NAIST-IS-DT9661029

Doctor’s Thesis

Efficient Access Control and Detection of
Security Flaws under Authorizations
in Object-Oriented Databases

Toshiyuki Morita

February 8, 1999

Department of Information Processing
Graduate School of Information Science
Nara Institute of Science and Technology

Doctor’s Thesis
submitted to Graduate School of Information Science,
Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

DOCTOR of ENGINEERING

Toshiyuki Morita
Thesis committee: Minoru Ito, Professor

Shunsuke Uemura, Professor
Hiroyuki Seki, Professor

5

Efficient Access Control and Detection of
Security Flaws under Authorizations
in Object-Oriented Databases*

Toshiyuki Morita

Abstract

Access control is a key technology for providing data security in database man-
agement systems (DBMSs). Various authorization models have been investigated
and proposed in order to provide an access control mechanism. An authorization
is modeled as a finite set of rights. A right is generally represented as a triple
(s, o,vt), which means that a database user s is permitted to perform operation ¢
on object o in databases. An access control is achieved under an authorization in
the following way: When a database user invokes an access request, the DBMS
permits the request if the request is permitted by the given authorization, and
prohibits the request otherwise. ‘

This thesis proposes an authorization model which is independent of any spe-
cific object-oriented database (OODB) schemas and authorization policies, and
then defines an authorization specification language which is powerful enough to
specify authorization policies proposed in many other papers. Also, this thesis
proposes an efficient method of access control under an authorization specified
by the proposed language. Furthermore, the run-time efficiency of this method
is evaluated by simulating access control.

An authorization is an important and essential technology to protect secret
information in databases from prohibited accesses. However, even though the
DBMS enforces access control under an authorization, security flaws can occur
under the given authorization. Informally, a security flaw means that a user

*Doctor’s Thesis, Department of Information Processing, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DT9661029, February 8, 1999.

can obtain prohibited information by using only authorized information under
an authorization. In addition to enforcing access control under an authorization,
detecting a security flaw is important in order to keep the database more secure
from malicious user’s attack. This thesis discusses the following two problems of

detecting security flaws in OODBs:

(1) The detection problem of security flaws for OODB instances is to decide
whether or not, when a database schema S, a database instance I of S,
an authorization A, and a term 7 representing a program which retrieves

secret information are given, a user can infer the execution result of 7 under
S, I, and A.

(2) The detection problem of security flaws for OODB schemas is to decide
whether or not, when S, A, and 7 are given, there exists a database instance
I such that a user can infer the execution result of 7 under S, I, and A.

It is shown in this thesis that the problem (1) is solvable in polynomial time
in practical cases. Next, this thesis shows that the problem (2) is undecidable
and proposes a decidable sufficient condition for a given method schema S to
have no security flaw on 7. It is also shown that the sufficient condition is also
a mnecessary one if the given schema is monadic (i.e., every method is unary).
Furthermore, this thesis proposes an algorithm to decide the sufficient condition
and then evaluates the time complexity of the algorithm. Lastly, variations of
the problem (1) are mentioned.

Keywords:

object-oriented databases, access control, authorization, security flaw, term

rewriting system

i

Acknowledgments

I have been fortunate to have received support and assistance from many indi-
viduals. I would especially like to thank Professor Minoru Ito for his invaluable
support, discussions, and encouragement throughout the work. I am also grateful
to Professors Shunsuke Uemura and Hiroyuki Seki for their invaluable suggestions
and discussions on the work.

I would like to thank Research Associate Yasunori Ishihara for his valuable
' comments and continuous support throughout the work. I am also obliged to
thank Research Associate Ryuichi Nakanishi for his insightful suggestions on the
work. ,
I am grateful to Associate Professor Yuichi Kaji for his valuable comments.
- I am also grateful to Associate Professor Shin Ishii for his valuable support. I
thank to Research Associate Hajime Watanabe for his kind support.

Lastly, I would like to thank all the members of Ito Laboratory of Nara Insti-
tute of Science and Technology.

iii

List of Publications

Journal Papers

[1] T. Morita, Y. Ishihara, H. Seki, and M. Ito, “An authorization model for
object-oriented databases and its efficient access control,” IEICE Transac-
tions on Information and Systems, vol.E81-D, no.6, pp.521-531, June 1998.

[2] T. Morita, Y. Ishihara, H. Seki, and M. Ito, “A formal approach to de-
tecting security flaws in -object-oriented databases,” IEICE Transactions on
Information and Systems, vol.E82-D, no.1. pp.89-98, Jan. 1999.

Workshops

[3] T. Morita, Y. Ishihara, H. Seki, and M. Ito, “An authorization model for
object-oriented databases,” Proceedings of the 7th Data Engineering Work-
shop, pp.181-186, March, 1996 (in Japanese).

[4] K. Sakaguchi, T. Morita, Y. Ishihara, H. Seki, and M. Ito, “A content-
based authorization model for object-oriented databases,” IEICE Technical
Report, DE96-80, pp.37-42, Jan. 1997.

[5]) T. Morita, Y. Ishihara, H. Seki, and M. Ito, “On the detection prob-
lem of data flaws in object-oriented databases,” IEICE Technical Report,
COMP97-66, pp.49-56, Nov. 1997.

' [6] T. Morita, Y. Ishihara, and M. Ito, “A formal approach to detecting secu-
rity flaws in object-oriented database schemas,” IEICE Technical Report,

COMP98-46, pp.65-72, Oct. 1998.

Contents

1 Introduction o , 1

2 Efficient Access Control under Authorizations in Object-

Oriented Databases 7
2.1 Introduction e e e e e e e 7
2.2 Authorization Model 9
2.2.1 Database Schema 9
2.2.2 Database Instance 13
2.2.3 Authorization, 14
2.3 Authorization Specification. 17
231 Syntax e e e e e e e 19
23.2 Semantics 20
2.3.3 Restrictions on Inference Rules 21
24 AccessControl 22
2.4.1 Straightforward Methods 22
2.4.2 The Proposed Method 23
24.3 Complexity e e 28
244 Simulation Results 32
25 Conclusions . - oo 34

3 Detection of Security Flaws under Authorizations in Object-

Oriented Databases 35
3.1 Introduction o . v o v vt i 35
3.2 Method Schemas 38

321 Syntax 38

vii

3.3

3.4

3.5

3.6
3.7

Security Analysis
3.3.1 Authorization,

3.3.2 Formal Definition of User’s Inference e

The Detection Problem of Security Flaws for Database Instance .
3.4.1 The Problem e e e e e e e e e e e
3.4.2 The Algorithm and its Complexity
The Detection Problem of Security Flaws for Database Schema . .

35.1 TheProblem _

3.5.2 A Sufficient Condition
3.5.3 The Case of Monadic Method Schemas
3.5.4 The Algorithm and its Complexity
Variations of the Detection Problem of Security Flaws
Conclusions0......

4 Conclusions

References

viii

58

65
65
66
71
76
80
83

85

87

List of Figures

1.1 An example of a class hierarchy. 3
1.2 An example of method executions. 4
2.1 A databaseschema Sy. 11
22 Aclasshierarchyof S;. 12
23 Accesscontrol. 15
2.4 Authorization policies. 18
3.1 A methodschema S,.. 41
3.2 An example of method inheritances. 41
3.3 Aninterpretation b of S,. 43
34 Contentsof Q2. 48
3.5 Procedure to compute method executions. 49
3.6 An example of an interpretation. 54
3.7 An example of method executions. 54
38 Comntentsof Qz,. 59
39 Contentsof Pr,. 60
3.10 Procedure to compute O. o oo 63
3.11 Procedure to detect a security flaw. 64
312 Anexampleof Zfor S,. 67
3.13 Contents of Ps,. o v o v it 69
3.14 Procedure to construct rewriting rules A(?S. 79
3.15 Procedure to execute rewriting ;—S e e e e e 79
3.16 Procedure to find a safe authorization. 82

ix

List of Tables

2.1 Example of tables Tyubj, Tobj, Teype- = - « « + =« « v . . [P
2.2 Timecomplexity. 31
2.3 Run-time space complexity and table size., 31
2.4 Experimental data on accesscontrol. 33

Chapter 1
Introduction

Access control is a key technology for providing data security in database man-
agement systems (DBMSs). Various authorization models have been investigated
and proposed in order to provide an access control mechanism. An authorization
is modeled as a finite set of rights. A right is generally represented as a triple
(s,0,t), which means that a database user s is permitted to perform operation %
on object o in databases. An access control is achieved under an authorization in
the following way: When a database user invokes an access request, the DBMS
permits the request if the request is permitted by the given authorization, and
prohibits the requ$t otherwise.

Authorization models for relational databases (RDBs) have been proposed |3,
6]. However, authorization models for RDBs are insufficient for object-oriented
databases (OODBs), since such characteristics of OODBs as class hierarchies,
inheritance, dynamic binding, and encapsulation are not incorporated in those
models. Recently, various authorization models for OODBs have been pro-
Pposed [9, 11, 16]. However, many of the models assume some fixed database
schemas or authorization policies (e.g., “each subclass s; (1 < i < n) of a class s
has all the rights that s has”), and therefore the models lack flexibility and gen-
erality. Furthermore, efficient methods of access control have scarcely been con-
sidered, although many papers propose a straightforward access control method
or give a rough evaluation of the time complexity of the access control [18, 25].

This thesis proposes an authorization model which is independent of any spe-
cific OODB schemas and authorization policies, and then defines an authorization

specification language which is powerful enough to specify authorization poli-
cies proposed in many other papers [9, 11, 16]. A right is defined as a 5-tuple
(s,0,t,6,p), which means that s is permitted to perform operation ¢ on object o
with priority p if 6 = + and is prohibited from performing ¢ on o with p if § = —.
Setting 6 = — can specify an exception to a (positive) authorization (meaning
that a subject is prohibited from performing an operaf.ion on an object). As-
signing a priority to each right can simulate many policies to resolve conflicts
proposed in the literature. ’ e
Specifying an authorization by inference rules is a good way to make_' V,thé
underlying authorization policy more evident and to save the storage space [6, 8].

Example 1.1: Consider the class hiera,rchyvshown in Figure 1.1, where pé.rson,
~employee, student, staff, adviser, and manager are classes. For example, employee
is a subclass of person. Also, consider the following authorization policy: “each
subclass of person has all the rights that person has.” Rather than specifying
rights for employee, student, staff, adviser, and manager one by one explicitly, an
inference rule is specified as follows: | '

auth(s,o,t,6,p) :— s <, person, duth(pérson,o, t,6,p).

~ Atom s <, person means that s'is a subclass of person in the class hierarchy shown
in Figure 1.1, and atom auth(person, o,t, 8, p) means that person is permitted to
perform ¢ on o with priority p if § = + and is prohibited from performing ¢ on o
with p if 6 = —. The rule states that the left-hand side auth(s, o,t, 6, p) holds if
both s <, person and auth(person, o,t,6,p) in the right-hand side hold. = = O

Furthermore, this thesis proposes an efficient method of access control under
an authorization specified by the proposed language. The idea of our method is
(i) to partially compute inference rules and retain the results in compile-time (i.e.,
before an access request is given), and (ii) to perform the remainder of inference
in run-time (i.e., when an access request is given). The run-time efficiency of
the proposed method was evaluated by simulating access control. The simulation
results conclude that the proposed method makes access control more efficient
than conventional methods. | ‘

An authorization is an important and essential technology to protect secret
information in databases from prohibited accesses. However, even though the

2

employee student
Staff adviser 1
|
. | subclass

Figure 1.1 An example of a class hierarchy.

DBMS enforces access control by an authorization, security flaws can occur un- -
der the given authorization. Informally, a security flaw means that a user can
obtain prohibited information by using only permitted information under an au-
thorization. In addition to enforcing access control under an authorization, de-
tecting security flaws is important in order to keep the database more secure from
malicious user’s attack.

Example 1.2: Suppose that a method hostname returns a name of host which a
given employee uses, a method service returns a name of service as which a given
host is used, and a method admin, whose implementation body is admin(z) =
service(hostname(z)), returns a name of service which a given employee adminis-
trates. Also, suppose that hostname(Black) = Mars and service(Mars) = Xterm,
where Black, Mars, and Xterm are objects of class employee, host, and use respec-
tively (see Figure 1.2).

Consider the case that user Black is permitted to perform hostname and
admin and is prohibited from performing service under an authorization.
Suppose that Black knows the implementation body of permitted methods.
Then, Black obtains the information that host Mars is used as X-terminal
Xterm since he can infer that service(Mars) = Xterm by admin(Black) =

host

emplovee/zMars\\ use
—Thostmame - service [~
Black | | Xterm
L_! }
‘ admin

Figure 1.2 An example of method executions.

service(hostname(Black)) = Xterm and hostname(Black) = Mars, although
service is prohibited under the given authorization. O

Recently, various models k,of, security flaws have been discussed [10, 17, 20,
. 32, 33]. Generally, the user’s attack is modeled by precise inference or imprecise
inference. Precise inference means that a user can infer only the exact value of
~ the result of a prohibited method. On the other hand, imprecise inference means
that a user can infer several candidates of the result of a prohibited method.
Example 1.2 shows an example of precise inference. Reference [32] discusses
precise inference and imprecise one for OODBs. Reference [19] discusses imprecise
inference for RDBs, and Reference [20] discusses a similar imprecise inference for
OODBs. This thesis focuses on precise inference for OODBs.

- The following problems of detecting security flaws in OODBs are considered:

(1) The detection problem of security flaws for OODB instances is to decide
whether or not, when a database schema S , a database instance I of S, an
authorization A, and a term 7 to be verified (to be kept secret) are given,
a user can infer the execution result of 7 under S, I, and A.

(2) The detection problem of security flaws for OODB schemas is to decide
whether or not, when S, A, and 7 are given, there exists a database instance
I such that a user can infer the execution result of 7 under S, I, and A.

4

Example 1.3: In Example 1.2, let = se'r'vzce(Mars) be a term which a user
wants to verify the possibility of a secunty flaw. Then, an example of the prob-
lem (1) is to decide whether or not a user can infer the execution result of ;. In
this case, a security flaw on 7; occurs. On the other hand, let 75 = service(host)
be a term which a user wants to verify the possibility of a security flaw. Then,
an example of the problem (2) is to decide whether or not there exists a database
instance such that a user can infer the execution result of a term obtained by
replacing host of 75 by an object of host. In this case, a security flaw on 75 oc-

curs. : 0

As a formal model of database schemas, this thesis adopts method schemas
proposed by References [1, 2] since they have the basic features of OODBs. The
semantics is simply defined based on term rewriting. In this formalization, an
important point is that the above detection problems are also defined based on
term rewriting.

It is shown in this thesis that the problem (1) is solvable in polynomial time
in practical cases. Next, this thesis shows that the problem (2) is undecidable
and proposes a decidable sufficient condition for a given method schema S to
have no security flaw on 7. It is also shown that the sufficient condition is also
a necessary one if the given schema is monadic (i.e., every method is unary).
Furthermore, this thesis proposes an algorithm to decide the sufficient condition,
and then evaluates the time complexity of the algorithm. For a monadic method
schema, with the proposed algorithm, whether a security flaw on 7 occurs or not
is decidable in polynomial time of the size of the schema.

As a variation of the problem (1), this thesis also mentions the following
problem of finding a safe authorization. An authorization A is called safe on a
term 7 if no security flaw on 7 occurs under A.

(3) The finding problem of a safe authorization is to find, when a database
schema, a database instance, an authorization, and a term to be verified
~ are given, a maximal safe subset of the authorization on the term.

This thesis shows that the problem (3) is solvable in polynomial time in practical

Cases.

CipEees IS AT '

Chapter 2

Efficient Access Control under

Authorizations in
Object-Oriented Databases |

: 2.1 Introduction

‘Recently, various authorization models for OODBs have been proposed. However,

many of the models [7, 11, 15| are coupled with some fixed database schemas or
authorization policies (e.g., “each subclass s; (1 < ¢ < n) of a class s has all the
rights that s has”), and therefore the models lack flexibility and generality. Fur-
‘thermore, although some papers propose a straightforward access control method
or give a rough evaluation of the complexity of the access control [18, 25], efficient
methods of access control have scarcely been considered.

An authorization is modeled as a finite set of rights. A (positive) right is
often represented as a triple (s,0,t), where s, o, t are an access subject, an access
object, an access type respectively. By (s,o0,t), we mean that s is permitted to
- perform operation ¢ on o. In order to specify an exception to a positive right, a
negative right is useful which prohibits a subject from performing an operation
on an object. This thesis defines a right as a 5-tuple (s, 0,t,6,p), which means
that s is permitted to perform operation ¢ on o with priority p if § = + and is
prohibited from performing ¢ on o with p if § = —. Setting § = — can specify
an exception to a positive right. Assigning a priority to each right can simulate

7

many policies to resolve conflicts proposed in the literature (see Section 2.2.3).
- Specifying an authorization by inference rules is a goo'd way to make the
underlying authorization policy more ev1dent and to save the storage space [6,
8]. An example of an inference rule was shown in Example 1 1. Furthermore,
inference rules often have to depend on the contents of ob_]ects 4, 9].

Example 2.1: Suppose that those who belong to subclasses o'f staff in Figure 1.1
are permitted to display their own objects. This is speciﬁéd by the following
inference rule: ’

auth(ws, wo, display, +,200) :— w, = w,.owner, in(ws,v,), v, <, staff,

where w; and w, are instance variables dénoting an access subject and an
access obJect respectlvely, and Us is a class vanable denotmg an access sub-
ject. Atom w, = w,.owner means that the owner of wg is Wy and in(ws, vs)
means that ws is an object of class v, This rule states that, for any
ground substitution 6, auth(6(ws),8(w,), display, +,200) holds (i.e., the right
(6(ws); 8(w.), display, +, 200) is given) if all the'a.to_ms in the right-hand side hold
under 4. I o

In order that database administrators can specify such inference rules as Exam-
ples 1.1 and 2.1, this thesis defines an authorization specification language which
is powerful enough to specify authorization policies proposed in ma,ny other pa-
pers [9, 11, 16).

Several access control algorithms have been discussed in References 5, 18,
25]. By supposing somewhat simple authorization models, Reference [25] roughly
estimates the time complexity of access control for each of the supposed models.
Reference [18] proposes a straightforward algorithm which decides whether a given
access request is permitted or prohibited. However, References (18, 25] do not
elaborate systematic methods of dealing with inference rules. A method proposed
in Reference [5] is that, before an access request is given, a DBMS computes all the
rights derived from inference rules. Whenever an access request is given, a DBMS
may indeed quickly decide whether the request is permitted or prohibited, by
referring to the computed results. However, when rights depend on the contents
of objects (see Example 2.1), this method would be impractical since the size of
the storage space to save the results depends on the total number of objects.

8

This thesis proposes a method which (i) partially computes inference rules
and retains the results in comi)ﬂe—time (i.e., before an access request is given),
and (i) performs the remainder of inference in run-time (i.e., when an access
request is given). In this method, a DBMS can efficiently decide whether a given
access request is permitted or prohibited. Furthermore, the size of the storage
space required by a DBMS is independent of the total number of objects. The
run-time efficiency of the proposed method was evaluated by simulating access
control. The simulation results conclude that the proposed method makes the
access control more efficient than conventional methods.

This chapter is organized as follows: Section 2.2 introduces a database schema
and then defines an authorization. Section 2.3 defines an authorization spec-
ification language and Section 2.4 proposes an efficient access control method.
Section 2.5 summarizes this chapter.

2.2 Authorization Model

2.2.1 Database Schema

In this chapter, we define a simple database schema which has the main features
of object-oriented data models [9, 21, 23]. Three class hierarchies! are useful to
incorporate various specific authorization models (e.g., role-based authorization
models [28] and method-based ones [16, 31]) in addition to general ones: the first
class hierarchy is on access subjects and represents relationships among database
users; the second one is on access objects and represents relationships ambng
databases, classes, and objects; and the last one is on access types and represents
relationships among methods and basic operations.

Definition 2.1: A database schema is a 5-tuple S = (Hj, H,, H, At, Ad) define-
as follows:

1. H,, H,, and H; are class hierarchies on access sn*"

access types respectively. y

Many papers use the terminology “class hierarchy” only /
tionship is a forest. In this thesis, however, a partial order on /
even when it is not a forest. ,

2. Atis a finite set of attributes.
3. Ad is a finite set of attribute declarations.

H, consists of a finite set C, of classes representing access subjects and a binary
relation <¢ (or >¢) representing is-a relationship on Cs. Let <Z (resp. >7) denote
the transitive closure of <4 (resp. >%) and < (resp. >,) the reflexive transitive
closure of <d '(r'esp. >%). By s <2 s, (or 59 >4 5;), we mean that s is a direct
subclass of so, while by 51 <+ 5y (or 5 >+ s1), we mean that s, is a (indirect)
subclass of s5. Class hierarchies on access objects and access types, denoted
H, = (C, sg) and Hy = (Ci, <) respectively, are defined similarly. This thesis
assumes that Cs, C’b, and C, are disjoint; this assumption makes access control
efficient (see Sections 2.2.2 and 2.4.3.2).

An attribute declaration has the form (c,at) : c2, where ¢;,¢2 € Co and
at € At. By (¢, at) : ¢z, We mean that the value of attribute at of an object of
¢, must be an object of ¢, or its subclass (see the last paragraph of Section 2.2.2

for details). Classes of basic values such as integers and strings also belong to C,
and basic ‘val’uesé are identified with objects. Attribute declarations are inherited
along the class hierarchy H,. Let Ad be the set of inherited attribute declarations
derived from Ad by some inheritance rule. This thesis does not assume any
specific inheritanqé mechanism of attribute declarations since it is not our main

concern. K o O

In ,this ché,pter; we do not incorporate method implementation bodies into a
schema si‘ncé‘a method-based authorization which depends on method implemen-
tation bodies does not be considered here. Such an authorization is discussed in
Reference [31] and is used in Chapter 3.

Example 2.2: Figures 2.1 and 2.2 show 2 database schema S = ((Cs, <9),
(Co, <), (Cs, <9), At, Ad). In Figure 2.2, the thick arrow from employee to person

~spresents that employee <¢ person, while the thin arrow labeled by member from
~pany to worker represents that (company, member) : worker is in Ad. Suppose

10

Cs = {person, student, émployee, staff, manager, adviser},
C, = {company, auto_cp, worker, owner_person, string},
C: = {operation, register, modify, enter, display},
At = {member, namé,pwner},
Ad = {(company, member) : worker,

(company, name) :string,

(worker, owner) : owner_person}.

Figure 2.1 A database schema S;.

11

/p(e rsen\
}n'plgﬁ student
s*aff adviser

manager

Access Subject

company
/ \
auto_cp worker string
owner

owner_person

Access Object

regjster filfy
t ><nter

display

Access Type

Figure 2.2 A class hierarchy of S;.

12

that, by a suitable inheritance mechanism, Ad is derived as follows:

Ad = {(company, member) : worker,
(company, name) : string,
(worker, owner) : owner_person,
(auto_cp, member) : worker,
(auto_cp, name) : string}. 0

2.2.2 Database Instance

A database instance, simply called a database, is a directed graph I = (O, E),
where O is a finite set of objects and E is a finite set of labeled edges representing
attribute-values of objects. On O x C, a binary predicate in is defined such that,
for any i € O, there exists at most one class ¢; € C; such that in(4, ¢;) holds
(similarly for C, and C;). When in(, c) holds, we say that i is an object of class

- c. Let
O; = {i € Olin(i, c;) holds for some ¢, € C;},

O, = {i € Olin(i, c,) holds for some ¢, € C,},
O; = {i € Olin(i, ¢;) holds for some ¢, € C;}.

From the definition, Os, O,, and O; are not necessarily disjoint. For example,
there may exist an object ¢ such that both in(i,¢;) and in(4,c,) hold for some
¢ € C; and ¢, € C,. In this case, i is regarded as an object of both class ¢,
of access subject and class ¢, of access object. Thus, while keeping the class
hierarchies H; and H, disjoint, this thesis can specify an inference rule which
compares an object of access subject with an object of access object (e.g., “if a
subject w; of a subclass of staff is the owner of an object w,, then w, can display
w,"”; see Example 2.1).

When F contains an edge labeled by at from i, to iy (41,4, € O,), we say that
the value of attribute at of object %, is object i5, and write i;.at to mean i,. The
attribute-value should be consistent with given attribute declarations Ad. That
is, there must exist an attribute declaration (c;,at) : ¢; € Ad satisfying all of
in(iy, 1), in(iz, cy), and ¢ <, ¢, for a class ¢, € C,. :

13

2.2.3 Authorization

An authorization for an OODB is modeled as a finite set of rights. Basically, a
right can be represented‘ as a triple (s, 0,t), where s is an access subject, o is an
access object, and £ is an access type. By (s, 0,t), we mean that s is permitted to
perform operation ¢ on o. We often want to specify an exception. For example,
suppose that we want to permit all subclasses of a class s except s, to perform an
operation on an object. In such a case, a negé,ﬁive right (s, 0,t, —) is useful which
specifies that subject s is prohibited from performing operation ¢ on object o.
However, a conflict between a positive nght (s,0,t,+) and a negative right
(s,0,t,—) may occur. Several policies to resollv.e: conflicts have been proposed:

® A negative right alwa.ys' takes preceden'cc':of a positive one [5]-

e A right given explicitly takes precedence of one given implicitly, e.g., one
derived from some inference rules [18]. -

e Each right is either a strong right or a wea.k'v one. A strong right cannot
be overridden by other strong or weak ﬁghts, while a weak right can be
overridden by other strong rights. Among'wea.k rights, a more specific right
takes precedence of a more general one [7]

'3 To each right a priority is assigned, and a nght with a higher priority takes
precedence of one with a lower priority [11].

Slmlla.r policies are proposed in References [6, 8] The last policy may need to
assign a priority to each right but is the most genera.l policy of all since it can
‘simulate the other policies by assigning a priority properly. This thesis adopts
the last policy and defines the formal model as follows. Let P be a finite, totally-
ordered set of priorities. Hereafter, without loss of generality, this thesis assumes
that P is a finite subset of non-negative integers and that n is a higher priority
than n' iff n > n'.

" Definition 2.2: A right s a tuple (s, 0,t,6,p) € (CsUO5) x(C,UO,) x (CtUOy) x
{+,=} x P. By (s,0,t,6,p), we mean that s is permitted to perform operation
t on object o with priority p if § = + and is prohibifed from performing t on o
with p if 6 = —. An authorization is a finite set A of rights. O

14

e

DBMS

access
request

Authorization A

User prohibition

)

permission

. M database
access Database
data

Figure 2.3 Access control.

15

Next, the semantics of an authorization is defined. An access requestis a triple
: (s,0,t) € (CsUOs) X (C,UO,) X (CyUO;), denoting that s requests to perform ¢
on o. When an access request req is invoked under an authorization, the DBMS
decides whether 7eq is permitted or prohibited under A as follows. Let

Areq = {(3, 0,1, §:p) € A|'req = (5’0’ t)}

: _Suppose that there exists a unique right (req,6as, par) With the highest priority
in A, Then, req is permitted if 6y = + and is prohibited if 6y = — (see
Figure 2.3). If such a unique right does not exist, i.e., A,,, = ¢ or both positive
- and negative rights with the (same) highest priority exist, then a conflict occurs
‘at req?. When a conflict occurs at req, the administrator determines whether req
is permitted or prohibited.

, Example 2.3: Let A be the following finite set of rights for S; in Figures 2.1
 and 2.2: . ,
o = {ay : (adviser, company, register, +, 100),
a, : (adviser, worker, display, —, 100),
as : (adviser, worker, display, —, 500),
aq : (adviser, worker, display, +, 300),
as : (person, company, operation, +, 700),
ag : (person,company, operation, —, 700)}.

For req = (adviser, company, register), A,., = {a1}. Hence, req is permit-

ted since a; is a positive right. For reg, = (adviser, worker, display), Aeg, =

{az,a3,a,}. Hence, reqy is prohibited since the priority of a3 is the highest of all

- rights in A,,,, and a3 is a negative right. For regz = (person, company, operation),
A,eqs = {as,a6}. Then, a conflict occurs at regs since the priorities of a5 and as

are the same. |

In Reference [11, 15], several interpretations of rights are stated. For example,
dynamic class semantics has the following properties (see Reference [11]):

e A class name in a right stands for all its objects. That is, if a right -

(s,0,t,6,p) (s € Cs) is given, then (3, 0,1, 6, p) is also implicitly given for all

?For simplicity, the term “conflict” is used even if 4,,, = ¢.

16

¢ such that in(i, s) holds (similarly for 0 and ¢). Note that the converse is
not true. S

e Suppose that a right a and another a, representing an exception of a are
given. If an access request matches a, then the exception a, is not con-
sidered. For example, suppose that both rights a = (s,0,t,+,p) and
a. = (i,0,t,—,p,) are given, where in(i,s) holds. Then, access request
(s,0,t) is permitted, while request (3, 0,t) is prohibited.

" In our formulation, the former property can be achieved by specifying the follow-
ing inference rule (inference rules will be formally defined in Section 2.3):

auth(i, 0,t,6,p) :— in(s, 8), auth(s,o,t,6,p).

The latter property can be achieved by assigning a higher priority to a, than that
of a. '

2.3 Authorization Specification

Various authorization policies" that use inference rules have been proposed. In
Reference [11], for example, rights (s;, 0,t,+,p) are derived from (s,0,t,+,p)
for all subclasses s; of s (see Figure 2.4(a)). In References [15, 16], inference is
blocked by giving a negative (s;,0,t,—,p;) (p; > p) for a subclass s;j of s, so that
(s, 0,%, +, p) is implicitly ungiven for all subclasses s; of s; (see Figure 2.4(b)). In
Reference [7], a more complicated authorization policy is.proposed under the as-
sumption that access types are fixed. In all the above policies, however, inference
rules are fixed and database administrators cannot modify them at all.
References [9, 27] define the syntax of inference rules by which administrators
can specify authorizations freely. In Reference [9], however, inference is fixed on
the class hierarchies, and in Reference [27], recursive inference rules are disal-
lowed. This thesis defines the syntax of inference rules such that administrators
can specify the above policies [7, 9, 11, 15, 16, 27] and efficient access control can

‘be achieved.

17

(a)‘ The first policy.

(b) The second policy.

Figure 2.4 Authorization policies.

18

-— permission A == prohibition

2.3.1 Syntax

Let Vs be a set of variables over {+,—} and V,, a set of variables over P. Also,
let Vs, Vo, and V; be sets of variables over C;, C,, and C, respectively (V =
V:UVoUVUVsUV, and C = C,UC,UC,). Furthermore, Ws, W,, and W, be sets
of variables over O, O,, and O, respectively (W = W,UW,UW,). A termis either
an element of CUOUPU{+,-}UV UW or z.a, where z € CoUO, UV, UW,
and @ € At. An atom is g(uy,uy,...,u,), where q is a predicate name and
U1,Uz,...,U, are terms. A set of predicate names are supposed to be finite.
Atoms are classified into the following four types:

(P1) Atoms on classes C, Co, and C’;.
(P2) Atoms on O, P, and {+,-}.

(P3) An atom in(i,c).

(P4) An atom auth(s,o,t,6,p).

Type (P1) atom is, for example, ¢; <{ c;, where ¢;,¢c;, € C; UV, and <? is an
infix predicate. The atom has already been introduced in Section 2.2.1. Atoms
01 <& 0, and t; <@ t,, which are on class hierarchies on access objects and access
types respectively, are defined similarly to <¢. Atom cj.at —, ¢, can be also
speciﬁéd, where c3,c4 € Co UV, at € At, and —, is an infix predicate, meaning
that the domain of attribute at of class c; is class ¢,. Any atoms on classes in
distiﬁct hierarchies are excluded (e.g., on C; x C,, C; x C, x C}, and so on) since
such atoms are not used in the inference rules proposed in the literature. Type
(P2) atoms are, for example, arithmetic comparisons between the attribute-values
of objects, and ones computing a priority or a sign repfesenting either a positive
right (i.e., +) or a negative one (i.e., —). Type (P3) atoms have already been
introduced in Section 2.2.2. Type (P4) atom auth(s, o,t, 6, p) means that a right
(s,0,,6,p) is given, where s € C;U0;, 0 € C,UO,, t € C,UO,, 6 € {+, —}, and
pEP.

Definition 2.3: Let B. be a conjunction of (P1) atoms and B; a conjunction of
(P2) and (P3) atoms. Also, let 51,5, € C,UO,UV,UW,, 01,0, € C,UO,UV,UW,,

19

tht, € CLUO UV, UW,, 6,6, € {+,~}UV;, and p1,p, € PUV,. An inference
rule is in one of the following forms:

(R1) auth(si,on,t1,6,p1) :— By, B,
(Rz) G,'U.th(sl, Ol,tlatsi)pl) T Bi1 BC.'?‘ duth(sr7o"'7t"" 67"p7')'

Intﬁitively, (R1) means that a,uth(‘s;,”p;’, t1, 61, ;1) of the left-hand side holds if both
'B; and B, of the right-hand side hpld.’ (R2) means that auth(s, o1, %1, 6, p1) holds
if all of B;, B, and auth(s,, o, t,, br, Pr) hold. O

2.3.2 Semantics

Let S be a database schema. The semantics (interpretation) of type (P1) atoms
is defined by S, and that of types (P2) and (P3) atoms is defined by a database
instance I of S. Let B = pred,, predy, ..., predn be a conjunction of (P1)-(P3)
atoms that contain no variables. (Thus each pred; must be either true or false
under I.) Define the satisfaction relation [= as follows. If every pred; is true under
I, then we write I |= B. The semantics of the type (P4) atom auth(s, o,t,6,p) is
. defined recursively by a set R of inference rules as follows:

° For an inference rule in the form of (R1) and a ground substitution 6, if
I'|=6(B;) and I |= 6(B.), then I |= 6(auth(si, o1, %, 61, 1))-

o For an inference rule in the form of (R2) and a ground substitution 6,
if I k= 6(B), I = 6(B.) and I |= G(auth(sr,o,,t,,c‘i,.,pr)) then I =
9(‘1“th(31,01,t1,5t,171)) T

When a conjunction B of atoms is true under any database instance of S, we
write |= B. Lastly, the authonzatlon AR(I) specified by R under I is defined as
follows:

ARI) = {(s, 0,1, 6,p)l-’ = auth(s, 0,%,6,p)}.

For an access request req = (s,0,t), A,,, is defined by letting A = A%(I) in
Section 2.2.3. We often write A instead of AR(I) when R and I are obvious from
the context.

20

B .
B e et o 4 = o e e

2.3.3 Restrictions on Inference Rules

To achieve efficient access control, this thesis will put restrictions on inference
rules. Let B;, Bo, B; be conjunctions of atoms on C;, C,, C; in (P1) respectively
(Bc = Bs, B,, B). Consider an inference rule in the following form:

(Rﬂg) CL’U.th(Sl, or, t17611pl) M Bi: Bs; Boa Bt7 auth(sraorat'r) 5r:pr),

where auth(s;, o,,1,,8,,p,) is optional. A class variable v, in V; is ca.lvledv‘a bridge
on subjects if v, satisfies the following two conditions:

® v, appears in auth(s;, o, %, 6, p1) or B;,
e v, appears in B, or auth(s,, o, t,, 6., ;).

Bridges on objects and types are defined similarly. This thesis supposes that each
inference rule satisfies the following three restrictions:

(Q1) If s, (resp. or, t,) is an instance variable, then it is identical with s; (resp.
o, t;). That is, if s, € W, then s5; = s,, if o, € W,, then ol = or; and if
t, € W;, thentl—t

(Q2) There exists at most one bridge on subjects, objects, and types:

(Q3) Let (s, 0,t) be an access request and vs, v,, and v; be the bridges on subjects,
objects, and types respectively. There exists a class ¢, € C, such that
0(vs) = ¢, for any ground substitution 8 satisfying 6(s;) = s and I |= 6(B;)
(similarly for bridges on objects and types).

Without (Q1), it would take O((|O|+|C])?) time to decide whether a given access
request is permitted or prohibited, where |X| denotes the number of elements of
aset X. It is impractical to take a polynomial time of the total number of objects
whenever an access request is given. The second restriction (Q2) states that B,
(resp. B,, B;) and B; depend on each other via only the bridge v, (resp. wv,,
). The third restriction (Q3) states that the values of the bridges are uniquely
determined whenever an access request is giveh. Even if restrictions (Q1)—(Q3)
are imposed, our specification language is powerful enough to specify the inference
rules proposed in the literature.

21

Example 2.4: Let R; be the following set of inference rules for S; in Figures 2.1
and 2.2: '

Ry = { r1 : auth(student, company, display, +, 300),
79 : auth(adviser, v, vy, +, 100), ‘
73 : auth(ws, w,, modify, +, 500) :—
- ws = Wo.owner, in(ws,vs), vs < employee,
- 14 2 auth(vs, v, vy, +,vp) 1 —

vs <t o]

1 ~d 0
sy Us 25 U,

5» To < company.member,
auth(vf,company, v, +, vp),

75 : auth(vs,company; v, —,400) :—
vy < vl vl >F staff, v, >, enter },

87

where vs, U5, V) € Vi, % € V,, v € Vi, ws € W, w, € W, and v, € V,. By
T1, we mean that student is permitted to display objects of company with priority
300. By 75, we mean that 6(vs) is prohibited from performing operation 6(v;)
on company with priority 400 if all of I |= 8(u, <¢ o), I |= 6(v! > staff), and
- I = 6(w, >, enter) hold under a database instance I. In r3, the bridge on subjects
is v, and 73 has no bridge on objects and types. In 74, the bridges on subjects,
objects, and types are vs, U, and v, respectively. In 75, the bridges on subjects

and types are vs and v, respectively, and the bridge on objects is not present. O

2.4 Access Control

When a request to access a database during an execution of a query pro.gram is
invoked by a user, a DBMS decides whether the access request is permitted or
prohibited under an authorization. This is called access control [29].

2.4.1 Straightforward Methods

There are two straightforward methods for access control:

Method I: The DBMS keeps the inference rules R intact and decides whether
an access request is permitted or prohibited each time the request is given.

22

B

Method II: For all the possiblgg.g;zéessi requests, the DBMS decides in advance
whether the requests are permitted or prohibited, and retains the results as
a table.

As for the time comple;dty, Method I does not have to compute anything in
compile-time, but in run-time, the DBMS has to decide whether a given access
request is permitted or prohibited, by using inference rules whenever the request
is given, even if the same access request is given frequently. On the other hand,
Method II can determ.me whether a given access request is permitted or prohibited
only by retrieving the table in which the results computed in compile-time are
stored, but it takes much time to compute all the access requests in compile-time.
Moreover, it requires to reconstruct the whole table whenever inference rules or
database instances are modified. As for the run-time space complexity, Method I
needs a polynomial size of N to perform inference, where N is the total size of a
database schema S and R (the formal definition of N is defined in Section 2.4.3),
while Method II does constant space. Lastly, as for the table size to retain the
results in compil'e-vtinig_e‘,g it takes a polynomial size of |O| in Method II, while
Method I does not use such a table.

The method proposed in Reference [5] is similar to Method II: a DBMS retains
all rights derived from explicit rights in compile-time. In run-time, it decides
whether a given access request is in these rights or not. The DBMS also retains
the intermediate results of inference of rights in compile-time, and hence it suffices
to pa.rtia.]ly reconstruct the table when inference rules are modified. However,
Reference [5] does not consider inference dependent on the contents of objects.
If such inference was incorporated, then the authorization model in Reference 5]
would be impractical, because it would take a polynomial size of |O| to retain all
derived rights as well as the intermediate results of the inference.

2.4.2 The Proposed Method

This thesis improves Method I by adopting the following strategy:

() In compile-time, compute type (P1) atoms on classes in each inference rule,
independent of the contents of objects. More precisely, let v be a bridge
on subjects in rule (R3) in Section 2.3.3. For each ¢, € C,, compute all

23

6(s,) such that 8(vs) = ¢ and = 0(B;) (51m1lar1y for bndges on obJects and
types).

(ii) In run-time, whenever an access request is given, perform the réma.i_nder
of each inference related with the request, dependent on the contents of
objects. :

This method is called Method III inkthe folloWing.

2.4.2.1 Pre-Computation in Complle-Tlme

- Let req = (s,0,t) € (Cs U O;) X (C, U O,) X (Ct u Ot) be an access requ%t By
the definitions of 4,,, (see Section 2.2.3) and A®(I) (see Section 2.3.2), ’a,nght
a = (s,0,t,6,p) is in A,,, iff there exists a rule 7 of the form (R3) in R such that

req

the following condition (D1) holds under I. If auth(s;, o, t,, 6,,p,) is absent in-

the right-hand side of (R3), then omit condition (d) in the following. (Dl) and
(D2). | .

(D1) There exists a groimd substitution @ under 1 such that

(a) O(s1,01,t1,61,m1) = (8,0,t,6,Dp),
(b) I 6(By),
(1) =B,
(c-2) [=6(B),
(c-3) E0(B),
(d) I = 6(auth(sy,0r,tr,br,pr))-
If there exists a bridge v, on subjects in r, then (c-1) is equivalent to the following
condition (c-la):
(c-1a) There exist a class ¢; € C; and a ground substitution 8, for V. such
that 0,(vs) = ¢s and = 0,(Bs). ..

Note that, by (Q3) in Section 2.3.3, a class ¢; which satisfies (c-1a) is uniquely
determined if exists. For each class ¢, € Cj, define Tyyupi(T, cs) as follows:

Toubs (1, ¢s) = {0u(5:)|0,(vs) = ¢5 and |= 6,(B;)},

24

L G

where 0, is an arbitrary substitution for V. On the other hand, if there exists no
bridge on subjects in r, then (c-1) is equivalent to the following condition (c-1b):

(c-1b) There exists a ground substitution 6, such that |= 6,(B;).

Then, define Tyu;(r) as follows:

subJ('r) {0 (s‘l')l I: 9 (BS)}

where 6,, is an arbitrary substitution for V. Tovj and Tiype are defined in the same
way. Therefore, (D1) is equivalent to the following condition (D2):

(D2) There exist c, ¢, ¢, 8j, 0j, t; and ground substitutions 6,, for W and 6, for
V such that :

(a') 0 © o‘v(sb bb t, 6lapl) = (37 o,t, 6)?)1
(b) I|= 6y 06,(By),
(c-1) 8y(vs) = s and s; € Toup;(r, cs) if there exists a bridge vs on subjects,
and s; € Teupi(7) otherwise,
(c-2) 04(vo) = ¢, and o0 € Topy(r, ¢,) if there exists a bridge 'vo on objects,
and o; € Topi(r) otherwise,
(c-3) 0y(v:) = v and t; € Tiype(r, ;) if there exists a bridge v, on types,
and t; € Tiype(r) otherwise,

d) IE aw(auth(sjiojvtﬁev(ar),ev(Pr))),

where “o” is a composition operator. Retrieving Ty,;, T;_-,bj, Tiype can decide
whether (D2) holds or not. Hence, before an access request is given, these sets
are computed in advance for any possible ¢, ¢,, c; of values of bridges if exist.
When atom auth is not present in the right-hand side of a rule , if 8,(v;) = ¢
and |= 6,(B;), then Touv;(7, ¢s) = {true}, where true is a special symbol denoting
true, and otherwise, Toub;(7, ¢s) = ¢ Topj and Tiype are defined in the same way.

Example 2.5: For 51 in Figures 2.1 and 2.2 and R, in Example 2.4, compute
Tauvj, Tobj, Ttype- For r4 € Ry, first consider access subject. Since v, is a bridge

— F oyl o A M
a'nd Bs—'l)s Ss vs,’”s Zs vsa

25

Touj(Ts, person) = ¢,
Teubj(T4, employee) = {employee, student},
Toubj(7s, student) = {employee, student},
_ subj(u,staff) {employee student, staff, adviser},
Tupj(r4, adviser) = {employee, student, staff, adviser},
Tuuj(Ts, manager) = {employee, student, staff, adviser, manager}.

For the access object in 74, since v, is a bridge and B, = v, - company.member,

Tobj:(vf’4;‘COvaGNY) = ¢)
Tovj(T4, auto_cp) = ¢,
Tobj(r4, worker) = {company}.

For the access type in 74, since v is a bridge and B; = true,

Tiype(r4, Operation) = {operation},
Teype (T4, register) = {register},
Ttype(u,modlfy) {modify},

Ttype(n,enter) = {enter},
Ttype(u,dlsplay) {display}.

For the other rules, Toub, T obj Ttype are computed in the same way. Table 2.1
shows the results for all rules in R; (r; and 7o are omitted). m]

2.4.2.2 Computation in Run-Time

For an access requést req = (s,0,1), A, ., can be computed from T, Tobj, Ttype
by testing recursively whether ‘co"n‘dition (D2) holds or not.

Example 2.6: Consider S, in Figures 2.1 and 2.2, R, in Example 2.4, and Tyup;,
Tobjs Tiype in Table 2.1. Suppose that in(bob,staff) and in(worker_bob, worker)
hold in access subjects and objects respectively, and bob = worker_bob.owner
under a database instance I; of S;. Let reg; = (adviser,company, register) be an
access request. For ry € Ry, clearly a; = (adviser, company, register, +, 100) is in
A For s,

req)’

26

. L A PR
Ly B T g

Table 2.1 Exa.mple of tables Tyyp5, Tob;, Tiype-

(a) Table Tsubj .

T3 T4 75 |
person | ¢ ¢ ¢
employee || ¢ employee,student true
student | ¢ employee,student true
staff true employee,student, true

staff,adviser
adviser true employee,student, true
staff,adviser
manager || true employee, student, ¢
staff,adviser,manager
(b) Table Ty;.

T3 T4 s
company | true ¢ true
auto_cp ¢
worker company

(c) Table Tiype.

T3 T4 Ts
operation | true operation | true
register register | true
modify modify true
enter enter true
display modify ¢

27

Toubj(7s, adviser) = {true},
Tovj(rs) = {true},
Tiype(Ts, register) = {true}.

Hence, a, = (adviser, company, register, —,400) is in A,.,. By computing with

the other rules, we have A, = {a;,a;}. Since a, is negative with the highest

req1
priority in A,., , Teq: is prohibited. _

On the other hand, let regs = (bob, worker_bob, modify) be an access request.
For 3, bob = worker_bob.owner and in(bob, staff) are true, so the value of the

bridge v, of access subject is staff. Since

Taupj(r3, staff) = {true},
Tovj(rs) = {true},
Tiype(r3) = {true},
we know that I; = auth(bob, worker_bob, modify,+,500). Hence, az = (bob,
worker_bob, modify, +,500) is in A,.,,. Since in(bob,staff) and in(worker_bob,
worker), whether request (staff, worker_bob, modify) is permitted or prohibited also
has to be tested. For ry, the value of bridges is (staff, worker_bob, modify) and the
corresponding portion of the table for r4 are

Toupj(r4, staff) = {employee, student, staff, adviser},
Top;(74, worker) = {company},
Tiype(Ts, modify) = {modify}.

Hence, a, = (bob, worker_bob, modify, +100) is in A,,, since

TEq2

I = auth(adviser, company, modify, +, 100)

by 2. By computing with the other rules, we have 4,,,, = {as,as}. Thus, a3 is

positive with the highest priority in A and hence req, is permitted. O

Tegz)

2.4.3 Complexity

Let S = ((Cs, <9), (Co, <2),(C:, <8), At, Ad) be a database schema and R a finite
set of inference rules. Define the size ||.S|| of S as follows:

ISH = 1G] + |Col + |Cu| + |<] + <] + I<{] + | At] + | Ad].

28

The total size of S and R is denot,ed‘;byu S
N =|\S]| + [IR]|,

where [|R|| is the number of atoms appearing in R.

Let f(N) and f;(N, |O]) denote the time to find all the ground substitutions
0 such that |= 6(B.) and I |= 6(B;) under I respectively. In Sections 2.4.3.1
and 2.4.3.2, f(N) and f;(N, |O|) will be evaluated under certain assumptions.

2.4.3.1 Compile-Time Complexity

Let 7 be an inference rule of the form (R3). For each ¢, € C,, (i) compute all s’
such that 6,(vs) = ¢ (v, is the bridge), |= 6,(B,), and 6, (s;) = &' for some ground
substitution 8, for V, and (i) add all such s’ to Tyu;(r, ;) (see the definition of
Teub; in Section 2.4.2.1). For each ¢, € C, and ¢, € Ci, tables Topi(r, co) and
Tiype(T, ci) are constructed similarly. Step (i) can be executed in

O(fe(N))

time for each ¢;. If Ty is implemented as a 2-3 tree, then step (ii) can be

executed in
O((IC] + lI&ll) (log [| R]| + log |C])) < O(Nlog N)
time. Therefore, the time complexity is '
O(IRIICI(7(N) + Nlog N)) = O(N*(f.(N) + Nlog N)).

Theorem 2.1: Let f.(N) be the time complexity to compute the set of classes
satisfying B, for an inference rule. Tables Touvs, Tobj, Tiype can be obtained in

O(N?*(f(N) + Nlog N))
time. O

This thesis evaluates f.(V) in the case that each inference rule means travers-
ing C; from some class v; as the initial point through v,, vs, - - - »Un t0 U,y as the
end point linearly, without visiting the same class repeatedly. This strategy is
valid if an inference rule r satisfies the following condition on B;:

29

(Bl) (Bs = Sg V2y .-y Un Sg ’l)n+1) v :
Ay € CoU{si}) A (v, -+, € CsUV; — {51, 8:}) A (V41 € Cs U {5,}),

where v; # v; if i # j, and the number of atoms in each inference rule is bounded
by O(||R]]), i-e., » < O(N). To the author’s knowledge, most of the inference
rules in the literature satisfy this condition. First, by v; € C; U {s;}, all ¢;
satisfying ¢; <2 ¢, can be computed, where ¢; = 6,(v;) € C; for some ground
substitution 6, for V. Next, all ¢; satisfying c; <% c3 for some c; obtained
above can be computed. Repeating this, all c,4; can be obtained in O(N?)
time, where cp41 = 0,(v,41) and 6,(Bs) holds for some 6,. If B, and B; satisfy
similar conditions to (B1), then the time complexity in Theorem 2.1 becomes
ON?(£(N) + Nlog N)) = O(NY).

2.4;3.2_ Run_-Time Complexity

When an access request req = (s, 0,t) is given, rights (s, o,t, §,p) such that I |=
auth(s,o0,t,6,p) holds are computed. For each inference rule, it takes

O(fi(N,101))

to comﬁute B;. Since the values of the bridges on subjects, objects, and types are
obtained by computing B; by (Q3), it takes O(log N) to retrieve Tyup;j, Tobj, Tiype
by usihg the values of the bridges, instead of computing B.. For all combinations
(¢,0',t) € Cs x C, x C;, obtained from Tyup;, Tobs, Tiype, if I |= auth(s', o', ', 6, 7)
holds for some &' and p’, then there exist 6 € {+,~} and p € P such that
I |= auth(s, 0,t,6,p) holds, and hence (s,0,t,6,p) is in 4,,,. It takes

O(log N + |C[*log(|| R|| +C])) = O(N?log N)

to add rights to A, g Without testing the same rights repeatedly. This is repeated
for each rule. Therefore, it takes

O(N*(fi(N, |0]) + N*log N))

to compute A,., since |4

and ||R]| < O(N).

TEq

| < O((|C|+||R|I)3) = O(N?®) by (Q1) in Sectioﬁ 2.3.3

30

Table 2.2 Time complexity.

~ (a) Compile-time.

Method TIME
I —
11 O(|OPN*(f(N) + £i(N,|0|) + N3log N))
III O(N%(f.(N) + Nlog N))
(b) Run-time.
Method TIME
I | O(N*(f.(N) + £i(IV,|0]) + N?log N))
11 O(log |0))
I | OW*AW,]0]) + N¥log N))

Table 2.3 Run-time space complexity and table size.

Method | SPACE | TABLE SIZE
1 [ow?) -
I o) o(lofF)
I O(N3) O(N?)

31

Theorem 2.2: For a given access request reg, A,,, can be obtained in

O(N*(fi(N, |0]) + N°log N))
time from Tsubja TObj, Ttype-) . O

This thesis evaluates f;(N,|O]) in the case that when an access request is
given, the values of all the instance variables in an inference rule can be uniquely
determined immediately in some fixed order. This strategy is vahd if an inference
rule r satisfies the following condition on B;:

(B2) (B; = (Woy-at1 = Woy, . - - ,'w.,ﬂ.cu‘;,l = Wopyq, M(Woy, Voy)y v+ » i (Wopiss Vopya)s
in(wSqul) in(wtuv’cx))) |
A (01 = Wey) A (e € Og UW,) A (v, € C, UVp)
A (s1=ws €O UW,) A (vs, € CsU V)
At =wy, €O UWL A (0 € CLUV,).

Let (s,0,t) be an access request such that s € Os,0 € O,, and t € O,. For
a ground substitution #, the value 6(w,,) of the va.riablerwol' must be o since
o = w,, (f(ws,) = s and O(w,,) = t for the same reason). Then, H(w,,)
such that 6(w,,.at;) = 6(w,,) can be uniquely obtained in constant time. Re-
peatedly, 6(w,,),0(w,,),...,0(w,,,,) can be obtained. Since the values of each
variable w,,,Wo,;-..,W,,,, over objects have been obtained, 6(v,,) such that
0(in(wo,, vo,)) holds can be uniquely obtained in constant time (6(vs,) and 6(v;,)
can be obtained in the same way). Hence, it takes O(NN) time to decide whether
I |= 6(B;) holds or not. |

Table 2.2 shows the time complexities of Methods I-III, and Table 2.3 shows
the run-time space complexities and the table sizes to retain the results of pre-
computation of Methods I-III.

2.4.4 Simulation Results

The run-time efficiency of Method III was evaluated by simulating access control
under the following assumptions. Class hierarchies are balanced binary trees with
multiple inheritances. In inference rules, content-dependent atoms are not speci-
fied, in order to make a clear distinction between Methods I and III. Tables 2.4(a)

32

LTy

Table 2.4 Experimental data on access control.

(a) Class hierarchies of height two.

The numbers of Method 1 Method III
rules in R (sec/request) | (sec/request)
2 0.00047 0.00033
3 0.39309 0.32373
4 0.86531 0.74884
5 1.45473 1.14462
6 2.66962 1.99640

(b) Class hierarchies of height three.

The numbers of Method I Method III
rules in R (sec/request) (sec/request)

2 0.00037 0.00031

3 2.57375 1.86211

4 15.68312 - 11.79447

5 45.88496 29.30559

6 95.74206 53.06423

(c) Example for complicated rules.

Method I Method III
(sec/request) | (sec/request)
0.18584 0.07363

33

and (b) show the average time for all possible access requests when the class hier-
archies are of height two and height three respectively. The experimental results
conclude that Method III is faster than Method I. Also, the more complicated
inference rules is specified, the faster Method III computes relatively to Method I.
Especially, when recursive inference rules including atoms that traverse class hi-
erarchies up and down are specified, there is a great difference between Methods I
and III. For example, suppose that the following rules are specified under class
hierarchies of helght two:

auth(s00, 000, t00, +, 20)
auth(vs, vo, U, Vs, Up) 1 — Us S VL, Vo ST WL, Uy 2, U5, U <, Y,
auth(vl, vl, vi, vs, Vp),

where s00, 000, t00 are constants. From experimental data for the above rules,
Method III is more than twice as fast as Method I (see Table 2.4(c)).

2.5 . Conclusions

In this chapter, we have proposed an authorization model which is indepen-
dent of OODB schemas and authorization policies, and have defined an autho-
rization specification language which is powerful enough to specify authoriza-
tion policies proposed in the literature. Furthermore, an efficient access con-
trol method has been proposed. The proposed method partially computes in-
ferences of authorizations from S and R in compile-time and decides whether a
given access request is permitted or prohibited by using the results of compile-
time. The time complexities are O(N2(f.(N) + Nlog N)) for compile-time and
O(N*(f(N, |O]) + N3log N)) for run-time. From the simulation results, the pro-
posed method makes the access control more efficient than conventional methods.

As a future work, this thesis intends to extend the authorization model to
be able to specify the situation where users can grant their rights to others and
revoke their rights from others [3}, and then intends to propose an efficient access
control method in such a model.

34

Chapter 3

Detection of Security Flaws
under Authorizations in
Object-Oriented Databases

3.1 Introduction

In Chapter 2, it is stated that an authorization is an important and essential
technology to protect secret information in databases from prohibited accesses.
However, even though the DBMS enforces access control by an authorization,
security flaws can occur under the given authorization. Informally, a security
flaw means that a user can obtain prohibited information by using only permit-
ted information under an authorization. In addition to enforcing access control
under an authorization, detecting security flaws is important in order to keep the
database more secure from malicious user’s attack.

A general authorization model has been provided in Chapter 2. In order to
investigate detection of a security flaw, this chapter focuses on what a user u is
permitted to invoke and what u is prohibited from invoking. In this chapter, the
following authorization which simplifies one provided in Chapter 2 and concen-
trates on a method invocation is adopted. An authorization A for a user u is
represented as a set of (m,(ci1,¢s,...,¢,)), which means that u is permitted to
invoke method m on any tuple (05, 0,,...,0,) of objects such that o; is an ob ject
of class ¢; for each 7 (1 < i < n). This thesis assumes the following database

35

management policies. Let (m, (¢, ¢s,...,¢n)) be in an authorization for a user u.

(1) When u invokes m(oy, 03, .. .,0,), where o; is an object of ¢; (1 < i < n),

and the method execution successfully terminates, the object identifier of

the resultant object is open (i.e., unclassified) to u.

(2) If m is a primitive method (i.e., m is a base method; see Section 3.2.1),
then the type declaration of m at (cy,c,...,Cs) is open to u. If m is not
primitive (i.e., m is a user method; see Section 3.2.1), then its external

specification (its implementation body) is open to u.

An example of a security flaw was shown in Example 1.2. The following more
complicated example, which may be intensional, also shows a security flaw.

Example 3.1: Let m, m;, m, be unary methods, c a class, and o an object
of class c. Suppose that the authorization A for a user u is {(my, c), (ms,c)},
and the implementation bodies of m; and m,, which u knows by Policy (2),
are my(z) = m(m(m(z))) and my(z) = m(m(m(m(m(z))))) respectively. Also,
suppose that m;(0) = o and my(0) = o, which u knows by Policy (1). Then, u
can infer that m(o) = o although m is not contained in A. ' O

The following problems of detecting security flaws in OODBs are considered:

(1) The detection problem of security flaws for OODB instances is to decide

whether or not, when a method schema S, a database instance I of S, an
authorization A, and a term 7 to be verified (to be kept secret) are given,
a user can infer the execution result of 7 under S, I, and A.

(2) The detection problem of security flaws for OODB schemas is to decide
whether or not, when S, A, and 7 are given, there exists a database instance
I such that a user can infer the execution result of 7 undelj S, I, and A.

In this chapter, as a formal model of database schemas, method schemas
proposed by References [1, 2| are adopted since they have the basic features of
OODBs as method overloading, dynamic binding, and complex objects. The
semantics is simply defined based on term rewriting. In this formalization, an
important point is that the above detection problems are also defined based on
term rewriting.

36

It is shown in this thesis that the problem (1) is reducible to the congruénce
closure problem [14, 24] and is solvable in polynomial time in practical cases.
Next, this thesis shows that the problem (2) is undecidable and proposes a decid-
able sufficient condition for a given method schema S to have no security flaw on
T Intuitively, the main idea of a sufficient condition is to introduce new rewrit-
ing rules at class level approximating rewriting rules at instance level. It is also

~shown that the sufficient condition is also a necessary one if the given schema is

monadic (i.e., every method is unary). Furthermore, this thesis proposes an algo-

. rithm to decide the sufficient condition, and then evaluates the time complexity

of the algorithm. For a monadic method schema, with the proposed algorithm,
whether a security flaw on 7 occurs or not is decidable in polynomial time of the
size of the schema.

As a variation of the problem (1), this thesis also mentions the following
problem of finding a safe authorization. An authorization A is called safe on a
term 7 if no security flaw on T occurs under A:

(3) The finding problem of a safe authorization is to find, when a database
schema, a database instance, an authorization, and a term to be verified
are given, a maximal safe subset of the authorization on the term.

This thesis shows that the problem (3) is solvable in polynomial time in practlca.l
cases, using the result of the problem (1).

Various models of security flaws have been discussed [10, 17, 19, 20, 32, 33].
Generally, user’s attack is modeled by precise inference or imprecise inference.
Precise inference means that a user can infer only the exact value of the result of a
prohibited method. On the other hand, imprecise inference means that a user can
infer several candidates of the result of a prohibited method. Examples 1.2 and 3.1
show an example of precise inference. Reference [32] discusses precise inference
and imprecise one for OODBs. Reference [19] discusses imprecise inference for
relational databases, and Reference [20] does for OODBs. This thesis focuses on
precise inference for OODB:s.

In Reference [32], security flaws are classified into inferability and controllabil-
ity. Roughly speaking, inferability means that a user can infer the returned value
of a method invocation, and controllability means that a user can control (alter
arbitrarily) the attribute-value of an object in a database instance. Since our

37

query language does not support update operations for database instances, only
inferability is considered as security flaws in this thesis. However, since our query
language supports recursion while the one in Reference [32] does not, detecting
inferability in our formalization is not trivial. ’

This chapter is organized as follows: Section 3.2 introduces method schemas
as a formal database model and considers method executions. Section 3.3 de-
fines an authorization and analyzes user’s inference under a given authorization.
Sections 3.4-3.6 discuss the above problems (1)-(3) respectively. Section 3.7
summarizes this chapter.

3.2 Method Schemas

3.2. 1 Syntax

Before deﬁmng the syntax of method schemas, some notations are introduced.
Let F be a family of disjoint finite sets Fo, F1, F3, ..., where F;, (n=0,1,2,...)is
a set of function symbols of arity n. For a countable set X of variables, let Tr(X)
denote the set of all terms freely genera,ted by F and X. Foratermt € Tr(X)
and variables z; (1 < i < n) in X, let t[t,/1,t2/%,. . ., ts/%,] denote the term
abtained by replacing every z; in ¢ with a term t; (1 5 i < n). For example,

f(z1, 9(z1, 22)) [0/ 21, b/2] = f(a, 9(a,])).
For a term t, define the set of occurrences OC(t) as the smallest set of se-
quences of positive integers which satisfies the following two conditions:

e £ € OC(t), where ¢ is the empty sequence.

e If r € OC(t;), then i -1 € OC(f(t1,t2,...,ta)) (1 £ i < n), where the
center dot “-” represents the concatena.tlon of sequences.

The replacement in ¢ of ¢ at T, denoted tlr — t’], is deﬁned as follows:
. t[s — t’] =t.
.f(t17t2, n)[z T(_t]—f(th i[r"—'tl]:-"atn) (1S'I,_<_’n) :

For example, f(f(z,9(z)), 9(z))[1- 2 — = f(f(z, a), g(z))

38

R 46 00 S

Now, go on to the definition of method schemas. Let C be a finite set of class
names (or simply classes) and M a family of disjoint finite sets Mo, M1, M,, ..
where M, (n =0,1,2,...) is a set of method names of arity n. Each M, is par-
titioned into My, and M,,: Each m; € My(= Un>o Mpn) (resp. m, € M, (=

" Un>o Mu,n)) is called a base method name (resp. user method name). Further-

more, each m € M (= M, U M,,) is simply called a method name. We say that
M is a method szgnature -

Definition 3.1: A base method definition of my, at (cl, C2,. .- ,Cn) I8 an expression

(mb: (C]_, Coy...,Cqh — C)),
where my, € My, and c,cy,...,c, € C. : R I O

Let o; be an object of class ¢; (1 < ¢ < n) (see Definitions 3.3 and 3.5 for
formal definitions). Informally, the above base method definition declares that
the application of m; to 01,09,...,0, results in an object of c or its subclass.

Definition 3.2: A user method definition of m, at (cy, c,, ... ,Cn) is an expression
‘(mil-i (cla C2y.-., c'n): t);
where m,, € My, ¢1,¢3,...,¢6, € C, and t € Ti({z1, 2o, . s Zn})- O

Let o; be an object of ¢ (1 <7 < n). The above user method definition states
that the application of my to 0y, 09,... 0, results in term rewriting starting from
tlor/z1, 02/, . ..,0,/2,). The formal definition is presented in Section 3.2.3.

Definition 3.3: A method schema, which is originally introduced by Abiteboul
et al. [1, 2], is a 5-tuple (C, <,M, %, X,) defined as follows:

1. C is a finite set of class names.

2. < is a partial order representing a class hierarchy. When ¢’ < ¢, we say
that ¢ is a subclass of ¢ and c is a superclass of ¢'.

3. M is a method signature.

4. Y, is a set of base method definitions.

39

5. ¥, is a set of user method definitions.

For each possible combination ¢;, ¢y, ..., ¢, € C and m € M, there must exist at
most one method definition of m at (¢, ¢,...,cn). A method schema with only
unary methods is called monadic. O

Example 3.2: Figure 3.1 shows an example of a method schema S, which rep-
resents relationships on users and computer systems in an office. For example,
a user method admin(z) is supposed to return a service name of a host which a
- given employee z administrates. O

'3.2.2 Method Inheritance

Method definitions are inherited along the class hierarchy. For example, sup-
pose that method definitions of m are given at (staff,employee) and (employee,
employee) (see Figure 3.2), where class staff is a subclass of employee. Intuitively,
the inherited method definition of m at (staff,staff) should be the definition at
~ (staff, employee), not the one at (employee, employee), since (staff, employee) is
smaller than (employee, employee) with respect to <. The following formally de-
fines the inheritance of a method definition.

Definition 3.4: Let (C,<,M,%;,X,) be a method schema, m, € M;,, and
¢1,C2,-..,n € C. Suppose that (my,(c],c,...,¢, — ¢)) € L; is the base
method definition of m; at the “componentwise smallest” (¢}, ¢, .., c,) above
(c1y¢3,...,¢r) in the sense that whenever (my, (c¢f,c;,...,cn — ")) € ¥y and
g < ¢ (1 <1<), itis the case that ¢, < ¢f (1 <4 < n). We write
Res(my, (¢1,¢2,...,¢0)) = (&), ..., —), which is called the resolution
of my at (c1,C2,---5Cn). We often write Res(my, (e1,¢2,...56,)) = ¢ when
(cyy¢h,y---,Cp) is irrelevant. If such a unique base method definition does not
exist, then the resolution of m; at (c,cq,...,¢n) is undefined, and we write
Res(my, (¢1,¢p,...,64)) = L. '

Similarly, for my, € My, and c;,ca,...,cq € C, if (my, (¢}, &, ...,cl),10) is
the user method definition of m,, at the “componentwise smallest” (¢, d,,...,c,)
above (c1,¢s,...,¢n), then we define the resolution of my at (cy,cs,...,c,) as

40

R

C = {employee, staff, host, server, use}
staff < employee, server < host,
M = {leader, hostname, service, boss, admin}

Xy = {(leader, (employee — employee)),
- (leader, (staff — staff)),
(hostname, (employee — host)),
(service, (host — use))}

Z, = {(boss, (employee), boss(leader(z))),
(boss, (staff), leader(z)),
(admin, (employee), service(hostname(z)))}

Figure 3.1 A method schema S,.

(employee, employee)

TN

(staff, employee) (employee, staff)

\/

(staff, staff)

Figure 3.2 An example of method inheritances.

41

Res(my, (c1,¢2,--.,¢n)) = ((&), &, - - -, ch), t), or simply, t. If such (my, (¢}, ¢, .. .,

c,),t) does not exist, then Res(my, (¢1,¢,...,¢n)) = L. o

In Figure 3.2, Res(m, (staff,staff)) is the method definition of m at (staff,
employee), However, if the method definition of m also exists at (employee, staff), - |
then Res(m, (staff,staff)) = L since (staff,employee) and (employee, staff) are

incomparable with respect to <.

3.2.3 Semantics

The semantics of a method schema, which is introduéed by Abiteboul et al. [1, 2].,: o
is defined as follows. To each class name, a set of objects is assigned. Also,toeach = ..

base method name m;, a mapping over appropriate sets of objects is assigned as

its interpretation. The semantics of a user method is defined by the interpretatioh‘ B
of base methods and term rewriting [13]. For a set V, let V™ denote the Cartesian

product VxV x.--x V.,

m

Definition 3.5: An interpretation, also called a database instance, of a method‘j |

schema S = (C,<, M, %, %,) is a pair I = (v, u) defined as follows:

1. To each ¢ € C, v assigns a finite disjoint set, denoted v(c). Each o € v(c)

is called an object of c. Let Og1 = e v(c). We simply write O instead of
Og if S and I are understood from the context.

2. For each my € My, p(ms) is a partial mapping from O5; to Og; which -

satisfies the following 2.1 and 2.2. Let ¢;,¢3,...,¢n,¢,¢ € C.

2.1 If Res(my, (¢1,¢2,...,¢n)) = ¢, then u(m;) I;(cl)xy(c,)x...xy(cn) is a to-
tal mapping to U.<» ¥(c), where “|”
restricted to v(c;) X v(cz) X - -+ X v(c,). That is, if 0; belongs to v(c;)

(1 £ < n), then p(my)(01,04,...,0,) is defined and must belong to

v(c) for some ¢ < .

2.2 If Res(my, (¢c1,¢z,...,¢,)) = L, then p(m;) is undefined everywhere in
v(ici) x v(eg) X -+ - x v(ey). ’ O

42

denotes that the domain of u is

NIRRT

employee host use
I
Black kl_z.osm:zme .
B e S service
wMars ——=p=F—Xterm
— leader P o i
: Green-|
| pd
Silver ... _-~Web
e v L~ g
o, -~
“Jupiter ~
E White Saturn ==-—1——~Mail
staff server

Figure 3.3 An interpretation I; of S,.

43

Example 3.3: Figure 3.3 shows an example of an interpretation I, = (12, p2)
of Sy in Figure 3.1. For example, v;(employee) = {Black, Green, Silver}, which
represents that Black, Green, and Silver are objects of a class employee, and
p2(hostname)(Black) = Mars, which represents that the application of a method
“hostname to an object Black is an object Mars. a

In what follows, we ofteh_ write a tuple of classes and objects as ¢ and &
respectively. When we write ¥, we implicitly assume that the i-th component of
7is v;, i.e., T = (v1,0s,-..,V,). We also write v(c;) X v(e;) X -+ X v(cg) as ()
and t[ol/xl, 02/Z3. . o,,/:z:,,] as t[o/i]

Aterm t € TM(OS 1) is called an instantiated term. That is, an instantiated
term consists of method names in M and objects in Og ;. The reduction relation
syon the instantiated terms, based on the leftmost innermost reduction strategy,

»

is defined as follows.

Definition 3.6: For an instantiated term t € Ty (Osyr), let 7 be the leftmost
innermost occurrence such that the subterm of ¢ at 7 is m(0) for some m € M
and & € v(C). '

1. If m € M, and Res(m,&) # L, then t = tfr — u(m)(@)]
2. If m € M, and Res(m,C) =1/, then ¢ py tlr « t'[o/1]]. O

Note that, by Definition 3.6, for any instantiated term ¢, there exists at most one
term t’ such that ¢ py t.

Let -5 be the reflexive and transitive closure of S—} JIft i—} t' and there exists

¥ ¥

no t” such that ¢ = t”, then t' is called the normal form of t, and we write
t]=1t. Ift] € Ogy, then the execution of ¢ is successful, and if ¢t | & Og;
because of nonexistence of the resblution, then the execution of t is aborted. In
both cases (i.e., if ¢ | exists), the execution of t is terminating. On the other
hand, if ¢t | does not exist, then the execution of £ is nonterminating. We simply
write — (resp. —) instead of Py (resp. E*-}) if S and I are understood from the
context.

44

AR AT el g

Example 3.4: For a method schema S.in Figure 3.1 and an interpretation I,
in Figure 3.3, a method boss(Black) is executed by Definition 3.6 in the following
way:

boss(BIack) Py boss(leader(Black)) '

— boss(deer)
2,12

o boss(leader(Silver)).
o boss(White)

212

= leader(White)

2)

— White
Sa,12

Thus, boss(Black) | = White. , m}

3.2.4 Successful Method Execution

In order to detect security flaws, this thesis is interested in the results of successful
method executions. More precisely, for each m € M, and G € O% 1, we want to
compute o such that m(8) = o if exists. Since the term rewriting system induced
by Definition 3.6 is ground, such o can be computed usmg a congruence closure
algorithm [14, 24] in the following way.

Definition 3.7: An equivalence relation ~ on T#(X) is called a congruence rela-
tion if it satisfies substitutivity, i.e., t; ~ ¢} (1 <i < n) iniplies flti,to,... 1) ~
f(t, t;,...,t,) for any f € F,. The congruence closure of a binary relation R on
Tp(X) is the least congruence relation containing R. a

Let @ be a subset of Ta(Osr) satisfying the following conditions:
1. Q contains m(d) and ¢ if m € M, 6 € O%;, and m(3) — t.

2. @ is closed with respect to subterms, i.e., if Q contains t, then it does all
the subterms of ¢.

Q is not required to be the smallest subset satisfying the above conditions. How-
ever, if we want to compute the results of successful method executions efficiently,
then it is desirable that @ is as small as possible. Define 3 as — restricted to

45

Q, and let 3 be the congruence closure of P In what follows, this thesis shows

that, for any t € Q and 0 € Og, ¢ 5 o ifft = o. Thus, it suffices to compute ,6\2’

in order to achieve our goal here.

Lemma 3.1: For any t,t' € Q, if t — ¢/, then ¢ 3 t.

Proof: Reference [24] shows that the decision problem for the theory of equality
can be reduced to the congruence closure problem. The lemma holds by this
fact. ' O

Lemma 3.2: For any t,t € Q and 0 € Ogy, if t 3 t/, then t = o is equivalent

tot = o.
Proof: We use induction on the length & of a proof of ¢ 5 t'.

Basis: If k = 1, then consider the following two cases:

1. If ¢ 5» t', then t — t' by the definition of —3 Since there exists no t” such
that ¢’ # t' and t — t” by Definition 3.6, the lemma holds.

2. If ¥ =t, then the lemma holds evidently.

Induction: Suppose that t 5 t' is shown by a k-step proof. Consider the following

three cases:

1. If symmetry (i.e., if ¢/ 3 t, then ¢ ’5 t') is used at the k-th étep of the proof,
‘then ' 5 0 iff t = o by the inductive hypothesis. Thus, the lemma holds.

2. If transitivity (i.e., if ¢ ’ t” and ¢t” 3 t', then ¢ 5 t') is used at the k-th step -

of the proof, then t < o is equivalent to / = o, and ¢’ — o is equivalent
tot' = o by the inductive hypothesis. Hence, t — o is equivalent to t' — o,
and the lemma holds. ’ '

3. If substitutivity (i.e., if ¢; 5 t. (1 < i < n), then m(ty,ty,...,t,) 5

m(t,,t,...,t)) is used at the k-th step of the proof, then ¢; = o; is
equivalent to t, — o; (1 < i < n) by the inductive hypothesis. Let
t = m(ty,ty,...,t,) and t' = m(t},t,,...,t,). Suppose that ¢ = o. Since
= is an innermost reduction by Definition 3.6, there exists m(o,, 0,,. .., 0,)

46

such that ¢ 5 m(o;,0,...,0,) =0, and therefore #; = 0 (1<i<n).
By this and the inductive hypothesis, it follows that ¢ = m(oy, 0,,.. ., 0n).
Therefore, it has been proved that ¢ < o if t = o. Conversely, it is provable
in the same way that, if ' = o, then ¢ - o. Consequently, the lemma holds.

By the above steps, the lemma has been proved. ' O

The following theorem holds by Lemmas 3.1 and 3.2.

Theorem 3.1: Foranyt€ Q and o € Ogy, t 5o ifft > o. O

Exami)le 3.5: For S, in Figure 3.1 and I, in Figure 3.3, the results of successful
method executions are computed as follows. First, Q, is constructed from the
definition. Contents of @, are shown in Figure 3.4. Next, constructing 5 on

2
Q@2 by a known algorithm, the congruence closure shown in Figure 3.4 can be
obtained. For each term #; and ¢, in Qg') (1 < i< 10), it holds that ¢, 5 t,. For
2

example, boss(Black) 5 White. Hence, boss(Black) = White from Theorem 3.1.
. : 2
See Example 3.4. O

The following summarizes the time complexity to compute the results of suc-
cessful method executions. For each m € M, and G € O3 1, the following algo-
rithm computes o such that m(6) = o if exists:

Step 1: Construct @ and Ve
Stepk2: From v in Step 1, compute the congruence closure 5 by a known
- algorithm [14].
Step 3: For each t = m(3) € Q, obtain o € Og 1 such that ¢ 1 o (ie.,t = oby
Theorem 3.1).
Let ||| be the size of a term ¢t as |[OC(t)|, where |X| denotes the number
of elements of a set X, i.e., ||t|| is the number of nodes in the tree representing

t. Define the description length of X, denoted ||Z,]|, as the sum of ||¢|| for all
(m, €,t) € ,. Also, define the size of S, denoted ||S]|, as follows:

1SI = ICI+ 1 < |+ M|+ [Z4] + [|Za]-

47

Q2

gl) ‘ Q(24)

Black ~ White

leader(Silver)
@) leader(White)

Q2 boss(Black)

Green boss(Green)

boss(Silver)

Q(s) ~ boss(White)

2 boss(leader (Black))

Silver - boss(leader(Green))
leader(Black) boss(leader (Silver))
leader(Green)

Qgs) QP ng) S

Mars Jupiter ; Saturn...

hostname(Black) hostname(Silver) hostname(White)
‘hostname(Green) ' o ‘ o
(28) (29) ng) »

Xterm Mail Web
service(Mars) service(Jﬁpiter) service(Saturn)
admin(Black) admin(Silver) admin(White)
admin(Green) Lsgrvice(hostname(Silver)) rservice(hostna.me(White)]

ervice(hostname(Black))
ervice(hostname(Green))

48

Figure 3.4 Contents of Q. '

el -
NN

procedure COMPUTE-METHOD-EXECUTIONS
Input : a method schema S
Output: an array Arrayg storing the results of method executions
begin
Q + ¢;
foreach m(0) in T/(0O)
if there exists t € T)/(O) such that m(6) — t the
Q —QU{m(3),t}; |
Arrayo[m(0)] « t;
foreach t in Q
Q +— QU {t'|t' is a subterm of t};
cc +— CONSTRUCT-CONGRUENCE-CLOSURE(Q, Arrayg);
foreach oin QN O
label FIND-REPRESENTATIVE(cc, o) by o;
foreach m(6) in Q
if FIND-REPRESENTATIVE(cc, m(6)) is labeled by o € O then
Arrayg[m(6)] « o;

end

Figure 3.5 Procedure to compute method executions.

49

For simplicity, OS,I is denoted by O here. Furthermore, let k be the maximum
number of arity of all methods. To achieve the algorithm, suppose that a partial
mapping u is given as a table and binary relations B—) and = are retained as arrays

Arrayg and Arrayg reSpectively. For example, Arrayg[m(d)] =o0if m(d) > o€
Os 1. Also, suppose that the table and these arrays are accessed in constant time.

A procedure COMPUTE-METHOD-EXECUTIONS in Figure 3.5 achieves the
above algorithm. Step 1 corresponds to lines (1)—(7) in Figure 3.5. The procedure
shows that .construg:ting Q and 3 takes O(J|S|l|Q]) time, where .

1Q1< IMIIOF* + IMJIOF + [ZallOF = O(ISTIOF)

by the definition of Q. Step 2 corresponds to line (8) in Figure 3.5. A procedure
CONSTRUCT-CONGRUENCE-CLOSURE(Q, Arrayg) computes the congruence clo-
sure of i and returns a disjoint-set forest cc [12] that represents the congruence

closure. This can be”dpne in O(|Q|(log|Q|)?) time [14]. Step 3 corresponds to
lines (9)—(13) in Figure 3.5. A procedure FIND-REPRESENTATIVE(cc, t) is an op-
eration to return a representative of the con'gruencé class in cc to which a term ¢
~ belongs. A represe_ﬁtative of the congruence class to which an object o belongs is
labeled by o. Then, an object o such that m(6) = o can be immediately obtained
by looking up the label of the representative of m(d). It is easily verified that
the total time for Step 3 is O(|Q)|). After all, computing the results of successful
method executions takes

<9(IC2|((1§>1=1|Q|)2 +111)) < o(lIsllof((og ISHO[F)? + |1S1))

time.

3.3 Security Analysis
3.3.1 AuthoriZation

A general authorizé,tion model has been provided in Chapter 2. In order to
investigate detection of a security flaw, this chapter focuses on what a user u is
permitted to invoke and what u is prohibited from invoking. In this chapter, the
following authorization which simplifies one provided in Chapter 2 concentrates
on a method invocation is adopted.

50

I TN

Definition 3.8: Let S = (C,<,M,%;,%,) bea method schema. An authoriza-
tion A for a user u under S is a finite set of (m,), where m € M,, and €€ C™.
Intuitively, (m,) € A means that u is permitted to invoke a method m on any
tuple & of objects such that & € v(¢). We simply write (m, c) instead of (m, (c))
for unary methods. : | O

As stated in Chapter 2, an authorization is generally modeled by a base au-
thorization (e.g., rules r; and r, in Example 2.4) and a set of inference rules (e.g.,
rules 73 through 75 in Example 2.4). For example, consider such an inference rule
that “if user u is permitted to invoke m on objects of c, then u is also permitted
to invoke m on objects of the subclasses of c.” By this rule, a base authorization
{(m,c)} is expanded into {(m,c), (m,c), (m,c;)} if ¢; < ¢ and ¢, < ¢. This
chapter assumes that a given authorization has already been expanded.

Example 3.6: Lét Aj be an authorization for a user u under S, in Figure 3.1 as

follows:
A; = {(boss, employee),

(boss, staff),

(hostname, employee),

(admin, employee),

(admin, staff)}.
Counsider the interpretation I; in Figure 3.3. Executing hostname(Black) by u
is permitted since Black € v;(employee) and (hostname, employee) € A,. On the
other hand, executing leader(Silver) by u is prohibited since Silver € v3(employee)
but (leader,employee) & A,. | . 0

3.3.2 Formal Definition of User’s Inference

Let S = (C,<, M, %y, L,) be a method schema, I = (v, 1) an interpretation of
S, A the authorization for a user u, and Og ,1 = Ueec v(c). For a given term
T € Ty(Og,r), we are interested in deciding whether or not u can infer the object
0 € Ogy such that 7 | = o.

This section defines the information which u can obtain. First, consider the
information. on the existence of objects. Let O denote the set of ob jects such that

51

0 € O iff u knows that o exists in Og,1. Formally, O is defined as the smallest set
satisfying the following (*1) and (%2):

(¥1) O contains a fixed set Oo. For each o € Oo, the existence of o in Os is

- regarded as a prior: knowledge of u.

(*2) Suppose that & € O™, G € v(&), and (m, &) € A. Also, suppose that there
exists 0 € Og such that m(5) | = 0. Then, O contains o. '

By (1), we assume that u has partial knowledge on I in advance. (*2) is derived
from Policy (1) in Section 3.1, i.e., u can obtain the result of m(d). Secondly,
consider the information on classes. '

(*3) For each object o € O, u knows the class ¢ such that o € v(c). Thus, u

knows that a class ¢ exists in C iff there exists o € O such that o € v(c).

(x4) User u knows whether ¢ < ¢ holds or not iff u knows the existence of c and
c. '

By (*3), we mean that, for a given object o, u can obtain the class to which o

belongs. By (*4), we mean that, for ¢ and ¢ whose existence v knows, u can

obtain the (possible) superclass-subclass relationship between ¢ and ¢/. Lastly,
consider the information on equalities of terms which u can obtain directly from
the database. Let m € M, 6 € 0%, and t € Ta({Z1,%2,---,Zn})-

(*5) User u knows that m(d) | = o holds if & € o, 3 € v(@), (m,&) € A,
o € Og 1, and m(6) | = o actually holds. ‘ '

(x6) User u knows that Res(m,¢) = t holds if (m,¢) € A and Res(m,é) =t
actually holds.

(x5) is derived from Policy (1) in Section 3.1. (*6) corresponds to Policy (2)
in Section 3.1, i.e., u can obtain the type declaration of m at ¢ (if m is a base
method) and the external specification of m at ¢ (if m is a user method).

In our formalization, all data are objects. This thesis assumes that users do
not know whether or not an object actually represents a basic value such as integer
and string. This means that users cannot use any domain-dependent properties
as exhibited in the next example. Therefore, this thesis assumes that users have
no a priori knowledge on base methods.

52

Example 3.7: Suppose that basic values are implemented as objects and users
have a priori knowledge on base methods. Let factorial(z) be a base method to

compute the factorial of z. Assume that a user knows factorial(z) = 6 for an

object z. Then, the user can infer z = 3 since the user knows both the behavior
of factorial and the meaning of object 6 (if the user is permitted to invoke
factorial). On the other hand, without a priori knowledge on base methods, the
user cannot infer z = 3 only from the information that factorial(z) = 6.]

What information can the user infer from the above information (*1)-(x6)?
Suppose that the user can use at least four kinds of inference rules: reflexivity,

- symmetry, transitivity, and substitutivity. These inference rules yield equalities

from equalities, and their contrapositions yield inequalities from inequalities.
Example 3.8: Consider the following schema:

C= {c}a

M = {m,m',m},

Ty = {(m, (c — ¢)), (m', (c = 0))},

Ty = {(mla (c),m’(m(x))}
Also, consider the interpretation (v, u) shown in Figure 3.6. In the figure, the

~arrow labeled by m from o, to o, shows that pu(m)(0;) = 0,. Figure 3.7 shows

the results of all the method executions. Suppose that O = {0y, 05, 03}.
Assume that (m,c) and (m4, c) are in the authorization for a user u. Then, u

can obtain an equality m/(0;) | = 03 in the following way:

(i) m(o1) l =0, by (x5),
(i) mi(o1) l =os by (*5),
(i) Res(m,c) =m(m(c)) by (+6),
(v) o €40 by (+3),
(v) mafor) L =m(m(or)) | by (iii) and Gv),
(vi) m/(m(o1)) | =03 by (ii), (v), and transitivity,
(vii) m'(oz) L =03 by (i), (vi), and substitutivity.

On the other hand, assume that (m’,c) and (m,,c) are in the authorization.
Then, u can obtain that m/(0;) | = 0, and m’(03) | = o; by (*5) as well as the
above (vi). Therefore, u can obtain inequalities m(o;) | # 0, and m(o;) | # o3
by the contraposition of substitutivity. O

53

I/(C) '—". {Ola 02, 03}

09 — 03

Figure 3.6 An example of an interpretation.

zm@) | m@)] mE@y

(] 09 09 03
02 | 03 03 , 01
03 0 01 02

Figure 3.7 An example of method executions.

54

Hereafter, suppose that following two conditions hold:
(a) The user does not know what Og is.
(b) The user does not know what C is.

In many cases, these conditions are satisfied by just hiding Og; and C from the
user. In what follows, how these conditions affect user’s inference is examined.
First, consider Condition (a). ’ ‘

Example 3.9: Consider the same schema and interpretation of Example 3.8 and
the following authorization for a user u :

{(m,7 C), (mli c)}

As stated in the latter part of Example 3.8, u can infer m(oy) | # 0, and
m(o1) | # 03. If u knows that Og; = {01,02, 03}, then u can obtain m(0;) | = 0,.

On the other hand, if u does not know what Ogs; is, then u cannot infer
m(0;) | = o2 since u cannot neglect the case that there exists another object

0 # 0y such that m(o;) | = o. O

If the user knows what Og is, then a disjunction of equalities would be inferred '
from a conjunction of inequalities. However, by Condition (a), we can avoid for-
mulating such complicated inference. As a result, inequalities are useless to infer
o such that 7 | = o, and hence we have only to consider equalities. Importantly,
what the user can infer is modeled as the congruence closure of the equalities
which the user can obtain directly from the database by (*5) and (*6).

Equalities obtained by (%6) are not ground (i.e., include variables). However,
with Condition (b), they are equivalent to a finite set of ground equalities.

Example 3.10: Consider the following schema:

C = {c,},

M = {m,m';m,},

= {(ma (¢ —=7),(m,(d — d))}a
B, = {(my, (), m'(2))},

55

and ¢ < . Also, consider the following authorization for a user u:
{(ma,), (my,)}
and an intérpfetation such that
o € v(c).

Supposé thé.t u knows that C = {¢,d} and ¢ < ¢. Then, u can obtain
that m(o) | € v(c) U v(d) if m(o) | € Os;s. Moreover, since Res(m,c) =

Res(my,d) = m'(z), u can infer that my(m(o)) | = m'(m(0)) | if my(m(o)) |, =

m'(m(o)) | € Os,;. Note that, in this inference, u does not need to know Whlch
class m(o0) | belongs to.

On the other hand, if Condition (b) is satisfied, then u cannot conclude that
ml(m(o)')l = m/(m(0)) | without exactly inferring the class to which m(o) |
belongs since u cannot neglect the case that m(o) | € v(c") for some ¢” other
than ¢ and ¢ such that Res(m;, ¢) # m/(z). By (+3), to know the class to which
m(o) | belongs is to infer the exact value of m(0) |. Thus, equalities obtained
by (*6) ca.xivi'b}e' applied only to terms t such that ¢ | is known. This means

that equa].itigs obtained by (#6) can be regarded as ground. More precisely,

Res(m,é’),_:,t is regarded as {m(5) | = t[6/Z] ||d € O™ and G € v(©)}. O

Thus, wha.t the user can infer can be modeled as a congruence closure of
a finite set of ground equalities induced by (*5) and (#6). Consequently, we
can use a.n algorithm to compute a congruence closure. The following definition
mtroduces a congruence relation f on Ty (Osr). Intuitively, ¢ 5 =~ t' means that

user u can infer that ¢ and ¢’ have the same “value” under A and I ile,tl=*¢|.

Deﬁniti'onv 3.9: Define ~ as the least congruence relation on TM(OS,j) éatisfy-

ing the following two conditions:
(1) If (m,&) € A, 5 € O™, G € v(?), and m(3) = o € Os,1, then m(3) = o'
(see (x5)). ,

(2) If (m,8) € A, m € M,, 6 € O", & € v(?), and Res(m,?) = ¢ € Ty ({z}),
then m(é') t[o/:i"] (see (x6)). O

~

56

e

We have another characterization of user’s inference.

Definition 3.10: Define P; as the minimum set of rewriting rules I>I on T (Os 1)
satisfying the following three conditions. Intuitively, ¢ P, 0means that user u can

infer that the result of successful execution of tiso under Aand I,ie.,t]| =o.
(1) If (m,e) e A,m e M,, o GIO",_IO € v(¢), and m(6) | = o € Og, then Py
contains ' ’
-m(?) po

This rules corresponds to (*5).

(2) If (my,0) € A, My € Mya, 3€ 0", & € (), my(0) | = 0 € Ogy, and
Res(my,) =t € Ty ({Z}), then Py contains

t{o/z) po
This rule corresponds to (x6).

(3) If P; contains t XJ o and ¢’ ‘él 0”, such that ¢,t" € Ti(Os1), 0,0" € Ogy,

and t” is a proper subterm of t at 7, then P; contains
tfr" — "] > o
MRV
This rule simulates Knuth-Bendix completion procedure [26).

Note that the existence of ¢ |>I 0 € Py implies t = o.
Define => as the one-step reductlon relation by |> That is, ¢ => t' iff there

exists a subterm " of t at " such that ¢” e o" e P,— a.nd t' = t[r" « 0"]. Let z’

denote the reflexive and transitive closure of -—-’>I O

L . . ~ * . ~ ’
Although ﬁ is not 1dent1ca.1 to o e have t ﬁ_ oifft o for any o € Ogy

because of the correctness of Knuth-Bendix completion [26].
We use ~ in Section 3.4 since we want to use fast known algorithms for

computing congruence closures. On the other hand, we use f% in Section 3.5
since rewriting rules p on Tm(Os,r) can be naturally approximated by rewriting

rules on T (C).

57

Example 3.11: For S, in Figure 3.1, I, in Figure 3.3, and A4, in Example 3.6, -

let Oy = {Black, Green, Silver , White}. Then, O = Og, 1,. The congruence closure

S on a subset @3, of T (Os, 1,) is shown in Figure 3. 8 (compare with @, in
2,42

Example 3.5). For each term ¢; and ¢, in Q2 (1<i<6),it holds that tl = t2
For example,
admin(Black) = Xterm

2; 2
since admin(Black) and Xterm are in the same congruence class. This means that
user u knows that executing admin(Black) is permitted under A2 and its result
is Xterm. :

On the other hand, let us compute Azl using A=>I in Definition 3.10. F1g—
ure 3.9 shows Py,. Rules (1)-(11) and (12) (19) in Figure 3.9 are obtained by
Definitions 3.10(1) and (2) respectively. Also, rule (20) is obtained using rules (5)
and (16) (or (6) and (17)) by Definition 3.10(3) and rule (21) obtained using (7)
and (18). For example, the following relations are obtained by using these rules:

boss(Black) o White,
admin(White) => Web

212

Then, |
admin(boss(Black)) ~ Web
Az, Iz

since admin(boss(Black)) Web BEREDE O

3.4 The Detection Problem of Securlty Flaws

for Database Instance

3.4.1 The Problem

Definition 3.11: Let S be a method schema, I an interpretation, A an autho-
rization, and 7 a term in Ty (Os 1) to be verified. The detection problem of security
flaws for database instance, or simply the detection problem for instances, is to
decide whether or not, for given S, I, A, and 7, there exists an object 0 € Ogy
such that 7 = o. O

Al

58

Qz,

Qs

White
leader(White)
boss(Black)
boss(Green)
boss(Silver)
boss(White)
boss(leader(Black))
boss(leader(Green))
boss(leader (Silver))

o) of)
Mars Jupiter
hostname(Black) hostname(Silver)
hostname(Green)
2y Q% Q5
Xterm Mail Web
service(Mars) ~ service(Jupiter) admin(White)
admin(Black) admin(Silver) bervice(hostname(White))
admin(Green) lservice(hostname(Silver)) '

service(hostname(Black))
service(hostname(Green)

59

Figure 3.8 Contents of Q,,.

(1)
(2)
(3)

(4)
(5)

(6)
(7)
(8)
(9)
(10)
(11)

(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)

(20)
(21)

boss(Black) e Whlte

212)

boss(Green) i White
boss(Silver) > Whlte

Az, 03

boss(White) e White

Az, I :
hostname(Black) e Mars
2,42 .

hostname(Green) > Mars
: Az, Ip .

hostname(Silver) e Jupiter.
2,42 I

admin(Black) 5 | Xterrﬁ

admzn(Green) I> Xterm,

admzn(Sllver) ADI Mail
2,42

, admzn(Whlte) he Web

2,3

boss(leader(Black)) > ’Wh‘ite:
2,42 :

boss(leader(Green)) e White
. . 2,42 PR

boss(leader (Silver)) A White

leader(White) e Whlte' '

Az,Iz
sermce(hostname(Black)) 2n Xterm

service(hostname(Green)) i Xterm

service(hostname(Silver)) l> Mall
Azl

service(hostname(White)) e Web
2,42 I

service(Mars) I> ~ Xterm
Az, Iy

service(Jupiter) e Mail
2,42

Figure 3.9 Contents of P;,.

60

Let @ be a subset of Ty (Og,)-defined in Section 3.2.4 and
Q' = QU {7'|7 is a subterm of 7}.

In order to compute ~, O defined in Section 3.3.2 is computed in advance. From

the above discussion, the detection problem for instances is solvable by computing
~ on Q'. Since the results of successful method executions are computed in the

way described in Section 3.2.4, for each m(é) € @, we can obtain o € Og; such
that m(8) — o before computing =~ on Q.

Example 3.12: For S; in Figure 3.1, I, in Figure 3.3, A; in Example 3.6, and
O in Example 3.11, let 3 = admin(boss(Black)) be a term to be verified. From
the definition, ' | .

Q> = Q2 U {admin(boss(Black))}.

By Definition 3.9, for example, the following relations are obtained:

boss(Black) =~ White,
Az Iz

admin(White) =~ Web.
A2112

Computing the congruence closure by a known algorithm, the following can be
obtained: '

1T =~ Web,
Az, Iz

since 11, admin(White), and Web are in the same congruence class. Thus, u can
infer that 7; | = Web, that is, a security flaw on 7; occurs.
Next, let 7, = service(Jupiter) and 73 = service(Saturn). Then, Q) = Q,, and

5 on @), can be obtained in the same way. Then,
2,42

75 =~ Mail
Az,IZ

Thus, u can infer that 72 | = Mail although u is prohibited from executing 75
under A,. On the other hand, there exists no object o such that 73 ~ o. Hence,

Azy 2
u cannot infer the value of 73 |, that is, no security flaw on 73 occurs. a

61

3.4.2 The Algorithm and its Complexity

Before providing the algorithm to detect a security flaw on 7, the results of
successful method executions and O have to be computed. The former results

can be obtained in
O(lISlllof*((log IISIIIOI")2‘+ 1S11))

time by the algorithm in Section 3.2.4. On the other hand, O can be obtained by
a procedure COLLECT-OBJECTS shown in Figure 3.10. Then, computing Ois

o(lisliiof* (g [ISHIOfF + [IS11)

tlme An explanatlon of the procedure is omltted
The a.lgonthm for detectmg a security flaw on 7 consists of the followmg four
steps

Step 1: Construct @’ from Q and 7.

Step,;2.-‘ Compute all the pairs of terms in Q' satisfying condition (1) or (2) in
- Definition 3.9.

Stgp_S: ; Comp_lite the congruence closure ~ on Q' by a known algorithm.

Step 4: Output “A security flaw occurs” if 7 ~oo for some o € Ogy, and

g

output “No security flaw occurs” otherwise.

Let I be the size of a given term 7 to be verified. Supposé that pairs of terms
satisfying Definition 3.9(1) are retained as an array Array,, and pairs of terms
satisfying Definition 3.9(2) are retained as an array Ar'rayA2 Suppose that these
arrays are accessed in constant time.

The above algorithm is achieved by a procedure DETECT-A-SECURITY-FLAW
in Figure 3.11. Step 1 corresponds to line (1), which is computed in O(I). Note
that :

Q] = o(IQl + 1) = O(||s||of* +1).

Step 2 corresponds to lines (2)—(5). Lines (2)-(5) are derived from Defini-
tion 3.9. Retrieving an element from Res takes tge, = O(klog||S||) time if
Res is implemented as a 2-3 tree. Then, the time complexity of Step 2 is

62

procedure COLLECT-OBJECTS
Input : a method schema S, an interpretation I, an authorization A,
‘a finite set _éo of objects which a user knows in advance
Output: a total set O of objects which a user can obtain
begin
O~ 0~o;
checked «— ¢; -
repeat o
foreach m,o in M , 0"
if m(0) & checked, 5 € v(¢), and (m,) € A then
0 —O0u{m(3) I}
checked « checked U {m(d)};
until O does not Ché.nge
end

Figure 3.10 Procedure to compute O.

63

=
S ol =

procedure DETECT-A-SECURITY-FLAW ,
Input : a method schema S, an interpretation I, an authorization A,
a term 7 in Tp,(O) to be venﬁed a ﬁmte set Q,
and an array Arrayg ‘
| Output' “A security flaw occurs” or “N o secunty ﬂaw occurs”
begln '
'+ QU {7'|r is a subterm of Tk
foreach (m,&) in A
Array,[m(5)] «— Arrayg[m(3)];
if m € M, then
Arraya,[m(d)] + Res(m, &)[5/d);
cc CONSTRUCT—CONGRUENCE-CLOSURE(Q’ A'r'rayAl U Array,,);
foreach o in QnNno
label FIND-REPRESENTATIVE(cc, 0) by o;
if FIND-REPRESENTATIVE(cc, 7) is labeled by 0€O0 then
output “A security flaw occurs”
‘else
output “No security flaw occurs”;
end '

Figure 3.11 Procedure to detect a security flaw.

64

O(|C||O*tres) = O(k|C||O*log ||S]|). To construct the congruence closure ~ on

¢ in Step 3, a procedure DETECT-A-SECURITY-FLAW(Q', Array,, U Arraya,)
at line (6) is called. It takes O(|Q’|(log |@'])?) time to do this. Step 4 corresponds
to lines (7)—(12), which takes O(|Q’]) time. Refer to the algorithm described in
Section 3.2.4. Thus, the time complexity of the algorithm is

Ol + KIC||0*log |S]| + @' [0g |€')? + &)
— O((ISIIOP + D((Log(ISTIOF + D)? + Elog [IS])).

Theorem 3.2: The detection problem for instances can be solved in
o((ISllIofF + D((og(lISIIIOFF + 1))* + klog || S]1))

time, where k is the maximum number of arity of all methods, and [is the size
of a given term to be verified. O

Suppose that u is implemented as a table, that is, the results of base methods
are stored in a table statically. This means that, when a user invokes a base
method, the user can obtain the result of the method by only retrieving the table
representing u. Let |u| be the size of the table representing p. In such a case, we
can assume that |O[* = O(|ul).

Corollary 3.1: If |O|F = O(|u|), then the detection problem for instances is
solvable in polynomial time. O

3.5 The Detection Problem of Security Flaws

for Database Schema

3.5.1) Thé Problem

Definition 3.12: Let S be a method schema, A an authorization, and 7 a term
in Ta(C) to be verified. The detection problem of security flaws for OODB
schemas, or simply the detection problem for schemas, is to decide whether or
not, for given S, A, and T, there exist an interpretation I = (v,p) and O such

that 7{o/d] f>1 o for some 0 € v(¢) and o € Os,. O

65

This preblem is undecidable for general method schemas. However, it is de-
cidable in polynomial time for monadic method schemas as will be stated in
Section 3.5.3.

Theorem 3.3: The detectlon problem for schema with methods of arity two is
- undecidable.

Sketch of Proof: Reference [22] shows tha,t_» the. type-consistency problem for
method schemas with methods of arity two is. uﬁdec_idable by reducing the Post’s
Correspondence Problem (PCP) to the prqblein.‘ In the reduction, each inter-
pretation I is regarded as a candidate for a solution to a PCP. If I is actually
a solution, then execution of a term, say m(o), is aborted under I. Otherwise,
m(o) is nonterminating. By slightly modifying the reduction in Reference [22],
we can construct a schema as follows:

e Iflisa sblution, then the execution of a tren'ii, say m’(o), is successful under
L '

o Otherwise, m’ (o) is nontermma,tmg under I

Let c be the class to Wh.lch o belongs. Also, let A= {(m ¢)} and 7 = m/(c).
Then, we have that the PCP has a solution iff there exist I = (v, u) and O such
that 7o/c] =’>I o for some o0 and o'. , O

3.5.2 A Sufficient Condition
This section proposes a decidable sufficient condition for a given schema to have

no security flaw. The main idea is to apprommate l>I using classes. To do this,

define a mapping Z : Tps(C) — 2€ which has the followmg property:

Z (t) 2 {c|there exists an interpretation such that
t[o/E] — o for 6 € v(¢) and o € v(c)}.

Intultlvely, yA (t) contains all the classes c such that the result of successful exe-
cution of £[5/¢] is an object o for some & € v(¢) and o € ¥(c). The smaller Z (t)
is, the better approximation we have.

66

Z(leader(employee)) = {employee, staff}
Z(leader(staff)) = {staff}
Z(hostname(employee)) = {host,server}
Z(hostname(staff)) = {host, server}
Z(service(host)) = {use}
Z (service(server)) = {use}
Z (boss(employee)) = {staff}
Z(boss(staff)) = {staff}
Z(admin(employee)) = {use}
Z(admin(staff)) = {use}
Z(m(c)) = ¢ for any other combinations of m and c
Z(m(t)) = Ueez(o) Z(m(c))

Figure 3.12 An example of Z for 5.

67

Example 3.13: For S, in Figﬁre 3.1, Z can be computed using the algorithm
provided in Reference [30]. Figure 3.12 shows the result of the computation. For
| example, Z(leader(employee)) = {employee, staff} means that executing leader(o)
for an object o of employee results in an object of either employee or staff. O

 The following defines rewriting rules Ds' on T(C) which approximate =

_- ‘Deﬁmtlon 3.13: Define Ps as the minimum set of rewriting rules 1> on Ty (C)

satisfying the following three conditions:
(1) If (m, &) € A, then Ps contains
m(c) A‘?Skc

for each ¢ € Z(m(&)). This rule approximates Definition 3.10(1).'
| (2) If (my,©) € 4, My € My 5, and Res(my, €) = t € Tpy({Z}), then Ps contains
t[c/z] b
for each c € Z (t[¢/]). This rule approximates Deﬁnition 3.10(2).

(3) If Ps contains ¢ poc and t" Jé ¢ such that ¢,¢" € Ty (C), ¢,c” € C, and
t” is a proper subterm of t at 'r” then Ps contains

tfr" «—]) d

’

for each ¢ € Z(t[r" «). This rule approximates Definition 3.10(3).

Define =, 88 the one-step reduction relation by I> Let => denote the reflexive

and transﬂ:we closure of = . O

el

Example 3.14: For S, in Figure 3. 1, A; in Example 3.6, and Z in Figure 3. 12,
Ps, shown in Figure 3.13 can be constructed. Rules (1)-(6) and (7)~(10) are
obtained by Definitions 3.13(1) and (2) respectively. Rules (11) and (12) are
obta.med by Definition 3.13(3). O

68

(1)
2
(3)
(4)

— (5

(6)

(7)
(8)
9)

(10)

(11)
(12)

boss(employee) b staff
A2,52
boss(staff) > staff
‘ Az,52
- hostname(employee) > staff
‘ A2,S2
hostname(employee) > server
C Az,52
admin(employee) > use
A2;52

admin(White) e Web
2,92

bds.’s(leadef(em ployee)) > staff
leader(staff) > staff
sermce(hostname(employee)) b use

service(hostname(staff)) ADS use
» 2,92

service(host) WD, Use

ser'vzce(server) I>S use
Az,

‘Figure 3.13 Contents of Ps,.

69

The following lemma states the relationship between rewriting rules /EI and
.A[?S'
Lemma 3.3: If there exists an interpretation I = (v, z) such that t[o/7] po€
Py for some ¢ € v(Z) and o € v(c), then t[¢/Z] p.ce Ps.
Proof: We use induction on the number of the repetltlon of a procedure which

computes the least fixed point satisfying the three conditions in Deﬁmtlon 3.10.
Basis: Consider the following two cases:

1. The case that m(3) b ois o_bta.ined from Definition 3.10 (1): It holds that

(m,) € A, G € v(), and m(5) = o. From the property of Z, there exists
a class c such that ¢ € Z(m(¢)) and o € v(c). From Definition 3.13 (1), Ps
contains m(c) s € since (m, é') €AandceZ (m(é))

2. The case that Res(my,, &)[5/Z] P ois obtained from Deﬁmtlon 3.10 (2): In

the same way as the above 1, it holds that (m,, €) € A, Res(m,,) =t, and
¢ € Z(t[6/%]). From Definition 3.13 (2), Ps contains t[¢/z] poe

Induction: Suppése that ¢'[o" /2] is a proper subterm of t[6/%] at " and that
tlo/z] o and [0 /2] 'l> 0" have been obtained. Let t’[o’/.'z:’] = t[6/Z][r" « "]
A= V(c’)) and suppose that t[d /2] po is obtained from Definition 3.10 (3).
By the inductive hypothesis, it holds that

o t[c/7] P ¢ € Pg for ¢and c such that 6 € v(¢) and o € v(c), and
o t'[ch/"]) ¢ € Ps for ¢ and ¢” such that o € v(c") and o” € v(c").

Since t'[d/7'] = t[5/Z][r" o"], we have ¢|d/z'] = t[c/i:‘][r” « ("]. Since
¢ /2] P o€ P; implies [’ /2] 5 o, it holds that ¢ € Z(¢|d/2)). From the

above 1nduct1ve hypothesis and Definition 3.13 (3), we have ¢'[¢ /7] p.ce Ps.
’ o

The following lemma states the relationship between reduction relations =>

A,

*
and = .
AS

70

A g T e e e TR 8

Lemma 3.4: If t[é‘/i:‘] t’[o’/x] for some 0 € v(c) and d € v(d), then
t[c/Z] => v[é /).

Proof Con31der the i-th step t;_;1[0i—1/Zi-1] => t;[6:/Z;] of the reduction
t[o/:z':'] t’ [¢/7']). By Lemma 3.3, it is easily shown that t,_l[c,_l/a:,_l]

t[e/ :z:,] Where ;_y € v(G1) and &; € v(¢). Since this reduction holds a.t an
arbitrary step, the lemma holds. O

By Lemma 3.4, the following theorem is immediately shown.

Theorem 3.4: Let 7 be a term in T (C) to be verified. If there exists no
class c such that 7 => ¢, then no security flaw on 7 occurs, i.e., there exist no

interpretation 1 a.nd O such that 7(o/¢] => o for any ¢ € v(¢) and 0 € Os ;- O

Example 3.15: For S, in Figure 3.1, let 7j = admin(leader(employee)) be a
term in Ty (C) to be verified. Since no subterm of 7, can be rewritten by any
rule in Figure 3.13, no security flaw on 7, occurs. - O

3.5.3 The Case of Monadic Method Schemas

This section shows that the sufficient condition in Theorem 3.4 is also a necessary
one if a given method schema is monadic and Z satisfies that, for each t € Ty (©),

Z(t) = {c|there exists an interpretation such that
tlo/c] = o for o € v(c) and o’ € v(c)}. (3.1)

Before proving the above statement, the following interpretation is introduced.

Definition 3.14: Let N be a positive integer. Define a syntactic interpretation
Is = (vi,, 1) of S as follows:

1. For each c € C,
v (c) = {c- o|a € C* and the length of ¢ - o is at most N},
where C* denotes the Kleene closure of C.

71

2. For each my € My, define py, (my) as;'follows: ‘
2.1 If Res(mb, co)‘= c, then pj, (m,,)(co) = ¢, and, for w > 1,

(61.02 Cw ifCISc’,
“rCy) =

m «Cq1°C
prs(mp)(co - c1- ¢z - 01.02 ¢y otherwise.

2.2 If Res(mg, co) 1, then yy, (m;,)(co “C1°Cy** **Cy) (w. > 0) is undefined.
a

Hereafter cons1der a syntactic 1nterpretat10n with sufficiently large N. If
Z satisfies Equatlon (3 1), then it also satlsﬁes the following Lemmas 3.5
 through 3.7. S :

Lemma 3.5: Let te TM({:c}) and suppose tha.t c € Z(t[c/z]). There exists
B € C* such that

1. the first synibbl of f-c is c, and |
2. for each & € C* such that f:-¢ - « 1s an obJect of Is (1 e., the length of
B-c - o is at most N),

e a'/;]. X

We call B a reduction string of (t[c/z],c).

Proof: Suppose that ¢ € Z (tle/z]). By Equatlon (3.1), there exists an inter-
pretation I = (v, u) such that t[o/z] = o for some o € ¥(c) and o € v(cd).
Consider the i-th step (counting from zero) #[0;/z] — t;41[0:41/7] of the reduc-
tion t[o/z] = o/, where to[oy/z] = t[o/z] and tpfon/z] = 0'. Let ¢; (0 <i < m— 1)
be the class such that o; € v(c;), and m;(o;) the 1nnermost term of ¢;[0; /z]. Define
B: (0 <i<n—1) as follows:

P L iy e My,
' | € (empty string) otherwise.
In what follows, it is shown that 8 =Gy ---- - * Pn—1 satisfies the conditions of this
lemma.

It is easily verified that 3 satisfies condition 1 since

72

e 0y =0 € v(c), and
e if m; € M,, then 0;;; = o; by the definition of —.

To see that 3 also satisfies condition 2, consider the execution of to[f - ¢ - /]
for an arbitrary a € C*. If mg € M, then fo = co, and thus to[f-¢ - afz] —
tlfr----- Pn1 - ¢ - a/z]. On the other hand, if mg € M,, then fp =¢, a.nd thus
t[f-d-afz] = tilfr----- Ba-1- ¢ - a/z]. In either case, '

to[f-¢-ajz] = to[ﬂo‘ﬁl";"ﬂn—l'cl'a/zl ,
— {1 Pur- ¢ - afz].

. By repeating this discussion, we have ¢[3- ¢ - afz] = - a. R

'Lemma 3.6: Let t,t,t" € Tm({z}) such that ¢ is a subterm of ¢ at ' and

= t[r" « z]. If both " € Z(t"[c/z)) and ¢ € Z(¥'|"/z]), then ¢ € Z(t[c/z]).
Proof By Lemma 3.5, there exist reduction strings 8" of (t[c/z],c") and B’ of
(t'[c" /z],), i-e., for any o, € C*,

o t/[§" - offfz] % ¢ - o and the first symbol of §- ¢ is ¢; a.nd'v .
o #[f - - o/fa] - of and the first symbol of f/-Cis .
When we choose & so that ¢’ -o” = ' - ¢ - o/, we have |

He-f-d oz B d.

' Since Z satisfies Equation (3.1), ¢ must be in Z(t[c/xz]). . O

Lemma 3.7: Let t,t',t" € Tyr({z}) such that ¢ is a subterm of ¢ at " and
= t[r" « x]. Suppose that ¢’ € Z(t"[c/z]) and ¢’ € Z([c"/z]). Let B’ be an

arbltrary reduction string of (#'[¢"/z],¢). Then, there exist reduction strings

of (t[c/z],c) and B" of (t"[c/z], ") such that § = g" - §'.

Proof: Let 3" and (' be arbitrary reduction strings of (t"[e/z],") and

'(t’ [¢'/z],) respectively. By the proof of Lemma 3.6, §” - #' is a reduction string

of (t[c/z],). This fact implies the lemma. 0

73

Suppose that O = Og;,. It is shown that tle/z] f% t'[d/z] implies

t[o/m] =*> t'[o’/z] for some o € vy, (c) and o € v15(c’). The next lemma states

_the relatlonshlp between > and b .
Alg A,S

B Lemma 3.8: Let e, €C,t € To({z}),and ¥ € TM({x’}) Ift[c/x] P de PS,
then for an arbltrary reduction string 8 of (¢[c/z], ¢) and for any o € C’*
t[B-c - a/z] A[,>Is d-a€ P

- Proof: We use induction on the number of the repetition of a procedure which
computes the least fixed point satisfying the three conditions in Definition 3. 13.
" Baszs Consider the following two cases:

- 1. The case that m(c) s d is obta.lned from Definition 3.13 (1): Let ,3 be an

arbitrary reduction stnng of (m(c) ¢). Since (m, c) € A and m(B-c-a) >
c’ a, we obtain m(ﬁ d-a) Fe ¢+ o from Definition 3.10 (1)

- - 2. The case that Res(m,, c)[c/z] 2 c is obtained from Definition 3.13 (2): 1t
can be proved in the same way as the above case.
Induction: Suppose that there exist ¢ € C and t,t,¢" € Tu({z}) such that
e t'isa subterm of ¢ at 7",
‘ "’ (

o t"[c/z] 2 ' € P,

o t[c/z] P ¢1 € Ps for some ¢,

o € Z(t["[z]),

where ¢ = t[r" « z]. Also, suppose that ¢’ [/z]) ¢ i is obtained from Def-
 inition 3. 13 (3). Since t"[c/z] 2 " € Ps, it holds that ¢ € Z(t"[c/z]) by
Deﬁn1t1on 3.13. By Lemma 3.6, 1t holds that ¢’ € Z(t[c/z]). Then, by Defini-
- tion 3.13 again, t[c/z] l> ¢ must be in Ps. Let #' be an arbitrary reduction string
of (t'[c"/z],). That is, the first symbol of §'- ¢ is ¢’ and t'[f' - ¢ - o/ Jz] 2 ¢ - of
for any o/ € C*. By Lemma 3.7 and the inductive hypothesis for ¢[c/z] (> c and
t"[c/z] l> c”, there exist # and 8" such that, for any o and o,

74

o t[3-C - af] AI} ¢ - a € Py, and the first symbol of §- ¢ is ¢;
S
o t'[g"- ¢ o'[z] b ¢'-d € Py and the first symbol of B" - " is ¢; and
118)

«B=p"-F.
When we choose a and o' so that B'-d-a=¢"-a", it holds that -¢-a = f"-¢"-o”
By Deﬁnition 3.10 (3), | |
tg-c -¢/:c][r" —~cd-dl > d-a€Py.
‘ : Als
Since t[8 - ¢ - a/z|[r" « ' -] = t[- [z] = t[@ - ¢ - afz], it holds that
t’[ﬂ’-c’-a/z]A?I c - a € Py for any a. DO
s Ko

Lemma 3.9: Let ¢,d € C and t,t' € TM({:L'}) If t[c/z] f?s t'[¢"/z], then there
exists a string # such that the first symbol - ¢” is ¢ and, for any " € C*,

Hp-o'-ofa] &¢I -fa].

Proof: We use induction on the length of the reduction t[c/z] f% t[c"/z].
Basis: The lemma holds evidently when the length of the reduction is zero.
Induction: Consider the following reduction that t[c/z] => t;[ei/x] = t'[c" [z].
By the inductive hypothwls, there exists a string §; such that the ﬁrst symbol of
B; - ¢; is ¢ and, for any o; € C*,

tl6; - ci- os/2] = tilei - oif/7].

45

By Definition 3.13, there exists a subterm t" of t; at r” such that ¢"[c;/z]) ¢’

and ¢'[¢" /z] = t:[ci/=] [« ¢"]. By Lemmas 3.5 and 3.8, there exists /' such that

the first symbol of #'- ¢".is ¢; and, for any " € C*, rule t"[§'-¢"- " | z] i o

exists in Py,. By Definition 3.10, it follows that t[p - "] = "o Hence,
4S5

t[8 - - o [z) = " - /]
Als
We can choose o; so that g/ - ¢’ - o = ¢ - . Therefore, it follows that
tp;- B - - ”/:z:] t’[-d’[z].
Clearly, B = f3; - ' satisfies the condition of the lemma. O

75

Theorem 3.5: Let S be a monadic method schema and 7 a term in Tu(C) to
be verified. Suppose that Z satisfies Equation (3.1). If there exists a class ¢ such
that 7 $ ¢, then a security flaw on 7 occurs, i.e. , there exist an interpretation J

and O such that 7[o/c] ?I o' for some o0 € v(c) and o' €0sy. O

Example 3.16: For S, in Figure 3.1, let 7/ = admzn(boss(employee)) and 75 =
service(server) be terms in Tu(C) to be verified. By applying the rewriting
rules (1) and (6) in Figure 3.13 to 7{ sequentially, 71 can be computed as follows:

™= admin(boss(employee)) ok admin(staff) A=%g use.
2,902 ‘A2,02

Since S; is monadic, a security flaw on 7{ occurs by Theorem 3.5. In the same

way, a security flaw on 7} occurs since T, can be computed as follows:
T, = service(server) = use.
Az,S

2,92

Actually, in Example 3.12, security flaws on 7; and on 7, occur. o O

3.5.4 The Algorithm and its Complexity

The algonthm for deciding the sufficient condltlon stated in Theorem 34 con51sts

of the followmg three steps.

Step 1: Compute Z from S.
Step 2: Compute Ps from S, A, and Z.

Step 3: Determine whether there exists a class ¢ such that 7 = ¢,

Using the type-checking algorithm in [30], Z which is fairly small can be com-
puted, and, for a monadic schema, Z satisfying Equation (3.1) can be computed
in polynomial time of ||S||.

The following summarizes the time complexity of the algorithm. Let H be
the maximum size of all ¢ such that (m, ¢, t) € Xy, and [the size of a given term
T to be verified.

Before explaining the above algorithm, define a finite set 7', as {t[t |> c €

Ps}, and consider the size of T4. Let A be the height of a tree representmg a term

76

t € Tp(C). Also, let X, be a finite set of trees obtained by replacing subterms
of t with classes, where X}, contains both ¢ itself and c such that ¢ € Z(t). For
example, let t = m;(ma(c1,¢2), cs), which is represented as a tree with height
two. If Z(ma(cy,c2)) = {e1, 2}, Z(ma(c1,c3)) = {1}, and Z(my(ca, c3)) = {ca},

then, for such t,
X, = {my(mz(c1, c2), c3), ma(e1, €3), mi(cz, €3), €1, C2}-

By solving the following recurrence formula

| X5 < | Xn-1l®+|C),

the following result is obtained

{ |X| = O(ICI*") if k>2,
IXa| = ORIC]) k=1

Since X}, contains T} for all terms t € T (C) such that Res(m, ¢) =t form € M,,
the size of T4 is

|T4| = {O(HEuIHXHD = O(|C|kx||5”) ifk>2,
ollslich = o(cllsl) k=1

After all, for £ > 1,
[Tal = O(CI"|IS1)-

Before computing Z in Step 1, define a finite subset Zo(m(&)) of C such that,
for m € M, and ¢€ C™, '

Zo(m()) = {clthere exists an interpretation such that
m(3) 5 o for 6€ v(¢) and 0 € v(c)}.

The time complexity to compute Zo (m(c)) for allm € M, and € C" is
O(klCP*|1S8])),

which is givén in [30]. The time complexity tz, to retrieve an element from
Zo(m(@)) is
t5, = O(log| Z|) = O(log(|1M||CI*)) = O(klog |S|])

77

if Zo is implemented as a 2-3 tree. Next, compute Z(t) for t € Tp(C) as follows.
- If m(¢) is the innermost term of ¢, then replace m(¢) with ¢ for each ¢ € Zy(m(2)).
Repeat this replacement until ¢ is rewritten to a class. The time complexity to
compute Z(t) is- D :
O(tz|CI*|[t])) = O(kH|C|* log ||S]]).

Therefore, the time.cvomplexity to"compu‘te Z (t) fqr allt €T, is
OICIH|S]] + [TolkH|C|*log [1S])) = ORHICH H|s|iogS)). (32)
The time complexity tz to retrieve an element;ﬁfoimi Z(t) is
 tz = Oog|Z]) = O(log [T4]) = O(k” log])

if Z is implemented as a 2-3 tree. e

In order to execute Step 2, it is sufficient to- compute T4. Suppose that
A, Res, and T are implemented as 2-3 trees. Figure 3.14 shows a procedure
‘CONSTRUCT—REWRITING-kRULES to compute T)4. Retrieving an element from A
and Res takes t4 = O(klog ||S]|) time and tp,, = O(klog [|S]|) time respectively.
Retrieving an element from T4 and inserting an element into T4 takes

' tr, = Olog |T]) = Ok log)
time since [T4| = O(|C|*"||S “), Therefore, executing ﬁnes (1)~(5) takes
O Al(ta + tr, + 108 |Mu| + tnes +tr,)) = OREICF|S| log 1S[)

time, and executing lines (6)—(11) takes

O(TallTal(tz, + H? + 15 + ICltz,)) = O(lclz"yfllvsllz(ﬂz. +k7|C] log ||S])))
time. Thus, the total time of Step 2 is | ,

O(ICI™” ||S|* (& + k¥ |C]10g |IS])). (3.3)
Lastly,‘ consider Step 3. For a given term 7 € Tm(C), define a finite set D; as

Dy = {t|r = t},
D; ={t'|t€ D;_, and t = t'}.

follows:

78

-
= e

SO MR e g W et e

procedure CONSTRUCT-REWRITING-RULES
Input : a method schema S, an authorization A,and Z
Output: a finite set T4 = {t|t b cE€ Ps}

begin
Ty — ¢ ,
for each (m,¢) in A
T4 +— T4 Um(E);
if m € M, then
T4 — T4 U Res(m, &)[¢/Z];
repeat '
for each t,t'in T,
if t” is a subterm of t at 7 then
for each ¢’ in Z(t")
Ty T4 Ut[" « ');
until T4 does not change
end

Figure 3.14 Procedure to construct rewriting rules J =

procedure REWRITE-A-TERM ‘
Input : a method schema S, Z, Ty, and a term t in Tu(C)
Output: a finite set D satisfying ¢’ € D such that ¢ 735' t
begin

D « ¢;

for each t” in Ty

if t" is a subterm of ¢ at " then
for each ¢’ in Z(t")
D — DuUtl" « '};

end

Figure 3.15 Procedure to execute rewriting =

79

First compute D; and then Ds, D;, ... until D; = Dj,. It holds that j < [since
lItl]l > [i’]] for each pair ¢ and ¢ such that ¢ Jé t' € Ps. The size of each D; is

at most |X;|. Figure 3.15 shows a procedure liEWRITE-AéTERM to compute all
t' such that t = t' for a given t € T)/(C). Suppose that executing line (5) is in

constant time. ’Executing lines (1)~(5) takes

O(Tal(tz, +UH + 17 + [C) = OO ||5|(k¥ log |S] + 12 + |C))

time.» S.in_c‘e‘the procedure in Figure 3.15 is executed for each term in D;(1<i<
J), the total time complexity of Step 3 is

 OGIXIC S|(k Log |1S] + LA + |CT)))
| { OQUICI+*||S|| (k¥ log ||S|| + 1H + |C)) ik > 2,

O|CP||S||(log (|S|| + LH +|C])) Fho1 (34)

A.ﬂ‘:ér.a.ll, the time complexity of the algorithm is obtained by Equations(3.2)-
(3.4), By letting L = max{l, H}, the time complexity is

{ O(CP |SI(Z*|1S|| + KX(CIIS] + L) og || + I* + LIC) itk > 2,
O(ICP SIS + [Cl1S]| Tog |S]| + L#)) ifk=1.

Moreover, by assuming L < ”.S' [|, the time complexity is

| { O(ICIP**|IS|*(k*|C) 1og [|S]| + L?)) it k > 2,
O(CPISI*(C og ISl + L%) ~ #fk=1.

This result leads to the following theorem.
Theorem 3.6: The sufficient condition stated in Theorem 3.4 is decidable. O

Corollary 3.2: For a monadic method schema, the detection problem of security
flaws is solvable in polynomial time of the size of the schema. ’ O

3.6 | Variations of the Detection_ Problem of Se-
curity Flaws

Section 3.4 has provided the method to decide whether or not, for given S, I, A,

and 7 € Ty (Osy), there exists o € Ogs,r such that 7 ~ o An authorization A4

80

is called safe on 7 if there exists no such object 0. That A is unsafe on T means
that a prohibited data can be obtained under A. Consider the following problem
of finding A which is safe on 7.

Definition 3.15: Let S be a method schema, I an interpretation, A an autho-
rization, and 7 a term in Twm(Os 1) to be verified. The finding problem of a safe
authorization for OODB instances, or simply the finding problem for instances,
is to find a maximal safe subset A’ C A on 7 for given S, I, A, and 7. O

Theorem 3.7: The finding problem of a safe authorization for OODB instances
is solvable in polynomial time if |O[* = O(|u|).

Proof: An algorithm to find a safe authorization is shown in Figure 3.16. The
subset A’ obtained from A by FIND-A-SAFE—AUTHORIZATION is obviously safe.
Suppose that A’ is not maximal. By this assumption, there exists o’ € A — A’
such that A’ U {a'} is safe, that is, 7 P '{:{}I o does not hold for any o € Og.
On the other hand, by the deﬁmtlon of the algorithm, a’ ¢ A’ implies that there
exists some A” C A’ such that A” U {a'} is not safe on 7, that is, 7 s ©

holds for some o € Ogy. It follows that 7 Au’{NV Y o also holds. This leads to
. ! al ,

contradiction. Therefore, A’ is a maximal safe authorization.

Since the detection problem for instances at line (3) in Figure 3.16 is tested
|A| times and is solvable in polynomial time from Corollary 3.1 if [O]F = O(|ul),
the finding problem for instances is also solvable in polynomial time. O

It often happens that a priority is given for each element of an authorization
and computing a maximum safe authorization according to the priority is ex-
pected. Another variation of the finding problem for instances is to find a safe
authorization A’ C A such that, when a priority is given for each element of
A, the sum of the priorities of the elements of A’ is maximum. The problem is
obviously solvable in PSPACE, but tighter upper/lower bounds are open. As a
special case of the problem, when the priority of a; (1 <: < n) is 2"~ for each
a; € A, the problem is obviously solvable in polynomial time by the algorithm in
Figure 3.16, where elements in A are checked in the order ay,0z; - - - Gn-

For 7 € Tj(C), the concept of a safe authorization on 7 can be also intro-
duced. Consider the following problem.

81

‘procedure FIND—A—SAFE—AUTHORIZATION '

Input : a method schema S, an interpretation I, an authonzatlon A
- and a term 7 in T (Os) to be verified
Output: a maximal safe subset A’ of A on 7

begin

A — ¢;
foreach a in A :
if A'U {a} is safe on 7 then
A — AU {a};
end

Figure 3.16 Procedure to find a safe authorization.

82

Definition 3.16: Let S be a method schema, A an authorization, and 7 a term
in Ty (C) to be verified. The finding problem of a safe authorization for OODB
schemas is to find a maximal safe subset A' C A on 7 for given S, A,and 7. D

If S is monadic, then the followiﬁg theorem obviously holds in the same way as
Theorem 3.7.

Theorem 3.8: The finding problem of a safe authorization for OODB schemas
is solvable in polynomial time.]

3.7 Conclusions

In this chapter, the detection problems of security flaws for OODB instances and
- for OODB schemas have been discussed. Variations of the detection problems
have also been mentioned.

As mentioned in Section 3.2, method schemas were adopted as a formal model
of OODBs. Method schemas do not support sets of objects. That is, method
schemas cannot define queries on sets of objects. Therefore, the method proposed
in this section cannot be directly applied to other models of OODBs which support
sets of objects (e.g., object-relational models, deductive object-oriented models).
In order to support sets of objects, the definition of ~ = in Section 3.3.2 need to
be modified. That is, inference rules on operations on sets have to be considered.

Also, method schemas do not support updates of a database interpretation.
Therefore, this thesis does not discuss problems on updates of a database in-
terpretation. For example, updating a database interpretation may change the
safety of authorizations. By this change, a user may be able to obtain information
on a database interpretation. Moreover, when integrity constraints are taken into
account, the notion of the safety of authorizations may be extended so that every
method in an authorization causes neither security flaws nor violation of integrity
constraints. This makes the situation more complicated. Many other problems
involving updates are left as future work.

The author intends to discuss the detection problem when, in the discussion
of Section 3.3.2, a user knows either what Og is or what C is, or the user

83

knows both of them. Moreover, for a general schema, if Z satisfies that, for each
t€ TM(C) : : '

Z(t) = {c|there exists an interpretation such that
t[6/2] = o for 6 € ¥(2) and 0 € ()},

then whether or not the sufﬁc1ent condition in Theorem 3. 4 is also a necessary
one 1s open. E

84

Chapter 4
3 Conclusions

In Chapter 2, we have presented an authorization model which is independent
of OODB schemas and authorization policies, and have defined an authoriza-
tion specification language which is powerful enough to spec1fy authorization
policies proposed in the literature. Furthermore, an eﬂic1ent access control
method has been proposed. The proposed method pa.rtla.]ly computes infer-
ences of authorizations from S and R in compile-time and decides whether a
given access request is permitted or prohibited by using the results of compile-
time. The time complexities are O(N*(fc(N) + N log N)) for compile-time and
O(N4(fi(N, |0|) + N3log N)) for run-time. The simulation results has concluded
that the proposed method makes the access control more efficient than conven-
tional methods. A ' ‘

In Chapter 3, we have formally defined the concept of security laws in OODBs
and have analyzed user’s inference under an authorization. The following prob-
lems on security flaws in OODBs have been discussed:

(1) The detection problem of security flaws for OODB instances.
(2) The detection problem of security flaws for OODB schemas.
(3) The finding problem of a safe authorization.

First, it has been shown in this thesis that the problem (1) is solvable in polyno-
mial time in practical cases by reducing to the congruence closure problem. Next,
this thesis has shown that the problem (2) is undecidable for general method

85

schemas and has provided a decidable sufficient condition for a given method
schema to have no security flaw on a given term. Also, it has been shown in
this thesis that the problem (2) is decidable in polynomial time of the size of the
schema for a monadic schema. Lastly, this thesis has shown that the problem (3)
. is solvable in polynomla.l time in practical cases.

An authorization model provided in Chapter 2 can spec1fy an authorization
model flexibly and generally and contain authorization models proposed in the
literature as spec1al cases. By using the proposed model, database admlmstra.tors
can specify an appropriate authorization policy according to a database manage-
ment pohcy ‘Furthermore, by the proposed access control method, the DBMS
can achieve an access control to OODBs efficiently. Many papers have scarcely
discussed the complemty of access control although they have proposed various
authonzatlon models. Some papers have roughly estimated the complexity and
given methods under a restricted a.uthonzatlon model, e.g., one whlch cannot

specify 1nference rules dependent on the contents of ob_]ects in OODBs. |
" Even though the DBMS enforces access control under a given authorization,

malicious users may infer prohibited information from permitted information,

ie., a secunty ﬂa.w may occur. Many papers have scarcely provided algorithms
» “to formally detect a security flaw and estimated the complexity. In Chapter 3,
we have forma.lly defined user’s inferences and proposed algorithms to detect a
security flaw for the problems (1)- (3). By detecting the possibilities of a security
flaw, database adm_lmstrators can eliminate prohibited inference by users’ attack
in advance and can keep the database more secure.

86

References

[1]

[2]

3]

[4]

[5]

[6]

[7]

S. Abiteboul, R. Hull, and V. Via.nu, “Foundations of databases,” pp.563—
571, Addison-Wesley Publishing Company, 1995.

S. Abiteboul, P. Kanellakis, S. Ramaswamy, and E. Waller, “Method
schemas,” J. Computer and System Sciences, Vol.51, No.3, pp.433-455, 1995.

R. Ahad, J. Davis, S. Gower, P. Lyﬁgbaek, A. Marynowski, and E. Onuegbe,
“Supporting access control in an object-oriented database language,” Proc.
3rd Int’l Conf. on Extending Database Technology, LNCS 580, pp.184~200,
1992. o

A. Baraani-Dastjerdi, J. Pieprzyk, R. Safavi-Naini, and J.R. Getta, “A model
of authorization for object-oriented databases based on object views,” Proc.
4th Int’l Conf. on Deductive and Objeét—Oriented Databases, LNCS 1013,
pp.503-520, 1995.

E. Bertino, C. Bettini, E. Ferrari, and P. Samarati, “A temporal access
control mechanism for database systems,” IEEE Transactions on Knowledge
and Data Engineering, Vol.8, No.1, pp.67-80, Feb. 1996.

E. Bertino, S. Jajodia, and P. Sama.rati, “Database security: research and
practice,” Information Systems, Vol.20, No.7, pp.537-556, Nov. 1995.

E. Bertino, F. Origgi, and P. Samarati, “A new authorization model for
object-oriented databases,” Database Security, VIII(A-60): Status and
Prospects, Elsevier Science Publishers, pp.199-222, 1994.

87

[8]

[9]

[10]

[

[12]

[13]

[14]

[15]

[16]

[17]

E. Bertino and P. Samarati, “Research issues in discretionary authorizations
for object bases,” Proc. OOPSLA-93 Conference Workshop on Security for
Object-Oriented Systems, pp.183-199, 1993. ‘

E. Bertino and H. Weigand, “An approach to authorization modeling
in object-oriented database systems,” Data and Knowledge Engineering,
Vol.12, No.1, pp.1-29, 1994.

L.J. Binns, “Implementation considerations for inference detection: in-
tended vs. actual classification,” Database Security, VII(A-47): Status and
Prospects, Elsevier Science Publishers, pp-139-156, 1994.

H.H. Briiggemann, “Object-oriented authorization,” Advances in Database
Systems — Implementations and Applications, CISM 347, Spﬁnger—Verlag,
Pp-139-160, 1994.

T.H. Cofmén, C.E. Leiseison, and R.L. Rivest, “Introduc_tion to algorithms,”
The MIT Electrical Engineering and Computer Science Series, pp.446-450,
The MIT Press, 1990. '

N. Dershowitz and J. Jouannaud, “Rewrite systems,” in Handbook of The-
oretical Computer Science, ed. J. Leeuwen, Vol.B, Chap.6, pp.243-320, The
MIT Press, 1990.

P.J. Downey, R. Sethi, and R.E. Tarjan, “Variations on the common subex-
pression problem,” J. ACM, Vol.27, No.4, pp.758-771, 1980.

E.B. Fernandez, R.B. France, and D. Wei, “A formal specification of an
authorization model for object-oriented databases,” Database Security, IX:
Status and Prospects, Chapman & Hall, pp.95-110, 1996.

E.B. Fernandez, M.M. Larrondo-Petrie, and E. Gudes, “A method-based au-
thorization model for ob ject-oriented databases,” Proc. OOPSLA—93 Confer-
ence Workshop on Security for Object-Oriented Systems, Pp.135-150, 1993.

T.D. Garvey and T.F. Lunt, “Cover stories for database security,” Database
Security, V: Status and Prospects, Elsevier Science Publishers, pp.363-380,
1992.

88

i gt g 3 A by B e e e

[18] E. Gudes, H. Song, and E.B. Fernandez, “Evaluation of negative, predicate,

and instance-based authorization in object-oriented databases,” Database

- Security, IV: Status and Prospects, Elsevier Science Publishers, pp.85-98,
1991.

7 [19] J. Hale, J. Threet, and S. Shenoi, “A practical formalism for imprecise infer-
~ ence control,” Database Security, VIII(A-60): Status and Prospects, Elsevier
- Science Publishers, pp.139-156, 1994.

- [20] T.H. Hinke, H.S. Delugach, and R. Wolf, “A framework for inference-directed
o data mining,” Database Security, X: Status and Prospects, Chapman & Hall,
Pp.229-239, 1996.

[21] R.Hull, K. Tanaka, and M. Yoshikawa, “Behavior analysis of object-oriented

" databases: method structure, execution trees, and reachability,” Proc. 3rd

" Int’l Conf. on Foundations of Data Organization and Algorithms, pp.372—
388, June 1989.

“[22] Y. Ishihara, S. Shimizu, H. Seki, and M. Ito, “The type-consistency problem
for queries in object-oriented databases,” NAIST Technical Report 98004,
http:/ /isw3.aist-nara.ac.jp/IS/TechReport2/report/98004.ps, Apr. 1998.

| [23] W. Kim, “Introduction to object-oriented databases,” The MIT Press, Cam-
- bridge, 1990.

[24] G. Nelson and D.C. Oppen, “Fast decision procedures based on congruence
closure,” J. ACM, Vol.27, No.2, pp.356-364, 1980.

[25] G. O’Shea, “On the specification, validation and verification of security in
access control systems,” The Computer Journal, Vol.37, No.5, pp.437-448,
1994.

[26] D.A. Plaisted, “Equational reasoning and term rewriting systems,” in Hand-
book of Logic in Artificial Intelligence and Logic Programming, vol.1,
pp.273-364, Oxford Science Publications, 1993.

89

[27] K. Sakaguchi, T. Morita, Y. Ishihara, H. Seki, and M. Ito, “A content-
based authorization model for object-oriented databases,” IEICE Techmca.l_
Report, DE96-80, pp.37-42, Jan. 1997.

[28] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman, “Role—based'
access control models,” IEEE Computer, Vol. 29, No.2, pp.38-47, Feb. 1996

[29] RS. Sandhu and P. Sa.mara.’u “Access control: pnnc1ples and pra.ctlce,”
IEEE Communications Magazine, Vol. 32, No.9, Dp. 40-48, Sep. 1994. '

[30] H. Seki, Y. Is]:uha.ra and H. Dodo “Testmg type consmtency of method
schemas,” IEICE Tra.nsactlons on Information and Systems vol. E81—D no 3,
March 1998. o

| [31] H. Seki, Y. Ishihara, and M. Ito, “Authonza.tlon a.nalysm of quenes in ob_]ect-,
oriented databases,” Proc. 4th Int’] Conf. on Deductwe and ObJect-Onented
Databases, LNCS 1013, pp.521-538, 1995. A

[32] K. Tajima, “Static detection of security ﬂaws in obJect-onented Data.bases,”#
Proc. 15th ACM SIGMOD, pp.341-352, 1996. Sy

[33] B. Thuraisingham, “The use of conceptual structures for handling the mfer-
ence problem ” Database Secunty, V: Status and Prospects Elsevier Sc1ence
Publishers, pp.333-362, 1992.

90

