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Abstract

This thesis presents a hands-free speech recognition method based on the HMM
(Hidden Markov Model) composition and the HMM decomposition for speech which
is contaminated not only by additive noise but also by an acoustic transfer function.
The method realizes an improved user interface such that a user is not encumbered
by microphone equipment in noisy reverberant environments. The HMM composition
method has already been proposed for additive noise. In this thesis, the HMM compo-
sition method for additive noise is extended to handle convolutional acoustic distortion
of the reverberant room, by using an HMM to model the acoustic transfer function.
The states of the acoustic transfer function HMM correspond to different sound source
positions. This HMM can represent the positions of the sound sources, even if the
speaker moves. i

This thesis also proposes a new method to estimate HMM parameters of the acous-
tic transfer function based on the HMM decomposition. The proposed method is
obtained as the result of the reverse process of the HMM composition, where the
model parameters are estimated by maximizing likelihood of adaptation data uttered
from an unknown position. Finally, this thesis describes the performance of the HMM

composition and decomposition methods on real distant-talking speech.
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Chapter 1

Introduction

1.1 Problem Statement

Speech recognition systems have been developed for various applications in the last
30 years. Recently, the accuracy of speaker-independent speech recognition has been
remarkably improved by use of stochastic modeling of speech and its training algorithm,
e.g. [40, 73, 76, 78]. Efficient search engines have also been developed, e.g. [3, 23, 24,
80]. For example, there are commercial continuous-speech recognition systems which
run on a PC: IBM’s ViaVoice, Dragon’s Naturally Speaking, and others. Some key
issues for more widespread use are development of recognition technology capable of
handling the following kinds of speech (figure 1.1):

e Noisy speech
Speech recognition systems perform remarkably well in non-noisy environments.
However, if a user speaks in noisy environments, the recognition accuracy will
seriously degrade because of mismatches between the training and the testing
environments. Also, noise will increase the difficulty of the speech-boundary
detection, and will cause the Lombard effect [41].

¢ Distant-talking speech
At present, a user must be equipped with a close-talking microphone (desk-
top microphone, head-mounted microphone, and so on). A key issue for more
widespread use is the development of recognition technology of reverberated

'speech obtained from a distant microphone.



Noisy speech Spontaneous speech
restarts,
out-of-vocabulary words
and so on.

background noise,

other speakers,
Lombard effect
and so on.

reverberation,
moving speaker,
and so on.

Distant-talking speech

Figure 1.1: Some key issues for more widespread use of speech recognition

¢ Spontaneous speech
Spontaneous speech is different from carefully produced speech like read speech.
It includes restarts, hesitations, and so on. Also, spontaneous speech causes the

problem of out-of-vocabulary words.

The most important advantage of the speech interface is to make hands-free speech
recognition a reality, where a user is not encumbered with microphone equipment, and
a user can speak from a distance while moving. At present, however, to achieve high
recognition accuracy, a user must be equipped with a close-talking microphone. If the
user speaks from a distance, the recognition accuracy seriously degrades because of
the influence of reverberation and environmental noise. Therefore, technology for the
distant-talking speech recognition becomes important.

The reverberation is defined by the impulse response (acoustic transfer function).
The influence of the reverberation is described by a scalar index of the reverberation
time, e.g. [53, 96]. The impulse response will change according to not only the shape
of a room but also to temperature and humidity. Figure 1.2 and figure 1.3 show
examples of waveform and narrow-band spectrogram for original (clean) speech and
reverberated speech. When training data of an acoustic model consists of the clean
speech data as shown in figure 1.2, and testing data consists of the reverberated speech
as shown in figure 1.3, a serious mismatch between the training data and the test
utterances occurs. Present spectral-matching measures have a shortcoming of being
easily affected by noise, reverberation, and so on. Those measures are very sensitive
to spectral distortion. On the other hand, if the training data consists of speech from
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Figure 1.2: Original speech : the speech waveform and narrow-band spectrogram of
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Figure 1.3: Reverberated speech (reverberation time = 0.6 sec) : the speech waveform
and narrow-band spectrogram of the Japanese utterance /ai/.

every conceivable combination of signal conditions, the recognition accuracy will not
seriously degrade. However, it is not practical to collect a huge set of utterances over
every conceivable combination of signal conditions.

Even in the case of a human, adaptability plays a very important role. For ex-
ample, it is necessary for a human to use a few phrases for adapting to individual
speaker differences [45]. Therefore, it is desirable to adapt the acoustic model to the
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target environment using a small amount of a user’s speech. The aim of the work
presented in this thesis is to make automatic speech recognition systems adapt to a
new environment.

This thesis details a robust speech recognition technique for the acoustic model
adaptation based on the HMM composition and decomposition methods in noisy re-
verberant environments, where a user speaks from a distance of 0.5 m ~ 3.0 m (figure
1.4). The aim of the HMM composition and decomposition methods is to estimate the
model parameters so as to adapt the model to the new environments by using a small
amount of a user’s speech. The HMM composition algorithm has been proposed for
additive noise [16, 55]. In this thesis, the HMM composition algorithm for additive
noise is extended to that for the acoustic transfer function of a reverberant room, by
using an HMM to model the acoustic transfer function. The states of the acoustic
transfer function HMM correspond to different sound source positions. This HMM can
represent the positions of the sound sources, even if the speaker moves. This thesis also
proposes a new method to estimate HMM parameters of the acoustic transfer func-
tion based on the HMM decomposition for hands-free speech recognition. The method
is able to estimate the model parameters by using observed speech uttered from an
unknown position without measurement of impulse responses. The performance of
the HMM composition and decomposition methods is evaluated on real distant-talking
speech and telephone speech. It is my hope that this thesis will be useful in human-

to-machine communication.



1.2 Literature Review

Much research for robust speech recognition has been done, where the two most im-

portant problems to be overcome are
e additive noise,

and
e convolutional distortion.

Additive noise usually consists of background noise, other speakers and so on. Its
effect on the speech input is denoted as addition in the wave domain and the linear-
spectral domain. Convolutional distortion usually comes from the telephone channel,
microphone characteristics, reverberation and so on. Its effect on the speech input is
represented as convolution in the wave domain, and is represented as multiplication in
the linear-spectral domain.

Many methods have been presented to solve each problem. Those approaches are

summarized as follows
e speech enhancement,
and

e model adaptation.

Figure 1.5 shows a robust speech recognition system. We focus on model adaptation
using a single microphone in this work. The model adaptation can also be emphasized
by using a multi-microphone (microphone array).

The following sections will briefly review some of major approaches to robust speech
recognition. Extensive surveys of robust speech recognition can be found in [15, 20,
42, 50].

1.2.1 Speech Enhancement Techniques

This section briefly describes major approaches for robust feature extraction, which
reduce the amount of noise or convolutional distortion. The techniques based on mi-
crophone arrays are briefly described at the end of this section.
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For additive noise,

e Spectral subtraction (SS)
A simple technique is the use of spectral subtraction, where clean speech is es-
timated by subtracting additive noise from noisy speech in the power-spectral
domain [10, 98]. Non-linear spectral subtraction is also proposed in [52].

¢ Noise robust feature, e.g. [35, 43, 74]
In [74], the use of formant features (SSC: Spectral Sub-band Centroids) as sup-
plementary features for speech recognition was proposed. Though additive noise
affects the speech power spectrum at all the frequencies, the influence is not so
much in the higher amplitude (formant) portions of the spectrum. Therefore, the
formant features are used as supplementary features for noisy speech in [74].



For convolutional distortion,

¢ Cepstral mean normalization (CMN)
A simple bias (convolutional distortion) removal technique is the use of CMN
[6]. Here, speech is parameterized using cepstral parameters. To remove a bias,
a cepstral mean value is subtracted from each cepstral element. Improved ver-
sions of CMN have been proposed for distortion caused by telephone channel,
microphone characteristics and speaker individuality. In E-CMN (Exact-CMN)
[86], two cepstral mean values are calculated, one for the speech for each speaker
and the other for non-speech for each environment. In SCMN (Segmental-CMN)
[100, 101], the normalization coefficients are calculated over a sliding finite length
normalization segment, and the feature vectors are normalized to zero mean and

unit variance.

e Multi-path stochastic equalization
In [12, 63], a framework to integrate the acoustic model of clean speech and
an equalization function was proposed. The equalization function is combined
with every possible path, where the equalization function is estimated using a
maximum-likelihood framework. In [12], the experiment is conducted on tele-

phone speech data.
For additive noise and convolutional distortion,

e SS and CMN i
Shozakai et al. [87] presented a comparison of some techniques for additive noise
such as SS, CSS (Continuous-SS) [67] and MMSE (Minimum Mean Square Er-
ror estimation) [14], and proposed a robust speech enhancement approach, E-

CMN/CSS, in car environments.

Those techniques have been evaluated on a relatively short impulse response: tele-
phone channel, car environments, and so on. However, they have not been evaluated

on noisy reverberant environments.

Speech Enhancement using a Microphone Array
The many techniques using microphone arrays have attempted to enhance speech
intelligibility. Robust speech recognition based on microphone arrays has also been

7



investigated recently. The following will briefly review some of the major approaches
to robust speech recognition and some of the major approaches to enhance speech using
microphone arrays. As for the microphone array techniques, an extensive survey can
be found in [71].

For additive noise,

e Beam-forming by a microphone array
The array signal processing enables high SNR signal-retrieval utilizing informa-
tion of the differences of speech and noise signal directions. A simple technique
is the delay-and-sum beam-former. Adaptive beam-forming techniques have also
been proposed [25, 44]. Those techniques are applied to speech recognition, e.g.
[22, 29, 72, 103, 104].

For convolutional distortion,

e Inverse filtering of acoustic impulse responses by microphone arrays
Many techniques to recover reverberated signals, with good intelligibility, in a
room have been proposed. For example, in [62], how to calculate the exact
inverse of room acoustics by using multiple loudspeakers (or microphones), MINT
(Multiple-input /output INverse Theorem) was proposed. In [102], an approach
to recover acoustically-reverberated signals using Multi-microphones Sub-Band
Envelope Estimation (M-SBEE) was proposed. This technique, using some kind
of inverse filtering, is very effective, but a reference signal is required to estimate

de-reverberation filters.
For additive noise and convolutional distortion,

e Shields and Campbell [84] reported intelligibility improvements for speech cor-
rupted with noise and reverberation by taking advantage of binaural input chan-

nels.

1.2.2 Model Adaptation Techniques

Model adaptation techniques enable robust speech recognition in the acoustic model
domain, instead of the parameterization domain. This has the advantage that the ob-
served data are not modified, and front-end processing is not required. Speech recogni-
tion systems might be able to have a model of target environments before recognizing

8



observed speech. Model adaptation techniques are also an extension of the technology
used in speaker adaptation. The following describes how to deal with additive noise,
convolutional distortion, or both. Bayesian adaptive technique is also described briefly

at the end of this section.
For additive noise,

e Model (de-)composition of speech and noise
The observation probability for noisy speech can be calculated from the output
of a speech model combined with the output of a noise model. In [99], the output
probability is calculated by maximum-approximation in the log-spectral domain,
where speech and noise are assumed to be independent. Therefore, their models
must be trained in the log-spectral domain. Improved versions have been pro-
posed: PMC (Parallel Model Combination) [16] and HMM composition [54]. In
those composition methods, the observed noisy speech is modeled before recog-
nition, and the observation probability is calculated in the cepstral domain. The
output probability density function of the speech model and the noise model
are converted to the linear-spectral domain, and are composed. Then the com-
posed one is converted back to the cepstral domain. Therefore, the composition
method needs the assumption that the sum of two log-normally distributed vari-
ables is approximately log-normally distributed (reproduction of distribution) in

the linear-spectral domain.

o Parameter generation (Data-driven technique), e.g. [18, 47]
In [47], an acoustic model parameter estimation method for noisy speech was
proposed. The technique is based on cepstral parameter generation from the
HMM. The generated sequence of speech and noise from the HMM are combined
to yield a noisy speech sequence, and the statistics of the noisy speech sequence

are used to obtain the noisy speech model.

e Jacobian adaptation of acoustic model
In [81], a Jacobian approach to fast adaptation of the acoustic model to noisy
environments was proposed. When noise changes slightly, the small changes are
approximated by a linear transformation using a Jacobian matrix in the cepstral
domain. This technique is based on the idea of adaptation of a model with noise

A to a model with noise A’.



For convolutional distortion,

e Maximum-likelihood (ML) approach to stochastic-matching .
In (82, 83], an ML stochastic-matching approach was proposed to decrease the
acoustic mismatch between training and testing. The mismatch is reduced by a
transformation function that maps the original model to the transformed model
that matches better with the testing condition. The transformation function is
estimated by using the observed data in an ML framework. In [85], hierarchical
structure in the parameter space and an improved version of the ML stochastic-
matching are integrated. The experiment for the evaluation is conducted on

telephone speech data.

e Linear regression for speaker adaptation
A popular method for speaker adaptation is maximum-likelihood linear regression
(MLLR) [19, 51]. In an MLLR method, the speaker-independent model is adapted
to a new speaker by using linear regression transformation. The transformation
matrices are calculated in an ML manner.

e Adaptive training for speaker normalization
In [4, 5, 34], the inter-speaker variability in the training data is reduced. The
speaker characteristics are represented as linear transformations of the speaker-
independent model. The speaker transformations are calculated in the training
phase by an MLLR method [51].

For additive noise and convolutional distortion,

e Model composition and stochastic-matching
In [61], a technique based on the HMM composition and stochastic-ma,tchiﬁg was
proposed, where additive noise and convolutional distortion are dealt with. The
experiment for the evaluation is conducted on simulated data which are passed
through a filter.

e Bayesian predictive-classification
Though prior knowledge about the mismatch mechanism (additive noise or con-
volutional distortion, etc.) is assumed in many methods, [37, 32, 33| propose a
Bayesian predictive-classification approach, where the knowledge of the mismatch

mechanism is not assumed.
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e Adaptive training
In [57], the training and testing data are assumed to be recorded with different
microphones in a variety of background-noise conditions. The technique consists
of combining the noise in testing and training environments. The condition of
additive noise becomes the same between training and testing. The new acoustic
models are built using the modified noisy speech data.

Bayesian adaptation

The Bayesian learning principle is used to derive maximum a posteriori estimates of
the model parameters. The MAP (Maximum A Posteriori) formulation gives a way to
combine existing prior knowledge and a small set of newly-acquired task-specific data
[49]. The MAP-based techniques have been employed in a number of applications,
e.g. [11, 48, 70, 97, 105]. A detailed survey can be found in [49]. For example, [21]
proposed the MAP-estimation method for multivariate Gaussian mixture observations
of Markov chains. In [58], the use of on-line Bayesian adaptation for speech recognition
was proposed. Huo et al. [31] proposed an empirical Bayesian method based on the

moment estimates for estimating the parameters of the prior densities.

As previously described, the approaches for robust speech recognition are summa-
rized as speech enhancement and model adaptation. Model adaptation techniques have
the advantage that front-end processing is not required, and speech recognition sys-
tems might be able to have a model of target environments before recognizing observed
speech. The model adaptation technique for robust speech recognition is investigated
in this work.

Clearly, many studies that deal with either additive noise or convolutional distortion
have been made. However, when both additive noise and convolutional distortion are
present, the system’s behavior is hard to predict. Some of the studies previously
described have dealt with both additive noise and convolutional distortion. But those
studies have been done for a relatively short impulse response: telephone channel,
car environments, and so on. Those techniques might not be able to deal with the
influence of a long impulse response: noisy reverberant environments. Also, techniques
using a microphone array to recover reverberated signals, with good intelligibility, in
a room have also been proposed. However these techniques require measured impulse
responses or a reference signal.
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To deal with both noise and reverberation, this thesis proposes a robust speech
recognition method based on HMM composition, where utterances are contaminated
not only by additive noise but also by an acoustic transfer function. This work focuses
on the case that a user speaks from a distance of 0.5 m ~ 3.0 m in a relatively small
meeting room, lecture room, etc. This thesis also proposes a new method to estimate
HMM parameters of an acoustic transfer function based on HMM decomposition in the
model domain. The model parameters are estimated by maximizing the likelihood of
adaptation data uttered from an unknown position. The HMM decomposition method
does not require measured impulse responses or a reference signal. The proposed
method is obtained as the result of the reverse process of the HMM composition.

1.3 Thesis Outline

This thesis is organized as follows. The next chapter, Chapter 2, describes the use
of HMMs (Hidden Markov Models) in speech recognition. Chapter 3 describes a ro-
bust speech recognition method based on the HMM composition for noisy-distorted
speech. Chapter 4 describes a method to estimate HMM parameters of an acoustic
transfer function based on the HMM decomposition in the model domain. Chapter
5 describes the performance of the HMM composition and decomposition methods on
distant-talking speech. The distant-talking speech is measured in noisy reverberant en-
vironments, where a microphone is placed about 2.5 m distant from speakers. Chapter
6 describes performance for the case of a shorter impulse response, telephone speech
recognition. The telephone speech data for the evaluation are recorded using 10 kinds
of ordinary analog telephone handsets and cordless telephone handsets in a soundproof
room, through the public telephone network. Finally, Chapter 7 summarizes this work

and suggests future research directions.
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Chapter 2

Speech Modeling with HMM

2.1 Stochastic Approach for Speech Recognition

A speech recognition system produces an estimate of the word sequence associated
with a given speech waveform. A variety of approaches in speech recognition have been
studied, e.g. [77]. In the 1970s, applications of hidden Markov models (HMM) to speech
recognition have become a research topic. The models are very rich in mathematical
structure. Also, there is the existence of sophisticated and efficient algorithms for
training and recognition. Therefore, the models can form the theoretical basis for
use in a wide range of applications. This stochastic approach is used in this work.
There are more detailed descriptions of the statistical approach in speech recognition
(28, 36, 76, 77]. i
In the stochastic approach, the estimated word sequence W is given by

Pr(W)Pr(O|W)
Pr(0) i

W = argmax Pr(W|0) = argmax (2.1)
w w

where O is the observed speech data, Pr(W) is the a-priori probability of the word
sequence, W = w;, ws,...,w;, and Pr(O|W) is the probability of the observed speech
given the word sequence. Since Pr(0O) is not dependent on the word sequence W,

equation (2.1) is rewritten as

A

W = argmax Pr(W) Pr(O|W).
w

Pr(W) is calculated from the language model, where the information about which
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word sequences are allowable is contained. The probability Pr(W) is rewritten as

- Pr(W) = Pr(wy) [] Pr(wilwi_s,...,w1). S i (2.2)

=2
Equation (2.2) is usually approximated by N-grams,

N
PI‘(W) i PI‘('LUl) H Pr(w,-|w,-,N+1, i oy w,-_l).
i-2
This means that the probability of the current word is only dependent on the previous
N — 1 words. Typically, N is chosen to be 3 (trigram), 2 (bigram) and 1 (unigram).
Pr(O|W) is calculated from the acoustic models, HMM. This thesis focuses on the
adaptation of the acoustic models to new environments. The acoustic model, HMM,

is described in the next section.

2.2 Definition of HMM

An HMM is used as the most widely and successful stochastic approach in speech
recognition. The unit of the HMM speech model is usually a phoneme or a word. The
phoneme is used as the unit of the speech model in this work. In the case of Japanese,
there are about 20 kinds of phonemes: vowels, consonants, fricatives, affricates, nasals
and so on. The use of the HMM in speech recognition requires an assumption:

e speech is split into small segments, where each segment is considered to be sta-

tionary.

Figure 2.1 shows the speech waveform and wide-band spectrogram of the Japanese
utterance /aite/. The speech waveform and wide-band spectrogram change in time.
But if the speech is split into small segments (20 ~ 40 msec), each segment can be
assumed to be stationary. In speech recognition, the speech spectrum is converted to
cepstral parameters which can retain useful speech information. Section 2.5 describes
how to analyze the speech. '

An example of an HMM is shown in figure 2.2. An HMM can be formally defined by
the number of states, the initial state probability density function, the state transition
probability matrix and the observation probability density function (PDF). A phoneme
HMM has usually three states, and has a simple left-to-right topology. Therefore, the
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initial state probability is 1.0 for the first state and 0 for all other states. In the example
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Figure 2.1: Speech waveform and wide-band spectrogram of the Japanese utterance
/aite/, where /a/, /i/ and /e/ are vowels, and /t/ is a plosive.
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Figure 2.2: 3-state hidden Markov model (HMM) for a left-to-right topology without
skips
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of figure 2.2, the state transition probability matrix is given by

Qp,1 0 0 0
11 Q412 0 0
0 az2 Qg3 0

o o o o

0 0 asz,s 03‘4

where

Z a.-,,- = 1
&

The observation probability density function associated with each state is a discrete
type or a continuous type. The continuous type is only considered in this work. The
observation probability density function for the continuous type is usually modeled
by a multivariate Gaussian distribution or a mixture of the multivariate Gaussian
distribution. The mixture of the multivariate Gaussian distribution in state j is given
by

K K
bj(Ot) = Z w,-,kN(ot; Hi ks Zj‘k), Z Wik = 1.0,
k=1 k=1
where N(os; 1k, Zj ) is a multivariate Gaussian distribution with the mean vector p;
and the covariance matrix T, and K is the total number of multivariate Gaussian
distributions.

To improve accuracy of speaker-independent recognition tasks, the total number
of mixtures is increased, and context-dependent models are also used, where the cur-
rent phoneme is dependent on the preceding' and following phonemes. However, it is
sometimes difficult to obtain sufficient data to accurately estimate all the model pa-
rameters. Therefore, it is necessary to tie sets of model parameters together. In a
tied-mixture HMM, each model shares the same PDFs which should be represeﬁtative
of the acoustic space. The observation probability density function in state j is given
by

K
bj(or) = kz:uj.kN(ot; His D),
=]
where the observation probability density function in each state is defined by K mixture
weights. Figure 2.3 shows the continuous density function and the tied-mixture density

function.
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2.3 Recognition Algorithm

The probability of the observation sequence is calculated from the given HMM. Since
the state sequence is hidden or not observed, the probability for all possible state
sequences is given by summing over all possible paths through the HMM

T
Pr(o|A) = 3" aos [] asie-1).6:0baie)(01), (2.3)
] t=1

where ) is the set of HMMs linked with the word sequence, and © is the set of all L
possible state sequences of length 7" in the model A

0= {01,92,.. .,BL}.

It is very expensive to calculate equation (2.3) directly. But an efficient algorithm
exists for this calculation. It is called the forward-backward algorithm. The forward-
backward algorithm is used to estimate the parameters of the HMM.

Acoustic space covered by the feature vectors
Continuous density function

Acoustic space covered by the feature vectors

Tied-mixture density function

Figure 2.3: Continuous density function and tied-mixture density function
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Forward algorithm

e Step 1.

N
as(t) = [t~ V| (00
i=1
e Step 3. Terminate with
N
Pr(o|)) = Za.-(T)
=1

Backward algorithm

o Step 1.

o Step 2. Fort=T7-1T-2,...,0,

N
Bi(t) =Y aijbj(0e41)B(t + 1).

j=1

e Step 3. Terminate with

N
Pr(o]) = 3 :(0).

=1

A more efficient algorithm exists for the calculation of equation (2.3). It is called
the Viterbi algorithm. The calculation is essentially the same as the forward algorithm
except that the summation is replaced by a maximization.

Viterbi algorithm
e Step 1.
a;(0) =0, if j#1
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o Step2. Port=ut.3.....T,
a;j(t) = [max a;(t — 1)a; ;| bj(ok).

e Step 3. Terminate with
Pr(o|A) = max a;(T).

2.4 Estimation of HMM Parameters

The state sequence cannot be observed directly from a given set of training data.
Therefore, a locally-optimal algorithm, the Baum-Welch algorithm [8, 9], based on
the Expectation-Maximization (EM) algorithm [13], is usually used. The basic idea is
that a good initial estimate of the parameters is first assumed, and the likelihood is
optimized iteratively.

The EM algorithm is a two-step iterative procedure. In the first step, called the
expectation step (E-step), the auxiliary function is given by

Q(\,A) = E[logPr(0,0|) | 0,
= Y Pr(o,8:|\) log Pr(o, 8;|}),
6;€0
where © is the set of all possible state sequences. In the second step, called the
maximization step (M-step), the estimate of A, A is calculated by maximization of the
auxiliary function, Q(\, \)
A= argina.x QA A).

Iteratively applying the E and M steps guarantees that the likelihood is non-decreasing
8 A
Pr(o|A) > Pr(o|A).
There are many references for the derivation of the model parameter estimation
formula (e.g. [28, 36, 76, 77]). Here, only the results for the continuous density HMM
are quoted. The estimates for the mean, variances and mixture weights for k-th mixture

component in state j are given by

T
Z Vt,3.k Ot

~ R t=1
lu‘j,k bk T ’

Z Vt,j,k

t=1
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~

T
> ik — ix) (00 — i)
Lin =5

T
Z Vi k
t=1

T

Z Vt.ik

=1
T b

p i, A

t=]1

b}

Wik =

where ' denotes the transposition, and v is given by

;(t — 1)a;jw;xbjk(0:)B;(t)
7 Wk il i
b ; Pr(o|A)
This maximum-likelihood criterion is considered in this work. Other criteria are
also seen in [40, 69).

2.5 Speech Analysis

Cepstral parameters, e.g.[68], are an effective representation to retain useful speech
information in speech recognition. At present, many speech recognition systems are
based on cepstral parameters. The term cepstrum is a word coined from the inverse

transform of the spectrum.
Now the speech signal o(w) is given by the multiplication of a pseudo-periodic
source, g(w), and the impulse response of the vocal tract, v(w), in the spectral domain

as follows:
o(w) = g(w)v(w).

The cepstrum is given by the inverse Fourier transform of log |o(w)],
F~" log o(w)| = F~* log g(w)| + F~* log o(w)}, (2.4

where F and log is the Fourier transform and the logarithm transform, respectively.
As shown in the above equation, the cepstral analysis can separate the speech signal
into the fine structure (the first term of equation (2.4)) and the spectral envelope (the
second term of equation (2.4)). Liftering is the process of weighting in the cepstral
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domain so as to help separate those two components. Various liftering functions may
be used [39, 95]. For this work, the cepstral parameters are weighted according to

L. e fBE
da 143 -sin(%) 1<n<L
0 n<0,n>L,

where L is the liftering coefficient [39]. The form of this filter is shown in figure 2.4.
The human-perceived pitch does not correspond linearly to the physical frequency of

the tone. A popular approach to simulate the auditory characteristics more precisely is

the use of a mel-scale. For this work, the relationship between frequency and mel-scale

is given by

f

Mel(f) = {7
el(f) 2595logm( '*"700)’

where Mel(f) is the perceived frequency in mel (Hz) [106]. The mel-scale is shown in
figure 2.5. The mapping is approximately linear below 1 kHz and logarithmic above.
The block diagram of cepstral analysis is shown in figure 2.6. The speech waveform
is split into a small segment by a window function. Each segment is converted to the
linear spectral domain by applying the discrete Fourier transform (DFT). Then the
logarithm and inverse discrete Fourier transform (IDFT) are applied, and the cepstral

parameters are obtained.

win)

0 o 10 15 20
(n)

Quefrency

Figure 2.4: An example of low-time lifter. This was used successfully by Juang et al.
(1987). Liftering coefficient: L = 20.
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Figure 2.5: An example of mel-scale. The mapping is approximately linear below 1
kHz and logarithmic above.

Speech waveform

il : Liftering Cepstral
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parameters

Figure 2.6: Block diagram of cepstral analysis.
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Chapter 3
Model Composition

This chapter describes a robust speech recognition method based on HMM composi-
tion for noisy and acoustically-distorted speech, where utterances are contaminated not
only by additive noise but also by an acoustic transfer function. The method realizes
a hands-free user interface such that a user is not encumbered by microphone equip-
ment even in noisy reverberant environments. The HMM composition algorithm has
been proposed for additive noise [16, 54, 55|. In this chapter, the HMM composition
algorithm for additive noise is extended to that for the acoustic transfer function of
a reverberant room [65, 66, 89, 90], by using an HMM to model the acoustic transfer
function. The states of the acoustic transfer function HMM correspond to different
sound source positions. This HMM can represent the positions of the sound sources,
even if the speaker moves. I

Section 3.1 describes the basic principle of HMM composition. Section 3.2 describes
the HMM composition method for noisy and acoustically-distorted speech in detail.
Section 3.3 describes the structure of the acoustic transfer function HMM.

3.1 Basic Principle of HMM Composition

There are many kinds of sounds in real environments. For example, the voices of
surrounding people, noisy footsteps, car noise and so on. Then there is also acoustic
reflection and reverberation in a room. If a speech recognition system knows the
conceivable sounds in the target environment before recognizing observed speech, the
system might be able to deal with their influence.
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The HMM composition method is based on the idea of “Source Modeling”. Tt
can produce speech in the target environment by adapting the model to the target
environment, the speaker and so on. Observed speech will be recognized by using the
adapted model, even if we do not know about the kinds of noise which contaminates

speech.

3.2 HMM Composition for Noisy and Acoustically-
Distorted Speech

3.2.1 Structure of Composed HMM

This section describes the HMM composition algorithm for noisy and acoustically-
distorted speech. The environment model is shown in figure 3.1, where the speech is
contaminated by noise and an acoustic transfer function. An example of this kind of
combination is shown in figure 3.2. The structure of the composed HMM is given by
the Cartesian product of the component HMMs. The number of states for a noise
HMM and an acoustic transfer function HMM are one and three, respectively in this
example. Therefore, the parameters of the composed HMM are given by

Number of states
= Num_states(Clean speech HMM) x Num _states(Noise HMM)
x Num_states( Acoustic transfer function HMM)
=3X1IxX3=8, 1

Number of Gaussian mizture components of the output probability
= Num_mixtures(Clean speech HMM) x Num_mixtures(Noise HMM)

il 2
Noise N
Clean (l\
speech S — H g b 0
Acoustic Observed speech
1 transfer function ¥

Figure 3.1: The environment model for noisy and acoustically-distorted speech
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x Num_mixtures(Acoustic transfer function HMM).

Here, we denote wﬁkmsﬁ ¢h) as the weight of the mixture k in the state j of the

clean speech HMM, wj(-.]?::'.”) as the weight of the mixture k' in the state j' of the noise
HMM, and w_.f-fjjf‘""f ) as the weight of the mixture k” in the state j” of the acoustic

transfer function HMM. The weights of the composed HMM are given by

Weight of the mizture components
it w(CleanSpeech) % w(Nos'ae] (Acous.t.f)

1ol J,k j!’kl x wj”,k" ]
where each state number and mixture number depends on each HMM.
The transition probabilities of the composed HMM are given by

(Composed) __

(CleanSpeech)
1,] j

Noise)
1,5 i

% ag' % a(Acoua.t.f.).

a 'J i”sj”

a

For example, the transition probability of the composed HMM in figure 3.2, from the
state “A,D,E” to the state “B,D,E”, is given by

(CleanSpeech) (N oise) (Acous.t.f.)
aA.B an,D XaE‘E .

The observation probability density function (PDF) of the composed HMM will
take the following general form

b(Ot) - j;‘ Pf(st,nt, ht)

Ci= f(stant:'ht) = Oy

where the integration is over all triples (s;, ns, k), and s;, n; and h, are clean speech,
noise and an acoustic transfer function at time ¢, respectively. The function F denotes
the interaction of s;, n, and h; which produces the observation o;. It is difficult to
calculate the above integration. Therefore, some approximation is necessary. The
following section describes how to calculate the observation PDF of the composed
HMM.

3.2.2 Observation PDF of Composed HMM

First, on the assumption that speech and noise are independent, the observed speech

is represented by
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O(w;m) = S(w;m) + N(w;m).

where O(w;m), S(w;m) and N(w;m) are the observed noisy speech, clean speech and
noise, respectively. Since this relation is preserved in the linear-spectral domain, we
regard O(w;m), S(w;m), N(w;m) as short-time linear spectra at frame m.

The conventional approach estimates noise statistics during a noise period and
recognizes an input-noisy speech by using the noise-added reference patterns. The
HMM composition executes the addition in the HMM parameter domain instead of
the addition in the signal domain. Since the signal level is generally different between
training and testing, an adjustment factor k is introduced. Therefore, the observed

Clean speech " Acoustic transfer
HMM function HMM

ARA :
fwa-.‘. e (2]
Initial state Final state .
A Q=0

D@
A &
¥

A
/IBXIEXA

Say
B/
Poitmcomeds o

Figure 3.2: An example of a composed HMM
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speech is represented by
O(w;m) = S(w;m) + k- N(w; m),
Generally, model parameters in speech recognition are represented by the cepstrum.
The model parameters have to be transformed to the linear domain where the additive

property of speech and noise holds [16, 55].
As for a convolutional distortion, the observed spectrum is represented by

O(w;m) = S(w;m) - H(w;m),

where H(w;m) is an acoustic transfer function. If a convolutional distortion is caused
by the acoustic transfer function from the sound source to the microphone, H(w;m)
is a function of frame m, since the sound source may move. The multiplication can be

converted to a sum in the cepstral domain as,
Ocep(t; M) = Seep(t; m) + Heep(t; m),

where, Ocep(t;m), Heep(t; m) and Seep(t; m) are the cepstra for the observed speech, the
acoustic transfer function and the clean speech of quefrency ¢ at frame m, respectively.
Therefore, the observed speech, as shown in figure 3.1, is represented by

O(t) = Exp{Cos(Scep(t; m) + Heep(t; m))} + k - N(w;m). (3.1)

Figure 3.3 shows how to calculate the observation probability density function of the
composed PDF for the noisy and acoustically-distorted speech. The cosine transform
(Cos), inverse cosine transform (Cos™"), exponential transform (Exp) and log transform

(Log) are conducted on the PDFs, as explained in detail in Appendix A.
The procedure is as follows:

1. Estimate the clean speech HMM, the noise HMM and the acoustic transfer func-
tion HMM in the cepstral domain.

2. Compose the clean speech HMM and the acoustic transfer function HMM in the
cepstral domain (see Appendix A.3)
H(cep_SH) = H(cep_5) g H(cep_H) and E(ccp_SH) = 2(cep_5) ¥ E(cep_H)-

Here, H(cep_S)» E(c:ep_S]y H(cep_H)» 2(cep_H)7 H(cep_SH) and Z(cep_SH) COI‘I‘ESPOIld to
a mean vector and a covariance matrix of the clean speech HMM, the acous-
tic transfer function HMM and the composed HMMs in the cepstral domain,

respectively.
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Figure 3.3: Block diagram of the proposed HMM composition

3. Cosine transform of each Gaussian PDF of HMMs (see Appendix A.1)
H(log_SH) = i H(cep_SH) and S(log_SH) =I- Z(cep_sH) o

Here, I is a cosine transform matrix, p(og_sa) and Zii.g_sg) are a mean vector
and a covariance matrix of a Gaussian PDF in the log-power spectral domain,

respectively.

4. Exponential transform to the linear-spectral domain. (see Appendix A.2)

The normal random vectors obtained by exponential transform, Z = exp(Y), has
log-normal distribution. The mean and the covariance are given by

2
O\log_SH),ii
Mlin_SH)i = €XP {.lu'(log_SH),:' + A58 gz ) }

and

Ofiin_sH)jj = Mlog_SH); * Plog_5H)i * {€XP(0(t0g_smy i — 1)}-

Here, p(in_s) and Zin_sg) are the mean vector and the covariance matrix in

the linear-power spectral domain.
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5. Compose two distributions according to equation (3.1) (see Appendix A.3)

W(iin_SHN) = M(lin_sH) + k * P(tin_n)

and
Lain_sun) = Sgin_sm) + K+ Zin_n).

Here, ptin_n), Z(lin_N), M(iin_san) and Llin_sua ) are the mean vector and the
covariance matrix of noise and composed models in the linear-power spectral

domain, respectively.

6. Log transform of composed HMMs (see Appendix A.4)

1
H(log_SHN),i = 10g ttin_sHN)i — 3 {

a 21 _SHN),ij
(lin_SHN),ij & 1}
H(lin_SHN),i * M(lin_SHN),i

g2, i
(lin_SHN),ij & 1} L

2
o " e 10
(log_SHN)ij i { H(lin_SHN),i * H(lin_SHN),j

7. Inverse cosine transform to the cepstral domain

H(cep_SHN) = F_l * H(log_SHN) and Z(CEP_SHN) - (F_l)’ i 2(log_SHN) f F_l-

The HMM recognizer decodes observed speech on a trellis diagram according to
maximize the log-likelihood. The decoded path will find an optimal combination of
speech, noise and the acoustic transfer function.

3.3 Modeling of Acoustic Transfer Function

This section describes the structure of the acoustic transfer function HMM. Figure 3.4
shows the proposed acoustic transfer function HMM in the case of five states. Each
state of the acoustic transfer function HMM corresponds to a position of sound sources,
and all transitions among states are permitted. Therefore, the proposed acoustic trans-
fer function HMM is able to represent the position of sound sources, even if the speaker
moves. Since each state of the acoustic transfer function HMM has Gaussian distri-
butions, it is also possible for the acoustic transfer function HMM to deal with the
variation of a user’s position or a influence of long impulse response.
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Figure 3.4: An ergodic HMM of acoustic transfer functions

The spectral analysis in speech recognition is based on short time windowing. The
multiplication of short time signal spectra and the transfer function is equivalent to the
periodic convolution in the time domain. However, actual distorted speech results from
the linear convolution. Since the proposed HMM composition of the speech and acous-
tic transfer function only realizes a periodic convolution, the composed HMM cannot
model an actual acoustically-distorted speech accurately. The difference between using
periodic and linear convolution will be large according to the length of the impulse
response. In this thesis, the covariance matrix of the Gaussian PDF deals with the

influence of the long impulse response.
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Chapter 4
Model Decomposition

This chapter describes a new method to estimate HMM parameters of an acoustic
transfer function based on the HMM decomposition method in the model domain [91].
The model parameters are estimated by maximizing the likelihood of adaptation data.
The proposed method is obtained as the result of the reverse process of the HMM
composition. The previous chapter described a method which can model observed
speech by the composition of HMMs modeling clean speech, noise and the acoustic
transfer function. This method, however, requires measurement of impulse responses to
train the acoustic transfer function HMM. It is inconvenient and unrealistic to measure
impulse responses for a new environment. The new method is able to estimate HMM
parameters of the acoustic transfer function from a small amount of adaptation data.

4.1 Basic Principle of HMM Decomposition

Model parameters are estimated in a maximum-likelihood (ML) manner using the
expectation-maximization (EM) algorithm, where the likelihood of the observed speech

is maximized
Ay = argmax Pr(O|Ag, Ay, As).
Ay
Here, A denotes the set of the HMM parameters. S, N and H denote clean speech,

noise and the acoustic transfer function.
Now the observed speech is represented by

Ocep(t;m) = Cos™'[Log{ Exp(Cos(Seep(t; m) + Heep(t;m))) + N(w;m)}]. (4.1)
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Figure 4.1: Parameter estimation by HMM decomposition

Here, Cos and Cos ™! are Fourier (cosine) transform and inverse Fourier (cosine) trans-
form, respectively. Oep(t;m), Scep(t;m) and Heep(t;m) are cepstra for the observed
speech, the clean speech and the acoustic transfer function of quefrency t at the m-th
frame, and N(w;m) is the linear spectrum for noise of frequency w at the m-th frame.

Accordingly, the acoustic transfer function is represented by
Heep(t;m) = Cos™*[Log{ Exp(Cos(Ocep(t;m))) — N(w;m)}] = Seep(t; m).
The estimation equation of the acoustic transfer function HMM is written as
Ag., = Cos*[Log{ Exp(Cos(Ao.,)) © A }] © Asu

where the suffixes of cep and lin represent the cepstral domain and the linear-spectral
domain, respectively. This equation shows that the HMM decomposition is applied
twice to the noisy and acoustically-distorted speech. First, the HMM decomposition
method is applied in the linear-spectral domain to estimate the distorted speech HMMs
by ML estimation. Then, the distorted speech HMMs are converted to the cepstral
domain, and the HMM decomposition method is applied again in the cepstral domain
to estimate the acoustic transfer function HMM by ML estimation. The procedure is

as follows
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1. Re-estimate parameters Ao, of composed HMMs using adaptation
data with corresponding transcription by ML estimation in the cep-
stral domain. Next, estimate parameters Ay, of the noise HMM from
the signal during noise periods, and then convert Ao, and Ay, to
the linear-spectral domain

th"n i Exp(COS(Aocap))’ AN[!‘R = EXP(COS(ANcep))'
Decompose Agg,, from Ap, as follows

ASHyw = aigma-xpf()‘SH+Nu..|)\SHma'\N;.-,.)
SHh'ﬂ

th'n © ANJm g

e

2. Convert Asy,, to the cepstral domain
‘ AS+H1:¢? i Cos_l(Log(ASHh'n))'
Then decompose Ag,,, from Ag, g, as follows

cep
AHcep ’ AScep)

AHp = agmaz Pr(Asya..,
Heep

e

AS+H¢=’, e Ascep %

The procedure is summarized in figure 4.1. The HMM decomposition method, as
shown in figure 4.1, is applied twice to the noisy and acoustically-distorted speech. In
the HMM decomposition method, the composed HMM is separated into a known HMM
and an unknown HMM by operations on the model parameters based on maximum-
likelihood estimation. Figure 4.2 illustrates the HMM decomposition method. The
following sections describe the model decomposition in detail. Section 4.2 describes
decomposition of a known noise HMM and unknown distorted speech HMMs. Section
4.3 describes decomposition of known speech HMMs and an unknown acoustic transfer
function HMM.

4.2 Decomposition of Noise HMM and Distorted
Speech HMMs

This section describes the decomposition of a known noise HMM and unknown dis-
torted speech HMMs. Consider tied-mixture HMMs with diagonal covariance matrices,
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Figure 4.2: HMM decomposition method in noisy reverberant environments

A = (A, B), where A = [a;;], i,j = 1,2,+-+, J is the transition probability matrix, and
B = [b], j = 1,2,--+,J, is the observation probability density function (PDF). J is
the number of states. The observation Gaussian PDF b;(o;) is given by

K
bi(or) = 3 wikN(o; pk, L), (4.2)
k=1

where w;; is the probability of mixture k in state j, and K is the total number of
Gaussian PDF's tied by all of the states, and N(o¢; px, L) is the multivariate Gaussian
distribution given by

i 1 i
N (04; py Ii) = WEXP {_E(Ot s #k)’ﬂk l(Ot i Mk)} )

where D is the dimension of the adaptation vector o;. Next, p; and Ly are the mean
vector and the covariance matrix corresponding to mixture k, respectively, and " denotes
transposition.

For an adaptation data sequence o, let s and k be the unobserved state sequence and
the unobserved mixture component label, respectively. The probability of observing

the state sequence s is simply

T
Pr(s|A) = Ha'a:_x,sn
t=1
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where a,,,, = 1. The joint probability for observing the sequences o and s can be
evaluated as

O,SI/\) ]_-.[aat 1,8¢ J! Ot

The joint probability for observing the sequences o, s and k can be evaluated as

i
PI'(O, 8, klA) . H{aat_huwa;,ktN(ot; My Zkt)'

Therefore, the probability for observing the sequence o is then measured by
Pr(o|)) = ZZ Pr(o, s, k|A),

where the summations are taken over all possible state sequences and all possible
mixture component labels.

Now, the decomposition of distorted speech HMMs (Asg,,, ) is handled in a maximum-
likelihood framework

;\SHJin T a'rgzla'x Pr(As i+ Nign |A$ Hign s ANiin )5
lin

where Ay, and Aggyn,, are the model parameter of noise and the model parameter of
adaptation data o in the linear-spectral domain, respectively. The above ML parameter
estimation can be solved using the EM algorithm. The EM algorithm is a two-step
iterative procedure. In the first step, called the expectation step (E-step), the following
auxiliary function is calculated

Q(iSHliu'ASHHu) = E[logPr(O 8 kIRSHhu7ANhn)IASth’ANiin]

i z Z Z Z PI o[?s“) S(P:n) k(P,n)|ASH]',._:ANuu)

p=1n=1 4(p.n) lp.n) PI ol? ’")IASH:W ’\N:m)
X log Pr(o(p'n)’ s(p'n): k(p,n) |’\SH:.'n ’ ANrm) (43)

where P is the total number of phonemes, and each phoneme consists of W, adaptation
data. Next, o®") is the n-th observation sequence for a phoneme p, and the length is
T Finally, s®™ and k(™ are the unobserved state sequence and the unobserved
mixture component labels corresponding to the observation sequence o(P™),

The joint probability for observing the sequences o, s and k can be evaluated as

T
Pr(ovs’kusmins’\f\’un) = Ha’ﬂt-x.atwu,ktPrO(oil’\SHun:)‘Nm.)a (4'4)

$=]
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where Pr(o;|Asg,. , A, ) is the probability density function of the random variable o.

Let the observation Gaussian PDF in the model Agg,,, be the form shown in equa-
tion (4.2), and the observation Gaussian PDF in the model Ay, be a single Gaussian.
Since the model Asg,,, is independent of the model Ay, in the linear-spectral domain,
the mean vector and the covariance matrix corresponding to mixture k£ in the model
Ao, are derived by adding the mean vector and the covariance matrix in the model
Asm,, to the mean vector and the covariance matrix in the model Ay,

s =g g and 2P = 5 B0,

where piSH) and Z‘,ESH) are the mean vector and the covariance matrix corresponding
to mixture k in the model Agg,, . Further, p™ and Z¥) are the mean vector and the
covariance matrix in the model Ay, . Therefore, equation (4.4) can be written as

T
PI(O, s, k|’\55unv ANh'n) i H{a-’c—x,uw-ﬂhN(ot; ﬂs:H) * Ju'(N)v Z‘IE:;H) : Z(N))'
t=1

It is straightforward to derive that [38]

Q(XSH,.',J/\SH;.,,)
Pl x| g W s i (p
z Z Z Z Pr (P’n) 8 PV = J! ——‘1 il 1|ASHI":1 ANI'ITI) log a‘ o

p=1i=1j=1ln=1 i=
J K Wp 1iem)

+ZZZ E E Pr(o il s(p'n) =7, k(P, )_ k|ASth’ANhn)longk

p=1i=j k=1n=1 t=1
P K W, Tlm)

o

+ 3 Pr(o®™, kP = k|Asa,., Aw,, ) log N(ofP™; g™ + @), S50 4 p),
=1 k=1n=1 t=1 |
(4.5)
Here, we focus on only the terms involving (8 = {itx®), £°™}). Therefore, equation

(4.5) can be written as

Qéi(iSHlinlASHﬁn)
P K W, Tl o e

i iy Z 7(”") xlogN(oﬁp’");,&S, 4 un L’,E ) 4 £
p=1lk=1n=1
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‘l‘l o(SH s ~(SH \
X -l—log(21r) (E(SH] 4 E(N)) (o5 (p.m) pi ]__#(N))I(ogp I 'u’i A #(N))
' 255 4+ z(0) !
(4.6)
where
7?;;“) Pr(ogp,n), kgp‘n) . k|ASHIin’ANh'n)S
and

= Z’)’t,k~
t

This term, 7, can be calculated efficiently by using the forward-backward algorithm

9]. -
The M-step in the EM algorithm maximizes Q( ;\sgh.n |As,, ) with respect to ;\SH““

i.'Ew'H;,-,. = argmax Q(:\SHH'. MSHH,. )’
ASHy;,

which leads to solving aQé(is-Hh'n |ASH:.'")/8!Q'(SH) = Oand aQé(:\SHm |ASH:in)/6S(SH) et
0.
Therefore, we get

A e g mad R gy L g (1

where

=EZE (p,n) (p.n) o
P W i
ZZZ 11 gp’)—’mk)zf’m-
R T

Equation (4.7) shows that the HMM decomposition method deals with the model
parameter instead of the series of the observed speech.

4.3 Decomposition of Clean Speech HMMs and
Acoustic Transfer Function HMM

This section describes the decomposition of known speech HMMs and an unknown
acoustic transfer function HMM. The HMM decomposition method is applied in the
cepstral domain as shown in figure 4.1. First, the model parameter Asg,, , which is
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estimated in section 4.2, is converted to the cepstral domain. Then, the decomposition
of the acoustic transfer function HMM, Ag, is estimated using maximum-likelihood in

the model domain

iIfeep = a‘rgma‘x Pr(AS+Hc=p AH:::H '\Scep)’

i

where Ag.g,,, is the model parameter of the distorted speech in the cepstral domain,
and )g is the model parameter of the clean speech in the cepstral domain. This ML
parameter estimation can be solved using the EM algorithm. In [82], an estimation
method based on ML is presented, where the estimation of convolutional distortion is
implemented in the time domain. On the other hand, we estimate the acoustic transfer
function in the model domain. The estimation in the model domain can reduce the
amount of computation.

The auxiliary function is defined in a similar way to section 4.2,

Q(XHceplAHce;p) B Ellog Pr(o? 8! kliHcep’ AScep)|A-Hf:q:? AE"cap]

P WP Pr(o(?lﬂ),s(f’:“) k(?a“)IA 18 ,A 8
-E0s ¥ R e M)

p=1n=1 4(p.n) klp.n) Pr(o(P ) l’\H.-.ep: Ascep)

x log Pr(o(””‘), sem) k(@m) |5\ sy ASeep)s (4.8)

where o, is represented by adding the clean speech data to the acoustic transfer
function in the cepstral domain. It is impossible to measure the data o, practically.
However, the HMM decomposition method can deal with the model parameter instead
of the series of the data.

Since we focus on only the terms (8 {,u(H ), ) equation (4.8) can be written

as

Qi(AHep| AHeey)
P K W, 7ln)

- TS 287 xlog NP + 50, 59 4 50

p=1 k n=1 t=1
K Wy Tipm)

= EP: e BBy

p=1 n=1 t=1

c

log(2m)?( T )

b |

(oP™ — p(S) _ pEY (olP™ — yS) _ ()
2(E° + 20m) |
(4.9)
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where \g,,, is the tied-mixture HMM, and the total number of Gaussian mixtures is
K. Next, ”(3) and E(s) are the mean vector and the covariance matrix corresponding

(pim )

to mixture k, and Ag,,, is a single Gaussian. We assume that the above 7, is equal

(pim) .

to the 7,z in section 4.2.

To 51mplify the equation, the following A is defined
ﬁ(H) 2 #(H) & Aﬂ(m and ) = p(H) 4 A SH)
The M-step in the EM algorithm maximizes Q(A Heep| AH..,) With respect to A Mo

iHcgp = a"l:grna‘x Q( CGPIAHI:GP)’

AHcep

which leads to solving aQé(iH“,|,\Hm)/aA,1<H) =0 and aQé()'\Hmp\Hur)/aAj'(H) o
0. Therefore,

aQé(iHcep AI{cep)
oA plH)
2 RIS & =i — ) — AR
=23 X Xm ; =0, (4.10)
powrfpeesc - 2 4 pE) 4 ALE)

Since the model parameter As H,, in the linear-spectral domain is calculated by equation

(4.7), the model parameter of o(p ) L Rk Heep» 18 given by

’iS'I'Hcep - Cos—l{ Log( XSffh'ﬂ. ) }'

On the other hand, the mean vector and the covariance matrix in the model Asyg.,.,

(pin)

can also be represented using the term o, as follows

ﬂ£S+H) L E Z Z 7{121:) ng'ﬂ)/’}'k
| e I

(S+H) Z ZZT(M) (psn) _ ﬂ£S+H))2/,yk_

Then, we get

ZZZ (Pln] (Piﬂ) — ,.Y ﬂ(s+H)
Z Z Z 71(3;@( gp,n) ;1(5””) E(S+H)
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Therefore, according to equation (4.10), on the assumption that the variance is fixed,

the re-estimation formula of A?) is given by

Zzz,),(pm) (pn) “ (“(5) +”(H))

§ g 2 4 3
Ap(H) = i k
Z Tk
el o BNESTE
(S
i ( ) (S) “(H)
i1 o + Z(H)
= — : (4.11)
E Yk

=t 59, B

Equation (4.11) shows that the HMM decomposition method deals with the model

parameter Asyg,,, instead of the data o;.
Then, taking the derivative of equation (4.10) with respect to ASE) | and setting

to zero, we get

i’r 2O 4 5D L AZE) _ g,
T (55 + 2@ 4 AD@Y?

where
(S+H) I f
h = DB +H +(#§¢S)+#(H))(M£S)+ﬂ(m )

There are some approaches to the problem of estimating the covariance matrix D)
[82]. In this work, we use a Taylor expansion. Now, define a function F' as follows

58 4 D) L AZE) — g,
() 4 g ApD)2

F(AZ™) =

If F is expanded in a Taylor series through terms of first order, we obtain
HF (AT

oA Z(H) AZD(H)=0
IO g 5+ D) 20 \ o)
41 (2155) + D)2 (E(S) ()3

F(AZ®)) ~ F(0)+ x AZH)
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where AX(H) converges on 0 by using the EM algorithm. Therefore, the re-estimation
formula of AL(#) is given by

A S(H)

iz - 5)

58 4z (5 4 gy

(4.12)

S { 1 g }
7 LD +zmy (50 4+ puanys

Equation (4.12) shows that the HMM decomposition method deals with the model
parameter As.p,,, instead of the data o.
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Chapter 5

Distant-Talking Speech

Recognition

This chapter describes the performance of the HMM composition and decomposition
methods on real distant-talking speech [93]. We measured the distant-talking speech
from four positions. The sound signal is captured by using a single-directional mi-
crophone. The HMM decomposition method enables the estimation of parameters of
an acoustic transfer function HMM using adaptation speech from an unknown user’s
location. This chapter also describes the performance of the HMM composition and
decomposition methods on speech recognition of a distant moving talker. Speech of
the distant moving talker is recognized by using an ergodic-HMM of acoustic transfer

| 5m80 &
|
Mh3  [Dhi
(=] : !
= _lz/lci]crbphone E :Z [0 p1 &
< w0
mps: Dp2 | ¥
Dhs: [Dh2

Figure 5.1: Experimental room environment
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functions. The experimental results indicate the effectiveness of the HMM composition
and decomposition methods. First, section 5.2 describes the performance of the HMM
composition method. Section 5.3 describes the performance of the HMM composition
and decomposition methods. For speech recognition of the distant moving talker, the
performance is described in section 5.4.

5.1 Experimental Conditions

Recognition experiments are conducted to evaluate the effectiveness of the HMM com-
position and decomposition methods. Figure 5.1 shows a top view of the experimental
room. The sound signal is captured by using a single-directional microphone (SONY

Original speech

Frequency [kHz]

P DTSR, o)
0.6 Time [sec]

Distant-talking speech 3
fal /sh/ fi/ b/ fa/

6 T A 3 233 l'g'rrr]"'lﬂ’rl'f"'r;'v]vl'ﬂ

Frequency [kHz]

0 o . 0.4 0.6 Time [Secl

Figure 5.2: Distant-talking speech in experimental room (reverberation time = 0.18
sec) : the narrow-band spectrogram of the Japanese utterance /ashiba/.
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C-355). The speech data used for evaluation is the Set-A of the ATR Japanese speech
database and the ASJ (Acoustical Society of Japan) continuous speech database.

Real distant-talking speech
To evaluate on real speech, we measured distant-talking speech from four sound
source positions, pl, ..., p4. The distant-talking speech is contaminated by computer
noise, air conditioner noise and ventilating fan noise, where SNR (Signal to Noise Ratio)
is 16.7 dB on average. The SNR is calculated as follows
E[o(t)’]

SNR= 1010g10 W,

where o(t) and n(t) denote the observed speech and the noise at time ¢, respectively.
One male speaker is used as the testing speaker in speaker-dependent (SD) experi-
ments. Two male speakers and one female speaker are used as the testing speakers
in speaker-independent (SI) experiments. Each testing speaker utters 1 ~ 50 words
(x 3) as adaptation data which are not used in the training. The related informa-
tion of the adaptation data used in the following word-recognition experiments are
listed in Appendix B. For testing, 500 words which are different from those words
in the training are used. The related information of the testing data used in the fol-
lowing word-recognition experiments are listed in Appendix C. Figure 5.2 shows the
narrow-band spectrogram for original (clean) speech and distant-talking speech in the
experimental room. In section 5.3.2, word-recognition experiments are carried out on
the real distant-talking speech. s

Simulated distant-talking speech

To evaluate on simulated speech, we measured nine transfer functions corresponding
to nine sound source positions, hl, ..., h5 and pl, ..., p4 by using the method reported
in [88]. Distant-talking speech is simulated by linear convolution of clean speech and
the measured impulse responses. The length of the original impulse response was about
180 msec. The former five positions, hl, ..., h5 are used for the model composition
and the latter four positions, pl, ..., p4 are used for the recognition tests. Figure 5.3
shows the measured impulse responses corresponding to four sound source positions,
pl, ..., p4. As the distance between the microphone and the sound source position
is longer, the delay time is longer. Figure 5.4 shows the cepstral coefficients of the
acoustic transfer functions from several training positions. The differences shown will
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cause degradation of speech recognition. In section 5.2 and 5.3.1, word-recognition

experiments are carried out on the simulated distant-talking speech.

The recognition algorithm is based on 256 tied-mixture diagonal covariance HMMs.
Each HMM has three states and three self-loops. The models of 54 context-independent
phonemes are trained using 2620 words in the ATR database for speaker-dependent
HMMs. The other 500 words in the same database are used for testing. The speaker-

0.8
0.6} Sound source position: p1
04}
02}
0 o
0.2} r
0 40 80 120 160
Time [msec]
0.8
0.6} Sound source position: p2
04} 7
02}
0 P,
-0.2
0 40 80 120 160
Time [msec]
0.8
0.6} Sound source position: p3
0.4} i
02}
0 Ll:' - e
-0.2
0 40 80 120 160
Time [msec]
Sound source position: p4
e

40 80 120 160
Time [msec]

Figure 5.3: Measured impulse responses
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Figure 5.4: Cepstral coefficients for different sound source positions

independent HMMs are trained using about 9600 sentences which are uttered by 64
speakers of the ASJ database.

The speech signal is sampled at 12 kHz and windowed with a 32 msec Hamming
window every 8 msec. Then FFT is used to calculate 16-order MFCCs and power. In
recognition, the power term is not used, because it is only necessary to adjust the SNR
in the HMM composition. The analysis condition is listed in table 5.1.

In section 5.2, we assigned one state for the noise HMM and five states for the
acoustic transfer function HMM, and a single Gaussian PDF is used per state. Figure

Table 5.1: Analysis conditions

Sampling freq. 12 kHz
Frame shift 8 msec
Window length 32 msec
Window Hamming
Pre-emphasis 0.97
Feature parameter | MFCC (order 16)
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Noise HMM

. J

Figure 5.5: Structure of a clean speech HMM, a noise HMM and an acoustic transfer

function HMM in experiments

5.5 shows the acoustic transfer function HMM. Each state directly corresponds to one
of the training positions, hl, ..., h5. All transitions among states are permitted, and
their probabilities are defined as 0.2. In section 5.3, we assigned one state for the noise
HMM and one state for the acoustic transfer function HMM.

5.2 Evaluation of HMM Composition

5.2.1 Results for Noisy and Acoustically-Distorted Speech

This section describes performance of the HMM composition method. The points to

be investigated are
e performance for the acoustic transfer function HMM,
e improvement of recognition rate for noisy and acoustically-distorted speech,

— evaluation of speaker-dependent (SD) and speaker-independent (SI) speech

recognition performance,

and

e performance for an unknown position of the sound source.
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This section also shows the influence of the reverberation time, based on the results
of the 500-word recognition experiments, where impulse responses of 100 msec and 32
msec are artificially made from the impulse response of 180 msec. They are made by
multiplying the original 180 msec by an exponential function as follows

vy=9y-¢* a>0.

Several impulse responses are adjusted by a constant a. The obtained impulse responses
are shown in figure 5.6.

Here, the acoustic transfer function in the cepstral domain is obtained by subtract-
ing the cepstrum coefficients of original speech from those of convoluted speech. The
mean value of the i-th cepstral coefficient, u;, is given by

Y ; . Sy
m=2 (o - o) = =3, (5.1)
921 901 .
where g is the total number of frames of the training data, and s;(j ) is the i-th cepstral

coefficient at frame j for the distorted speech which is made by the linear convolution.
The clean speech, 35”, is the i-th cepstral coefficient at frame j. The covariance o;; is

given by
ol ands 59
oi == (¢ = pi)(ed’ — wi), (5.2)
9 j=1
cS.'i) s 3:(.7') £ sgi),
0 180 0 100 180 il 4 180
[msec] [msec] [msec]

Figure 5.6: Impulse responses (180 msec, 100 msec, and 32 msec)
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where we assume that the cepstral coefficients are uncorrelated. In this experiment,
500 words are used for training of the acoustic transfer function HMM. For the speaker-
independent model, 125 words are used for each testing speaker (125 words x 4 testing
speakers = 500 words). The structure of the acoustic transfer function HMM is shown

in figure 5.5.
Table 5.2 shows the recognition rates for the distorted speech with the speaker-
dependent model. The word-recognition rate is shown for the positions, hl, ..., h5,

on average. Without any compensation, the word-recognition rate with the clean
speech HMMs (HMM-S) is 78.5% in the case of 180 msec impulse response. When
only the mean vector are adapted (indicated as HMM-SH(u)), the word-recognition
rate is improved from 78.5% to 87.2%, in the case of the 180 msec impulse response.

Table 5.2: Word-recognition rates [%)] for distorted speech with speaker-dependent

models

Model HMM-S | HMM-SH(x) | HMM-SH(y, X)
Acoustic compensation X O O
180 msec 78.5 87.2 84.0
100 msec 88.0 94.0 92.4
32 msec 88.6 96.2 95.6
0 msec 96.6 - -

Table 5.3: Word-recognition rates [%) for noisy and acoustically-distorted speech with

speaker-dependent models (SD) and speaker-independent models (SI)
HMM-S | HMM-SN | HMM-SHN(y) ||[HMM-SHN (g, £)

o SD[SI [SD|SI| SD | st | sD ST
Noise compensation X X £y 1@ O O O O
Acoustic compensation| X X X X O £ O O
180 msec 48 | 18.7] 59.5(53.5| 67.2 | 57.2 55.2 45.4
100 msec 99 (220 76.2 |65.7|f 83.6 | 66.7 79.7 59.2
32 msec 144 | 21.9 || 76.5 | 65.4 || 87.0 68.4 86.5 65.5
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The improvement is also obtained in other cases. In the case of the 100 msec impulse
response, the word-recognition rate is improved from 88.0% to 94.0%. In the case of
the 32 msec impulse response, the word-recognition rate is improved from 88.6% to
96.2%. In this table, “0 msec” means the clean speech. The word-recognition rate for
the clean speech with the clean model is 96.6%.

This table also shows that as the impulse response is longer, the effectiveness of
the composed HMM is decreased. The effectiveness of the covariance matrix, X', of
the acoustic transfer function HMM is not significant, because the variation might be
larger than expected and distributed depending on preceding speech characteristics.
That result is shown by the label of HMM-SH(p,Z), where the mean vector and the
covariance matrix are both adapted.

Table 5.3 shows the recognition rates for noisy and acoustically-distorted speech.
The recognition rate is shown for the positions, hl, ..., h5, on average. The noise
data is collected in a computer room and added to the acoustically-distorted data as
the SNR is 15 dB. The recognition rate with the HMM-SN, composed of the HMM-S
and the noise HMM, is improved from 4.8% to 59.5% for the SD model. The proposed
HMM-SHN(u), composed of the HMM-SN and the acoustic transfer function HMM,
increases the recognition rate by 67.2% for the SD model. On the other hand, the
recognition rate with the matched condition is 89.7%, where the phoneme HMM is
trained using 2620 words which are simulated by the linear convolution of the speech
corpus and the measured transfer function (180 msec impulse response), followed by
the addition of the noise data. Comparing this result with that of the composed HMM,
HMM-SHN(pu), it shows a difference in perfo‘rma.nce of 22.5%.

5.2.2 Results for Unknown Positions

The performance of the proposed method is evaluated on unknown positions of the
testing speaker. The five positions, hl, ..., h5, are used for the model composition.
The other four positions, pl, ..., p4, are used for the recognition tests. Figure 5.7 shows
the cepstral distance between the known-training positions and the unknown-testing

positions. The cepstral distance, d, is given by

i=1

y =J L S uemm) - pee(),
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Figure 5.7: Cepstral distance between known-training positions and unknown-testing

positions

where J is the cepstral order. Next, h(™")(j) is the j-th cepstral coefficient for the
known-training position, and p(***)(5) is the j-th cepstral coefficient for the unknown-
testing position. For example, the training position, h2, is the closest position for the
testing position, p2, in the cepstral domain.

Table 5.4 shows word-recognition rates with the speaker-dependent model for the
known-training positions and the unknown-testing positions on average. The word-
recognition rates for the known-training positions are the same rates in table 5.2.
The recognition rates with the HMM-SH(u) for the known-training positions and the
unknown-testing positions are 87.2% and 86.2%, respectively. It is confirmed that the
degradation between the training sound source positions and the testing sound source
positions is relatively small for all composed HMMs. This is because the cepstral
distance between an testing position and the closest training position is not so far as
shown in figure 5.7.

Figure 5.8 shows the recognition rates for an unknown testing position, p2, by using
the acoustic transfer function of each training position, hl, ..., h5, and also shows the
cepstral distance between the testing position, p2, and each training position, hl, ...,
h5. This figure indicates the closest position results in the best performance, 86.2%.
As the cepstral distance is longer, the recognition rate will degrade. In the case of the
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Figure 5.8: Word-recognition rates and cepstral distance for an unknown position (p2)

training position, h1, the recognition rate is decreased to 82.6%.

This figure also shows performance difference between an acoustic transfer function
HMM of the closest position and an ergodic HMM of the acoustic transfer function
(shown in table 5.4) is quite small. Because the decoded path by using the ergodic
HMM finds the optimal combination of the acoustic transfer function HMM and the
clean speech HMM.

Table 5.4: Word-recognition rates [%] for known/unknown positions
Model HMM-S HMM-SH(p) | HMM-SH(u, Z)
Acoustic compensation X X () {3 O O

known |unknown| known |[unknown| known |[unknown
78.5 77.8 87.2 86.2 84.0 83.7

Distorted speech
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Figure 5.9: Word-recognition rates in reverberant environment

5.3 Evaluation of HMM Decomposition

This section describes the performance of the HMM composition and decomposition
methods on distant-talking speech. The model parameters of the acoustic transfer

function are estimated by maximizing likelihood of adaptation data uttered from an
unknown position.

5.3.1 Results in Simulated Environment

In this section, the speech corpora are processed by linear convolution of clean speech
and an impulse response which is measured in an anechoic room to compensate for
the influence of the loudspeaker’s characteristics. The loudspeaker used in this work
is JBL Control 5 Plus. Next, the speech is processed by linear convolution of impulse
responses which are measured in figure 5.1.

Figure 5.9 shows the SD experiment results averaged over pl, ..., p4 by using
different amounts of adaptation data. The recognition rate with initial HMMs (clean
speech HMMs) is 88.1%. By using the HMM composition and decomposition methods,
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the performance, “Decom.(Mean)”, is improved to 91.8% with 10 adaptation words.
Finally, applying the HMM decomposition method to both the mean vector and the
covariance matrix, “Decom.(Mean,Cov.)” increases the performance by about 1%.
These results show the effectiveness of the estimated covariance matrix of the acoustic
transfer function.

Figure 5.9 also shows the recognition rate in the case of the known acoustic transfer
function, where the model parameters of the acoustic transfer function are estimated
according to equation (5.1) and (5.2). The recognition rate in the case of the known
acoustic transfer function is 92.8%. These results show that there is essentially no
difference between the known acoustic transfer function and the estimated acoustic
transfer function.

In the CMN-based testing case, the phoneme HMMs are trained using the CMN-
processed clean speech data. By subtracting each cepstral mean value from each testing
data, the recognition rate is 80.7%. The experimental results clearly show that the
simple CMN technique does not work well. In this simulated experiment, the silence
part of the samples is cut off. The length of one word is about 0.6 sec on average. This
figure shows, in the case of the 180 msec impulse response, it is difficult to calculate

the cepstral mean on a short time.
In the case of the matched condition, the SD recognition rate is 96.6%, where

Log-prob.

5-word
10-word —— =
50-word =>-=ureen
-5412345673 " e e T R
Number of iterations BT D

Figure 5.10: Convergence of HMM decomposition training
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ition rates with 10 adaptation words at various SNRs

Table 5.5: Word-reco
Models | HMM-S | HMM-SN | Decom.(Mean) | Matched HMMs
Noise compensation X ¢ O -
Acoustic compensation X X O -
0dB 7.8% 81.6% 82.5% 88.2%
5dB 35.6% 86.8% 86.8%
10dB 59.8% 90.4% 90.8%
15 dB 76.4% 90.4% 92.5%
20 dB 82.8% 90.6% 92.7% 96.4%

each phoneme HMM is trained using acoustically-distorted speech. Comparing this
result with that of the composed HMM, Decom.(Mean,Cov.), it shows a difference in
performance of 3.3%.

Figure 5.10 shows the convergence property of the HMM decomposition method
in the SD model. The number of the adaptation words is one, two, three, four, five,
ten and fifty in the place, pl. The label of 1-word is /ikioi/, and the label of 2-word
is /omoshiroi/, and so on. The other information of the adaptation words are listed
in Appendix B. In this figure, the log-likelihood of each adaptation word versus the
number of iterations in EM algorithm is plotted. The result shows that three or four
iterations seem enough.

Finally, the recognition rates at various SNRs are shown in table 5.5, where the
computer-noise signal is added to the acoustically-distorted speech signal, for pl, at
various SNRs, 0 dB, 5 dB, 10 dB, 15 dB and 20 dB. Table 5.5 shows the recognition
rates with 10 adaptation words at each SNR. In the case of SNR 0 dB, the recognition
rate with the clean speech HMMs (HMM-S) is 7.8%. The recognition rate with the
composition HMMs (HMM-SN) of the speech HMMs and the noise HMM is 81.6%.
Applying the HMM composition and decomposition methods to noisy and acoustically-
distorted speech, “Decom.(Mean)”, increases the performance by about 1.0%, where
the mean vector of the acoustic transfer function HMM is estimated and composed.
Also, in the case of SNR 20 dB, the recognition rate is improved from 82.8% to 92.7%.
The recognition rate with the matched HMMs is 88.2% at SNR 0 dB, and 96.4% at
SNR 20 dB. In comparison with the performance of the matched HMMs, the difference
is 5.7% at SNR 0 dB, and 3.7% at SNR 20 dB. The performance at SNR 0 dB is slightly
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lower than the performance at SNR 20 dB.

5.3.2 Results in Real Environment

Recognition results for real distant-talking speech are shown in figure 5.11 and figure
5.12. The recognition rate with initial HMMs (clean speech HMMs) is 77.2% for the
SD model, and 54.4% for the SI model. The recognition rate with composed HMMs of
clean speech HMMs and noise HMM is 87.5% for the SD model, and 61.5% for the SI
model.

By applying the HMM decomposition method to only the mean vector, “Decom.
(Mean)”, the recognition rate with 10 adaptation words is improved to 90.5% for the
SD model, and 64.9% for the SI model. Then, applying the HMM decomposition
method to both the mean vector and the covariance matrix, “Decom.(Mean,Cov.)",
increases the performance to 91.2% for the SD model, and 66.2% for the SI model.
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Figure 5.11: Word-recognition rates with speaker-dependent models in real environ-

ment
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Figure 5.12: Word-recognition rates with speaker-independent models in real environ-

ment

These results show the effectiveness of the estimated covariance matrix of the acoustic
transfer function. Some adaptation data cause a small decrease in recognition rate.
This is because there is a mismatch between the some adaptation data and the testing
data.

The recognition rate in the case of the known acoustic transfer function is 92.2%
for the SD model, and 67.8% for the SI model. These recognition results show that
the performance of the HMM composition and decomposition methods is close to that
of the case of the known acoustic transfer function as the number of adaptation data
increases. Finally, in the case of the matched condition, the SD and the SI recognition
rates are 96.4% and 70.7%, where each phoneme HMM is trained using simulated
distant-talking speech.
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5.4 Evaluation on Speech Recognition of Distant
Moving Talker

This section describes the performance of the HMM composition and decomposition
methods on speech recognition of a distant moving talker. Speech of the distant moving
talker is recognized by using an ergodic-HMM of acoustic transfer functions. Each
state of the ergodic-HMM of acoustic transfer functions corresponds to a position
of sound sources, where all transitions among states are permitted. Therefore, the
proposed ergodic-HMM of acoustic transfer functions is able to trace the position of

sound sources.

5.4.1 Experimental Conditions

Recognition experiments are conducted to evaluate the effectiveness of an ergodic-
HMM of acoustic transfer functions on speech recognition of the distant moving talker.
Figure 5.13 shows the recording condition of speech of the distant moving talker. One
male is walking from “Starting position” shown in figure 5.13. He speaks 31 sentences
while moving. One sentence is used for adaptation. Distant-talking speech without
moving is also recorded. The position of sound sources is g1, g2 and g3 shown in figure
5.13. Figure 5.14 shows the estimated cepstral coefficients of acoustic transfer functions

. 5m80 i
Table
o | ULLED i
§ B,
Mic. Moving direction P
3 2 g
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White-board Stax:tl_ng
1L ] position

Figure 5.13: Recording condition of speech of a distant moving talker
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Figure 5.14: Estimated cepstral coefficients of acoustic transfer functions

at gl, g2 and g3.

We chose 55 context-independent phonemes as clean speech units. Each phoneme
is modeled by a single left-to-right 3-state tied-mixture HMM with 3 self-transition
loops and without state skipping. Sixteen mel-frequency cepstral coefficients (MFCC)
with their first order differentials (AMFCC), and first order differentials of normalized
logarithmic energy (Apower) are calculated as an observation vector of each frame.
There are 256 Gaussian mixture components with diagonal covariance matrices shared
by all of the models for MFCC and AMFCC, respectively. There are 128 Gaussian
mixture components shared by all of the models for Apower. Only the mean vector is
estimated for an acoustic transfer function in this experiment.

The phrase recognition experiment is carried out using continuous sentence speech,
where the sentence includes 6 ~ 7 phrases on average. This task is 306 phrases with a
phrase perplexity of 306. Phrase accuracy is calculated by

N-D-S§5-1
N

where N is the total number of phrases, D is the number of deletions, S is the number

of substitutions and I is the number of insertions. The phrase accuracy for close-talking

speech of the testing talker is 90.4%.
The points to be investigated are the performance of

Accuracy = x 100,

e parallel models of acoustic transfer functions;
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Composed HMMs for each acoustic transfer function are separately set. ‘
Likelihood scores for each composed HMMs are calculated, and then
composed HMMs having maximum likelihood are selected.

and

e ergodic models of acoustic transfer functions.

5.4.2 Results for Speech of Distant Moving Talker

Table 5.6 shows the average phrase accuracy [%)] for distant-talking speech without
moving. The phrase accuracy with the clean speech HMMs is 69.5%. Next, we compose
the clean speech HMMs and each acoustic transfer function HMM, gl, g2 and g3.
The performance of the parallel models, where composed HMMs having maximum
likelihood are selected, is 76.5% on average. The performance of the composed ergodic-
HMMs (shown in figure 5.15) is 75.5% on average. Comparing this result with that
of the parallel model, a difference in performance of 1.0% is shown. This is because
all transition probabilities of acoustic transfer functions in the ergodic-HMM are set

equally, and a wrong path might be chosen.

i i
Initial state

An example of composed
ergodic phoneme HMM

J

Acoustic transfer
function HMM

\

Figure 5.15: An example of a composed HMM in experiments of a distant moving

talker
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Table 5.6: Phrase accuracy [%)] for distant-talking speech without moving

Models gl g2 g3 Average
Clean speech HMMs 58.1 72.6 i 69.5
Parallel models 67.0 76.3 86.1 76.5
Ergodic-HMMs (g1, g2, g3) | 66.1 73.5 87.0 75.5

Table 5.7: Phrase accuracy [%)] for speech of a distant moving talker

Models Phrase accuracy
Clean speech HMMs 63.3
Parallel models 76.7
Ergodic-HMMs (g1, g2, g3) 82.3
Ergodic-HMMs (gl, g2) 78.6
Ergodic-HMMs (g1, g3) 76.3
Ergodic-HMMs (g2, g3) 80.0

Table 5.7 shows the average phrase accuracy [%] for speech recognition of the distant
moving talker. The phrase accuracy with clean speech HMMs is 63.3%. The perfor-
mance of the parallel models, where composed HMMs having maximum likelihood are
selected, is 76.7%. The performance with the‘ergodic-HMMs of acoustic transfer func-
tions at gl, g2 and g3 is improved to 82.3%. These experimental results show the
effectiveness of the ergodic-HMMs for speech recognition of the distant moving talker.

5.5 Summary

This chapter has investigated the performance of the HMM composition and decompo-
sition methods on distant-talking speech, where the loudspeaker is set at a distance of
about 2.5 m. The HMM decomposition method enables to estimate the parameters of
the acoustic transfer function HMM not from one measured impulse responses but by
using adaptation speech from an unknown user position. The results are summarized

as follows:
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¢ Evaluation on simulated distant-talking speech at various SNRs,
The proposed method improves the recognition rates for noisy and acoustically-
distorted speech at various SNRs, where the computer-noise signal is added to
the acoustically-distorted speech signal. In table 5.5, the recognition rates with
10 adaptation words at each SNR are shown for the speaker dependent model.
In the case of SNR 0 dB, the recognition rate with the clean speech HMMs is
7.8%. The recognition rate with the composition HMMs of the speech HMMs and
the noise HMM is 81.6%. Applying the HMM composition and decomposition
methods to noisy and acoustically-distorted speech, increases the performance
by about 1.0%, where the mean vector of the acoustic transfer function HMM is

estimated and composed.

e Evaluation on real distant-talking speech,
The proposed method improves the recognition rates for the SD model and the
SI model. In figure 5.11 and figure 5.12, recognition results are shown for the
speaker dependent (SD) and the speaker independent (SI) model. The recognition
rate with clean speech HMMs is 77.2% for the SD model, and 54.4% for the SI
model. The recognition rate with composed HMMs of clean speech HMMs and
noise HMM is 87.5% for the SD model, and 61.5% for the SI model. Applying
the HMM composition and decomposition methods to the real distant-talking
speech, the recognition rate with 10 adaptation words is improved to 90.5% for
the SD model, and 64.9% for the SI model, where the mean vector of the acoustic

transfer function HMM is estimated and composed.

Then,

e applying the HMM decomposition method to both the mean vector and the co-
variance matrix of the acoustic transfer function HMM, increases the performance
to 91.2% for the SD model, and 66.2% for the SI model.

The experimental results show that the proposed method can improve the distant-
talking speech recognition performance in comparison with that of using a speech
recognizer composed of the clean speech HMMs and the noise HMM (from 87.5% to
91.2% for the SD model, from 61.5% to 66.2% for the SI model). These results also
show that the covariance matrix of the acoustic transfer function estimated by the
HMM decomposition is effective to compensate for the influence of the long impulse
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response. However, in the matched condition, the SD and the SI recognition rates are
96.4% and 70.7%, where each phoneme HMM is trained using simulated distant-talking
speech. The performance of the proposed method is small in comparison with that of
the matched condition. Therefore, the further improvement of the HMM adaptation
method would be necessary.

This chapter has also investigated the performance of the HMM composition and
decomposition methods on speech recognition of the distant moving talker. Speech
of distant moving talker is recognized by using an ergodic-HMM of acoustic transfer
functions. Each state of the ergodic-HMM of acoustic transfer functions corresponds
to a position of sound sources, where all transitions among states are permitted. The

results are summarized as follow:

e The performance of the parallel models, where composed HMMs having maxi-
mum likelihood are selected, is 76.7%. On the other hand, the performance with
the ergodic-HMMs of acoustic transfer functions is improved to 82.3%. These
experimental results show that the ergodic-HMM can improve the speech recog-

nition performance of the distant moving talker.

63



Chapter 6

Telephone Speech Recognition

There have been many studies that deal with convolutional distortion in telephone
speech recognition. For more widespread use of telephone speech recognition, studies
to deal with additive noise and convolutional distortion should be made. Recently,
since cordless telephone handsets are also used, there is the problem of the difference
between ordinary analog telephone handsets and cordless telephone handsets.

The previous chapter describes the performance of the HMM composition and de-
composition methods on the real distant-talking speech, where speech is contaminated
not only by additive noise but also by an acoustic transfer function. The HMM compo-
sition and decomposition methods are able to apply to not only distant-talking speech
but also to telephone speech. This chapter explores the case of a shorter impulse re-
sponse, telephone speech recognition. The recognition experiment shows the problem
of cordless telephone handsets, and shows that the HMM composition and decompo-
sition methods is able to improve the performance. Other techniques for telephone
speech recognition have been reported in [30, 59, 64, 75, 79].

The telephone speech data for evaluation are recorded using 10 kinds of ordi-
nary analog telephone handsets and cordless telephone handsets in a soundproof room
through the public telephone network as shown in figure 6.1.

6.1 Telephone Speech Data

Figure 6.1 shows the recording condition of the telephone speech. Utterances from
60 speakers in the ASJ (Acoustical Society of Japan) continuous speech database are
outputted through a mouth simulator, and inputted into 10 kinds of ordinary analog
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Figure 6.1: Recording condition of telephone speech

telephone handsets and cordless telephone handsets in the soundproof room. Then,
their speech is recorded through the public telephone network. Ten kinds of telephone
handsets are CANON (CF-H1CL), KENWOOD (IS-W757), NEC (Speax23 CL), NTT
(CP-D40), PANASONIC (VE-D67L-K), PIONEER (TF-JP50), SANYO (TEL-L710),
SHARP (CJ-H7-B), SONY (SPP-A600) and VICTOR (TN-DJ1-B). Each telephone
handset consists of an ordinary analog telephone handset and a cordless telephone
handset.

Figure 6.2 shows the log-power spectrum of the clean speech and the telephone
speech, which are digitized at an 8 kHz sampling rate. In the case of the speech
through cordless telephone handsets, the spectral shape over 3 kHz is distorted. The
SNRs of ordinary analog telephone handsets and cordless telephone handsets are 25.1
dB and 20.3 dB, respectively. Their SNRs are calculated by

“}“ Ei=1 o(t)?

SNR ~ 1010g10 _lzm—j't(t)z,
m —~it=1

where o(t) and n(t) denote the observed speech and the noise at time ¢, respectively.
Next, | and m are the number of total frames of speech data and the number of total
frames of noise data, respectively. The problems of cordless telephone handsets are

summarized as follows:

e The band-width becomes narrow in comparison with ordinary analog telephone

handsets.

¢ Noise and distortion caused by a wireless system are added to speech.

65



Clean speech

Log-power spectrum(dB] :

Frequency [Hz]

Ordinary telephone
L e

Log-power spectrum[dB]

Frequency [(Hz]

Cordless t

elephone
I . I .

T o

Log-power spectrum(dB]
5 3

Frequency [Hz]

Figure 6.2: Log-power spectrum /u/ of clean speech and telephone speech

e A cordless telephone handset has a scramble-function which causes distortion.
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Figure 6.3: Environment model for telephone speech

6.2 HMM Decomposition on Telephone Speech

This section describes the HMM decomposition on telephone speech. Figure 6.3 shows
an environment model for the telephone speech. The observed speech O(w;m) is rep-

resented by

O(w;m) = {S(w;m)+ Ng)(w;m)} - H(w;m) + Ncm)(w;m) - H'(w; m)
= S(w;m) - H(w;m) + N(w;m),

where
N(w;m) = Nipg)(w;m) - H(w; m) + Nicg)(w; m) - H'(w; m).

S(w;m), Nsg)(w;m), Nicr)(w;m), and N(w;m) denote the clean speech, the back-
ground noise, the channel noise and the observed noise at frame m and frequency w,
respectively. H(w;m) and H'(w;m) are transfer functions. Accordingly, a composed
HMM of the observed speech in the linear-spectral domain is represented by

ASH‘}'N g Exp{ COS (Asczp @ A-H’ce'_u)} @ AN!iu? (6'1)

where A and @ denote a set of model parameters and a model composition procedure,
respectively. Exp and Cos are the exponential transform of the distribution function
and the cosine transform of the distribution function, respectively. According to equa-
tion (6.1), the estimation equation of the transfer function HMM is written in the

cepstral domain as follows
A= Cos ™ {LOg( AsH+Hin © ANia)} © Ascepr (6.2)

where cep and lin denote the cepstral domain and the linear-spectral domain, respec-
tively. Next, © denotes a model decomposition procedure. Finally, Cos™! and Log are
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the inverse cosine transform of the distribution function and the logarithm transform of
the distribution function, respectively. Equation (6.2) shows that the HMM decompo-
sition method is applied twice in the linear-spectral domain and in the cepstral domain
to estimate the transfer function HMM. First, the HMM decomposition method is ap-
plied in the linear-spectral domain to estimate the telephone speech HMMs which are
free from the influence of noise. The obtained telephone speech HMMs are converted
to the cepstral domain. Then, the HMM decomposition method is applied again to
estimate the transfer function HMM.

6.3 Experiments and Results

6.3.1 Experimental Conditions

The experiment is conducted on the telephone speech data which we described in
section 6.1. About 7500 sentences from 25 males and 25 females are used for the
training. Five males and five females for the testing are not used in the training. Each
testing speaker utters only one sentence for adaptation for each handset.

We chose 55 context independent phonemes as the clean speech units. Each phoneme
is modeled by a single left-to-right 3-state tied-mixture HMM with 3 self-transition
loops and without state skipping. Sixteen mel-frequency cepstral coefficients (MFCC)
with their first order differentials (AMFCC), and the first order differentials for nor-
malized logarithmic energy (Apower) are calculated as the observation vector for each
frame. There are 256 Gaussian mixture comg;onents with diagonal covariance matrices
shared by all of the models for MFCC and AMFCC, respectively. There are 64 Gaus-

Table 6.1: Total number of phrases in testing set
Name of subset a b c d e f g h i j

Total number of phrases || 306 | 331 | 327 | 359 | 327 | 366 | 358 | 306 | 292 | 261
Number of phrases

for one sentence

Number of phonemes

for one phrase
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Table 6.2: Details of testing set. Five males (m) and five females (f) are used.

Speaker for testing Subset
can0001 (m) a h i
tsu0003 (m) a b c
mat0002 (m) a i i
hit0002 (m) a d ¢
son0001 (m) a f g

ecl1008 (f) a e f
necl001 (f) a b j
et11002 (f) a c d
shal002 (f) a g h
tos1001 (f) a h i

sian mixture components shared by all of the models for Apower. A single Gaussian
is employed to model the noise and the transfer function. Only the mean vector is
estimated for the transfer function in this experiment.

The phrase recognition experiment is carried out using continuous sentence speech.
Each sentence includes 6 ~ 7 phrases on average. In this task, the ASJ database is
divided into 10 subsets. Each subset consists of 50 sentences, except one subset which
consists of 53 sentences. One typical subset of this task is 323 phrases with a phrase
perplexity of 323 on average. Table 6.1 shows the total number of phrases in detail.
Each speaker utters three subsets through one telephone handset as shown in table 6.2.

Phrase accuracy is calculated by
N-D-5-1

N
where N is the total number of phrases, D is the number of deletions, S is the number

of substitutions and I is the number of insertions.

x 100,

Accuracy =

6.3.2 Experimental Results

The points to be investigated are
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¢ improvement of recognition rate by the HMM composition and decomposition

methods,
e comparison with cepstral mean normalization (CMN),
and
e comparison with matched condition.

Table 6.3 and table 6.4 show the average phrase accuracy [%] for 10 kinds of ordinary
analog telephone handsets and cordless telephone handsets, respectively. The phrase
accuracy with the clean HMMs (indicated as HMM-S) is 79.2% for the clean speech.
The telephone speech, however, decreases the phrase accuracy to 60.9% for ordinary
analog telephone handsets, and 19.6% for cordless telephone handsets.

The phrase accuracy with the HMM-SN, composed of the HMM-S and the noise
HMM, is improved to 70.1% for ordinary analog telephone handsets, and 30.3% for
cordless telephone handsets. By applying the HMM decomposition method twice in the
linear-spectral domain and in the cepstral domain, HMM-SHN, the phrase accuracy
is impfoved from 60.9% to 78.1% for ordinary analog telephone handsets, and from
19.6% to 50.5% for cordless telephone handsets with one adaptation sentence.

Table 6.3 and table 6.4 also include the average phrase accuracy for 10 kinds of
the telephone handsets in the matched condition. The phoneme HMMs, HMM-TELE
(ordinary tele.) are trained using the speech data through 10 kinds of ordinary analog
telephone handsets. The phoneme HMMs, HMM-TELE (cordless tele.), are trained
using the speech data through 10 kinds of cordless telephone handsets. The phoneme
HMMs, HMM-TELE (ordinary and cordless), are trained using the speech data through
10 kinds of ordinary analog telephone handsets and cordless telephone handsets. The
phrase accuracy with the HMM-TELE (ordinary tele.) is 77.7% for ordinary analog
telephone handsets. The phrase accuracy with the HMM-TELE (cordless tele.) is
61.0% for cordless telephone handsets. On the other hand, the phrase accuracy with
the HMM-TELE (ordinary and cordless) is decreased to 72.7% for ordinary analog
telephone handsets, and 60.5% for cordless telephone handsets. This is caused by
the mismatched condition between ordinary analog telephone handsets and cordless
telephone handsets.

Table 6.5 shows the average phrase accuracy with CMN. In the CMN-based testing
case, the phoneme HMMs are trained using the CMN-processed clean speech data.
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Table 6.3: Phrase accuracy (%] for 10 ordinary analog telephone handsets

Noise Channel i
Models : ) Phrase accuracy
compensation | compensation
HMM-S X X 60.9
CMN X O 74.7
HMM-SH X O 68.6
HMM-SN O X 70.1
HMM-SHN O O 78.1
HMM-TELE sy
(ordinary tele.) i ¢ '
HMM-TELE (ordi-
ik " oy
nary and cordless)

Table 6.4: Phrase accuracy [%)] for 10 cordless telephone handsets

Noise Channel
Models ! ; Phrase accuracy
compensation | compensation
HMM-S * X 19.6
CMN X O 42.0
HMM-SH X i O 29.1
HMM-SN O X 30.3
HMM-SHN O O 50.5
HMM-TELE
: - 61.0
(cordless tele.)
HMM-TELE (ordi- AT
nary and cordless) } i '

By subtracting each cepstral mean value from each testing data, the phrase accuracy
is 74.7% for ordinary analog telephone handsets, and 42.0% for cordless telephone
handsets. On the other hand, by subtracting the cepstral mean of the same adaptation
data to the HMM decomposition from the testing data, the phrase accuracy is dropped
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Table 6.5: Comparison with adaptation data in CMN (ordinary/cordless)

Cepstral mean CMN Wt i
Each testing data || 74.7% / 42.0%
Adaptation data | 72.6% / 38.6%

Table 6.6: Comparison with matched condition for one ordinary analog telephone
handset

Input HMM-S | HMM-SHN el S
il § i (matched handset)
matched handset 64.5% 80.1% 86.6%

to 72.6% for ordinary analog telephone handsets, and 38.6% for cordless telephone
handsets. This is due to the mismatch of the cepstral mean between adaptation data
and each testing data.

Table 6.6 shows the comparison with the matched condition for one ordinary analog
telephone handset. In the case of the HMM-TELE (matched handset) which are trained
using the speech through only one kind of ordinary analog telephone handset, the
performance is 86.6% for the same ordinary analog telephone handset. In the case of
the HMM composition and decomposition, the phrase accuracy with the HMM-SHN
is 80.1% for the same analog telephone handset with one adaptation sentence. These
show a difference in performance of 6.5%. Therefore, further improvement of the HMM

adaptation method would be necessary.

6.4 Summary

This chapter has evaluated the performance of the model adaptation based on the
previously proposed HMM decomposition method [92] for the telephone speech recog-
nition. The average phrase recognition accuracy with the clean speech HMMs is 60.9%
for ordinary analog telephone handsets, and 19.6% for cordless telephone handsets.
The average phrase recognition accuracy with the CMN-HMMs is 74.7% for ordinary
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analog telephone handsets, and 42.0% for cordless telephone handsets. By the HMM
decomposition method, the average phrase recognition accuracy is improved to 78.1%
for ordinary analog telephone handsets, and 50.5% for cordless telephone handsets.
These results show the HMM decomposition method is able to improve the perfor-
mance. However, in the matched condition, the average phrase recognition accuracy is
77.7% for ordinary analog telephone handsets, and 61.0% for cordless telephone hand-
sets. Therefore, further improvement of the HMM adaptation method is necessary for
cordless telephone speech.

73



Chapter 7

Conclusions

7.1 Summary of Dissertation

The most important advantage of the speech interface is to make hands-free speech
recognition a reality, where a user is not encumbered with microphone equipment, and
a user can speak from a distance while moving. At present, however, to achieve high
recognition accuracy, a user must be equipped with a close-talking microphone. If the
user speaks from a distance, the recognition accuracy seriously degrades because of
the influence of reverberation and environmental noise. Therefore, technology for the
distant-talking speech recognition becomes important.

This thesis has detailed a robust speech recognition technique for acoustic model
adaptation based on the HMM composition”and decomposition methods in noisy re-
verberant environments, where a user speaks from a distance of 0.5 m ~ 3.0 m. The
aim of the HMM composition and decomposition methods is to estimate the model
parameters so as to adapt the model to a target environment by using a small amount
of a user’s speech in noisy reverberant environments.

In Chapter 3, the HMM composition algorithm for additive noise is extended to
model the acoustic transfer function of a reverberant room. In this approach, an
HMM attempts to model the acoustic transfer function. The states of the acoustic
transfer function HMM correspond to different sound source positions. This HMM can
represent the position of sound sources, even if the speaker moves.

This thesis has also proposed, Chapter 4, a new method to estimate HMM parame-
ters of the acoustic transfer function based on the HMM decomposition. This method
is able to estimate the model parameters by using observed speech uttered from an
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unknown position without measurement of impulse responses. The estimated acous-
tic transfer function, the clean speech HMMs and the noise HMM are composed to
recognize noisy and acoustically-distorted speech.

In Chapter 5, speech recognition experiments were carried out to mvest1gate the
effectiveness of the HMM composition and decomposition methods on real distant-
talking speech, where the loudspeaker is set at a distance of about 2.5 m. The proposed
method improves the word-recognition rates for the speaker dependent (SD) model
and the speaker independent (SI) model. The word-recognition rate with clean speech
HMMs is 77.2% for the SD model, and 54.4% for the SI model. The word-recognition
rate with composed HMMs of clean speech HMMs and noise HMM is 87.5% for the
SD model, and 61.5% for the SI model. Applying the HMM composition and decom-
position methods to the real distant-talking speech, the word-recognition rate with
10 adaptation words is improved to 90.5% for the SD model, and 64.9% for the SI
model, where the mean vector of the acoustic transfer function HMM is estimated and
composed. Then, applying the HMM decomposition method to both the mean vector
and the covariance matrix of the acoustic transfer function HMM, increases the per-
formance to 91.2% for the SD model, and 66.2% for the SI model. It is shown that the
covariance matrix of the acoustic transfer function is also effective to compensate for
the influence of long impulse responses. However, in the matched condition, the SD
and the SI word-recognition rates are 96.4% and 70.7%, where each phoneme HMM
is trained using simulated distant-talking speech. The performance of the proposed
method is small in comparison with that of the matched condition. Therefore, the
further improvement of the HMM adaptation method would be necessary. This chap-
ter has also investigated the performance of the HMM composition and decomposition
methods on speech recognition of the distant moving talker. Speech of distant moving
talker is recognized by using an ergodic-HMM of acoustic transfer functions. Each
state of the ergodic-HMM of acoustic transfer functions corresponds to a position of
sound sources, where all transitions among states are permitted. The performance of
the parallel models, where composed HMMs having maximum likelihood are selected,
is 76.7%. On the other hand, the performance with the proposed ergodic-HMMs of
acoustic transfer functions is improved to 82.3%. These experimental results show
that the ergodic-HMM can improve the speech recognition performance of the distant
moving talker.

Chapter 6 has explored telephone speech recognition. Telephone speech data for
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evaluation are recorded using 10 kinds of ordinary analog telephone handsets and cord-
less telephone handsets, in a soundproof room, through the public telephone network
[94]. The experimental results show that the HMM decomposition method is able
to improve the performance of the telephone speech. However, further improvement
would be necessary for cordless telephone speech.

'In summary, the HMM composition and decomposition methods are applicable to
a wide variety of additive noise and convolutional distortion tasks. We have focused
on model adaptation using a single microphone in this paper. The model adaptation,
however, can also be emphasized by using a multi-microphone (microphone array).
Though the proposed method has currently not achieved distant-talking speech recog-
nition to state-of-the-art level, one can achieve good performance through extensions
of the proposed method in real world conditions.

7.2 Future Work

Distant-talking speech recognition is an important research topic with great potential.

The technique proposed in this thesis has improved speech recognition performance,

where a user speaks from a distance of 0.5 m ~ 3.0 m in noisy reverberant environments.

However, there are still some fundamental problems that need to be addressed and

carefully studied. For example, the covariance matrix of the acoustic transfer function

HMM deals with the influence of the long impulse response in this thesis. Speech
recognition performance is improved with this method, but the effect is not sufficient

to compensate for the influence completely.

The spectral analysis for speech recognition is based on short-time windowing. The
length of the window is smaller than that of the room impulse response. If the window is
sufficiently shorter than that of the impulse response, the use of CMN will be effective.
However, to make the window longer degrades the speech recognition rate, because
the spectra in the window become unstable. In [46], the performance of speech recog-
nition systems is compared with the performance of human listeners on reverberated
speech, where some speech enhancement techniques are used: PLP (Perceptual Linear
Predictive) [26], log-RASTA-PLP (log-Relative Spectra-PLP) [27], and j-RASTA-PLP
[27]). The experiments show that humans are adept at recognizing reverberated speech
clearly, while the speech recognition systems are not. Avendano et al. [7] proposes a
multi-resolution channel normalization technique for reverberated speech, where the re-
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verberated speech is recovered from narrow-band spectrograms (long-analysis window)
and wide-band spectrograms (short-analysis window). When more than one source
of distortion exists, e.g., both additive and convolutional distortions, the problem be-
comes more difficult. When the distortion sources are non-stationary, e.g., when the
speaker is moving, some adaptive compensation techniques are needed. Integration of
microphone arrays and acoustic model adaptation will be also expected. To enhance
the efficacy and the effectiveness of the compensation, those techniques need to better
characterize the distribution of possible distortion types, and to use this distribution
to choose the appropriate compensation model. We are working along these lines of
thought.
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Appendix A

Transformation of Probability

Distribution

This chapter describes the transformations of a probability distribution which are ap-
plied to compose an HMM. The distribution is the output probability distribution of
an HMM. The transforms applied in the HMM composition are as follows,

e Cosine transform

Exponential transform

Convolution of distribution

Logarithm transform

A multivariate Gaussian distribution is used in general for the output probability dis-
tribution. Therefore, the following transforms should be applied to the multivariate

Gaussian distribution. The following refers to [56].

A.1 Cosine Transform

Let a random vector X be a multivariate Gaussian distribution. The cosine transform
applied to the random vector X can be described as follows,

Y=rX.
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Each element of transform matrix is given by
Cij = cos(i(j — 0.5)7/N), (0<1i,5 <N), (A.1)

where N is the dimension of the distribution.
As the transform is linear, Y has a multivariate Gaussian distribution when X has

a multivariate Gaussian distribution.

A transformed mean vector p= (u1,--+, un) and a covariance matrix X' are given

by
pu* = I'p, (A.2)
& = ST, (A.3)

where ' denotes the transposition.

A.2 Exponential Transform

The exponential transform applied to a random vector X can be described as follows,
Y = exp(X).

Note that Y does not have a multivariate Gaussian distribution even if X has a mul-
tivariate Gaussian distribution, since the transform is non-linear. Rather, the random
vector Y has a log-normal distribution, if the random vector X has a multivariate
normal distribution. After applying the exponential transform to X, the first moment
p! is obtained as follows.
p; = Elexp(z;)]
1 1 Iyr—1 /
f———(27r)"/2|2|1/2 exp(z;) exp {_E(X —pu)E2 X - ,u)} dX (A4)

Now define a variable as follows,
Z =X —pu.
Inserting this notation into (A.4), u! is obtained as follows,

$ i LR g 1 151
w = f(zﬂ)ﬂ/ﬂz'l/zexp(z.+#z)exp{ 222 Z}dX

1 g
fWeXp{Z,-F[J‘—iZ’Z Z}dX, (A5)
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where z; € Z. Let’s us define e; to have 1 for the ¢-th position,

B ® (00...010...0).

According to equation (A.5),

I

1 1 ! g1—1 }
f(2w)n/2|2|1/2exp{z.+u, 2ZZ' Z;dX

1 1 e
= ./-(W exp {Z" + oy = §((Z el 2&,‘) - l(Z 3 26{) -+ 22; I 0'{5)} dX

™

i

e g ! _Liz_peys-yz- }
= exp (,u,+ 2)./‘(21“_)“/2”:,'1/2exp{ 2(Z Ye;) X HZ — Xe;)pdX.

Therefore, the first moment is given by

u=exp (mi+ %), 0<i<M). (A.6)

The second moment o7; can be sought in a similar manner,
oty = Blexp(z:) exp(z;)] — Elexp(zy)] - Elexp(z;)]- (A7)
This right hand side can be rewritten as follows,
Elexp(z;) exp(;)]
= [ G eele + v exp { ~5(X —wY 57X ~ )} ax
IW exp(z; + pi + zj + pj) exp {—%Z’Z“lz} ax
* f(—zqr)n—/zﬂf[ﬂf . {z.- b+ iy %z’z—lz} iX

1
i fWexp{zi + pi + 2 + py
1
~5((Z — Z(ei +€;)) Z7HZ — Blei + ¢5)) + 22 = 0is + 22 — 045 = 2a,-,-)} i
Oii O
= exp (“i " 7) exp (Mj w %’) exp(oi;)- 1

According to equation (A.7) and equation (A.8), the second moment ¢;; is given by
o3 = uipj(exp(o) — 1), (0<4,5 < N). (A.9)
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A.3 Convolution of Probability Distributions

A random vector Y is given by
Y=X +X,

where two random vectors, X, and X, are independent. Therefore, a distribution

function of Y is given by

[ Ry - X)d6(X.) = [ G(Y - X,)dF(X.),

e -0

where distribution functions of X, and X, are F(X,) and G(X), respectively. This
is called convolution of the distribution function F and G. If the random vectors X,
and X, have a multivariate Gaussian distribution, the addition of them also has a
multivariate Gaussian distribution (called reproducibility).

The transformed mean vector u; and covariance o;; are given by

pt o= ot p,, (A.10)
= 242 (A.11)

In fact, however, convolution of the log-normal distributions is executed. An ap-
proximation is used to execute it with facility. The approximation is that the sum of
log-normally distributed variables has a log-normal distribution. Therefore, an error

might be produced.

A.4 Logarithm Transform
The logarithm transform applied to a random vector X can be described as follows,
Y =log(X).

The same thing as exponential transform can be said of this transform: it is non-linear.
Y must have a multivariate Gaussian distribution. Therefore,

e assume that X is log-normally distributed.

Then, the transformed distribution is a multivariate Gaussian distribution. Its param-

eters are given by
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pi = log(w) — 1log __ci +1]), (A.12)
‘ T e
. Tij A.13
05 = log —41]. ( + )
Hi s
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Appendix B

Lists of Adaptation Data in Word

Recognition

In this appendix, the related information of the adaptation data used in the word-
recognition experiments are listed, where /Q/ is a double consonant. Each testing
speaker utters 1 ~ 50 words (X 3) as adaptation data which are not used in the
training. The speech corpus is the Set-A of the ATR Japanese speech database.

1-word 2-word 3-word 4-word 5-word 6-word 7-word
ikioi omoshiroi  shuukyou daidokoro basho pokeQto ukeau
8-word 9-word 10-word 11-word 12-word 13-word 14-word
seii teochi hyakushou rejaa ajiwau aNkeeto imagoro
15-word 16-word 17-word 18-word 19-word 20-word 21-word
umeawaseru esukareetaa  oiharau omocha  kimuzukashii gyuunyuu kyokutaN
22-word 23-word 24-word 25-word 26-word 27-word 28-word
kogiQte kopii shuuheN  joukyaku supiido soredeha  chouetsu
29-word 30-word 31-word 32-word 33-word 34-word 35-word
tenohira nakanaori nyoubou paipu hikiukeru byoudou peeji
36-word 37-word 38-word 39-word 40-word 41-word 42-word
misuborashii  myounichi yuumoa  yotsukado ryuuchou reNai wazawaza
43-word 44-word 45-word 46-word 47-word 48-word 49-word
taNoNhyouji fuseimyaku kebyou majo menyuu kounyuu meiryou
50-word
iNryoku
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1-word 2-word 3-word 4-word 5-word 6-word 7-word
iyoiyo guai. juNbaN chaNto byouiN boNyari uchiawase
8-word 9-word 10-word 11-word 12-word 13-word 14-word
sobieru deshabaru byounilN wasuremono atarimae iede iraQsharu
15-word 16-word . 17-word 18-word 19-word 20-word 21-word
uyamau enerugii ogosoka omowazu gyakutai kyuuryou kyozetsu
22-word 23-word 24-word 25-word 26-word 27-word 28-word
kokoroyoi gobusata shuQse shoufuda zeNshuu zoNzai tsukekuwaeru
29-word 30-word 31-word 32-word 33-word 34-word 35-word
depaato nyuuiN neage hanahada hiQkurikaesu  hyouhoN beQdo
36-word 37-word 38-word 39-word 40-word 41-word 42-word
misebirakasu meue yukizumaru  yoQparai ryuQkusaQku rokuoN wariateru
43-word 44-word 45-word 46-word 47-word 48-word 49-word
kaNfuru karyuu toQkyo zahyou koumyou saNmyaku meiryou
50-word
gobyuu
1-word 2-word 3-word 4-word 5-word 6-word 7-word
urayamashii zairyou suichoku chuuou hyoujulN megane kareNdaa
8-word 9-word 10-word 11-word 12-word 13-word 14-word
chichioya nisemono furafura akachaN apaato ichijirushii udemae
15-word 16-word 17-word 18-word 19-word 20-word 21-word
eikyuu epuroN oshaberi gaishutsu kyuugyou gyousei gehiN
22-word 23-word 24-word 25-word 26-word 27-word 28-word
kotozute sakihodo  juNjuNni  shouryaku zeNtei daibubulN dekigoto
29-word 30-word 31-word 32-word 33-word 34-word 35-word
toriaezu nyuujou nesage  hanabanashii byousha  puroguramu  poNpu
36-word 37-word 38-word 39-word 40-word 41-word 42-word
myaku mochinushi  yubisasu ryakusuru ryougae roQkaa waribiki
43-word 44-word 45-word 46-word 47-word 48-word 49-word
maehyoubaN gabyou soQchoku  koNnyaku  myuujiQku saNmyaku tsuikyuu
50-word
techou



Appendix C

Lists of Testing Data in Word
Recognition
In this appendix, the related information of the testing data used in the word-recognition

experiments are listed. For testing, 500 words which are different from those words
in the training are used. The speech corpus is the Set-A of the ATR Japanese speech

database.
1. aa 2. aite 3. aoru 4. aki 5. akushu
6. ago 7. ashiba 8. aseru 9. ataru 10. atsui
11. atehamaru 12. apaato 13. amasu 14. ayashimu 15. arasou
16. aru 17. awaseru 18. aNshiN 19. iitsukeru 20. igaku
21. igi 22. ikou 23. iji 3 24. izeN 25. itamu
26. ichiji 27. ichiryuu 28. iQsou 29. itsuka 30. itonamu
31. ihaN 32. iya 33. iru 34. iroiro 35. iNsotsu
36. ukai 37. uketsuke 38. ushinau 39. usotsuki 40. uchigawa
41. uQtoushii 42. utsuru 43. ubau 44, umeawaseru | 45. urameshii
46. ureru 47. uNpaN 48. eiyuu 49. eda 50. eri
51. eNgi 52. eNtotsu 53. oite 54, oufuku 55. ooku
56. okashii 57. okujou 58. okonau 59. oshiire 60. ojiisalN
61. osoreru 62. oQto 63. otoroeru 64. onoono 65. oboreru
66. omote 67. oyobu 68. owari 69. kai 70. kaikei
71. kaijou 72. kaiteki 73. kaihou 74. kaeQte 75. kakaeru
76. kagayaku 77. kaku 78. kakutoku 79. kagu 80. kakeru
81. kago 82. kashikiri 83. kasu 84. kata 85. katamari
86. kaQki 87. katsuyaku 88. kanaeru 89. kane 90. kabuseru
91. kami 92. kayui 93. karini 94. kawaigaru 95. kaN
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96. kaNgei 97. kaNshou 98. kaNjiru 99. kaNtaN 100. kaNbeN
101. gaisuru 102. gakusei 103. gaQki 104. gaNjitsu 105. kioN
106. kigaru 107. kikeN 108. kisha 109. kizuku 110. kitai
111. kiQpu 112. kinou 113. kimari 114. kiyaku 115. kyuusho
116. kyoukai 117. kyousou 118. kyoumi 119. kyoneN 120. kiri

121. kire 122. kiNko 123. kiNniku 124. gishiki 125. gyouji
126. ku 127. kuusou 128. kusai 129. kujou 130. kuda
131. kuchou 132. kufuu 133. kumori 134. kurayami 135. kure
136. kuwawaru | 137. guNkaN 138. keikaku 139. keishiki 140. keibi
141. keshou 142. keQkyoku | 143. keQtei 144. kemui 145. keNka
146. keNjitsu 147. keNmei 148. geshuku 149. geNeki 150. geNshuku
151, geNtei 152. koi 153. koueN 154. koukyuu 155. kougeN
156. kouzaN 157. koujou 158. kousoku 159. koudou 160. kouhyou
161. koumoku 162. koe 163. kokugo 164. kokumiN 165. kokoroyoi
166. kojitsukeru | 167. kozou 168. koQkai 169. kotei 170. kotori
171. konogoro 172. komakai 173. koraeru 174. kowai 175. koNshuu
176. koNya 177. goudou 178. gozaimasu | 179. sa 180. saisho
181. sainou 182. saeru 183. sakarau 184. saku 185. sakubulN
186. sageru 187. sashisawari | 188. sasuru 189. saQkyoku 190. satsubatsu
191. saabisu 192. samui 193. saru 194. saNkaku 195. saNso
196. zaisaN 197. zatsuoN 198. shi 199. shio 200. shikashi
201. shikisai 202. shikujiru 203. shikori 204. shijuu 205. shizeN
206. shitashii 207. shiQso 208. shitsubou 209. shinagire 210. shiharau
211. shihou 212. shimatsu 213. shimekiri 214. shaku 215. shameN
216. shuugou 217. shuuteN 218. shuei 219. shusai 220. shuQsalN
221. shubi 222. shou 223. shoukiN 224. shousuu 225. shoutotsu
226. shoufuda 227. shouri 228. shokuhiN 229. shotoku 230. shirase
231. shirushi 232. shiNka 233. shiNkoku 234. shiNsou 235. shiNpai
236. shiNryaku | 237. jiki 238. jigoku 239. jishiN 240. jichou
241. jiQseN 242, jitsuha 243, jimaN 244. juu 245. juutai
246. jugyou 247. juNsa 248. juNbaN 249. joukei 250. joudaN
251. jouriku 252. jiNkeN 253. su 254. suisoku 255. suimiN
256. sukasu 257. sugiru 258. sugoi 259. susumeru 260. suQkari
261. subarashii | 262. sumaato 263. suru 264. zuaN 265. se

266. seiki 267. seishiki 268. seizoN 269. seinou 270. seiyou
271. sekiniN 272. seQto 273. senaka 274. sewa 275. seNsaku
276. seNdeN 277. seNryou 278. zero 279. sou 280. sousa
281. souzoushii | 282. sokushiN 283. soshi 284. soQkuri 285. sonoue
286. soboku 287. sorezore 288. soN 289. zouri 290. taioN
291. taikou 292. taiji 293. taitou 294. taimaN 295. taeru
296. tagayasu 297. take 298. tatakai 299. tachi 300. taQsei
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301. tatoe 302. tanoshimi | 303. tabi 304. tamatama | 305. tayori
306. taNku 307. taNniN 308. daiji 309. daiyaru 310. daQte
311. daN 312. daNtai 313. chiiki 314. chikayoru 315. chizu
316. chihou 317. chuukai 318. chuusha 319. chuumoN 320. chousho
321. chouwa 322. chirasu 323. tsui 324. tsuuka 325. tsue
326. tsukiataru | 327. tsuku 328. tsukeru 329. tsutsushimu | 330. tsuneni
331. tsubomi 332. tsume 333. tsurai 334. teate 335. teisha
336. teibou 337. tekisuto 338. tejika 339. tetsudou 340. tema
341. teNkai 342. teNbou 343. deshi 344. deNsha 345. to

346. toushi 347. touchaku 348. touroN 349. tokasu 350. tokushoku
351. toge 352. tojiru 353. totemo 354, tobiagaru 355. tomurau
356. tori 357. toridasu 358. toNdemonai | 359. dougu 360. dounika
361. douro 362. dokuseN 363. dorei 364. naizou 365. naka
366. nagame 367. nagedasu 368. nadaraka 369. nanoka 370. nameraka
371. nariyuki 372. naNtonaku | 373. nigatsu 374. nikoniko 375. nichiyou
376. nyuusu 377. niNgeN 378. nuku 379. nureru 380. neji

381. netsu 382. neru 383. noumiN 384. nozoku 385. noberu
386. noridasu 387. haaku 388. haichi 389. hakase 390. haku
391. hakobu 392. haji 393. hazumu 394. hada 395. haQkou
396. hatsugeN 397. hanasu 398. hahaoya 399. hayai 400. harigane
401. haNi 402. haNjou 403. haNpa 404. baishuu 405. baketsu
406. barabara 407. hi 408. higai 409. hikidasu 410. hikutsu
411. hijoushiki 412. hiQkurikaesu | 413. hitogara 414. hiniku 415. himo
416. hyoujuN 417. hiryou 418. hirogeru 419. byouiN 420. biNbou
421. fuushuu 422. fukisoku 423. fukushuu 424. fukei 425. fusagu
426. fusuma 427. futaN 428. futsuka 429. fuhai 430. fuyu
431. furui 432. fuNgai 433. butai 434. bunaN 435. buNseki
436. buNretsu 437. heisa 438. hedateru 439. heNni 440. beNjo
441. houki 442. houseki 443. houbou 444. hogaraka 445. hoshii
446. hotoke 447. homeru 448. hoNseki 449. boueki 450. bokasu
451. boro 452. mairu 453. maku 454, magokoro | 455. masu
456. mataha 457. maQkura 458. mato 459. maneku 460. mamoru
461. mawaru 462. miageru 463. mikata 464. mijikai 465. misoka
466. miQchaku | 467. mitodokeru | 468. minikui 469. mimai 470. myou
471. miNkaN 472, mukigeN 473. mushi 474. muzukashii | 475. munashii
476. mure 477. meisho 478. meirei 479. mezasu 480. memo
481. meNbaa 482. moushiwake | 483. mokei 484. mochinushi | 485. moto
486. monooki 487. moyasu 488. moroi 489. yaku 490. yakume
491. yasui 492. yaQtsukeru 493. yaburu 494. yu 495. yuugi
496. yuudou 497. yugamu 498. yushutsu 499. yunyuu 500. yurumeru
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