
NAIST-IS-DT9561006

Doctor's Thesis

Associative Memory Model

under Arti�cial Evolution

Akira Imada

February 8, 1999

Department of Information Systems

Graduate School of Information Science

Nara Institute of Science and Technology



Doctor's Thesis

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial ful�llment of the requirements for the degree of

DOCTOR of ENGINEERING

Akira Imada

Thesis committee: Akira Fukuda, Professor

Yutaka Takahashi, Professor

Minoru Ito, Professor



Associative Memory Model

under Arti�cial Evolution�

Akira Imada

Abstract

We apply evolutionary computations to the fully-connected neural network model

of associative memory. Though lots of applications of evolutionary algorithms to

the layered typed neural networks have been reported, there remain few for the

fully-connected neural networks.

In the model, some of the appropriate con�gurations of synaptic weights give

a network a function of associative memory. So far, a modest amount of such

con�gurations have been found heuristically, but they are not exhaustive at all.

It is known that there exist an in�nite number of these solutions, but we have

had no information as to the number and distribution of these solutions. One

of our goals is to address this still-unknown issue using evolutionary algorithms.

For the purpose, various variants of evolutionary algorithms were exploited here,

and a number of algorithms were found to be capable of locating these solutions

in weight space. Thus far, we have a variety of weight solutions. We examined

each of these solutions in terms of two parameters regarding synaptic weights:

dilution ratio and degree of symmetry, and found that the behaviors given by

these solutions are di�erent from each other.

Then a question arises as to whether or not these solutions are representative

samples of the whole solutions. To answer this question, two approaches were

considered here. One is an analysis based on �tness landscape, or equivalently,

a hyper-plane de�ned on all the possible weight con�gurations of a network by
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the degree to how each con�guration works appropriately. The other is by visu-

alizing the high dimensional weight space in which a number of points in high-

dimensional weight space are mapped into two-dimensional locations with the

distance information remaining as much as possible. Both of these analyses are

novelties introduced in this thesis.

As results, we observe that (1) the global peaks in �tness landscape become

narrower as the number of patterns to be stored increases; and (2) the solutions

are uniformly distributed in weight space when the number of patterns is small,

while they are gradually localized as the number of patterns becomes larger.

Keywords:

fully-connected-neural-network, associative-memory, evolutionary-algorithm, �tness-

landscape, learning
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1. INTRODUCTION

Some sort of sciences arises from the desire to create \Pigmarion", a humanoid

created by a sculptor in an ancient Greece literature wishing her to be an ideal

woman. Thus, modeling the brain has long been an incentive to study some dis-

cipline of our science.

Since a coincidental emergence of a life on Earth, biological neural networks have

undergone genetic evolution and have been improved over a long period of time.

It therefore seems plausible that evolutionary concepts could also be e�ective

when applied to arti�cial neural networks. As one of these biologically motivated

activities, Fogel (1995, p.97) cited Conrad (1974) who hypothesized that the

brain has the similar type of learning mechanisms to evolution. Along a series

of speculations by Conrad (1974; 1981; 1984; 1985; 1987; 1988; 1990), Kampfner

and Conrad (1983) discussed simulations of neuronal learning systems that adapt

through evolutionary changes in their paper titled:

� Computational Modeling of Evolutionary Learning Processes in the Brain.

Edelmann, Novel Laureate, also hypothesized competitions in brain (Edelmann,

1987). In his book \The Theory of Neuronal Group Selection", Edelmann ex-

plained the global architecture of the brain with neuronal selection, and suggested

that the topological correspondence between retina and cortex is not totally ge-

netically determined but sensory experience is also necessary for the development

of the correct neural circuitry. Namely, he suggested that in early development

of brain, evolution in neurons' level plays an important role to construct neural

circuit in brain.

Anyhow, we might at least conjecture that \intelligence is inseparable from the

trial-and-error process itself" (Atmar, 1990). Under this conjecture, we have

evolved arti�cial neural networks employing Evolutionary Programming, Evolu-

tion Strategy and Genetic Algorithm toward the goal of modeling the brain in

terms of evolution.

Since we evolve neural network models by evolutionary algorithms in this thesis,

1



we brie
y describe both the evolutionary algorithms and the associative memory

system in the following two sections.

1.1 Evolutionary Algorithm

1.1.1 What are Evolutionary Algorithms?

Given a problem, candidate solutions are represented by strings which are anal-

ogous to natural chromosomes. Elements of a string are either discrete symbols

or real-valued variables which are analogous to genes. A collection of these can-

didate solutions represented by strings constructs a population. Each string in

a population is sometimes called an individual. Evolutionary algorithms pro-

ceeds as follows: Two individual chromosomes mate and produce an o�spring

chromosome, by exchanging a part of their genes. This is analogous to a sex-

ual reproduction with crossover operated on chromosomes. Genes of o�spring

chromosome are occasionally modi�ed, and this is called a mutation. Note here

that in some algorithms, sexual reproduction does not occur but only mutation

produces an o�spring from a parent chromosome. This is analogous to an asexual

reproduction. Then, a number of individuals survive for the next generation by

a selection from parents and o�springs according to the principle of survival of

the �ttest.

Although there proposed many variants of these algorithms, Genetic Algo-

rithm, Evolutionary Programming, and Evolution Strategy, we abbreviate them

hereafter to GA, EP, and ES, respectively, are most popularly employed these

days. These three algorithms are partly characterized as population-based searches

and genetics-inspired operators such as crossover and mutation. Note that some

other stochastic search techniques such as simulated annealing do not employ this

population-to-population scheme. The object or trait represented by a string of

genes is sometimes referred to as phenotype and a string per se is called genotype.

In GA, what are evolved are genotypes which are mostly represented by binary

strings, while in EP and ES, each element of strings represents some trait1 of

the individual, and hence takes real-value in general and varies from one individ-

ual to another with respect to a Gaussian distribution. EP modi�es individuals

1Biological examples are eye color, height, weight and so on.
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by mutation operation alone, while GA and ES modi�es them by mutation and

crossover operation. Furthermore, in EP and ES these modi�cations of individ-

uals are changed adaptively during an evolution, while in GA the modi�cations

remain �xed.

1.1.2 Where They Came From?: A Brief History

As Fogel (1995, p.103) noted, \simulated evolution has a long history. Similar

ideas and implementations have been independently invented numerous times."

Goldberg (1989, pp.126-129, pp.219{220) listed 83 such works picking them up

from the works done since 1962. In this subsection, some of these works are de-

scribed by paraphrasing and summarizing these works in literatures.

The GAs are believed to be \invented by John Holland in the 1960s and devel-

oped by Holland and his students and colleagues at the University of Michigan

in the 1960s and the 1970s" (Mitchell, 1996, p.2). In his book, Goldberg (1989,

p.92) wrote: \ The �rst mention of the words Genetic Algorithm and the �rst

published application of a Genetic Algorithm both came in Bagley's (1967) Ph.D

dissertation at the University of Michigan." In fact, almost all works concerning

the Genetic Algorithm referred the Holland's seminal book published in 1975 as

the origin of the Genetic Algorithm.2

Similarly, Fogel, Owens, and Walsh(1966) is said to be the origin of EP and

Rechenberg (1965) and Schwefel (1965) are for ES.

However, there had been many techniques called genetic or evolutionary earlier

than GA, EP and ES. Furthermore, the concept of arti�cial evolutions dates back

to much earlier works. Fogel (1995, p.67) cited a work made as early as in 1932

by Cannon (1932) who \pictured natural evolution as a process similar to learn-

ing" which an individual undergoes in its lifetime. Fogel also cited the following

three researchers as early speculations about arti�cial intelligence and evolution:

Turing (1950) who recognized an obvious connection between machine learning

and evolution; Friedman (1959) who speculated that a simulation of mutation

2Goldberg (1989) is often cited together with Holland since it has contributed for the GA

to become very popular.
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and selection would be able to design thinking machines; and Campbell (1960)

who o�ered the conjecture that a blind variation-and-selective-survival process

is involved in all processes leading to expansions of knowledge. Among others,

it is interesting to point out that Turing (1950) suggested arti�cial intelligence

researchers should build a pain-pleasure mechanism into their software.

Then in late 1950s, some biologists started to study computer simulation of

natural evolution to understand the phenomena of natural evolution (e.g., see

Barricelli (1957; 1962a; 1962b), Fraser (1957a; 1957b), Martin et al., (1960)). We

won't go into details of these works, but only show their titles here.

� Symbiogenetic Evolution Processes Realized by Arti�cial Methods (Barri-

celli, 1957).

� Numerical Testing of Evolution Theories (Barricelli, 1962a; 1962b).

� Simulation of Genetic Systems by Automatic Digital Computer: II. E�ects

of Linkage on Rates of Advance under Selection (Fraser, 1957b).

� High Speed Selection Studies (Martin et al., 1960)

These works invoked various practical engineering applications of evolutionary

theory, i.e., what Goldberg called evolution-inspired algorithms. For example, as

Doctoral dissertations at the University of Michigan, Rosenberg (1967) simulated

the evolution of a population of single-celled organism; and Weinberg (1970) ar-

gued the computer simulation of evolving DNA. Although their contributions

were sometimes overlooked because of their emphasis on biological simulation,

these are important to the subsequent development of GAs, as Goldberg noted.

Not only researches at the University of Michigan, but we can enumerate many

other such works. We summarize these movements in the following subsections.

Machine Learning

Fogel (1995, pp.68{70) cited Box (1957) who advocated an application of a kind

of evolutionary operation to manufacturing processes by viewing the plant as

4



an evolving species.3 Friedberg (1958) who employed some chance operations

(though the author did not claim to be simulating natural evolution) to gradu-

ally improve a machine language computer program, aiming a sort of automatic

programming. In his work, a program evolved from a random sequence of instruc-

tion by interchanging instructions (crossover) and changing a randomly chosen

instruction (mutation) under a task of calculating the sum of two inputs.4

Optimizations

Goldberg cited Hollstien (1971) as \the �rst dissertation to apply GA to a pure

problem of mathematical optimization." And De Jong, following Hollstien, estab-

lished the method to obtain global optima of some pure mathematical functions,

which are even now used as a test suit.

However, we can see earlier works that argued optimization problem in more

general form. As examples, Goldberg wrote that \the studies of Bledsoe and Bre-

mermann came closest to the modern notion of a Genetic Algorithm" (Goldberg,

1989, p.104). Bledsoe (1961) employed concepts of \individual-by-individual gen-

eration, mutation and save-the-better selection." Then, Bremermann expanded

this concept in a series of studies ((Bremermann, 1958; 1962; 1967; 1968; 1973),

(Bremermann and Rogan, 1964), (Bremermann, Rogan and Sala�, 1965; 1966))

by \generating population-by-population scheme of strings using selection and

mutation", which means a number of descendants from a single ancestor are

produced and the best of the descendants survives to the next ancestor (B�ack,

p.58).5 His proposed mutation rate pm = 1=l, where l is a length of a string,

is also adopted by many current implementations. He also proposed, but not

show the result, the use of a recombination in which information was exchanged

between individuals.

Bremermann recognized evolution as an optimization problem, and evolved a

string of alphabet from f0; 1g (Bremermann, 1958) as well as strings of real-

3This selection scheme is later called a (1+�) selection in ES community, which implies a

parent produces � children and the �ttest of (1 + �) becomes the next parent.
4This selection scheme is later called a (1, 1) selection in ES community.
5This is a (1; �) selection in later ES terminology implying a parent produces and the �ttest

of the � children (not including their parent) becomes the next parent.
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valued elements6 (Bremermann, 1962). Namely, Bremermann considered the

problem of minimizing a real-valued function f(x1; x2; � � � ; xn), where xi 2 <.
The elements xi were claimed to be analogous to an organism's gene.7 The

Bremermann's latter method of evolving strings made up of real-valued elements

is clearly one of the origin of today's Evolutionary Programming8, although there

is no such an explicit description in literatures. Nevertheless, Bremermann did

not obtain any successful results of �nding optima, which Atmar (1979) called

Bremermann's disappointment (see Fogel, 1995, p.72). The failure is, as B�ack

(1996, p.59) wrote, partly because the problem chosen were \a much too simple

problem domain, where evolutionary algorithms cannot compete with the variety

of specialized optimization techniques."

The nomenclature of EP is from the work of L. J. Fogel (1962; 1964), and

the paper by Fogel, Owens and Walsh (1966) is now cited as the origin of EP.

According to David Fogel, L. J. Fogel's son, the original EP is summarized as

follows. A population of �nite state machines is exposed to the environment which

is described as a sequence of symbols taken from a �nite alphabet. Each parent

machine predicts next symbol as its output as each input symbol is o�ered to the

machine. After the prediction of the last symbol in the sequence, the �tness of

the machine is assigned as a function of the payo� for each symbol (e.g., average

payo� per symbol). O�spring machines are created by randomly mutating each

parent machine, i.e., modifying the transition table of the parent machine with

respect to a probability distribution. The highest �tness machines are selected to

become parents of the next generation, and the process is repeated. (The better

of ancestor and o�spring survives to be the ancestor of the next generation).9

This is somewhat di�erent from currently used EP, which is extended by David

Fogel (Fogel, 1991), so that mutation can be operated on discrete parameters.

Bremermann's idea might be said to be much closer to the original EP.

6Bremermann employed a discrete mutation even for continuous variables, since he based

on the knowledge about the discrete nature of the genetic code.
7It is interesting to note that after his failure of evolving strings to the global optimum,

Bremermann (1967) conjectured that many biological species are at a genetic stagnation point,

rather than at an optimum (see Fogel, 1995, p.73).
8In current EP, however, elements are viewed as behavioral traits of an individual instead

of genes along a chromosome (see Fogel, 1995, p.85).
9This is a (1 + �) selection in later ES terminology.
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Yet another approach to real-valued parameter optimization using simulat-

ing evolution was originated at Technical University of Berlin under the name

of Evolution Strategy (Evolutionsstrategie in Germany) by Rechenberg (1965),

Schwefel (1965) and colleagues, independently from development of GA, EP or

other techniques using evolution scheme. The hydrodynamical problems of op-

timizing shape such as a bended pipe of airfoil (Lichtfuss, 1965) and a 
ashing

nozzle (Schwefel, 1968) or of minimizing drag of a joint plate (Rechenberg, 1965)

were addressed by a scheme of single parent single o�spring competition for sur-

vival with poorer of the two being eliminated. Further, Schwefel (1981) developed

the use of multiple parents and o�spring, following the earlier work of Rechenberg

(1973) that used multiple parents but a single o�spring. More recently multiple

� parents create multiple � o�spring and both compete for survival with the best

� being selected as parents of the next generation.

However, as Mitchel (1996) wrote, these works have been given little or none

attention. Or worse, we can �nd many criticisms for these works. For example,

Lenat (1983), cited in Fogel (1995), wrote that

The early (1958{1970) researchers in automatic programming were con�-

dent that they could succeed by having programs randomly mutate into

desired new ones. This hypothesis was simple, elegant, aesthetic, and in-

correct.

Fogel (1994, p.84) also cited Lindsay's criticism (1968) of early EP, as \perhaps

the most pointed criticism":

Lindsay commented that a random search \ is ... the most ine�cient

method of problem solving" and cited the failure of Friedberg (1958) as

evidence. He proceeded to claim, incorrectly, that the evolutionary search

of Fogel et al. (1966) was no better than a completely random search and

concluded by proclaiming the work of Fogel et al. (1966) to be \fustian"

that \may unfortunately alienate many psychologists from the important

work being done in arti�cial intelligence ..."

as well as other criticism o�ered by Michie (1970), Chandrasekaran et al. (1976),

Jackson (1974), Rada (1981), and Lenat (1983).
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1.2 Associative Memory and Evolutionary Algorithms

1.2.1 Associative Memory as a Dynamic System

Associative memory is a dynamical system which has a number of stable states

with a domain of attraction around them (Koml�os and Paturi, 1988). If the

system starts at any state in the domain, it will converge to the stable state.

Hop�eld (1982) proposed a fully connected neural network model of associative

memory in which information is stored by being distributed among neurons and

is retrieved from dynamically relaxed neuron states. The dynamical behaviors

of its neuron states strongly depend on synaptic strength between neurons. The

synaptic strengths between neurons are called weights, and weight from neuron

j to neuron i is denoted as wij in this thesis. Hop�eld used the Hebbian rule

(Hebb, 1949) to prescribe these wij's, and succeeded in storing a set of patterns

in the network, though the number of patterns are limited to a certain critical

amount. Since then, many researchers, mostly physicists, have investigated dy-

namical behaviors of the model analytically. However, there remain many issues

still open. We study them using some variants of evolutionary algorithms.

Evolutionary algorithms search for the optimal or near-optimal solution in a

population of candidate solutions from one generation to the next. Each member

of the population is assigned a value which indicates how appropriate it is as the

optimal solution. The value is referred to as �tness. In this thesis, we estimate

the �tness value as the degree to how the network stores a set of given patterns

as �xed points (see below). Hence, by \optimal solution" we mean the network

that stores all the given patterns as �xed points.10

1.2.2 Hop�eld Model as a Peak in Landscape

The Hop�eld model consists of N neurons and N2 synapses. Each neuron can be

in one of two states �1. The network is designed to memorize p bipolar patterns,
10Therefore, the term \optimal" does not imply \maximum" in number of patterns that can

be stored in the network. Given a set of �xed number of patterns, there exist multiple optimal

solutions that can store all the patterns as �xed points, unless the number exceeds the storage

capacity.
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sequences of +1 and {1, namely,

�
� = f��1 ; ��2 ; � � � ; ��Ng; (� = 1; 2; � � � ; p);

where each ��
i
(i = 1; 2; � � � ; N) takes value of either 1 or {1. These patterns are

stored as equilibrium states in the network, in a distributed way, among neurons.

We call these states memorized patterns to distinguish them from other states.

Hop�eld employed a discrete-time, asynchronous update scheme; that is, at most

one neuron at a time updates its state according to the sign of the weighted sum

of all the other neurons' states. That is,

si (t+ 1) = sgn

0
@ NX

j 6=i

wijsj(t)

1
A
;

where si(t) is a state of i-th neuron at time t, and sgn(z) = 1 if z � 0 and �1
otherwise.

Thereupon, an input chosen from the memorized patterns, which is given a

small noise within the size of the basin of attraction, should relax to the mem-

orized pattern after several steps of update. If we do not give any noise to the

input, all neuron states should remain unchanged from the start, and the pat-

terns are said to be memorized as �xed points. Thus the network stores a number

of patterns as �xed points when wij 's are determined appropriately. Hop�eld

employed the so-called Hebbian rule11 to specify wij 's, i.e.,

wij =
1

N

pX
�=1

�
�

i
�
�

j
(i 6= j); wii = 0: (1)

Then, giving one of the memorized patterns (possibly including a few errors) to

the network as an initial state results in a stable state after updating.

As mentioned earlier, the network has an upper limit on the number of pat-

terns to be both stored and recalled properly. Hop�eld suggested that by using

computer simulation, the maximum number of the patterns to be stored in a net-

work with N neurons is p = 0:15N , if a small error in recalling is allowed. Later,

this was calculated analytically by Amit, Gutfreund, and Sompolinsky (1985) by

11The rule was at �rst advocated by Hebb (1949) and later formalized by Cooper (1973).
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using the spin-glass theory, showing that the storage capacity is p = 0:138N .

McEliece et al. (1987) proved that when

p < N=4 lnN

holds, then the Hop�eld model will recall the memory without error.

Now, a question arises. Are there any other ways to specify wij 's? The spec-

i�cation of synaptic weights is conventionally referred to as learning. Borrowing

from Kau�man (1993), learning is a walk in synaptic weight space seeking good

attractors. Given a set of patterns to be memorized, assigning �tness values to all

the possible weight con�gurations constructs a �tness landscape on weight space,

and we can imagine the optima as peaks. The Hebbian weight con�guration

prescribed by Hop�eld is one of the peaks. So far, a fair amount of peaks have

been found heuristically (see, e.g., Hassoun (1993) and references quoted therein).

The con�guration prescribed by the pseudo-inverse matrix method proposed by

Kohonen and Ruohonen (1973), which is an extension of Hebbian learning, is one

of the other examples.

The number of peaks depends on the number of given patterns. Gardner

(1988) discussed the number of solutions of weight con�gurations in terms of

volume in weight space. She showed that the volume shrinks to zero as the

number of patterns approaches to

p = 2N;

proposing an algorithm to obtain the weight values. The peak obtained by this al-

gorithm is also another example. Paraphrasing from Gardner, there is no (global)

peak on the landscape for p > 2N . On the other hand, there are multiple peaks

on the landscape for p < 2N . However, the number and distribution of these

peaks are still open issues. So, one of the ultimate goals of this study is to learn

the whole geometry of the �tness landscape as a function of the number of to-be-

stored patterns, and we believe evolutionary algorithms provide powerful tools

for the purpose.

In this thesis, a population of points in weight space explores the landscape12

starting at the two speci�c initial points: the Gaussian random weight con�gu-

12In order for a point to explore the landscape, a rule to move the point is needed. Here, the

movement is speci�ed according to which connections are pruned. We reported elsewhere more
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ration and an over-loaded Hebbian one. By over-loaded we mean that the weight

values are determined by the Hebb's rule | equation (1) above, with the number

of given patterns exceeding the capacity (over-loaded), and hence the memory is

damaged more or less. Therefore, the both of these con�gurations are not peaks.

We will attempt to show how evolutionary algorithms lead the initial population

toward one of the peaks.

1.2.3 Fitness Landscape on Weight Space and Pattern Space

In analyzing the Hop�eld model, there have been basically two di�erent ap-

proaches: one is to explore pattern space searching for attractors under a speci�c

weight con�guration, and the other is to explore weight space searching for an

appropriate weight con�guration that stores a given set of patterns. To be more

speci�c, the former is an analysis of the Hamiltonian energy as a function of all

the possible con�gurations of bipolar patterns given to the network, where the

synaptic weights are pre-speci�ed using a learning algorithm, usually the Hebb's

rule, so that the network stores a set of p given patterns. In this context, the

model for p = 1 corresponds to the Mattis model of spin-glass (Mattis, 1976),

in which the Hamiltonian energy has two minima, while the model for in�nitely

large p corresponds to the Sherrington-Kirkpatrick model (1975), in which the

synaptic weights become Gaussian random variables. Analyses of the former type

have been made in between these two extreme cases (see (Amit, 1989)). The lat-

ter analysis was addressed by Gardner (1988). She discussed the optimal weight

con�gurations for a �xed number of given patterns in terms of the volume of the

solutions in weight space, suggesting that the volume shrinks to vanish when p

approaches to 2N . In short, the former approach searches for the optimal pat-

tern con�gurations which minimize the Hamiltonian energy in pattern space with

the weights being �xed, while the latter searches for the weight con�gurations in

weight space that optimally store a set of given �xed patterns.

So far, we have studied the model with the latter approach. We have explored

�tness landscapes of the model de�ned on weight space, and have found many

solutions that store more patterns or store them with larger basin of attractions

direct exploration by adding a small random value �ij to each wij (see Imada et al. (1997d;

1997e; 1997g)).
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than, e.g., the Hebbian synaptic weights (e.g. (Imada et al., 1997a; 1997b)).

Now, our interest is on the number and distribution of these solutions over the

whole weight space, which is still an open problem. We think the niching GA

is one of the appropriate tools to pursue these problems. However, since N
2-

dimensional continuousweight space is much more di�cult to wander around than

N -dimensional discrete pattern space, we explored the pattern space instead to

see preliminary how our �tness function works under the niching method (Imada

et al., 1998f). In other words, we used the model as a test function of the niching

technique in the sense that all solutions are a priori known, like in other studies

using pure mathematical test functions.

1.3 Overview of this Thesis

In this section we have described what are the arti�cial evolutions and what

is the associative memory. The remainder of this paper begins by introducing

some theoretical aspects of Genetic Algorithms. Following sections develop a

series of experiments. Since the application of evolutionary algorithms to the

fully-connected neural network model of associative memory is quite a new ex-

periment, various versions of evolutionary algorithms are tested to see how they

evolve real-valued weights of the fully-connected neural networks. Each variant

of the evolutionary algorithms are described in detail together with the results

in Chapter 3. We also evolve weights by pruning some of the synaptic weight

connections adaptively. We obtained somewhat of an amazing result that a net-

work with randomly determined weights eventually evolves to store some of the

patterns just by pruning some of the connections adaptively. The method and

the results are given in Chapter 4. Natural creatures usually have an ability to

learn how to adapt to their environment and to increase their �tness. Then how

about in the arti�cial evolution? Chapter 5 addresses a relationship between

learning during lifetime and evolution. Two hypothesis in evolutionary biology:

the Lamarckian inheritance and the Baldwin e�ect are studied in the context

of arti�cial evolution. Thus in Chapter 3, 4, and 5, we �nd a variety of weight

con�gurations that give a network a function of associative memory by applying

a lot of di�erent versions of evolutionary algorithms. In Chapter 6, these weight

con�gurations are studied in terms of two parameters of weights: the degree of
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symmetry and dilution ratio. Associative memory stores information as attrac-

tors, and the attractors has their basin of attraction. This is why the associative

memory has a tolerance for noises. Chapter 7 examines the basin of attraction of

the weight con�gurations obtained by previous chapters. The main goal of this

thesis is to study the number and distribution of the solutions in weight space.

Toward this goal, the next two chapters explores high dimensional weigh space in

two di�erent ways. That is, Chapter 8 studies \Fitness Landscape", the hyper-

surface de�ned on the high-dimensional weight space, and Chapter 9 visualize

the weight space by reducing dimensionality with maintaining the information

on distances among solutions in weight space as much as possible. Throughout

our experiments, we noticed that the exploration of the fully-connected neural

network model has many good properties for a benchmark to test and evaluate

evolutionary algorithms. This issue is described in Chapter 10. The concluding

remarks and future works are given in Chapter 11.
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2. GA THEORY

The Schema Theorem and its corollaries, the Building Block Hypothesis as well as

the Implicit Parallelism, which are argued by Holland (1975) in his book, are said

to be essential to understand howGAs work. However these concepts were devised

only for the GA using binary chromosomes or at least discrete chromosomes.

Since we do not use this type of GA in this thesis with an exception of Chapter

4, we describe the Schema Theorem and Building Block Hypothesis only brie
y

and we focus our discussion here mainly on convergence issue.

2.1 Basic Concepts of Holland's GA

Holland (1968) introduced the concept of schema to de�ne building blocks. A

schema is a string made up of ones, zeros, and asterisks. The asterisks are used

for representing either of one and zero when we don't care which, and hence

they are called \wild cards" or \don't cares". Thus a schema is a template that

represents a set of bit strings. For example, a schema (1 � � 0) represents four
strings (1000); (1010); (1100), and (1110), since these four are all four-bit binary

strings that begin with 1 and end with 0. Namely, schema de�nes a i-dimensional

hyper-plane in the n-dimensional space of n-bit strings (i � n). In his book,

Goldberg (1989, p.33) summarized Holland's Schema Theorem as:

Theorem 1 (Schema Theorem) Short, low-order, above-average schemata re-

ceive exponentially increasing trials in subsequent generations.

This suggests that selection gradually con�nes the population on subsets of the

search space that are de�ned by schemata with above-average �tness. Then

Goldberg (1989, p.41) continued to summarize the Building Block Hypotheses

as:

Just as a child creates magni�cent fortresses through the arrange-

ment of simple blocks of wood, so does a Genetic Algorithm seek near

optimal performance through the juxtaposition of short, low-order,

high-performance schemata, or building blocks.
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This suggests that crossover puts high-�tness building blocks together on the

same string to create strings of increasingly higher �tness. Furthermore, he wrote

(Goldberg, 1989, p.40):

� � � despite the processing of only n structures each generation, � � � we
get useful processing of something like n3 schemata in parallel with

no special bookkeeping or special memory other than the population

itself.

Thus, in the early 1990's the Schema Theorem and the Building Block Hypothesis

were almost the only basis of theoretical work on how Genetic Algorithms work.

2.2 Convergence

The schema theorem, however, does not provide any guarantee for convergence to

the optimum solution (Beyer, 1996). Then how can we know when and on what

problems do GAs work? In this section, we describe the conditions under which

an evolutionary algorithm converges to an optimum with probability one.

2.2.1 Banach Theorem

In his book, Michalewicz (1996, pp.68{72) argued the convergence of a Genetic

Algorithm based on Banach's �xed point theorem, which is one of basic theorems

in the �eld of function analysis in Mathematics. The Banach theorem states that:

Theorem 2 (Banach's Fixed Point Theorem) Any contractive mapping on

a complete metric space has a unique �xed point.

We now describe how the theorem is applied to evolutionary algorithms. Suppose

the set S consists of all possible populations, i.e.,

S = fP1; P2; P3; � � �g:

We can regard S as a metric space by de�ning distance � : S � S ! < as13 :

�(Pi; Pj) =

8<
: 0 if Pi = Pj;

j1 +M � f(Pi)j+ j1 +M � f(Pj)j if Pi 6= Pj;

(2)

13If �(x; y) satis�es for 8x; y 2 S, (1) �(x; y) � 0 and �(x; y) = 0 i� x = y; (2) �(x; y) = �(y; x);

(3) �(x; y) + �(y; z) = �(x; z) then � is called a distance and S is called a metric space.
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where f(P ) is the average �tness of the population P , andM is possible maximum

value of f(P ). In evolutionary algorithms, a single iteration of generating the next

generation from one generation can be regarded as a mapping

F : S ! S:

Thus we can say that if both (1) the metric space S is complete and (2) the

mapping F is contractive on the metric space S hold, then F has a unique �xed

point. In order for a metric space to be complete, any Cauchy sequence on the

space should have a �nite limit. In our context, the condition of completeness is

satis�ed if any Cauchy sequence of populations has a �nite limit P ?. Note here

that a sequence P1; P2; � � � is referred to as Cauchy sequence i� there exists k for

any � such that �(Pm; Pn) < � for allm;n > k. This is always satis�ed in our case,

since we consider a �nite number of populations out of all possible populations.

In fact, for any Cauchy sequence of populations P1; P2; � � �, we always have the
number k such that Pn = Pk for all n > k. On the other hand, a mapping F is

contractive i� there exists � 2 [0; 1) such that �(F (x); F (y)) � � � �(x; y) for all
x; y 2 S. Hence if our f satis�es

f(P (t)) < f(P (t+ 1)); (3)

then the mapping F is contractive. Indeed,

�(F (P1(t)); F (P2(t))) < �(P1(t); P2(t)) (4)

is almost clear from the equation (2). Note that we assume maximization problem

here without any loss of generality. The equation (3) implies that the population

is improved in terms of average �tness value. Thus, we can conclude that if the

iteration F : P (t) ! P (t + 1) is contractive on the complete metric space S,

the space of possible populations, the evolutionary algorithm converges to the

population P
? which is a unique �xed point in S. That is,

P
? = lim

i!1
F

i(P (0));

where

F
i+1(P (0)) = F (F i(P (0))) and F

0(P (0)) = P (0):
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If we recall f(P ) is an average �tness of P , we recognize that P ? is a population

in which elements in P are all identical. Obviously, the element of P ? is one of

the possible global optima. Moreover, P ? is independent on starting population

P (0). The initial population only a�ects the convergence speed. To simply put, if

average �tness of the population keeps increasing from one generation to the next,

then the evolutionary algorithm is guaranteed to converge to P ?, which is a unique

�xed point in the space of all possible populations. However, these conditions are

not so general. For example, if the �tness evaluation f is multi-modal, that is,

f has more than one maximum, the mapping F is not contractive since for the

two optimal populations �(F (P1(t)); F (P2(t))) = �(P1(t); P2(t)) holds instead of

Equation(4).

2.2.2 Markov Chain Model

The evolutionary algorithms can be also formulated as a �nite-dimension Markov

chain. Markov chain is characterized by a �nite number of states and transition

probabilities from one state to another. The probability of transitioning from

state i to state j in one step is denoted as pij here. If a state can not be transi-

tioned to any other state either in one step nor multiple steps, the state is said to

be absorbing. For evolutionary algorithms, the states of the chain can be de�ned

by every possible con�guration of an entire population of bit strings (Fogel, 1995,

p.126). Fogel shows that the chain generated by a Genetic Algorithm with only

crossover and selection (no mutation) will transition with probability one to an

absorbing state. Note however that the absorbing state is a state in which the

states in the chain are all identical since crossover in this case cannot modify

these states (recall that this is a Genetic Algorithm without mutation). Hence

an absorbing state does not necessarily implies the global optimum, but may be

one of local optima.

Fogel proceeds the argument to EP in which the state is a real valued vector.

By forming an equivalent class of all states that contain a global best vector and

describing the class as a single state, the state containing global optima can be

regarded as the only absorbing state. Thus Fogel (1992; 1994) shows that the

probability of reaching a global optimum is one.
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Rudolph (1994) also used the Markov chain analysis to argue convergence issue

of simple Genetic Algorithm.14 He showed a sequence of solutions generated does

not converge to any point including any global optima, but the global conver-

gence is always guaranteed by maintaining the best solution in the population

into successive generations (i.e., elitist strategy).

Many other researchers have also approached the convergence properties of Ge-

netic Algorithms using Markov chain analysis (see e.g., (Goldberg et al., 1987),

(Davis et al., 1991), (Eiben et al., 1991), (Nix and Vose, 1991), (Vose and Liepins,

1991), and (Vose, 1992))

The analysis of GAs taking it for a Markov process captures an exact microscopic

behavior of GAs. However deriving macroscopic dynamical equation, such as the

expected �tness change over time, from the transition matrices of the Markov

chain has not been successful (Beyer, 1994).

2.2.3 Beyer's Hypothesis

Beyer (1995)15 gave yet another approach in between macroscopic and micro-

scopic level of evolutionary algorithm, denoting it mesoscopic. To understand

how an evolutionary algorithm works in general, he proposed three basic princi-

ples: Evolutionary Progress Principle, Genetic Repair Hypothesis, and Mutation

Induced Species by Recombination Principle, instead of Holland's Schema Theo-

rem, Building Block Hypothesis, and Implicit Parallelism. We introduce here only

the convergence aspects from his proposition.

We now assume a function optimization of N parameters. The average distance

of each individual to the global optimum should decrease from one generation

to the next. If we denote R(t) as the average distance of each individual to the

14Namely, �xed length binary genes, one point crossover, bit-
ipping mutation, and propor-

tional selection.
15This paper is somewhat unusual as he said \This paper has been rejected for presentation

at the 6th ICGA. Having lost the opportunity to defend the new ideas and the points attacked

by the reviewers at the conference, the author has added his replies to the reviewers comments."
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global optimum at generation t, the expectation of R(t+1)�R(t) are called the

progress rate '(t), i.e.,

'(t) = EfR(t+ 1)� R(t)g:

Beyer (1994) derived the asymptotic (N !1) formulae of this progress rate for

(�; �)-ES16,

'
�(t) = c � ��(t)� (��(t))2=2; (5)

where c is called progress coe�cient, and '
� and �

� are normalized as

'
�(t) = '

�(t) �N=R(t); and �
�(t) = �

�(t) �N=R(t):

The equation (5) suggests that

� progress is positive (i.e. converge to the optimum) when 0 < �
�
< 2c;

� the maximal progress c2=2 is achieved when �
� = c.

If we re-normalize � then the condition of the maximal progress becomes

� = c �R=N; (6)

indicating that

lim
t!1

�(t) = 0) lim
t!1

R(t) = 0:

That is, convergence to the optimum. The condition limt!1 �(t) = 0 implies

that mutation should be in�nitely small at the last stage of the search.

2.2.4 Global Random Search

In his book, B�ack (1996, p.48) started the discussion of the issue of convergence

by noting uniform random search:

Algorithm 1 (Uniform Random Search)

1. Set current-max-�tness to �1.

2. Sample x uniformly at random.

16That is, � o�spring are generated from � parents (� < �) via mutation and crossover, and

the � best o�spring are selected for the next generation.
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3. Evaluate �tness of x.

4. If the �tness is larger than current-max-�tness, replace the current-max-

�tness with �tness of x, otherwise do nothing.

5. If a set number of iterations has been performed, return the current-max-

�tness. Otherwise go to step 2.

Then B�ack showed the sequence x1; x2; � � � generated by Algorithm 1 converges to

the global optimum x
? with probability one, by citing the proof from Zhigljavsky

(1992, pp.78{79).

Theorem 3 (Zhigljavsky's Theorem) If a Genetic Algorithm satis�es:

(1) for a sequence of populations, the best �tness at each generation is mono-

tonically increased;

(2) for 8x; x0 2M , x0 is reachable from x by mutation and recombination.

Then the sequence of populations converges to a global optimum with probability

one.

However, as B�ack wrote, Algorithm 1 is not evolutionary in that the probability

distribution remains constant throughout iterations. In evolutionary algorithms,

in general, the probability distribution function with which members of the pop-

ulation are selected as parents should be determined by �tness of the members,

and therefore the distribution of the selected parents changes from generation to

generation.

B�ack proceeds to the Zhigljavsky's global random search algorithm (Zhigl-

javsky, 1992) as the basis of proofs of global convergence of various evolutionary

algorithms. The algorithm allows us to construct a new probability distribution

at each iteration. The algorithm can be paraphrased as:

Algorithm 2 (Global Random Search)

1. Choose a probability function. Call this function current-probability-function.

2. Sample x according to the current-probability-function.

3. Evaluate the �tness of x.

20



4. Renew the current-probability-function by constructing a new probability

function using a pre-�xed rule.

5. If a set number of iterations has been performed, return the current-max-

�tness.

The renewed probability distribution at each iteration may depend on the result

of the previous iteration, and hence force this algorithm encompasses certain

versions of evolutionary algorithms (B�ack, 1996, p.87). This algorithm produces

a sequence of vectors

x1; x2; � � �

and we can calculate the probability with which each xi falls into U�(x
?), the

�-environment.17 of the global optimum x
?, i.e.,

}(xi 2 U�(x
?))

which depends on the current-probability-distribution in Algorithm 2 Now, let

qt(�) be the in�nimum of this sequence of probability, i.e.,

qt(�) = inf
1�i�t

f}(xi 2 U�(x
?)g:

Then the convergence theorem is summarized as:

Theorem 4 (Zhigljavsky's Convergence Theorem) Let f be continuous in

the vicinity of x? and assume that for 8� > 0,

1X
t�1

qt(�) =1:

Then the sequence of vectors x1; x2; � � � generated by Algorithm 2 falls in�nitely

often into the vicinity18 of s? with probability one.

By employing this Zhigljavsky's Convergence Theorem, Rudolph (1992) proved

the convergence of the so-called (1+1)-Evolution Strategy. In (1+1)-Evolution

Strategy, one parent generates one child by mutation and better of the two sur-

vives. Mutation is done using Gaussian random variable with standard deviation

being modi�ed by Rechenberg's 1/5 rule (Rechenberg, 1973). To be more speci�c,

17U�(x
?) = fx j kx � x?k < �g

18Instead of exact value of x?. This is due to the representation of real numbers by digital

computers. B�ack uses the notation Lf?+� = fx j f(x) � f(x?) + �g, noting that the global

maximization problem can be considered as solved if a member of the set Lf?+� has been found.
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Algorithm 3 ((1+1) Evolution Strategy)

1. Initialize x.

2. Evaluate �tness of x.

3. Mutate x by adding a Gaussian random variable with mean zero and stan-

dard deviation �.

4. Evaluate �tness of the mutant x0.

5. Select either x or x0 according to their �tness.

6. If the ratio of successful mutations so far is greater than 1/5, then increase

� by multiplying pre-�xed constant c. If the ratio is smaller than 1/5, then

decrease � by dividing by c.

7. If a set number of iterations has been performed, return the current-max-

�tness. Otherwise go to step 2.

2.2.5 Logarithmic Convergence Theorem

Vose and Wright (1994) formalized simple GA as an instance of more general

stochastic search, Random Heuristic Search, and later Vose (1996) gave a general

convergence theorem for this class of search. In this section, we brie
y review the

theorem.

Random Heuristic Search is a search in which a transition rule � successively

generates Pi+1 by applying � to Pi starting with P0, a collection of elements

chosen from the search space 
, until a stopping criterion is satis�ed. Pi is called

a population. To obtain an appropriate representation for the population to

characterize � mathematically, Vose de�ned a simplex

� = f(x0; � � � ; x2l�1) j xj 2 <; xj � 0;
X

xj = 1g;

where xj is an occurrence ratio of the element of 
 whose binary representation

is decimal j. An element p of �, a vector which is comprised of 2l decimal

numbers, represents a population. In the population, if the binary expression

of an individual is translated into decimal integer j, then the proportion of the
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individual contained in the population is xj . For example, if

P = f(1; 0; 1); (0; 0; 1); (1; 0; 1); (1; 1; 1)g 2 


then

p = f0; 1=4; 0; 0; 0; 1=2; 0; 1=4g 2 �:

Thus a function G : �! � produces a new population from current population.

So we might say that G(p) is a bias according to which search space is explored.

We call the function G(p) a heuristic function. Since

G( lim
l!1

G
l(p)) = lim

l!1
G

l+1(p) = x

holds, x satis�es G(x) = x and is called �xed points of G and denoted as !(x).19

Note here that time to convergence is de�ned as the time taken by

G(x); G2(x); G3
; � � �

to reach within � of !(x). It is easy to see that the time to convergence depends

on the initial population and it is almost certain that there exist some sequences

of populations that diverge and hence the time to convergence is 1. To state

this formally, we �rst de�ne a term \focused" as follows:

De�nition 1 (Focused Heuristic Function) A random heuristic search G is

referred to as focused if G is continuously di�erentiable and if the sequence

p;G(p); G(G(p)); � � �

converges for any p 2 �.

Then our intuition of the existence of sequences that diverge leads to the following

theorem and proof.

Theorem 5 The time to convergence cannot be uniformly bounded.

19We use this term later in somewhat di�erent context. Do not be confused.
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Proof. Consider a focused random heuristic search G. Let u and v be distinct

�xed points, and s(t) = tu+(1� t)v. Further, let t� be the supremum of t 2 [0; 1]

such that !(s(t)) = v. Now assume that the time to convergence to v are uni-

formly bounded by k. Then G
k(s(t�)) is mapped within a distance � from v for

small enough �, hence converges to v. This is because G�k is uniformly continu-

ous due to the fact that Gk is continuous and � is compact. But this contradicts

the assumption that t� is the supremum, because the same continuity arguments

imply that an open neighborhood of t�converges to v. Therefore the time to con-

vergence cannot be uniformly bounded. 2

However it is quite possible that time to convergence is uniformly bounded for

almost all of the initial populations. To formalize the term \almost all", we de�ne

the concept of the logarithmic convergence of the in�nite population algorithm.

De�nition 2 (Logarithmic Convergence) If there exists a set A such that

the number of generations required for the initial population p 2 A to satisfy

kGk(p) � !(p)k < � is O(�log�) where 0 < � < 1, then the algorithm is said to

converge in logarithmic time.

We also assume here a probability density � is given over � and de�nes the prob-

ability that for any A � � the initial population is contained in A, as
R
A
�d�

where � is a Lebesgue measure. We now can de�ne the expression of \almost all"

above. If the probability that the initial population p 2 A results in the logarith-

mic convergence is at least (1� �) for 0 < 1 � 1, then we may say that time to

convergence is uniformly bounded for \almost all" of the initial populations.

Before proceeding further, we make several more de�nitions.

De�nition 3 (Hyperbolic Fixed Point) A �xed point x is hyperbolic if any

eigenvalue of the di�erential of G at x is neither 1 nor {1.

De�nition 4 (Well Behaved Heuristic Function) G is said to be well be-

haved if C � A has measure zero implies that G�1(C) also has measure zero.

We now can describe Vose's general convergence theorem for Random Heuristic

Search of which simple GA is an instance. The theorem is formalized as:
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Theorem 6 (Logarithmic Convergence Theorem) If G is focused, well be-

haved, and its �xed points are hyperbolic, then the in�nite population algorithm

converges in logarithmic time.
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3. EVOLUTION OF WEIGHTS

As we described earlier, an associative memory is a dynamical system. The dy-

namical behaviors of a fully-connected neural network are strongly dependent on

weight values. In this chapter, we argue how these weight values can be deter-

mined in terms of evolutionary processes so that they give a network a function

of associative memory.

When an evolutionary algorithm is applied to a problem, each of candidate so-

lutions should be represented by a single vector. Borrowing terminology from

evolutionary biology, researchers in evolutionary algorithm's community have la-

beled the vector a chromosome20 and its components

genes. A set of these chromosomes is called a population, and the members of

population, i.e. chromosomes, are sometimes called individuals.

In our problem of evolving synaptic weights, the goal of the evolution is to

produce a network which stores a set of given patterns as associative memory.

Then how are the candidate solutions represented? The most straightforward

way is to represent the weights per se as genes in a chromosome. In this case,

a population of these chromosomes undergoes evolution and hopefully yields a

solution of the best performance. Alternatively, a population of candidate weight

con�gurations can be obtained by modifying one a priori determined weight con-

�guration. For example, a new con�guration of weights is generated by adding a

small perturbation on each weight value of a �xed network. In this case, genes

are made up of these small perturbations and it is these perturbations instead of

weights that are evolved.

In any case, a population is constructed with a number of these chromosomes,

and the population is initialized at the beginning of a run.21 Then evolutionary

processes such as crossover and mutation are operated on these chromosomes,

which produces their o�spring. Each of these o�spring is estimated the capabil-

20A string representing an individual is also referred to as its genome.
21Usually each gene takes one of the alleles at random and therefore the search starts with N

di�erent randomly chosen individuals. However, the search sometimes starts with individuals

in the �rst population being all identical. We describe the issue of this initialization later in

this chapter in more details.
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ity to store a set of given patterns which is called a �tness of the individual, and

some of these o�spring are selected according to their �tness values to survive to

the next generation. In this thesis, selection, crossover and mutation are imple-

mented as follows, unless otherwise stated.

Selection. Two parent chromosomes are chosen randomly from the best T% of

the population. They mated randomly (except for itself) and are recombined with

crossover to produce one o�spring which is mutated occasionally (see below). This

is repeated until the number of o�spring is equal to (100�T )% of the population.

The worst (100 � T )% of a population are replaced with these o�spring. And

these o�spring and the remaining the best T% parents survive to the next gener-

ation. This selection is referred to as truncate selection (M�uhlenbein et al., 1995).

Crossover crosses two parents (u1; � � � ; un) and (v1; � � � ; vn) to produces an o�-

spring (w1; � � � ; wn) such that wi is either ui or vi with equal probability. This

crossover is referred to as discrete recombination (M�uhlenbein et al., 1995).22

Mutation modi�es genes of these produced o�spring chromosomes. Typically,

in the case of continuous genes, the modi�cations are made by replacing a gene

chosen at random with probability pm with a real number taken uniformly at

random from [�1; 1].

The cycle of reconstructing the new population with better �tness individuals

and restarting the search is repeated until one of the global optima is found or a

set maximum number of generation has been reached.

Fitness Evaluation. Before proceeding further, we now look at how the �tness

evaluations are made. The task of each individual is to make a network store a

set of p random bipolar patterns �� (� = 1; 2; � � � ; p) that is a priori determined

before a run. When one of the patterns �� is given to the network as an initial

state, possibly including a few errors, the state of neurons varies from time to

22This nomenclature is when genes take real values. If genes take discrete values, this is

referred to as uniform crossover (Syswerda, 1989)
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time afterwards. In order for the network to function as an associative memory,

these instantaneous states s�
i
(t) must be similar to the initial state. The similarity

as a function of time is de�ned by

m
�(t) =

1

N

NX
i=1

�
�

i
s
�

i
(t):

This is conventionally called an overlap. If an instantaneous state of the network

is equal to the input, then the overlap takes the value 1, while if they are uncor-

related, the value will be 0. As the network enters an attractor, the values of the

overlap become constant. Thus the quality of retrieval of memorized patterns is

represented by taking a temporal average of m�(t) over a certain time interval

t0.
23 This is denoted as hm�i. We evaluate the �tness value of a network by fur-

ther averaging these hm�i's over all memorized patterns. Namely, our objective

function f is

f = hhmii = 1

p � t0

pX
�=1

t0X
t=1

m
�(t): (7)

In this thesis, t0 is set to 2N , twice the number of neurons. Note that the �tness

1 implies all the p patterns are stored as �xed points, while all other cases have

a �tness less than 1. Then our goal is to optimize w = (w11; w12; � � � ; wNN ) such

that hhmii takes the maximum value 1.

Initialization. In evolutionary computations, the issue of initialization is very

important, though little attention has been paid. Usually, the �rst population is

initialized at random. Namely, individuals are uniformly distributed at random

in the search space at the beginning.

What then are the possible initializations with our fully connected neural

network model? Essentially, we start algorithms with three di�erent initial popu-

lation: random weight matrices, over-loaded Hebbian matrices, and zero matrices.

23Instead of the above time consuming evaluation (7), the overlap of the ultimate state

1

p

pX
�=1

m�(1)

might seem to be enough. However, our experiment shows that this �tness evaluation often

yields limit cycle solutions.
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In the �rst case, individuals are distributed randomly in weight space, while in

the second and third cases all individuals are identical.

An input given to the network with random weight will result in a chaotic

trajectory due to the asymmetry of the weight matrix. An input to the over-

loaded Hebbian matrix, on the other hand, will converge to a stable attractor in

between the �xed-point attractor and spin-glass attractor (stable but far from the

initial state). These behaviors are visualized, for instance, by plotting over time

the Hamming distances between the initial state given to the network and every

instantaneous network state. We referred to this state transition as trajectory.

Examples of the trajectories are shown in Figure 1.
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Figure 1. Typical trajectories before evolution.

Note here that our �tness evaluation relates to the sum of areas under these tra-

jectories, and the goal is to minimize these areas.24

In the following several sections, we describe some variants of evolutionary al-

gorithm implementation that employ real-valued genes to obtain the optimal

weights of fully-connected neural network model of associative memory.

24When the areas become zero, all the given patterns are stored as �xed point attractors,

or equivalently, the algorithm found an appropriate con�guration of weights that creates �xed

point attractors exactly at the location of given patterns.
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3.1 Evolutionary Algorithms with Real-valued Encoding

GAs usually evolve binary strings. As Michalewicz (1996, p.97) wrote, this is

due to the fact that the binary representation \o�ers the maximum number of

schemata per bit of information of any coding" and \facilitates theoretical analysis

and allows elegant genetic operators." However, as Michalewicz also pointed out,

the binary encoding \has some drawbacks when applied to multi-dimensional high-

precision numerical problems." And determining weights of neural networks is

one such problem. As alternatives, some GAs that evolve continuous genes have

been proposed (e.g., (Goldberg, 1990), (Wright, 1991)). Though speci�c binary

encodings such as Gray coding were also devised for these problems (Caruana

et al., 1988), Michalewicz suggests that \the results of real encoding GAs are

better than those from binary representation." In this thesis, we mainly focus on

evolutions of real-valued genes.

In the classical analysis of the Hop�eld model, Sompolinsky (1986) gave small

perturbations on the Hebbian synaptic weights to see the robustness of the net-

works for the synaptic noise. In other words, each Hebbian synaptic weight Jij

was added small perturbation �ij , resulting in

Jij + �ij :

We also modify synaptic weights based on this scheme using evolutionary algo-

rithms, with the di�erence being that Sompolinsky chose perturbations randomly,

while we choose them adaptively. We have two di�erent versions of giving per-

turbations. One is by chromosomes and the other is by mutations. Note that

perturbation by chromosome exploits a promising region, i.e., search points are

restricted within a certain region (volume-oriented), while perturbation by muta-

tion explores new regions, i.e., search points may wander all over the search space

(path-oriented).

3.1.1 Direct Mapping of Weights onto Genes: Perturbation of Weights

by Mutation

Here, we evolve real-valued weights that are directly mapped onto genes in a

chromosome (Imada et al., 1997a). In this implementation, each weight value of

a con�guration is encoded directly to each gene of a chromosome. To be more
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speci�c, the ij-th entry of a weight matrix corresponds to the fN(i� 1) + jg-th
gene of a chromosome using the standard row-scan method. Namely,

xN(i�1)+j = wij ;

where xf�g represents a gene value.

The algorithm may start by initializing gene values in the following three

ways. (1) All genes are chosen randomly from [�1; 1]. (2) All genes are set to

zero. (3) Weights calculated by the Hebb's rule are assigned to the corresponding

genes.

Then they undergo recombination, mutation and selection from one generation

to the next.

3.1.2 Modifying of an Ancestral Matrix: Perturbation of Weights by

Chromosomes

In this implementation, we determine a matrix at the beginning of a run as an

ancestor. This matrix remains unchanged during evolution. In each generation,

chromosomes composed of small perturbations �ij produce copies of the ancestor.

These copies are slightly di�erent from the ancestor depending on the range of �ij .

We may start by determining the ancestral matrix as either of a random matrix,

zero matrix, and over-loaded Hebbian matrix (Imada et al., 1997b; 1997f), Each

chromosome is de�ned as a N 2-dimensional real-valued vector, representing small

perturbations to be added to elements of the ancestral weight matrix. We denote

the chromosome as

(�11; �12; � � � ; �1N ; �21; � � � � � � ; �NN):

These chromosomes are initialized randomly at the beginning of a run. In each

generation, a population of chromosomes make ancestor's copies by adding each

gene to its corresponding component of the ancestor matrix. Namely,

w
k

ij
= Wij + �

k

ij
;

where wk

ij
is ij-component of the copied matrix, �k

ij
is (iN + j)-th gene of the

chromosome, and the superscript k denotes the individual number in the popu-

lation.
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�ij is taken each time from a Gaussian distribution of mean zero and standard

deviation �.

The 
uctuation � plays a similar role to pm, the bit-
ipping probability in

standard canonical GA (Beyer, 1995).

The chromosomes are modi�ed through crossover and mutation operation.

The �tness values of the corresponding phenotype are evaluated. According to

the �tness values, individuals of the next generation are selected. The rests of

the procedure are similar to those described in the previous section.

3.1.3 Evolutionary Programming (EP)

We may also use EP to evolve real-encoded weights (Imada et al., 1997d; 1998a).

As stated in Section 1.1.2, EP is a technique for optimization, proposed by L.

Fogel, Owens and Walsh (1966) (see also D. Fogel (1995)).

In EP, we employ a Gaussian mutation in which Gaussian variables with mean

zero and small variance are added to genes. This is an elaborate version of simple

hill climbings. Typically in a simple hill climbing, the Gaussian mutation is given

� times to the current point, and among these � points, the point obtained the

highest �tness value is selected as the next point. In EP, on the other hand, �

points construct a population. Each of these � points is mutated once, which

produces � mutants. The mutation in EP is adaptive. That is to say, each point

has additional variables �i for each coordinate, which are used as a standard

deviation of a Gaussian random variable to be added to the i-th coordinate of

the point. After the mutation, these �i are also modi�ed as:

�
new
i

= �
old
i

+ 0:01 � �old
i
�Ni(0; 1);

where Ni(0; 1) is normally distributed random variable of mean 0 and standard

deviation 1 sampled for each individual i.

All the �i are initialized to �0 (= 0:002 here) at the beginning of a run. Now,

we have the original � points and their � mutants. The �tness value of each of the

2� points are compared to those of q points which are chosen randomly at every

time of the comparison from the whole 2� points. Then the 2� points are ranked

according to the number of wins, and the best � points survive (q-tournament

selection). Note that EPs do not use crossover operations.
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3.1.4 Evolution Strategy (ES)

ES has some similarities with EP in the sense that ES also employs adaptive

mutation scheme. But it also has an important di�erence from EP, that is, ES

uses crossover operation like GA. We apply ES to our problem of evolving real-

valued weights (Imada et al., 1997e).

At the beginning of a run, a population of chromosomes are initialized in

the same way as the previous three implementations described in this section. In

each generation, these chromosomes are modi�ed through crossover and mutation

operation. According to the �tness values, individuals of the next generation are

selected using a (�+ �)-strategy.

To compare the results with those of EP, we use a mutation similar to EP.

That is, we mutate object variable xi and strategy parameter �i as follows:8<
: x

0
i
= xi +

p
fi �Ni(0; 1)

�
0
i
= �i +

p
0:01 � fi �Ni(0; 1);

instead of usual mutation in ES:8<
: x

0
i
= xi + �

0
i

�
0
i
= �i + expNi(0; 1):

3.1.5 Breeder Genetic Algorithm

The Breeder Genetic Algorithm (BGA) were proposed by M�uhlenbin et al. (1996).

The BGA is based on \arti�cial selection similar to that used by human breeder"

expecting \arti�cial selection to be more e�cient for optimization than natural

selection," as M�uhlenbin et al. stated. M�uhlenbein et al. applied the BGA to

multi-modal test functions and concluded that \the BGA mutation scheme is able

to optimize many multi-modal functions." The free connected neural network

model of associative memory has multi-modal solutions. That is, there exist

multiple weight con�gurations to store a �xed number of given patterns if the

number is less than the capacity. Hence, we applied the BGA to our problem of

evolving real-valued weights (Imada et al., 1997g).

At the beginning of a run, a population of chromosomes are initialized. Chro-

mosomes are real-valued vectors each of which represents a set of synaptic weights
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of an individual network, i.e.,

(w11; w12; � � � ; w1N ; w21; � � � � � � ; wNN):

In each generation, these chromosomes are modi�ed through discrete crossover

and BGA-mutation operation. We now look at this rather speci�c BGA-mutation.

In mutating chromosomes, a gene xi is chosen with probability pm to be mutated

as usual. The BGA mutation is to give a small perturbation �xi�� on a variable

xi, where �xi is a mutation range for the variable xi, and � is calculated as

� = �0 +
1

2
�1 +

1

22
�2 + � � �+

1

215
�15:

Each �k takes the value 1 with probability 1=16, and otherwise takes the value

0. Then mutated new allele is

xi ��i � �;

with the sign +=� being chosen with equal probability.

3.1.6 Diploid Chromosomes

So far, we have described representations in which N2 synaptic weights of a net-

work are represented as a string of real-values of a single vector. On the other

hand, there is an alternative way to represent a con�guration of weights using two

one-dimensional arrays as a pair of chromosomes, which are called diploid chro-

mosomes in the �eld of GAs. We might call the former one a haploid chromosome

to distinguish it from the latter one. The GAs using diploid chromosomes are said

to be more biologically realistic than those using haploid chromosomes. At the

same time, the associative memory taking advantage of dynamical behaviors of

fully connected neurons might be regarded as a model of human memory. This is

one of the reasons of our interest in exploiting diploid chromosomes to evolve the

associative memory network (Imada et al., 1997i; 1998c; 1998e), though this is

too simple to be compared to our memory mechanisms. Here, wij and wji, which

occupy two symmetric positions in the weight matrix, are mapped onto the same

position in each pair of diploid chromosome. If two genes at the same position

of a chromosome pair take a same value as a gene, the position is said to be
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homozygous, and heterozygous otherwise. Hillis (1991) used diploid chromosomes

in his GA to optimize a sorting network. He expected an evolutionary pressure

to decrease the number of heterozygous positions in the chromosome pairs, which

would minimize the number of comparisons of sorting entries. He showed that the

number of heterozygous sites decreases as generation proceeds. In our problem,

homozygous site means that the two symmetric elements in the weight matrix,

wij and wji, are identical. Our previous results show that when random synap-

tic weights, which are entirely asymmetric at the beginning, become somehow

symmetric after evolving to be able to store some patterns (Imada et al., 1997a).

Hence, we expect a more e�cient evolution from an entirely asymmetric weight

con�guration to somehow a symmetric weight con�guration by exploiting diploid

chromosomes than exploiting usual haploid chromosomes.

3.2 Results and Discussion

In the previous section, we have described various implementations for real-valued

weights of a network to evolve to store a set of given patterns as associative

memory. In this section, we show some results of each of these implementations.

3.2.1 Chaotic Trajectories to Fixed Point Attractors

Associative memory is a dynamical system in which an initial state changes its

state along a trajectory. In this subsection, we observe how an evolution a�ects

the trajectories. As mentioned earlier in this chapter, the dynamics of neurons'

state can be visualized by plotting over time the Hamming distances between the

initial state given to the network and instantaneous network states afterwards.

In Figure 2, we show a series of snapshots of the trajectories during an evo-

lution (Imada et al., 1997h). Here, a GA evolves random weights of a network

with 49 neurons under the goal of storing seven pre-determined random bipolar

patterns. Since we start with a random con�guration of weights in this example,

all the trajectories in an early stage of the evolution are chaotic like in Figure

2a. Note that our �tness evaluation relates with total sum of areas under these

trajectories, and the task is to minimize these areas. As evolution proceeds, we
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can see some of the trajectories converge to stable states as in Figure 2b, though

the states do not usually coincide with their corresponding inputs (spin-glass at-

tractors). Then the number of trajectories that converge to stable states increases

(Figure 2c), and �nally all the trajectories converge (Figure 2d). In the mean

time, we occasionally observe limit cycles like in Figure 2e. Gradually, these sta-

ble states approach their corresponding inputs (Figure 2f and g), and eventually

all the given patterns are stored as �xed point attractors, or equivalently, the GA

found an appropriate con�guration of weights that creates �xed point attractors

exactly at the locations of patterns to be memorized (Figure 2h).

3.2.2 Experimental Setup

When we search for an appropriate con�guration of weights of a network that can

work as an associative memory, it is known that there exist multiple solutions of

these con�gurations of weights unless the number of patterns to be stored exceeds

the capacity, that is, twice as much as the number of neurons. However, the task

to search for one of these appropriate con�gurations of weights becomes hard as

the number of patterns increases. Here we mainly focus on the e�ect on evolution

of varying p, the number of given patterns. We repeat each simulation 30 times

with di�erent random number seed. If we �nd the perfect solution(s) then we

increment p.

All the experiments here were carried out on networks with 49 neurons. So,

note that the upper limit of storage is 98 patterns and the capacity of the Hebbian

learning is 8 at most.

3.2.3 Perturbation by Mutation

As the �rst example, we evolve random continuous weights that are encoded di-

rectly into genes and mutated by being replaced with random Gaussian variables

(Imada et al., 1997a). We use the algorithm described in Subsection 3.1.1, i.e.,

the GA to evolve real random weights using perturbation by mutation.

In Figure 3, we show a typical result of the best �tness versus generation.

We can see that the GA have found an appropriate con�guration of weights at

generation 2,249 starting with totally random weights. We were able to observe

the similar convergent phenomena unless the number of patterns to be stored
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Figure 2. Trajectories resulted from 7 inputs. (X-axis represents updating time

and Y-axis represents Hamming distance from the initial state.)
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exceeds nine. Here we should note that the storage of nine patterns is slightly

larger than the storage capacity of the Hebbian learning (at most eight).

In Figure 3, we also show a result of the same algorithm except that we do not

use crossover operation. We see no convergence in this case. Hence we conjecture

that the crossover operation in this implementation plays a signi�cant role. As

will be described later, this is contrary to the evolution by EP in which crossover

is not used.
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Figure 3. An evolutions of real weights using perturbation by mutation.

3.2.4 Perturbation by Chromosomes

The second example is an evolution using perturbation by chromosomes described

in Subsection 3.1.2. In this implementation, we found that the random initial-

ization of population like in the previous subsection did not work in �nding the

optima. So, we evolve an over-loaded Hebbian weight con�guration.

The network of this type was analytically studied by Amit et al. (1985b).

When the number of patterns p approaches to the capacity, some of the memorized

states are shifted slightly. As p increases further, some inputs of these patterns

relax to the other attractors, and �nally, the network will be dominated by the

vast amount of spin-glass attractors.
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Here, we succeeded in evolving the Hebbian weights that had learned a maxi-

mum of 18 patterns eventually to store these 18 patterns as �xed points. Hence,

we might say that the algorithm enlarges the the Hebbian capacity25 more than

double by giving perturbations on the weight values. The best �tness versus

generation of the evolution is shown in Figure 4. We see that the �tness value

started at around 0.95 and reached 1 at generation 3,760.
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Figure 4. An evolutions of real weights using perturbation by chromosomes.

3.2.5 Evolution Strategy

The initial population of all identical zero weights and all identical Hebbian

weights are employed. As in the previous section, random initialization did not

work in this implementation either. The e�ect of varying the number of patterns

to be stored on the evolution is studied, and we found a weight con�guration

evolved to store a maximum of 11 patterns started with a population of all zero

weights26 , and a maximum of 17 patterns started with over-loaded Hebbian

weights. Representative samples of the best �tness versus generation for both of

the evolutions are shown in Figure 5. The �tness value reaches 1 at generation

25At most eight patterns when the number of neurons is 49.
26This is sometimes referred to as learning from tabula rasa.
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1,062 when started with all zero weights, and at generation 4,374 when started

with the Hebbian weights.

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Fi
tn

es
s

Generation

started with
over-loaded Hebbian synapses

(p=17)

started with all-zero synapses (p=11)

with N=49

Figure 5. Fitness of the best of generation: ES.

3.2.6 Evolutionary Programming

In this EP implementation, the population is also initialized in two di�erent way:

all zero weights and over-loaded Hebbian weights.

In Figure 6, typical results for the above two di�erent initializations are shown.

We can see the convergence to the perfect solution at generation 7,848 starting

with all zero weights, and at generation 10,858 starting with over-loaded Hebbian

weights. The weights emerged stores a maximum of 6 patterns and 13 patterns,

respectively.

In usual implementation of GAs or ESs, crossover operation plays an impor-

tant role to search for the optimum. We observed that without mutation, neither

GA nor ES reaches the optimum solutions in almost all runs. However, as we

have shown in the experiment of EP here, we can reach the optimum solution

without crossover, though not so e�ective.

Later in Chapter 8, we will argue a more e�ective usage of EP to learn how

the local/global optima are distributed in the search space.
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3.2.7 Breeder Genetic Algorithm

In this implementation, we started searches with three di�erent initialization:

random, over-loaded Hebbian, and all zero weights. We show the details bellow.

Departure from Random Weights

In the �rst experiment, individuals are initialized at random. The e�ect of vary-

ing p, the number of patterns to be stored, on the evolution is studied. As a

result, we were able to emerge the weight con�guration that creates �xed point

attractors exactly at the location of given patterns up to p = 9. Note that this

limit of the storage is slightly higher than the Hebbian capacity (p � 8). In

Figure 7, we show the best �tness versus generation curve when nine patterns are

given.

Departure from Over-loaded Hebbian Weights

Then we proceed to the next experiment. We initialize all the individuals with

over-loaded Hebbian weights.

As shown in Figure 8, we successfully evolved these weights to re-store all the
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Figure 7. Best �tness vs generation during an evolution by BGA.

given patterns as �xed point attractors. We obtained a maximum storage of 25

patterns.

Departure from Zero Weights

Then the above enhancement of the storage from 9 to 25 patterns is due to

the Hebbian learning? To answer this question, we tested another no-Hebbian

initialization | all zero weights;

and we succeeded in evolving the weights to store all the 25 patterns as �xed

points. Therefore, we might conclude the above enhancement in storage capacity

is not due to the Hebbian learning but due to the search from one speci�c point

rather than from randomly distributed points.27

The next question is which of the two di�erent starting points, an over-loaded

Hebbian weight con�guration and all zero weight con�guration, performs better?

In the above experiments, runs with each of the two starting points were repeated

30 times with di�erent random number seed. As a result, we found that the BGA

27The success, however, depends on the point to be started. We have not been able to observe

the solution started with all identical con�gurations of arbitrary determined random weights

for 25 patterns.
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starting with the over-loaded Hebbian weights located one of the solutions in 7

out of 30 runs, while the BGA starting with zero weights located it in 25 out

of 30 runs. This suggests that there are more solutions around all zero weight

con�guration than around the over-loaded Hebbian weight con�guration.

We further increment p with this all zero weight initialization. Thus far, we

have observed that the all zero weights can be evolved eventually to store up to

90 patterns as �xed points { surprisingly large number of storage. We show the

result in Figure 9.

We must note here that we can trivially realize a large storage capacity with

identity matrix or with a matrix whose diagonal elements take large values com-

pared with o�-diagonal elements, where we can expect no or little error correcting

capability in recalling storage pattern. However, diagonal elements of the weight

matrices emerged here were of the same order of magnitude as the o�-diagonal

elements.

Identical versus Random Initialization

Usually in Genetic Algorithms, individuals are initialized randomly as our �rst ex-
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periment, so that starting points are distributed randomly over the search space.

And, as M�uhlenbein et al. (1996) stated, convergence implies that individuals

become all identical.

In the latter two of our experiments, however, all individuals start the search

at a speci�c one point in the space, and we found that this initialization works

much more e�ective than the initialization of randomly distributed points, as

mentioned already. When all individuals in the population are identical, the dis-

crete crossover does not work. However, the BGA mutation increases diversity

of the population quickly, which enables the evolution. In Figure 10, the stan-

dard deviation of the �tness values is plotted against generation number for the

evolution shown in Figure 8. The �tness diversity grows rapidly in early stages.

Then, as can be seen in Figure 11, enough diversity of population, say at genera-

tion 50, is obtained, and �nally the most of the population converge to a solution.

Does Search Become Di�cult as p Increases?

In our problem of searching for an appropriate weight con�gurations, it usually

becomes di�cult to locate a solution as the number of patterns p increases. Let's

take a look at an example of how p a�ects the number of successful trial. In
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Table 1, results when a GA with perturbation by chromosomes is applied to the

over-loaded Hebbian weights (Imada et al., 1997f) are shown.

Table 1. Number of patterns to be stored vs successful run out of 30 trials: a GA

with perturbation by chromosomes starting with an over-loaded Hebbian weight

con�guration.

Number of patterns 14 15 16 17 18

Successful trial 22 17 5 2 0

In the BGA starting with zero weights, however, shows somewhat of a pecu-

liar behavior. It seems to locate a solution more easily for larger number of given

patterns. We have observed above that the BGA �nds a solution in 27 out of 30

trials when p = 25, while it locates a solution in all of 30 trials when p = 49.

For 90 patterns, although we have tried only 5 trials, we succeeded to �nd the

optimum in all of the 5 trials.

Can the BGA Locate All the Optima?

It is di�cult to locate all the optima in multi-modal �tness landscape, while it

is comparatively easy to locate one of the optima. We are running the BGA

starting with zero weights for a given set of 49 patterns which remains �xed over

the runs. We observed the spatial distribution of the solution by measuring the

Euclidean distance of each solution from the origin. So far, we have tried 68

runs and observed that 67 runs locate the optimum solution. Only two out of

the 67 runs have located one exactly the same solution, and others have located

di�erent solutions. The Euclidean distances of the optimum from the origin were

ranging from 4.556 to 16.297 depending on the random number seed at the start.

This result suggests that there exit many di�erent solutions within this domain of

hyper-sphere. Hence, we might conclude that the BGA locates these multi-modal

solutions
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3.2.8 Evolution with Diploid Chromosomes

We have experimented three di�erent versions of the GA that employs diploid

chromosomes. The �rst one is the evolution in which an over-loaded Hebbian

weight con�guration is diluted using information in the diploid chromosome (Imada

et al., 1997i, see also the next chapter). The second one is the evolution of real-

valued random synaptic weights which are encoded directly into the diploid chro-

mosomes (Imada et al., 1998e). The third one is the evolution of random synaptic

weights which are clipped into two values, 1 and �128 with other schemes being

same as the second experiment (Imada et al., 1998c). Here, we focus on the third

experiment and we see that the diploidy works more e�ciently in the third case

than the �rst two cases.

We started the GA with a population of networks with random clipped weights

(�1), and the e�ect of varying p, the number of given patterns, on evolution

is studied. Thus far, we have found a weight con�guration evolved to store a

maximum of �ve patterns. We show the best �tness versus generation of the

evolution for p = 5 in Figure 12.

This evolution starts with totally asymmetric weights (� 0% symmetry), and

observed that they evolved to be considerably symmetric (� 60%). The degree

of symmetry achieved was much higher than the one when we employed haploid

chromosomes (� 30%). Note that if we employ the Hebbian algorithm alone

(without evolution) to prescribe weights of a network with the same size (49

neurons), the network will store around eight patterns, or six patterns if the

weights are clipped to �1. In both cases, the weight matrix is totally symmetric.

Although the phenomenon of achieving the high degree of symmetry of the

weights was also observed in the experiment of evolving real-valued randomweights,

the maximum storage obtained was only two patterns (Imada et al., 1998e). The

GA applied to the over-loaded Hebbian weights, on the other hand, showed bet-

ter performance (stored a maximum of 13 patterns) by reducing the degree of

symmetry (Imada et al., 1997i). In that case, however, we did not observe any

signi�cant di�erence between diploid and haploid chromosomes.

28Sometimes weight values are discretized into several integers for the purpose of hardware

implementations. Here, we evolve a random con�guration of weights whose values are clipped

into 1 or {1: the extreme cases of the discretization.
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Figure 12. The best �tness vs generation: a GA using diploid chromosomes

started with random clipped weights.

The Hop�eld associative memory has an upper bound in capacity to store

patterns, i.e., a network stores a maximum of only 2N patterns, as Gardner

(1988) discussed. However, it is not so di�cult to extend the model to the one

with a higher (�-th) order synapses, where storage capacity scales N� (Baldi and

Venkatesh, 1987). We think we can employ multi-ploidy chromosomes also to

express the network with this higher order synapses.

3.3 Summary

In this chapter, we have described how a population of real-valued weight con�gu-

rations of a network evolves to give the network a function of associative memory

starting with random, all-zero, or over-loaded Hebbian weights. We have tested

a wide variety of evolutionary algorithms, and have found that six variants: GA

with perturbation by mutation, GA with perturbation by chromosomes, EP, ES,

BGA, and GA using diploid chromosomes. All of these algorithms succeeded more

or less in emerging a weight con�guration which stores a number of a given set

of random bipolar patterns as �xed point attractors. For each of these variants,

we repeated the experiments with the number of patterns to be stored increasing

from one to the number at which the variant cannot search for the solutions any
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more. As results, we found that the maximum storage obtained varies from one

method to another. It is interesting to note that the BGA, among others, found

solutions that store patterns whose number is almost the theoretical upper bound

of the storage capacity in the sense of Gardner (1988), i.e., twice the number of

neurons.
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4. OTHER REPRESENTATION: PRUNING

SYNAPSES

4.1 Pruning Some of the Hebbian or Random Connec-

tions

Since Hop�eld proposed the neural network model of associative memory, many

researchers, mostly physicists, have investigated how a slight modi�cation of the

Hebbian synaptic weights a�ects dynamical behaviors of the model. Here, we

put our interest on the observations by Derrida, Gardner, and Zippelius (1987)

among others.

They pruned a certain fraction of the connections without seriously a�ecting

the storage of patterns. In other words, Derrida et al. showed plasticity of the

synaptic connections. We made similar experiments with the di�erence being the

following two points. First, we also prescribe the weights by the Hebb's rule,

but the number of patterns to be stored exceeds the storage capacity. Hence, the

capability of the network to store patterns collapses more or less at the beginning.

Second, we selected the connections to be pruned adaptively, while Derrida et al.

selected them randomly. We pruned connections using a GA, expecting that the

GA eventually �nds an optimal combination of connections to be pruned (Imada

et al., 1995a; 1995b; 1997b).

4.2 Experiments

In the GA that prunes synaptic weights of the Hop�eld network, a random

weight con�guration Rij or over-loaded Hebbian weight con�guration Jij is pre-

determined as an ancestor, which remains �xed during evolution, as in the subsec-

tion 3.1.2. These weights are modi�ed by a set of � chromosomes, each of which

is comprised of N2 genes, cij, whose values are chosen from the allele f1; 0;�1g.
This chromosome, we might call it ternary chromosomes, has some similarities

with, but also important di�erences from those used in the so-called canonical

GA in which binary chromosomes is widely used.29 What is essentially di�erent

29Higher cardinality alleles are sometimes said to be preferable, like nature uses quaternary

DNA.
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here is occurrence probabilities of each allele value. The probabilities with which

1, 0, and {1 are chosen as genes in the initial chromosome are set to pc=1, pc=0,

and pc=�1, respectively, such that

pc=1 � pc=0 = pc=�1:

The ancestral weight con�guration is modi�ed as:

wij = cij � Rij ; cij 2 f1; 0;�1g;

or

wij = cij � Jij; cij 2 f1; 0;�1g:

This process yields a population of � weight matrices. Since we choose mostly 1

as the value of cij , these matrices are only slightly di�erent from the ancestor.

The scheme of selection and recombination we used here are essentially similar

to those described in Section 3.1. Namely, we use truncation selection in which

two parent chromosomes are chosen randomly from the best T% of the population,

and uniform crossover which is a discrete version of discrete crossover used in that

section. Mutation is made by rotating the allele as follows.

f1g ! f�1g; f�1g ! f0g; f0g ! f1g;

which is di�erent from either of standard binary GA or real-encoded GA men-

tioned in the previous chapter.

Here, the GA parameters are chosen as follows on the basis of trial and error.

The population number is 256. This is simply because of our computer resources.

The mutation probability pm is set to 0.01. In selecting two parents, T is chosen

to be 40%. Searching procedure is iterated until 12,000 generations unless perfect

solution is not found. The initial probability of generating each allele pc=1, pc=0,

and pc=�1 are set to 68/70, 1/70, and 1/70, respectively.

As a result, and to our surprise, we found that the GA, by adaptively pruning

some of the synapses, not only recovers the collapsed memory of the over-loaded

Hebbian weights, but also evolves the random Gaussian synaptic weights eventu-

ally to store a number of patterns. We show some of the results in the following

section.
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4.3 Results and Discussion

4.3.1 Start with Over-loaded Hebbian Synapses

In this section, we start the GA with a Hebbian weight con�guration which

learned a set of patterns exceeding the capacity of the Hebbian learning rule

(over-loaded).

The networks of this type were analytically investigated by Amit et al. (1985a;

1985b). As the number of patterns increases, the correlation of these patterns

cannot be neglected. When the number exceeds the capacity, some �xed point

attractors are gradually shifted to their neighborhood, and some other attractors

around memory states are merged into spin-glass attractors (attractors located

far from the memorized state and whose temporally averaged overlap is much

lower than 1 (see (Amit, 1989)). To see these phenomena, let us look at an

example where 16 patterns are stored by the Hebb's rule in a network with 49

neurons. The storage capacity in this case is around 8 patterns. Each input of the

memorized patterns to the network results in the convergence to a stable attractor

(rather than chaotic trajectory to be mentioned in the next section) due to the

symmetry of the weight matrix. However, it is unlikely that the stable attractor is

a memorized state. We observed in this example that the Hamming distances of

these 16 �nal stable states from their starting states (input) were, 0, 0, 0, 0, 1, 2,

3, 3, 5, 6, 9, 11, 16, 17, 21, and 23. Speci�cally, four are �xed point attractors and

the rest are distributed from near �xed point attractors to spin-glass attractors.

We use this weight matrix as the ancestral matrix for our Genetic Algorithm.

The best �tness value in each generation is shown in Figure 13. Surprisingly, we

obtained a matrix which stores all these 16 patterns perfectly as �xed points (at

generation 10,795). The representative samples for p = 15 and p = 17 are also

shown in the �gure. While we obtained the perfect solution for both p = 15 and

p = 16, we were not able to observe the success for p = 17, among 30 runs with

a di�erent random number seed. The example shown in Figure 13 for p = 17

stored 14 out of 17 learned patterns as �xed points when the GA terminated.
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Figure 13. The best �tness of each generation: starting with over-loaded Hebbian

weights (p = 15; 16, and 17).

4.3.2 Start with Random Synapses

If we further increase p, the number of patterns, the Hebbian synaptic weights Jij

approach the Gaussian random variables with the exception of symmetry Jij = Jji

(Amit et al., 1985b). This is equivalent to the Sherrington-Kirkpatrick model of

Ising spin-glasses (SK-model) (Kirkpatrick and Sherrington, 1978), and includes

a full of spin-glass attractors.

Such a network with symmetric random synaptic weights was investigated

by iterated modi�cation of weight values; for example, Toulouse et al. (1986),

Nadal et al. (1986) and Sompolinsky (1986) modi�ed random Gaussian synaptic

weights, denoted here as Rij, by adding them a small perturbations �ij which

were determined using the Hebbian rule30, that is, each weights modi�ed as:

wij = Rij + �ij :

These methods strengthened the low peaks existed near patterns to be stored,

and eliminated many other attractors.

30Note that their experiments are more or less close to our simulations of Lamarckian evolution

of random synaptic weights which will be described later.
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(p = 6; 7, and 8).

Here, on the other hand, we do not use any learning algorithm but only prune

some of the connections, namely,

wij = rij � cij:

Moreover, the synaptic weights to start with are totally asymmetric. Any input

pattern to such a network results in a chaotic trajectory such as those shown in

Figure 2.

We run the GA with the ancestor being a random weight matrix, expecting

eventually to store a set of pre-determined patterns as �xed points. Again to our

surprise, the successful network emerged which stored a maximum of 7 patterns

perfectly as �xed points. The best �tness versus generation for p = 6, 7, and 8

are shown in Figure 14. We can see that the GA succeeded in �nding a solution

for p = 7 (at generation 4,719). We can also see that a solution was found more

easily for p = 6, while no solution was found for p = 8.

4.4 Summary

In this chapter, we have presented quite a di�erent scheme from those described

in the previous chapter. A pre-�xed synaptic weights are adaptively pruned
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by a population of chromosomes that are to be evolved by a GA. Results were

amazing. Even a random weight con�guration eventually stores a number of given

patterns as �xed point attractors only by being pruned some of the synapses. The

maximum storage obtained in this method was a half of the storage capacity of

the Hebbian weight con�guration. On the other hand, by starting with an over-

loaded Hebbian matrix that had unsuccessfully learned a set of patterns twice as

much as the capacity, we obtained weights that store the patterns perfectly as

�xed points. Namely, we double the Hebbian storage capacity.
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5. LEARNING

In our experiments described so far, individuals have not used any learning algo-

rithm during their lifetime. The only case we used a learning algorithm is when

evolution starts with an over-loaded Hebbian weight con�guration, where the pri-

mordial individuals a priori learn patterns with the Hebbian learning algorithms.

What then if individuals learn patterns during their lifetime? In this chapter, we

address this issue. To be more speci�c, two analogies from biological concept as

for relationship between learning and evolution: Baldwin e�ect and Lamarckian

inheritance.

In Baldwin evolution, learning is used to change the �tness surface, but the

solution that is found is not encoded back into the genes, while in Lamarckian

learning, genes are updated to match the solution found by the learning proce-

dures.

Note that the learning, in the context of evolutionary algorithms, can be said

to be good at �nding local optima in the region in which the algorithm converges.

5.1 Baldwin E�ect

The e�ect of life-time-learning on evolutions was �rst studied as a biological

process by Baldwin (1886). Now this is known as the Baldwin e�ect. As an

analog of this e�ect, many researches have addressed the relationship between

learning on a population level through evolution and on an individual level during

its lifetime. Especially, researches of combining GAs and neural networks have

had great interests on this issue. Gruau et al. (1993), for instance, showed an

enhancement of performances of their neural networks by introducing the Baldwin

e�ect on the evolution (see also (Hinton et al., 1987) and (Parisi et al., 1995)).

We also incorporated the Baldwin e�ect to our evolution of neural network

model of associative memory (Imada et al., 1997c), using the GA implementa-

tion described in Section 4.1. The implementation enables us to test this Baldwin

e�ect on the evolution. Starting with a random weight con�guration, each indi-

vidual in the population undergoes evolution in the same way as before, but they

learn a set of pre-determined random patterns in their lifetime before its �tness

evaluation.
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At the beginning of a run, a weight con�guration W0 is produced randomly

so that each weight wij is chosen from f�1; 1g. Hence, the weight con�guration
does not store any patterns. This weight con�guration remains unchanged during

evolution, but instead, weight con�gurations produced by a population of chro-

mosomes are evolved. Chromosomes are generated randomly at the beginning of

a run. Every chromosome has a �xed length of N 2 genes which are chosen from

f�1; 0; 1g with the probability pc=�1, pc=0, and pc=1, respectively, where pc=�1

and pc=0 are much smaller than pc=1. Each component of the original weight

matrix wij is multiplied by one of these alleles, i.e.,

w

(n)
ij = wij � c(n)ij ;

where c
(n)
ij is the ij-th allele of the n-th chromosome and w

(n)
ij is the ij-th compo-

nent31 of the n-th copy of the original matrix. Gene 0 implies to prune the cor-

responding connection, and �1 to reverse the excitatory/inhibitory connection.

Thus chromosomes produce a population of the copies slightly di�erent from W0.

Each individual phenotype learns a set of pre-determined random patterns �� by

the Hebbian learning rule as follows.

wij = wij + �

pX
�=1

�

�

i
�

�

j 6=i:

These matrices are used only for �tness evaluation, and the learning results do

not a�ect chromosomes. This is the reason we can regard it as the Baldwin e�ect

on the evolution. Two parent chromosomes are chosen uniformly at random from

the best T% of the population, and are recombined to produce one o�spring by

uniform crossover. The o�spring are occasionally mutated with probability pm,

where the mutation rotates the value of randomly chosen gene in a chromosome

cyclically, as

(1)! (�1); (�1)! (0); (0)! (1): (8)

After the o�spring are replaced with the worst (100� T )% of the population the

above procedures are iterated.

31To be more precise, by the ij-th component we mean the (j + (i� 1) �N)-th component.
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5.2 Lamarckian Inheritance

In the experiment of the above Baldwin e�ect, the results of individuals' learn-

ing do not change their chromosomes, but only a�ect the selection after �tness

evaluation. However it is reported that incorporation of learning results into chro-

mosomes may also enhance the performance of GAs (see (Gruau et al., 1993) for

example). This is known to be the Lamarckian inheritance. We also investigated

the e�ect of the Lamarckian inheritance on the evolution of associative memory,

though a di�erent implementation had been required where the chromosomes

should be comprised of components of the weight matrix (Imada et al., 1996c).

Starting with a random weight con�guration, each individual learns a set

of pre-determined random patterns in its lifetime from generation to generation

in the similar way to the Baldwin evolution, but the learning result a�ects its

chromosome here. At �rst, a population of weight matrices, W �, are produced

so that each component of the matrices w�

ij
are chosen randomly either from �1

or 1. Hence every matrix in the �rst population does not store any patterns at

this moment. In each generation thereafter, each weight matrix in the population

learns a set of pre-determined random patterns �� by the Hebbian learning rule

as follows.

wij = wij + �

pX
�=1

�

�

i
�

�

j 6=i:

These components of the Hebbian learned weight matrices are incorporated di-

rectly to their chromosomes. That is, each gene of the chromosome is encoded

again as:

c
�(i+N � j) = w

�

ij
; i; j = 0; 1; 2; � � � ; (N � 1):

This allows us to call this evolution as Lamarckian. Then two parent chromo-

somes are chosen uniformly at random from the best T% of the population, and

are recombined by uniform crossover to produce an o�spring chromosome. Fur-

thermore, mutation is operated in the same way as Equation (8) in the previous

subsection. We must note that zero components of weight matrices are introduced

only by this mutation operation.
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5.3 Results and Discussion

5.3.1 Baldwin E�ect

We use the Hebbian learning rule as a life-time-learning in the simulation of the

Baldwin e�ect. We show some of the results in Figure 15. In this experiment,

the value of � when individuals learn the given patterns in their lifetime was set

to 0.4. As a result, we were able to store a maximum of 19 patterns. In this

evolution, the perfect solution was emerged at generation 5,408. In the �gure, we

also show the evolution for the number of patterns to be stored were 17 and 20.

Although the increase in capacity is not so drastic compared to the no-Baldwin

evolution starting with the Hebbian matrix, the convergence speed is tremen-

dously improved. For example, the perfect solution was obtained at generation

996 for 17 patterns, while the evolution without the Baldwin e�ect for 16 patterns

required 10,795 generations to converge (see Chapter 4).
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Figure 15. Baldwin evolution.

In Figure 16, we show the best-�tness versus generation of the three experi-

ments for comparison purpose. One is the Baldwin evolution (the same one as

Figure 15) the other two are no-Baldwin evolutions with two di�erent initial-

izations. The two no-Baldwin GAs used in this experiment were similar to the

Baldwin version except for the Hebbian learning process before �tness evaluation.
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The goal of the GAs is to store a set of 19 patterns as �xed points. We can see that

the evolution under the Baldwin e�ect outperforms the other two. As mentioned

above, a matrix which stores all these 19 patterns as �xed points emerged under

the Baldwin e�ect, while the other two evolutions were never converged. The

no-Baldwin GA, when started with over-loaded Hebbian matrix, only evolved to

store 10 out of 19 learned patterns, and starting with a random matrix resulted

in only one pattern of storage as �xed point.

We conjecture that the evolution pressures in these three GAs are di�erent

from each other. In the Baldwin version, the pressure works to enhance learnabil-

ity rather than to directly increase a capacity. That is, individuals which have

higher ability to learn tend to survive.
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5.3.2 Lamarckian Inheritance

Here, we used the Hebbian learning rule as a life-time-learning with the learning

ratio � being 0.02, but unlike the Baldwin evolution, we encoded back the results

of the learning into genes in reproducing an o�spring.

As shown in Figure 17, the Lamarckian inheritance emerges a network which

stores a maximum of 17 patterns while a similar experiment without the life-

time-learning emerges only a network that stores a maximum of 9 patterns. The
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perfect solution under Lamarckian inheritance was obtained at generation 2,147,

while the no-learning version for 9 patterns converged at generation 6,931. Hence,

we can conclude that the Lamarckian inheritance improves the convergence speed

as well as the storage capacity.
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Figure 17. Fitness vs generation under Lamarckian inheritance.

5.4 Summary

Besides seven di�erent evolutionary algorithms described in the previous two

chapters, we have examined two more implementations in this chapter. Two

hypotheses from evolutionary biology are incorporated into our arti�cial evolu-

tions: the Baldwin e�ect and the Lamarckian inheritance. In other words, we

have studied e�ects of life-time-learning on evolution. In the Baldwin evolution,

the life-time-learning does not a�ect on genes but only on selection, while in the

Lamarckian evolution it a�ects on inheritance of genes. Starting with random

weights, each individuals in the population learns, generation by generation, a

set of given patterns by the Hebbian learning algorithms, and we have found that

the both hypotheses improved the performance of our evolutionary algorithms.
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6. SYMMETRYANDDILUTION OF SYNAP-

TIC WEIGHT

Thus far, we have described various implementations of evolutionary algorithms

that found a number of the optimal weight con�gurations for an associative mem-

ory network. Clearly, these solutions of weight con�gurations are di�erent from

one implementation to another. This chapter gives a consideration on what are

the di�erences based on two parameters: degree of symmetry and dilution ratio

of weight matrices.

6.1 Pruned-weight Case

In the late 1980's, researchers of the Hop�eld model of associative memory exten-

sively argued how pruning some of the synaptic weights a�ects performances in

terms of the dilution ratio and degree of symmetry, and reported many interesting

phenomena. So, we begin this chapter by arguing the dilution ratio and degree

of symmetry of the weight matrices when they are evolved by the GA described

in Section 4.1 that prunes some of the weight connections.

6.1.1 E�ect of Asymmetry of Weight Matrices

Hertz et al. (1987) suggested in their analysis of the Hop�eld model of associative

memory that asymmetry of synaptic weights destabilizes spin-glass attractors.

Parisi (1986) also suggested that asymmetry converts the spin-glass attractors

into chaotic trajectories. Although these analyses were made on the condition

that the number of memorized patterns was within the capacity, we conjecture

that the success of evolving over-loaded Hebbian synaptic weights mentioned in

Subsection 4.3.1 is also due to this reduction of spin-glass attractors.

Then, what about the success of evolving random synaptic weights mentioned

in Section 4.3.2? They are totally asymmetric at the beginning. We suspect that

some symmetric components introduced by the GA create attractors near the

locations of given patterns.

To bear out these conjectures, we investigated the time evolution of degree of

symmetry of weight matrices. Following after Krauth et al. (1988), we de�ne the
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degree of symmetry as

NX
i=1

NX
j=1

wijwji �
0
@ NX
i=1

NX
j=1

w
2
ij

1
A
�1

:

In Figure 18, we plot this degree of symmetry as a function of generation.

The Hebbian matrix, however over-loaded it may be, is totally symmetric.

As evolution proceeds, however, the degree of symmetry decreases and gradually

approaches a value around 0.7, and retrieval states emerge. Our guess is that

the asymmetry destabilized the many spin-glass attractors which had existed at

the beginning. On the other hand, when started with random synapses, totally

asymmetric weight matrix gradually obtains some degree of symmetry, and when

retrieval states emerge, the value is around 0.2. The result seems to support our

belief that a few symmetric components of the weight matrix play an important

role to create memory states. However, very little is known about how this

symmetry in
uences a network full of chaotic attractors.

In any case, the role of asymmetry of the synaptic weights is still somewhat

of a mystery.
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Figure 18. Evolution of degree of symmetry when weights are pruned by GA.
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6.1.2 The E�ect of Dilution of the Weight Matrix

To witness the e�ect of dilution of synaptic weights of our experiment, we investi-

gated the dilution rate as a generation proceeds. The results for both experiments

are shown in Figure 19. Here, we must note that when an even number of patterns

are learned by the Hebbian rule, some synaptic weights might be equal to zero,

whereas in the case of odd number patterns, the Hebbian rule does not allow any

zero in the weight matrix. For that reason, we show results of both p = 15 and

p = 16, in the case of departure from an over-loaded Hebbian matrix. We can see

in the �gure, the di�erence between 15 patterns and 16 patterns is only the initial

di�erence. However, the behaviors resulted from two speci�c starting matrices

are quite di�erent. When an algorithm starts with Hebbian synapses, the zero

density does not increase drastically. On the other hand, when the run starts

with random synapses, it increases rapidly at the beginning, and approaches a

value around 0.17. It is interesting here to note that the value was independent

on the initial percentage of zero in chromosomes (i.e., pc=0).
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Figure 19. Evolution of zero density when weights are pruned by GA.

Though Derrida et al. (1987) showed that the dynamical equation of state

transition for a randomly connected network is exactly solvable if connections are

extremely sparse, it is much more di�cult to analyze our experimental results

because of the crossover operations in the GA. In addition, not only do we prune
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some of the connections, but we also change a role of synapses from excitatory

to inhibitory, or vise versa, using {1 in our chromosomes. We surmise that this

reversal of excitatory/inhibitory synapses plays an important role in the evolution.

In fact, we observed that without {1, the evolution stagnated to local optima very

rapidly (Imada et al., 1997g). So far, though, we have not fully understood the

reason for this behavior.

6.2 The Other Cases

Next, we compare the above-mentioned results with those obtained by the other

implementations.

6.2.1 Evolution under Perturbation by Chromosome

Here, we look at the degree of symmetry when an over-loaded Hebbian weight

con�guration undergoes an evolution by adding random genes of a chromosome

(perturbation by chromosomes). We show an example in Figure 20. As we can

see, the behavior is almost similar to the result of the prune-synapses-GA (Figure

18).
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Figure 20. Degree of symmetry when over-loaded Hebbian weights are evolved

under perturbation by chromosomes.
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6.2.2 Evolution under Perturbation by Mutation

We now turn to the degree of symmetry during an evolution of directly mapped

weights. Here the genes mapped from real random weights are perturbed by

mutation. In contrast with the evolution of over-loaded Hebbian weights, the

random weights are totally asymmetric at the beginning. An example of the

results is shown in Figure 21. We can see that the degree increases from zero

and asymptotically approaches the value around 0.25 as the spin-glass attractors

are destabilized and retrieval states are emerged. The behavior is almost similar

again to the evolution of real random weights by the GA that prunes synaptic

weights described in Section 6.1.1.
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Figure 21. Degree of symmetry when random weights are evolved under pertur-

bation by mutation.

6.2.3 Evolutionary Programming

Here, we employ an EP, and observe how the degree of symmetry evolves. Note

that EP perturbs genes also by mutation as in the previous subsection, but the

perturbations are adaptive in EP. We started with both over-loaded Hebbian

weights and all-zero weights. Typical examples for both of the starting popu-

lations are shown in Figure 22. Alternating two di�erent levels during certain
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generations, the degree of symmetry approaches some value.

When started with an over-loaded Hebbian weight con�guration, the degree

decreases from the value one and approaches the value around 0.6 as a retrieval

state emerges. This value is somewhat smaller than the one obtained in the

above two implementations with the same initial population (over-loaded Hebbian

matrices).

When started with all-zero weight con�guration, the degree also 
uctuates

generation by generation around 0.1 searching for an appropriate level, and �nally

found the optimal one close to zero.32

This suggests that some small degree of symmetry is needed to obtain the

function of associative memory. However, the role of asymmetry of the synaptic

weights is still an open question.
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Figure 22. Degree of symmetry when real weights are evolved by EP.

6.2.4 Evolution Strategy

Then what happens when we employ an ES? ES employs crossover operation

besides the perturbation by adaptive mutation. Here, we study the degree of

32All-zero component matrix is symmetric. However, immediately after a perturbation is

given to each component, the matrix becomes totally asymmetric. Although we cannot see it

in the Figure, the degree of symmetry is 1 at the generation zero and 0 at the generation one.
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symmetry starting with both over-loaded Hebbian weights and all-zero weights.

We show the results in Figure 23. We can see that when started with random

weights, the degree of symmetry increases rapidly, and approaches to the value

around 0.4.

When started with over-loaded Hebbian weight matrices, the degree of symme-

try decreases and asymptotically approaches to the value around 0.8 and retrieval

states emerge. Again we can ascertain our conjecture that the asymmetry desta-

bilized the many spin-glass attractors and enable network states to approach the

retrieval states.
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Figure 23. Degree of symmetry when an over-loaded Hebbian and real random

weights are evolved by ES.

6.2.5 Breeder Genetic Algorithm

Next, we observe the degree of symmetry during an evolution by BGA. As stated

in subsection 3.2.7, the BGA is extremely e�cient in searching for solutions

that give a network a large storage capacity. Starting with over-loaded Hebbian

weights, the BGA found a solution which stores 25 patterns (with 49 neurons),

whereas the so-far-maximum storage has been 19 patterns which is obtained by

the Baldwin evolution (see Section 5.3). The di�erence is more tremendous when

we start with all-zero weights. In this case, the BGA found solutions which stores
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more than 90 patterns, while with other method we only obtained a maximum

of 11 patterns which is by ES. Hence we expected the di�erent behaviors in the

evolution of the degree of symmetry.

In Figure 24, we show a result of both starting with the over-loaded Heb-

bian and all-zero weights. At the beginning of a run, both matrices are totally

symmetric. The BGA started with the Hebbian matrix seems to hill-climb by

introducing small amount of asymmetry to the Hebbian matrix as usual. The

Hebbian matrix decreases its degree of symmetry as evolution proceeds, and the

degree approaches the value around 0.6. This is not so signi�cantly di�erent from

the other implementations mentioned so far. However, in the evolution started

with zero matrix, the degree of symmetry behaves amazingly in di�erent way. It

decreases abruptly to zero and remains the value thereafter.
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Figure 24. Degree of symmetry when weights are evolved by BGA.

6.2.6 Diploid Chromosomes

In this section, we see how di�erent is the a�ect of using diploid chromosomes

to the evolution from the one using haploid chromosomes. As Hertz (1987) sug-

gested, asymmetry of the synaptic weights is relevant to the number of spurious

attractors, and hence, the function of associative memory. And as we described
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in Section 3.1.6, weight matrices undergo evolutionary pressure to be more sym-

metric under diploidy evolution than usual haploidy evolution. Hence we can

expect that when started with random weights, which are totally asymmetric,

the degree of symmetry will reach larger value than the value in the case of the

same initial population but under haploidy evolution. The results are shown in

Figure 25. If we compare the result with Figure 18 and Figure 21, we can observe

a signi�cant di�erence. The degree of symmetry when the �tness reaches 1 is

around 0.6 with diploid chromosome, whilst 0.2 { 0.25 with haploid chromosome.

We conclude that the di�erence is due to the pressure to symmetry (homozygous

genes in chromosome) under diploidy evolution.
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Figure 25. Time development of degree of symmetry under diploidy evolution.

6.2.7 Baldwin e�ect

In the last two subsections, we study how does the Baldwin e�ect and the Lamar-

ckian inheritance a�ects on symmetry and dilution ratio of weight matrices during

an evolution.

First, we evolve a random weight matrix using the Hebbian rule as a life-time-

learning of each individual, that is, the Baldwin evolution. In the Baldwin evolu-

tion, as we can see in Figure 26 (left), the degree of symmetry remains unchanged
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from the beginning (around 0.8). This is very di�erent than behaviors of symme-

try in other evolutions. It seems that the learning that a�ects individuals only in

their lifetime plays some role for the phenomenon.

Figure 26 (right) shows the temporal development of zero density in chromo-

some of the best individual under Baldwin e�ect (solid line), together with the

one from no-Baldwin version starting with an over-loaded Hebbian and all-zero

weights (dashed lines). Here also we can see signi�cant di�erences from other

evolutions.

So, from both of these two �gures, we surmise that this di�erence is due to

the evolutionary pressure that works to enhance learnability rather than other

capabilities such as storage capacity. In other words, individuals that have higher

ability to learn tend to survive under this evolution.
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Figure 26. Degree of symmetry and rate of zero under the Baldwin evolution.

6.2.8 Lamarckian Inheritance

In the previous chapter, we saw how symmetry and rate of zero in weight matrices

during an evolution under the Baldwin e�ect. In the Baldwin evolution, results

of life-time-learning is never coded back into genes of individuals, and we had

observed that the symmetry of weights did not change signi�cantly during the

evolution, which is very di�erent than the results of no-Baldwin version.
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Figure 27. Degree of symmetry and zero density in an evolution with Lamarckian

inheritance.

Then, how are the degree of symmetry and rate of zero under Lamarckian

evolution? Since the Lamarckian evolution coded back the results of life-time-

learning into genes of individuals in reproducing o�spring, we expect some di�er-

ent results from those of the Baldwinian evolution. We now study the in
uences

of the Lamarckian inheritance on symmetry and dilution ratio during an evolu-

tion. In order for the Lamarckian inheritance to be incorporated, we evolve here

random weight matrices whose entries are clipped to either 1 or {1, and use the

Hebbian rule as a life-time-learning of each individual (see Section 5.2 more in

detail).

The results (of the same run as in Figure 17) are shown in Figure 27, together

with the �tness curve for convenience. As can be seen in the �gure, the zero

density in the weight matrices remains almost zero, and the degree of symmetry

keeps the value around 0.6. Both ratios do not change throughout the evolution,

despite the �tness curve shows the typical improvement. These behaviors of both

ratios are totally di�erent from no-Lamarckian evolutions. However the di�erence

between the Baldwin and Lamarckian evolution has not been so obvious.
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6.3 Diversity of the Solutions

In this section, we have described behaviors of two parameters: degree of sym-

metry and rate of zero of weight matrix under various types of evolutions. What

we want to emphasize here is a diversity of the results. To see it, in Figure 28 we

summarize the diversity by picking up some of the typical examples again from

Figure 18 to 27. Though the examples are not exhaustive, we can induce that

solutions obtained are di�erent from implementation to implementation.
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Figure 28. Diversity of the result of the degree of symmetry in various implemen-

tations.

6.4 Summary

The solutions obtained by a total of nine di�erent evolutionary algorithms men-

tioned in the above three chapters are studied in terms of two parameters of the

weight matrix: the degree of symmetry and the rate of zero. As results, we have

found that we now have a wide variety of solutions in weight space. Our concern

is the number and distribution of these solutions, and they will be argued in

Chapters 8 and 9 bellow.
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7. BASIN OF ATTRACTION

Thus far, we have found many weight con�gurations that give a network a func-

tion of associative memory. In these searches, the criteria were howmany patterns

can a network store as �xed points, i.e., storage capacity. However, as the num-

ber of patterns to be stored increases, the ability of the network to tolerate noisy

or partial input decreases. In other words, in order for the network to store

many patterns as �xed point attractors, the basin of attraction of the attractors

should become small, i.e., a trade-o� between storage capacity and size of basin

of attraction. Personnaz et al. (1984) indicated that the basin of attraction of a

stored memory falls sharply as the number of patterns approaches to a half of

the number of neurons.

In this chapter we explore the trade-o� between storage capacity and basin size

with using a Genetic Algorithm. The Genetic Algorithm was based on pruning

some of the synaptic weights adaptively (see Chapter 4). We evolve here the

network which stores p patterns by the Hebbian learning rule where the size of

the basin of attraction of the Hebbian attractors becomes smaller as p increases

(Imada et al., 1996a; 1996d). We conjecture that the basin size of a peak can be

optimized so that the radius of an attraction domain will be extended to a half

of the distance from its nearest neighbor peak (in N -dimensional string space).

The synaptic weights wij de�ne an energy function on an N -dimensional bipolar

string space, i.e.,

E(S) = �1

2

X
i;j(i6=j)

wijSiSj ;

where S moves over all possible combinations of N -dimensional vector f�1; 1gN

and Si is the i-th component of the state S. If the number of stored patterns is

small enough, this function takes a local minimum where S corresponds to one

of stored patterns. The stored patterns are said to be attractors and the size

of this local minimum are referred to as basin of attraction. As the number of

stored patterns p increases, spurious minima become more frequent and �nally

they become randomized. When input is one of the stored patterns that was a

priori given small noise within the size of basin of attraction, this input pattern

relaxes to the original stored pattern after several steps of the update. Our goal
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here is to extend this basin of attraction.

7.1 To Enlarge the Basin Size: GA Implementation

Toward the goal of extending the basin of attraction, we redesign the GA to try

to control the size of basin of attraction. The GA has some similarities with, but

also important di�erences from the GA described in Chapter 4.

(1) A weight matrixW0 is generated in certain way. Here, we use a weight matrix

obtained from a version of our genetic algorithms (no noisy-input) in which ran-

dom weights eventually evolve to store all the given patterns perfectly as �xed

points. As we simulate with 49 neurons of Hop�eld network, the size of W0

is 49�49. This original weight matrix remains unchanged during the evolution.

(2) Then 256 chromosomes are generated randomly. The chromosome has a �xed

length of 2401(=49�49) genes, and the value of the genes are chosen randomly

from f�1; 0; 1g, where the probability of choosing either �1 or 0 is set to 0.02. As
will be mentioned in procedure (3) below, each component of the original weight

matrix wij is multiplied by one of these alleles. Allelic value of 0 corresponds

to pruning the connection to which it is multiplied, and �1 to reverse excita-

tory/inhibitory connection. We denote the i-th gene of the n-th chromosome as

c
(n)(i). (3) Each chromosome modi�es the original weight matrix W0 as follows:

w

(n)
ij = wij � c(n)(49i+ j) (i; j = 0; 1; 2; � � � ; 48; n = 1; 2; 3; � � � 256);

where w
(n)
ij denotes ij component of the n-th weight matrix in the population. In

each generation, this produces 256 weight matrices slightly di�erent fromW0. We

note that the larger the population number, the higher the performances. Due

to computational resource's limits, however, we set it to 256. (4) To evaluate

�tness value f , randomly chosen � bits of each stored pattern are 
ipped. Then

they are given to the network and updated. Each inner product of one of the

stored patterns and instantaneous neurons' states after giving a noisy version of

the pattern is averaged over all the updating time steps up to certain time t0 and

over all the stored patterns. This process is repeated for n di�erent combinations
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of the �-bit noisy inputs and averaged over them. That is, the �tness function is

f =
1

n � p � (t0 � 1) � 49
nX

k=1

pX
�=1

t0X
t=2

49X
j=1

�

�

j
� s�

j�k
(t);

where s
�

j�k
(t) is the state of the j-th neuron at time t when the k-th combination

of �-bit noisy �-th pattern is given to the network. Updating time t0 is set to

98, i.e., twice the number of neurons, and we observed that was enough long.

We must note that �tness 1 implies that all the noisy patterns are retrieved

correctly, while �tness less than 1 includes many possible cases. If we evaluated

the �tness at one point of updating time instead, some solutions might be limit

cycle. We adopted the above time-consuming �tness evaluation in order to avoid

the oscillatory solutions. (5) Two parent chromosomes are chosen uniformly at

random from upper 40% of the population which is ranked by �tness. Then

those are recombined to make one child chromosome, and an individual in the

lower 60% of the population is replaced with it. This process is repeated until all

the individuals in the lower subpopulation are replaced. (6) Recombinations are

made with uniform-crossover. We tested several types of crossover including one-

and two-point-crossover, and observed that the uniform-crossover outperformed

the others. Furthermore, the o�spring are mutated in time with probability 0.01

(mutation rate), where mutation rotates the value of randomly chosen allele in

chromosome c(n)(i) cyclically, i.e.,

(1)! (�1); (�1)! (0); (0)! (1):

(7) Unless highest �tness value reaches the value of 1 nor generation exceeds

12,000, individuals in upper subpopulation (40%) survive to constitute the next

generation with their o�spring (60%), and the processes from (2) to (7) are re-

peated.

7.2 Results and Discussion

In this section, we compare the results of the �tness evaluation using noisy inputs

with the one obtained from our no-noisy version of GA. All these simulations were
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carried out on networks consisting of 49 neurons as usual.

In Figure 29, we show the best-�tness versus generation resulted from �tness

evaluation with noisy/no-noisy input. The dotted line in the �gure is the rep-

resentative sample from no-noisy version of the GA. A network with random

weights is evolved and can store eventually a maximum of 8 patterns as �xed

points at generation 6,449. Then this matrix is used as W0 in noisy counterpart

of our Genetic Algorithm. The results are shown with solid line in the �gure.

The perfect solution emerged at the 6,369-th generation. This matrix also stores

the above 8 patterns as �xed points. In this latter experiment, we evaluate �t-

ness by averaging over 20 repetitions giving 5 random noises each time. Note

that in this case, the best-individual will not be necessarily the best in the next

generation even under the elitist strategy. We also run this noisy version starting

with random weight matrix instead, however we have not obtained 100% correct

individuals to date (not shown in the �gure).
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Figure 29. Fitness vs generation resulted from GA with noisy/no-noisy input.

This �tness evaluation with noisy input is designed to enlarge the size of basin of

attraction. In Figure 30, we show the degree of tolerance to noisy input of the two

networks appeared in Figure 29, together with the original Hebb-rule associative

77



network. In the �gure, we plot the similarity of updated neuron-states for the

noisy input to its complete pattern as a function of number of noisy bits given

to the input. Network starts out with an initial con�guration of neuron-states,

and this con�guration changes in discrete time steps according to asynchronous

update. When one of noisy input of stored patterns is given to the network, we are

to obtain a con�guration of the neuron-states after updating enough time steps (=

98 here). And this is compared with the initial con�guration of complete version

of its input. The comparison is made by using cosine of the angle between two

vectors which represent the two con�gurations above. These are averaged both

over all inputs of stored patterns and over several runs (= 800 here). To be more

speci�c, each of the stored pattern �
� is added � bits of noise at random, and

given to the network to test the tolerance to the noise. This is repeated 800 times.

Then the similarity �(�) is de�ned by

�(�) =
1

800 � p � 49
800X
k=1

pX
�=1

49X
j=1

�

�

j � s�j�k(98);

where s
�

j�k
(t) is the state of the j-th neuron at time t when the k-th set out of these

800 combinations of �-bit-noisy �-th pattern is given to the network. The slower

the decay of the curve, the broader the size of basin of attraction. As we can

see in the �gure, the decay of the curve for the network obtained from no-noisy

version is extremely steep. It implies that although the GA can evolve a random

matrix to store all the 8 patterns as �xed points, the size of basin of attraction is

much smaller than that of the original Hebb-rule associative memory. However,

GA with noisy input in evaluating �tness improves the size signi�cantly, though

it is still smaller than the original Hebb-rule associative memory.

7.3 Summary

Previous chapters have mainly concerned with storage capacity of the weight con-

�gurations obtained by evolutionary algorithms. The storage capacity is traded-

o� with the basin of attraction, the capability of the network to tolerate noises.

In this chapter, the basin of attraction of weight con�gurations obtained by a

GA has been addressed. We found that the basin size of networks obtained by

evolutionary algorithm is very small in general. At the �rst glance, it seems to be
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Figure 30. Similarity of updated states of a noisy input to its corresponding

memory.

easy to enlarge the basin size of these networks also by an evolutionary algorithm,

but all we observed was that the enlargement is just in between the basin size at

the beginning of a run and the basin size of the Hebbian weights.
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8. FITNESS LANDSCAPE

The concept of the �tness landscape was �rst introduced by Wright (1932) to

study biological evolutionary processes. Since then, this concept has been used

not only in evolutionary biology but also in chemistry, physics, computer science

and so on.

In chemistry, for example, a molecule can be represented as a string of N

letters with each letter being chosen from an alphabet of size k (Macken, Hagan

and Perelson, 1991). Twenty amino acids (k = 20) for proteins or four nucleotides

(k = 4) for nucleic acids can be considered as examples of the alphabet. The kN

possible combinations of the letters construct a con�guration space of the string.

Then, for example, the free energy of RNA folding into secondary structures

(Fontana and Schuster, 1987), or the ability of peptides to bind to a particular

substrate to catalyze a speci�c reaction (Maynard Smith, 1970) is assigned as a

�tness value to each con�guration. In physics, the Hamiltonian energy of Ising

spins de�nes a �tness landscape on the con�guration space of N spins. Each spin

takes the value either 1 or �1 (k = 2). Bray and Moore (1980) argued about the

number and distribution of meta-stable states (local optima) of the Hamiltonian

energies.

To explore these �tness landscapes, we need a rule by which a point in the

space moves to one of its neighbors. Then, consecutive movements of a point to

the neighbors form a walk on the landscape. Macken et al. (1991) used random

point mutation that changes a single letter in the string to specify neighbors of

the string. Then, by sampling points along an evolutionary walk in which point

moves to the �rstly found �tter neighbor, they studied the statistical properties of

the landscape of the chemical a�nity of antibody for antigen in immune response.

Weinberger (1990) used two di�erent walks: \gradient walk" in which the walker

steps to the best of its neighbors and \random adaptive walk" in which the next

step is chosen at random from the set of better neighbors, to investigate the

Kau�man's NK landscape which is a model formulated in more general form

(Kau�man and Levin, 1987).

The �tness landscapes described above are all constructed on the space of

discrete con�gurations of string. What we are concerned, however, is a �tness

landscape de�ned on the continuous weight space, following Gardner (1988) who
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discussed solutions in terms of the volume of the solutions in the space. However,

the number and distribution of these solutions are still open problem. We explore

the �tness landscape to obtain the information as to the number and distribution

of the solutions in weight space. To explore the �tness landscape de�ned on this

continuous weight space, we use a Gaussian random mutation, which is described

later in detail.

8.1 Hop�eld Model and Fitness Landscape

Although the analysis of the Hop�eld model is somewhat of a classical problem,

many issues such as the number and distribution of the global/local optima,

height of the local optima are still unknown. To study these issues is one of our

goal of this thesis.

The Hop�eld model described in this thesis, when synaptic weights are se-

lected randomly, can be considered as the Sherrington-Kirkpatrick (Kirkpatrick

and Sherrington, 1978) model of Ising spin-glasses (SK-model). Bray et al. (1980;

1981) studied the number of meta-stable states of the SK-model, using correla-

tions between the Hamiltonian energies of the meta-stable states. Derrida and

Gardner (1986) solved exactly the number of meta-stable states in one dimen-

sional spin-glass chain, answering the question of what stable state will it fall into

if a spin con�guration is evolved in time. Amitrano et al. (1987) analyzed the

Hamiltonian energy landscape in the study of chemical evolution of information-

carrying macromolecules represented by a set of Ising-spin.

Thus, �tness landscapes of the spin-glass model, or equivalently, the Hop-

�eld model of associative memory have been fairly well studied. However, it was

discrete �tness landscapes that were explored in those studies. Namely, the land-

scapes were de�ned on binary string space. On the other hand, Gardner (1988)

discussed weight con�gurations of the Hop�eld associative memory in terms of

the volume of solutions in synaptic weight space, where the number and distribu-

tion of solutions in weight space is still an open issue. This is one of the reasons of

our interest in the �tness landscape de�ned on weight space rather than de�ned

on pattern space.

To construct a �tness landscape and explore it, we need two rules, as Macken

et al. (1991) wrote. One is to determine the �tness value of each point in the space,
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and the other is to specify evolutionary paths on the landscape. As for the �tness

evaluation of points, we can use our �tness function described earlier. To specify

paths on the landscape, we use the Gaussian random mutation. Usually, to make

a point explore the landscape de�ned on binary string space, a bit-
ip-mutation is

employed. However, this mutation does not make sense on our continuous space.

In this thesis, a point moves by the Gaussian random mutation. That is, a point

(x1; x2; � � � ; xN )

is mutated by adding a random Gaussian variable to each coordinate xi, i.e.,

x
0
i
= xi + � �Ni(0; 1);

where Ni(0; 1) is normally distributed random variable of mean 0 and standard

deviation 1 sampled for each individual i. Note that the step length in Euclidean

distance between parent and child is

 
NX
i=1

(� �Ni(1; 0))
2

!1=2

:

8.2 Statistical Analyses

Our studies of �nding an appropriate con�guration of synaptic weights using

evolutionary algorithms show that the more the number of patterns to be stored,

the more di�cult the task becomes. This is probably due to the increasing local

optima as well as the decreasing global optima.

The questions now are how many local/global optima are, how they are dis-

tributed, how large their basins of attraction are, and so on. To obtain the

information to answer these questions, the ruggedness of the �tness landscape is

investigated statistically here. The ultimate goal is to learn the whole geometry

of the �tness landscape.

The simplest way to learn the distribution of �tness values would be by enu-

merating the �tness value of each point of weight space. This, however, is not

realistic due to the huge number of points in our weight space. In the current

problem, even if we restricted each weight value to the 
oating-point number

from f�1:00;�0:99;�0:98; � � � ; 1:00g, the weight space is constructed with 201N
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points. As such, statistic properties of a collection of randomly sampled points

picked up either from the whole landscape, or along an evolutionary path should

be employed.

In the following subsections, two methods which were originally devised for dis-

crete landscapes are applied to our continuous landscape of the Hop�eld network,

with the aim being similar.

8.2.1 Correlation Coe�cient

Both Manderick et al. (1993) and Lipsitch (1993) proposed a method to calculate

the correlation coe�cient of a single evolutionary operator such as a mutation

or a crossover. To be more speci�c, the correlation coe�cient of a set of �tness

pairs of two points generated by the operator. We use this method to calculate

the correlation coe�cient � of Gaussian random mutation (Imada et al., 1998d).

From weight space, q points are randomly chosen as parents. Then, by applying

the Gaussian random mutation of mean zero and standard deviation � to each

point, q mutants are obtained as children. Fitness values of both parents and

children are denoted as f i
p
(�) and f

i

c
(�) (i = 1; 2; � � � ; q), respectively. These 2q

�tness values are repeatedly calculated for the value of � from 0.001 to 0.5. And

the correlation coe�cient as a function of � is obtained as follows:

�(�) =

qX
i=1

(f i
p
(�)� fp)(f

i

c
(�)� fc)

 
qX

i=1

(f i
p
(�)� fp)

2

!1=2  qX
i=1

(f i
c
(�)� fc)

2

!1=2
;

where fp; fc denotes average over q samples of parents and children, respectively.

In Figure 31, we show four examples of correlation coe�cient of the landscapes

for p = 1; 6; 49, and 98, as a function of �. The number of sampled points,

q, was 600. As Lipsitch wrote: correlation provides a measure of how rugged

a given landscape is. Highly correlated landscapes are smooth because nearby

points have similar �tness values while less correlated landscapes are more rugged

having larger 
uctuations in �tness over short distance.

The results, as shown in Figure 31, suggest that �tness values between two

separate points are more correlated when p, the number of patterns to be stored,
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is larger. This is against our intuition that the landscape becomes more rugged

as p increases. Though we suspect the results are probably because of increasing

area of 
at region where the �tness is relatively low, we have not known the

reason of this phenomenon.

Lipsitch (1993) de�ned the correlation length of a landscape as the value of �

at which �(�) �rst becomes non-positive. The �gure suggests that the correlation

length is longer for larger p. This is also against our intuition.
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Figure 31. Correlation coe�cient as a function of � for 4 landscapes.

8.2.2 Autocorrelation Function

In this subsection, we calculate the autocorrelation function along a walk on

�tness landscape de�ned by the Hop�eld model. The autocorrelation function

calculated here are based on the method by Weinberger (1990). Weinberger's

�tness landscape is explored by a random walk via one point mutation.33 That

is, starting with a randomly chosen point, one randomly chosen bit in the string

is repeatedly 
ipped until �tter neighbor is found.34 Then the walker moves to

the neighbor, and the process of the mutation is iterated until no �tter point is

33Neighboring points di�er by exactly one bit from the current point.
34Alternative way is to choose the �ttest point after testing all the neighbors.
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found. Thus a time series of �tness value yt is generated, and the autocorrelation

as a function of time interval i is de�ned as:

�i =
E(yt � yt+i)� E(yt) � E(tt+i)

V (yt)
;

where E(�) , V (�) is expectation and variance taken over all times t and all initial
point y0.

We apply this to our continuous landscapes de�ned by the Hop�eld model

(Imada et al., 1998d). First, we produce a random walk on the search space. It

starts with a point chosen at random and the next point in the walk is determined

repeatedly by adding a Gaussian random variable of mean zero and standard

deviation � to each coordinate of current point. The walk lasts q steps. At each

point, �tness value is calculated. Thus we obtain a sequence of �tness values:

f0; f1; f2; � � � ; fq

where f0 is a �tness value of the starting point. The autocorrelation function

�(h) of the �tness sequence represents the correlation coe�cient between a pair

of �tness values of two points separated by h steps along the random walk, and

is calculated as follows:

�(h) =
R(h)

R(0)
;

where

R(h) =
1

M

q�hX
i=0

(fi � f)(fi+h � f) and f =
1

q + 1

qX
i=0

fi:

This roughly corresponds to the distance one can jump maintaining some infor-

mation about the �tness.

The results for p = 1, 6, and 49 are shown in Figure 32. For each value of

p, we observed ten walks with di�erent random number seed. Following Lipsitch

(1993), we de�ned correlation length of a landscape as the step length at which

�(h) �rst becomes non-positive, and two representative results each of which has

the shortest and the longest correlation length (out of ten runs) were shown.

We can see the results vary from one run to another. Moreover, we cannot �nd

any dependence of the results on p. These observations indicate that the �tness

landscape is not isotropic.
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Manderick et al. (1993) also de�ned the correlation length � as the distance

where the autocorrelation function is

�(�) = 1=2:

As Figure 32 says, the correlation lengths of the landscapes seem to be too long

in order for us to regard the correlation length as a number of steps where infor-

mation of the initial points still remains.
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Figure 32. Fitness correlation coe�cient along a random walk.

We have described, in the context of our continuous �tness landscape of the Hop-

�eld model, two statistical methods that were successfully employed to measure

the ruggedness of discrete �tness landscapes.

One method showed the opposite result to our conjecture, and the other was

found not to work in our problem. Our conjecture is that the �tness landscape

becomes more rugged, namely, the number and diversity of local optima increase

and their basins' sizes decrease, as the number of patterns to be stored increases.

One of the possible reasons of these unsuccessful results is that the sampled

points are not representatives of the whole �tness landscape. This holds true

in whichever case where these samples are taken uniformly at random from the

space, or along a random walk. For example, it is highly unlikely that arbitrary

sampled points happen to include the global optimum, or even a local optimum.

Therefore, as will be mentioned in the next section, we started to study the �tness
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landscapes by observing directly the traces of down-hill-walks from a peak, which

gives us a little bit more precise image of the shape of peaks (Imada et al., 1998a;

1998b). However, the information in this case is quite a local one. Hence the

statistical analysis will still be needed. Now, we study other statistical methods

like information measure proposed by Vassilev (1997).

8.3 What does the Landscape of a Hop�eld Associative

Memory Look Like?

One of the goals of this study is to obtain the number and distribution of the

solutions of weight con�gurations which give a network a function of associative

memory. In other words, one of our aims is to learn a geometry of a �tness

landscape de�ned on weight space.

8.3.1 A Bird's Eye View of the Landscape

Since experiments here were carried out on networks with 49 neurons, the �tness

landscape is de�ned on the 492(= 2401) dimensional Euclidean space. Fitness

of each point in the space is associated with the capability of the corresponding

network to store a set of given patterns as associative memory. That is to say, the

�tness surface is determined by the �tness value of each point of weight space.

Hence the distribution of these �tness values gives us an information as to a

bird's eye view of the landscape. To obtain the information of the landscape for,

say p = 6, we picked up 240,000 points35 randomly from the space. Note that

p, the number of patterns to be stored, determines the ruggedness of the �tness

landscape. The results are shown in Figure 33. The observed �tness values were

distributed only from 0.10 to 0.46. Peaks are too narrow to be viewed.

8.3.2 The Shape of the Global Optimum

Besides the goal of obtaining the number and distribution of solutions in weight

space, the analysis of �tness landscape will give us another information of a

search space. When we search for an in�nitely large number of solutions by

35The number of samples here is taken from the typical number of �tness evaluations in a

run of our evolutionary algorithms.
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Figure 33. Distribution of �tness values on the landscape for p = 6.

evolutionary algorithms, it is helpful to learn the topology of the �tness landscape

to know whether the solutions we obtained are representative samples of the whole

solutions. Some solutions are easy to be approached and others are not in general.

As a step to learn the whole geometry of a �tness landscape, we exploit a downhill

walk by Evolutionary Programming to reveal the shape of global peaks on the

�tness landscape de�ned on weight space.

In his Ph.D dissertation, Jones (1995) argued that \a reverse hill-climbing

algorithm allows the determination of details of the basin of attraction of points

on a landscape." Or, \the method makes it possible to compute statistics regarding

basins of attraction in a landscape graph." The landscapes that Jones explored

were de�ned on a discrete domain, that is, on vertices of a hyper cube. Here, we

extended the idea to a landscape that is de�ned on a continuous domain.

As a preliminary experiment to walk down a hill, we use a simple random

walk in which a point moves consecutively to one of its neighboring points at

random by the Gaussian mutation. That is, we give small perturbation on each

coordinate of the current point, xi (i = 1; 2; � � � ; 2401), by adding a Gaussian

random variable with mean 0 and standard deviation �0, i.e.,

x
new
i

= x
old
i

+ �0 �Ni(0; 1):

This mutation enables a point to make a random walk on the �tness landscape,
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where �0 �Ni(0; 1) implies a step length.

We observed some down hill random walks from this Hebbian peak with sev-

eral values of �0. Results are shown in Figure 34a. From this experiment, we

tentatively set �0 to 0.002. We also made another experiment with this random

walk, starting at a point chosen randomly from the space. A result is shown in

Figure 34b. We can see that a walker wanders around a comparatively 
at region

with low �tness values, not even being able to approach to local peaks.

Then in order for walkers to take almost steepest path, we use Evolutionary

Programming. Although the population in EP is usually randomized at the

beginning of a run, we start it with all identical points, i.e., the top of the hill.

This allows us to call it a walk and especially here a down hill walk.
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Figure 34. Examples of random walk: (a) downhill walks from a Hebbian peak;

(b) random walk from a randomly chosen point.

In simple hill climbing, the Gaussian mutation is given � times to the current

point. Then, the point which obtains the highest �tness value is selected as the

next point. In EP-walk, on the other hand, � points construct a population.

Each of these � points is mutated once, which produces � mutants. Each point

has additional variables �i for each coordinate, which are used as a standard

deviation of a Gaussian random variable to be added to the i-th coordinate of

the point. After the mutation, these �i are also modi�ed as:

�
new
i

= �
old
i

+ 0:01 � �old
i
�Ni(0; 1):
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All the �i are initialized to �0 (= 0:002) at the beginning of a walk. Now, we

have the original � points and their � mutants. The �tness value of each of the

2� points are compared to those of q points which are chosen randomly at every

time of the comparison from the whole 2� points. Then the 2� points are ranked

according to the number of wins, and the best � points survive (q-tournament

selection). The cycle of reconstructing the new population with better �tness

points and restarting the search is repeated until a set number of iteration has

been reached. Here, both � and � are set to 200, q is chosen to be 10, and the

number of iteration is set to 12,000.

Thus, a walker will be able to walk down a hill. However, walkers sometimes

cannot escape the basin of attraction of the hill. When we use the Gaussian

mutation to move a point, the probability to escape from local/global optimum is

not zero, at least theoretically. In practice, however, the distribution of step sizes

by the Gaussian mutation was like the one shown in Figure 35a. We observed that

the distribution of these step lengths ranges from 0.0102 to 0.0250.36 If we obtain

the minimum step size with which walkers can start down hill, we can estimate

the basin size of global/local peaks when our walkers walk in the landscape.
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Figure 35. Distribution of step lengths. (a) Gaussian mutation; (b) Discrete

crossover.

Note that if we use discrete crossover instead of mutation, step lengths from

36We can control the range by tuning �0.
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one of the parents also shows Gaussian-like distribution, but step lengths take

larger values, and in addition, we cannot control the distribution in this case.

In our experiment, the lengths range from 25.8 to 30.8 as shown in Figure 35b.

This is rather a long jump, or another version of random sampling, much more

e�ective though. Since our aim is to learn the geometry of the �tness landscape,

rather than to locate the global optimum e�ciently, we use walks by mutation

alone expecting to obtain the quasi-continuous information of the landscape along

a walk of small step length.

Although we have thus far used the term hill or peak for the optimal con�gu-

ration of wij , we must mention here the following feature of our �tness landscape.

Since each wij can take an arbitrary real value, there are in�nite number of equiv-

alent con�gurations which di�er only by scaling factor. In other words, for any

scaling factor �, �wij works exactly in the same way as wij in updating neuron

states. Therefore, our landscape of the Hop�eld network, if de�ned on the weight

space, is made up of in�nitely extended straight ridges emanating from the origin.

The height of each ridge remains constant, but di�erent from each other.

Exploration of Peak Shape by EP

In this section, we study EP-downhill walks from the top of the global peaks of

two categories: the Hebbian peaks and peaks found by EP. All the networks we

studied here were made up of 49 neurons.

Hebbian Peaks. Since every peak has its basin of attraction, walkers should

walk with su�ciently large step sizes to start a downhill. We surmise that the

minimum step size which enables a walker to start a downhill re
ects the basin

size of the peak. To obtain the minimum step size, the downhill walks are re-

peated with �0 being incremented starting at �0 with which walkers cannot start

a downhill. For each �0, a downhill is repeated 10 times with di�erent random

number seed.

First, the six Hebbian peaks each of which corresponds to p, the number of

stored patterns, from 1 to 6 were explored. The average of the minimum �0's

obtained from 10 runs are plotted in Figure 36. We can see that the more the
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number of patterns to be stored, the smaller the value of �0 is required. This

suggests that the size of the top of a hill decreases as the number of patterns is

increased.
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Figure 36. Dependence of the Hebbian peak width on the number of stored

patterns.

Next, we observed the traces of the downhill walks from the Hebbian peaks.

The traces are shown in Figure 37. We found that the traces from the peaks for

p = 1; 2, and 3 were signi�cantly di�erent from each other, while the peaks for p

more than 3 were somewhat of a similar one for p = 3 (not shown in the �gure).

In this experiment, �0 is set to 0.035 for all three peaks. With this value of �0, a

walker can walk down all the three hills with the common step size, which allows

us to compare the traces. We can observe that the less the number of stored

patterns, the steeper the side wall is.

In observing downhill walks from the top of a hill, we often observe that a

walker remains unmoved at the top for certain period. The walker struggles try-

ing to escape the basin of attraction of the peak. At �rst we suspected that the

period also re
ects the basin size of the peak, but the length of the period is

totally stochastic and we have not found a relation between the length of the

period and the number of patterns.
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Figure 37. EP-downhill walk from the top of the Hebbian peaks.

Peaks Found by EP.The evolutions that emerged these two solutions are shown

in Figure 39. The EP employed here were as follows. A �xed set of 6 random

bipolar patterns is given to the network to be stored as associative memory. A

population is constructed by � points each of which has 492 coordinates xi (i =

1; 2; � � � ; 492) representing weight values of a network. Each point has additional

492 variables �i (i = 1; 2; � � � ; 492) which are used for mutating the point itself. In
this thesis, all the xi are initialized to zero and all the �i are initialized to 0.002.

Each of these � points is mutated and selected in the same way as the EP walk

described in Subsection 8.3.2. Both � and � are set to 200 and q is chosen to be

10.

Thus, we picked up two di�erent global peaks to analyze their shape here:

one that was found at a comparatively early (9,199-th generation) and one that

required very long time to be found (53,735-th generation).

Then a EP walker walks down these two hills. Since the number of stored

patterns is p = 6, �0 is required to be set as small as 0.008 this time. The results

are shown �n Figure 39, together with the one for the Hebbian peak for p = 6.

We can see that the side wall of both peaks found by EP are much steeper than

the one of the Hebbian peak. Furthermore the side wall of the peak found earlier

by EP is steeper than the one taken a longer time to be found. Hence we may
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conjecture that the EP we employed to �nd a weight con�guration for associative

memory tends to reach a sharper peak more easily than broader peaks.

8.4 Summary

To know the number and distribution of solutions in weight space, �tness land-

scape is considered in this chapter. Since the �tness landscape is de�ned on

weight space and the solutions in weight space are represented as peaks on the

landscape, learning the geometry of the landscape will give us the information as

to the number and distribution of the solutions in weight space. First, the land-

scape is analyzed statistically using correlation function between pairs of points

on the landscape. We have observed that the landscape becomes more rugged as

the number of patterns to be stored increases, which is the reason why search be-

comes di�cult when the number of patterns is large. However, the method does

not give us more precise image of landscapes probably because the landscape is

not isotropic. Then the geometry of the landscape was studied by learning the

shape of peaks using a evolutionary walk. As a result, we observed that top of

the peaks becomes narrower and the side wall of the peak becomes less steep as

the number of patterns increases.
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9. TO VISUALIZE SOLUTIONS INWEIGHT

SPACE: SAMMON MAPPING

In studies using evolutionary algorithms, visualization of high-dimensional space

provides various aspects of insight into the search space explored. We can imagine,

for instance, convergence/divergence behaviors of a population, topology of a

�tness landscape, what does a walk from a random point to the global optimum

look like, and so on. The problem of mapping a number of points in multi-

dimensional space to points in 2-dimensional space with the distances among

the original points remaining as much as possible is one of those techniques.

Shine et al. (1997) and Collins (1997) argued such a technique together with

other possible alternatives. Collins call this technique \Sammon Mapping" after

Sammon (1969) who proposed this technique originally (Shine et al. call this

\Distance Map"). Since the technique is an optimization problem, we can employ

a genetic algorithm (GA) to solve this problem. Here we employ this technique in

somewhat of a di�erent way, that is, we apply the Sammon Mapping to visualize

our weight space.

Since neither Collins nor Shine gave us any description such as how large

dimensionality can be explored, or how many points can be mapped properly,

we start by visualizing two known shapes in the space of high dimensionality.

Then we apply the technique to our weight space of the neural network model of

associative memory.

9.1 Sammon Mapping and its GA Implementation

As Collins (1997) wrote, the dimension reduction has been an important tech-

nique for visualization of the space of high dimensionality. The Sammon Mapping

(1969) is one of these techniques. This enables us to map a set of N points in

n-dimensional space to 2-dimensional location data so that the distance infor-

mation is preserved as much as possible, or as Shine (1997) wrote \so that the

n-dimensional distances are approximated by 2-dimensional distances with a min-

imal error." This problem is an optimization problem.

Shine et al. (1997) and Collins (1997) proposed a method to solve this problem

by a Genetic Algorithm, as follows. First, the distance matrix whose entries are
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Euclidean distances between all possible pairs of N points in the n-dimensional

space is calculated. Then tentative N points in 2-dimensional space are de-

termined representing the original N -points in the n-dimensional space. The

distance matrix of these N 2-dimensional points is also calculated, which then

will be subtracted from the original n-dimensional distance matrix, yielding an

error matrix. A GA is used to minimize this error matrix.

For the sake of simplicity, we assume here the dimension reduction from 2401-

dimensional space to 2-dimensional space.37 Given N points in 2401-dimensional

space

X
1
; � � � ; XN

;

where each point Xk is expressed by 2401 coordinates as

X
k = (zk1 ; � � � ; zk2401):

Then the square distance between m-th point and n-th point is calculated as

R
mn =

2401X
i=1

(zm
i
� z

n

i
)2:

The values for all the possible combination of m and n construct a distance

matrix. Since the matrix is symmetric with zero diagonal elements, we use the

lower triangle elements alone(m < n).

Then we generate P sets of the 2-dimensional N points at random, i.e.,

	
1(1); � � � ; 	N (1)

	
1(2); � � � ; 	N (2)

� � �
	
1(P); � � � ; 	N (P)

where the k-th point of the i-th set is represented as:

	
k(i) = (�k

1
; �

k

2
):

Thus the i-th set of these N points has its distance matrix whose elements are

r
mn(i) =

2X
i=1

(�m
i
� �

n

i
)2:

37Note that our concern here is the 49 � 49 = 2401 dimensional weight space.
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The objective function of the i-th sets f(i) can be de�ned as

f(i) =
X
m<n

r
mn(i)� R

mn
:

Starting with a random con�guration of N points in 2-dimensional space,

the GA corrects these points one generation to the next applying crossover and

mutation38 to 2-dimensional coordinates. The correction is repeated until the

error converges to an acceptable minimum.

9.2 Results and Discussion

Towards the goal of visualizing solutions in weight space, we apply the dimension-

reduction technique to two toy examples, as test functions, in which distribution

of the point is known. One is a set of points on a hyper-line, and the other is a

set of points in the two separate regions. Our experiments of the fully-connected

neural network model of associative memory are carried out on networks with 49

neurons, which implies the weight space is 492 = 2401 dimensional space. So the

dimensionality of the space to be visualized is set to 2401 in this thesis.

Hyper-line

The �rst test is a visualization of a hyper-line.

In mapping some points in high dimensionality to points in 2-dimensional

space, there exists some constraints in general. It is clear, for example, that

the four vertices of a tetrahedron in 3-dimensional space can never been exactly

mapped to four points in 2-dimensional space. On the other hand, there is no

such constraint in the case of points on a hyper-line. In that sense, hyper-line is

a good benchmark for the algorithm.

First, we pick up 120 points that are distributed with equal interval on a

diagonal line of the 2401-dimensional hyper-cube. To be more speci�c, the points

are:

(xk1 ; x
k

2; � � � ; xk2401); k = 0; 1; � � � ; 119
38We employ uniform crossover (1989) and BGA mutation (M�uhlenbein et al., 1996) here.
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where

x
k

1 = x
k

2 = � � � = x
k

2401 = �1 + k � (2=119):

Then they are mapped to 120 points on 2-dimensional space so that the distance

relation among the 120 points on the 2401-dimensional space is kept as much as

possible. A result is shown in Figure 40 (left). We can see a straight line in the

2-dimensional space. The task to search for an appropriate con�guration of 2-

dimensional points is quite easy in this case. As evolution proceeds, the objective

function that took the value 7,560,777 at the start asymptotically approaches the

small value around 0.1. The evolution is shown in Figure 40 (right).
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Figure 40. Points mapped to the 2-dimensional space from 120 points on a diag-

onal line of the 2401-dimensional space (left), and the time evolution of objective

function (right).

Two Hyper-cubes

Next, we proceed to an example in which we can imagine the shape of the re-

gion in high-dimensional space. We sampled 60 points randomly from the 2401

dimensional region whose coordinates are all between 0.5 and 1.0 as well as the

other 60 points from the region whose coordinates are between {0.5 and {1.0.

Namely, points are sampled either from two separate hyper-cubes of the same

size. In Figure 41 (left), a result of dimension reduction of these 120 points is
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shown, together with a point that corresponds to the origin of 2401-dimensional

space. The evolution of the objective function is shown in Figure 41 (right). The

value starts with 14,567,428, and eventually approaches 106,125. Though the

�nal value of the objective function is not so small, the ratio of the �nal value

is 0.7% of the initial value. We can clearly see the two separate regions in the

2-dimensional space.
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Figure 41. Two regions of the 2401-dimensional space mapped to the 2-

dimensional space (left), and the time evolution of objective function (right).

Filled-in circle � indicates the origin.

Hyper-sphere

As stated earlier, multiple con�gurations of weights give a network a function of

associative memory. The number of these con�gurations is known to be depen-

dent on p, the number of patterns to be stored. Storing just one pattern gives a

maximum number of solutions of weights, while as p approaches twice the number

of neurons, all the solutions vanishes (1988). However, the number and distribu-

tion as a function of p is still unknown. Here, we study the solutions found by

the Breeder Genetic Algorithm (BGA) among others, since only this algorithm

has been able to search for solutions for a wide range of p (see (Imada et al.,

1997)). Our experiments were carried out on networks with 49 neurons and the

BGA found solutions for up to p = 90 (see Subsection 3.2.7). The solutions that

the BGA found are also expected to be di�erent from run to run, as M�uhlenbein
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et al. (1996) wrote: \the BGA mutation scheme is able to optimize many multi-

modal functions." As a preliminary stage of the goal of learning the number and

distribution as a function of p, we sampled 30 such solutions for p = 1. It is

important to note here that since each weights, wij, can take an arbitrary real

value, there are in�nite number of equivalent con�gurations which di�er only by

scaling factor. In other words, for any scaling factor �, �wij works exactly in the

same way as wij in updating neuron states (see equation (1)). So, we normalized

the solutions obtained such that they locate on the hyper-sphere of radius 1. We

suspect that these normalized solutions for p = 1 are distributed uniformly on

the surface of the hyper-sphere. We show the results of the 2-dimensional points

mapped from the 2401-dimensional solution space for the number of solutions

N = 9; 10; and 30 in Figure 43 (a), (b), and (c), respectively. As can be seen

in Figure 43 (a), nine 2-dimensional points corresponding to the solutions are

almost uniformly distributed on the circle whose center corresponds to the origin

of 2401-dimensional space, while the distribution of these 2-dimensional points

are disturbed more or less for N more than 9.

In Figure 44, we show the time evolution of each objective function for n = 9

and n = 30. The value for N = 9 starts with 1,758 while the value for N = 30

starts with 37,115 and ended up 8 for N = 9 and 129 N = 30. The di�erence of

these values is due to the degree of constraint of the dimension reduction problem.

We also tested the similar experiment with the dimensionality 256 instead of

2401, but we found that the results were almost the same (not depicted here),

in that the limit in which points of high dimensionality are properly mapped to

2-dimensional space was around N = 9.

Next, we apply the technique to solutions also obtained by the BGA runs for

p = 90. This number of patterns to be stored is almost the upper bound of the

storage capacity for a network with 49 neurons, and the solutions are expected to

be localized into small region of weight space (Gardner, 1988). A result is shown

in Figure 43 (d). Though resolution is not so good, we can anyhow imagine the

localized solutions.
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Figure 42. 2-dimensional points mapped from solutions in the 2401-dimensional

weight space. Solutions that store 1 pattern where the number of mapped points

is (a) 9, (b) 10, and (c) 30. Filled-in circle � indicates the origin.
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Figure 43. 2-dimensional points mapped from solutions in the 2401-dimensional

weight space (continued). (d) Nine 2-dimensional solutions that store 90 patterns.

Filled-in circle � indicates the origin.
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9.3 Summary

This chapter has studied the distribution of the solutions in weight space, by

mapping points in the high-dimensional weight space into two-dimensional space

with the distance relations remaining as much as possible. Although the reso-

lution is not so good, we observed that the solutions are uniformly distributed

in weight space when the number of patterns is small, while the locations of the

solutions are localized when the number of patterns becomes larger.
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10. THE HOPFIELD MODEL AS A TEST

FUNCTION

When we apply some variants of evolutionary computations to the fully-connected

neural network model of associative memory, we regard it as a parameter opti-

mization problem, we notice that the model has some favorable properties as a

test function of evolutionary computations. So far, many functions have been pro-

posed for comparative study. However, as Whitley and his colleagues suggested,

many of the existing common test functions have some problems in comparing

and evaluating evolutionary computations. In this chapter, we focus on the pos-

sibilities of using the fully-connected neural network model as a test function of

evolutionary computations.

10.1 Overview

In the Genetic Algorithm community, many functions have been proposed to

compare and evaluate di�erent variants of Genetic Algorithms. Among others,

De Jong's (1975) test suite has long been used as standard test functions. How-

ever, Davis (1991) pointed out that some of the De Jong's test functions can be

solved more quickly using the next-ascent random bit hill-climbing technique.

Mahfoud (1995) used the following functions in his comparative study of nich-

ing techniques that are devised to solve multi-modal functions.

f1(x) = sin6 (5�x)

f2(x) = exp

�
�2 ln (2)(x� 0:1

0:8
)2
�
sin6 (5�x)

f3(x) = sin6
�
5�(x3=4 � 0:05)

�

f4(x) = exp

�
(�2 ln (2))(x� 0:08

0:8
)2
�
sin6

�
5�(x3=4 � 0:05)

�
These four functions have �ve peaks. This set of test functions is typical

in that f1 has uniformly-distributed peaks of equal height, f2 has uniformly-

distributed peaks of unequal height, f3 has non-uniformly-distributed peaks of

equal height, and f4 has non-uniformly-distributed peaks of unequal height.

In his paper, Mahfoud grouped eleven problems into three categories based
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on di�culty, and the four functions above are categorized into the easiest group

since they were also solved by his random hill-climbing. Furthermore, these

functions are basically for Genetic Algorithms with binary encoded genes, where

the problem of small dimensionality is worthwhile.

What we are interested in here are the real-valued parameter optimization

problems with high dimensionality. Using a vector x which includes n parameters,

we formulate the problems as

f
� = f(x�) = max

x2D
f(x); D � <n

: (9)

We assume, without loss of generality, a maximization problem hereafter. As

B�ack (1996) argued, since scaling de�nes the computational complexity of the

algorithm, an arbitrary scaling of the dimension n is necessary. In order for a

function to be scalable with respect to the dimension, a separable function is often

used, as Whitley et al. (1995) wrote. Separable function F can be decomposed

into n separate sub-functions S(x), i.e.,

F (x1; � � � ; xn) =
nX
i=1

S(xi): (10)

M�uhlenbein et al. (1996) used the following two separable functions to evaluate

their Breeder Genetic Algorithm.

f5(x1; � � � ; xn) =
nX
i=1

(10 cos 2�xi � xi

2
)

and

f6(x1; � � � ; xn) =
nX
i=1

xi sin
q
jxij;

named Rastrigin and Schwefel function, respectively. Voigt et al. (1995) also

argued that a test function should be de�ned for an arbitrary number of variables

so that the number of steps to the optimum is a function of the dimension, noting

that varying the problem size gives valuable information about the e�ciency of

the search method. Whitley et al. (1995), however, pointed out that since these

two functions are separable, they are solved with fewer function evaluations using

their Line Search Algorithm, which was designed to exploit the separability of

functions by searching over all values of each parameter.
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M�uhlenbein et al. (1996) also used the following function named the Griewank

function, which is not separable.

f7(x1; � � � ; xn) =
nY
i=1

cos
xip
i

�
NX
i=1

x
2
i

4200
:

However, this is again criticized by Whitley et al. (1995) as follows. \As the

dimensionality of the search space is increased, the contribution of the product

term is reduced because the number of local optima becomes smaller." Whitley

et al. (1995) then proposed two methods to construct scalable but non-separable

functions using existing separable functions.

On the other hand, B�ack (1996) wrote in his recent book that these functions

are possibly not representative of the average complexity of real-world problems,

and proposed a fractal objective function using the Weierstrass-Mandelbrot func-

tion as a multi-modal function of high complexity.

For all these functions described above, we have information about the op-

timum, such as location, height, etc. For example, f6 has an in�nite number

of maxima at the position xk � �k�
p
i, of which N maxima are global with

height 1.

\But are such problems typical applications?" as M�uhlenbein (1996) said.

In this chapter, we propose a more challenging test function using the fully-

connected neural network model of associative memory. In this case, we have

little a priori information about the optima. Hence, we believe that this study

also sheds new light on the analysis of the model as well.

10.2 Features of the Model as a Test Function

10.2.1 Whitley et al.'s Requirements

The Model is Scalable but not Separable

In their paper, Whitley et al. (1995) noted that test functions should be scal-

able but not separable. To test the capability of an evolutionary technique, the

di�culty of the problem should be tuned by changing the scale of the problem.

However, most currently used test functions are separable to be scalable which

gives us incorrect information as to the di�culty of the algorithm to be tested.
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When we use the neural network model of associative memory as a test func-

tion, we can easily scale it by varying N , the number of neurons (scalable). Our

objective function may look like a separable function at �rst glance; however due

to its recursive calculations, as described in the previous section, it is not sepa-

rable.

The Model is Resistant to Hill-climbing

Whitley et al. also argued that a test function should be resistant to hill-climbing.

Although a fair amount of hill-climbing techniques have been proposed for the

neural network model of associative memory, such as perceptron learning (Rosen-

blatt, 1962), (Gardner, 1988), what is denoted as hill-climbing here is a simple

population based hill-climbing technique that enables to compare to our evolu-

tionary computations. This allows us to study, for example, what characterizes

the �tness landscapes for which crossover will be an e�ective operator (Forrest

et al., 1993). To study mechanisms of evolutionary computations, we need �t-

ness landscapes on which an evolutionary computation is likely to perform better

than such a hill-climber. For the purpose, we tested a hill-climbing walk using

the Gaussian mutation.

All the possible con�gurations of weight wij of a network with N neurons

constructs the N 2-dimensional weight space. A walk on the space is formed by

consecutively applying the Gaussian mutation to the current point. To be more

speci�c, a small Gaussian random variable with mean 0 and standard deviation

� is given to each coordinate of the current point, i.e.,

w
next
ij

= w
current
ij

+ � �Nij(1; 0); (11)

where Nij(1; 0) means that the Gaussian random variable is sampled anew at

each time. This is called the Gaussian mutation. Then, the Gaussian mutation

is given � times to the current point, and the point with the best �tness among

� mutants is selected as the next point.

Thus the walker climbs a hill in the �tness landscape. We used this walk

to explore the �tness landscape de�ned by the �tness of the network which had

learned p patterns by the Hebbian rule (Imada et al., 1998a; 1998b). All the

walks here started at the origin of the weight space. The landscapes are expected
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to have many global peaks with �tness 1 besides many local peaks. The results

are shown in Table 2. The Gaussian random hill-climbing located the global op-

timum only in the case that one pattern is stored, which is the easiest case.

Table 2. Statistics of the Gaussian hill-climbing.

Number Number Ultimate-�tness

of patterns of successes max min avg std

1 10 1.000 0.871 0.967 0.00609

2 0 0.984 0.866 0.927 0.00645

3 0 0.926 0.789 0.879 0.00667

10.2.2 A Variety of Initializations

In Evolutionary computations, the issue of initialization is very important, though

little attention has been paid. Usually, the �rst population is initialized at ran-

dom, namely, individuals are randomly distributed in the search space at the

beginning.

Surry et al. (1996) reviewed works concerning the issue of initialization. They

emphasized non-random initialization to incorporate domain knowledge to GAs.

Surry et al. cited Fogarty's (1989) work, where a GA is used to set the air inlet

valves to the burners of multiple boiler furnaces to minimize combustion stack-loss

in the common 
ue. Four di�erent mutation strategies were tested on two initial

settings: one starting with all air valves open and the other being randomly de-

termined in between fully open and closed. The result is that the mutation whose

rate is initially high but exponentially decreasing, worked e�ectively when starting

with a completely homogeneous population while not particularly e�ective when

starting with a randomized population, as Surry et al. summarized.

We can address the issue of initialization with the Hop�eld model. In the

classical analysis of the Hop�eld model, Sompolinsky (1986) gave small pertur-

bations on synaptic weights to see the robustness of the network for the synaptic
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noise. Namely, each Hebbian synaptic weight Jij was added small perturbation

�ij, resulting in

Jij + �ij :

We also modify synaptic weights based on this scheme using Genetic Algorithms,

with the di�erence being that Sompolinsky chose synapses randomly while we

choose them adaptively. We have two di�erent versions of giving perturbations.

One is by chromosomes and the other is by mutations. In the �rst implemen-

tation, we determine a matrix at the beginning of a run as an ancestor. This

matrix remains unchanged during evolution. In each generation, chromosomes

composed of small perturbations �ij produce copies of the ancestor. These copies

are slightly di�erent from the ancestor depending on the range of �ij. In the sec-

ond implementation, on the other hand, weight values of a network are directly

mapped into a chromosome and they are perturbed by random mutations. Then,

perturbation by chromosome exploits a promising region, i.e., search points are

restricted within a certain region (volume-oriented), while perturbation by muta-

tion explores new regions, i.e., search points may wander all over the search space

(path-oriented).

In the GA that uses perturbation by chromosome, we may start with either of

an over-loaded Hebbian matrix39, zero matrix or random matrix. Or in the GA

that uses perturbation by mutation, chromosomes in the �rst generation might be

initialized such that the corresponding weight matrices are either of all identi-

cal over-loaded Hebbian matrices, all identical zero matrices, or di�erent random

matrices.

If we give a pattern to a network of the above three types, the behavior will

be di�erent with each other. An input given to the random matrix will result

in a chaotic trajectory due to the asymmetry of the weight matrix. An input

to the over-loaded Hebbian matrix, on the other hand, will converge to a stable

attractor in between the �xed-point attractor and spin-glass attractor (stable but

far from the initial state). These behaviors are visualized by plotting over time

the Hamming distance between the initial state given to the network and every

instantaneous network state. Examples of the trajectories are shown in Figure 2.

The goal of the genetic algorithm is to �nd a con�guration of wij which makes

39Over-loaded means that the number of learned patterns exceeds the capacity.
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all the trajectories a horizontal line from the origin (�xed point attractor).

10.2.3 Multi-modality

To control the complexity of the problem, we only have to vary p, the number of

patterns to be stored. If we use our regular �tness function of how many patterns

can be stored as �xed points, the �tness landscape has multiple global optima of

height 1, and the number of the optima depends on p. Hence, we can evaluate a

GA by the capability to locate one of these optima, with p being incremented.

Let us introduce here two GA implementations as examples, where we give per-

turbations on the weights either by chromosome or by mutation, as described in

the previous subsection.

The Genetic Algorithm, whichever the implementation, proceeds as follows.

Before each run, a set of p random bipolar patterns �� (� = 1; 2; � � � ; p) is pro-
duced. The goal of the algorithm is to search for the weight matrices that store

all of these patterns as �xed points. At the beginning of a run, a population of

chromosomes is initialized. A chromosome is a real-valued vector which comprises

N
2 elements representing either a weight values (w11; w12; � � � ; wNN) of an indi-

vidual network or small perturbations (�11; �12; � � � ; �NN ) to be given on synaptic

weights of an ancestor. Thus, a chromosome (genotype) corresponds to a weight

matrix (phenotype). The �tness is evaluated as a capability of the phenotype

to store given patterns as associative memory. According to the �tness, these

chromosomes are ranked.

Two chromosomes are randomly chosen as parent from the best T% of the pop-

ulation. They are recombined with uniform crossover, i.e., two parents (u1; � � � ; un)
and (v1; � � � ; vn) produce an o�spring (w1; � � � ; wn) such that wi is either ui or vi

with equal probability. Every gene in the o�spring chromosome, then, has a

chance to be mutated with the probability pm, either by being replaced with

other random variable in the case of chromosome comprised of �ij, or by being

added a small random variable in the case of chromosome comprised of wij. The

worst (100�T )% of the population are replaced with o�springs produced in this

way, and they survive to the next generation with their parents (T%).

The cycle of reconstructing the new population and restarting the search is
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repeated until a perfect solution is found or a set maximum number of genera-

tions has been reached. When the cycle terminates, it returns a weight matrix,

possibly a optimal one.

All the experiments described in this section were carried out on networks with

49 neurons. Parameters used for the Genetic Algorithm are as follows. The

population number is 256, In selecting two parents, T is chosen to be 40%. The

mutation probability pm is set to 0.05. The searching procedure is iterated until

12,000 generations unless a perfect solution is found.

Here, we evolve the over-loaded Hebbian synapses. For a �xed set of p patterns,

we repeated a GA run 30 times with di�erent random number seed. When at least

one run succeeds in locating one of the global optima, we incremented p. Thus

the maximum p is obtained. We made the experiment with two implementations

mentioned above. We show the number of successes out of 30 runs in Table 3.

We also show in the table the other statistics such as maximum, average, and

standard deviation, of the best �tness values found in each run out of 30 trials.

Whichever schemes we may use, the task becomes di�cult as p becomes large.

Hence, the maximum p thus obtained represents the capability of the method to

locate one of the optima.

In the above two experiments, if a run converges to a solution, then individ-

uals in the �nal population are almost similar (though each run might converge

to a di�erent solution). However, the Breeder Genetic Algorithm proposed by

M�uhlenbein et al. (1996) gives us another story. M�uhlenbein et al. wrote, the

BGA mutation scheme is able to optimize many multi-modal functions. As de-

scribed above, our perturbation by mutation scheme chooses a gene xi in chro-

mosome with probability pm and mutates it by adding a small random variable

as a perturbation. Instead of generating this small variable randomly, the BGA

calculate the perturbation to be added to xi as follows: Assume that appropriate

mutation range for each parameter xi is pre-determined as �i. Every time xi is

chosen, the factor:

� =
�0

20
+
�1

21
+
�2

22
+ � � �+ �15

215
(12)

is generated such that �k (k = 0; � � � ; 15) takes the value 1 with probability 1=16,

and otherwise 0. Note that � ranges from 0 (i.e., �0 = � � � = �15 = 0) to
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Table 3. Statistics of two GA runs.

Number of Number of The best �tness in each run

patterns successes max min avg std

(perturbation by chromosome)

14 22 1.000 0.995 0.999 0.00024

15 17 1.000 0.994 0.998 0.00041

16 5 1.000 0.989 0.997 0.00054

17 5 1.000 0.988 0.995 0.00067

18 1 1.000 0.979 0.990 0.00081

19 0 0.999 0.965 0.985 0.00124

(perturbation by mutation)

25 7 1.000 0.991 0.998 0.00046

30 1 1.000 0.991 0.996 0.00040

31 1 1.000 0.992 0.996 0.00037

32 2 1.000 0.990 0.996 0.00040

33 0 0.999 0.990 0.995 0.00045
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2(1� 1=215) (i.e., �0 = � � � = �15 = 1). Then xi is mutated to be

xi ��i � �; (13)

with the sign +=� being chosen with equal probability.

Furthermore, they produce (� � 1) o�springs, and all survive to the next

generation with the best individual in the current generation (recall that � is

population size). This is in contrast to our selection that (100 � T )% o�springs

and T% parents construct next generation.

Voigt et al. (1995) suggested that multi-modal function where the highest

maxima are clustered in an area are easily optimized. We found that starting

with zero matrix, the BGA can locate solutions in the vicinity of zero matrix

very easily even for a large p. We have observed that the BGA locates solutions

for a given set of 90 patterns. The solutions in synaptic weight space of the fully-

connected network seem to cluster within a certain domain around the origin in

the space. Moreover we also observed that the BGA locates di�erent solutions

within a run (see (Imada et al., 1997g)). In the analysis of the neural network

model of associative memory, those issues like how many solutions exist or how

they are distributed in the weight space are still open.

Niching is a technique devised more intentionally to expand a conventional GA

to locate all optima of a multi-modal function simultaneously. This is an analogy

from nature of dividing a population into multiple subpopulations or species. In

parameter optimization, the location of each optima is a niche which is �lled with

individuals of some species. Basically two methods have been proposed based on

this analogy: Fitness Sharing (Goldberg and Richardson, 1987) and Crowding (De

Jong, 1975). If these methods for the multi-modal function optimization locate

all the optimal con�gurations of synaptic weights, it will give us new insight into

the analysis of the model.

However, unfortunately, the task is extremely hard due to the high-dimensionality

and continuous genes. Hence, we show an experiments in which a niching GA

explores string space instead of weight space (Imada et al., 1998f). The �tness

landscape we explore is de�ned on string space such that p peaks are created

by the Hebbian rule. A fully-connected neural network with 49 neurons are em-

ployed, and a set of 49-bit random bipolar patterns are stored. So the domain to

be searched for is the 49-dimensional hyper-cube instead of the 2401-dimensional
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Euclidean space. The �tness of a point is evaluated as usual according to how the

instantaneous neurons' states after the point is given to the network as an input

are similar to either of the a priori stored patterns. The task is to search for p

points of �tness one out of all possible 249 points. The algorithm we adopted here

is the deterministic crowding (Mahfoud, 1992) because of its niching capability

(Mahfoud, 1995) as well as the simplicity for implementation.

Algorithm 4 (Deterministic Crowding GA) In each generation the current

population is reproduced as follows.

(1) Choose two parents, p1 and p2, at random, with no parent being chosen more

than once.

(2) Produce two children, c1 and c2, with uniform crossover (Syswerda, 1989).

(3) Mutate the children by 
ipping bit chosen at random with probability pm,

yielding c01 and c
0
2.

(4) Replace parent with child as follows:

{ IF d(p1; c
0
1) + d(p2; c

0
2) > d(p1; c

0
2) + d(p2; c

0
1)

� IF f(c01) > f(p1) THEN replace p1 with c
0
1

� IF f(c02) > f(p2) THEN replace p2 with c
0
2

{ ELSE

� IF f(c02) > f(p1) THEN replace p1 with c
0
2

� IF f(c01) > f(p2) THEN replace p2 with c
0
1

where d(�1; �2) is the Hamming distance between two points (�1; �2) in pattern

con�guration space.

An example of the evolutions are shown in Figure 45.

We can see that the task is quit easy. It requires only around 30 generations

for the best individual to reach one of the embedded niches (attractors). Aver-

age �tness of population also approaches the �tness one, which suggests all the

individuals are attracted to one of the niches.

The number of individuals that converges at one of the niches are compared

with the simple GA in Figure 46. We can see that all the individuals are attracted
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Figure 45. Best and average �tness vs generation obtained by the Deterministic

Crowding GA.

to one of the niches in Deterministic Crowding GA, while the number do not

increase after it reaches some level in Simple GA.

What then is the number of each individual in each niche? We show this in

Figure 47.

Finally, examples of the numbers of individuals in each niche when the GA

is terminated are shown in Table 4. Experiments are made by increasing p from

four to eight. We succeeded in locating all the embedded niches for p = 4 and 5,

however for p more than 5 the algorithm miss some of the niches.

10.2.4 Multi-objectivity

Besides multi-modality, the simultaneous optimization of multiple con
icting ob-

jectives, or equivalently, multi-objective optimization also has been addressed in

the Genetic Algorithm community. In the conventional approaches, di�erent ob-

jectives were combined into one objective to produce a compromise solution. On

the other hand, the Genetic Algorithm, as Srinivas (1994) wrote, can capture a

number of solutions simultaneously in a single run since it works with a popu-

lation of points, and a modest amount of methods to solve the multi-objective

problem has been proposed (Srinivas et al., 1994; Fonseca et al., 1995).
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0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000

N
u
m

b
e
r 

o
f 
lo

c
a
te

d
 s

o
lu

ti
o
n
s

Generation

p=5#3

#2

#1

#5

#4

Figure 47. Number of individuals converged on each niche: the Deterministic

Crowding GA.

117



Table 4. The number of solutions converged to each attractor.

Number of located attractors Total

p #1 #2 #3 #4 #5 #6

4 40 96 27 59 - - 200

4 68 26 24 82 - - 200

4 109 7 20 64 - - 200

4 23 52 76 49 - - 200

4 23 43 78 56 - - 200

4 18 79 11 92 - - 200

4 54 8 7 131 - - 200

4 31 28 38 103 - - 200

5 85 71 5 34 5 - 200

5 42 54 68 11 25 - 200

5 15 102 26 52 5 - 200

6 33 17 58 50 0 42 200

118



The associative memory model has multi-objectivity. There exists a trade-o�

between storage capacity and the size of the basin of attraction. We reported

(Imada et al., 1996d) that we can expand the basin size by a Genetic Algorithm

using a �tness function g, which is derived from the �tness function f simply

by replacing �
� with the noisy input (see Chapter 4). The �tness function g is

competitive with a �tness function f which is for the enhancement of the storage

capacity. Hence, we can regard the model as an example of a multi-objective

function.

However, we have found it very di�cult to expand the basin size even if we

neglect the simultaneous demand of enlarging the storage capacity. Here, we

show only a result of using single objective optimization based on g.

We visualized the basin size of the network as follows. One of the memorized

patterns is randomly selected. After d bits of the pattern are 
ipped at random,

the pattern is given to the network. Overlap between the memorized pattern and

an instantaneous network state after the input is given, is calculated at every

time step of updating. The overlaps are then temporally averaged after a certain

period of time (= 2N steps here). These processes of sampling an input pattern,

giving it to the network after 
ipping d bits and calculating temporal average

of the overlaps are repeated 800 times for �xed number of noisy bits d, and the

temporal averages of overlaps calculated in each repetition are further averaged

over the 800 repetitions. Thus, the averaged overlaps with d being incremented

from 0 to 20, are plotted in Figure 30. The measurements were made for the

following three weight matrices. (A) the matrix evolved from a random matrix

under the �tness function f ; (B) the matrix further evolved started with the

matrix obtained in A using �tness function g40; and (C) the matrix which learned

the given patterns by the Hebbian rule alone. They all store the same set of eight

patterns as �xed points. However, the size of the basin of attraction obtained

by the Genetic Algorithm with �tness evaluation g, is still smaller than that of

Hebb rule associative memory. This is probably because of the remaining spurious

attractors around the created memories.

40This implies restart of the GA with �tness function g after convergence of the GA with

�tness function f .

119



10.3 Summary

We have described the possibility of using the fully-connected neural network

model of associative memory as a test function of evolutionary computations.

The model has some favorable properties as a test function for a parameter op-

timization problem:

� the objective function is scalable but not separable, and the scalability is

easily changed by varying the number of neurons;

� the complexity is controlled with the number of a given set of patterns to

be stored by the network;

� the model is resistant to hill climbing;

� the model is sensitive to the di�erence in initialization; and

� the model has multi-modality as well as multi-objectivity.

Although these properties have not been tested exhaustively, the model as a pa-

rameter optimization problem is closer to real-world problems than currently used

test functions, in that we have little a priori information about the optimum in

addition to its complexity.

We believe that this study also contributes to the new analysis of the associa-

tive memory model. In fact, many issues still remain open, despite the extensive

discussions since the proposal of the model by Hop�eld. If we locate, for example,

all the solutions of synaptic weights which give a network a function of associative

memory, it will give an insight into the number and distribution of the solutions

in synaptic weight space, about which we have now only limited information.
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11. CONCLUSION AND FUTURE WORK

We have described behaviors of a fully connected neural network model of asso-

ciative memory under arti�cial evolution. A number of variants of evolutionary

algorithm were applied to the model. The Darwin's principle of survival of the

�ttest, Baldwin e�ect, Lamarckian inheritance and so on. As a result, we have

found that almost all variants successfully evolved over-loaded Hebbian weights,

all zero weights, and random weights eventually to store a set of given patterns as

�xed point attractors. Or equivalently, the algorithms found appropriate weight

con�gurations that create �xed point attractors exactly at the location of patterns

to be stored.

Simulations in this thesis were carried out on networks with 49 neurons. The

storage capacity of this size of network is around 8 when the weight values are

determined by the Hebbian learning algorithm alone. On the other hand, the net-

works obtained through evolutionary algorithm here have the maximum storage

ranging from 1 to 90. Hence we conclude that the solutions of weight con�gura-

tion of a network have a great diversity from implementation to implementation

or even from run to run. That is to say, we have found many di�erent global

peaks in the �tness landscape de�ned on weight space. The di�erence of these

peaks were argued in terms of degree of symmetry and rate of zero.

Although the analysis of the fully connected neural network model of asso-

ciative memory is somewhat classical, many issues are still open. The number

and distribution of the solutions in weight space are one such issue, and one of

the goals of this thesis is to address this issue. For the purpose, we study �tness

landscape de�ned on weight space and walkers walk down a hill from the top of

the hill. And we observed that the more we try to store patterns, the narrower

the top of peaks. Namely, the size of basin of attraction decreases as the number

of patterns to be stored increases.

Further, we try to visualize these solutions by reducing the dimensionality of

our 492 = 2401 dimensional weight space to 2-dimensional points using Sammon

mapping. The problem is an optimization problem, and we also use a GA to solve

it. Gardner (1988) discussed the number of solutions of the weight con�gurations

in terms of volume in weight space, and showed that the volume shrinks to zero

as the number of patterns approaches twice the number of neurons. On the
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contrary, if the number of patterns to be stored is one there are a plenty of

solutions. We tackled this phenomenon by visualizing solutions in weight space.

Although we have not been able to visualize many points in weight space due

to a strong constraint of the problem, we observed that 9 di�erent solutions are

almost uniformly distributed when the number of storing pattern is one while

they are localized when the number of patterns is 90.

Thus we believe these studies using evolutionary computations represents a

fresh investigative approach, and sheds new light on the analysis of the Hop�eld

model of associative memory. At the same time, we believe that we can contribute

to the evolutionary computation's community by discussing the possibility of

using the fully-connected neural network model of associative memory as a more

challenging test function than those currently used.
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