by using RL. In concrete, the agents learn to choose action by

which the agents maximize accumulated future reward. If an environment is

stochastic, the accumulated future reward is represented by expected value. Then,

the expected accumulated future reward under policy � at time t is de�ned as

V �(t) = E[
1X
n=0

nr(t+ n)] (2.1)

in discrete time system, where r(t) is the reward at time t, and
 is the discount

factor for the future reward. The basic strategy of RL is to predict the expected

future reward from current state x(t) as the state-value function V (x(t)). Because

of this prediction, the agents can evaluate own actions and decide subsequent

actions[33].

2.1. Reinforcement Learning in Continuous Time

and Space

We can expect that the robot can acquire smooth controller for a control task

in continuous time and space by using a learning method de�ned in continuous

time and space. Then, in this study, the robot try to accomplish tasks by using

continuous time and space TD-learning method[10, 8]

7

CHAPTER 2 REINFORCEMENT LEARNING

2.1.1 TD-learning in Continuous Time and State System

Value function

We consider a continuous time and state dynamics,

dx(t)

dt
= f(x(t);u(t)); (2.2)

where x 2 X � Rn is input state and u 2 U � Rm is a control output. The

reward function is represented as the function of input state and control output

as

r(t) = r(x(t);u(t)): (2.3)

Then, the value function is de�ned as

V �(x(t)) =
Z

1

t

e�
s�t

� r(x(s);u(s))ds (2.4)

under the control policy u(t) = �(x(t)), where � denotes a time constant of

evaluation. This time constant � is related to a discount factor
 in discrete time

case as
 = 1� �t

�
(see appendix C).

Temporal di�erence error

We consider to approximate the value function de�ned in equation (2.4) by using

a function approximator as

V �(x(t)) ' V (x(t);w) (2.5)

where w is parameter vector of the function approximator. The TD-learning

update their prediction of the value function in on-line fashion by using a local

constraint which the value function should satisfy. We can derive the constraint

dV �(x(t))

dt
=

1

�
V �(x(t))� r(t) (2.6)

by di�erentiate equation (2.4). If the prediction is not correct, the learner update

their prediction to reduce the prediction error

�(t) � r(t)�
1

�
V (x(t)) +

dV (x(t))

dt
(2.7)

which is the Temporal Di�erence error (TD-error) in continuous time and space.

This TD-error is used for update the value function and the control function in

the actor-critic method explained in section 2.1.2.

8

2.1. REINFORCEMENT LEARNING IN CONTINUOUS TIME AND SPACE

2.1.2 Actor-critic

In this study, we use the actor-critic architecture, to implement the TD-learning.

In the actor-critic architecture, we use a control network called actor and an

evaluation network called critic. The critic predicts the value of the state V (x(t)),

and the actor acquires control policy maximize the value of the state V (x(t))(see

Fig.5.3).

State-value

Estimator

Controller

Environment

State x(t)

Action u(t)

Reward r(t)

TD-error

Figure 2.1 Actor-critic architecture

9

CHAPTER 2 REINFORCEMENT LEARNING

Predicting and learning the value function by the critic

The critic learn to reduce the prediction error �(t) (TD-error). Inputs of the critic

network are the current states, and output is the prediction of the value function.

The predicting and learning the value function are realized as following

1. The critic predicts the value of the states V (x(t)) as a function of current

states.

V (x(t)) =
X
i

vibi(x(t)); (2.8)

where bi() denotes a basis function and vi denotes a weight of the critic

network.

2. The critic calculate the prediction error (TD-error) �(t)

�(t) = r(t)�
1

�
V (x(t)) +

dV (x(t))

dt
(2.9)

3. The critic updates their network weights

_vi = ��(t)ei(t); (2.10)

where � denotes the learning rate and ei denotes eligibility trace

4. The critic update their eligibility trace ei.

_ei(t) = �
1

�
ei(t) + bi(x(t)) (2.11)

Control output and learning of the actor

The actor learns to achieve the state has high state value V (x(t)), and maximize

the accumulated future reward.

1. the actor outputs j-th control output as

uj(t) = umax
j

g

 X
i

wijbi(x(t)) + �nj(t)

!
(2.12)

where bi() denotes a basis function, and wij denotes network weight. umax
j

is maximum output of j-th control output. g() is used for saturate control

output at the maximum control output umax
j

(e.g. we can use sigmoidal

function gs g()). �nj(t) is the noise term for exploration. we use the noise

su�ciently contain low frequency.

10

2.1. REINFORCEMENT LEARNING IN CONTINUOUS TIME AND SPACE

2. the actor updates their network weights as

_wij = ��(t)�nj(t)bi(x(t)) (2.13)

where � denotes the learning rate.

Although, we showed the learning rule of the continuous time actor-critic archi-

tecture, we show the discritized method for the computer simulation in appendix

D. We also explained derivation of continuous TD-learning[10] in appendix B

and correspondence between discrete and continuous TD-learning in appendix C.

11

CHAPTER 2 REINFORCEMENT LEARNING

12

Chapter 3

Hierarchical Reinforcement

Learning

3.1. Introduction

Recently, there have been many attempts to apply reinforcement learning (RL)

algorithms to the acquisition of goal-directed behaviors in autonomous robots.

However, a crucial issue in applying RL to real-world robot control is the curse of

dimensionality. For example, control of a humanoid robot easily involves a forty

or higher dimensional state space. Thus, the usual way of quantizing the state

space with grids easily breaks down. We have recently developed RL algorithms

for dealing with continuous-time, continuous-state control tasks without explicit

quantization of state and time [10]. However, there is still a need to develop

methods for high-dimensional function approximation and for global exploration.

The speed of learning is crucial in applying RL to real hardware control because,

unlike in idealized simulations, such non-stationary e�ects as sensor drift and

mechanical aging are not negligible and learning has to be quick enough to keep

track of such changes in the environment.

In this chapter, we propose a hierarchical RL architecture that realizes a prac-

tical learning speed in high-dimensional control tasks. Hierarchical RL methods

have been developed for creating reusable behavioral modules [31, 37, 7], solving

partially observable Markov decision problems (POMDPs) [39], and for improving

learning speed [6, 16].

Many hierarchical RL methods use coarse and �ne grain quantization of the

state space. However, in a high-dimensional state space, even the coarsest quan-

13

CHAPTER 3 HIERARCHICAL REINFORCEMENT LEARNING

tization into two bins in each dimension would create a prohibitive number of

states. Thus, in designing a hierarchical RL architecture in high-dimensional

space, it is essential to reduce the dimensions of the state space [23].

In this study, we propose a hierarchical RL architecture in which the upper-level

learner globally explores sequences of sub-goals in a low-dimensional state space,

while the lower-level learners optimize local trajectories in the high-dimensional

state space.

As a concrete example, we consider a \stand-up" task for a two-joint, three-link

robot (see Fig. 3.1). The goal of the task is to �nd a path in a high-dimensional

state space that links a lying state to an upright state under the constraints of the

system dynamics. The robot is a non-holonomic system, as there is no actuator

linking the robot to the ground, and thus trajectory planning is non-trivial. The

geometry of the robot is such that there is no static solution; the robot has to

stand up dynamically by utilizing the momentum of its body.

This chapter is organized as follows. In Section 3.2, we explain the proposed

hierarchical reinforcement learning method. In Section 3.3, we show simulation

results of the stand-up task using the proposed method and compare the perfor-

mance with non-hierarchical reinforcement learning. In Section 3.4, we describe

our real robot and system con�guration and show results of the stand-up task

with a real robot using the proposed method. In Section 3.5, we discuss the

di�erence between our method and previous methods in terms of hierarchical re-

inforcement learning, reinforcement learning using real robots, and the stand-up

task. Finally, we conclude this paper in Section 3.6.

3.2. Hierarchical Reinforcement Learning

In this section, we propose a hierarchical RL architecture for non-linear con-

trol problems. The basic idea is to decompose a non-linear problem in a high-

dimensional state space into two levels: a non-linear problem in a lower-dimensional

space and nearly-linear problems in the high-dimensional space (see Fig. 3.2).

14

3.2. HIERARCHICAL REINFORCEMENT LEARNING

8888888888888888
8888888888888888
8888888888888888

link1

link2
m

1

0

link3

2

Figure 3.1 Robot con�guration. �0:pitch angle, �1:hip joint angle, �2:knee joint

angle, �m:the angle of the line from the center of mass to the center of the foot.

3.2.1 Task decomposition by sub-goals

In the upper level, the learner deals with the entire task. The reward for the

upper-level learner is given by the achievement of the entire task. In the lower

level, each learner deals with a sub-task. The reward for the lower-level learner is

given by the achievement of a given sub-goal. An action of the upper-level learner

is the selection of the next sub-goal for the lower level. An action of the lower-level

learner is the command for the actuators. The upper-level learner is activated

when the lower-level learner achieves the current sub-goal. Then, the upper-level

learner takes a new action, which is given as a new sub-goal for the lower-level

learner. The state variables in the lower level are the physical variables, while

those in the upper level are lower-dimensional state variables (see Table 3.1). The

15

CHAPTER 3 HIERARCHICAL REINFORCEMENT LEARNING

-

R(T)

r(t)

Q(X,U)

u(t)

+ −

X(T) U(T)

x(t)

Trigger

Switching

Action−value
function

Reward

Discretize

State Output

State Output

Reward

Controller

State−value
function V(x)

Robot

Figure 3.2 Hierarchical reinforcement learning architecture

choice of low-dimensional state variables is an important issue in hierarchical RL.

In general, the use of task-oriented kinematic variables, such as the positions of

the end e�ector and the center of the body mass, in the upper level would be

appropriate. In the stand-up task, we chose the angles of the joints and the center

16

3.2. HIERARCHICAL REINFORCEMENT LEARNING

of mass as the state variables. In other words, we chose kinematic variables in

the upper level and dynamic variables in the lower level as the input.

Table 3.1 Task decomposition by sub-goals

level state action reward

upper abstract setting sub-goals task achievement

low dimension

lower physical actuator commands sub-goal achievement

high dimension

3.2.2 Upper-level learning

In the upper level, the learner explores the entire relevant area of a low-dimensional

sub-space of the original high-dimensional state space. In order to facilitate global

search, the state space is coarsely discretized and the actions are de�ned as tran-

sitions to nearby states. We then use the Q(�)-learning method [28] to learn a

sub-goal sequence to achieve the goal of the entire task. Thus, a reward R(T) to

the upper level is given depending on the success or failure of the entire task (see

Fig.3.3). In the upper level, the action-value function Q(X(T);U(T)) predicts

the accumulated future reward if the learner takes the action U(T) at the state

X(T). In the Q(�)-learning, the action-value function is updated in two steps.

First, all of the state-action pairs are updated by

�(T) = R(T) +
VT (X(T + 1))� VT (X(T)); (3.1)

e(X;U) =
�e(X;U); (3.2)

QT+1(X;U) = QT (X;U) + �Qe(X;U)�(T); (3.3)

where V (X(t)) = maxU Q(X(T);U(T)) is the state-value function and �(T) is

its prediction error,
 = 0:5 is the discount factor of the action-value function,

17

CHAPTER 3 HIERARCHICAL REINFORCEMENT LEARNING

Upper level

Discretized

Reward

State

Reduce
dimension

Reward
to lower level

Select
next subgoal

Control
command

Figure 3.3 Upper level

e(X;U) is the eligibility trace, � = 0:9 is the decay rate of the eligibility trace,

and �Q = 0:1 is the learning rate. Then, the value function for the current

state-action pair is updated by

�0(T) = R(T) +
VT (X(T + 1))�QT (X(T); U(T)); (3.4)

18

3.2. HIERARCHICAL REINFORCEMENT LEARNING

QT+1(X(T);U (T)) = QT+1(X(T);U(T)) + �Q�
0(T); (3.5)

e(X(T);U(T)) = e(X(T);U (T)) + 1; (3.6)

where �0(T) is the action-value prediction error.

In the stand-up task, we chose the posture of the robot X=(�m; �1; �2) as the

state variables (see Fig. 3.1). The desired posture of the robot U(T) = X(T �

1) +�X is given as an action, which is sent to the lower level as the next sub-

goal. The upper-level learner chooses an action using Boltzmman distribution

[33]. Thus we have

P (U(T) = a) =
exp[�Q(X(T); a)]P

b2A(X)
exp[�Q(X(T); b)]

; (3.7)

where A(X) is the set of possible actions at state X and � is a parameter that

controls the randomness in the action selection for exploration. We de�ne the

reward for the upper-level learner as follows.

R(T) = Rmain + Rsub; (3.8)

Rmain =

8<
: 1 (on success of stand-up)

0 (on failure)
; (3.9)

Rsub =

8>><
>>:

1 (�nal goal achieved)

0:25(Y
L
+ 1) (subgoal achieved)

0 (on failure)

; (3.10)

where Y is the height of the head of the robot at a sub-goal posture and L is

total length of the robot. The �nal goal is the upright stand-up posture. When

the robot achieves a sub-goal, the upper-level learner gets a reward of less than

0.5. Note that reaching the �nal goal is a necessary but not su�cient condition

of successful stand-up because the robot may fall down after passing through the

�nal goal.

When the robot reaches the neighborhood of a sub-goal, the next sub-goal is

selected and the action-value function is updated in the upper level.

We consider that the stand-up task is accomplished when the robot stands up

and stays upright for more than 2(T + 1) seconds. Otherwise (e.g. if the robot

falls down, or if a time limit has been reached before the robot successfully stands

up), we determine that the robot has failed to stand-up.

19

CHAPTER 3 HIERARCHICAL REINFORCEMENT LEARNING

3.2.3 Lower-level learning

In the lower level, the learner explores local areas of the high-dimensional state

space without discretization. The lower-level learner learns to achieve the sub-

goal speci�ed by the upper level from any given initial state. Because each sub-

goal is de�ned in the low-dimensional state space of the upper level, the sub-goal

is not a point but a hyper-plane in the high-dimensional state space of the lower

level. We use the continuous TD(�)-learning with the actor-critic method [10]

to learn the control command sequence. In addition, we use an Incremental

Normalized Gaussian Network (INGnet) to implement the actor and the critic

[24] (see Appendix A). A reward r(t) is given to the lower level by the achievement

of the sub-goal speci�ed by the upper level [6] (see Fig.3.4). In continuous actor-

critic learning of the lower-level learner, the critic learns the state-value function

V (x(t)) that predicts the accumulated future reward at state x(t), while the

actor learns the control function uj(t) = umaxh(fj(x(t))+�nj(t)) that speci�es a

nonlinear feedback control law. Here, h(x) = �

2
arctan(2

�
x) is a sigmoid function

to saturate output with maximum torque umax, � is a size of a noise term for

exploration of the lower-level learner, and nj(t) is low-pass �ltered noise �n _nj(t) =

�nj(t) + Nj(t), where Nj(t) denotes normal Gaussian noise and �n = 0:1 [sec]

is a time constant for the low-pass �lter. We use INGnets for the critic and the

actor. The output of the critic is given by

V (x(t)) =
X
i

vibi(x(t)); (3.11)

where bi() is a basis function, and vi is a network weight. The state-value predic-

tion error �(t) is calculated by

�(t) = r(t)�
1

�
V (x(t)) +

dV (x(t))

dt
; (3.12)

where � = 0:5 [sec] is the time constant of the state-value function. The update

rule of the critic is

_vi = �c�(t)ei(t); (3.13)

where �c = 0:02 is the learning rate, and ei is the eligibility trace of each basis

function. The update rule of eligibility trace is

_ei(t) = �
1

�
ei(t) + bi(x(t)); (3.14)

20

3.2. HIERARCHICAL REINFORCEMENT LEARNING

Lower level

Reward from upper level

Control
command

State

Reward to upper level

Figure 3.4 Lower level

where � = 0:1 [sec] is the time constant of eligibility.

The output of the actor is given by

fj(x(t)) =
X
i

wijbi(x(t)); (3.15)

uj(x(t)) = umaxh(fj(x(t)) + �nj(t)); (3.16)

21

CHAPTER 3 HIERARCHICAL REINFORCEMENT LEARNING

where bi() is the basis function, and wij is a network weight. The update rule of

the actor is

_wij = �a�(t)�nj(t)bi(x(t)); (3.17)

where �a = 0:02 is learning rate. The state-value prediction error �(t) is used as

an e�ective reward that signals the relative goodness of the current action u(t).

In a stand-up task, we chose the pitch and joint angles � = (�0; �1; �2) and

the corresponding angular velocities _� = (_�0; _�1; _�2) as the state variables x(t) =

(�; _�). We chose torque u(t) = (�1; �2) for the two joints as the action variables.

The output torque is the sum of two controllers, a linear servo controller and a

non-linear feedback controller fi(x), which is acquired by the lower-level actor:

�j = umaxh

�
1

umax

(k(�̂j � �j)� b _�j) + fj(x) + �nj

�
; (3.18)

where k = 0:26 [Nm/deg] and b = 0:017 [Nms/deg] are feedback gains, and we

set the maximum torque as umax = 24 [Nm].

In this study, we used di�erent lower-level learners for di�erent sub-goals.

When the robot reaches the neighborhood of a sub-goal (jj� � �̂jj < 10 [deg]),

the upper-level learner switches the current lower-level learner module to the next

one according to the choice of next sub-goals (see Fig. 3.2). Thus, one lower-level

actor takes control until either the robot achieves the sub-goal, a time limit is

reached, or the robot falls down. We used two types of reward for the lower level.

One is given during the control according to the distance from the current posture

� to the sub-goal posture �̂(= U) given by the upper level

r(�; �̂) = exp

�
jj� � �̂jj2

s2
�

!
� 1; (3.19)

where s� = 30 [deg] gives the width of the reward function. Additional reward is

given at the end of the control by the distance from the current pitch and joint

angular velocity _� to the desired values _̂� that are set by the memory of successful

trials

r(t) =

8>>><
>>>:

exp

0
@� jj

_�(t)� _̂�jj2
s
2

_�

1
A (sub-goal achieved)

�1:5 (The robot falls down)

; (3.20)

22

3.3. SIMULATIONS

where s _� = 60 [deg/sec] gives the width of the reward function. If the time limit is

reached, the lower-level learner is not updated at the end of control. The desired

angular velocity _̂� is initialized at the �rst successful stand-up as the angular

velocity _� when the learner achieves the sub-goal area. It is then updated by

_̂� � _̂� + (1 � �) _� with � = 0:9 in subsequent successful trials. Note that we

set reward r(t) = 0 in the upper part of (4.44) before the robot achieves the �rst

stand-up.

3.3. Simulations

First, we show simulation results of the stand-up task with a two-joint, three-

link robot using the hierarchical RL architecture. We then investigate the basic

properties of the hierarchical architecture in a simpli�ed stand-up task with one

joint. We show how the performance changes with the action step size in the upper

level. We also compare the performance between the hierarchical RL architectures

and non-hierarchical RL architectures. Finally, we show the role of the upper-level

reward Rsub for reaching a sub-goal.

3.3.1 Stand-up task using a two-joint, three-link robot

We tested the performance of the hierarchical RL architectures in the stand-up

task by using the two-joint, three-link robot (see Fig. 3.1). We used a low-

dimensional state X = (�m; �1; �2), where 0 � �m � 90, �150 � �1 � 0, 0 � �2 �

25 [deg] in the upper level and a high-dimensional state x = (�0; �1; �2; _�0; _�1; _�2),

where �150 � �1 � 150, �150 � �2 � 150 [deg] in the lower level. We chose

��m = 30;��1 = 50;��2 = 25 [deg] as the action step �X in the upper level.

Each trial was started with the robot lying on the ground, x = (90; 0; 0; 0; 0; 0)

[deg], and was continued for t < 2(T + 1) seconds in simulated time, where T

is the discrete time in the upper level. When the robot fell down and hit its

hip or head on the ground, the trial was terminated and restarted again. Each

simulation was continued up to 1000 trials.

We set the exploration parameter as � = 0:2M(T), where M(T) is the number

of trials lasting no fewer than T steps.

23

CHAPTER 3 HIERARCHICAL REINFORCEMENT LEARNING

The size of the noise term was modulated as � = �smin[1;max[0; V1 � V (t)]].

V (t) is the lower level state value function and V1 = 0:5 is a exploration parameter

for the lower-level learner. The maximal noise level �s was also changed according

to the sub-goal and the number of trials m as

�s =

8>>>>><
>>>>>:

�0 for �nal sub-goal

�1 otherwise if m � m1

(m2�m)�1+(m�m1)�2
m2�m1

if m1 < m < m2

�2 if m � m2

: (3.21)

The parameters were m1 = 300 [trial], m2 = 600 [trial], �1 = 0:5, �2 = 0:1, and

�0 = 0:01.

The physical structure and the parameters of the robot are shown in Fig. 3.15

and Table 3.3. The physical system was simulated by a dynamic simulator made

by Boston Dynamics Inc., with a time step of 0.001 [sec]. We used the number

of trials made before achieving 10 successful trials as the measure of the learning

speed.

The robot successfully learned to stand up in 7 out of 10 simulation runs. The

average number of learning trials was 749, which took 30 minutes in simulated

time (averaged over 7 successful runs). The upper-level learner used 4.3 sub-goals

(averaged over 7 successful runs) for successful stand-up.

Figure 3.5(a) shows the time course of learning. The vertical axis shows the

performance index given by the integral of the head height
R
te

0 y(t)dt, where te

is terminal time of the trial. Figure 3.5(b) shows the number of sub-goals used

in each trial. In the �rst stage of learning, the upper-level learner used only a

few sub-goals, but after the middle stage of learning, the number of sub-goals

increased because the lower-level learner learned to achieve sub-goals.

After about 300 trials, the upper-level learner learned appropriate sub-goals

for the �rst and second steps, while the lower-level learner successfully learned to

achieve each sub-goal, as shown in Fig. 3.6.

After about 750 trials, the upper-level learner learned appropriate sub-goals

for successful stand-up, while the lower-level learner learned to achieve each sub-

goal. The top images of Figure 3.7 shows an example of a sub-goal sequence

acquired in the upper level. The bottom images of Figure 3.7 shows an example

24

3.3. SIMULATIONS

of a stand-up trajectory acquired in the lower level. Each learner successfully

learned the appropriate action sequence for the stand-up task.

3.3.2 The e�ect of step size in the upper level

To investigate the e�ect of the action step size, We compared the upper-level

learners with di�erent�X. For simplicity, we �xed �2 to 0 [deg] by servo control

(see Fig. 3.8) and chose action steps as ��1 = 25; 30; 50 [deg] and ��m = 30

[deg]. 1 Thus, we chose X = (�m; �1) and x = (�0; �1; _�0; _�1) as state variables

in the upper and the lower levels, respectively. Each simulation was continued

up to 1000 trials. We used the same parameters as in section 3.3.1 for each

learning algorithm except for �1 = 0.3. Figure 3.11 and Table 3.2 show the

results of the learning to stand up with di�erent ��1. The robot achieved good

performance with ��1 = 25 and 30 [deg] but poor performance with ��1 = 50

[deg]. The upper level with smaller ��1 used more sub-goals for standing up.

Figure 3.12 shows examples of the stand-up trajectories and the sub-goal points

in joint angle space with di�erent ��1. The sub-goal locations with ��1 = 20 [deg]

and ��1 = 30 [deg] were di�erent, but both were good via points for generating

stand-up trajectories. On the other hand, the sub-goal locations with ��1 = 50

[deg] lacked the important via point representing a maximum curvature of the

stand-up trajectory (see Fig. 3.12). Without this via point, the lower-level learner

had to learn a di�cult sub-task and often failed to acquire a part of the stand-up

trajectories.

Thus we showed that the proposed hierarchical reinforcement learning method

was not so sensitive to the choice of �X but has a certain range of �X in

which the upper-level learner successfully acquired the appropriate sub-goals for

stand-up.

1Each width of the ��1 represent about 17%; 20%; 33% of the range of �1 in the upper level

(150[deg]), respectively, which indicate that ��1 = 50[deg] has relatively wide step compare to

��1 = 25 and 30[deg].

25

CHAPTER 3 HIERARCHICAL REINFORCEMENT LEARNING

0 200 400 600 800 1000
0

2

4

6

8

10
In

te
gr

al
 o

f h
ea

d
he

ig
ht

Trials

(a)

0 200 400 600 800 1000
1

2

3

4

5

6

N
um

be
r

of
 s

ub
−

go
al

s

Trials

(b)

Figure 3.5 Time course of learning. Circles show 10th successful stand-up, upon

which a simulation run was terminated. (a)Performance index. (b)Average num-

ber of sub-goals in each set of 50 trials.

26

3.3. SIMULATIONS

Figure 3.6 (Top): Example of a sub-goal sequence after 300 trials (Bottom):

Example of a failed stand-up trajectory after 300 trials

Figure 3.7 (Top): Example of a successful sub-goal sequence (Bottom): Example

of a successful stand-up trajectory

3.3.3 Comparison between hierarchical and plain archi-

tectures

We then compared the hierarchical RL architecture with a non-hierarchical, plain

RL architecture. We again used a one-joint, two-link robot (see Fig. 3.8), and

27

CHAPTER 3 HIERARCHICAL REINFORCEMENT LEARNING

8888888888888888
8888888888888888
8888888888888888

link1

link2
m

1

0

link3

Figure 3.8 One-joint, two-link robot con�guration

Table 3.2 Comparison with di�erent ��1
��1 Success rate Trials Time Sub-goals

(Average over successful trials)

25 [deg] 90% 408 19 [min] 6.3

30 [deg] 100% 375 16 [min] 4.5

50 [deg] 20% 463 16 [min] 4

compared the results in section 3.3.2 with the results of a plain continuous actor-

critic architecture [10]. In the plain architecture, the actor and the critic have

to learn a highly non-linear control function and value function, respectively. In

preliminary experiments, we used a simple reward function such as the height

of the head for the plain architecture without success. Thus, we prepared a

hand-crafted reward function

r(y) =

8<
:

0:3(y
L
) + 0:3 sin(�m) + 0:4 exp(�(

�
2

0
+�2

1

s
2

�

+
_�2
0
+ _�2

1

s
2

_�

))� 1 (during trial)

�1 (fall down)

(3.22)

for the plain architecture, where y is the height of the head of the robot, L is total

length of the robot, and s� = 60 [deg] and s _� = 240 [deg/sec] give the width of

the reward function. Each simulation was continued up to 2000 trials. We used

28

3.3. SIMULATIONS

the same parameters in section 3.3.2 for the continuous TD(�)-learning except

for m1 = 1000, m2 = 1500, and V1 = 0:0. We limited the range of joint angle to

�150 � �1 � 0 for the plain architecture to make the stand-up task easy.

The robot successfully learned to stand up within 1685 trials, which took 56

minutes in simulated time (averaged over 5 successful runs out of 10 simulation

runs). Figure 3.13 shows the time course of learning with the plain architecture.

Compared to the robot with the hierarchical RL architecture, about four times

as many learning trials were necessary with the plain RL architecture. Moreover,

the robot with the hierarchical RL architecture (with ��1 = 25 and 30 [deg])

learned to stand up in a more robust way than the one with the plain architecture

because the robot with the hierarchical architecture achieved about twice as many

successful runs as the robot with the plain architecture.

We can consider the use of the reward function in equation 3.22 as the use of

subgoals like in hierarchical RL. We also used some prior knowledge for intro-

ducing hierarchical architecture to RL (see Fig.3.2). However, there are many

advantage of using hierarchical RL as

� We do not have to �nd speci�c subgoals for achieving tasks successfully

while we have to �nd appropriate reward function in the non-hierarchical

RL, because the hierarchical RL learn to �nd appropriate subgoal sequence

from given subgoal set through trial and error. Then, we can say that the

hierarchical RL is more general framework than the non-hierarchical RL

with carefully designed reward function.

� If we use inappropriate or too simple reward function for the non-hierarchical

RL, the learner likely to stuck in a local maximum point. On the other

hand, the learner easily avoid a local maximum point in the lower level

by using the hierarchical RL with appropriate subgoal set (candidates) in

the upper level. Choosing an appropriate reward function is usually more

di�cult than choosing an appropriate subgoal set in the upper level in the

hierarchical RL framework. Then, the hierarchical RL is suitable method

for complex learning tasks.

� In the hierarchical RL, the number of dimension are reduced in the up-

per level. Then, we can expect that the learner can explore in the high-

29

CHAPTER 3 HIERARCHICAL REINFORCEMENT LEARNING

dimensional state space more e�ciently than using the non-hierarchical RL

in which the learner explorer simply in original high-dimensional state space.

Because of above reason, the robot with the hierarchical RL could learn the

stand-up task faster than with the non-hierarchical RL.

3.3.4 The role of sub-goal reward Rsub

The sub-goals chosen as the actions of the upper level must satisfy two conditions:

1. They should be helpful for accomplishing a successful stand-up;

2. Each of them must be achievable by the lower-level learner.

We used the rewards Rmain and Rsub to satisfy both demands. Rmain is given

only when the robot successfully stands up. This means that the robot cannot

get any reward in the early stage of learning if there is only reward Rmain for the

upper level. In such a case, the robot needs many trials to learn the task. Thus,

we introduced a supplementary Rsub in the upper level. Because of this reward,

the upper-level learner is encouraged to use sub-goals that can be achieved by the

lower-level learner, which avoids irrealizable relevant sub-goals in the early stage

of learning. To verify the e�ect of Rsub, we applied the hierarchical RL method

to the one-joint, two-link robot without Rsub. We used the same parameters as

those in section 3.3.2 for each learning algorithm except for the size of the noise

term, which is always keep to � = 0:3 in this section.

Figure 3.14(a) shows the time course of learning without Rsub. Figure 3.14(b)

shows the time course of the sub-goals used in each trial. The robot never learned

to stand up within 1000 trials in 10 simulation runs. This result shows the

usefulness of Rsub.

3.4. Real robot experiments

Next, we applied the hierarchical RL to a real robot. As the initial condition for

the real robot learning, we used the sub-goal sequence and non-linear controllers

acquired by the simulation in section 3.3.1. We then applied the hierarchical RL

to a real robot.

30

3.4. REAL ROBOT EXPERIMENTS

We used a PC/AT with a Pentium 233 MHz CPU and RT-Linux as the oper-

ating system for controlling the robot (see Fig. 3.16). The time step of the lower-

level learning was �t = 0:01 [sec], and that of the servo control was �t = 0:001

[sec].

The robot has an inclination sensor to detect the pitch angle and the angular

velocity of the link3 (see Fig. 3.1) and two rotary encoders to detect joint angles

(�1; �2). We derived joint angular velocity (_�1; _�2) by numerically di�erentiating

the joint angles. We calculated the pitch angle and angular velocity (�0, _�0) by

using the above sensor data (see Fig. 3.1). We used the same parameters used

in section 3.3.1 except for the following parameters: learning rate of the critic

�c = 0:05, learning rate of the actor �a = 0:05, initial amplitude of perturbation

�1 = 0:3, �nal amplitude of perturbation �2 = 0:05, initial time for scheduling

perturbation m1 = 0, and �nal time for scheduling perturbation m2 = 150.

The physical parameters of the real robot are shown in Table 3.3. We used

Table 3.3 Physical parameters of the real robot

length weight inertia

link1 0.40 m 0.85 kg 0.064 kg m2

link2 0.15 m 3.5 kg 0.11 kg m2

link3 0.15 m 0.46 kg 0.011 kg m2

the sub-goal sequence and non-linear controllers acquired by the learning with

7 successful simulation runs as the initial setting for the real robot experiments.

Each experiment was continued up to 200 trials. The robot successfully learned to

stand up in 6 out of 7 experiments within 164 trials (averaged over 6 successful

runs). Figure 3.17 shows the time course of learning with the real robot, and

Figure 3.18 shows the time course of a successful stand-up trajectory and a sub-

goal sequence. These result show that the proposed hierarchical RL method

enabled the real robot to accomplish the stand-up task and that the sub-goal

sequence and non-linear controllers acquired by the simulation is useful for the

learning by the real robot.

31

CHAPTER 3 HIERARCHICAL REINFORCEMENT LEARNING

3.5. Discussion

In this section, we summarize the achievement of this study in relation to the

previous studies of the hierarchical RL, RL using real robots, and the stand-up

task for robots.

3.5.1 Hierarchical RL

Hierarchical RL methods have been developed for several di�erent goals, such

as solving partially observable Markov decision problems (POMDPs), improving

learning speed, and creating reusable behavioral modules. For example, hierar-

chical Q-learning methods have been used for solving POMDPs by dividing the

state space into several regions in which each task is reduced to a Markov decision

problem (MDP) [39].

Our main interest is in improving the learning speed of a single task, in selec-

tion of reduced variables in the upper level, and in creating reusable behavioral

modules for multiple tasks. We focus on these topics below.

Improving learning speed of a single task

Kimura and Kobayashi [16] used Q-Learning in the upper level and local linear

actor-critic controllers in the lower level. They applied their method to a cart-pole

swing-up task, but not faster than non-hierarchical RL [9, 10].

Dayan and Hinton [6] proposed the feudal RL method which used multiple

resolutions in space and time. They showed that the method could accomplish

the two-dimensional maze task faster than non-hierarchical RL.

On the other hand, by using our proposed hierarchical RL, the robot success-

fully learned to stand up in the high-dimensional state space. Here, we summarize

the reasons for the successful learning of the stand-up task by the hierarchical

architecture, which can be helpful in other tasks as well. First, the upper level

decomposed the original task into simpli�ed sub-tasks. Furthermore, the upper

level reward of the success of a sub-task (Rsub) encouraged the upper level to

set realizable sub-goals. Second, the dimension reduction in the upper-level dra-

matically reduced the number of state in high-dimensional state space. Third,

the coarse exploration in the upper level enabled the robot to explore e�ciently

32

3.5. DISCUSSION

in the entire state space and prevented it from getting in stuck local optimum.

Fourth, in the hierarchical architecture, prior knowledge can be easily included.

We set the appropriate size and direction of action steps in the upper level and

provided linear feedback component in the lower level.

Although the proposed hierarchical RL method was successfully applied to a

robot with four and six dimensional state space in section 3.3.2 and 3.3.1 re-

spectively, it remains to be tested how well it scales with further increase in the

dimension of the state space.

Selection of Reduced Variables

In this study, we chose the angles of the joints and the center of mass as the

low-dimensional state variables for the upper level. However, this strategy of

neglecting the velocity components has a limitation that the dimension can be

reduced at most to the half of the original dimension. For systems with much

higher-dimensional state space, for example, arms or legs with excess degrees

of freedom, we should consider the use of task-oriented kinematic variables in

the upper level. For example, in manipulation task with a multi-joint arm, the

position of the end e�ector can be a good state vector in the upper level. For

another example, position of the center of mass or the zero-moment point (ZMP)

can be a good higher-level representation in locomotion or posture control task

with multiple legs. How to select such essential variables by learning remains as

a subject of future work.

In addition, we chose an appropriate step size �X in the upper level, but

a method of automatically choosing and adapting step size is also a subject of

future work.

Using reusable behavioral modules and abstract action

Singh [31] proposed compositional Q-Learning (CQ-L) in which each lower-level

module was automatically adapted to manage each subtask. The architecture of

this learning method was similar to the mixtures of experts [14]. A gating module

stochastically switches the lower level module, and a bias module estimates the

state-value for compositional tasks. Each lower-level module can be reused in

several compositional tasks. Tham [37] proposed an extended version of the

33

CHAPTER 3 HIERARCHICAL REINFORCEMENT LEARNING

CQ-L in which rewards can be de�ned not only at goal states but also at non-

goal states and each lower-level module can have more than two Q-networks for

learning behaviors of more than two actuators. He applied the extended CQ-L

to non-linear control tasks using a simulated two-linked manipulator.

Digney [7] proposed nested Q-learning in which a hierarchical structure was

also learned. In his method, a state is detected as a sub-goal according to the

experience: non-typical reinforcement is given in the state or the learner visits

the state many times. Each sub-task then becomes one of the actions that the

learner can choose as a primitive action. As a result, sub-tasks were nested in

original tasks; in other words, the hierarchical structure was learned. However,

the CQ-L and the nested Q-learning are suitable when the lower-level modules

are reused in several tasks and were not developed for improving learning speed

by focusing on a single task as in our study.

3.5.2 RL in real robots

Many studies of RL focus on theoretical aspects and apply their method in a

typical two-dimensional maze. However, in order to apply RL to real world

problems, we should try to apply RL to realistic tasks such as real robot control.

Recently, there have been several attempts to apply RL to real robots.

Navigation of wheeled mobile robots

Asada et al. [2, 35] applied RL to soccer-playing robots entered in the RoboCup

[1] middle-size class. Their robots successfully learned shooting and passing be-

haviors. Yamaguchi et al. [41] accomplished a ball-pushing task using their

mobile robot with RL. Ortiz and Zu�ria [27] applied RL to a goal-reaching task

using the NOMAD 200 mobile robot. Mataric [20] investigated social behaviors

of robots. A group of four mobile robots successfully learned a foraging task.

However, these tasks did not have critical dynamic constraints as in our work.

Legged locomotion

Maes and Brooks [19] applied RL to the selection of behaviors of a six legged robot

by only considering an immediate reward. Kirchner [17] applied RL to learn the

34

3.6. CONCLUSIONS

appropriate leg motion of a six legged robot. Yamada et al. [40] developed hybrid

controller composed of a linear control module, an RL module, and a selection

module for controlling a stilt-type biped robot. Most of these studies dealt with

stable limit cycle behaviors. The novelty of our work is that the task involves

transient behavior under critical dynamic constraints.

3.5.3 The stand-up task

Although the stand-up behavior is necessary for any practical biped robot, there

have not been so many studies focused on the stand-up behavior due to the

di�culty in designing an appropriate controller.

Inaba et al. [13, 15] developed a humanoid robot with 35 degrees of freedom

that can stand up statically by using a control scheme pre-programmed by the

experimenter. Kuniyoshi and Ngakubo [18] proposed a control strategy called

action oriented control that does not require a precise dynamical model of robots.

They applied their method to a dynamic stand-up task for a humanoid robot

by specifying several postures and arranging them at appropriate time intervals

chosen by the experimenter. However, successful results have only been obtained

in simulation. Thus, the learning of the dynamical stand-up task by using a real

robot in our study is a quite new result.

3.6. Conclusions

We proposed a hierarchical RL architecture that uses a low-dimensional state

representation in the upper level. The stand-up task was accomplished by the

hierarchical RL architecture using a real, two-joint, three-link robot. We showed

that the hierarchical RL architecture achieved the task much faster and more

robustly than a plain RL architecture. We also showed that successful stand-up

was not so sensitive to the choice of the upper-level step size and that upper-level

reward Rsub was helpful for e�cient exploration.

In this study, we �xed an appropriate step size in the upper level, but a method

of automatically choosing and adapting the step size remains future work. In

addition, the use of a hierarchical architecture with three or more layers, and

35

CHAPTER 3 HIERARCHICAL REINFORCEMENT LEARNING

reusing lower-level modules in the other tasks, are also interesting topics. We

will incorporate these ideas in our hierarchical RL method as future work.

36

3.6. CONCLUSIONS

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

16

In
te

gr
al

 o
f h

ea
d

he
ig

ht

Trials

(a)

0 100 200 300 400 500 600
1

2

3

4

5

6

N
um

be
r

of
 s

ub
−

go
al

s

Trials

(b)

Figure 3.9 Comparison of the time course of learning with di�erent ��1. Circles

show 10th successful stand-up, upon which a simulation run was terminated. (a)

Performance index, ��1 = 25 [deg] (b) Average number of sub-goals in each set

of 50 trials, ��1 = 25 [deg]

37

CHAPTER 3 HIERARCHICAL REINFORCEMENT LEARNING

0 100 200 300 400 500 600
0

2

4

6

8

10

12
In

te
gr

al
 o

f h
ea

d
he

ig
ht

Trials

(a)

0 100 200 300 400 500 600
1

2

3

4

5

6

N
um

be
r

of
 s

ub
−

go
al

s

Trials

(b)

Figure 3.10 Comparison of the time course of learning with di�erent ��1. Circles

show 10th successful stand-up, upon which a simulation run was terminated. (a)

Performance index, ��1 = 30 [deg] (b) Average number of sub-goals in each set

of 50 trials, ��1 = 30 [deg]

38

3.6. CONCLUSIONS

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

In
te

gr
al

 o
f h

ea
d

he
ig

ht

Trials

(a)

0 100 200 300 400 500 600
1

2

3

4

5

6

N
um

be
r

of
 s

ub
−

go
al

s

Trials

(b)

Figure 3.11 Comparison of the time course of learning with di�erent ��1. Circles

show 10th successful stand-up, upon which a simulation run was terminated. (a)

Performance index, ��1 = 50 [deg] (b) Average number of sub-goals in each set

of 50 trials, ��1 = 50 [deg]

39

CHAPTER 3 HIERARCHICAL REINFORCEMENT LEARNING

0 50 100 150
−140

−120

−100

−80

−60

−40

−20

0

20

θ
0
[deg]

θ 1[d
eg

]

o 25
+ 30
x 50

Goal Start

Figure 3.12 Stand-up trajectories and sub-goals using di�erent ��1

0 500 1000 1500 2000
0

1

2

3

4

5

In
te

gr
al

 o
f h

ea
d

he
ig

ht

Trials

Figure 3.13 Time course of learning with plain architecture. Circles show 10th

successful stand-up, upon which a simulation run was terminated.

40

3.6. CONCLUSIONS

0 200 400 600 800 1000
0

2

4

6

8

10

In
te

gr
al

 o
f h

ea
d

he
ig

ht

Trials

(a)

0 200 400 600 800 1000
1

2

3

4

5

6

N
um

be
r

of
 s

ub
−

go
al

s

Trials

(b)

Figure 3.14 Time course of learning without Rsub. (a)Performance index.

(b)Average number of sub-goals in each set of 50 trials.

41

CHAPTER 3 HIERARCHICAL REINFORCEMENT LEARNING

400

150

150

120

Encoder1

Encoder2

AC servo motor1

AC servo motor2

Inclination sensor

60

Figure 3.15 Real robot con�guration

EncoderCounter

D/A Motor

RobotController

CPU: Pentium 233 MHz

(PC)

OS: RT−Linux

Motor
driver

Serial
port

Inclination
sensor

Joint angle

Figure 3.16 System con�guration

42

3.6. CONCLUSIONS

0 50 100 150 200
0

5

10

15

In
te

gr
al

 o
f h

ea
d

he
ig

ht

Trials

Figure 3.17 Time course of learning with real robot. Circles show 5th successful

stand-up, upon which each experiment was terminated.

0 0.5 1 1.5 2
−200

−150

−100

−50

0

50

100

150

Time [sec]

θ
[d

eg
]

θ
0

θ
1

θ
2

Subgoal

Figure 3.18 Example of a time course of a stand-up trajectory and a sub-goal

sequence (�0:pitch angle, �1; �2:joint angle).

43

CHAPTER 3 HIERARCHICAL REINFORCEMENT LEARNING

Figure 3.19 An example of a stand-up trajectory using the real robot44

Chapter 4

Imitation Learning

4.1. Introduction

In this chapter, we show how imitation learning improve the learning speed in the

hierarchical reinforcement learning framework. Imitation learning[30, 21] is the

learning method in which learners acquire useful information for achieve tasks

from their teacher. However, di�erent from usual supervised learning, the learner

can not obtain full information of desired trajectories, but the learner obtain the

partial information of desired trajectories. In such a case, the learner have to

construct desired trajectories from insu�cient information which acquired from

their teacher. In this study, we consider to use RL to realize desired trajectories

or control policy with using the information from their teacher. We can say that

the hierarchical architecture is a suitable representation for imitation learning,

because the information from their teacher can be considered as the upper-level

state and construct desired control policy by using the lower-level through trial

and error.

We consider stand-up task for verify how imitation learning contribute to im-

prove learning speed. Here, we assume that the learner can obtain the stand-up

trajectories in the pitch and joint angle space which are absolutely not enough

to construct control policy to achieve stand-up behavior. Then, the robot ac-

complish stand-up task mainly by using the lower-level learning. In such a case,

we can expect that the stand-up task is achieved much faster than without the

information from the teacher, the stand-up trajectory.

In our proposed method, the information of the stand-up behavior is converted

to the action-value function at the subgoal point in the upper level. For imple-

45

CHAPTER 4 IMITATION LEARNING

menting above method, we rede�ne previously proposed hierarchical RL in Semi

Markov Decision [29] process (SMDP) and introduce the idea of option is the

temporary extended action[?].

4.2. Semi-Markov Decision Process

semi-Markov model consists of four tuples < S;A; P;Z >, where S denotes state

space, A denotes action space, P denotes a set of transition probabilities, and Z

denotes a joint probability distribution of transition times and transition costs

dependent on the state and the action.

4.3. Options

The term options represent generalization of primitive actions or temporally ex-

tended action. Options consist of three tuples < I; �; � >, where � denotes

policy, � denotes a termination condition, and I denotes an input set I � S. If

the option is selected, then actions are taken according to the policy � until the

option terminates stochastically according to �. Sutton [?] prove that options

with Markov decision process can consider as SMDP because Z can be de�ned

by policy � and a termination condition �, and input set I is a state space of

SMDP.

Here we consider relationship between SMDP (option with MDP) and our hi-

erarchical RL framework explained in chapter 3. In the upper level, the learner

acquire their policy in SMDP because the upper level output next subgoal and

select policy which realized by the lower-level controller. The termination con-

dition is given as the subgoal area. Especially, we concern the case that the

dimension of the upper-level state space is reduced compare to the dimension of

the lower-level. However, we need some modi�cation to �t our hierarchical RL

to SMDP framework.

First, we modify the reward for the upper level. The upper level learner gets

discounted accumulated reward before encounter the termination condition of a

option (the upper level action).

In discreate time and space formulation, the reward for the option o is given

46

4.3. OPTIONS

as

ro
s
= Efrt+1 +
rt+2 + � � �+
k�1rt+kg; (4.1)

and transition probability of SMDP is represented as

po
ss0

=
1X
i=1

iPr(st+k = s0; k = i) (4.2)

Then the value function is de�ned as

V �(s) = Efrt+1 +
rt+2 + � � �+
k�1rt+k +
kV �(st+k)g (4.3)

=
X
o

�(s; o)[ro
s
+
X
s0

po
ss0
V �(s0)]: (4.4)

The de�nition is a Bellman equation for SMDP. Accordingly, the action-value

function is de�ned as

Q�(s; o) = Efrt+1 +
rt+2 + � � �+
k�1rt+k +
kV �(st+k)g (4.5)

= Efrt+1 +
rt+2 + � � �+
k�1rt+k +
k
X
o0

�(st+k; o
0)Q�(st+k; o

0)g(4.6)

= ro
s
+
X
s0

po
ss0

X
o0

�(s0; o0)Q�(s0; o0): (4.7)

Then, the optimal value function is de�ned as

V �

O
(s) = max

�
V �(s) (4.8)

= max
o

Efrt+1 +
rt+2 + � � �+
k�1rt+k (4.9)

+
kV �(st+k)g (4.10)

= max
o
[ro
s
+
X
s0

po
ss0
V �(s0)] (4.11)

= max
o

Efr +
kV �(s0)g (4.12)

Accordingly, the optimal action-value function is de�ned as

Q�(s; o) = max
�

Q�(s; o) (4.13)

= Efrt+1 + � � �+
k�1rt+k +
kV �(st+k)g (4.14)

= Efrt+1 + � � �+
k�1rt+k +
kmax
o0

Q�(st+k; o
0)g (4.15)

= ro
s
+
X
s0

po
ss0
max
o0

Q�(s0; o0) (4.16)

= Efr +
kmax
o0

Q�(s0; o0)g (4.17)

47

CHAPTER 4 IMITATION LEARNING

Then, we can introduce learning rule for action-value function which Sutton[?]

named SMDP Q-learning

Q(s; o) Q(s; o) + �[r +
kmax
a

Q(s0; a)�Q(s; o)]; (4.18)

where r denotes the cumulative discounted reward.

4.4. SMDP learning in continuous time and space

Our hierarchical RL framework can treat continuous time and space in the lower

level. Then, we should rede�ne SMDP Q-learning in continuous time and space

domain.

The de�nition of the value function in continuous time is given by

V (t) =

Z
1

t

e�
s�t

� r(s)ds: (4.19)

The reward for the option o is given as

ro
X
= Ef

Z
tT

t

e�
s�t

� r(t)dsg; (4.20)

where tT denotes termination time. Transition probability is represented as

po
XX0 =

Z
1

t

e�
t

� Pr(XtT
= X0; t = tT): (4.21)

Then, the Bellman equation for SMDP is

V �(X) = Ef

Z
tT

t

e�
s�t

� r(t)ds + e�
t
T

� V �(X0)g (4.22)

=
X
o

�(X; o)[ro
X
+
X
X0

po
XX0V

�(X0)]: (4.23)

Accordingly, the Bellman equation for action-value function is

Q�(X; o) = Ef

Z
tT

t

e�
s�t

� ds+ e�
t
T

�

X
o

�(X0; o0)Q�(X0; o0)g (4.24)

= ro
s
+
X
X0

po
XX0

X
o0

�(X0; o0)Q�(X0; o0) (4.25)

48

4.5. GLOBAL REWARD AND LOCAL REWARD

Then, the optimal value function is de�ned as

V �

O
(s) = max

�
V �(s) (4.26)

= max
o

Ef

Z
tT

t

e�
s�t

� r(t)ds+ e�
t
T

� V �(XtT
)g (4.27)

= max
o
[ro
X
+
X
X0

po
XX0V �(X0)] (4.28)

= max
o

Efr + e�
t
T

� V �(X0)g (4.29)

Accordingly, the optimal action-value function is de�ned as

Q�(s; o) = max
�

Q�(s; o) (4.30)

= Ef

Z
tT

t

e�
s�t

� ds+ e�
t
T

� V �(XtT
)g (4.31)

= Ef

Z
tT

t

e�
s�t

� ds+ e�
t
T

� max
o0

Q�(XtT
; o0)g (4.32)

= ro
X
+
X
X0

po
XX0 max

o0
Q�(X0; o0) (4.33)

= Efr + e�
t
T

� max
o0

Q�(X0; o0)g (4.34)

Then, corresponding SMDP Q-learning rule is

QT+1(X; o) QT (X; o) + �[r + e�
t

� max
o0

Q(X0; o0)�Q(X; o)]: (4.35)

4.5. Global Reward and Local Reward

SMDP learning framework de�ne the learning method for the upper level learner

while the options are consist of pre-designed policies in the lower level. Then, the

reward r(t) in previous section represent the reward function for the upper level,

global reward. However, without prior knowledge about policies in the lower

level, the learner need to acquire policies in the lower level. In other words, the

learner need to learn options. For option learning [?], we put the subgoal reward,

local reward, at the each state of the upper level. Then, when the lower level

learner reach the subgoal which is the termination condition for the upper level

SMDP, the lower-level learner gets reward. As a result, options are learned in the

lower level.

49

CHAPTER 4 IMITATION LEARNING

4.6. Upper level learning

We derive the prediction error of the state-value function as

�(T) = ro
X
+ e�

t
T

� max
U0

Q(X0;U0)�Q(X;U) (4.36)

where X is the state and U is the action in the upper level. Then, the update

rule for the state-value function at the sub-goal point is given as Then, the update

rule for the action-value function at the sub-goal point is given as

QT+1(X(t);U) = QT (X(t);U) + ��Q(T) (4.37)

4.7. Lower-level learning

The continuous time prediction error in the lower level is given as

�(t) = r(t)�
1

�
V (x(t)) +

dV (x(t))

dt
(4.38)

where V(x;v) is a function approximator with parameter v = (v1; v2; � � � ; vn).

The update rule for the lower-level critic is given as

_vi = ��(t)ei(t) (4.39)

where � is a learning rate. ei is a eligibility trace for the paramenter vi.

4.8. Simulation

In the above sections, we de�ne SMDP learning and option learning methods for

hierarchical RL. Again, our hierarchical RL which can treat continuous system in

the lower level and consider reduced dimension in the upper level has advantage to

apply to real world control task which has high-dimensional state space. Then,

we apply our hierarchical RL method to the stand-up task with 3-link 2-joint

robot (see Fig.3.1).

4.8.1 Learning Stand-up task

In the stand-up task, the upper level learn a appropriate posture sequence for

stand-up, and the lower level learn a controller outputs torque at joints to achieve

the posture the upper level intended to reach as a next state.

50

4.8. SIMULATION

Upper level learning (SMDP Q-learning)

We can implement upper-level learning in the SMDP Q-learning framework. We

de�ne the state of SMDP in the upper level as X = (�m; �1; �2), where �m is the

angle from the ground to the center of mass, �1 is the hip joint angle, and �2 is

the knee joint angle (see Fig.3.1). Then, the number of the state dimension is

reduced because the upper level does not concern angular velocities.

Each action (option) of the upper level is the next target posture.

The reward for the upper level is given according to the height of the robot's

head.

r = 3:0
y

h
(4.40)

Lower level learning (Option learning)

The lower-level learning can be consider as the option learning for the upper level.

For the lower-level learning, we use the subgoal reward with which the lower level

gets highest reward at the termination condition of the upper level. Then, the

lower level learn to achieve subgoal points. We consider x = (�0; �1; �2; _�0; _�1; _�2)

as the lower-level state.

The action of the lower level is given as the combination of linear and non-linear

function approximator f(x; a) with parameter a = (a1; a2; � � � ; an) as

u = f(x) + bx+ c; (4.41)

where b = (b1; b2; � � � bn) and c are parameters of linear function approximator.

Note that we initialize the linear function approximator as the PD servo controller

in which target joint angle is given from the next target posture the upper level

intended to achieve.

The reward for the lower level is given according to the distance from the target

posture which is the subgoal for the lower level and termination condition for the

upper level option as

r(�; �̂) = exp

�
jj� � �̂jj2

s2
�

!
� 1; (4.42)

When the lower-level learner achieve the subgoal area or fall down, the learner

51

CHAPTER 4 IMITATION LEARNING

gets extra reward as

r(t) =

8>>><
>>>:

exp

0
@� jj

_�(t)� _̂�jj2
s
2

_�

1
A (sub-goal achieved)

�1:0 (The robot falls down)

(4.43)

Results

Results show that the robot successfully stand-up with 747 trials by using modi-

�ed hierarchical RL framework which considering SMDP and option.

4.9. Imitation Learning

RL in the high-dimensional state space usually took long time to accomplish the

task. However, when the learner can use prior knowledge, sometimes the task is

accomplished very quickly. We construct the imitation learning framework as

1. Suppose the learner can get target trajectory from teacher's motion in joint

angle space.

2. By using the target trajectory, the learner detects via-points by using

minimum-jerk criteria.

3. The learner calculates action-value at the via-points by using the target

trajectory and the reward model.

4. The learner selects the sub-goal points near to the via-points. Then, the

learner sets the calculated action-value as initial action-value at the sub-goal

points.

By using this imitation learning framework, the robot successfully learned to

stand up in 242 trials. Detected via-points and state-value at each via-points are

shown in Figure 4.1, 4.2.

52

4.9. IMITATION LEARNING

−3
−2.5

−2
−1.5

−1
−0.5

0

−0.2

0

0.2

0.4

0.6

0.8
0

0.5

1

1.5

2

2.5

(a)

−3
−2.5

−2
−1.5

−1
−0.5

0

−0.2

0

0.2

0.4

0.6

0.8
0

0.5

1

1.5

2

2.5

(b)

−3
−2.5

−2
−1.5

−1
−0.5

0

−0.2

0

0.2

0.4

0.6

0.8
0

0.5

1

1.5

2

2.5

(c)

−3
−2.5

−2
−1.5

−1
−0.5

0

−0.2

0

0.2

0.4

0.6

0.8
0

0.5

1

1.5

2

2.5

(d)

−3
−2.5

−2
−1.5

−1
−0.5

0

−0.2

0

0.2

0.4

0.6

0.8
0

0.5

1

1.5

2

2.5

(e)

Figure 4.1 Procedure of detecting via-points by using minimum jerk criteria

53

CHAPTER 4 IMITATION LEARNING

−3

−2

−1

0

−0.5

0

0.5

1
−0.5

0

0.5

1

1.5

2

2.5

θ
1
[rad]θ

2
[rad]

θ 0[r
ad

]

Via−points
Real
Min Jerk
Sub−goals

Figure 4.2 Detected via-points, subgoal points and minimum-jerk trajectory

4.10. Conclusions

We proposed a imitation learning method for our hierarchical reinforcement learn-

ing. In this study, we used the target trajectory in joint angle space acquired from

teacher's motion. Then, we detect the via-points from the trajectory for using

via-points as prior knowledge of the subgoal points. The stand-up task was ac-

complished about four times faster than without using imitation learning.

54

Chapter 5

Robust Reinforcement Learn-

ing

5.1. Introduction

In this chapter, we propose a new reinforcement learning paradigm that we call

\Robust Reinforcement Learning (RRL)." Plain, model-free reinforcement learn-

ing (RL) is desperately slow to be applied to on-line learning of real-world prob-

lems. Thus the use of environmental models have been quite common both for

on-line action planning [10] and for o�-line learning by simulation [25]. However,

no model can be perfect and modeling errors can cause unpredictable results,

sometimes worse than with no model at all. In fact, robustness against model

uncertainty has been the main subject of research in control community for the

last twenty years and the result is formalized as the \H1" control theory [43].

In general, a modeling error causes a deviation of the real system state from

the state predicted by the model. This can be re-interpreted as a disturbance to

the model. However, the problem is that the disturbance due to a modeling error

can have a strong correlation and thus standard Gaussian assumption may not

be valid. The basic strategy to achieve robustness is to keep the sensitivity
 of

the feedback control loop against a disturbance input small enough so that any

disturbance due to the modeling error can be suppressed if the gain of mapping

from the state error to the disturbance is bounded by 1=
. In the H1paradigm,

those `disturbance-to-error' and 'error-to-disturbance' gains are measured by a

max norms of the functional mappings in order to assure stability for any modes

of disturbance.

55

CHAPTER 5 ROBUST REINFORCEMENT LEARNING

In the following we brie
y introduce the H1paradigm and show that design

of a robust controller can be achieved by �nding a min-max solution of a value

function, which is formulated as x1Hamilton-Jacobi-Isaacs (HJI) equation. We

then derive on-line algorithms for estimating the value functions and for simul-

taneously deriving the worst disturbance and the best control that, respectively,

maximizes and minimizes the accumulated reward.

We test the validity of the algorithms �rst in a linear inverted pendulum task.

It is veri�ed that the value function as well as the disturbance and control policies

derived by the on-line algorithm coincides with the analytical solution given by

H1theory. We then compare the performance of the robust RL algorithm with

a standard model-based RL in a nonlinear task of pendulum swing-up [10]. It is

shown that robust RL controller can accommodate changes in the weight and the

friction of the pendulum, which a standard RL controller cannot cope with.

5.2. H
1Control

K

G
w z

u y

Figure 5.1 Generalized Plant and Controller

The standard H1control [43] deals with a system shown in Fig.5.1, where G

is the plant, K is the controller, u is the control input, y is the measurement

available to the controller, w is unknown disturbance, and z is the error output

that is desired to be kept small. In general, the controller K is designed to

56

5.2. H1CONTROL

G

K
yu

w z

Figure 5.2 Small Gain Theorem

stabilize the closed loop system based on a model of the plant G. However, when

there is a discrepancy between the model and the actual plant dynamics, the

feedback loop could be unstable. The e�ect of modeling error can be equivalently

represented as a disturbance w generated by an unknown mapping � of the plant

output z, as shown in Fig.5.2.

The goal of H1control problem is to design a controller K that brings the error

z to zero while minimizing the H1norm of the closed loop transfer function from

the disturbance w to the output z

jjTzwjj1 = sup
w

jjzjj2

jjwjj2
= sup

!

��(Tzw(j!)): (5.1)

Here, jj � jj2 denotes L2 norm and �� denotes maximum singular value. The small

gain theorem assures that if jjTzwjj1 �
, then the system shown in Fig. 5.1(b)

will be stable for any stable mapping � : z 7! w with jj�jj1 < 1

.

5.2.1 Min-max Solution to H1Problem

We consider a dynamical system

_x = f(x;u;w): (5.2)

57

CHAPTER 5 ROBUST REINFORCEMENT LEARNING

H1control problem is equivalent to �nding a control output u that satis�es a

constraint

V =

Z
1

0
(zT (t)z(t)�
2wT (t)w(t))dt � 0 (5.3)

against all possible disturbance w with x(0) = 0, because it implies

jjTzwjj1
2
= sup

w

jjzjj2
2

jjwjj2
2 �
2: (5.4)

We can consider this problem as di�erential game[38] in which the best con-

trol output u that minimizes V is sought while the worst disturbance w that

maximizes V is chosen. Thus an optimal value function V � is de�ned as

V � = min
u

max
w

Z
1

0
(zT (t)z(t)�
2wT (t)w(t))dt: (5.5)

The condition for the optimal value function is given by

0 = min
u

max
w

[zTz�
2wTw +
@V �

@x
f(x;u;w)] (5.6)

which is known as Hamilton-Jacobi-Isaacs (HJI) equation. From (5.6), we can

derive the optimal control output uop and the worst disturbance wop by solving

@zTz

@u
+
@V

@x

@f(x;u;w)

@u
= 0 (5.7)

@zTz

@w
� 2
2w +

@V

@x

@f(x;u;w)

@w
= 0: (5.8)

5.3. Robust Reinforcement Learning

Here we consider a continuous-time formulation of reinforcement learning [10]

with the system dynamics

_x = f(x;u) (5.9)

and the reward r(x;u). The basic goal is to �nd a policy u = g(x) that maximizes

the cumulative future rewardZ
1

t

e�
s�t

� r(x(s);u(s))ds (5.10)

for any given state x(t), where � is a time constant of evaluation. However, a

particular policy that was optimized for a certain environment may perform badly

58

5.3. ROBUST REINFORCEMENT LEARNING

when the environmental setting changes. In order to assure robust performance

under changing environment or unknown disturbance, we introduce the notion of

worst disturbance in H1control to the reinforcement learning paradigm.

In this framework, we consider an augmented reward

q(t) = r(x(t);u(t)) + !(w(t)); (5.11)

where s(w(t)) is an additional reward for withstanding a disturbing input, for

example,

!(w) =
2wTw: (5.12)

The augmented value function is then de�ned as

V (x(t)) =
Z

1

t

e�
s�t

� q(x(s);u(s);w(s))ds: (5.13)

The optimal value function is given by the solution of a variant of HJI equation

1

�
V �(x) = max

u
min
w

[r(x;u) + !(w) +
@V �

@x
f(x;u;w)]: (5.14)

In the robust reinforcement learning (RRL) paradigm, the value function is

update by using the temporal di�erence (TD) error [10]

�(t) = q(t)�
1

�
V (t) + _V (t) (5.15)

while the best action and the worst disturbance are generated by maximizing and

minimizing, respectively, the right hand side of HJI equation

r(x;u) + !(w) +
@V �

@x
f(x;u;w): (5.16)

We use a function approximator to implement the value function V (x(t);v),

where v = (v1; � � � ; vn) is a parameter vector. As in the standard continuous-time

RL, we de�ne eligibility trace for a parameter vi[10] as

ei(s) =

Z
s

0
e�

s�t

�

@V (t)

@vi
dt; (5.17)

where � is the time constant of the eligibility trace. We can then derive learning

rule for value function approximator [10] as

_vi = ��(t)ei(t); (5.18)

59

CHAPTER 5 ROBUST REINFORCEMENT LEARNING

where � denotes learning rate. The eligibility trace (5.17) is updated by

_ei(t) = �
1

�
ei(t) +

@V (t)

@vi
: (5.19)

Accordingly, we do not assume f(x = 0) = 0. By comparing (5.6) and (5.14), we

can see that the output error zTz in H1framework is generalized as an arbitrary

reward function r(x;u) in RRL. Furthermore, the sign of the value function is

ipped and a discount factor is introduced in RRL framework.

5.3.1 Actor-Disturber-Critic

Environment

State x(t)

Action u(t)

Reward r(t)

Disturbance w(t)

Disturbance

Reward s(w)
TD-error

Disturber

Critic
State-value estimator

Actor

Figure 5.3 Actor-disturber-critic architecture

By extending the actor-critic architecture[3], we propose the actor-disturber-

critic architecture, shown in Figure 5.3 to implement robust RL in a model-

free fashion. We de�ne the policies of the actor and the disturber as u(t) =

60

5.3. ROBUST REINFORCEMENT LEARNING

Au(x(t);v
u)+nu(t) andw(t) = Aw(x(t);v

w)+nw(t), respectively, whereAu(x(t);v
u)

and Aw(x(t);v
w) are function approximators with parameter vectors vu and vw,

and nu(t) and nw(t) are noise terms for exploration. The parameters of the actor

and the disturber are updated by

_vu
i
= �u�(t)nu(t)

@Au(x(t);v
u)

@vu
i

(5.20)

_vw
i
= ��w�(t)nw(t)

@Aw(x(t);v
w)

@vw
i

; (5.21)

where �u and �w denote the learning rates.

5.3.2 Robust Policy by Value Gradient

When the augmented reward function q(x;u;w) is convex with respect to the

action u and disturbance w, the HJI equation has a unique solution, and we can

derive a closed-form expression of the greedy policy.

Here, we assume that the augmented reward q(x;u;w) can be separated into

three parts: the reward for state R(x), the cost for action S(x;u) and the cost

for disturbance
(x;w) while the reward R(x) given by the environment and

unknown, the costs S(x;u) and
(x;w) can be chosen as a part of the learning

strategy. We speci�cally consider the case

q(x;u;w) = R(x)�
mX
i=1

Si(ui) +
lX

j=1

j(wj); (5.22)

where Si() is a cost function for action variable ui and
j() is a cost function for

disturbance variable wj. In this case, the condition for the optimal action and

the worst disturbance is given by

�S0
i
(ui) +

@V (x)

@x

@f(x;u;w)

@ui
= 0 (i = 1; : : : ; m) (5.23)

0

j
(wj) +

@V (x)

@x

@f(x;u;w)

@wj

= 0 (j = 1; : : : ; l) (5.24)

where @f(x;u;w)

@ui
and @f(x;u;w)

@wj

are the ith and jth column vector of the n�m input

gain matrix
@f(x;u;w)

@u
and the n� l disturbance gain matrix

@f(x;u;w)

@w
, respectively.

61

CHAPTER 5 ROBUST REINFORCEMENT LEARNING

We now assume that the input gains @f(x;u;w)

@ui
and @f(x;u;w)

@wj

are not dependent on

u and w; that is, the system is linear with respect to the input and the action

cost function Si() and the disturbance cost function
j() are convex. Then the

above equations have unique solutions,

ui = S
0�1
i

@V (x)

@x

@f(x;u;w)

@ui

!
(5.25)

wj =

0

�1
j

�
@V (x)

@x

@f(x;u;w)

@wj

!
(5.26)

where S0

i
() and
0

j
()are monotonic functions. Accordingly, the best action and

the worst disturbance are represented in vector notations as

uop = S
0�1

@f(x;u;w)

@u

T
@V (x)

@x

T
!

(5.27)

wop =

0�1

�
@f(x;u;w)

@w

T
@V (x)

@x

T
!
: (5.28)

5.3.3 Convex reward function with quadratic cost

Now we assume that an input-A�ne model of the system dynamics and quadratic

models of the costs for the inputs are available as

_x = f(x) + g1(x)u+ g2(x)w

q(x;u;w) = Q(x)� uTR(x)u +
2wTw: (5.29)

In this case, the cost functions S() and
() are given by

S(u) = uTR(x)u (5.30)

(w) =
wTw (5.31)

then, we can derive the best action and the worst disturbance from (5.28).

uop =
1

2
R�1(x)gT1 (x)(

@V

@x
)T (5.32)

wop = �
1

2
2
gT2 (x)(

@V

@x
)T : (5.33)

We can use the policies (5.32) and (5.33) using the value gradient @V

@x
derived

from the value function approximator.

62

5.4. SIMULATION

5.3.4 Linear Quadratic Case

Here we consider a case in which a linear dynamic model and quadratic reward

models are available as

_x = Ax+B1u+B2w

q(x;u;w) = �xTQx� uTRu+
2wTw: (5.34)

In this case, the value function is given by a quadratic form V = �xTPx, where

P is the solution of a Riccati equation

ATP + PA+ P (
1

2
B1B

T

1 �B2R
�1BT

2)P +Q =
1

�
P: (5.35)

Thus we can derive the best action and the worst disturbance as

uop = R�1BT

2 Px (5.36)

wop = �
1

2
BT

1 Px: (5.37)

5.4. Simulation

We test the robust RL algorithm in a task of swinging up a pendulum[10]. The

dynamics of the pendulum is given by ml2�� = �� _� +mgl sin � + T , where � is

the angle from the upright position , T is input torque, � = 0:01 is the coe�cient

of friction, m = 1:0[kg] is the weight of the pendulum, l = 1:0[m] is the length of

the pendulum, and g = 9:8[m=s2] is the gravity acceleration. The state vector is

de�ned as x = (x1; x2)
T = (�; _�)T .

5.4.1 Linear Case

We �rst considered a linear problem in order to test if the value function and the

policy learned by robust RL coincides with the analytic solution of H1control

problem. Thus we use a locally linearized dynamics near the unstable equilibrium

63

CHAPTER 5 ROBUST REINFORCEMENT LEARNING

point x = (0; 0)T . The matrices for the linear model are given by

A =

0
@ 0 1

g

l
�

�

ml2

1
A ; B1 =

0
@ 0

1
ml2

;

1
A ; B2 =

0
@ 0

1;

1
A ; Q =

0
@ 1 0

0 0

1
A ; R = 1:

(5.38)

The reward function is given by

q(t) = �xTQx� u2 +
2w2; (5.39)

where robustness criteria
 = 2:0.

The value function, V = �xTPx, is parameterized by a symmetric matrix.

P =

0
@ p11 p12

p12 p22

1
A (5.40)

For on-line estimation of P , we de�ne vectors ~x = (x21; 2x1x2; x
2
2)
T , p = (p11; p12; p22)

T

and reformulate V as V = �pT~x. Each element of P is updated using recursive

least squares method[4]. Note that we used pre-designed stabilizing controller as

the initial setting of RRL controller for stable learning[4].

Learning of the value function

Here, we used the policy by value gradient shown in section 5.3.2. Figure 5.4(a)

shows that each element of the matrix P converged to the analytic solution which

is derived from the Riccati equation (5.35).

Actor-disturber-critic

Here we used robust RL implemented by the actor-disturber-critic shown in sec-

tion 5.3.1. In the linear case, the actor and the disturber are represented as the

linear controllers, Au(x;v
u) = vux and Aw(x;v

w) = vwx, respectively. The pa-

rameters of the actor and the disturber converged to the values close to those of

the policies in (5.36) and (5.37) derived from the Ricatti equation (5.35) (Fig.

5.4(b)).

64

5.4. SIMULATION

0 50 100 150 200 250 300
0

20

40

60

80

100

Trials

V
p

11

p
12

p
22

(a) Elements of p

0 50 100 150 200 250 300
−30

−25

−20

−15

−10

−5

0

5

10

Trials

G
ai

n

v
1
u

v
2
u

v
1
w

v
2
w

(b) Elements of v

Figure 5.4 Time course of (a)elements of vector p = (p11; p12; p22) and (b)elements

of gain vector of the actor vu = (vu1 ; v
u

2) and the disturber vw = (vw1 ; v
w

2). The

dash-dotted lines show the solution of the Ricatti equation.

65

CHAPTER 5 ROBUST REINFORCEMENT LEARNING

5.4.2 Applying Robust RL to Non-linear Dynamics

We consider a non-linear dynamical system (5.29), where

f(x) =

0
@ _�

g

l
sin(�)� � _�

ml2

1
A ; g1(x) =

0
@ 0

1

1
A ; g2(x) =

0
@ 0

1
ml2

1
A

Q(x) = cos(�)� 1; R(x) = 0:04 (5.41)

From (5.11), the augmented reward function is given by

q(t) = cos(�)� 1� 0:04u2 +
2w2; (5.42)

where robustness criteria
 = 0:22. For approximating the value function, we

used Normalized Gaussian Network (NGnet)[10]. Note that the input gain g(x)

was also learned[10].

Fig.5.5 shows the value functions acquired by robust RL and standard model-

based RL[10]. The value function acquired by robust RL has a shaper ridge

(Fig.5.5(a)) that specify swing up trajectories than that learned with standard

RL.

In Fig.5.6, we compare the robustness of the robust RL and the standard

RL to the change of physical parameters. Both robust RL controller and the

standard RL controller learned to swing up and hold a pendulum with the weight

m = 1:0[kg] and the coe�cient of friction � = 0:01 (Fig.5.6(a)). The robust RL

controller took more swings, indicating its conservative control law.

With di�erent weight m = 3:0[kg] and the coe�cient of friction � = 0:3

(Fig.5.6(b)), the robust RL controller could successfully swing up pendulum while

the standard RL controller could not. This result shows the robustness of the

robust RL controller.

Comparison of the control performance with di�erent robustness pa-

rameters

Here, we see how the robustness criteria
 a�ect the robust performance of the

learned controller. We compare the controller learned by RRL with the �ve

di�erent robustness parameters (
 = 0:40; 0:45; 0:50; 0:55; 0:6) and standard RL

(we can consider standard RL as the RRL with
 = 1). We trained these

66

5.4. SIMULATION

controllers with the pendulum with the mass m = 1:0[kg] and compared the

maximum weight that each controller can swing up and stabilize at the upright

position.

The results of the comparison shows more robust performance with smaller

(see table 5.1). These results are consistent with H1control theory[43].

Table 5.1 Comparison with di�erent robustness criteria

 0.4 0.45 0.5 0.55 0.6 1

max m[kg] 2.50 2.18 2.00 1.88 1.76 1.70

Actor-Disturber-Critic

A possible problem in implementing model-free RRL by using the actor-disturber-

critic framework for a non-linear system is the credit assignment problem of the

results of each behavior for exploration.

To avoid this problem, we train the actor and the disturber in turns. We show

the value function of RRL and stand RL in �gure 5.7, and show the control and

disturbance functions in �gure 5.8. Note that the disturbance function has almost

opposite shape of control function. The actor acquired in the actor-disturber-

critic framework and the actor acquired in the actor-critic framework both could

swing up and stabilize the pendulum with the weight m = 1:0[kg] and the friction

� = 0:01 that is the learned environment. However, the actor acquired in the

actor-critic framework could not swing up the pendulum with the weight m =

1:3[kg] and the friction � = 0:2 while the actor acquired in the actor-disturber-

critic framework could successfully swing it up(see Fig.5.9).

67

CHAPTER 5 ROBUST REINFORCEMENT LEARNING

5.5. Implementation of the Robust Reinforce-

ment Learning in the Hierarchical Reinforce-

ment Learning Framework

Here we show how proposed RRL can be implemented in the hierarchical RL

framework explained in chapter 3 and add robustness to the learned controllers

in the hierarchical RL. As a concrete example, we applied hierarchical RL with

RRL to the 2-joint 3-link robot (see Fig.3.1).

5.5.1 Simulation

Here we assume that there is no signi�cant di�erence between dynamical model

used in computer simulation and real environment. Then, we concentrate on

adding robustness to the lower-level controller by using RRL while the upper-level

outputs the subgoal sequence learned previously in section 3.3.1. We implement

RRL by using the actor-disturber-critic architecture (see Fig.5.3). We set the

maximum torque of the actor as umax = 24[N.m] and the disturber as wmax =

10:0[N.m].

Results

By using the normal hierarchical RL, the robot successfully stand up 27 times in

100 trials. On the other hand, by using the hierarchical RL with RRL, the robot

successfully stand up 17 times in 100 trials in the learned environment (coe�cient

of the coulomb friction at hip joint is 0.5[N.m.sec/rad]). However, when we

applied the robot to the new environment (coe�cient of the coulomb friction

at hip joint is 3.0[N.m.sec/rad]), the robot learned by the normal hierarchical

RL only stand up 11 times in 100 trials. On the other hand the robot learned

by the hierarchical RL with RRL successfully stand up 17 times in 100 trials.

These results shows that the normal hierarchical RL is suitable for the learned

environment, however, performance of the hierarchical RL with RRL was not

drastically change in the di�erence environment, which means that RRL gives

robust performance to the robot. However, still there is trade o� that normal

hierarchical RL show better performance for the learned environment.

68

5.6. DISCUSSION

5.6. Discussion

The H1control theory gives an analytical solution only for linear systems. For

non-linear systems, there is no analytical way of solving the HJI equation. In

order to derive a non-linear H1controller, the value function is usually derived by

iteration by using dynamic programming[12, 5]. However, these methods need o�-

line calculation and environmental model. On the other hand, the robust RL can

derive non-linear H1controller by on-line calculation and without environmental

model.

The robust RL provides a new way of using min-max solution in RL problems.

The min-max RL was applied to games like backgammon[36] and Othello[42].

However, in these studies, each player takes the same role. The min-max RL was

also applied to a problem in which an airplane tries to avoid a missile and the

missile tries to catch the airplane[11]. However, this study only focuses on linear

control problems. We applied min-max RL in which each two players (the control

agent and the disturbing agent) has di�erent ability to the non-linear problem of

pendulum swing-up.

Risk sensitive control studies are also related to our RRL framework. Neuneier

and Mihatsch proposed risk sensitive reinforcement learning[26]. In that work,

they used an ad hoc update rule of value function and showed the convergence

of their proposed method. In the RRL, we used appropriate objective function

containing the control cost of disturbance to acquire the robust controller like

H1control framework.

5.7. Conclusions

In this study, we proposed a new RL paradigm called \Robust Reinforcement

Learning (RRL)"We showed that RRL can learn analytic solution of theH1controller

in the linearized inverted pendulum dynamics and also showed that RRL can deal

with modeling error which standard RL can not deal with in the non-linear in-

verted pendulum swing-up simulation example.

69

CHAPTER 5 ROBUST REINFORCEMENT LEARNING

th

 om

-180 -128 -75 -22 30 82 135
-480

-340

-200

 -60

 80

 220

 360

V

-3.354

-1.473

+0.407

(a) Robust RL

th

 om

-180 -128 -75 -22 30 82 135
-480

-340

-200

 -60

 80

 220

 360

V

-2.001

-1.001

+0.000

(b) Standard RL

Figure 5.5 Shape of the value function after 500 learning trials with m = 1:0[kg]

and l = 1:0[m]

70

5.7. CONCLUSIONS

0 1 2 3 4 5 6
−0.5

0

0.5

1

1.5

2

2.5

θ
[r

ad
/π

]

Time [sec]

Robust
Standard

(a) m = 1:0; � = 0:01

0 5 10 15 20
−0.5

0

0.5

1

1.5

2

θ
[r

ad
/π

]

Time [sec]

Robust
Standard

(b) m = 3:0; � = 0:3

Figure 5.6 Swing up trajectories with pendulum with di�erent weight and fric-

tion. The dash-dotted lines show upright position.

71

CHAPTER 5 ROBUST REINFORCEMENT LEARNING

th

 om

-180 -128 -75 -23 30 83 135
-480

-340

-200

 -60

 80

 220

 360

V

-2.014

-0.986

+0.042

(a) Robust RL

th

 om

-180 -128 -75 -23 30 83 135
-480

-340

-200

 -60

 80

 220

 360

V

-2.014

-0.990

+0.033

(b) Standard RL

Figure 5.7 Shape of the value function after 1000 learning trials with m = 1:0[kg]

and � = 0:01

72

5.7. CONCLUSIONS

th

 om

-180 -128 -75 -23 30 83 135
-480

-340

-200

 -60

 80

 220

 360

u

-3.184

+0.303

+3.790

(a) Actor

th

 om

-180 -128 -75 -23 30 83 135
-480

-340

-200

 -60

 80

 220

 360

u

-1.260

-0.150

+0.959

(b) Disturber

Figure 5.8 Shape of the control and disturbance function after 1000 learning

trials with m = 1:0[kg] and l = 0:01[m]

73

CHAPTER 5 ROBUST REINFORCEMENT LEARNING

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2
θ

[r
ad

/π
]

Time [sec]

Robust
Standard

(a) m = 1:0; � = 0:01

0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5

2

2.5

θ
[r

ad
/π

]

Time [sec]

Robust
Standard

(b) m = 1:3; � = 0:2

Figure 5.9 Swing up trajectories with pendulum with di�erent weight and fric-

tion. The dash-dotted lines show upright position.

74

Chapter 6

Conclusions

In this dissertation, we proposed the methods which enable the robot to learn

the task by using reinforcement learning in high-dimensional state space and in

real environment. To realize the reinforcement learning in high-dimensional state

space and real environment, we used the following three ideas. 1: introduction

of hierarchical architecture in chapter 3, 2: using prior knowledge acquired from

a teacher in chapter 4, 3: explicit consideration of modeling error in chapter 5).

In chapter 3, we proposed a hierarchical RL architecture that realizes a practical

learning speed in high-dimensional control tasks. In this method, the upper-level

learner globally explores sequences of sub-goals in a low-dimensional state space,

while the lower-level learners optimize local trajectories in the high-dimensional

state space.

As a concrete example, we considered a \stand-up" task for a two-joint, three-

link robot. The goal of the task was to �nd a path in a high-dimensional state

space that links a lying state to an upright state under the constraints of the

system dynamics. The robot successfully learned to stand up within 750 trials in

simulation and then in an additional 170 trials using real hardware.

In chapter 4, we showed that how imitation learning improve the learning

speed in the framework of the hierarchical reinforcement learning. The learner

acquired stand-up trajectories from teacher's motion and detected via-points.

The learner calculated the state value at the via-points and derived action-value

of the subgoals. We can consider derived action-value of the subgoals as prior

knowledge for the action of the upper-level learner.

We applied our method to stand-up task of 3-link 2-joint robot. The robot

learned to stand up about four times faster than without using proposed imitation

75

CHAPTER 6 CONCLUSIONS

learning method.

In chapter 5, we studied how we can make the policy learned by RL more

robust against modeling error or environmental change. We proposed a new

reinforcement learning paradigm that we call \Robust Reinforcement Learning

(RRL)."

As H1paradigm suggest, design of a robust controller can be achieved by

�nding a min-max solution of a value function, which is formulated as Hamilton-

Jacobi-Isaacs (HJI) equation. We then derived on-line algorithms for estimating

the value functions and for simultaneously deriving the worst disturbance and

the best control that, respectively, maximizes and minimizes the value function.

We tested the validity of the algorithms �rst in a linear inverted pendulum

task. It was veri�ed that the value function as well as the disturbance and

control policies derived by the on-line algorithm coincides with the analytical

solution given byH1theory. We then compared the performance of the robust RL

algorithm with a standard model-based RL in a nonlinear task of pendulum swing-

up. It was shown that robust RL controller could accommodate environmental

changes in the mass and the friction of the pendulum, which a standard RL

controller could not cope with.

Finally, we combined the hierarchical RL and RRL for acquire the robust policy

in the high-dimensional state space. We tested this combined method by applying

it to the 2-joint 3-link robot. The results showed that the robot showed robust

performance by using the hierarchical RL with RRL.

6.1. Future work

In our hierarchical reinforcement learning method, we �xed an appropriate step

size in the upper level, but a method of automatically choosing and adapting the

step size remains future work. In addition, the use of a hierarchical architecture

with three or more layers, and reusing lower-level modules in the other tasks, are

also interesting topics. We will incorporate these ideas in our hierarchical RL

method as future work.

In our robust reinforcement learning study, we applied it to the pendulum

swing-up task and the stand-up task with using the hierarchical RL. However,

76

6.1. FUTURE WORK

consideration of robustness in the upper level of the hierarchical architecture

remains as future work.

77

CHAPTER 6 CONCLUSIONS

78

BIBLIOGRAPHY

Bibliography

[1] M. Asada, H. Kitano, I. Noda, and M. Veloso. Robocup:today and

tomorrow { what we have learned. Arti�cial Intelligence, 110:193{214,

1999.

[2] M. Asada, E. Uchibe, and K. Hosoda. Cooperative behavior acquisi-

tion for mobile robots in dynamically changing real worlds via vision-

based reinforcement learning and development. Arti�cial Intelligence,

110:275{292, 1999.

[3] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adap-

tive elements that can solve di�cult learning control problems. IEEE

Transactions on Systems, Man, and Cybernetics, 13:834{846, 1983.

[4] S. J. Bradtke. Reinforcement learning Applied to Linear Quadratic

Regulation. In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors,

Advances in Neural Information Processing Systems 5, pages 295{302.

Morgan Kaufmann, San Mateo, CA, 1993.

[5] S. P. Coraluppi and S. I. Marcus. Risk-Sensitive and Minmax Control

of Discrete-Time Finite-State Markov Decision Processes. Automatica,

35:301{309, 1999.

[6] P. Dayan and G. E. Hinton. Feudal Reinforcement Learning. In Ad-

vances in Neural Information Processing Systems 5, pages 271{278, San

Francisco, CA, 1993. Morgan Kaufmann.

[7] Bruce L. Digney. Learning Hierarchical Control Structures for Multiple

Tasks and Changing Environments. In Proceedings of the Fifth Con-

ference on the Simulation of Adaptive Behavior, pages 321{330, Cam-

bridge, MA, 1998. The MIT Press.

[8] K. Doya. Temporal di�erence learning in continuous time and space. In

79

BIBLIOGRAPHY

D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in

Neural Information Processing Systems 8, pages 1073{1079. MIT Press,

Cambridge, MA, 1996.

[9] K. Doya. E�cient nonlinear control with actor-tutor architecture. In

M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural

Information Processing Systems 9, pages 1012{1018. MIT Press, Cam-

bridge, MA, 1997.

[10] K. Doya. Reinforcement Learning in Continuous Time and Space. Neu-

ral Computation, 12(1):219{245, 2000.

[11] M. E. Harmon, L. C. Baird III, and A. H. Klopf. Advantage updating

applied to a di�erential game. In G. Tesauro, D. S. Touretzky, and T. K.

Leen, editors, Advances in Neural Information Processing Systems 7,

pages 353{360. MIT Press, Cambridge, MA, USA, 1995.

[12] K. Imafuku. Singularities of nonlinear control systems designed by

Hamilton-Jacobi equations. Doctoral thesis, Nara Institute of Science

and Technology, 1999.

[13] M. Inaba, I. Igarashi, K. Kagami, and I. Hirochika. A 35 DOF Hu-

manoid that can Coordinate Arms and Legs in Standing up, Reaching

and Grasping an Object. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, volume 1, pages 29{36,

1996.

[14] R. A. Jacobs and M. I. Jordan. Hierarchical mixtures of experts and

the EM algorithm. Neural Computation, 6:181{214, 1994.

[15] F. Kanehiro, M. Inaba, and H. Inoue. Development of a Two-armed

Bipedal Robot that can Walk and Carry Objects. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems,

volume 1, pages 23{28, 1996.

[16] H. Kimura and S. Kobayashi. E�cient Non-linear Control by Com-

bining Q-learning with Local Linear Controllers. In Proceedings of the

Sixteenth International Conference on Machine Learning, pages 210{

219, San Francisco, CA, 1999. Morgan Kaufmann.

80

BIBLIOGRAPHY

[17] F. Kirchner. Q-Learning of Complex Behaviours on a Six-Legged Walk-

ing Machine. In Proceedings Second EUROMICRO Workshop on Ad-

vanced Mobile Robots, pages 51{58, 1997.

[18] Y. Kuniyoshi and A. Nagakubo. Humanoid As a Research Vehicle Into

Flexible Complex Interaction. In Proceedings of the IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, 1997.

[19] P. Maes and R. A. Brooks. Learning to Coordinate Behaviors. In

Proceedings of AAAI-90, pages 796{802, 1990.

[20] M. Mataric. Learning Social Behaviors. Robotics and Autonomous Sys-

tems, 20:191{204, 1997.

[21] H. Miyamoto, S. Schaal, F. Gandolfo, H. Gomi, Y. Koike, R. Osu,

E. Nakano, Y. Wada, and M. Kawato. A Kendama Learning Robot

Based on Bi-directional Theory. Neural Networks, 9:1281{1302, 1996.

[22] J. Moody and C. J. Darken. Fast Learning in Networks of Locally-

Tuned Processing Units. Neural Computation, 1:281{294, 1989.

[23] J. Morimoto and K. Doya. Hierarchical Reinforcement Learning of Low-

dimensional Subgoals and High-dimensional Trajectories. In Proceedings

of the Fifth International Conference on Neural Information Processing,

volume 2, pages 850{853, Burke, VA, 1998. IOS Press.

[24] J. Morimoto and K. Doya. Reinforcement Learning of Dynamic Motor

Sequence: Learning to Stand Up. In Proceedings of IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, volume 3, pages

1721{1726. OMNIPRESS, 1998.

[25] J. Morimoto and K. Doya. Acquisition of stand-up behavior by a real

robot using hierarchical reinforcement learning. In Proceedings of Seven-

teenth International Conference on Machine Learning, pages 623{630,

San Francisco, CA, 2000. Morgan Kaufmann.

[26] R. Neuneier and O. Mihatsch. Risk Sensitive Reinforcement Learn-

ing. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances

in Neural Information Processing Systems 11, pages 1031{1037. MIT

Press, Cambridge, MA, USA, 1998.

81

BIBLIOGRAPHY

[27] M. Ortiz and P. Zu�ria. Evaluation of reinforcement learning au-

tonomous navigation systems for a nomad 200 mobile robot. In In-

telligent Autonomous Vehicles 1998 (IAV'98). Proceedings volume from

3rd IFAC Symposium, pages 309{314, 1998.

[28] J. Peng and R. Williams. Incremental Multi-step Q-learning. Machine

Learning, 22:283{290, 1996.

[29] M. L. Puterman. Markov Decision Problems. Wiley, New York, 1994.

[30] S. Schaal. Learning From Demonstration. In M. C. Mozer, M. I. Jordan,

and T. Petsche, editors, Advances in Neural Information Processing

Systems 9, pages 1040{1046. MIT Press, Cambridge, MA, 1997.

[31] S. Singh. Transfer of Learning by Composing Solutions of Elemental

Sequential Tasks. Machine Learning, 8:323{339, 1992.

[32] R. S. Sutton. Learning to predict by the methods of temporal di�erence.

Machine Learning, 3:9{44, 1988.

[33] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.

The MIT Press, Cambridge, MA, 1998.

[34] R. S. Sutton, D. Precup, and S. Singh. Intra-option learning about

temporary abstract actions. In Proceedings of the 15th International

Conference on Machine Learning, pages 556{564, 1998.

[35] Y. Takahashi, M. Asada, and K. Hosoda. Reasonable Performance in

Less Learning Time by Real Robot Based on Incremental State Space

Segmentation. In Proceedings of the IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, volume 3, pages 1518{1524,

1996.

[36] G. Tesauro. Practical issues in temporal di�erence learning. Machine

Learning, 8:257{277, 1992.

[37] C. K. Tham. Reinforcement Learning of Multiple Tasks using a Hierar-

chical CMAC Architecture. Robotics and Autonomous Systems, 15:247{

274, 1995.

[38] S. Weiland. Linear Quadratic Games, H1, and the Riccati Equation.

In Proceedings of the Workshop on the Riccati Equation in Control,

82

BIBLIOGRAPHY

Systems, and Signals, pages 156{159. 1989.

[39] M. Wiering and J. Schmidhuber. HQ-learning. Adaptive Behavior,

6(2):219{246, 1997.

[40] S. Yamada, A. Watanabe, and M. Nakashima. Hybrid reinforcement

learning and its application to biped robott control. In Advances in

Neural Information Processing Systems 10, pages 1071{1077, 1998.

[41] T. Yamaguchi, M. Masubuchi, K. Fujihara, and M. Yachica. Realtime

Reinforcement Learning for a Real Robot in the Real Environment. In

Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, volume 3, pages 1321{1327, 1996.

[42] T. Yoshioka and S. Ishii. Strategy acquisition for the game \othello"

based on reinforcement learning. In S. Usui and T. Omori, editors,

International Conference on Neural Information Processing, pages 841{

844. ISO Press, 1998.

[43] K. Zhou, J. C. Doyle, and K. Glover. Robust Optimal Control. PREN-

TICE HALL, New Jersey, 1996.

83

BIBLIOGRAPHY

84

ACHIEVEMENTS

Achievements

List of Publications
Journal Papers

1. Morimoto, J. and Doya, K., "Learning Dynamic Motor Sequence in High-

Dimensional State Space by Reinforcement Learning {Learning to Stand

Up{, The Transactions of the Institute of Electronics, Information and Com-

munication Engineers D-II, Vol. J82-D-II No.11, pp.2118-2131, 1999.

2. Morimoto, J. and Doya, K.,"Acquisition of Stand-up Behavior by a Real

Robot using Hierarchical Reinforcement Learning", Robotics and Autonomous

Systems (accepted).

3. Morimoto, J. and Doya, K.,"Hierarchical reinforcement learning for mo-

tion learning: learning "stand-up" trajectories", Advanced Robotics, vol.13,

No.3, pp.267-268, 1999.

International Conference Papers

1. Morimoto, J. and Doya, K., "Reinforcement learning of dynamic motor se-

quence: Learning to stand up", Proceedings of IEEE/RSJ International

Conference on Intelligent Robots and Systems, vol.3, pp.1721-1726, 1998.

2. Morimoto, J. and Doya, K., "Hierarchical reinforcement learning of low-

dimensional subgoals and high-dimensional trajectories", The 5th Interna-

tional Conference on Neural Information Processing, vol.2, pp.850-853, 1998.

3. Morimoto, J. and Doya, K., "Acquisition of Stand-up Behavior by a Real

Robot using Hierarchical Reinforcement Learning", Proceedings of Interna-

tional Conference on Machine Learning, pp.623-630, 2000.

85

ACHIEVEMENTS

4. Morimoto, J. and Doya, K., "Robust Reinforcement Learning", Advances in

Neural Information Processing Systems, 2000.

Domestic Conference Papers

1. Morimoto, J. and Doya, K., "Control of nonholonomic systems using rein-

forcement learning: Learning \stand-up" trajectories" Proceedings of the

15th Annual Conference of the Robotics Society of Japan, vol.1, pp.17-18,

1997.

2. Morimoto, J. and Doya, K., "Hierarchical reinforcement learning for motion

learning: Learning \stand-up" trajectories", Proceedings of the 16th Annual

Conference of the Robotics Society of Japan, vol.1, pp.431-432, 1998.

3. Morimoto, J. and Doya, K., "Acquisition of Stand-up Behavior by a Real

Robot using Hierarchical Reinforcement Learning", 1999 Annual Conference

of Japanese Neural Network Society, pp.147-148, 1999.

4. Morimoto, J. and Doya, K., "Acquisition of Stand-up Behavior by a Real

Robot using Hierarchical Reinforcement Learning", Proceedings of the 5th

Robotics Symposia, pp.397-402, 2000.

5. Morimoto, J. and Doya, K., "Robust Reinforcement Learning", Proceed-

ings of the 18th Annual Conference of the Robotics Society of Japan, vol.3,

pp.1263-1264, 2000.

Domestic Workshop Papers

1. Morimoto, J. and Doya, K., "Learning \stand-up" trajectories using rein-

forcement learning", Technical report of IEICE, Vol.97, No.201, pp.25-32,

1997.

2. Morimoto, J. and Doya, K., "Robust Reinforcement Learning", Technical

report of IEICE, Vol.100, No.191, pp.59-66, 2000.

Award

1. Young Investigator Award from Japanese Neural Network Society, 2000

86

Appendix

A. Normalized Gaussian Network (NGnet)

The normalized Gaussian basis function is represented by

bk(x) =
ak(x)P
K

l=1 al(x)
; (A.1)

where

ak(x) = e�jjs
T

k
(x�ck)jj

2

(A.2)

is a Gaussian activation function [22]. The vectors ck and sk de�ne the center and

the size of the kth basis function, respectively. Note that if there is no neighboring

basis function, the shape of the basis functions extend like sigmoid functions by

the e�ect of normalization.

In particular, we use an Incremental Normalized Gaussian Network (INGnet)

[24] to represent a value function in the critic and a non-linear control function in

the actor. In INGnet, a new unit is allocated if the error is larger than a criterion

emax and the activation of all existing units is smaller than a threshold amin, that

is,

jy(x)� ŷ(x)j > emax and max
k

ak(x) < amin: (A.3)

The new unit is initialized with wk = ŷ(x), ck = x, and sk = diag(�i), where ŷ(x)

is a desired output, and �i is the inverse of the radius of the basis function. In

Sections 3.3 and 3.4, we set these parameters as �� = 0:035 [1/deg] for pitch and

joint angle dimension, � _� = 0:0087 [sec/deg] for pitch and joint angular velocity

dimension, emax = 0:0, and amin = 0:4. Note that when a new basis function is

allocated, the shapes of neighboring basis functions also change because of the

nature of normalized Gaussian basis functions.

87

Appendix

B. Continuous-time TD(�)-learning

In this section, we explain TD(�)-learning[10, 8] de�ned in continuous time.

Here, we �x a trajectory x(t);u(t) in a trial. and represent V (x(t)); V �(x(t)); r(x(t);u(t))

as V (t); V �(t); r(t).

We derive an equation below from the de�nition of TD-error (equation 2.7).

dV (t)

dt
=

1

�
V (t)� (r(t)� �(t)) (B.4)

Then, we have the equations.

V (t) =

Z
1

t

e�
s�t

� (r(s)� �(s))ds

V �(t)� V (t) =

Z
1

t

e�
s�t

� �(s)ds (B.5)

The learning rule for estimated value function V (t) to achieve real value V � is

given as

�wi / �

Z
1

0

@ 1
2
(V �(t)� V (t))2

@wi

dt

= �

Z
1

0
�(V �(t)� V (t))

@V (t)

@wi

dt

=

Z
1

0

Z
1

t

e�
s�t

� �(s)ds
@V (t)

@wi

dt (B.6)

where wi is the parameter of the value function V (t) and we de�ned �wi as

�wi =
R
1

0 _wi dt. We change the order of the integral as,

�wi /

Z
1

0

Z
s

0
e�

s�t

�

@V (t)

@wi

dt �(s)ds (B.7)

We de�ne the eligibility trace as

ei(s) =

Z
s

0
e�

s�t

�

@V (t)

@wi

dt (B.8)

On-line update rule of the parameter wi become

_wi = ��(t)ei(t) (B.9)

88

C. DISCRETE AND CONTINUOUS TIME TD-LEARNING

General update rule is given by using time constant � � � . We represent equation

(B.8) as

ei(t) =

Z
t

0
e�

t�s

�

@V (s)

@wi

ds (B.10)

By di�erentiating above equation, we get the update rule of ei(t),

_ei(t) = �
1

�
ei(t) +

@V (t)

@wi

(B.11)

We can say that ei(t) is the eligibility trace[3] in continuous time TD-learning.

Furthermore, when we de�ne � as � = �(���t)

�(���t)
and discritize by time step �t,

it become same learning rule to discrete time TD(�)-learning[32](see appendix

C)．

C. Discrete and continuous time TD-learning

C.1 De�nition of TD-learning

Continuous time TD-error is given by equation (2.7). We approximate time

di�erentiation of the value function _V (t) as _V (t) = (V (t)�V (t��t))=�t. Then,

we apply it to equation (2.7), we get

�(t) = r(t) +
1

�t

�
(1�

�t

�
)V (t)� V (t��t)

�
: (C.12)

On the other hand, discrete time TD-error[32] is given as

�(t) = r(t) +
V (t)� V (t��t) (C.13)

By comparing equation (C.12) and (C.13) with discount factor
 = 1� �t

�
, these

equations become same de�nition except for scaling factor 1
�t
.

C.2 Update rule for the value function

Update rule for the continuous time TD-learning is given by equation (B.9) and

(B.11). Then, when we approximate _ei(t) =
ei(t+�t)�ei(t)

�t
， _wi =

�wi

�t
, we get

ei(t+�t) = (1�
�t

�
)ei(t) +

@V (t)

@wi

�t (C.14)

89

Appendix

�wi = ��(t)ei(t)�t (C.15)

On the other hand, the update rule for the discrete time TD-learning[33] is given

as

ei(t+�t) =
�ei(t) +
@V (t)

@wi

(C.16)

�wi = ��(t)ei(t) (C.17)

Then, when we compare equations (C.14),(C.15) and (C.16), (C.17), we can �nd

same de�nition of the update rule in discrete and continuous domain if
 = 1� �t

�

and � = � except for scaling factor �t.

D. Implementation of continuous time TD-learning

When we implement the continuous time TD-learning in the computer simulation,

the way of time di�erentiation of the value function should be considered. In

equation (B.11), ei can be considered as weighted sum of @V

@wi

with time constant

�. In other words, ei is considered as @ �V
@wi

where �V is the weighted sum of the

value function V with the time constant �. Then, from equation (2.7), we have

�(t) = r(t) � 1
�
V (t) +

V (t)� �V (t)

�
where _V = V��V

�
. Then, we have the update rule

of the network weight to minimize TD-error as

_wi = ��
1

2

@�2(t)

@wi

= ���(t)
1

�
((1�

�

�
)
@V (t)

@wi

�
@ �V (t)

@wi

) (D.18)

We consider that we should derive TD-error only according to the smooth value

function �V (t) which contain past information of the value. Then, the update rule

of the network weight is given as

_wi = ��(t)
@ �V (t)

@wi

(D.19)

where � = � 1
�
. The equation (D.19) become same de�nition to equation (B.9).

Then, we can say that _V = V��V
�

is appropriate way to derive _V .

We show the learning algorithm in the computer simulation

1. initialize the value function by �V (0) = V (0)

90

D. IMPLEMENTATION OF CONTINUOUS TIME TD-LEARNING

2. repeat (a)～ (g)

(a) derive control output u(t) at the state x(t) by equation (3.16).

(b) update the eligibility trace of the basis functions as in equation (C.14).

ei(t+�t) = (1�
�t

�
)ei(t) + bCi(t)�t (D.20)

(c) calculate dynamics of the robot by using u(t)

time: t t+�t

state: x(t+�t)

reward: r(t+�t)

(d) calculate TD-error �(t+�t) as

�(t+�t) = r(t +�t)�
1

�
V (x(t+�t))

+
V (x(t+�t))� �V (t)

�
(D.21)

(e) update the critic as in equation (4.40)

vi(t+�t) = vi(t) + ��(t+�t)ei(t+�t) (D.22)

(f) update the actor as in equation (3.17)

wi(t+�t) = wi(t) + ��(t+�t)�nj(t)b
A

i(t) (D.23)

(g) update the value �V as

�V (t+�t) = (1�
�t

�
) �V (t) +

�t

�
V (x(t+�t)) (D.24)

91

