
NAIST-IS-DT9661011

Doctor's Thesis

Study on Iterative Soft-Decision Decoding

Algorithms for Binary Linear Block Codes

Takuya Koumoto

February 8, 1999

Department of Information Science

Graduate School of Information Science

Nara Institute of Science and Technology

Doctor's Thesis

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial ful�llment of the requirements for the degree of

DOCTOR of ENGINEERING

Takuya Koumoto

Thesis committee: Toru Fujiwara, Professor

Masaki Koyama, Professor

Hiroyuki Seki, Professor

Yuichi Kaji, Associate Professor

Study on Iterative Soft-Decision Decoding
Algorithms for Binary Linear Block Codes�

Takuya Koumoto

Abstract

For iterative soft-decision decoding algorithms for binary linear block codes, er-

ror performance and computational complexity are very important factors. In this

thesis, suÆcient conditions of the optimality of decoded codeword and a suÆcient

condition which is used for ruling-out some useless iterations of bounded distance

decoding which reduces the computational complexity of iterative soft-decision de-

coding algorithms are shown. New iterative soft-decision decoding algorithms which

uses the suÆcient conditions of the optimality of decoded codeword to achieve good

error performance with small computational complexity are also shown.

First, the suÆcient conditions are derived based on: (1) partial knowledge of

the distance pro�le of the code, and (2) previously generated candidate codewords.

When the number of previously generated candidate codewords is greater than 1,

the conditions presented here are less stringent than those derived by Taipale and

Pursley[4] and Kaneko et. al.[5]. The condition based on three previously generated

candidate codewords is the �rst such suÆcient condition that has ever been derived.

It is shown by computer simulation that these suÆcient condions reduce the com-

putational complexity of iterative decoding algorithms without degradation of error

performance.

Second, a suÆcient condition to rule-out some useless test error patterns is de-

rived. In an iterative decoding algorithm, such as Chase Type-II decoding algorithm[2]

and its improved versions, candidate codewords for a received vector are generated

�Doctor's Thesis, Department of Information Science, Graduate School of Information Science,

Nara Institute of Science and Technology, NAIST-IS-DT9661011, February 8, 1999.

i

for test based on a bounded-distance decoder and a set of test error patterns. It is

desirable to remove useless test error patterns in these decoding algorithms. If it is

assured by the suÆcient condition that a test error pattern never generates a better

candidate codeword than already generated candidate codewords, then the bounded

distance decoding can be skipped. This signi�cantly reduces the decoding operations

in Chase type-II decoding algorithm or decoding iterations in its improvements.

Finally, the author also presents a new low-weight trellis-based soft-decision it-

erative decoding algorithm for binary linear block codes. The algorithm is devised

based on a set of optimality conditions and the generation of a sequence of can-

didate codewords for optimality test. The initial candidate codeword is generated

by a simple decoding method. The subsequent candidate codewords, if needed, are

generated by a chain of low-weight trellis searches, one at a time. Each search is

conducted through a low-weight trellis diagram centered around the latest candi-

date codeword and results in an improvement over the previous candidate codewords

that have been already tested. This improvement is then used as the next candidate

codeword for test of optimality. The decoding iteration stops whenever a candi-

date codeword is found to satisfy a suÆcient condition on optimality or the latest

low-weight trellis search results in a repetition of a previously generated candidate

codeword. A divide-and-conquer technique is also presented for codes that are not

spanned by their minimum weight codewords to achieve better error performance

and small computational complexity. The proposed decoding algorithm has been

applied to some well-known codes of lengths 48, 64 and 128. Simulation results

show that the proposed algorithm achieves either practically optimal error perfor-

mance for the example codes of length 48 and 64 or near optimal error performance

for the (128,29,32) RM code with signi�cant reduction in computational decoding

complexity.

Keywords:

linear block code, iterative soft-decision decoding, maximum-likelihood decoding,

optimality test, low-weight subtrellis, Chase algorithm, suÆcient condition,

ii

Acknowledgments

I am deeply indebted to many people for the advice, feedback and support they

gave to me in the course of this work. I would especially like to thank Profes-

sor Toru Fujiwara and Tadao Kasami for their invaluable support, discussions and

encouragement throughout the work.

I am grateful to Professors Masaki Koyama and Hiroyuki Seki for their sugges-

tions on the work. I am also obliged to Associate Professor Yuichi Kaji for his

helpful comments and suggestions. I would like to thank Professors Shu Lin and

Marc P. C. Fossoire of Hawaii University for their comments and suggestions. I

would like to thank Professor Toyoo Takata of Iwate Prefectural University for his

technical support. I would like to thank Dr. Hajime Watanabe for his invaluable

support.

Finally, I would like to thank all the members of Fujiwara Laboratory of Nara

Institute of Science and Technology.

iii

iv

List of Publications

Journal Paper

[1] T. Koumoto, T. Kasami and S. Lin, \A SuÆcient Condition for Ruling Out

Some Useless Test Error Patterns in Iterative Decoding Algorithms," IEICE

Transactions on Fundamentals of Electronics, Communications and Computer

Sciences, Vol. E81-A, No. 2, pp. 321{326, February 1998.

[2] T. Koumoto, T. Takata, T. Kasami and S. Lin, \A Low-Weight Trellis Based

Iterative Soft-Decision Decoding Algorithm for Binary Linear Block Codes,"

to appear in IEEE Transactions on Information Theory, March 1999.

International Conferences

[3] T. Kasami, T. Koumoto, T. Takata and S. Lin, \The E�ectiveness of the Least

Stringent SuÆcient Condition on the Optimality of Decoded Codewords," Pro-

ceedings of the 3rd International Symposium on Communication Theory &

Applications, pp.324{333, Charlotte Mason College, Ambleside, Lake District,

UK, July 1995.

[4] T. Kasami, T. Koumoto, T. Takata and S. Lin, \The Least Stringent SuÆcient

Conditions on the Optimality of Decoded Codewords," Proceedings of the

1995 IEEE International Symposium on Information Theory, p.470, Whistler,

Canada, September 1995.

[5] T. Koumoto, T. Takata, T. Kasami and S. Lin, \An Iterative Soft-Decision

Decoding Algorithm," Proceedings of the International Symposium on Infor-

mation Theory and Its Applications, pp. 806{810, Canada, September 1996.

v

Workshops

[6] T. Kasami, T. Takata, T. Koumoto, T. Fujiwara, H. Yamamoto and S. Lin, \The

Least Stringent SuÆcient Condition on Optimality of Suboptimal Decoded

Codewords," Technical Report of IEICE, IT94-82, The Institute of Electronics,

Information and Communication Engineers, Japan, January 1995.

[7] T. Koumoto, H. Nagano, T. Takata, T. Fujiwara, T. Kasami and S. Lin, \A

New Iterative Soft-Decision Decoding Algorithm," Technical Report of IE-

ICE, IT95-28, The Institute of Electronics, Information and Communication

Engineers, Japan, July 1995.

[8] T. Koumoto, H. Nagano, T. Takata, T. Fujiwara, T. Kasami and S. Lin, \An

Iterative Soft-Decision Decoding Algorithm," Proceedings of the 18th Sympo-

sium on Information Theory and Its Applications, pp.557{560, Japan, October

1995.

[9] T. Koumoto, T. Takata, T. Kasami and S. Lin, \Condition for Reducing the

Number of Iterations of Iterative Decoding," Technical Report of IEICE, IT95-

73, The Institute of Electronics, Information and Communication Engineers,

Japan, March 1996.

[10] T. Koumoto and T. Kasami, \An Iterative Decoding Algorithm Based on

Information of Decoding Failure," Proceedings of the 20th Symposium on

Information Theory and Its Applications, pp.325{328, Japan, December 1997.

vi

Contents

1 Introduction 1

2 The E�ectiveness of the Least Stringent SuÆcient Condition on the

Optimality of Decoded Codewords 5

2.1 Introduction . 5

2.2 SuÆcient Conditions on the Optimality of a Decoded Codeword . . . 6

2.3 Examples . 9

2.4 On Tighter Bounds . 12

2.5 Conclusion . 12

3 A SuÆcient Condition for Ruling Out Some Useless Test Error

Patterns in Iterative Decoding Algorithms 17

3.1 Introduction . 17

3.2 De�nitions . 19

3.3 Test Error Patterns . 20

3.4 A suÆcient condition for ruling out useless error patterns 22

3.4.1 General Case . 22

3.4.2 Special Case . 25

3.5 Application . 26

3.6 Conclusion . 28

4 A Low-Weight Trellis Based Iterative Soft-Decision Decoding Al-

gorithm 33

4.1 Introduction . 33

4.2 Preliminaries . 36

4.2.1 A SuÆcient Condition for Optimality 37

vii

4.2.2 Low Weight Subtrellis Search 38

4.3 Iterative Decoding Algorithm I . 39

4.3.1 Generation of Candidate Codewords 39

4.3.2 A Termination Condition . 40

4.3.3 Search Regions, Reference Codewords and Optimality Test . . 43

4.3.4 Algorithm I-wk . 45

4.4 Iterative Decoding Algorithm II . 45

4.4.1 Coset Ordering and Generation of Initial Candidate Codewords 46

4.4.2 Termination Conditions and Optimality Tests 47

4.4.3 Optimality Tests . 48

4.4.4 Algorithm II-w0k . 50

4.5 Simulation Results: Error Performance and Computational Complexity 51

4.6 Conclusion . 54

5 Conclusion 65

A Expressions for Evaluating L[c1; d1; c2; d2; : : : ; ch; dh] for 1 � h � 3 71

B Proof of Lemma 3.2 75

viii

List of Figures

2.1 Simulation results on the average of reduction rates of iterations

r1; r2; r3 for RM5;1, RM5;2, RM6;2 and RM6;3. 13

2.2 Simulation results on the ratios �h of the number of those codewords

decoded by Chase decoding algorithm II which satisfy optimality test

condh to that of decoded codewords which are optimal for RM5;1,

RM5;2, RM6;2 and RM6;3. 14

2.3 Simulation results on the ratios �0h of the number of the decoded code-

words which satisfy optimality test cond0h to that of optimal decoded

codewords for the iterative MWTS0 decoding of RM6;2 and RM6;3. . . 15

2.4 Block error probabilities for RM6;2 and RM6;3. 15

3.1 Average reduction rates rd(IIe) and rd(IIs) of iterations for RM6;2 . . 29

3.2 Average reduction rates rd(IIe) and rd(IIs) of iterations for RM7;3 . . 30

3.3 Average reduction rates rd(IIe) and rd(IIs) of iterations for EBCH(64; 24) 31

3.4 Average reduction rates rd(IIe) and rd(IIs) of iterations for EBCH(128; 64) 32

4.1 Bit error probability for the (48,24,12) EQR code. 56

4.2 Average numbers of iterations and addition equivalent operations for

the (48,24,12) EQR code. 57

4.3 Histogram of the numbers of iterations for the (48,24,12) EQR code. . 58

4.4 Bit error probability for the (128,29,32) RM code. 59

4.5 Average numbers of iterations and addition equivalent operations for

the (128,29,32) RM code. 60

4.6 Bit error probability for the (64,24,16) EBCH code. 61

4.7 Average numbers of iterations and addition equivalent operations for

the (64,24,16) EBCH code. 62

ix

4.8 Bit error probability for the (128,36,32) EBCH code. 63

4.9 Average numbers of iterations and addition equivalent operations for

the (128,36,32) EBCH code. 64

x

List of Tables

4.1 Numbers of addition equivalent operations of the Viterbi decoding

with optimal sectionalization(VMLD) and RMLD 55

4.2 Degradations(DEG) and numbers of addition equivalent operations(NAO)

of Algorithm I-w1 with hybrid-1 initial decoding and the MLK algo-

rithm with w1-weight trellis search 55

xi

xii

Chapter 1

Introduction

The iterative decoding algorithms are studied for long years to achieve good error

performance with small computational complexity. There are some iterative decod-

ing algorithms which uses algebraic decoder internally. In such decoding algorithms,

the computational complexity has been likely to measured by order of code param-

eter rather than average number of addition equivalent operations. We should use

the average computational complexity to measure the computational complexity of

decoding algorithms with the same order. Then, to keep the average computational

complexity small on iterative decoding algorithms, the importance of termination

condition grows. Taipale and Puersley have proposed a suÆcient condition on op-

timality of a decoded codeword[4] and Kaneko, Nishijima and Hirasawa have im-

proved it for two candidate codewords[20]. Those suÆcient conditions are used to

reduce the average computational complexity of iterative decoding algorithms with

no degradation of error performance.

The iterative decoding algorithms proposed in [1]{[9] are based on the genera-

tion of a sequence of candidate codewords by means of a simple decoder using the

reliability information of the received symbols, and then choosing the best (or most

likely) one among the generated candidate codewords as the decoded codeword.

In these algorithms, the number of iterations for generating candidate codewords

can be reduced without degrading the error performance by applying a suÆcient

condition to test the optimality of a candidate codeword when it is generated and

terminating the iteration process as soon as the suÆcient condition is satis�ed. A

less stringent suÆcient condition on optimality, whose computational complexity

1

is reasonably smaller than that of the procedure for generating the next candidate

codeword, provides a faster termination of the decoding iteration process and hence

reduces the computational complexity and decoding delay. In chapter 2, suÆcient

conditions on the optimality of a candidate codeword are investigated based on: (1)

partial knowledge of the distance pro�le of the code; and (2) h or fewer previously

generated candidate codewords. These conditions can be incorporated in any of the

iterative soft-decision decoding algorithms based on the generation of a sequence

of candidate codewords to reduce the number of decoding iterations signi�cantly.

The e�ectiveness of these conditions depends largely on the iterative decoding al-

gorithm and signal to noise ratio (SNR) as well as the distance pro�le of the code.

It is shown that the new suÆcient conditions are very e�ective in terminating the

decoding iteration process except for high block error probability region.

In such an iterative decoding algorithm as Chase type-II decoding algorithm[2],

candidate codewords for a received vector are generated by using an algebraic de-

coder and a set of test error patterns that is formed based on the reliability measures

of the received symbols. The candidate codeword that has the largest correlation

metric with the received vector is chosen as the decoded codeword. This decoding is

a bounded-distance decoding and achieves asymptotic error performance. However,

during the decoding process, some of the test error patterns may result in decoding

failures if a bounded-distance algebraic decoding is used and some may produce the

same candidate codeword (repetition). These result in unnecessary decoding oper-

ations and hence prolongs the decoding delay. Therefore, it is desirable to remove

these useless or redundant error patterns before or during the decoding process.

To the author's knowledge, the �rst study on a suÆcient condition for ruling

out some useless test error patterns to reduce the number of bounded-distance t

decodings was made by Kaneko, Nishijima and Hirasawa in [20]. We call the suf-

�cient condition present in [20] the KNH condition. Chapter 3 presents a more

e�ective suÆcient condition for ruling out some useless test error pattern than the

KNH condition. The ruling out is based on the following conditions: (1) Under a

reasonable restriction on the order of generating test error patterns (EG condition

stated in Sec. 3.3), a necessary and suÆcient condition (stated in Lemma 1) that

the decoded codeword, dec(e), by a bounded-distance decoding for a nonzero test

error pattern e is di�erent from all candidate codewords that have been generated

already, and (2) the Hamming distance between the latest candidate codeword gen-

2

erated already, denoted c, and dec(e) is at least the minimum distance of the code.

If test error patterns are assumed to be generated in binary order and the condition

(1) above is only taken into consideration, the suÆcient condition presented in this

paper is reduced to the KNH condition as stated in Sec. 3.4.1. In this sense, the

new condition is an extension and improvement of the KNH condition.

The complexity for testing the ruling out condition is considerably smaller than

that of a bounded-distance algebraic decoding. Each time when a new test error

pattern is generated, it is tested based on this suÆcient condition. If the condi-

tion holds, then this error pattern can not produce a candidate codeword with a

correlation metric larger than those of the candidate codewords generated already

and hence it is useless. In this case, the error pattern is ruled out for decoding

and the next test error pattern is generated unless the test error patterns have been

exhausted. This reduces the number of bounded-distance decoding operations and

the decoding delay.

The computational complexity of iterative decoding algorithms is reduced by

above suÆcient conditions. The remaining problem is the error performance. The

application of trellis-based maximum likelihood decoding (MLD) algorithms is lim-

ited due to the prohibitively large trellises for codes of long block lengths. To

overcome the state and branch complexity problems of large trellises for long block

codes, several new approaches have been proposed [21, 22, 23, 24, 5, 25, 26, 16]. Most

recently, Moorthy, Lin and Kasami have shown that the minimum-weight subtrellis

of a code is sparsely connected and has much simpler state and branch complexities

than the full code trellis[27]. Based on this fact, they proposed a minimum-weight

subtrellis-based iterative decoding algorithm for linear block codes to achieve subop-

timum error performance with a drastic reduction in decoding complexity compared

with a trellis-based MLD algorithm, using a full code trellis.

In chapter 4, a new low-weight subtrellis based iterative decoding algorithm

which overcomes the major shortcomings of the Moorthy-Lin-Kasami (MLK) algo-

rithm as described above is shown. A low weight subtrellis, we mean a subtrellis

of the code trellis that consists of only codewords of low weights, say minimum

and next to the minimum weights. The new algorithm is di�erent from the MLK

algorithm in the generation of candidate codewords, optimality test, and termina-

tion of the decoding process. It has the following important properties. The initial

candidate codeword is �rst generated by a simple decoding method that guaran-

3

tees a successful decoding, such as the zero-th or the �rst-order decoding based on

the ordered statistics of the received symbols proposed in [17] or combined with

an algebraic decoding, called hybrid method. These decodings are very simple and

always produce a decoded codeword (no decoding failure). Subsequent candidate

codewords, if needed, are generated by a chain of low weight subtrellis searches.

Each such search is centered around the current candidate codeword. The current

candidate codeword is excluded in the search to prevent repetition and to reduce the

possibility of being trapped into a local optimum. The codeword with the largest

correlation metric resulting from this low weight subtrellis search is then used as

the next candidate codeword. Candidate codewords are generated in the order of

improving correlation metrics.

For codes that are spanned by their minimum weight codewords, the proposed

decoding algorithm is very e�ective. However, for codes that are not spanned by

their minimum weight codewords, minimum weight (or next to the minimum weight)

subtrellis search does not provide a big enough search space and results in a sig-

ni�cant degradation in error performance compared with MLD. To overcome this

problem, a divide-and-conquer technique to partition the code space into cosets with

respect to a subcode which is spanned by the minimum weight codewords is used.

Then the low weight subtrellis search is performed over the cosets in the partition,

one at a time, based on a likely order. The search is shifted from one coset to another

until the ML codeword is found or all the cosets are exhausted. This results in a

good coverage of the entire code space and good error performance, while maintains

low weight subtrellis searches to keep the decoding complexity down.

4

Chapter 2

The E�ectiveness of the Least

Stringent SuÆcient Condition on

the Optimality of Decoded

Codewords

2.1 Introduction

The number of iterations of an iterative optimal or suboptimal decoding scheme

[1]{[8] for binary linear block codes can be reduced without any e�ect on its error

performance by testing a suÆcient condition on the optimality of a candidate code-

word. In this chapter, the least stringent suÆcient condition on the optimality of a

decoded codeword is investigated under the assumption that the available informa-

tion on the code is restricted to (1) the minimum weight and a few small weights and

(2) for a given positive integer h, h or fewer already generated candidate codewords.

The least stringent suÆcient conditions of optimality for 1 � h � 3, denoted Condh,

are presented. Cond1 where only the minimum weight is considered is the same as

the one derived by Taipale and Pursley in [4], Cond2 is less stringent than the one

given by Kaneko et al. [5], and Cond1 and Cond2 are derived from Cond3 as special

cases.

As examples, we consider the Chase algorithm II [2] modi�ed by introducing

an early termination condition Condh for RM5;1, RM5;2, RM6;2, and RM6;3, where

5

RMm;r denotes the r-th order Reed-Muller code of length 2m. Majority-logic decod-

ing with randomly breaking ties is used to generate candidate codewords. We also

consider new iterative decoding schemes presented in [6]{[8]. For an AWGN channel

using BPSK signaling, the ratio of the number of decoded codewords for which the

suÆcient condition is satis�ed to that of decoded codewords which are optimal, and

the average reduction in the number of iterations, for 1 � h � 3, are evaluated by

simulation.

2.2 SuÆcient Conditions on the Optimality of a

Decoded Codeword

Suppose a binary block code C of length N with distance pro�le W , f0; w1 =

dmin; w2; : : :g is used for error control over an AWGN channel using BPSK signaling.

A codeword c is mapped into a bipolar sequence x. Suppose x is transmitted and

r = (r1; r2; : : : ; rN) is a received sequence at the output of a matched �lter in the

receiver. Let z = (z1; z2; : : : ; zN) be the binary hard-decision sequence obtained

from r.

Let V N denote the set of all binary N -tuples. For u = (u1; u2; : : : ; uN) in V
N ,

de�ne the following:

D1(u) , fi : ui 6= zi; and 1 � i � Ng; (2.2.1)

D0(u) , f1; 2; : : : ; Ng �D1(u); (2.2.2)

n(u) , jD1(u)j; (2.2.3)

L(u) ,
X

i2D1(u)

jrij: (2.2.4)

For a subset U of V N , let L[U] be de�ned as L[U] , minu2U L(u): If U is empty,

then L[U] is de�ned as 1 (in�nity). For maximum likelihood decoding (MLD), the

decoder �nds the optimal codeword copt [5], for which

L(copt) = L[C]: (2.2.5)

For two codewords c and c0, c is said to be better than c0 if L(c) � L(c0). A

candidate codeword c is said to be the best if L(c) is the minimum among the

candidate codewords that have been generated already.

6

Let dH(u; v) denote the Hamming distance between u and v. For u1, u2, : : :,

uh 2 V
N , positive integers d1; d2; : : : ; dh and a subset U of V N , let U(u1; d1; u2; d2;

: : : ; uh; dh) (or Ud1;d2;:::;dh if u1;u2; : : : ;uh are clear from the context) be de�ned as

U(u1; d1;u2; d2; : : : ;uh; dh) , fu 2 U : dH(u;ui) � di for 1 � i � hg: (2.2.6)

Then we have the following lemma.

Lemma 2.1 : At a stage of an iterative decoding algorithm, suppose that

(i) candidate codewords u1;u2; : : : ;uh have been generated, and let ubest denote

the best of all the candidate codewords that have been generated already,

(ii) for d1; d2; : : : ; dh 2 W � f0g,

L(ubest) = L[[hi=1fu 2 C : dH(u;ui) < dig]; (2.2.7)

and (iii) any candidate codeword that will be generated in a later stage belongs to

a subset U of V N .

Then, ubest is the best candidate codeword that can be generated by the decoding

algorithm, if

L(ubest) � L[U(u1; d1;u2; d2; : : : ;uh; dh)]: (2.2.8)

44

The above condition can be used as a termination condition of an iterative de-

coding algorithm without any e�ect of the error probability. If C � U in (2.2.8),

then the condition (2.2.8) is a suÆcient condition that ubest is the optimal. For

instance, if C is an even weight code, the set of all even weight binary N -tuples,

denoted V N
even, can be chosen as U . Of course, the complexity to �nd the right-hand

side of (2.2.8) must be less than the average reduction of the complexity of the

succeeding iterations due to the introduction of the termination condition.

Condition (2.2.7) holds always for di = w1 = dmin with 1 � i � h. In the

decoding algorithms proposed in [6, 7], \minimum-weight sub-trellis search around

a codeword u" which gives the best codeword of fv 2 C : dH(v;u) � w1g is used.

If such a search around ui is to be done, then we can set di = w2.

For a positive integer h, let Bh be the set of all binary sequences of length h.

For 1 � i � h and � 2 B
h, let pri(�) denote the i-th bit of �. For u1;u2; : : : ;uh

7

and u in V
N and � 2 B

h, let D� and q� be de�ned as

D� ,

h\
i=1

Dpri(�)(ui); (2.2.9)

n� , jD�j; (2.2.10)

q� , jD1(u) \D�j: (2.2.11)

It is shown in [10] that u 2 V N(u1; d1;u2; d2; : : : ;uh; dh) if and only ifX
�2Bh

(�1)pri(�)q� � Æi , di � n(ui); for 1 � i � h: (2.2.12)

Let Q denote the set of those 2h-tuples q = (q00���0, q0���01, : : :, q11���1)'s over

nonnegative integers which satisfy (2.2.12). We say, q = (q00���0; q0���01; : : : ; q11���1)

2 Q is minimal if and only if there is no q0 = (q000���0; q
0
0���01; : : : ; q

0
11���1) 2 Q such that

q 6= q0 and q� � q
0
� for � 2 B

h. Let Qmin denote the set of minimal tuples in Q.

For q 2 Qmin, q11���1 = 0.

For � = a1a2 � � �ah 2 B
h, let �� denote �a1, �a2, : : :, �ah 2 B

h, where if a = 0, then

�a = 1 and otherwise, �a = 0. For each unordered pair (�; ��) with � 2 Bh, we choose

� or �� and let Bh
0 denote the set of 2h�1 chosen binary sequences.

For � 2 B
h
0 , let y� be de�ned as y� , q� � q��. Then, the inequality of (2.2.12)

can be rewritten as follows: X
�2Bh

0

(�1)pri(�)y� � Æi: (2.2.13)

For q 2 Qmin,

q�� = 0; if y� � 0; (2.2.14)

q� = 0; if y� � 0: (2.2.15)

Thus the number of variables in the key inequalities (2.2.12) is reduced to half.

For simplicity, we assume that the bit positions 1; 2; : : : ; N are ordered according

to the following increasing order of reliability, i.e. jrij � jrjj, for 1 � i < j � N .

For a subset X of f1; 2; : : : ; Ng and a positive integer j � jXj, let X(j) denote

the set of j smallest integers in X. For a nonpositive integer j;X(j) , � and for

j � jXj; X
(j) , X. Then, the following lemma holds [10].

8

Lemma 2.2 : (1) If Qmin 6= �, then

L[V N
d1;d2;:::;dh

] = min
q2Qmin

X
i2
S
�2Bh D

(q�)
�

jrij: (2.2.16)

(2) If C is an even weight code, then

L[V N
even d1;d2;:::;dh

] = L[V N
d1;d2;:::;dh

]: (2.2.17)

2.3 Examples

Without loss of generality, assume that Æi � Æj for i < j in Examples 2.1 and 2.2.

Example 2.1: Let h = 2. It is proved in [10] that

L[V N
d1;d2

] =
X

i2(D00[D
(b(Æ1�Æ2)=2c)

01)(Æ1)

jrij: (2.3.1)

Consider a special case where u1 = u2 and d1 = d2 = dmin = w1, that is, h = 1.

Then, D00 = D0(u1), D01 = �, Æ1 = Æ2 and equality (2.3.1) reduces to the following

formula derived in [4]: L[V N
d1
] =
P

i2D0(u1)
(Æ1) jrij.

For u1 6= u2, the right-hand side of (2.3.1) can be shown to be tighter than the

lower bound
P

i2D0(u2)
(d(Æ1+Æ2)=2e) jrij given in [5].

Example 2.2: For h = 3, let Æ02, Æ
0
3 and Æ

(1) be de�ned as Æ02 , b(Æ1 � Æ2)=2c,

Æ
0
3 , b(Æ1 � Æ3)=2c, Æ

(1) , min(Æ02; Æ
0
3). Let L1 be de�ned as

L1 , min
0�Æ�Æ(1)

X
i2(D000[D

(Æ0
3
�Æ)

001 [D
(Æ0
2
�Æ)

010)(Æ1�Æ)[D
(Æ)
011

jrij: (2.3.2)

If the number of indices i's in the above summation is smaller than Æ1, de�ne L1 as

1.

Consider the parities of Æi with 1 � i � 3. By the parity of an integer m,

we mean the eveness or oddness of m. If Æi belongs to the major parity of Æ1,

Æ2 and Æ3, then 4i , 0, otherwise 4i , 1. Let Æ002 , Æ
00
3 , Æ

(2) and Æ
(3) be de�ned

as Æ00i , (Æ1 + 41 � Æi � 4i)=2, Æ
(2) , maxf0; (Æ2 + 42 + Æ3 + 43)=2 � n000g,

9

Æ
(3) , minfn100; n010 � Æ

00
2 ; n001 � Æ

00
3 ; (Æ2 +42 + Æ3 +43)=2g. If Æ

(3)
� Æ

(2), let L2

be de�ned as

L2 , min
Æ(2)�Æ�Æ(3)

X
i2D

((Æ2+42+Æ3+43)=2�Æ)

000 [D
(Æ00
3
+Æ)

001 [D
(Æ00
2
+Æ)

010

jrij: (2.3.3)

Otherwise, L2 ,1. Then, L[V N
d1;d2;d3

] is given by minfL1; L2g [10].

44

In the following Example 3 and 4, let condh(d1; d2; : : : ; dh) denote the termina-

tion condition (2.2.8) in which U = V
N , uh is the latest candidate codeword and

u1; : : : ;uh�1 are the (h � 1) best candidate codewords other than uh among all

candidate codwrods that have been generated already.

For simplicity, if the number of candidate codewords generated already is less

than h, then condh(d1; d2; : : : ; dh) is de�ned to be false. To show the di�erence

between the e�ectiveness of condh(d1; d2; : : : ; dh) and that of condh�1(d2; d3; : : : ; dh)

as early ternimation conditions, we de�ne the following condition �h(d1; d2; : : : ; dh).

Condition �h(d1; d2; : : : ; dh) is true, if and only if (i) at the current iteration step,

condh(d1; d2; : : : ; dh) holds and condh�1(d2; d3; : : : ; dh) does not hold and (ii) at any

prior step, no condition condh0(dh�h0+1; dh�h0+2; : : : ; dh) with 1 � h
0
� h holds, where

cond0 , false.

Example 2.3:

We consider the Chase algorithm II [2] modi�ed by introducing an early termina-

tion condition condh(w1; : : : ; w1) with 1 � h � 3 (abbreviated to condh), and have

analyzed the e�ectiveness of the termination condition by simulation for RM5;1,

RM5;2, RM6;2 and RM6;3. The case that the hard-decision received vector z is a

codeword is not accounted for in this example and Examples 4.

In the simulation, test error patterns ej with 1 � j � 2t, whose nonzero com-

ponents are con�ned in the �rst t most unreliable positions, were generated in the

increasing order of L(ej), where t , bw1=2c, and the j-th candidate codeword cj

was generated by majority-logic decoding of z + ej with randomly breaking ties.

Some of cj's were the same.

For 1 � h � 3, if i is the smallest index such that condition �h(w1; : : : ; w1) (ab-

breviated to �h) holds for fc1, c2, : : :, cig, then the reduction rate rh;i of iterations

is de�ned as (2t � i)=(2t � 1). If there is no such an index i, let rh;2t , 0. For

10

1 � j � 2t, let #�h;j denote the number of occurrences of event that �h holds at

the j-th iteration, let #�h denote the occurrence number of events that condition

�h holds, and let #MLD denote the number of occurrences of event that the de-

coded codeword by the Chase algorithm II is optimal. Figrure 2.1 shows the ratio

rh , (
P2t

j=h rh;j#�h;j)=(#MLD �
Ph�1

j=1 #�j).

Next, we consider the ratio of the number of the decoded codewords for which

condition �h holds to that of decoded codewords which are optimal. Figure 2.2

shows ratios �h , #�h=(#MLD �
Ph�1

i=1 #�i) for 1 � h � 3.

Simulation results show that cond2 is e�ective in all cases and cond3 is slightly

more e�ective than cond2. The e�ectiveness of cond2 over cond1 is relatively small

for RM6;2 and RM6;3.

Example 2.4: In the decoding algorithm in [6, 7], \minimum-weight sub-trellis

search" (MWTS) is introduced to improve Chase algorithm II. At most one MWTS

is performed and conditions cond1(wi) with 1 � i � 2 are e�ectively employed.

In an iterative decoding algorithm presented in [8, 9], a modi�ed minimumweight

sub-trellis search (MWTS0) around a codeword u is used to �nd the best codeword of

fv 2 C : dH(v;u) = w1g. An initial candidate codeword u0 for RMm;r is generated

by majority-logic decoding with randomly breaking ties and unless cond1(w1) is true,

a MWTS0 around u0 is performed. Then a MWTS0 around the latest candidate

codeword is iterated until the codewords generated already satisfy (i) a suÆcient

condition on optimality as an early termination condition or (ii) the �nal condition

that the search results in a previous candidate codeword.

Part of the simulation results [8] are shown in Figures 2.3 and 2.4. Optimality

conditions cond1(w1), cond2(w2; wi) and cond3(w2; w2; wi) with 1 � i � 2 (abbrevi-

ated to cond0h) are used in the simulation. Let #�
0
h denote the number of occurrences

of event that �h(w2; : : : ; w2) holds. Figure 2.3 shows ratios �0h = #�0
h = (#MLD

�
Ph�1

i=1 #�i;2) with 1 � h � 3 for RM6;2 and RM6;3. For RM6;2 (or RM6;3),

the average numbers of iterations of MWTS0 are 1.45, 0.668, 0.188, 0.0253(or 1.49,

0.549, 0.118, 0.0131) at Eb=N0 = 3,4,5,6 in dB, respectively, when cond1(w1) and

cond1(w2) are used.

Figure 2.4 shows the block error probabilities compared with those of hard-

decision majority-logic decoding, the Chase algorithm II, the decoding algorithm in

[6, 7] and maximum-likelihood decoding for RM6;2 and RM6;3.

11

Example 2.5: Reliable estimation of the error probability PE of maximum likeli-

hood (ML) decoding of a block code by simulation is time-consuming at relatively

high SN ratios where PE is very small and no tight upper bound on PE is available.

A front decoder which has less complexity but lower performance than ML decoder

can be used as follows. A slower ML decoder is called only if the decoded codeword

by the front decoder satis�es no suÆcient condition on the optimality. The block

error probabilites of ML decoding shown in Figure 2.4 were evaluated by simulation

where the iterative MWTS0 decoding algorithm [8] was used as a front decoder.

2.4 On Tighter Bounds

If the complete distance pro�leW is available, then tighter bounds can be derived. In

place of V N(u1; d1;u2; d2; : : : ;uh; dh), the following set V
N
W (u1; d1; u2; d2; : : : ;uh; dh)

is to be considered:

V
N
W (u1; d1;u2; d2; : : : ;uh; dh) ,

fu 2 V N : for 1 � i � h; there is d0i 2 W such that

d
0
i � di and dH(u;ui) = d

0
ig.

If ui 2 C for 1 � i � h, then V � V
N
W (u1; d1;u2; d2; : : : ;uh; dh) � V

N(u1; d1; u2; d2;

: : : ;uh; dh). A preliminary study shows that even for h = 1, L[V N
W (u1; d1)] is tighter

than L[V N (u1; d1)] if d1 < n(u1).

2.5 Conclusion

In this chapter, two suÆcient conditions on optimality of a candidate codeword for

a given received sequence are derived. These suÆcient conditions are stronger than

all the previously known suÆcient conditions. To show their e�ectiveness, these

suÆcient conditions were applied to the Chase decoding algorithm II and a newly

proposed iterative decoding algorithm. Simulation results show that they are very

e�ective in terminating the decoding process except for high block error probability

region. For low SNR, suÆcient conditions based on four or more already generated

candidate codewords are under study.

12

RM5;1 RM5;2

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

A
ve

ra
ge

 r
ed

uc
tio

n
of

 it
er

at
io

ns
 (

%
)

Eb/No(dB)

h = 1
h = 2
h = 3

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7
A

ve
ra

ge
 r

ed
uc

tio
n

of
 it

er
at

io
ns

 (
%

)
Eb/No(dB)

h = 1
h = 2
h = 3

RM6;2 RM6;3

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

A
ve

ra
ge

 r
ed

uc
tio

n
of

 it
er

at
io

ns
 (

%
)

Eb/No(dB)

h = 1
h = 2
h = 3

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

A
ve

ra
ge

 r
ed

uc
tio

n
of

 it
er

at
io

ns
 (

%
)

Eb/No(dB)

h = 1
h = 2
h = 3

Figure 2.1: Simulation results on the average of reduction rates of iterations r1; r2; r3

for RM5;1, RM5;2, RM6;2 and RM6;3.

13

R
M

5
;1

R
M
5
;2

0 10 20 30 40 50 60 70 80 90

100

0
1

2
3

4
5

6
7

Number of decoded codewords satisfying optimality test (%)

E
b/N

o(dB
)

h =
 1

h =
 2

h =
 3

0 10 20 30 40 50 60 70 80 90

100

0
1

2
3

4
5

6
7

Number of decoded codewords satisfying optimality test (%)
E

b/N
o(dB

)

h =
 1

h =
 2

h =
 3

R
M

6
;2

R
M
6
;3

0 10 20 30 40 50 60 70 80 90

100

0
1

2
3

4
5

6
7

Number of decoded codewords satisfying optimality test (%)

E
b/N

o(dB
)

h =
 1

h =
 2

h =
 3

0 10 20 30 40 50 60 70 80 90

100

0
1

2
3

4
5

6
7

Number of decoded codewords satisfying optimality test (%)

E
b/N

o(dB
)

h =
 1

h =
 2

h =
 3

F
ig
u
re

2
.2
:
S
im
u
la
tio

n
resu

lts
o
n
th
e
ra
tio

s
�
h
o
f
th
e
n
u
m
b
er

o
f
th
o
se

co
d
ew
o
rd
s

d
eco

d
ed

b
y
C
h
a
se

d
eco

d
in
g
a
lg
o
rith

m
II
w
h
ich

sa
tisfy

o
p
tim

a
lity

test
c
o
n
d
h
to

th
a
t

o
f
d
eco

d
ed

co
d
ew
o
rd
s
w
h
ich

a
re

o
p
tim

a
l
fo
r
R
M

5
;1 ,

R
M

5
;2 ,

R
M

6
;2
a
n
d
R
M

6
;3 .

1
4

RM6;2 RM6;3

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5

N
um

be
r

of
 d

ec
od

ed
 c

od
ew

or
ds

 s
at

is
fy

in
g

op
tim

al
ity

 te
st

 (
%

)

Eb/No(dB)

h = 1
h = 2
h = 3

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5

N
um

be
r

of
 d

ec
od

ed
 c

od
ew

or
ds

 s
at

is
fy

in
g

op
tim

al
ity

 te
st

 (
%

)

Eb/No(dB)

h = 1
h = 2
h = 3

Figure 2.3: Simulation results on the ratios �0h of the number of the decoded code-

words which satisfy optimality test cond0h to that of optimal decoded codewords for

the iterative MWTS0 decoding of RM6;2 and RM6;3.

RM6;2 RM6;3

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 1 2 3 4 5 6 7

B
lo

ck
 e

rr
or

 p
ro

ba
bi

lit
y

Eb/No(dB)

HD majority-logic decoding
Chase algorithm II

The decoding algorithm [6,7]
The iterative MWTS decoding [8]

Maximum likelihood decoding
1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 1 2 3 4 5 6 7

B
lo

ck
 e

rr
or

 p
ro

ba
bi

lit
y

Eb/No(dB)

HD majority-logic decoding
Chase algorithm II

The decoding algorithm [6,7]
The iterative MWTS decoding [8]

Maximum likelihood decoding

Figure 2.4: Block error probabilities for RM6;2 and RM6;3.

15

16

Chapter 3

A SuÆcient Condition for Ruling

Out Some Useless Test Error

Patterns in Iterative Decoding

Algorithms

3.1 Introduction

In such an iterative decoding algorithm as Chase type-II decoding algorithm[2], can-

didate codewords for a received vector are generated by using an algebraic decoder

and a set of test error patterns that is formed based on the reliability measures

of the received symbols. The candidate codeword that has the largest correlation

metric with the received vector is chosen as the decoded codeword. This decoding is

a bounded-distance decoding and achieves asymptotic error performance. However,

during the decoding process, some of the test error patterns may result in decoding

failures if a bounded-distance algebraic decoding is used and some may produce the

same candidate codeword (repetition). These result in unnecessary decoding oper-

ations and hence prolongs the decoding delay. Therefore, it is desirable to remove

these useless or redundant error patterns before or during the decoding process.

Recently, several iterative decoding algorithms have been proposed [20, 6, 6,

19, 5, 4, 13]. In these algorithms, a suÆcient condition on optimality is applied

to each candidate codeword when it is generated. If the suÆcient condition is

17

satis�ed, the tested candidate codeword is the most likely codeword for the received

vector and the decoding process stops. Otherwise, another candidate codeword is

generated by using a new test error pattern. This process repeats until either the

most likely codeword is found or the test error patterns are exhausted. In some

iterative decoding algorithms[20, 6, 6, 19], rules are provided to remove those error

patterns that produce the same candidate codeword (not decoding failures). Hence,

successful decodings generate only di�erent candidate codewords for test. However,

these rules do not guarantee that the candidate codewords are generated in the

order of increasing correlation metric. As a result, some candidate codewords may

have smaller correlation metrics than those which were generated earlier and hence

useless in decoding decision.

To the authors' knowledge, the �rst study on a suÆcient condition for ruling

out some useless test error patterns to reduce the number of bounded-distance t

decodings was made in [20]. Let us call the suÆcient condition present in [20] the K-

N-H condition. This paper presents a more e�ective suÆcient condition for ruling out

some useless test error pattern than the K-N-H condition. In this paper, the ruling

out is based on the following conditions: (1) Under a reasonable restriction on the

order of generating test error patterns (EG condition stated in Sec. 3), a necessary

and suÆcient condition (stated in Lemma 3.1) that the decoded codeword, dec(e),

by a bounded-distance decoding for a nonzero test error pattern e is di�erent from

all candidate codewords that have been generated already, and (2) the Hamming

distance between the latest candidate codeword generated already, denoted c, and

dec(e) is at least the minimum distance of the code. If test error patterns are

assumed to be generated in binary order and the condition (1) above is only taken

into consideration, the suÆcient condition presented in this paper is reduced to

the K-N-H condition as stated in Sec. 4.1. In this sense, our new condition is an

extension and improvement of the K-N-H condition.

The complexity for testing the ruling out condition is considerably smaller than

that of a bounded-distance algebraic decoding. Each time when a new test error

pattern is generated, it is tested based on this suÆcient condition. If the condi-

tion holds, then this error pattern can not produce a candidate codeword with a

correlation metric larger than those of the candidate codewords generated already

and hence it is useless. In this case, the error pattern is ruled out for decoding

and the next test error pattern is generated unless the test error patterns have been

18

exhausted. This reduces the number of bounded-distance decoding operations and

the decoding delay. We apply the ruling out condition to Chase Type-II decod-

ing algorithm, and the reduction rates of this ruling out condition are evaluated

by simulation and compared with those of the early terminating rule based on the

Taipale-Pursley suÆcient condition on optimality [5] for various Reed-Muller (RM)

codes and extended BCH codes of lengths 64 and 128. Results show that the ruling

out condition presented in this paper is more e�ective than the Taipale-Pursley early

termination condition.

3.2 De�nitions

Suppose a binary block code C of length n with the minimum Hamming distance

dmin is used for error control over the AWGN channel using BPSK signaling. Let

r = (r1; r2; : : : ; rn) and z = (z1; z2; : : : ; zn) be the soft-decision and binary hard-

decision received sequences respectively.

Let V n denote the set of all binary n-tuples. The correlation between u 2 V
n

and the received sequence r is given by M(u) =
Pn

j=1 rj(2uj � 1). For any u 2 V n,

M(z) � M(u). For a set X, let jXj denote the cardinal number of X. For an

n-tuple u 2 V n, de�ne the following:

D0(u) , fj : uj = zj; and 1 � j � ng; (3.2.1)

D1(u) , f1; 2; : : : ; ngnD0(u); (3.2.2)

n�(u) , jD�(u)j; for � 2 f0; 1g; (3.2.3)

L(u) ,
X

j2D1(u)

jrjj: (3.2.4)

Then M(u) can be expressed as follows:

M(u) =M(z)� 2L(u); (3.2.5)

where L(u) is the correlation discrepancy of u. For a subset U of V n, let L[U] be

de�ned as

L[U] , min
u2U

L(u): (3.2.6)

19

If U is empty, then L[U] is de�ned as 1(in�nity). A candidate codeword c for the

received vector r is the optimal MLD solution if and only if L(c) = L[C]. If z is a

codeword, then z is the optimal codeword.

For a given received sequence r, a candidate codeword c is said to be better

(or more likely) than another candidate codeword c0 if L(c) � L(c0). A candidate

codeword c is said to be the best if L(c) is the minimum among a speci�ed set

of candidate codewords. Let dH(u; v) denote the Hamming distance between two

n-tuples, u and v, and let wH(u) denote the Hamming weight of u.

3.3 Test Error Patterns

In the iterative decoding algorithms presented in [2, 20, 6, 6], the set of test error

patterns for a received sequence r = (r1; r2; : : : ; rn) is formed based on the reliability

measures of the received symbols in r. The choice of this set determines the error

performance and e�ectiveness of these decoding algorithms. It is obvious that only

the most probable error patterns for a given received sequence r should be used as

the test error patterns and they should be used in likelihood order to generate the

candidate codewords for optimality test.

In the design of test error patterns, there are two parameters, T and t with

1 � T � n and 0 � t � b(dmin � 1)=2c. A test error pattern e is a binary n-

tuple with nonzero components con�ned to the T least reliable positions of r. For

simplicity of discussion, we assume that the bit positions, 1, 2, : : : ; n are ordered

according to the reliability order given as follows:

jrij � jrjj; for 1 � i < j � n: (3.3.1)

In this case, the T least reliable positions are simply the �rst T bit positions. Let ET

denote the set of these error patterns. For each e 2 ET , the last n�T components are

all zero. In both the Chase type-II algorithm and the iterative decoding algorithm

proposed in [6, 6], T is set to bdmin=2c.

For a binary n-tuple u 2 V n, let dec(u) denote the codeword given by bounded-t

distance decoding of z + u. If a decoding failure occurs, we write \dec(u) = �".

For a test error pattern e 2 ET , let l(e) denote the last nonzero bit position. The

candidate codeword associated with e is the codeword dec(e) given by bounded t-

distance decoding of z+ e. If a decoding failure occurs, the candidate dec(e) is not

20

de�ned. If dec(e) 6= �, then

wH(z + e+ dec(e)) � t: (3.3.2)

For m positive integers i1; i2; : : : ; im such that 1 � i1 < i2 < � � � < im � T , let

v(i1; i2; : : : ; im) denote the test error pattern whose i-th component is one if and

only if there is an index 1 � j � m with i = ij. Let l(v(i1; i2; : : : ; im)) denote im.

For two di�erent test error patterns e = v(i1; i2; : : : ; im) and e0 = v(i01; i
0
2; : : : ; i

0
m0),

we write \e0 <E e", ifm0
� m and there is a subset fj1; j2; : : : ; jm0g of fi1; i2; : : : ; img

such that j1 < j2 < � � � < jm0 and i
0
s � js for 1 � s � m

0.

We assume that test error patterns are generated sequentially from 0(the zero

tuple) in such a way that the following condition holds.

EG condition: if e 2 ET is generated at a stage, then every test error pattern e0

such that e0 <E e has been generated at a preceding stage.

For an example, if test error patterns are generated in binary order or in the in-

creasing order of correlation discrepancy L(e), then the above condition is satis�ed.

For e = v(i1; i2; : : : ; im) 2 ET , let Ut[e] denote the set of such binary n-tuples

u's that z + u satis�es the following two conditions: (i) the nonzero bit positions

among the �rst l(e) components are exactly i1; i2; : : : ; im, and (ii) the weight of the

last n � l(e) components is t. Then we have the following lemma. The if part

has been stated in [6]. For the ruling out condition, we need the only-if part to

guarantees that there is no degradation of error-performance.

Lemma 3.1: For a nonzero test error pattern e 2 ET , dec(e) is a new candidate

codeword di�erent from all candidate codewords that have been generated already,

if and only if dec(e) 2 Ut[e].

(Proof) We prove the only-if part. De�ne c , dec(e). Since a bounded-t distance

decoding is used, if wH(z + c) � t, then c = dec(0). This contradicts the EG

condition. Hence, wH(z+c) > t. Let z+c = v(i01; i
0
2; : : : ; i

0
p), where p = wH(z+c).

De�ne e0 , v(i01; i
0
2; : : : ; i

0
m0) where m0 = p� t > 0. Then

wH(z + e0 + c) = t: (3.3.3)

21

From the uniqueness of bounded-t distance decoding,

c = dec(e0): (3.3.4)

Let e = v(i1; i2; : : : ; im). De�ne

J , fi
0
1; i

0
2; : : : ; i

0
pg \ fi1; i2; : : : ; img: (3.3.5)

It follows from (3.3.2) that

m
0 = wH(z + c)� t � jJ j: (3.3.6)

Let j1; j2; : : : ; jm0 be the m0 smallest integers in J . Then, i0s � js for 1 � s � m
0.

Hence, l(e0) � l(e) � T , that is, e0 2 ET and e0 <E e. Since dec(e0) = dec(e) = c,

it follows from the assumption of Lemma that e = e0, and therefore c 2 Ut[e].

44

3.4 A suÆcient condition for ruling out useless

error patterns

3.4.1 General Case

For e 2 ET and u; v 2 V
n, let d

[1]

H (u; v) and d
[2]

H (u; v) denote the Hamming distances

between u and v in the �rst l(e) components and the last n � l(e) components,

respectively. For u = (u1; u2; : : : ; un) 2 V
n, let D

[j]
1 (u), D

[j]
0 (u), n

[j](u) with j 2

f1; 2g be de�ned as follows:

D
[1]
0 (u) , fi : ui = zi; and 1 � i � l(e)g; (3.4.1)

D
[2]
0 (u) , fi : ui = zi; and l(e) < i � ng; (3.4.2)

D
[1]
1 (u) , f1; 2; : : : ; l(e)gnD

[1]
0 (u); (3.4.3)

D
[2]
1 (u) , fl(e) + 1; l(e) + 2; : : : ; ngnD

[2]
0 (u); (3.4.4)

n
[1]
0 (u) , jD

[1]
0 (u)j = l(e)� n

[1]
1 (u): (3.4.5)

n
[2]
0 (u) , jD

[2]
0 (u)j = n� l(e)� n

[2]
1 (u): (3.4.6)

n
[j]
1 (u) , jD

[j]
1 (u)j = d

[j]
H (u; z); (3.4.7)

22

For a given codeword c 2 C, u 2 V n, � 2 f0; 1g and j 2 f1; 2g, let q
[j]
� (u) be de�ned

as

q
[j]
� (u) , jD

[j]
1 (u) \D[j]

� (c)j: (3.4.8)

Then we have that

0 � q
[2]
� (u) � n

[2]
� (c); for � 2 f0; 1g; (3.4.9)

d
[2]

H (u; z) = jD
[2]
1 (u)j

= jD
[2]
1 (u) \D

[2]
0 (c)j+ jD

[2]
1 (u) \D

[2]
1 (c)j

= q
[2]
0 (u) + q

[2]
1 (u); (3.4.10)

d
[2]

H (u; c) = jD
[2]
1 (u) \D

[2]
0 (c)j+ jD

[2]
0 (u) \D

[2]
1 (c)j

= q
[2]
0 (u) + n

[2]
1 (c)� q

[2]
1 (u): (3.4.11)

For u 2 Ut[e], it follows from the de�nition of Ut[e], (3.4.5), (3.4.8), (3.4.10) and

(3.4.11) that

dH(u; c) = d
[1]

H (u; c) + d
[2]

H (u; c)

= d
[1]

H (z + e; c) + d
[2]

H (u; c)

= d
[1]

H (e; z + c) + n
[2]
1 (c) + q

[2]
0 (u)� q

[2]
1 (u)

= dH(e; z + c) + q
[2]
0 (u)� q

[2]
1 (u); (3.4.12)

d
[2]

H (u; z) = q
[2]
0 (u) + q

[2]
1 (u) = t: (3.4.13)

For e 2 ET and c 2 C, de�ne the following set of n-tuples in V
n:

Vt(e; c) , fu 2 Ut[e] : dH(u; c) � dming: (3.4.14)

Then, it follows from (3.2.6), Lemma 3.1 and (3.4.14), that we have Theorem 1.

Theorem 1: Suppose that c is the latest candidate codeword generated, cbest is the

best among those candidate codewords already generated, the order of generation

of test error patterns satis�es the condition EG and the next test error pattern is e.

Then e is useless and can be ruled out if the following condition holds:

L(cbest) � L[Vt(e; c)]: (3.4.15)

44

23

Theorem 1 gives a suÆcient condition to rule out useless test error patterns.

The complexity for testing the above condition is to be considerably smaller than

that for bounded-t decoding. Evaluation of the bound of (3.4.15) is given below.

It follows from (3.4.9) and (3.4.12) to (3.4.14) that for u 2 Ut[e], u 2 Vt(e; c) if

and only if

q
[2]
0 (u) + q

[2]
1 (u) = t; (3.4.16)

q
[2]
0 (u)� q

[2]
1 (u) � Æ; (3.4.17)

0 � q
[2]
� (u) � n

[2]
� (c); for � 2 f0; 1g; (3.4.18)

where

Æ = dmin � dH(e; z + c): (3.4.19)

Conversely, for a pair of nonnegative integers q0 and q1 such that

q0 + q1 = t; (3.4.20)

q0 � q1 � Æ; (3.4.21)

n
[2]
� (c) � q� � 0; for � 2 f0; 1g; (3.4.22)

there is u 2 Vt(e; c) such that

q
[2]
� (u) = q�; for � 2 f0; 1g: (3.4.23)

Let Q denote the set of pairs of nonnegative integers (q0; q1) satisfying (3.4.20) to

(3.4.22). The following lemma summarizes the above result.

Lemma 3.2: For u 2 Ut[e], u 2 Vt(e; c) if and only if there is a pair (q0; q1) in Q

such that q
[2]
� (u)(, jD

[2]
1 (u) \D

[2]
� (c)j) = q� for � 2 f0; 1g.

44

In [20], test error patterns are assumed to be generated in binary order, and the

K-N-H condition can be readily expressed in the notations in this paper as

L(cbest) � L(Ut[e]): (3.4.24)

From Lemma 3.2, we can see the di�erence of e�ectiveness between (3.4.15) and

(3.4.24).

24

From (3.4.5), (3.4.9) and (3.4.20) to (3.4.23), we have that

Æ � q1 � Æ; (3.4.25)

Æ = maxf0; t+ l(e) + n
[2]
1 (c)� ng; (3.4.26)

Æ = minfn
[2]
1 (c); b(t� Æ)=2c; tg: (3.4.27)

Since the Hamming distances between e and z + c in the �rst T components and

the last n� T components are at most T and t respectively,

dH(e; z + c) � T + t: (3.4.28)

3.4.2 Special Case

Consider the special case where T = bdmin=2c and t = b(dmin � 1)=2c. The Chase

algorithm II[2] is this case. From (3.4.19) and (3.4.28),

Æ > 0; (3.4.29)

and therefore,

Æ = minfn
[2]
1 (c); b(t� Æ)=2cg: (3.4.30)

Suppose that dmin � n=2. Then since l(e) � T and n
[2]
1 (c) � dH(c; z) � T+t � dmin,

Æ = 0: (3.4.31)

Consequently, Q is not empty if and only if

t � Æ: (3.4.32)

Assume that (3.4.32) holds. Then we have

Q = f(t� q1; q1) : 0 � q1 � Æ =

minfn
[2]
1 (c); b(t� Æ)=2cgg: (3.4.33)

For a subset X of f1; 2; : : : ; ng and a positive integer j � jXj, let X(j) denote

the set of j smallest integers in X. For a non-positive integer j, X(j) , � and for

j � jXj, X(j) , X.

25

Suppose that T = bdmin=2c, t = b(dmin�1)=2c and dmin � n=2. Now we evaluate

L(Vt(e; c)). Let u 2 Vt(e; c). Since u 2 Ut[e], it follows from (3.2.4) that

L(u) = L(e) +
X

i2D
[2]
1 (u)

jrij

= L(e) +
X

i2D
[2]
1 (u)\D

[2]
0 (c)

jrij

+
X

i2D
[2]
1 (u)\D

[2]
1 (c)

jrij: (3.4.34)

From Lemma 3.2, (3.2.6), (3.4.33), (3.4.34) and the de�nition of X(j), we have that

L(Vt(e; c)) =

L(e) + min
0�q1��Æ

8><>:
X

i2[D
[2]

0 (c)](t�q1)

jrij

+
X

i2[D
[2]

1 (c)](q1)

jrij

9>=>;
=

mX
j=1

jrij j+
X
i2D(c)

jrij; (3.4.35)

where e = v(i1; i2; : : : ; im) and

D(c) , (D
[2]
0 (c) [[D

[2]
1 (c)](

�Æ))(t): (3.4.36)

From (3.4.35) and (3.4.36), we see that the evaluation of L(Vt(e; c)) is quite simple.

3.5 Application

In the following, we consider the e�ectiveness of the suÆcient condition given in

Theorem 1 for ruling out useless test error patterns.

Consider the following modi�ed Chase algorithm-IIe. In algorithm-IIe, each time

a nonzero new test pattern e is generated in an order satisfying the EG condition

26

stated in Section 3 (unless no candidate codeword has been generated yet), the

following condition is tested:

L(cbest) � L[Vt(e; c)]; (3.5.1)

where c is the latest candidate codeword and cbest is the best among all candidate

codewords that have been generated already. If (3.5.1) holds, then the bounded-t

algebraic decoding of z + e is skipped and the next test error pattern is generated

unless test error patterns have been exhausted. Otherwise, the bounded-t decoding

is applied to z + e. For z =2 C, let Ne(z) be the number of bounded-t decodings

performed for z in algorithm-IIe. Then 1 � Ne(z) � 2T . Let us de�ne a reduction

rate of the number of bounded-t decodings in algorithm-IIe, denoted rd(IIe), as the

average of 100� (1� ((Ne(z)� 1)=(2T � 1))) over the random vector z =2 C when

test error patterns e's are generated in the increasing order of L(e).

For comparison, we consider the followingmodi�ed Chase algorithm-IIs. Algorithm-

IIs is the Chase algorithm-II modi�ed by introducing an early termination condition:

L(c) �
X

i2D0(c)(Æ
0)

jrij; (3.5.2)

where c is the latest candidate codeword, and Æ
0 , dmin � n1(c), D0(c) and n1(c)

are de�ned by (3.2.1) and (3.2.3) respectively. The condition (3.5.2) is a suÆcient

condition on optimality of a candidate codeword c due to Taipale and Pursley[4].

In algorithm-IIs, the ruling out condition of (3.5.1) is not used. Let rd(IIs) be the

average of 100 � (1 � ((Ns(z) � 1)=(2T � 1))) where Ns(z) denotes the number of

bounded-t decodings performed for z in algorithm-IIs.

Let rd(IIe) and rd(IIs) denote the reduction rates of the number of bounded-t de-

codings in algorithm-IIe and algorithm-IIs respectively. Let RMm;r and EBCH(n; k)

denote an r-th order RM code of length 2m and an extended (n; k) BCH code

of length n and dimension k respectively. Figures 3.1 to 3.4 show the values of

rd(IIe) and rd(IIs) evaluated by simulation for RM6;2, RM7;3, EBCH(64,24) and

EBCH(128,64) codes respectively. We see that the ruling out condition of (3.5.1) is

more e�ective than the early termination conditions (3.5.2) for these example codes.

27

3.6 Conclusion

We have derived a condition to rule out useless test error patterns in the generation

of candidate codewords in a Chase-type decoding algorithm. This rule-out condition

reduces many unnecessary decoding iterations and computations.

28

0

20

40

60

80

100

0 1 2 3 4 5 6

A
ve

ra
ge

 r
ed

uc
tio

n
ra

te
s

of
 it

er
at

io
ns

(%
)

Eb/No(dB)

Chase algorithm IIe
Chase algorithm IIs

Figure 3.1: Average reduction rates rd(IIe) and rd(IIs) of iterations for RM6;2

29

0

20

40

60

80

100

0 1 2 3 4 5 6

A
ve

ra
ge

 r
ed

uc
tio

n
ra

te
s

of
 it

er
at

io
ns

(%
)

Eb/No(dB)

Chase algorithm IIe
Chase algorithm IIs

Figure 3.2: Average reduction rates rd(IIe) and rd(IIs) of iterations for RM7;3

30

0

20

40

60

80

100

0 1 2 3 4 5 6

A
ve

ra
ge

 r
ed

uc
tio

n
ra

te
s

of
 it

er
at

io
ns

(%
)

Eb/No(dB)

Chase algorithm IIe
Chase algorithm IIs

Figure 3.3: Average reduction rates rd(IIe) and rd(IIs) of iterations for EBCH(64; 24)

31

0

20

40

60

80

100

0 1 2 3 4 5 6

A
ve

ra
ge

 r
ed

uc
tio

n
ra

te
s

of
 it

er
at

io
ns

(%
)

Eb/No(dB)

Chase algorithm IIe
Chase algorithm IIs

Figure 3.4: Average reduction rates rd(IIe) and rd(IIs) of iterations for

EBCH(128; 64)

32

Chapter 4

A Low-Weight Trellis Based

Iterative Soft-Decision Decoding

Algorithm

4.1 Introduction

The application of trellis-based maximum likelihood decoding(MLD) algorithms is

limited due to the prohibitively large trellises for codes of long block lengths. To

overcome the state and branch complexity problems of large trellises for long block

codes, several new approaches have been proposed [21]{[16]. Most recently, Moorthy,

Lin and Kasami have shown that the minimum-weight subtrellis of a code is sparsely

connected and has much simpler state and branch complexities than the full code

trellis[27]. Based on this fact, they proposed a minimum-weight subtrellis-based

iterative decoding algorithm for linear block codes to achieve suboptimum error

performance with a drastic reduction in decoding complexity compared with a trellis-

based MLD algorithm, using a full code trellis. The Moorthy-Lin-Kasami(MLK)

algorithm is devised based on the following: (1) generation of a sequence of candidate

codewords based on a set of test error patterns using the Chase algorithm-II[2]

and an algebraic decoder; (2) two test conditions, one to test the optimality of a

candidate codeword and the other to test whether the most likely(ML) codeword

is at a distance no greater than the minimum distance from the tested candidate

codeword; and (3) a minimum weight trellis search to �nd the ML codeword. The

33

MLK decoding algorithm is simple indeed and provides good error performance

with large reduction in decoding complexity. However, for long codes, there is a

signi�cant performance degradation compared to MLD for low to medium SNR

and it has several major shortcomings. First, the algebraic decoder used in the

MLK algorithm may fail to decode. Second, some test error patterns may result

in the same candidate codeword and hence useless decoding iterations unless some

preprocessing is done to rule out the repetitions. Third, there is no guarantee that

the candidate codewords are generated in the order of increasing improvement in

terms of the correlation metric. Fourth, the suÆcient conditions for optimality and

the nearest neighbor tests are derived based on only the current candidate codeword,

and the information of previously tested candidate codewords is discarded. This

discarded information may help to narrow down the search of the ML codeword and

reduce the possibility that it slips through the tests without being detected. Finally,

the performance degradation is big for codes whose minimum weight codewords do

not span the codes.

In this chapter, we present a new low-weight subtrellis based iterative decod-

ing algorithm which overcomes the major shortcomings of the MLK algorithm as

described above. By a low weight subtrellis, we mean a subtrellis of the code trel-

lis that consists of only codewords of low weights, say minimum and next to the

minimum weights. The new algorithm is di�erent from the MLK algorithm in the

generation of candidate codewords, optimality test, and termination of the decoding

process. It has the following important features. The initial candidate codeword is

�rst generated by a simple decoding method that guarantees a successful decoding,

such as the zero-th or the �rst-order decoding based on the ordered statistics of the

received symbols proposed in [17] or combined with an algebraic decoding, called

hybrid method. These decodings are very simple and always produce a decoded

codeword (no decoding failure). Subsequent candidate codewords, if needed, are

generated by a chain of low weight subtrellis searches. Each such search is cen-

tered around the current candidate codeword. The current candidate codeword is

excluded in the search to prevent repetition and to reduce the possibility of being

trapped into a local optimum. The codeword with the largest correlation metric

resulting from this low weight subtrellis search is then used as the next candidate

codeword. Candidate codewords are generated in the order of improving correlation

metrics.

34

In the new algorithm, three conditions are used to stop the decoding process.

The �rst condition, called the termination condition, is used to test whether further

generation of candidate codewords will improve the correlation metric and it also

prevents repetition. The other two conditions are used to test the optimality of a

candidate codeword. When a candidate codeword other than the initial candidate

codeword is generated, the termination condition is tested. If the condition holds,

the decoder outputs either the current candidate codeword or the past candidate

codeword just before the current one whichever has larger correlation metric. Oth-

erwise, the two suÆcient conditions on optimality are tested. If any of the two

optimality conditions is satis�ed, then the ML codeword is either the current candi-

date codeword or the past candidate codeword just before the current one. If none of

the optimality conditions is satis�ed, a new candidate codeword is generated. This

test based on the current and past information and use of more than one suÆcient

condition on optimality reduces the number of decoding iterations. Furthermore,

the two suÆcient conditions on optimality are derived from the current and the

previous candidate codewords, and they are less stringent than the conditions given

in [5] and [4]. The only case that the decoder may not output the ML codeword is

when the decoding process is terminated by the termination condition.

For codes that are spanned by their minimumweight codewords, the proposed de-

coding algorithm is very e�ective. However, for codes that are not spanned by their

minimum weight codewords, minimum weight (or next to the minimum weight) sub-

trellis search does not provide a big enough search space and results in a signi�cant

degradation in error performance compared with MLD. To overcome this problem,

we use a divide-and-conquer technique to partition the code space into cosets with

respect to a subcode which is spanned by the minimum weight codewords. Then

the low weight subtrellis search is performed over the cosets in the partition, one at

a time, based on a likely order. The search is shifted from one coset to another until

the ML codeword is found or all the cosets are exhausted. This results in a good

coverage of the entire code space and good error performance, while maintains low

weight subtrellis searches to keep the decoding complexity down.

Simulation results show that this new decoding algorithm provides a signi�cant

improvement in error performance over the MLK algorithm. For all the Reed-

Muller(RM) codes of length 64, extended (64,24,16) and (64,45,8) BCH(EBCH)

codes, and the extended (48,24,12) quadratic residue(EQR) code (in which the op-

35

timal bit order given in [28] is used), the new algorithm with only minimum weight

subtrellis searches provides practically optimal error performance, i.e., the error per-

formance curves of these codes based on the new decoding algorithm fall on top of

their respective MLD error performance curves. For the (128,29,32) RM code, the

new algorithm only gives a performance degradation less than 0.3 dB for bit-error-

rates(BER) from 10�5 to 10�1 (or SNR over the range from 0 to 4 dB), while

the MLK algorithm gives a performance degradation of 1.6 dB. Furthermore, for

all these codes, the new decoding algorithm requires much less computational com-

plexity than the Viterbi [21] and RMLD [16] algorithms based on full code trellises.

Both the new algorithm and the MLK algorithm require about the same order of

average computational complexity.

4.2 Preliminaries

Suppose a binary (N;K; dH) linear block code C with minimum Hamming distance

dH is used for error control over the AWGN channel using BPSK signaling. Let

W = fw0 = 0; w1; w2; : : : ; wmg be the weight pro�le of C, where w1 = dH is the

minimum weight and w1 < w2 < � � � < wm � N . Suppose r = (r1; r2; : : : ; rN)

is the received sequence at the output of the matched �lter of the receiver. Let

z = (z1; z2; : : : ; zN) be the binary hard-decision sequence obtained from r with

zi = 1 for ri > 0 and zi = 0 otherwise for 1 � i � N .

Let VN denote the vector space of all the binary N -tuples. For a binary N -tuple

u = (u1; u2; : : : ; uN) 2 VN , the correlation between u and r is given by

M(u) ,

NX
i=1

ri(2ui � 1): (4.2.1)

It is easy to see that M(z) =
PN

i=1 jrij and for any u 2 VN , M(z) �M(u). For an

N -tuple u 2 VN , de�ne the following index set:

D1(u) , fi : ui 6= zi and 1 � i � Ng: (4.2.2)

Then M(u) can be expressed in terms of M(z) and D1(u) as follows:

M(u) =M(z)� 2L(u); (4.2.3)

36

where

L(u) =
X

i2D1(u)

jrij; (4.2.4)

which is called the correlation discrepancy of u with respect to z. Then MLD can

be stated as follows: Find the codeword copt 2 C for which L(copt) = minc2C L(c).

The codeword copt is then the most likely(ML) codeword.

For u and v in VN , u is said to be better than v if L(u) < L(v). Let better(u; v)

denote the better one of u and v. For a nonempty subset U of VN , de�ne

L[U] , min
u2U

L(u): (4.2.5)

For convenience, L[�] , 1, where � denotes the empty set. It is clear that for

c 2 C, c = copt if and only if L(c) = L[C]. If z 2 C, then it follows from (4.2.3)

that z = copt.

4.2.1 A SuÆcient Condition for Optimality

A key element in the proposed decoding algorithm is a set of suÆcient conditions for

testing the optimality of a candidate codeword. In the following, we give a general

suÆcient condition for optimality in terms of correlation discrepancy and a set of

reference codewords.

For u 2 VN and a positive integer d, de�ne the following region:

VN(u; d) , fv 2 VN : d(v;u) � dg; (4.2.6)

where d(v;u) denote the Hamming distance between v and u. For u1;u2; : : : ;uh 2

VN and positive integers d1; d2; : : : ; dh, de�ne

L[u1; d1;u2; d2; : : : ;uh; dh] , minfL(u) : u 2 VN and d(u;ui) � di for 1 � i � hg(4.2.7)

= L[\hi=1VN(ui; di)]; (4.2.8)

where u1;u2; : : : ;uh are called reference words.

Let Q be a subset of C. De�ne fVN(u; d) , VNnVN(u; d) = fv 2 VN : d(v;u) <

dg. For a codeword ci in Q and a positive integer di with 1 � i � h, de�ne

Si , Q \ fVN(ci; di). Then,
QnSi � VN(ci; di): (4.2.9)

37

Si is called a search region with center ci and covering distance di from ci. Then

Qn [
h
i=1 Si � \

h
i=1VN(ci; di). It follows from (4.2.5) that

L[\hi=1VN(ci; di)] � L[Qn [hi=1 Si]: (4.2.10)

For a codeword c 2 Q, suppose

L(c) � L[[hi=1Si]; (4.2.11)

and

L(c) � L[c1; d1; c2; d2; : : : ; ch; dh]: (4.2.12)

Then it follows from (4.2.8), (4.2.10) to (4.2.12) that

L(c) � L[Q]: (4.2.13)

This says that the joint condition of (4.2.11) and (4.2.12) is suÆcient for the code-

word c to be the best codeword (or the codeword with the least correlation discrep-

ancy) in Q.

Consider the case of Q = C. Let c be the best codeword found in the region

[
h
i=1Si. If L(c) satis�es the condition of (4.2.12), then c is the most likely code-

word copt with respect to the received sequence r. The choices of h, the reference

codewords, the search regions and the covering distances are crucial in designing the

decoding algorithm to be presented in the next section.

Expressions for evaluating L[c1; d1; c2; d2; : : : ; ch; dh] have been derived in [28]

for h = 1; 2 and 3 and are given in Appendix A.

4.2.2 Low Weight Subtrellis Search

Let wk be the k-th nonzero weight in the weight pro�le W of C. Let Cwk
(0) denote

the subcode of C that consists of all the nonzero codewords with weights up to and

including wk. The codewords in Cwk
(0) form a subtrellis diagram of the full trellis

T of C. This subtrellis diagram is called the wk-weight subtrellis centered around

the all-zero codeword and is denoted Twk
(0). Twk

(0) can be obtained by purging

the full code trellis T [27] or by direct construction [29]. If k = 1, Cw1
(0) consists of

all the minimum-weight codewords of C and Tw1
(0) is called the minimum-weight

subtrellis centered around 0. For any c 2 C, de�ne the following subcode of C:

Cwk
(c) , fc+ v : v 2 Cwk

(0)g = fv 2 C : 0 < d(v; c) � wkg: (4.2.14)

38

Cwk
(c) consists of all the codewords in C that are at distances w1 to wk from the

codeword c. For convenience, C0(c) , �. It is clear that v in Cwk
(c) if and only

if c in Cwk
(v). The subtrellis diagram for Cwk

(c), denoted Twk
(c), is isomorphic

to Twk
(0) and can be obtained by adding c to the codewords in Twk

(0). Twk
(c) is

called the wk-weight subtrellis centered around c.

Let 'wk
(c) denote the codeword in Cwk

(c) with the least correlation discrepancy,

i.e.,

L('wk
(c)) = L[Cwk

(c)] (4.2.15)

Then 'wk
(c) can be found by searching through the wk-weight subtrellis Twk

(c) using

a trellis-based decoding algorithm, such as the Viterbi algorithm or the recursive

MLD algorithm [16]. This search operation is called a wk-weight subtrellis search,

denoted wk-WTS(c).

In the proposed decoding algorithm, for a given reference codeword c, Cwk
(c)

will be used as the search region with covering distance wk.

4.3 Iterative Decoding Algorithm I

Decoding begins with the computation of the syndrome of the hard-decision received

sequence z. If the syndrome of z is zero, then z is the ML codeword copt. Oth-

erwise starts the decoding iteration process by generating a sequence of candidate

codewords for testing and search. Decoding process is terminated when the ML

codeword copt is found or a termination condition is satis�ed. In the following, we

�rst present a method for generating the candidate codewords. Then we discuss a

termination condition and an optimality test. Finally, we present the �rst decoding

algorithm.

4.3.1 Generation of Candidate Codewords

Let c0 denote a codeword in C that is obtained by decoding the received sequence

r using a simple decoding method. This codeword c0 serves as the initial candi-

date codeword to start the decoding iteration process. The subsequent candidate

codewords, denote c1; c2; : : : ; ci; : : : ; are generated by a chain of wk-weight trellis

39

searches in the following order:

c1 = 'wk
(c0); c2 = 'wk

(c1); : : : ; ci = 'wk
(ci�1); : : : ; (4.3.1)

where for i � 1, ci is the codeword with the least correlation discrepancy found

by searching through the wk-weight subtrellis centered around ci�1 using the wk-

WTS(ci�1) search procedure.

To generate the initial candidate codeword c0, the �rst-order decoding based

on the ordered statistics of the received symbols proposed in [17] is used. This

decoding is very simple and never fails to produce a decoded codeword. In general,

it produces a good initial candidate codeword with small correlation discrepancy

which makes the decoding iteration process to converge to the ML codeword fast

to reduce the decoding delay and the computational complexity. Another method

to generate the initial codeword is to combine an algebraic decoder and an ordered

statistic decoder, and take the better one of the two decoded codewords as the initial

candidate codeword. If the algebraic decoder fails to decode, then the output of the

ordered statistics decoder is used as the initial candidate codeword. This hybrid

method produces a very good codeword and makes the decoding iteration process

converge to the ML codeword faster for higher SNR as it will be shown later in

Section 5. Of course, this hybrid method increases the decoding cost, an additional

algebraic decoder.

In order to keep the decoding complexity down, the weight wk should be kept

small. Small wk results in small state and branch complexities of the wk-weight

subtrellis Twk
(ci) and hence reduces the number of computations needed to search

through Twk
(ci) at the i-th decoding iteration. If C is spanned by the minimum

weight codewords, then wk = w1 is enough for the proposed algorithm to achieve

practically optimum error performance provided the length of C is not too long.

4.3.2 A Termination Condition

The above generation of candidate codewords provides a condition to terminate the

decoding iteration process in case that the ML codeword can not be found. This

termination condition is derived based on the properties of the candidate codewords.

It follows from (4.2.14), the de�nition of 'wk
and (4.3.1) that ci�1 =2 Cwk

(ci�1)

40

and ci = 'wk
(ci�1) 2 Cwk

(ci�1). Therefore for i > 0,

ci 6= ci�1: (4.3.2)

The next two lemmas and two corollaries characterize the properties of the candidate

codewords generated in the manner of (4.3.1).

Lemma 4.1: For i � 2,

L(ci) � L(ci�2): (4.3.3)

Proof : It follows from (4.2.14) and (4.3.1) that ci�2+ci�1 and ci�1+ci are both in

Cwk
(0). This implies that both ci�2 and ci are in Cwk

(ci�1). Then it follows from

the de�nition of 'wk
and (4.3.1) that

L(ci) = L('wk
(ci�1)) � L(ci�2):

This proves the lemma. 44

Lemma 4.1 gives the following ordering of the candidate codewords, c0, c1, : : :,

ci, : : :, in terms of correlation discrepancy:

L(c0) � L(c2) � � � � � L(c2l) � � � � ;

L(c1) � L(c3) � � � � � L(c2l+1) � � � � :
(4.3.4)

This simply says that the candidate codewords are generated in the order of the

improvement in correlation metric alternately.

Lemma 4.2: If j � 2 and L(cj) < L(cj�2), then for 0 � i < j,

ci 6= cj: (4.3.5)

Proof : See Appendix B. 44

Corollary 4.1: If L(ci) < L(ci�2) for 2 � i � j, then the candidate codewords,

c0; c1; : : : ; cj are distinct.

Proof : From (4.3.2), c0 6= c1. From Lemma 4.2, ci0 6= ci for 0 � i
0
< i and

2 � i � j. These two facts imply that all the candidate codewords are distinct. 44

41

A direct consequence of Lemma 4.1 and (4.3.4) is Corollary 4.2. This corollary

gives a condition to terminate the decoding iteration process.

Corollary 4.2: If j0 is the smallest integer such that

L(cj0) = L(cj0�2); (4.3.6)

then

minfL(ci) : 0 � i � j0g = minfL(cj0�1); L(cj0)g: (4.3.7)

44

For simplicity, suppose the zero codeword is transmitted and r = (r1; r2; : : : ; rN)

is the received sequence. For given two di�erent codewords c(1) = (c
(1)
1 ; c

(1)
2 ; : : : ; c

(1)

N)

and c(2) = (c
(2)
1 ; c

(2)
2 ; : : : ; c

(2)

N), consider the probability p(�) that jL(c(1))�L(c(2))j=d �

�, where � is a small nonnegative number and d , d(c(1); c(2)). From (4.2.1) and

(4.2.3), L(c(1))� L(c(2)) =
PN

i=1 ri(c
(2)

i � c
(1)

i). Since r1; r2; : : : ; rN are independent

gaussian random variables with mean m = �1 and variance �2 = No=(2Eb), where

Eb=No is the signal-to-noise ratio per bit, (L(c(1)) � L(c(2)))=d is also a random

variable with a normal distribution. The average is
PN

i=1(c
(1)
i � c

(2)
i)=d and the

variance is �2=d. Clearly, p(�) approaches to zero as � approaches to zero. On the

other hand, if cj0 = cj0�2, then 'wk
(cj0) = 'wk

(cj0�2) = cj0�1 by a deterministic

wk-WTS(cj0; C), and the repetition occurs.

Let g denote the number of candidate codewords that have been generated by

the wk-WTS procedure. Based upon the above consideration, we use the following

simple condition, denoted CondR, to terminate the decoding iteration process in

the simulation presented in Section 4.5: g � 2 and

L(clatest) = L(c
(�2)

latest); (4.3.8)

where clatest(= cg) denotes the latest generated candidate codeword in (4.3.1) and

c
(�2)

latest(= cg�2) denotes the candidate codeword that was generated two iterations

before clatest. Then Corollary 4.1 guarantees no repetition except for the last one.

According to Corollary 4.2, the decoder outputs better(clatest; c
(�1)

latest) as the decoded

codeword and stops the decoding process.

42

4.3.3 Search Regions, Reference Codewords and Optimality

Test

Let G denote the set of candidate codewords that have been generated, including

the initial candidate codeword c0. Then, g = jGj � 1. Let cbest denote the best

candidate codeword in G. Each time a candidate codeword is generated by wk-

WTS, the termination condition CondR is tested. If CondR holds, cbest is the

decoded codeword and the decoding process is terminated. In this case, cbest may

not be the ML codeword copt. Otherwise, an optimality test for cbest is performed.

Since ci = 'wk
(ci�1) for 1 � i � g, it follows from (4.2.15) that

L(cbest) = L[f[
g�1
i=0Cwk

(ci)g [fc0; c1; : : : ; cgg]: (4.3.9)

De�ne h , minfhd; g + 1g, where hd is a design parameter and 1 � hd � 3. For

the optimality test of cbest, we use the conditions (4.2.11) and (4.2.12) with Q = C

and c = cbest. Then the question is how to choose the reference codewords ci

with 1 � i � h. Intuitively, we should choose a candidate codeword cj with a small

L(cj) as a reference codeword, and clatest should be included as a reference codeword

for renewing the iteration in case that the optimality test fails. From (4.2.11), we

see that a requirement of the search region Si around ci is to satisfy the following

condition:

L(cbest) � L[[hi=1Si]: (4.3.10)

From (4.3.9), we see that the following choice of Si is reasonable:

Si = Cdi(ci) [fcig; (4.3.11)

where

di ,

(
wk; for ci 6= clatest;

w0 = 0; for ci = clatest:
(4.3.12)

For d = ws with 0 � s � m, let d(+1) denote ws+1(i.e., d
(+1) = ws+1). It follows

from (4.2.6), (4.2.14), (4.3.11), (4.3.12) and the de�nition of weight pro�le W that

CnSi � VN(ci; d
(+1)
i): (4.3.13)

It follows from (4.3.9) and (4.3.11) that

L(cbest) � L[[hi=1Si]: (4.3.14)

43

From (4.2.11) to (4.2.13), (4.3.13) and (4.3.14), we obtain the following suÆcient

condition for cbest = copt:

L(cbest) � L[c1; d
(+1)
1 ; c2; d

(+1)
2 ; : : : ; ch; d

(+1)

h]: (4.3.15)

That is, if cbest satis�es the condition of (4.3.15), it is the most likely codeword copt.

We use two sequences of reference codewords, denoted ref
(1)

h = (c
(1)
1 ; c

(1)
2 ; : : : ; c

(1)

h)

and ref
(2)

h = (c
(2)
1 ; c

(2)
2 ; : : : ; c

(2)

h), to evaluate the optimality condition (right-hand

side) of (4.3.15). They enforce each other. The reference codewords are chosen from

G. For 0 � i � g + 1 and a subset G0 of G, let besti(G
0) denote the sequence of i

best candidate codewords in G0 arranged in the order of their generation (best0(G
0)

denotes the null sequence). De�ne

ref
(1)

h , (besth�1(Gnfclatestg); clatest); (4.3.16)

ref
(2)

h , besth(Gnfclatestg): (4.3.17)

Note that ref
(2)

h is de�ned only for h � g, i.e., hd � g. From (4.3.7) of Corollary 4.2,

we have that for h � 2, cbest 2 ref
(1)

h . It follows from (4.3.12) that

d
(1)

h = w0 = 0; (4.3.18)

d
(j)
i = wk; except for j = 1 and i = h: (4.3.19)

It follows from (4.3.16) to (4.3.19) that the suÆcient conditions for optimality of

cbest given by (4.3.15) based on ref
(1)

h and ref
(2)

h are:

L(cbest) � L(1)
, L[c

(1)
1 ; wk+1; : : : ; c

(1)

h�1; wk+1; c
(1)

h ; w1]; (4.3.20)

L(cbest) � L(2)
, L[c

(2)
1 ; wk+1; : : : ; c

(2)

h ; wk+1]; (4.3.21)

where c
(1)

h = clatest. Sequence ref
(1)

h is a reasonable choice, except that the last

argument in the right-hand side of (4.3.20) is w1. To compensate this shortcoming,

ref
(2)

h is introduced. Since either (4.3.20) or (4.3.21) is suÆcient for cbest to be the

ML codeword copt, the following combined test for optimality, denoted CondOP , is

performed:

CondOP : L(cbest) � maxfL(1)
;L(2)

g; where L(2) = 0 for g < hd: (4.3.22)

44

4.3.4 Algorithm I-wk

Suppose z =2 C. Then the decoding iteration begins. Let f(r; C) denote the initial

candidate codeword, and let bG denote the sequence bestminfh;gg(Gnfcbestg).

The iterative decoding algorithm I-wk consists of the following steps:

Step 1: Generate f(r; C). Initialize clatest f(r; C), g 0, h 1, G fclatestg,

cbest f(r; C), bG �.

Go to Step 2.

Step 2: Test condition CondOP . If CondOP holds, output cbest and stop. Other-

wise, update bG and go to Step 3.

Step 3: Generate clatest by the wk-WTS(c
(�1)

latest; C) procedure where c
(�1)

latest denotes

the last clatest. Update the global variables, g, h, G, cbest and clatest. Test

condition CondR. If CondR holds, output cbest and stop. Otherwise, go to

Step 2.

Note that in this algorithm, two candidate codewords(may be the same), cbest

and clatest, and a few candidate codewords in G (at most a total of h+ 1 candidate

codewords) need to be stored.

4.4 Iterative Decoding Algorithm II

As it will be shown in Section 4.5, Algorithm I-w1 gives very good error performance

for codes that are spanned by their minimum weight codewords. Searches based on

a minimum weight subtrellis result in a large reduction in computational complexity.

However, Algorithm I-w1 results in a large performance degradation for codes which

are not spanned by their minimum weight codewords. To reduce the performance

degradation, we may use a larger weight subtrellis for search. This increases the

decoding complexity. In this section, we present a modi�cation of Algorithm I for

application to codes that are not spanned by their minimum weight codewords. This

algorithm is devised to keep the performance degradation small compared to MLD

without using a larger subtrellis for search. The basic concept is to divide a code

into cosets based on a properly chosen subcode and then apply Algorithm I to each

coset in a speci�c order.

45

Let C be a binary (N;K) linear block code with weight pro�le, W = fw0 =

0; w1; w2; : : :g, where w1 is the minimum weight and w1 < w2 < � � �. Let C0 be a

binary (N;K0) linear subcode of C with weight pro�le,W0 = fw00 = 0; w01; w02; : : :g,

where w01 is the minimum weight of C0 and w01 < w02 < � � �. Then W0 � W and

w1 � w01. Let w0k be the k-th weight in W0. Suppose the codewords of weights w01

to w0k in C0 span C0. Partition C with respect to C0. Then C=C0 consists of 2
K�K0

cosets of C0. Let dC=C0 denote the minimum distance between di�erent cosets in

C=C0. Note that

minfdC=C0 ; w01g = w1: (4.4.1)

Let C0;w0k
(0) denote the subcode of C0 that consists of all the nonzero codewords

of weights up to and including w0k, and let TC0;w0k
(0) denote the minimal trellis for

C0;w0k
(0). For a codeword c in a coset B of C=C0, de�ne

C0;w0k
(c) , fc+ v : v 2 C0;w0k

(0)g: (4.4.2)

Then the w0k-weight subtrellis for C0;w0k
(c) centered around c, denoted TC0;w0k

(c),

can be obtained by adding c to all the codewords in TC0 ;w0k
(0). The best codeword

in C0;w0k
(c) can be found by searching through TC0;w0k

(c). This search is called a

w0k-weight search of B around c and is denoted w0k-WTS(c; C0).

Decoding algorithm II consists of iterative w0k-weight subtrellis searches of all

the cosets B 2 C=C0 using Algorithm I. Let Search-in(B) denote the procedure

of searching the coset B. The searches are performed in a serial manner, one coset

at a time, and the searches are shifted from one coset to another in a speci�c order

and based on certain conditions. In searching a coset, the candidate codewords are

generated in the same manner as described in Section 4.3.1. Lemmas 4.1 and 4.2

and Corollaries 4.1 and 4.2 apply to any coset in C=C0.

4.4.1 Coset Ordering and Generation of Initial Candidate

Codewords

To start the search of a coset B 2 C=C0, an initial candidate codeword, denoted

f(r; B), must be generated. At the beginning of the decoding process, 2K�K0 initial

candidate codewords, one for each coset B 2 C=C0, are generated. Let GI denote

the set of 2K�K0 initial candidate codewords. These initial candidate codewords

46

are ordered in the increasing order of correlation discrepancies. Then the cosets

in C=C0 are numbered according to this ordering, the �rst coset corresponds to the

least correlation discrepancy and the last coset corresponds to the largest correlation

discrepancy. During the decoding process, cosets in C=C0 will be searched in this

order.

The zero-th order decoding in [17] can be modi�ed for decoding the cosets in

C=C0. For a given received sequence r = (r1; r2; : : : ; rN), letMK denote the location

set of the most reliable basis of the column space of a generator matrix for C,

and �N�K0
denote the location set of the least reliable basis for the column space

of a parity-check matrix of C0. Then it follows from Theorem 1 in [31] that

jMK \ �N�K0
j = K �K0: (4.4.3)

Let z = (z1; z2; : : : ; zN) be the hard-decision received vector obtained from r. Then

there is an unique codeword c = (c1; c2; : : : ; cN) 2 B for which

ci = zi for i 2MK \
��N�K0

; (4.4.4)

where ��N�K0
, f1; 2; : : : ; Ngn�N�K0

. This codeword, denoted f(z; B), is simply

the decoded codeword obtained by zero-th order decoding of coset B. Then f(z; B)

is chosen as the initial candidate codeword for coset B.

Hybrid method as described in Section 4.3.1 can be used to generate an initial

candidate codeword for the most likely coset B 2 C=C0.

4.4.2 Termination Conditions and Optimality Tests

Let G denote the set of candidate codewords in C that have been generated already

by Algorithm II. Note that GI � G. De�ne

GWTS , fc 2 G : the w0k-WTS(c; C0) has been performed alreadyg:

Let cbest denote the best candidate codeword in G and clatest denote the latest

candidate codeword. Note that clatest =2 GWTS. There are two termination conditions

in Algorithm II, one for terminating the search of a coset B in C=C0, called the local

termination condition, and the other for terminating the search of the entire code

C and making a decoding decision, called the global termination condition and

47

denoted CondE. CondE is the condition that all the cosets in C=C0 have been

searched and the ML codeword has not been identi�ed. In such a case, the decoder

outputs cbest as the decoded codeword and stops the decoding process.

Let B be the coset in C=C0 that is currently being searched. Let R be the set

consisting of B and all the cosets in C=C0 that have been searched. Let GB denote

the set of candidate codewords in B that have been generated already by Search-

in(B) and de�ne gB , jGBj � 1. For a codeword c 2 B, let 'C0;w0k
(c) denote the

best codeword obtained by searching TC0;w0k
(c) using the w0k-WTS(c; C0) procedure

as described in Section 4.3. The following local termination condition CondB;R is

used in Search-in(B) as in Algorithm I:

CondB;R : gB � 2 and L(clatest) = L(c
(�2)

latest):

When this condition holds, the search is shifted to the next coset.

4.4.3 Optimality Tests

There are two optimality tests, one for testing the optimality of cbest as the ML

codeword in the entire code C, called the global optimality test and denoted

CondC;OP , and the other for testing whether cbest is the best codeword in the coset B

currently being searched, called the local optimality test and denoted CondB;OP .

WhenCondC;OP holds, the decoder outputs cbest as the decoded codeword and stops

the decoding process. When CondB;OP holds, none of the remaining codewords in

B is better than cbest and search must be shifted from B to the next coset in C=C0.

Since for c 2 GWTS, w0k-WTS(c; C0) has been performed,

L('0;w0k
(c)) = L[C0;w0k

(c)]: (4.4.5)

Hence, we have that

L(cbest) = L[[u2GWTS
C0;w0k

(c) [G]: (4.4.6)

De�ne

d , minfdC=C0 ; w0(k+1)g; (4.4.7)

h , minfhd; jGjg: (4.4.8)

48

It follows from (4.4.1) and (4.4.7) that d � w1 and d > w1 if and only if

dC=C0 > w01: (4.4.9)

For the optimality condition CondC;OP , if d > w1, then we use the same two se-

quences of reference codewords ref
(1)

h = (c
(1)
1 ; c

(1)
2 ; : : : ; c

(1)

h) and ref
(2)

h = (c
(2)
1 ; c

(2)
2 ; : : : ; c

(2)

h),

as given by (4.3.16) and (4.3.17) in Algorithm I. (Note that ref
(2)

h is de�ned only if

jGj > hd.) Then the search region S
(j)
i around c

(j)
i for 1 � i � h and j 2 f1; 2g is

given as follows:

S
(j)
i ,

(
fc

(j)
i g; for c

(j)
i =2 GWTS;

C0;w0k
(c

(j)
i) [fc

(j)
i g; for c

(j)
i 2 GWTS:

(4.4.10)

It follows from (4.4.1), (4.4.2) and (4.4.7) that

CnS
(j)
i � VN(c

(j)
i ; d

(j)
i); (4.4.11)

where

d
(j)
i =

(
w1; for c

(j)
i =2 GWTS;

d; for c
(j)
i 2 GWTS:

(4.4.12)

From (4.4.6), (4.4.10) and (4.4.11), we have the following suÆcient condition for

cbest to be the ML codeword:

CondC;OP : L(cbest) � maxfL
(1)

C ;L
(2)

C g; (4.4.13)

where for j 2 f1; 2g,

L
(j)
C , L[c

(j)
1 ; d

(j)
1 ; : : : ; c

(j)
h�1; d

(j)
h�1; c

(j)
h ; d

(j)
h]: (4.4.14)

For the case of d > w1, Algorithm II is more e�ective than the case of dC=C0 = w1.

If d = w1 or jGj � hd,

CondC;OP : L(cbest) � L
(1)

C : (4.4.15)

For the local optimality condition CondB;OP , we use the following two sequences

of reference codewords, ref
(1)

B;h = (c
(1)
1 ; c

(1)
2 ; : : : ; c

(1)

h) and ref
(2)

B;h = (c
(2)
1 ; c

(2)
2 ; : : : ; c

(2)

h):

(1) If gB + 1 � h, then ref
(1)

B;h , ref
(1)

h , and otherwise

ref
(1)

B;h , (besth�gB�1(GnG \ B); ref
(1)
gB+1

): (4.4.16)

49

(2) If gB � h, then ref
(2)

B;h = ref
(2)

h , and otherwise, if jGj > hd,

ref
(2)

B;h , (besth�gB(GnG \ B); ref
(2)
gB
): (4.4.17)

Then the search region S
(j)
B;i in B around c

(j)
i is de�ned the same way as S

(j)
i given

by the right-hand side of (4.4.10). It follows from (4.4.2), (4.4.7) and (4.4.10) that

BnS
(j)
B;i � VN(c

(j)
i ; d

(j)
i); (4.4.18)

where

d
(j)
i ,

8><>:
dC=C0 ; for c

(j)
i =2 B; (from (4:4:7));

w0(k+1); for c
(j)
i 2 B \GWTS;

w01; for c
(j)
i 2 BnB \GWTS:

(4.4.19)

From the de�nition of S
(j)
B;i, (4.4.6) and (4.4.18), we have the following suÆcient

condition that none of the remaining codewords in B is better than cbest:

CondB;OP : L(cbest) � maxfL
(1)

B ;L
(2)

B g; (4.4.20)

where L
(j)
B with j 2 f1; 2g is de�ned as

L
(j)
B , L[c

(j)
1 ; d

(j)
1 ; c

(j)
2 ; d

(j)
2 ; : : : ; c

(j)

h ; d
(j)

h]: (4.4.21)

If jGj � hd,

CondB;OP : L(cbest) � L
(1)

B : (4.4.22)

In searching a cosetB 2 C=C0, if none of the conditions,CondB;R andCondB;OP ,

holds, search in B continues until one of the condition holds.

4.4.4 Algorithm II-w0k

Algorithm-II is simply a procedure of using Algorithm-I to search each coset in

C=C0 to �nd the ML codeword. In the process of searching a coset B, the global

termination conditions, CondE and the global optimality test CondC;OP are used

to stop the entire decoding procedure, and the local termination condition CondB;R

and the local optimality test CondB;OP are used to shift the search from the current

coset B to the next coset in C=C0.

In the decoding procedure of Algorithm II-w0k, global variables gB, GB and bGB

for B 2 C=C0 are used besides G, bG, cbest, clatest as de�ned in Section 4.3.4. bGB

denotes bestminfh;gBg(Gnfclatestg). Assume that z =2 C. The decoding procedure of

Algorithm II-w0k consists of the following steps:

50

step 1 : Generate the initial candidate codewords f(r; B) for all the cosets B 2

C=C0. Order the cosets according to the order of increasing correlation dis-

crepancies of the initial candidate codewords. Initialize G ff(r; B) :

B 2 C=C0g, cbest best1(G), clatst cbest, h minfhd; 2
K�K0g and

bG bestminfh;2K�K0�1g(Gnfclatest). If condition, CondC;OP , holds, then out-

put cbest and stop. Otherwise, initialize the search of the �rst coset B1 with

GB1
 ff(r; B1)g, bGB � and go to step 2.

step 2 : Execute Search-in(Bi). Each time, when a new candidate codeword

is generated, update the global variables, G, bG, GBi
, gB, h, bGBi

, cbest and

clatest. First test the local termination conditionCondBi;R. If CondBi;R holds,

then go to step 3. Otherwise, test the global optimality test CondC;OP . If

CondC;OP holds, output cbest and stop the decoding process. Otherwise, test

the local optimality test CondBi;OP . If CondBi;OP holds, exit Bi and go to

step 3. Otherwise, go to step 2.

step 3 : If all the cosets in C=C0 have been exhausted, then output cbest and stop.

Otherwise, call Search-in(Bi+1).

Algorithm II is basically based on the divide-and-conquer technique to cover a

large search space using low weight subtrellis searches. It is e�ective only when

2K�K0 is not too big. This algorithm is devised primarily for codes that are not

spanned by their minimumweight codewords, i.e., unequal error protection(UEP)

codes[32].

4.5 Simulation Results: Error Performance and

Computational Complexity

Both Algorithm I and Algorithm II with hd = 3 and minimum-weight subtrellis

searches(w1-WTS) have been applied to some well known codes of length 48, 64 and

128. Some simulation results in error performance and computational complexity

are shown in Figures 4.1{4.9, Tables 4.1 and 4.2. The computational complexity is

evaluated in terms of average number of additions and comparisons of metrics, called

addition equivalent operations, that are required for the generation of the initial

candidate codeword(s), the optimality tests, and low weight subtrellis searches.

51

The initial candidate codewords are generated with the �rst-order decoding based

on the ordered statistics of the received symbols[17]. For convenience, we call it

the order-1 decoding. For minimum-weight subtrellis search, the recursive MLD

algorithm (RMLD) proposed in [16] is used. This algorithm is more e�ective than

the Viterbi algorithm with optimal sectionalization[21]. Table 4.1 lists the numbers

of addition equivalent operations required by RMLD algorithm for the full code

trellises and their low weight subtrellises of some example codes.

For the (48,24,12) extended quadratic residue(EQR) code, Algorithm I-w1 achieves

practically the same error performance as MLD with a signi�cant reduction in com-

putational complexity as shown in Figures 4.1 and 4.2 and, Table 4.1. From Fig-

ure 4.2 and Table 4.1, we see that the average number of addition equivalent opera-

tions required by Algorithm I-w1 are 17% and 1.43% of that required by the RMLD

algorithm (13.3% and 1.12% of that required by the Viterbi algorithm with optimum

sectionalization) at SNR = 0.0 dB and 5.0 dB, respectively. Figure 4.3 shows the

relative frequency of the number of iterations. The maximum number of iterations

is only 5 at SNR=0.0, 1,0 and 2.0 dB. The numbers of occurrences of this event are

only 30, 5 and 3 at SNR=0.0, 1,0 and 2.0 dB, respectively over 100,000 trials.

For the (64,22,16) RM code, the (64,42,8) RM code, and the (64,45,8) extended

BCH(EBCH) code, simulation results show that Algorithm I-w1 achieves practi-

cally optimum error performance (i.e., error performance curve falls on top of the

MLD error performance curve) with signi�cant reductions in decoding computa-

tional complexity. Table 4.2 gives a comparison between Algorithm I-w1 and the

MLK algorithm[27] in terms of performance degradation with respect to MLD and

computational complexity for the (64,22,16) and (64,42,8) RM codes, and also shows

the simulation results for the (64,45,8) EBCH code. We see that for the two RM

codes, Algorithm I-w1 outperforms the MLK algorithm.

For the (128,29,32) RM codes, Algorithm I-w1 results in a very small degradation

in error performance compared to MLD, less than 0.28 dB with the hybrid order-

1 initial decoding as shown in Figure 4.4. With MLK decoding algorithm, the

degradation in error performance compared to MLD is 1.7 dB. For the entire range

of SNR greater than 0.0 dB, the average number of decoding iterations required to

decode a received word is small, less than 2.8 for SNR=0.0 dB and less than 1.3

for SNR=4 dB as shown in Figure 4.5. The average numbers of addition equivalent

operations required at SNR=0.0 dB and 4.0 dB are 41,277 and 18,317, respectively

52

with the hybrid-1 initial decoding. From Figure 4.5 and Table 4.1, the average

numbers of addition equivalent operations are about 0.9% and 0.4% of that required

by the RMLD algorithm based on the full code trellis at SNR = 0.0 dB and 4.0

dB, respectively. If the Viterbi decoding algorithm based on the full code trellis is

used to decode this code, then the total number of addition equivalent operations

required is more than 6 millions. For this code, Algorithm I-w1 provides an excellent

trade-o� between error performance and decoding complexity.

Now consider the (64,24,16) EBCH code which contains the (64,22,16) RM code

as a proper subcode. The minimum weight codewords do not span the code but

span the (64,22,16) RM subcode. For this code, Algorithm I-w1 results in a large

performance degradation compared to optimum MLD as shown in Figure 4.6. The

degradation(0.9 dB) is worse than that of the MLK algorithm with w1-weight trel-

lis search, 0.6 dB at SNR=4.0 dB[27]. The weight next to the minimum weight is

w2=18. Performance degradation is reduced if w2-weight trellis search is used in

Algorithm I. If the �rst order hybrid decoding(hybrid-1) is used to generated the

initial candidate codeword, Algorithm I-w2 results in a 0.2 dB performance degrada-

tion compared to MLD at 10�6 BER as shown in Figure 4.6. Suppose Algorithm II

is used to decode this code. Let C be the extended (64,24,16) BCH code and C0 be

the (64,22,16) RM code. The partition C=C0 consists of 4 cosets of C0. The �rst two

weights in the weight pro�le W0 of C0 are w01=16 and w02=24, respectively. The

minimum distance between cosets in C=C0 is dC=C0=18. With the order-1 decoding

to generate the initial candidate codeword for each coset, Algorithm II-w1 achieves

practically optimum error performance as shown in Figure 4.6. The degradation is

9:2� 10�3 dB at SNR=4.0 dB.

From Figure 4.7 and Table 4.1, we �nd that the average numbers of addition

equivalent operations required by Algorithm II-w1 to decode the (64,24,16) EBCH

code are about 1=9 and 1=315 of that required by the RMLD algorithm based on

the full code trellis at SNR = 0.0 dB and 5.0 dB, respectively. For this code, Algo-

rithm II-w1 gives a better coverage of code space using minimum-weight trellis search

shifted among the cosets than Algorithm I-w2 does. The performance improvement

of Algorithm II-w1 over Algorithm I-w2 is at the expense of some increase in num-

bers of decoding iterations as shown in Figure 4.7. For example, at SNR=3.0 dB,

Algorithm II-w1 with the order-1 initial decoding requires an average of 2.1 decoding

iterations, while Algorithm I-w2 with the hybrid-1 decoding requires an average of

53

only 0.72 decoding iterations. For the same SNR = 3.0 dB, while Algorithm I-w2 re-

quires an average of 22,306 addition equivalent operations, Algorithm II-w1 requires

an average of 7,564 addition equivalent operations. The numbers of addition equiv-

alent operations of the MLK algorithm with w1-weight trellis search and w2-weight

trellis search are about 60,000 and 40,000, respectively at SNR=3.0 dB.

Finally consider the extended (128,36,32) BCH code which contains the (128,29,32)

RM code as a proper subcode. The minimum weight codewords do not span the

code but span the (128,29,32) RM subcode. For this code, the optimum error per-

formance is very hard to evaluated. For computation, we use the union bound on

MLD. The weight next to the minimum weight is w2 = 36. Algorithm II-w1 is used

to decode this code. Let C be the extended (128,36,32) BCH code and C0 be the

(128,29,32) RM code. The partition C=C0 consists of 128 cosets of C0. The �rst

two weights in the weight pro�le W0 of C0 are w01=32 and w02=48. The minimum

distance between cosets in C=C0 is dC=C0=36. With the order-1 decoding to generate

the initial candidate codeword for each coset, Algorithm II-w1 achieves good error

performance as shown in Figure 4.8. The average numbers of iterations and addi-

tion equivalent operations are shown in Figure 4.9. For example, at SNR=4.0 dB,

Algorithm II-w1 with the order-1 initial decoding requires an average of 80 decoding

iterations and 1:4� 106 addition equivalent operations.

4.6 Conclusion

In this chapter, we have presented a soft-decision decoding algorithm for binary

linear block codes based on iterative low-weight trellis searches to achieve practi-

cally optimum or near optimum error performance with a signi�cant reduction in

decoding complexity. Two speci�c algorithms have been proposed. One algorithm

is speci�cally designed for codes whose minimum weight codewords do not span the

codes, such as UEP codes. Both algorithms can be improved in several ways. The

e�ect of quantization to the minimum weight subtrellis search is to be studied.

54

Code Full code Low weight subcode

VMLD[25] RMLD[16] w1 RMLD[30] w1 and w2 RMLD[30]

(48,24,12) EQR 548,113 431,503 45,551 |

(64,22,16) RM 101,786 78,209 3,331 |

(64,42,8) RM 538,799 326,017 5,651 |

(128,29,32) RM | 4,573,304 14,595 |

(64,24,16) EBCH 316,608 271,745 3,331 30,211

(64,45,8) EBCH 891,819 893,489 32,307 |

Table 4.1: Numbers of addition equivalent operations of the Viterbi decoding with

optimal sectionalization(VMLD) and RMLD

Code SNR(dB) Algorithm I-w1 MLK[27]

DEG(dB) NAO DEG(dB) NAO

3.0 0.02 3179 0.4 20,000

(64,22,16) RM 4.0 0.01 1732 0.6 14,000

5.0 0 806 0.6 5,000

3.0 0.02 4210 1.3 5,400

(64,42,8) RM 4.0 0.009 1790 0.7 1,200

5.0 0.004 768 0.6 240

3.0 0.03 20336

(64,45,8) EBCH 4.0 0.02 6248

5.0 0.02 1351

Table 4.2: Degradations(DEG) and numbers of addition equivalent opera-

tions(NAO) of Algorithm I-w1 with hybrid-1 initial decoding and the MLK algo-

rithm with w1-weight trellis search

55

Eb/No(dB)

B
it
er
ro
r
p
ro
b
a
b
il
it
y

0 1 2 3 4 5 6
10�8

10�7

10�6

10�5

10�4

10�3

10�2

10�1

1

�
�

�
�

�

�

�

�

�

�

�

�

�

4
4
4
4
4

4

4

4

4

4

4

4

4

� Order-1

4 Algorithm I-w1 with order-1

 MLD

Figure 4.1: Bit error probability for the (48,24,12) EQR code.

56

Eb/No(dB)

A
v
er
a
g
e
n
u
m
b
er
o
f
it
er
a
ti
o
n
s

A
v
era
g
e
n
u
m
b
er
o
f
a
d
d
itio
n
eq
u
iva
len
t
o
p
era
tio
n
s

0 1 2 3 4 5 6
0

1

2

0

10000

20000

30000

40000

50000

60000

70000

80000

�

�

�

�

�

�

�

�

�
� � � �

�

�

�

�

�

�

�

�

�
� � � �

� Average number of addition equivalent operations

� Average number of iterations

Figure 4.2: Average numbers of iterations and addition equivalent operations for

the (48,24,12) EQR code.

57

Number of iterations

R
el
a
ti
v
e
fr
eq
u
en
cy
(%
)

0 1 2 3 4 5 6
0

20

40

60

80

100

�

�

�

�

� � �

?

?
?

?

? ? ?

�

�

�

� � � �

�

�

�

� � � �

4

4

4 4 4 4 4

N

N N N N N N

O

O O O O O O

� SNR=0.0 dB

? SNR=1.0 dB

� SNR=2.0 dB

� SNR=3.0 dB

4 SNR=4.0 dB

N SNR=5.0 dB

O SNR=6.0 dB

Figure 4.3: Histogram of the numbers of iterations for the (48,24,12) EQR code.

58

Eb/No(dB)

B
it
er
ro
r
p
ro
b
a
b
il
it
y

0 1 2 3 4
10�6

10�5

10�4

10�3

10�2

10�1

1

�
�

�
�

�
�

�

�

�

4
4

4

4

4

4

4

4

4

� Hybrid-1

4 Algorithm I-w1 with hybrid-1

 MLD

Figure 4.4: Bit error probability for the (128,29,32) RM code.

59

Eb/No(dB)

A
v
er
a
g
e
n
u
m
b
er
o
f
it
er
a
ti
o
n
s

A
v
era
g
e
n
u
m
b
er
o
f
a
d
d
itio
n
eq
u
iva
len
t
o
p
era
tio
n
s

0 1 2 3 4 5
0

1

2

3

10000

20000

30000

40000

50000

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� Average number of addition equivalent operations

� Average number of iterations

Figure 4.5: Average numbers of iterations and addition equivalent operations for

the (128,29,32) RM code.

60

Eb/No(dB)

B
it
er
ro
r
p
ro
b
a
b
il
it
y

0 1 2 3 4 5
10�7

10�6

10�5

10�4

10�3

10�2

10�1

1

F
F

F
F

F
F

F

F

F

F

F

�
�

�
�

�

�

�

�

�

�

�

}
}

}
}

}

}

}

}

}

}

}

4
4

4
4

4

4

4

4

4

4

4

O
O

O

O

O

O

O

O

O

O

O

F Order-1

� Hybrid-1

} Algorithm I-w1 with hybrid-1

4 Algorithm I-w2 with hybrid-1

O Algorithm II-w1 with order-1

 MLD

Figure 4.6: Bit error probability for the (64,24,16) EBCH code.

61

Eb/No(dB)

A
v
er
a
g
e
n
u
m
b
er
o
f
it
er
a
ti
o
n
s

A
v
era
g
e
n
u
m
b
er
o
f
a
d
d
itio
n
eq
u
iva
len
t
o
p
era
tio
n
s

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

0

10000

20000

30000

40000

50000

60000

70000

� � � �
�

�
�

�
�

� �

� �
�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

N

N

N

N

N

N

N

N

N
N N

M

M

M

M

M

M

M

M

M

M
M

� Average number of addition equivalent operations Algorithm I-w1

� Average number of iterations with hybrid-1

� Average number of addition equivalent operations Algorithm I-w2

� Average number of iterations with hybrid-1

N Average number of addition equivalent operations Algorithm II-w1

M Average number of iterations with order-1

�

�

�

Figure 4.7: Average numbers of iterations and addition equivalent operations for

the (64,24,16) EBCH code.

62

Eb/No(dB)

B
it
er
ro
r
p
ro
b
a
b
il
it
y

0 1 2 3
10�5

10�4

10�3

10�2

10�1

1

�

�

�

�

4 4
4

4
4

4

4

� Union bouned

4 Order-1

 Algorithm II-w1 with order-1

Figure 4.8: Bit error probability for the (128,36,32) EBCH code.

63

Eb/No(dB)

A
v
er
a
g
e
n
u
m
b
er
o
f
it
er
a
ti
o
n
s

A
v
era
g
e
n
u
m
b
er
o
f
a
d
d
itio
n
eq
u
iva
len
t
o
p
era
tio
n
s

0 1 2 3 4 5
0

100

200

300

400

500

0

1� 106

2� 106

3� 106

4� 106

5� 106

6� 106

7� 106

� �
�

�

�

�

�

�

�

�

�

� �
�

�

�

�

�

�

�

�

�

� Average number of addition equivalent operations

� Average number of iterations

Figure 4.9: Average numbers of iterations and addition equivalent operations for

the (128,36,32) EBCH code.

64

Chapter 5

Conclusion

In this thesis, two new suÆcient conditions are derived. The suÆcient conditions on

optimality of decoded codeword are stronger than all the previously known suÆcient

conditions. To show their e�ectiveness, these suÆcient conditions were applied to

the Chase decoding algorithm II and a newly proposed iterative decoding algorithm.

Simulation results show that they are very e�ective in terminating the decoding

process except for high block error probability region.

We have also derived a condition to rule out useless test error patterns in the

generation of candidate codewords in a Chase-type decoding algorithm. This rule-

out condition reduces many unnecessary decoding iterations and computations.

Finally, we have presented a new soft-decision decoding algorithm for binary

linear block codes based on iterative low-weight trellis searches to achieve practi-

cally optimum or near optimum error performance with a signi�cant reduction in

decoding complexity. Two speci�c algorithms have been proposed. One algorithm

is speci�cally designed for codes whose minimum weight codewords do not span the

codes, such as UEP codes. Both algorithms can be improved in several ways. The

e�ect of quantization to the minimum weight subtrellis search is to be studied.

65

66

Bibliography

[1] G. D. Forney,Jr., \Generalized Minimum Distance Decoding," IEEE Trans.

Info. Theory, IT-12, pp.125{131, Apr. 1966.

[2] D. Chase, \A Class of Algorithms for Decoding Block Codes with Channel

Measurement Information," IEEE Transactions on Information Theory, Vol. 18,

No. 1, pp. 170{182, Jan. 1972.

[3] H. Tanaka and K. Kakigahara, \Simpli�ed Correlation Decoding by Selecting

Possible Codewords Using Erasure Information," IEEE Trans. Info. Theory,

IT-29, pp.743{748, Sep. 1983.

[4] D. J. Taipale and M. B. Pursley, \An Improvement to Generalized Minimum-

Distance Decoding," IEEE Trans. Information Theory, Vol. 37, pp. 167{172,

Jan. 1991.

[5] T. Kaneko, T. Nishijima, H. Inazumi and S. Hirasawa, \An EÆcient Maximum-

Likelihood-Decoding Algorithm for Linear Block Codes with Algebraic De-

coder," IEEE Transactions on Information Theory, Vol. 40, No. 2, pp. 320{327,

Mar. 1994.

[6] H. T. Moorthy, S. Lin and T. Kasami, \Soft-Decision Decoding of Binary Lin-

ear Block Codes Based on an Iterative Search Algorithm," IEEE Trans. Info.

Theory, IT-43, pp. 1030{1040, May 1997.

[7] S.Lin, H.T.Moorthy and T.Kasami, \An EÆcient Soft-Decision Decoding

Scheme for Binary Linear Block Codes," Proc. of the 3rd International Sym-

posium on Communication Theory & Applications, 10{14 Jul. 1995, Charlotte

Mason Colledge, Ambleside, Lake District, UK.

67

[8] T.Koumoto, H.Nagano, T.Takata, T.Fujiwara, T.Kasami and S.Lin, \A New

Iterative Soft-Decision Decoding Algorithm," Technical Report of IEICE, IT95-

28, The Inst. of Electronics, Information and Communication Engineers, Japan,

Jul. 1995.

[9] T. Koumoto, T. Takata, T. Kasami and S. Lin, \An Iterative Soft-Decision

Decoding Algorithm," Proc. of International Symp. on Information Theory and

Its Applications, pp. 806{810, Canada, Sep. 1996.

[10] T. Kasami, T. Takata, T. Koumoto, T. Fujiwara, H. Yamamoto and S. Lin,

\The Least Stringent SuÆcient Condition on Optimality of Suboptimal De-

coded Codewords," Technical Report of IEICE, IT94-82, The Inst. of Electron-

ics, Information and Communication Engineers, Japan, Jan. 1995.

[11] B. Shen, K. K. Tzeng and C. Wang, \A Bounded-Distance Decoding Algo-

rithm for Binary Linear Block Codes Achieving the Minimum E�ective Error

CoeÆcient," IEEE Trans. Info. Theory, IT-42, pp. 1987{1991, Nov. 1996.

[12] T. Koumoto and T. Kasami, \Analysis and Improvement on GMD like Decod-

ing Algorithms," Technical Report of IEICE, IT98-54, The Inst. of Electronics,

Information and Communication Engineers, Japan, May 1998. A revised ver-

sion is presented in Proc. of International Symp. on Information Theory and

its Applications, Mexico City, Oct. 1998.

[13] T. Kasami, T. Koumoto, T. Takata and S. Lin, \The E�ectiveness of the Least

Stringent SuÆcient Condition on the Optimality of Decoded Codewords," Proc.

of the 3rd International Symposium on Communication Theory & Applications,

pp.324{333, Jul. 1995, Charlotte Mason College, Ambleside, Lake District, UK.

[14] T. Koumoto, T. Kasami and S. Lin, \A SuÆcient Condition for Ruling Out

Some Useless Test Error Patterns in Iterative Decoding Algorithms," IEICE

Transactions on Fundamentals, Vol. E81-A, No. 2, pp. 321{326, Feb. 1998.

[15] T. Koumoto and T. Kasami, \An Iterative Decoding Algorithm Based on In-

formation of Decoding Failure," Proceedings of the 20th Symposium on Infor-

mation Theory and Its Applications, pp.325{328, Japan, Dec. 1997.

68

[16] T. Fujiwara, H. Yamamoto, T. Kasami and S. Lin, \A Trellis-Based Recur-

sive Maximum Likelihood Decoding Algorithm for Linear Block Codes," IEEE

Transactions on Information Theory, Vol. 44, No. 2, pp. 714{729, Mar. 1998.

[17] M. P. C. Fossorier and S. Lin, \Soft-Decision Decoding of Binary Linear Block

Codes Based on Ordered Statistics," IEEE Transactions on Information Theory,

Vol. 44. No. 5, pp. 1217{1234, Sep. 1995.

[18] T. Kasami and T. Koumoto, \Computational Complexity for Computing Suf-

�cient Conditions on the Optimality of a Decoded Codeword," NAIST-IS-

TR98008 ISSN 0919-9527, Jul. 1998.

[19] M. Kobayashi, A. Ogino, T. Kohnosu and S. Hirasawa, \On Reducing Com-

plexity of Soft-Decision Decoding," Proc. of the 17th Symp. on Information

Theory and Its Applications, pp.333{336, Dec. 1994.

[20] T. Kaneko, T. Nishijima and S. Hirasawa, \EÆcient Maximum-Likelihood-

Decoding using Bounded Distance Decoding," Technical Report of IEICE,

IT94-34, The Inst. of Electronics, Information and Communication Engineers,

Japan, Jul. 1994.

[21] A. Vardy and Y. Be'ery, \Maximum Likelihood Soft-Decision Decoding of BCH

Codes," IEEE Transactions on Information Theory, Vol. 40, pp. 546{554, Mar.

1994.

[22] Y. Berger and Y. Be'ery, \Soft Trellis-Based Decoder for Linear Block Codes,"

IEEE Transactions on Information Theory, Vol. 40, pp. 764{773, May 1994.

[23] L. Ekroot and S. Dolinar, \A� decoding of block codes," IEEE Transactions on

Communications, Vol. 44, No. 9, pp. 1052{1056, Sep. 1996.

[24] Y. S. Han, C. R. P. Hartmann, and C.-C. Chen, \EÆcient Priority-First Search

Maximum-Likelihood Soft-Decision Decoding of Linear Block Codes," IEEE

Transactions on Information Theory, Vol. 39, No. 5, pp. 1514{1523, Sep. 1993.

[25] A. Lafourcade and A. Vardy, \Optimum Sectionalization of a Trellis," IEEE

Transactions on Information Theory Vol. 42, No. 3, pp. 689{702, May 1996.

69

[26] R. J. McEliece, \On the BCJR Trellis for Linear Block Codes," IEEE Transac-

tions on Information Theory, Vol. 42, No. 4, pp. 1072{1092, Jul. 1996.

[27] H. T. Moorthy, S. Lin and T. Kasami, \Soft-Decision Decoding of Binary Linear

Block Codes Based on an Iterative Search Algorithm," IEEE Transactions on

Information Theory, Vol. 43, No. 3, pp. 1030{1040, May 1997.

[28] Y. Berger and Y. Be'ery, \The Twisted Squaring Construction, Trellis Com-

plexity, and Generalized Weights of BCH and QR codes," IEEE Transactions

on Information Theory, Vol. 42, No. 6, pp. 1817{1827, Nov. 1996.

[29] T. Kasami, T. Koumoto, T. Takata and S. Lin, \The Least Stringent SuÆ-

cient Conditions on the Optimality of Decoded Codewords," Proceedings of the

1995 IEEE International Symposium on Information Theory, p.470, Whistler,

Canada, September 1995. Also submitted to IEEE Transactions on Information

Theory, 1996.

[30] T. Kasami, K. Koumoto, T. Fujiwara, H. Yamamoto, Y. Desaki and S. Lin,

\Low Weight Subtrellises for Binary Linear Block Codes and Their Applica-

tion," IEICE Transactions on Fundamentals of Electronics, Communications

and Computer Sciences, Vol. E80-A, No. 11, pp. 2095{2103, Nov. 1997.

[31] M. P. C. Fossorier, S. Lin and J. Synders, \On Maximum Likelihood Soft-

Decision Syndrome Decoding," IEEE Transactions on Information Theory,

Vol. 44, No. 1, pp. 388{398, Jan. 1998.

[32] B. Masnick and J. Wolf, \On Linear Unequal Error Protection Codes," IEEE

Transactions on Information Theory, Vol. 13, No. 4, pp. 600{607, Jul. 1967.

70

Appendix A

Expressions for Evaluating

L[c1; d1; c2; d2; : : : ; ch; dh] for 1 � h � 3

Let X be a subset of the index set I = f1; 2; : : : ; Ng for the positions of components

in an N -tuple. For any positive integer j � jXj, let X(j) denote the subset of j

indices, i1, i2, : : :, ij in X for which the received symbols, ri1, ri2 , : : :, rij have the

smallest reliability measures, i.e., for 1 � l � j,

jrilj � jrik j; (A.1)

for ik 2 XnX
(j). For a non-positive integer j, X(j) , �(the empty set) and for

j � jXj, X(j)
, X.

For h = 1, let Æ1 , d1 � n(c1) where n(c1) is the cardinality of D1(c1) de�ned

by (4.2.2). Then

L[c1; d1] =
X

i2D0(c1)
(Æ1)

jrij; (A.2)

where

D0(c1) = f1; 2; : : : ; NgnD1(c1): (A.3)

This suÆcient condition on optimality with a single reference codeword was �rst

derived in [4].

For h = 2, let c1 and c2 be two candidate codewords. Let Æ1 , d1 � n(c1) and

Æ2 , d2 � n(c2). Suppose Æ1 � Æ2. De�ne the following three index sets:

D00 , D0(c1) \D0(c2); (A.4)

71

D01 , D0(c1) \D1(c2); (A.5)

I(c1; c2) , (D00 [D
(b(Æ1�Æ2)=2c)
01)(Æ1): (A.6)

Then,

L[c1; d1; c2; d2] =
X

i2I(c1;c2)

jrij: (A.7)

Now we consider the case with h = 3. For a binary 3-tuple, (b1; b2; b3) in V3,

de�ne the following index set:

Db1b2b3 , Db1(c1) \Db2(c2) \Db3(c3); (A.8)

where Dbi(ci) is given by (4.2.2) for bi = 1 and by (A.3) for bi = 0. Let nb1b2b3 ,

jDb1b2b3 j and Æi , di � n(ci) for i = 1, 2 and 3. Without loss of generality, assume

that Æi � Æj for i < j. De�ne the following integers:

Æ12 , minfÆ1; b(Æ1 � Æ2)=2cg; (A.9)

Æ13 , minfÆ1; b(Æ1 � Æ3)=2cg; (A.10)

Æ
(1)
, maxf0; Æ12 � n010; Æ13 � n001g; (A.11)

Æ
(2)
, minfn011; Æ12; Æ13; n000 + Æ12 + Æ13 � Æ1g: (A.12)

If Æ(1) � Æ
(2), then let L1 be de�ned as

L1 , min
Æ(1)�Æ�Æ(2)

X
i2(D000[D

(Æ13�Æ)

001 [D
(Æ12�Æ)

010)(Æ1�Æ)[D
(Æ)
011

jrij: (A.13)

Otherwise, L1 is de�ned as 1.

Consider the parities (even or odd) of Æi with 1 � i � 3. If all the parities are

the same, then de�ne "i , 0 for 1 � i � 3. Otherwise, there is an index j such that

the parity of Æj is di�erent from the parities of other two Æ
0
is. De�ne "j , 1 and

"i , 0 for i 6= j. Let Æ012, Æ
0
13, Æ

(2) and Æ
(3) be de�ned as

Æ
0
12 , (Æ1 + "1 � Æ2 � "2)=2; (A.14)

Æ
0
13 , (Æ1 + "1 � Æ3 � "3)=2; (A.15)

Æ
(3)
, maxf0; d(Æ2 + Æ3)=2e � n000g; (A.16)

Æ
(4)
, minfn100; n010 � Æ

0
12; n001 � Æ

0
13; d(Æ2 + Æ3)=2eg: (A.17)

72

If Æ(3) � Æ
(4), then let L2 be de�ned as

L2 , min
Æ(3)�Æ�Æ(4)

X
i2D

(d(Æ2+Æ3)=2e�Æ)

000 [D
(Æ0
12

+Æ)

010 [D
(Æ0
13

+Æ)

001 [D
(Æ)
100

jrij: (A.18)

Otherwise, de�ne L2 as 1. Then,

L[c1; d1; c2; d2; c3; d3] = minfL1;L2g: (A.19)

73

74

Appendix B

Proof of Lemma 3.2

From (4.3.2), cj�1 6= cj. Suppose there exists an index i such that 0 � i � j�2 and

ci = cj: (B.1)

There are two cases to be considered: (i) j � i is even, and (ii) j � i is odd.

Case I: j � i is even.

From the hypothesis of (B.1) and (4.3.3) of Lemma 4.1, we have the following

chain of equalities,

L(ci) = L(ci+2) = � � � = L(cj�2) = L(cj); (B.2)

which contradicts the given condition of the lemma that L(cj�2) 6= L(cj). Hence

the hypothesis of (B.1) is invalid.

Case II: j � i is odd.

It follows from the de�nition of 'wk
, (4.3.1) and (B.1) that

cj�1 2 Cwk
(cj) = Cwk

(ci): (B.3)

(B.3) and (4.3.1) imply that

L(ci+1) � L(cj�1): (B.4)

From (B.4) and (4.3.3) of Lemma 4.1, we have L(ci) � L(ci+2) � � � � � L(cj�1) �

L(ci+1) � � � � � L(cj�2) � L(cj). Since

L(ci) = L(cj);

75

then

L(cj�2) = L(cj);

which again contradicts the given condition of the lemma that L(cj�2) 6= L(cj).

Therefore, the hypothesis of (B.1) is again invalid.

76

