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Abstract

Over the past 50 years, researchers have made concerted efforts to construct
practical natural language systems such as automatic machine translators. Al-
though these systems are now commercially available and used, those with high
performance are limited to simple processors (part-of-speech taggers and kana-
kanji converters) or systems tuned for specialized domains. Why is it so difficult
to construct practical systems for broader use? The most crucial barrier has been
identified as the variety of knowledge required for language processing. .

This thesis explores the machine learning approach to natural language pro-
cessing in which the knowledge is automatically acquired by using a corpus c;ur—
rently available. In this thesis, I would not claim that machine learning is superior
to and should replace conventional methods (nearly all of them done by human
learning). Instead, my intention is to clarify what is appropriate and reasonable
for machine learning and what is appropriate for human learning. In the follow-
ing chapters, my ultimate objective is to promote a new approach to language
engineering by gaining a deep understanding of the machine learning techniques.

Conceptually, the knowledge problem can be processed by the following three
steps.

1. Enumerate linguistic features that potentially influence the target language
task.

2. Select features and combine them into a form of rules.

*Doctor’s Thesis, Department of Information Processing, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DT9761211, July 27, 1998.



3. Determine preference parameters of rules.

Although these steps in fact are deeply interleaved, let us consider them se-
quentially from the machine learning viewpoint. For the first step, it is basically
difficult for current computer programs to automatically enumerate feature types
and their coding scheme from scratch. The machine learning approach to extract-
ing features has been limited to the co-occurrence statistics of words and phrases.
Although the task is very simple, it is useful for various types of language process-
ing. The main decision in co-occurrence statistics is what range of expressions
should be considered by the statistics. The more complex the expressions are,
the more difficult it is for the system to induce them.

If we assume the existence of features to represent the target task, the sec-
ond step is to construct rules by combining the features. The machine learning
approach can produce a large-scale simple structure such as a decision tree and
a hidden Markov model (HMM). Its great advantage is to produce rules by us-
ing global data distribution, while a human linguist depends on intuition and
may resort to near-sighted rules. Thus, the most important factor in applying
machine leaning techniques is to apply the necessarily and sufficiently simplest
representation for the task.

The third step is to set the preference parameters. The machine learning
approach has fundamental advantages because the optimization of preference pa-
rameters should be performed from a global point of view. If a human linguist sets
the parameters only from a near-sighted perspective, the system would suffer from
side-effects. Worse still, even if the linguist makes the greatest efforts to maintain
the coherence of preference parameters, it gradually becomes difficult as the num-
ber of rules increases. The machine learning approach determines the preference
parameters, for example, by using maximum likelihood estimation (MLE), which
selects the parameters to maximize the likelihood of generating given data. The
more data are available, the more effective the parameters are.

The only obstacle faced by the approach for the second and third steps is the
limited amount of data available. Natural language is full of infrequent colloquial
or exceptional expressions that cannot be handled by general rules, which dete-

riorates the system’s overall performance. An effective learning scheme to cope
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with these expressions is needed.

Subsequent chapters describe concrete examples of machine learning tech-
niques for natural language processing. Following the introduction in Chapter 1,
Chapters 2 and 3 deal with unsupervised learning from bilingual (Japaniase and
English) corpora. Chapter 2 describes the sentence alignment task to find sen-
tence correspondences in bilingual texts'. The most prominent features (the first
step) for sentence alignment is word correspondences between two languages.
The learning algorithm (the second and third steps) is based on the intuition
that the more word correspondences a sentence pair contains, the more reliable
the sentence correspondence is. The proposed alignment method employs word
correspondences from both statistics and electronic dictionaries. By combining
the two kinds of word correspondences, sentence alignment was performed with
a higher precision than conventional methods. In addition, to cope with errors
left to be modified by humans, we also introduce a sentence alignment environ-
ment, called BACCS (Bilingual Aligned Corpus Construction System), devised
for human supervisors.

In Chapter 3, the sentence aligned corpora are then used to extract bilingual
collocations by a novel word-level sorting method. The extracted collocations are
important clues for machine translation and multi-lingual information retrieval
systems. The feature used in the method is only part-of-speech tags. The learning
method is simple occurrence statistics. According to the difficulty of learning,
we differentiate two kinds of collocations: fixed and flexible collocations. Fixed
collocations comprise a continuous sequence of words, while flexible collocations
consist of more than two separate sequences of words. Although conventional
methods focus on either noun phrases or flexible collocations, I would like to
emphasize that the fixed collocation is an important class due for the following

three reasons.

. Fixed collocations can be efficiently and precisely extracted by our word-

Jevel sorting method.

e Fixed collocations contain a broad range of expressions rather than noun

lSentence correspondence is not one-to-one.
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phrases.

o The construction for flexible collocations is efficient because a two-step com-

bination of fixed collocations can reduce redundant computation.

Note that the three steps in Chapters 9 and 3 are very simple, reflecting that the
problem settings are unsupervised.

By using the word-level sorting method, fixed collocations were extracted with
a precision better than 80%. On the other hand, Performance for flexible colloca-
tions remained 36.8%. These results confirm that the-two classes of collocations
are completely different in terms of the learning feasibility.

Chapters 4 and 5 address the most important tasks of Japanese language pro-
cessing: morphological analysis and dependency analysis. Morphological anal-
ysis segments an input sentence into a sequence of words annotated with part-
of-speech tags. Because there are no explicit delimiters between words in the
Japanese language, morphological analysis is the first step for almost all Japanese
text processing. Dependency analysis determines the syntactic structure (modi-
fication relations of bunsetsu) of input sentences. In these two chapters, I would
like to emphasize the importance of appropriate representations (hie‘rarchical
context trees and decision trees) and mistake-driven learning algorithm (boost-
ing) that is sensitive to data distribution. By introducing these methods, the re-
sulting morphological analyzer and dependency parser significantly outperformed
conventional systems.

In addition, I will show in Chapter 5 that the combination of feature extraction
by humans (the first step) and the machine learning approach (the second and
third steps) is quite promising for future natural language engineering.

Chapter 6 describes a concrete application of corpus-based natural language
processing. We will introduce an adaptive dictionary environment, called AIDA (A
daptive and Integrated Dictionary Agent), in which several dictionaries (Japanese-
English, English-Japanese, English-English), several corpora (bilingual and mono-
lingual) and collocations (extracted by the method in Chapter 3) are integrated
through a single graphical interface. When a user wants to write or réad texts,

particularly in foreign languages, his or her requirements are often not clear.
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AIDA provides the user with an adaptive and flexible search mechanism; the
system selects the expressions syntactically and semantically similar to the user’s
input. The similarity measure itself is learned through the interactions. Finally,
Chapter 7 concludes the thesis and mentions future directions. ;

These chapters confirm that machine learning approach achieves good per-
formance particularly when a target language task has a simple representation.
Both in supervised and unsupervised settings, arbitrariness of the conventional
rule compilation is removed by machine learning techniques. The objectiveness of
the approach should play a more essential role in applying to larger-scale practical

systems.

Keywords:

machine learning, bilingual corpora, sentence alignment, collocation, morpholog-

ical analysis, dependency analysis
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Chapter 1
Introduction

Over the past 50 years, researchers have made concerted efforts to construct prac-
tical natural language systems such as automatic machine translators. Although
these systems are now commercially available and used, those with high perfor-
mance are limited to simple processors (part-of-speech taggers and kana-kanji
converters) or systems tuned for specialized domains. Why is it so difficult to
construct practical systems for broader use? The most crucial barrier ha:s been

identified as the variety of knowledge required for language processing.

This thesis expiores the machine learning approach to natural language pro-
cessing in which the knowledge is automatically acquired by using a corpus cur-
rently available. Although the proposed techniques yield significant results in
both supervised and unsupervised settings, I would not simple-mindedly claim
that machine learning is superior to and should replace all conventional meth-
ods (nearly all of them done by human learning). Rather, my intention is to
clarify what is appropriate for the current machine learning and what is appro-
priaté for the conventional methods. My ultimate objective is to promote a new
style of natural language engineering by gaining a deep understanding of the pros

and cons of machine learning techniques.

Before going into the details of actual learning techniques, this chapter in-
troduces three types of knowledge and then discusses them from the machine
learning point of view. Finally, the tasks and techniques discussed in the subse-

quent chapters are briefly overviewed.



Let us start with the two examples below. The first example is taken from
a Japanese stock market bulletin and its English translation. The two sentences
have colloquial styles very specific to the stock market domain; although the
Japanese sentence may be translated as ‘Tokyo Gold Future market ended trading
for the day’ human translators never produce such a sentence because they adhere
to the rigid translation pattern inherent to the domain. To output such a natural

translation, machine translation systems must have domain-specific rules.

o HEEERKIIT
Tokyo Gold futures Cls.

o 1EFLFE#H~T-o7 (I went to Kyoto with Hanako.)
KB & B ~FT o 7 (I went to Kyoto and Osaka.)

The second example concerns the knowledge to disambiguate syntactic struc-
tures of Japanese sentences. Although the two sentences have only one word
difference (16F (Hanako) and KX (Osaka)), there is great dissimilarity in their
syntactic structures. The postpositional phrase f6F & modifies the verb phrase
477 in the first sentence, while the postpositional phrase KX & modifies the
postpositional phrase Zi#8~ in the second sentence. To address such a differ-
ence, we need rules governing, for example, what kind of nouns (semantic class)
the verb 4T ¢ tends to take as its objects and what semantic class the nouns &
F (Hanako) and 5# (Kyoto) belong to. It is further interesting to consider
the following sentence in which fEF & modifies F<BR#¢ but not 4T- 7z. Although
we introduced a rule that says 47 ¢ tends to take f£F ¥ as an object, it is not
valid for the new sentence. Because most language rules deal with only a part
or a generalized form of a sentence, they cannot be applied deterministically. In
other words, each rule has to be augmented with its preference parameters to

determine the most plausible structure of input sentences.

o 16T b KERASEH~IT - 7= (Hanako and Taro went to Kyoto.)



The close investigation of the above examples shows that the knowledge for

language processing can be constructed from the following three steps!.

1. Enumerating linguistic features that have potential effects on target tasks.
2. Selecting features and combining them into a form of rules.

3. Setting preference parameters for the rules.

In the translation example, bilingual word correspondences (the first step)
might be the linguistic features used. The domain specific translation rules (the
second step) are constructed by using these features. The third (preference) step
can be omitted because there is no ambiguity in applying the domain-specific
(sentence-level) rule. In the second syntactic example, on the other hand, the
preference step is needed because parsing systems are applied to a broad range
of texts. Thus this example involves all three steps; the thesa.urﬁs as a feature,
the rules of modification and the preferences for modifications.

In conventional systems, all three steps have been accomplished by human
linguists. They classify language phenomena and extract linguistic features in or-
der to compile rules. Each rule is then constructed with its preference parametér.
All these processes are iterated in-a trial-and-error fashion.

Let us now discuss the three steps from the machine learning viewpoint. For
the first step, machine learning has limited use. It is generally difficult for current
computer programs to automatically enumerate feature types and their coding
scheme from scratch. Going back to the second example, it is the insight and
experience of a human linguist that enumerate noun categories to be significant
features of dependency analysis and that determine how each feature is encoded
(say, in a noun thesaurus). It is important to remember that the machine learning
approach to enumerating features is limited to the co-occurrence statistics of
words and phrases; thus machine learning cannot solve everything. The research
on probabilistic context free grammars (PCFG) [9] indicates the importance of
the first step. From the late 80s to the present, parameter estimation of PCFG

INote that these steps in fact are deeply interleaved. The separation is not clear-cut but
made for explanation.



has been popular in the research community. These grammars are described
only with non-terminal symbols (features). This is clearly poor information for
disambiguating real-world natural language texts. Parsing accuracy with this
approach has remained around 60% with any learning algorithm.

If we assume the existence of features to represent the target task, the sec-
ond step is to construct rules by combining the features. The machine learning
approach is good at producing large scale and comparatively simple structures
such as a decision trees [3] or a hidden Markov model (HMM) [67], while human
linguist is good at producing a small number of complex rules like typed feature
structures [8]. The machine learning aﬁproach constructs the rules that explain
the global data distribution, while a human linguist depends on intuition and may
resort to near-sighted rules. The key point in using machine leaning techniques
is to select the necessarily and sufficiently simplest representation that contains
enough features for the task [46]. |

For the third step, the machine learning approach has a significant advantage
because the optimization of parameters should be performed from a global point
of view. The approach determines the parameters, for example, by maximum
likelihood estimation (MLE), which selects the parameters that maximize the
likelihood of generating given data. If a human linguist sets the parameters
from a near-sighted perspective, the total system would suffer from side-effects.
Worse still, even if the linguist makes his utmost efforts to maintain coherence,
it gradually becomes difficult as the number of rules increases.

In summary, machine learning approach has the following characteristics re-

lated to the above three steps.

1. In enumerating features, current machine learning techniques have limited

use (co-occurrence statistics).

2. In constructing rules, the machine learning approach is particularly powerful

for a large scale and simple structures such as a decision tree and a HMM.

3. The machine learning approach is well suited to evaluating preference pa-

rameters because the problem requires global optimization.
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Let us now move on to the concrete applications and techniques discussed in
the subsequent chapters. These techniques clearly reflect the characteristics of
the machine learning approach. {

The first part of the thesis focuses on the bilingual corpus. Japanese articles
and its English translations are mainly considered. A Japanese sentence is not
always translated into a single English sentence. It may be split into two or three
sentences and vice versa. Chapter 2 deals with the sentence alignment problem,
whose goal is to find sentence correspondences. The most crucial feature for the
task is the word correspondences between two languages. The learning method is
based on the intuition that the more word correspondences a sentence pair con-
tains, the more reliable the correspondence is. The proposed method employs two
kinds of word correspondences: statistically acquired word correspondences and
dictionary word correspondences. Each of the correspondences has its advantages

and disadvantages as summarized below.

Statistics Advantage Statistics is robust in the sense that it can extract context-
dependent usage of words and that it works well even if word segmentation?

is not correct.

Statistics Disadvantage The amount of word correspondences acquired by

statistics is not enough for complete alignment.

Dictionaries Advantage They can contain information about words that ap-

pear only once in the corpus.

Dictionaries Disadvantage They cannot capture context-dependent keywords
in the corpus and are weak against incorrect word segmentation. Entries in
the dictionaries differ from author to author and are not always the same

as those in the corpus.

By combining the two correspondences, sentence alignment is attained with high
precision and recall. When some errors are left to be modified by a human supervi-
sor, we will also introduce a sentence alignment environment, called BACCS (Bilingual

Aligned Corpus Construction System), designed for human supervisors.

2In Japanese, there are no explicit delimiters between words. The first task for alignment
is, therefore, to divide the text stream into words.
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Chapter 3 describes the word-level sorting method to extract bilingual colloca-
tions from the sentence aligned corpora. The bilingual collocations are important
features for machine translation systems and mutilingual information retrieval
systems. According to the difficulty of learning, the proposed method differenti-
ates two types of collocations: fixed and flexible collocations. Fixed collocations
comprise a continuous sequence of words, while flexible collocations consist of
more than two separate sequences of words. The translation pair of the first
example is an instance of fixed collocations acquired by the proposed method.

‘The word-level sorting method can efficiently detect continuous sequences
of words that occur frequently in a corpus because sequences with the same
prefix words are placed next to by the word-level sorting procedure. The fixed
collocations are then extracted by reducing the redundant sequences such as
‘Bank of’ against ‘Bank of Japan’. Finally, flexible collocations are extracted
by combining the fixed collocations. This two-step strategy for fixed and flexible
collocations has the following advantages, although conventional methods have

focused on either noun phrases or flexible collocations.

e Fixed collocations can be efficiently and precisely extracted by our word-

level sorting method.

e Fixed collocations contain a broad range of expressions, as shown by the

above example, rather than noun phrases.

e The construction for flexible collocations is efficient because a two-step com-

bination of fixed collocations reduces redundant computation.

It is worth noting that the three steps in Chapters 2 and 3 are very simple
because the problem settings are unsupervised.

The second part of the thesis addresses two fundamental processes in the
Japanese language: morphological analysis and dependency analysis. Morpho-
logical analysis segments an input sentence into words that are annotated with
part-of-speech tags. Because there are no explicit delimiters between words in the
Japanese language, morphological analysis is the first step for almost all Japanese

text processing. The dependency analysis determines the syntactic structure of

6



the input sentences. More specifically, an input sentence is first segmented into
a sequence of bunsetsu (minimal phrases). The modifications between bunsetsu
are then determined. :
Because these two processes have to deal with general genres of texts, in-
frequent expressions and their preferences are extremely important. To address
this issue, we adopt the mistake-driven mixture approach. The following is the
intuition behind this approach. Let us consider the process in which linguists
incorporate infrequent expressions into hand-crafted rules: they first construct
coarse rules that seem to cover a broad range of data. They then try to ana-
lyze data by using the rules and extract exceptions that the rules cannot handle.
Next, they generalize the excéptioné and refine the previous rules. The following

two steps abstract the human algorithm for incorporating infrequent expressions.

1. construct temporary rules that seem to successfully generalize given data.

2. try to analyze the data by using the constructed rules and extract the
exceptions that cannot be correctly handled, then return to the ﬁrs:t step
and focus on the exceptions.

In the same general approach, the mistake-driven learning algorithm (Adaboost) [27]
attaches a weight to each example and iteratively performs the following two pro-
cedures in the training phase:

1. constructing a model based on the current data distribution (weight vector)

2. updating the distribution (weight vector) by focusing on the data not well
predicted by the constructed model. More precisely, the algorithm reduces
the weight of the examples that are correctly handled.

For the prediction phase, the algorithm outputs a final model by mixing all the
constructed models according to their performance. By using the algorithm, a
series of models gradually changes from general to specific. In other words, the
algorithm incorporates not only frequent expressions but also infrequent ones that

are often considered to be exceptional.



In fact, the Adaboost algorithm has a theoretical basis [72] that explains why
it can successfully handle difficult instances without over-fitting the data. In sta-
tistical learning theory, the difficulty in classifying an instance is determined by
margin [79]. The margin intuitively represents the distance to the classification
boundaries. The larger the margin of an instance is, the easier it is to classify.
[72] proves that the Adaboost algorithm continuously increases the margin of
instances and that the generalization error of the final aggregated classifier is
bounded by the sum of the error for the training instances and a decreasing func-
tion of the margins. The Adaboost algorithm thus can deal with the originally
small-margin instances that correspond to the infrequent and difficult expres-
sions from the viewpoint of natural language processing. The margin theory of
Adaboost will be briefly discussed in Chapter 4.

Besides the learning algorithm, there remains the problem how tasks are rep-
resented. We introduce efficient tree structures: hierarchical context trees for
morphological analysis and decision trees for dependency analysis. Chapter 4
constructs a morphological analyzing system by boosting hlerarchlca.l context
trees. Compa:ed to the commonly used n-gram model, the hlerarchlcal context
tree has the following two variabilities in modeling previous contexts (precedlng
symbols). These variabilities in fact are used intuitively in hand-crafted mor-
phological analyzing systems [60]. The combination of these variabilities and the

Adaboost algorithm generates a high performance system.

1. The context length for predicting a symbol is variably determined by an

information theoretic criteria according to the distribution of the symbol.

9. The elements representing contexts are automatically selected from a hier-

archical structure: word, detailed part-of-speech and coarse part-of-speech.

In the same way, Chapter 5 introduces a Japanese dependency parser that
boosts decision trees. The decision tree is used to select linguistic features and
to compute the probability that one bunsetsu modifies the other. In fact, the
hierarchical context tree used in Chapter 4 is a limited form of the de(;ision tree.

The dependency structure of an entire sentence is determined by maximizing the
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product of the probabilities. Because the feature selection and probability esti-
mation are automatically performed by the learning algorithm, human linguists
can focus on the enumeration of linguistic features that have potential effect on
parsing performance.

The last part of the thesis describes a concrete application of corpus-based
techniques. Chapter 6 introduces an adaptive dictionary environment, called
AIDA (Adaptive and Integrated Dictionary Agent), in which several dictionaries
(Japanese-English, English-Japanese, English-English), several types of corpora
(bilingual and monolingual) and automatically extracted collocations are inte-
grated through a single graphical interface in which users can access any resources
bilaterally. When a user wants to write or read texts in foreign languages, his
or her requirements are in many cases unclear. AIDA provides a flexible search
mechanism for the corpus and dictionary; it finds expressions syntactically and
semantically similar to user’s input. The similarity parameters in this mecha-
nism are also learned from interaction with users. Finally, Chapter 7 concludes

the thesis and mentions future directions.
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Chapter 2

Bilingual Sentence Alignment
Using Statistical and Dictionary

Information

Corpus-based approaches based on bilingual texts are promising for various appli-
cations (i.e., lexical knowledge extraction [50, 59, 75, 20, 49], machine translation
[7, 71, 41] and information retrieval [70]). Most of these works assume voluminous

aligned corpora.

Many methods have been proposed to 'aligh bilingual corpora. One of the
major approaches is based on the statistics of simple features such as sentence
length in words [6] or in characters [31] and character sequences themselves [14].
These techniques are widely used because they can be implemented in an efficient
and simple way through dynamic programming. However, their main targets are
rigid translations (i.e., Hansard corpus) that are nearly literal translations. In
addition, the aligned texts have been structurally similar European languages
(i.e., English-French, English-German).

The simple-feature based approaches don’t work in flexible translations for
structurally different languages such as Japanese and English, mainly for the fol-
lowing two reasons. One is the difference in the character systems of the two lan-
guages. Japanese has three types of characters (Hiragana, Katakana and Kanji),

each of which carries different amounts of information. In contrast, English has
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only one type of characters. The other is the grammatical difference between the
two languages. In particular, the systems of functional (closed) words are quite
different from language to language. Thus, it is impossible in general to apply
the simple-feature based methods to Japanese-English translations.

One alternative alignment method is the lexicon-based approach, which makes
use of the word-correspondence knowledge of the two languages. [45] proposed
a statistical relaxation method to iteratively align bilingual texts using the word
correspondences acquired during the alignment process. Although the lexicon-
~ based method works well among European languages, the method does not work
in aligning structurally different languages. In Japanese-English translations, the
method does not capture enough word correspondences to permit alignment; it
can align only portions of the two texts. This is mainly because the number
of confident statistical word correspondences is not enough for complete align-
ment. This problem cannot be addressed as long as the method relies only on
statistics. Other methods in the lexicon-based approach embed lexical knowl-
edge into stochastic models (12, 82], but these methods were tested using just
rig.id translations (i.e., Hansard corpus).

To tackle the problem, we describe in this chapter a text alignment system
that uses both statistics and bilingual dictionaries at the same time. Bilin-
gual dictionaries are now widely available on-line due to advances in CD-ROM
technologies. For example, English-Spanish, English-French, English-German,
English-Japanese, Japanese-French, Japanese-Chinese and other dictionaries are
now commercially available. It is reasonable to make use of these dictionaries in
bilingual text alignment. The pros and cons of statistics and online dictionar-
ies are discussed below. They show that statistics and on-line dictionaries are

complementary in making bilingual text alignment.

Statistics Advantage Statisticsis robust in the sense that it can extract context
dependent usage of words and that it works well even if word segmentation

is not correct.

Statistics Disadvantage The amount of word correspondences acquired by

statistics is not sufficient for complete alignment.
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Dictionaries Advantage They can contain information about words that ap-

pear only once in the corpus.

Dictionaries Disadvantage They cannot capture context-dependent keywords
in the corpus and are weak against incorrect word segmentation. Entries in
the dictionaries differ from author to author and are not always the same

as those in the corpus.

Our system iteratively aligns sentences by using statistical and on-line dictio-

nary word correspondences. The characteristics of the system are as follows.

e The system performs well and is robust for various lengths (especially short)

and various genres of texts.

e The system is very economical because it assumes only online-dictionaries of
general use and doesn’t require the labor-intensive construction of domain-

specific dictionaries.

e The system is extendable by registering statistically acquired word corre-

spondences into user dictionaries.

We will discuss hereafter Japanese-English translation, although the proposed
method is language independent.

The proposed alignment method is incorporated in a graphical alignment
environment called BACCS (Biligngual Aligned Corpus Construction System).
BACCS offers a user interface that enables the user to easily confirm and modify
alignment results and register word correspondences created by the alignment
program into a user dictionary.

The organization of the chapter is as follows. First, Section 2.1 offers an
overview of our alignment system. Section 2.2 describes the entire alignment
algorithm in detail. Section 2.3 reports experimental results for various kinds
of Japanese-English texts including newspaper editorials, scientific papers and
critiques on economics. The evaluation is performed from two points of view:
precision-recall of alignment and word correspondences acquired during align-

ment. Section 2.4 describes our BACCS graphical alignment environment, in
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which the user can see the alignment results and then easily modify the results
and the user dictionary. Section 2.5 describes related works and Section 2.6 sum-

marizes the chapter.

2.1. System Overview

Word Correspondences

_—

Japanese text word segligation Satatistic | — | User
& POStagging | |Similarity Dictionary

English text —
Bilingual
Dictionary

:

word correspondence
counting

anchor setting

\

Alignment
Result

Figure 2.1. Overview of Alignment System BACCS

Figure 2.1 overviews our alignment system called BACCS. The input to the
system is a pair of Japanese and English texts, one the translation of the other.
First, sentence boundaries are found in both texts using finite state transducers.
The texts are then part-of-speech (POS) tagged and separated into original form
words!. Original forms of English words are determined by 80 rules using the
POS information. From the word sequences, we extract only nouns, adjectives,

adverbs, verbs and unknown words (only in Japanese) because Japanese and En-

1We use the JUMAN morphological analyzing system [52] in this phase for tagging Japanese
texts and Brill’s transformation-based tagger [4, 5] for tagging English texts. We would like to
thank all people concerned for providing us with the tools.
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glish closed words are different and impede text alignment. These pre-processing

operations can be easily implemented with regular expressions.

The initial state of the algorithm is a set of already known anchors (sentence
pairs). These are determined by article boundaries, section boundaries and para-
graph boundaries. In the most typical case, initial anchors are simply the first
and final sentence pair of each text (Fig. 2.2). Possible sentence correspondences
are determined from the anchors. Intuitively, the number of possible correspon-
dences for a sentence is small near anchors, while large between the anchors.
In this phase, the most important point is that each set of possible sentence

correspondences should include the correct correspondence.

The main task of the system is to find anchors from the possible sentence
correspondences by using two kinds of word correspondences: statistical word
correspondence and word correspondence from a bilingual dictionary?. By using
both correspondences, the sentence pair whose correspondences exceed a pre-
defined threshold is considered an anchor. These newly found anchors make word
correspondences more precise in the subsequent session. By repeating this anchor
setting process with threshold reduction, sentence correspondences are graduall&
determined from confident pairs to non-confident pairs. The gradualism of the
algorithm makes it robust because anchor-setting errors in the final stage of the
algorithm have little effect on overall performance. The output of the algorithm
is the alignment result (a sequence of anchors) and word correspondences as by-
products.

By using BACCS, the user can view and modify sentence correspondences
graphically and easily extend the system by registering word correspondences
into user dictionaries.

2In addition to a general-use bilingual dictionary, users can reuse their own dictionaries

created in previous sessions.
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Figure 2.2. Alignment Process

2.2. Algorithms

2.2.1 Statistics Used

In this section, we describe the statistics used to decide word correspondences.
From the many similarity metrics applicable to the task, we chose mutual in-
formation and t-score because the relaxation of parameters can be controlled in
a sophisticated manner. Mutual information represents the similarity between
oceurrence distributions and t-score represents the confidence of the similarity.
These two parameters permit more effective relaxation than the single parameter
used in conventional methods [45]. .

Qur basic data structure is the alignable sentence matrix (ASM) and the an-

chor matrix (AM). ASM represents possible sentence correspondences and con-
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sists of ones and zeros. A one in ASM indicates the intersection of the column,
and a row constitutes a possible sentence correspondence. On the other hand,
AM is introduced to represent how a sentence pair is supported by word corre-
spondences. The i-j Element of AM indicates how many times the corresponding
words appear in the i-j sentence pair. As alignment proceeds, the number of ones
in ASM decreases, while the elements of AM increase.

Let p; be a sentence set comprising the ith Japanese sentence and its possible
English correspondences as depicted in Figure 2.3. For example, p, is the set
comprising Jsentencey, Esentence; and Esentence;, which means Jsentence,
has the possibility of aligning with E'sentence; and Esentences. The p;s can be
directly derived from ASM.

P1 Jsentence 1 e——— Esentencel

P2 Jsentence 2 Esentence2

P3 Jsentence 3 Esentence3

Py Jsentence Mo——— Esentence N

Figure 2.3. Possible Sentence Correspondences

We introduce a contingency matrix [30] to evaluate the similarity of word
occurrences. Consider the contingency matrix shown in Table 2.1 between the
Japanese word wjp, and the English word weny. The contingency matrix shows:
(a) the number of p;s in which both w;p,, and weng were found, (b) the number
of p;s in which just wen, was found, (c) the number of p;s in which just w;,, was
found, (d) the number of p;s in which neither word was found. Note that ;i;,;s

overlap each other and w,.,g may be counted twice in the contingency matrix. We
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count each w,ny only once, even if it occurs more than twice in p;s.

| Wipn

Weng | @ b
c d

Table 2.1. Contingency Matrix

If wjpn and Weny are good translations of one another, a should be large, and
b and ¢ should be small. In contrast, if the two are not good translations of each
other, a should be small, and b and ¢ should be large. To make this argument

more precise, we introduce mutual information:

P”'Ob ('wjpm 'wen.g)

lo
’ pr Ob(wjm)PTOb(weng)

The probabilities are:

a—+c a+c
prob(Wim) = 3 rdT M

a+b a+b
probWens) = Ty ¥ cvd | M

a a

Prob(Wjpn, Weng) = atbtc+d M

Unfortunately, mutual information is not reliable when the number of oc-
currences is small. Many words occur just once, which weakens the statistics
approach. In order to avoid this, we employ t-score, defined below, where M is
the number of Japanese sentences. Insignificant mutual information values are
filtered out by thresholding the t-score. For example, t-scores above 1.65 are
significant at the p > 0.95 confidence level.

t pTOb(wJ’pm weng) i pTOb(wjpn)pTOb(weng)
\[ L prob(wjpn; Weng)
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2.2.2 Basic Alignmeht Algorithm

Our basic algorithm is an iterative adjustment of the Anchor Matrix (AM) using
the Alignable Sentence Matrix (ASM). Given an ASM, mutual information and
t-score are computed for all word pairs in possible sentence correspondences.
A word combination exceeding a predefined threshold is judged to be a word
correspondence. In order to find new anchors, we combine these statistical word
correspondences with the word correspondences in a bilingual dictionary. Each
element of AM, which represents a sentence pair, is updated by adding the number
of word correspondences in the sentence pair. A sentence pair containing more
than a predefined number of corresponding words is determined to be a new

anchor. The detailed algorithm is described below.

2.2.3 Constructing Initial ASM

This step constructs the initial ASM. If the texts contain M and N sentences
respectively, the ASM is an M x N matrix. First, we decide a set of anchors
using article boundaries, section boundaries and so on. In the most typical case,
initial anchors are the first and last sentences of both texts as depicted in Fig-
ure 2.2. Next, possible sentence correspondences are generated. Intuitively, true
correspondences are close to the diagonal linking of the two anchors. We con-
struct the initial ASM by using a function that pairs sentences near the middle of
the two anchors with as many as O(+/L) (L is the number of sentences existing
between two anchors) sentences in the other text because the maximum devia-
tion can be stochastically modeled as O(¥/L) [45]. The initial ASM has little
effect on the alignment performance so long as it contains all correct sentence

correspondences.

2.2.4 Constructing AM

This step constructs an AM when given an ASM and a bilingual dictionary. Let
thighs tiows Ihigh a0d Tiow be two thresholds for t-score and two thresholds for mu-
tual information, respectively. Let ANC be the minimal number of corresponding

words for a sentence pair to be judged an anchor.
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First, mutual information and t-score are computed for all word pairs appear-
ing in a possible sentence correspondence in ASM. We use hereafter the word cor-
respondences whose mutual information exceeds Ij, and whose t-score exceeds
t10w. For all possible sentence correspondences J sentence; and .Efsentencej (any

pair in ASM), the following operations are applied in order.

1. If the following three conditions hold, add 3 to the i-j element of AM.
(1) Jsentence; and Esentence; contain a bilingual dictionary word corre-
spondence (Wjpn and Weng). (2) Weng does not occur in any other English
sentence that is a possible translation of Jsentence;. (3) Jsentence; and
Esentencej do not cross any sentence pair that has more than ANC word

correspondences.

9. If the following three conditions hold, add 3 to the i-j element of AM. (1)
Jsentence; and Esentence; contain a stochastic word correspondence (w;pn
and Wen,) that has mutual information Jygs and whose t-score exceeds thigh-
(2) Weng does not occur in any other English sentence that is a possible
translation of Jsentence;. (3) Jsentence; and Esentence; do not cross any

sentence pair that has more than ANC word correspondences.

3. If the following three conditions hold, add 1 to the i-j element of AM. (1)
Jsentence; and Esentence; contain a stochastic word correspondence (Wipn
‘and Weng) that has mutual information I, and whose t-score exceeds %oy -
(2) Weny does mot occur in any other English sentence that is a possible
translation of Jsentence;. (3) Jsentence; and Esentence; do not cross any

sentence pair that has more than ANC word correspondences.

The first operation deals with word correspondences in the bilingual dictio-
nary. The second operation deals with stochastic word correspondences that are
highly confident and in many cases involve domain specific keywords. “These
word correspondences are given the value of 3. The third operation is introduced
because the number of highly confident corresponding words are 00 small to
align all sentences. Although word correspondences acquired by this step are

sometimes false translations of each other, these words appear in corresponding
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No. | Text Name Jpn | Eng | 1-1 | 1-2 | 2-1 | 3-1
1 | Root out guns at all costs 26 28 |24 2 0 0
2 | Economy facing last hurdle 30 | 41 | @5 7T 2 0
3 | Pacific Asia in the Post-Cold-War World | 134 | 124 | 114 0 | 10 | O
4 Visualizing the Mind 225 | 214 | 186 | 6 | 15 1

Table 2.2. Test Texts

sentences with high probability. Thus, they can play a crucial role mainly in the

final iteration phase. They are given one point.

2.2.5 Adjusting ASM

This step adjusts ASM using the AM constructed by the above operations. The
sentence pairs that have at least ANC word correspondences are determined to
be new anchors. By using the new set of anchors, a new ASM is constructed
using the same method as that used for initial ASM construction.

Our algorithm implements a kind of relaxation by gradually reducing #oy,
Iiow, and ANC, which enables us to find confident sentence correspondences first.
As a result, our method is more robust than dynamic programming techniques

against the shortage of word-correspondence knowledge.

2.3. Experimental Results

In this section, we report the results of experiments on aligning sentences in

bilingual texts and on statistically acquired word correspondences. The texts for -

the experiment varied in length and genres as summarized in Table 2.2. Texts 1
and 2 are editorials taken from “Yomiuri Shinbun’ and its English version ‘Daily
Yomiuri’. This data was distributed electronically via a WWW server’. The
first two texts clarify the system’s performance on shorter texts. Text 3 is an
essay on economics taken from a quarterly publication of The International House

of Japan. Text 4 is a scientific survey on brain science taken from ‘Scientific

3We would like to thank Yomiuri Shinbun Co. for permitting us to use the data.

21




Japanese English Mutual Information
E% 2 recording 3.58
NVFLEA L real 3.51
Za—= neuron 3.51
74 Wb film 3.51
Fpa—2A glucose 3.51
wEm increase 3.51
i MEG 3.51
RIS resolution 3.43
BR electrical 3.43
IN—7 group 3.39
BR recording 3.39
% electrical 3.39
- ) generate 3.33
TRt provide 3.33
MEG 3.33
NMR NMR 3.17
Frr2iath functional 317
e equipment 3.17
2% organ 3.15
5T compound 3.10
X water 3.10
ek radioactive 3.10
PET PET 3.10
fRAREE spatial 3.10
FDLHT such 3.10
] metabolism 3.06
B verb 3.04
HEE scientist 2.95
# B mapping 2.92
KF university 2.92
B thought 2.90
t&w compound 2.82
PR label 2.82
RE visual 2.77
= signal 2.71
DTNV A L time 2.69
g9t autoradiography 2.67

Table 2.3. Statistically Acquired Keywords
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American’ and its Japanese version ‘Nikkei Science’. Jpn and Eng in Table2.2
represent the number of sentences in the Japanese and English texts respectively.
The remaining table entries show categories of matches by manual alignment and
indicate the difficulty of the task.

We briefly report here the computation time of our method. Let us consider
Text 4 as an example. After 15 seconds for full preprocessing, the first iteration
took 25 seconds with £, = 1.55 and I}, = 1.8. The rest of the algorithm took 20
seconds in all. This experiment was performed on a SPARC Station 20. From the

result, we may safely say that our method can be applied to voluminous corpora.

2.3.1 Sentence Alignment

Proposed Statistics Dictionary
Text | PRECISION | RECALL | PRECISION | RECALL | PRECISION | RECALL
1 96.4% 96.3% 65.0% | 48.5% 89.3% 88.9%
2 95.3% - 93.1% 61.3% 49.6% 87.2% 75.1%
3 96.5% 97.1% 87.3% 85.1% 86.3% 88.2%
4 91.6% 93.8% 82.2% 79.3% ' 74.3% " 63.8%

Table 2.4. Results of Sentence Alignment

Table 2.4 shows the performance of sentence alignment for the texts in Ta-
ble 2.2. Proposed, Statistics and Dictionary represent the methods using
both statistics and dictionary, only statistics and only dictionary, respectively.
Both Proposed and Dictionary use a CD-ROM version of a Japanese-English
dictionary containing 40,000 entries. Statistics repeats the iteration by using
statistically corresponding words only. This is identical to Kay’s method [45]
except for the statistics used. Dictionary performs the first iteration of the al-
gorithm by using corresponding words of the bilingual dictionary. This delineates
the coverage of the dictionary. The parameter setting used for each method was
optimal as determined by empirical tests. #ir

In Table 2.4, PRECISION indicates how many of the aligned pairs are correct

and RECALL indicates how many of the manual alignments we included in sys-
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tem output. Unlike conventional sentence-chunk based evaluations, our result is
measured on a sentence-sentence basis. Let us consider a 3-1 matching (sentence
chink). Conventional evaluations can make at most one error from the chunk
because they count errors based on the number of chunks. On the other hand,
three errors may arise by our sentence-sentence based evaluation. Note that our
evaluation is more strict than the conventional one, especially for difficult texts
because they contain more complex matches.

For Text 1 and Text 2, both the proposed method and the dictionary method
perform much better than the statistical method. This is obviously because
statistics cannot capture word-correspondences in the case of short texts.

Text 3 is easy to align in terms of both complexity of alignment and vocabulary
used. All methods performed well on this text.

For Text 4, Proposed and Statistics perform much better than Dictionary.
The rteason for this is that Text 4 concerns brain science and the bilingual dic-
tionaries in general use did not contain domain-specific keywords. On the other
hand, the proposed and statistical methods well captured the. keywords, as de-
scribed in the next section. Note here that Proposed also performs better than
Statistics in the case of longer texts. There is clearly a limitation in the amount
of word correspondences that can be captured by statistics. The precision of the
proposed method for Text 4 is not as high as for the other texts due to the follow-
ing reasons. First, Text 4 contains more technical terms than others because it
concerns brain science. Bilingual dictionaries in general use cannot capture these
technical terms. Second, Text 4 contains more multiple alignments (such as 1-2
and 2-1). Multiple alignments degrade alignment performance.

In summary, Proposed has a better performance than either that of Statis-

tics or Dictionary for all texts, regardless of text length and domain.

2.3.2 Word Correspondence

In this section, we will demonstrate how well the proposed method captured
domain-specific word correspondences by using Text 4 as an example Table 2.3
shows the word correspondences that have high mutual information. These are

typical keywords involved in reporting the non-invasive approach to human brain
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analysis. For example, NMR, MEG, PET, and functional MRI are devices for
measuring brain activity from outside the head. These technical terms are the
subjects of the text and are essential for alignment. However, none of them have
their own entry in the bilingual dictionary, which would severely obstr'uct the
dictionary method.

It is interesting to note that the correct Japanese translation of ‘MEG’ is ‘fi
#E0’. The Japanese morphological analyzer we used does not contain an entry
for ‘B’ and so splits it into a sequence of three characters ‘fi’,’f#%’ and ‘BX’.
Our system skillfully combined ‘&’ and ‘B with ‘MEG’ as a result of statistical
acquisition. These word correspondences greatly improved the performance for
Text 4. Thus, the statistical method well captures the domain-specific keywords
that are not included in general-use bilingual dictionaries. The dictionary method
would yield false alignments if statistically é,cquired word correspondences were

not used.

2.4. Graphical Alignment Environment BACCS

This section describes a graphical alignment environment called BACCS* (Bilin-
gual Aligned Corpus Construction System) that incorporates our alignment pro-
gram. The experimental results in the previous section showed that our alignment
method attained high accuracy; however, this method can not always achieve
100% correct alignment. Thus it is necessary for humans to modify and con-
firm the alignment results given by our alignment program to build an accurately
aligned corpus. Such a corpus is a useful resource for extracting various kinds of
expressions and their translations in the next chapter.

BACCS offers a user interface that enables the user to easily confirm and mod-
ify alignment results and register word correspondences created by the alignment
program into a user dictionary. Figure 2.4 shows a screenshot image of BACCS.
The rear window shows alignment results, while the front window shows the word
correspondence candidates.

The process of making a correctly aligned corpus with BACCS is as follows.

4BACCS was implemented in Tcl/Tk on X Window.
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1. Select the target bilingual texts.
2. Run the alignment program and display the alignment results.
3. Confirm and modify these results by mouse actions.

4. Choose the proper word correspondences from among the candidates cre-

ated by the alignment program and register these into the user dictionary®.

BACCS not only finds sentence alignment but also extracts bilingual colloca-
tions from aligned sentences by using the word-level sorting method[33] described
in the next chapter.

The annotated bilingual corpus is used in Chapter 6 for our translation aid
system AIDA, which integrates bilingual corpus, mono-lingual corpus and hand-

compiled dictionaries.

2.5. Related Work

Sentence alignment between Japanese and English was first explored by Sato and
Murao [61]. They found (character or word) length-based approaches were not
appropriate due to the structural differences between the two languages . They
devised a dynamic programming method based on the number of correspond-
ing words in a hand-crafted bilingual dictionary. Their approach is similar to a
bilingual phrase extracting method [21]. Although some results were promising,
the method’s performance strongly depended on the domain of the texts and the
dictionary entries. [78] introduced a statistical post-processing step to tackle this
problem. He first applied Sato’s method and extracted statistical word correspon-
dences from the result of the first path. Sato’s method was then reiterated using
both the acquired word correspondences and the hand-crafted dictionary. His
method involves the same problem as Sato’s method. That is, unless the hand-
crafted dictionary contains domain-specific keywords, the first path yields false
alignment, which in turn leads to false statistical correspondences.- Because it is

basically impossible to cover keywords from all possible domains, it is inevitable

5In the experiments reported in the previous section, no user dictionaries were used.
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Figure 2.4. BACCS

that statistics and hand-crafted bilingual dictionaries be used simultaneously.
The proposed method involves iterative alignment that simultaneously uses both
statistics and a bilingual dictionary.

[30, 29] proposed methods to find Chinese-English word correspondences with-
out aligning parallel texts. Their motivation was based on the fact that struc-
turally different languages such as Chinese-English and Japanese-English are gen-
erally difficult to align. Their methods abandoned aligning sentences and only
acquired word correspondences. Although their approaches are robust and do not

require any information source, aligned sentences are indispensable for higher ap-
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plications such as translation template acquisition [59, 41], example-based trans-
lation [71] and translation aide systems such as AIDA. Our method performs
accurate alignment for such use by combining the detailed word correspondences
of statistically acquired word correspondences with those from a l:;ilingual dictio-

nary in general use.

2.6. Summary

We have described a bilingual text alignment system for structurally different
languages. The proposed method uses two kinds of word correspondences at the
same time: word correspondences acquired by statistics and those of a bilingual
dictionary. By combining these two types of word correspondences, the method
covers both domain-specific keywords not included in the dictionary and infre-
quent words not detected by statistics. As a result, the proposed method outper-

forms conventional methods for texts of different lengths and different domains.
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Chapter 3

Learning Bilingual Collocations

by Word-level Sorting

In the field of translation, there is a growing interest in corpus-based approaches
(71, 20, 59, 49, 75]. The main motivation behind this is to well handle domain
specific expressions. Each application domain has various kinds of collocations
ranging from word-level to sentence-level. The correct use of these collocations
greatly influences the quality of texts. Because such detailed collocations are diffi-

cult to hand-compile, an automatic extraction of bilingual collocations is needed.

[75] proposed a general method to extract a broader range of collocations. This
method first extracts English collocations using the Xtract system [74] and then
looks for French counterparts. Their search strategy is an iterative combination of
two elements. This is based on the intuitive idea that “if a set of words constitutes
a collocation, its subset will also be correlated”. Although this idea is correct, the
iterative combination strategy generates a number of useless expressions. In fact,
Xtract employs a robust English parser to filter out the wrong collocations that
form more than half of the candidates. In other languages, parser-based pruning
cannot be used. Another drawback of their approach is that only the longest n-
gram is adopted. When ‘Japan-US auto trade talks’ is adopted as a collocation,
‘Japan-US’ cannot be recognized as a collocation though it is frequently used

independently.

In this chapter, we propose an alternative method based on word-level sorting.
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1. EEAAELTE -, MR- —268%84M21 -2 4 $%.
Tokyo Forex 5 PM: Dollar at 84.21-84.24 yen

0. BEEXN2 6EABEFLVED]L FA=84MH21—-24 BTRHFOPG E#R T
The dollar stood 0.26 yen lower at 84.21-84.24 at 5 p.m.

3. FAEILIEESTTAOOMABCHET LAY, BREERETORAEER
Ly s —REEREBAE L ORHkE BARRE 2 7 HRBICHEL THBO L — F
Az h, Miz8 4 MRTEThBE ICHEB LT,

Forex market trading was extremely quiet ahead of further auto talks between

Japan and the U.S., slated for early dawn Tuesday.

4, Fridd=nsTRELLFL=1, 386366 TNy TIEIZPG| E# R0
The U.S. currency was quoted at 1.361-1.3863 German marks at 5:15 p.m.

Table 3.1. Sample of Target Texts

Our method comprises two steps: (1) extracting useful word chunks (n-grams) in
each language by using word-level sorting and (2) constructing bilingual colloca-
tions by combining the word-chunks acquired at stage (1). Given sentence-aligned
texts in two languages [36], the first step detects useful word chunks by sorting
and counting all uninterrupted word sequences in sentences. In this phase, we
developed a new technique for extracting only useful chunks. The second step of
the method evaluates the statistical similarity of the word chunks appearing in
the corresponding sentences. Most of the fixed (uninterrupted) collocations are
directly extracted from the word chunks. More flexible (interrupted) collocations
are acquired level-by-level by iteratively combining the chunks. The proposed
method, which uses effective word-level sorting, not only extracts fixed colloca-
tions with high precision but also avoids the combinatorial explosion involved in

searching flexible collocations. In addition, our method is robust and suitable for
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real-world applications; even if the part-of-speech taggers make errors in word
segmentation, most of the errors can be recovered in the word chunk extraction
stage because this stage can recombine the false segments.

The organization of the chapter is as follows. In Section 3.1, we demc;nstrate
sample Japanese-English collocations and classify them into two types (fixed
and flexible) according to the difficulty of statistical learning. After discussing
how useful word chunks are extracted by the word-level sorting in Section 3.2,
we will move on to the extraction of bilingual collocations. In Section 3.3, we
discuss our experimental result from using two different kinds of data. One is
scientific articles that consist of comparatively rigid translations. The other is
more challenging: a Japanese stock market bulletin and its English abstract.
The different characteristics of the data will shed light on the ability of statistical
learning methods. Section 3.4 discusses related works and Section 3.5 gives the

summary.

3.1. Two Types of Japanese-English Collocations

In this section, we briefly classify the types of Japanese-English collocations by
using the material in Table 3.1 as an example. These texts were derived from 2
stock market bulletin written in Japanese and its abstract written in English.
In Table 3.1, (RF%E454% | Tokyo Forez), (HKEEVERIE /auto talks between
Japan and the U.S.) and (¥£2 T /ahead of) are Japanese-English collocations
whose elements constitute uninterrupted word sequences. Hereafter, we call this
type of collocation fixed collocation. Although the fixed collocation seems
trivial, more than half of all useful collocations belong to this class. Thus, it is
important to extract fixed collocations with high precision. In contrast, ( F
i~ THLY 5| & %# 272 [The U.S. currency was quoted at ~ ) and ( FViz~T
LY 5| & %# x2 72 / The dollar stood ~)* are constructed from interrupted word
sequences. We will call this type of collocation flexible collocation. From the
viewpoint of machine learning, flexible collocations are much more difficult to

learn because they involve the combination of elements. The point to consider

1 —~ represents any sequence of words.
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when extracting flexible collocations is how the number of combinations (candi-

dates) can be reduced.

Our learning method is twofold according to the collocation types. First,
useful uninterrupted word chunks are extracted by the word-level sérting method.
We then evaluate stochastic similarity of the chunks to find out fixed collocations.

Finally, we iteratively and hierarchically combine the chunks to extract flexible

collocations.

3.2. Extracting Useful Chunks by Word-level Sort-
ing
3.2.1 Previous Research

text string (I characters: | bytes)

Jlajpla|n] ﬁJ

-1
pointer table

Figure 3.1. Character-level Sorting Approach

With the availability of large corpora and memory devices, there is once again
growing interest in extracting n-grams with large values of n. [62] introduced
an efficient method for calculating an arbitrary number of n-grams from large
corpora. When the length of a text is [ bytes, it occupies | consecutive bytes in
memory (Fig. 3.1). First, another table of size [ is prepared, each ﬁeld of which
represents a pointer to a substring. A substring pointed to by the (i —1)th entry
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of the table constitutes a string existing from the ith character to the end of the
text string. Next, to extract common substrings, the pointer table is sorted in
alphabetic order. Two adjacent words in the pointer table are compared and the
lengths of coincident prefix parts are counted [32]. '

For example, when ‘auto talks between Japan and the U.S.” and ‘auto talks
between Japan and China’ are two adjacent words, the number of coincidences
is 29, i.e., ‘auto talks between Japan and ’. The n-gram frequency table is con-
structed by counting the number of pointers that represent the same prefix parts.
Although the method is efficient for large corpora, it involves a large volume of
fractional and unnecessary expressions. The reason for this is that the method
does not consider the inter-relationships between the extracted strings. That is,
the method generates redundant substrings that are subsumed by longer strings.

To settle this problem, [38] proposed a method to extract only useful strings.
Basically, the method is based on the longest-match principle. When the method
extracts a longest n-gram as a chunk, strings subsumed by the chunk are derived
only if the shorter string often appears independently of the longest chunk. If
‘auto talks between Japan and the U.S.’ is extracted as a chunk, ‘Japan and the
U.S.’is also extracted because ‘Japan and the U-S.’is so often used independently
as in ‘Japan and the U.S. agreed ---’. However, ‘Japan and the’is not extracted
because it always appears in the context of ‘Japan and the U.S.’. The method
strongly suppresses fractional and unnecessary expressions. More than 75% of

the strings extracted by Nagao’s method are removed by the new method.

3.2.2 Word-level Sorting Method

The research described in the previous section deals with character-based n-
grams, which generate excessive numbers of expressions and require large memory
for the pointer table. Thus, from a practical point of view, word-based n-grams
are preferable in order to further suppress fractional expressions and pointer table
use. We extend lkehara’s method [38] to handle word-based n-grams. First,
both Japanese and English texts are part-of-speech (POS) tagged? and stored in

2We use the JUMAN morphological analyzing system [52] for tagging Japanese texts and
Brill’s transformation-based tagger [5] for tagging English texts. We would like to thank all
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text string (| words)
J]alplaln|e[a[n[d[@[t[ne] [\ | |

I-1
pointer table

@:word delimiter
\0: ‘sentence delimiter

Figure 3.2. Word-level Sorting Approach

memory (Fig. 3.2).

POS tagging is required for two main reasons: (1) There are no explicit word
delimiters in Japanese and (2) By using POS information, useless expressions can
be removed? :

In Figure 3.2, ‘@’ and \0’ represent the explicit word delimiter and the explicit
sentence delimiter, respectively. The dotted arrow indicates a useless pointer
because phrases starting from a conjunct never constitute collocations. This
pointer is not registered in the pointer table. Compared to previous research,

this data structure has the following advantages.

1. Only heads of each candidate word are recorded in the pointer table. As
shown in Figure 3.2, this significantly reduces memory use because the

pointer table also contains other string characteristics as Figure 3.3.

9. As shown in Figure 3.2, only expressions within a sentence are considered

by introducing the explicit sentence delimiter ‘\0’.

people concerned for providing us with the tools. .
3o filter out useless expressions, 50 POS rules (for each language) in regular-expressions

are applied in both the pointer generation process (Figure 3.2) and the useful chunk detection

process (Figure 3.3).
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3. Only word-level coincidences are extracted by introducing the explicit word
delimiter ‘@’. This removes strings arising from a partial match of different
words. For example, the coincident string between ‘Japan and China’ and
‘Japan and Costa Rica’is ‘Japan and’in our method, while it is ’Jaimn and

C‘ in previous methods.

2ort [aaopt [omel]  etring

24 10 Japan@and @ China@
105 . 10 Japan @ and @ Costa Rica
1064 16 Japan@and @the@US

5 16 Japan@and @the @US
2104 - 16 Japan@and @the @US
1702 16 Japan@and @the@US
1104 16 Japan@and @the@US
104 Y6 Japan@and @the@US

Figure 3.3. Sorted Pointer Table

Next, the pointer table is sorted in alphabetic order as shown in Figure 3.3.
In this table, sentno. and coincidence represent which sentence the string ap-
peared in and how many characters are shared by the two adjacent strings, respec-
tively. That is, coincidence totals the candidates for useful expressions. Note
here that the coincidence between Japan@and@China- - - and Japan@and@Costa
Rica- - - is 10 as mentioned above. After counting coincidence, the POS rules
are applied again to filter out the syntactically useless expressions. The above
‘Japan and’is then removed from the candidates.

Next, in order to remove useless subsumed strings, the pointer table is sorted
according to sentno.. In this stage, adopt is filled with ‘1’ or ‘0’ , each of which
represents if or not if a string is subsumed by longer word chunks, respectiveiy.

Sorting by sentno. makes it much easier to check the subsumption of word

35



chunks. If both ‘Japan and the U.S.’ and ‘Japan and the’ arise from a sentence’,
the latter is removed because the former subsumes the latter.

Finally, to determine which word-chunks to extract, the pointer table is sorted
once again in alphabetic order. In this stage, we count how mang; times a string
whose adopt is 1 appears in the corpus. By thresholding the frequency, only

useful word chunks are extracted.

3.2.3 Extracting Bilingual Collocations

In this section, we will explain how fixed and flexible collocations are constructed
from word chunks extracted in the previous stage. First, we introduce the metric
to evaluate the similarity of word-chunk occurrences in two languages. We use the
contingency matrix shown in Table 3.2 for Japanese word chunk ¢, and English
word chunk cn,. The contingency matrix shows: (a) the number of Japanese-
English corresponding sentence pairs in which both ¢jpn and ceny were found, (b)
the number of Japanese-English corresponding sentence pairs in which just ceng
was found, (c) the number of Japanese-English corresponding sentence pairs in
which just ¢jp, was found, (d) the number of Japanese-English corresponding

sentence pairs in which neither chunk was found.

‘ Cipn

Cong | @ b
C d

Table 3.2. Contingency Matrix

If ¢jpn and ceng are good translations of one another, a should be large, and b
and c should be small. In contrast, if the two are not good translations of each
other, a should be small, and b and ¢ should be large. To make this argument more
precise, our system implements two similarity criteria: (1) mutual information
and (2) Dice’s coefficient [45]. ;

41p fact, ‘Japan and the’ should be eliminated by POS rules
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(1)1 pTOb(ijn: Ceng) < log ala+b+c+ d)
prob(Cpn)prob(ceng) (a+b)(a+c)

2a
(2a+b+c)

(2)
Because these two criteria do not make great distinctions empirically, we will
hereafter consider the combination of mutual information and co-occurrence (a

in Table 3.2) as our similarity measure.

Comnstruct two (Japanese and English) word chunk index
while(agenda file (F',M) is not null)
for each sentence pair i
if a word chunk pair in 4 exceeds F' and M
keep it as a candidate
select collocation pairs whose elements constitute the maximally similar
translation of each other

remove the collocations from word chunk index .

Table 3.3. Algorithm for Fixed Collocations

Table 3.3 summarizes how fixed collocations are extracted by using the word
chunks induced in the previous section. The algorithm is an iterative method [45,
36, 47| that gradually extracts from highly confident to less confident collocations.
The iteration schedule is given to the algorithm by an agenda file that constitutes
a sequence of co-occurrence (F') and mutual information (M) thresholds.

For all bilingual word chunks in each sentence pair, co-occurrence frequency
and mutual information are computed. If both values exceed thresholds (F)
and (M), the bilingual word chunks are kept as collocation candidates. The
candidates whose elements constitute the maximally similar translation of each
other are extracted as bilingual collocations. These collocations are removed from
word chunk index and the algorithm continues until the agenda file comes to the

end.



Next, we summarize how flexible collocations are extracted. The following is

a series of procedures to extract flexible collocations.

1. For any pair of chunks in a Japanese sentence, compute mutual information.
Combine the two chunks of highest mutual information. Iteratively repeat
this procedure and construct a tree level-by-level (maximum connection

number is 3).

9. For any pair of chunks in an English sentence, repeat the operations done

in the Japanese sentence.

3. Perform node matching between trees of both languages by using mutual

information of Japanese and English word chunks.

Ly - VElRe ALy PHECR BLELL ++>‘ HAZAN

<= malching

x Jow mutual information

rose on the oil producs spot marcél in Singapore gasoil
Figure 3.4. Constructing Flexible Collocations

The first two steps construct monolingual similarity trees of word chunks in
sentences. The third step iteratively evaluates the bilingual similarity of word
chunk combinations by using the above trees. Because word chunks in two
languages are registered in index trees, we can also efficiently compute the co-

occurrence and mutual information between a Japanese group of chunks and an
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English group of chunks. The node matching process continues while mutual
information of nodes increases.

Consider the example below, in which the underlined word chunks construct
a flexible collocation (¥ ¥ # ¥ — VEMBRA Ky PHHTR~HFER LA [ ~
rose ~ on the oil products spot market in Singapore). First, two similarity trees
are constructed as shown in Figure 3.4. Node matching is then iteratively at-
tempted by computing mutual information for groups of word chunks. In the
present implementation, the system combines three word chunks at most. The
technique we use is similar to the parsing-based methods for extracting bilingual
collocation [59]. Our method replaces the parse trees with similarity trees and

thus avoids the combinatorial explosion inherent to parsing-based methods.

Ezamgple:

VOHER-NVEMBERARY VB TR F 79 HTAFANVHBERL:

Naphtha and gas oil rose on the oil products spot market in Singapore

3.3. Experimental Results

No. | Contents Sentence Pairs
1 | Stock Market Bulletin 1114
Scientific Review (Brain Science) 1766
Scientific Review (Various Areas) 75000

Table 3.4. Test Data

We performed an evaluation of the proposed method by using quite differ-
ent data sets. One is scientific articles taken from ‘Scientific American’ and its

Japanese version ‘Nikkei Science’. Although these data contain about 10% of

5We would like to thank Nikkei Science Co. for permitting us to use the data.
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multiple sentence alignment (i.e., 1-2, 2-1, 1-3, etc.), almost all contents are lit-
erally translated. The other text is very challenging: Japanese stock market
bulletins and their English abstracts. The sample data displayed in Table 3.1
show that much of the Japanese content is skipped in the Englisﬂ abstract. Ta-
ble 3.4 summarizes the data used in the experiment. Text 1 and Text 2 were
used to evaluate the induced collocations and Text 3 to estimate computational
efficiency of the proposed method.

As for Text 3, the total time required for extracting fixed and flexible collo-
cations was 2 hours and 14 minutes on a SPARC Station 20 Model HS21. From
this result, we may conclude that the proposed method is very efficient and can

be applied to voluminous corpora.

3.3.1 Fixed Collocations

No. | Extracted Collocations | Precision

397 e
929 88.5 %

Table 3.5. Results for Fixed Collocations

We extracted fixed collocations from Text 1 and Text 2 by using the same
agenda file®.

Table 3.5 displays the results. Text 1 yielded 397 collocations, 72.3% of which
were correct. Text 2 yielded 929 collocations, 88.5% of which were correct. Unlike
Precision, it is generally difficult to evaluate Recall; we can get a rough idea by
comparing the number of extracted collocations and that of given sentence pairs.
Text 1 generates a collocation every third sentence, while Text 2 does it every
second sentence. The difference between two texts would seem to originate from
the rigidness of translations. That is, the more literal translation are, the more

precision and recall can be attained.

6The actual agenda sequence is (5,6.0), (5,5.5), (4,6.5), (4,6.0), (4,5.5), (4,5.0), (3,6.0),
(3,5.5), (3,5.0), (2,6.5), (2,6.0), (2,5.5), (2,5.0), (2,4.5), (2,4.0).
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Text 1 Text 2
Word Length || Jpn | Eng | Jpn | Eng
1 144 | 156 | 480 | 580
2 126 | 117 | 299 | 253
3 62 | 64 | 102 | 53
4 31 | 38 | 37 | 19
bt 21 1 10 11
6 9 2 0 9
7 3 6 1 2
8 0 2 0 0
9 0 2 0 |
10 1 0 0 0
14 0 0 0 1
12 0 0 0 0
13 0 0 0 0
14 0 1 0 0
15 0 2 0 0

Table 3.6. Word Length of Fixed Collocations

Table 3.6 demonstrates the word length of extracted collocations. Outputs
from Text 1 tend to be longer than those from Text 2. This is because stock mar-
ket collocations contain a variety of constructions: noun phrases, verb phrases,
prepositional phrases and sentence-level collocations. On the other hand, noun
phrase collocations are the majority in scientific articles. Table 3.7 and Table 3.8
exemplify the most confident collocations induced from Text 1 and Text 2, re-

spectively.

Many domain-specific jargon words are found in both Tables. In particular, it
is interesting to notice the variety of fixed collocations from Text 1. For example,
No 9 in Table 3.7 means ‘Tokyo Gold Future market ended trading for the day’,

but was never written as such. As well as No. 9, a number of sentence-level col-
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locations were also extracted from Text 1. No. 9, No. 18, No. 23, No. 26, No. 35,
No. 56 and No. 67 are typical heads of the stock market report. These expressions
appear everyday in stock market reports. These collocations are useful for trans-
lators, but greatly differ from domain to domain. Thus, it is generally difficult to
hand-compile a dictionary that contains these kinds of collocations. Because our
method automatically extracts these collocations, it will be of significant use in
compiling domain-specific dictionaries. In contrast, domain-specific noun phrases
are extracted from Text 2 with very high precision. In the field of science and

technology, these technical terms play a central role in the translating process.

Although conventional methods focus on noun phrases or try to encompass
all kinds of collocations at the same time, fixed collocation is an important class
of collocation, as shown above. It is useful to intensively study fixed collocations
because the collocation of more complex structures is difficult to learn regardless
of the method used.

3.3.2 Flexible Collocationé

We extracted flexible collocations only from Text 1 because scientific articles
do not seem to contain many flexible collocations. The experiment yielded 87
flexible collocations, 36.8% of which were correct. Table 3.9 exemplifies the collo-
cations acquired from Text 1. No. 1 to No. 4 are typical expressions in stock mar-
ket reports. These collocations are extremely useful for template-based machine
translation systems. No. 5 is an example of a useless collocation. Both Omron
and Sumitomo Forestry are company names that co-occur frequently in stock
market reports, but these two companies have no direct relation. In fact, more
than half of all flexible collocations acquired were like No. 5. To remove useless
collocations, we need a robust parser to find out the direct modiﬁ'er/rpodiﬁcant
relations. We are planing to apply the dependency parser [35] described in Chap-
ter 5.
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{_No. I_Japanese English ] No. I Japanese English
1 WG Tokyo Forex 38 g it bonds and bond futures
2 LT ahead of 39 O 10y 4 public funds
3 TNy German mark 40 B EE institutional investors
4 JAFCO Japan Associated Finance 41 LA benchmark
5 &3] in contrast 42 F iR semiconductorsrelated stocks
6 HEB e ATt remained sidelined watching 43 HEIZEER foreign investors
T e fear 44 nA7 sk high-tech stocks
8 FELLNTVE awaiting 45 FEHE turnover
9 MBI Tokyo Gold futures Cls: 46 AODFEY small-lot selling
10 & slow 47 EL: record high
11 RV &5 wait-and-see mood 48 i benchmark
12 TITHF4—7—MFVETHE Loco-London gold 49 Righ Sadcidd low
12 werart against mark 50 WE2 B Tokyo Stocks 2nd Sec
14 CBQ¥FH Convertible bonds 51 L] were weak
15 R 2o B CERMN dealers 52 AT RE individual investors
16 FHE trading volume 53 wRE pretax profit
17 HE h $54H high-yielders 54 # | iR The first section of TSE
18 B#E3 0 0% - RgHY Nikkei 300 futures Aft-opg: 55 HEFH R the Nikkei stock average
19 g 113 mng-cls: 56 MECBH 2 - Tokyo CBs Opg:
20 Hihg|&edrs contract ended 57 EME K long-term government bonds
21 oy Libd economic stimulus package 58 THEIEnTVv3 were traded at
22 0 fliix closed at 59 WAL importers
23 et - FEIT futures cls: 60 L5 ] advanced
24 WHH% bond market 61 HEVREL covering
25 Eii convertible bonds 62 BEL Showa Denko
26 Feiy - IBEY Nikkei futures aft-opg: 63 FHm1d volume was
27 ML disheartened by 64 EPRGEERL hit a new year’s high
28 ~DiFEDr S on expectation of - 65 5®3% ruling coalition
29 bLoth edged up 66 (454 Sumitomo Special Metals
30 NEE: high-tech shares 67 H#3 0 0% - #3117 | Nikkei 300 futures Mng-cls:
31 HFRES wait-and-see mood 68 <KiE> OSE
32 {4 Sumitomo Forestry 69 EMREA year's low
33 FESC] L a U.S.-Japan auto talks 70 B AR P S R R R - Nikkei World Commodities:
34 e speculative buying of 71 Fith- FhitE Nikkei futures opg:
35 WIEYVER - #IEIT Tokyo foreign stocks mng: ™ fahy morning close
36 ¥l interest rates 73 B E IZHG L7: inched up
37 EEdEL ke the Japan-U.S. auto dispute

Table 3.7. Fixed Collocations Induced from Text 1

3.4. Related Work

A number of studies have attempted to extract bilingual collocations from parallel
corpora. These studies can be classified into two general approaches. One is
based on the full parsing techniques. [59] proposed a method to find out phrase-
level correspondences while resolving syntactic ambiguities at the same time.
Their methods determine phrase correspondences by using the phrase structures
of the two languages and existing bilingual dictionaries. Unfortunately, these

i approaches are promising only for the comparatively short sentences that can be

"1 analyzed by a simple Chart parser [44]. It will be interesting to use practical
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m. Japanese English l No. I Japanese English —l
1 FF-MEEv 25—+ | adenylyl cyclase 38 TFLT)rLeTy— adrenoceptors
2 o+ 7 AES presynaptic facilitation 39 P et e B e B 6 autoradiography
3 14 B3 % primary visual cortex 40 #1) 7 = TREDHH LA University of California at Los Angeles
4 diey & H1 classical conditioning 41 ~yTRLTTA Hebb synapses
5 B e long-term memory 42 S receptive fields
6 Wi =2—0 modulatory neuron 43 —BE L identical twins
- [ 3 corpus callosum 44 2N heterosexual men
8 FrOFRxY tetrodotoxin 45 FRhE#) functors
9 JoFd o &¥+-4 protein kinase 46 A face cells
10 FY=3AN free radicals 47 LIERE aphasic patients
11 i B8 A Lt neurofibrillary tangles 48 AHERY N implicit learning
12 BER conjunctions 49 fEaelusinty implicit representations
18 puts =3 limbic system 50 TN vertebrates
14 HFA-WT I catecholamines 51 L BEAT A delayed-response tasks
15 ERTA gaze 52 #1074 =TFF > 74T | University of California at San Diego
16 20 ¥TRE Columbia University 53 TG brain activity
17 I P2 ] Parikinson’s disease 54 AR associative memory
18 E/TE> monoamines 55 ENBE senile plaques
19 §HE B mantle shelf 56 HAFZ postdoctoral fellow
20 ERT subcortical 57 [ o dendrites
21 Tiod FeviA2H amyloidprotein 58 e side branches
22 INTFLTU> norepinephrine 59 I Wy v - B RLAT National Institute of Mental Health
23 o+ 7 ANE presynaptic terminals 60 | HA blind spot
24 PREEIED T L ocular dominance columns 61 23 hallucinations
25 R anatomic 62 i =a1—0> motor neuron
26 Haom antidepressants 63 NMDA Zf#k NMDA receptors
27 WAHE R T neurotransmitters 64 AR mediation systems
28 Eik principal sulcus 65 S IREE higher mental functions
29 ZettHT conditioning 66 i bilateral
30 HEH neocortex 67 Iy 3 v EEE glutamate receptor
31 Bl 570 critical period 68 - Singer
32 Bk chromosome 69 YeFOFAFATO dihydrotestosterone
33 #HR dementia 70 € > R hormonal epvironment
34 HmaiE short-term memory 71 —LEE polygynous
35 EBa long-term potentiation ki —ef L ¥ i carbon monoxide poisoning
36 5 SAF 3 unconditioned stimulus 73 HH auditory stimuli
37 su¥E>r clozapine 74 ARG AFHLT tardive dyskinesia

Table 3.8. Fixed Collocations Induced from Text 2

The other approach to extracting bilingual collocations involves simple statis-

tics. [29] acquired bilingual word correspondences without sentence alignment.

Although these methods are robust and assume no information source, their out-

puts are just word

word correspondences. [50] and [49] extracted noun phrase

(NP) correspondences from aligned parallel corpora. In [50], NPs in English and

French texts are first extracted by a NP recognizer. Their correspondence prob-

abilities are then gradually refined by using an EM-like iteration algorithm. [49]

first extracted Japanese NPs in the same way, and then combined statistics with

a bilingual dictionary for MT to find NP correspondences. Although these ap-

proaches attained high accuracy for the task considered, the most crucial knowl-

edge for MT is more complex correspondences such as NP-VP correspondences
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No. | J apahese English
1 | ®EEss ~ [ ~ Tokyo Forex ~ Dollar at ~ yen
2 Fiz ~ TH W5 &%# 272 | The U.S. currency was quoted at ~
3 | ~#EHh ~ bR ~ were sold ~ dropped as well
4 | HEEN ~ oftig B L7 Bank of Japan injected ~
5 | a0y ~ FEEH ~ Omron ~ Sumitomo Forestry ~

Table 3.9. Samples of Flexible Collocations

and sentence-level correspondences. It seems difficult to extend these statistical
methods to a broader range of collocations because they are specialized to NPs

or single words.

' 3.5. Summary

This chapter has described a new method for learning bilingual collocations from
parallel corpora. Our method consists of two steps: (1) extracting useful word
chunks by the word-level sorting technique and (2) constructing bilingual collo-
cations by combining these chunks. This architecture reflects the fact that fixed
collocations play a more crucial role than accepted in previous research. Our
method not only extracts fixed collocations with high precision but also reduces
the combinatorial explosion that would be otherwise considered inescapable in

extracting flexible collocations.
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Chapter 4

Mistake-Driven Mixture
A pproach to Morphological
A nalysis

This chapter deals with the stochastic morphological analysis system (part-of-
speech (POS) tagger) [13, 50, 11, 4, 63]. The stochastic approach generally
attains 94 to 96% accuracy and has the potential to replace the labor-intensive
compilation of linguistics rules by using an automated learning algorithm. How-
ever, a practical tagger requires more accuracy because morphological analysis is
an inevitable pre-processing step for almost all practical systems.

To derive a new stochastic tagger, we have two options since stochastic taggers
generally comprise two components: word model and tag model. The word model
is a set of probabilities that a word occurs with a tag (part-of-speech) when given
the preceding words and their tags in a sentence. On the other hand, the tag
model is a set of probabilities that a tag appears after the preceding words and
their tags.

The first option is to construct more sophisticated word models. [11] reports
that their model considers the roots and suffixes of words to greatly improve
tagging accuracy for English corpora. However, the word model approach has

the following shortcomings:

e For agglutinative languages such as Japanese and Chinese, the simple Bayes
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transfer rule is inapplicable because the word length of a sentence is not
fixed in all possible segmentations'. We can only use simpler word models

in these languages.

e Sophisticated word models largely depend on the target language. It is

time-consuming to compile fine-grained word models for each language.

 The second option is to devise a new tag model. [73] have introduced a
variable-memory-length tag model. Unlike conventional bi-gram and tri-gram
models, the method selects the optimal length by using the context tree [68] orig-
inally introduced for use in data compression [19]. Although the variable-memory
length approach significantly reduces the number of parameters, tagging accuracy
is only as good as conventional methods. Why didn’t the method have higher
accuracy? The crucial problem for current tag models is the set of colloquial
sequences of words that cannot be captured by their tags only. Because the max-
imal likelihood estimator (MLE) emphasizes the most frequent connections, an
exceptional connection is placed in the same class as a frequent connection.

To tackle this problem, we introduce a new tag model based on the mistake-
driven mizture (boosting) of hierarchical tag context trees. Compared to Schiitze
and Singer’s context tree [73], the hierarchical tag context tree is extended in that
the context is represented by a hierarchical tag set (i.e., NTT < proper noun <
noun). This is extremely useful in capturing exceptional connections that can be
detected only at the word level.

To make the best use of the hierarchical context tree, the boosting method
imitates the process in which linguists incorporate exceptional connections into
hand-crafted rules: They first construct coarse rules that seem to cover a broad
range of data. They then try to analyze data by using the rules and extract
exceptions that the rules cannot handle. Next they generalize the exceptions and
refine the previous rules. The following two steps abstract the human algorithm

for incorporating exceptional connections.

1. Construct temporary rules that seem to well generalize the given data.

Un Plw;lt:) = 5 (‘”"Ppt(_,t)" wi) P(w;) cannot be considered identical for all segmentations.
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2. Try to analyze data with the constructed rules and extract the exceptions
that cannot be correctly handled, then return to the first step and focus on

the exceptions.

To put the above idea into our learning algorithm, the Adaboost algorithm
attaches a weight vector to each example and iteratively performs the following

two procedures in the training phase:

1. Constructing a context tree based on the current data distribution (weight

vector)

2. Updating the distribution (weight vector) by focusing on data not well
predicted by the constructed tree. More precisely, the algorithm reduces
the weight of examples that are correctly handled.

For the prediction phase, the algorithm then outputs a final tag modeli by
mixing all of the constructed models according to their performance. By using a
hierarchical tag context tree, the constituents of a series of tag models gradually
change from broad coverage tags (e.g., noun) to specific exceptional words that
cannot be captured by general tags. In other words, the method incorporates not
only frequent connections but also infrequent ones that are often considered to

be exceptional.

The organization of the chapter is as follows. Section 4.1 describes the stochas-
tic POS tagging scheme and hierarchical tag setting. Section 4.2 presents a new
probability estimator that uses a hierarchical tag context tree, and Section 4.3 ex-
plains the Adaboost algorithm. Section 4.5 reports our evaluation using Japanese
newspaper articles. We tested several tag models by keeping all other conditions
(i.e., dictionary and word model) constant. The experimental results show that
the proposed method outperforms both hand-crafted and conventional statistical

methods. Section 4.6 describes related works and Section 4.7 gives the summary.
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4.1. Preliminaries

4.1.1 Basic Equation

In this section, we will briefly review the basic equations for part-of-speech tagging
and introduce hierarchical-tag setting.
The tagging problem is formally defined as finding a sequence of tags t; , that

maximize the probability of input string L.

P(wl,m tl,ﬂ.: L)
P(L)

& argmazy, , wy neL P (t1,n, W1n)

argmazy, , P(win, tin|L) = argmaz, ,

We break out P(t;n,w1,n) a8 a sequence of the products of tag probability and
word probability. :

P(t1p, w1,n) = P(wy ) P(t1|wr) P(walty, wi) P(ta|ts, wi )

ki P(tn|t1,n—1: wl,n)P(wn|t1,n—1-.~ 'wl,n—l)

m
= H P(wi|t1,z’—-lswl,i—l)P(ti|t1,i—1=w1,i)

i=1

By approximating word probability as constrained only by its tag, we ob-
tain equation (4.1). Equation (4.1) yields various types of stochastic taggers.
For example, bi-gram and tri-gram models approximate their tag probability as
P(t;|t;i—1) and P(t;|ti-, ti—2), respectively. In the rest of the chapter, we assume
all tagging methods share the word model P(w;lt;) and differ only in the tag
model P(t|tyi-1,w1,)-

argmaTs, , wi L I P(tilt1 -1, wy 3) P(wilt:) (4.1)

i=1
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Figure 4.1. Hierarchical Tag Set

4.1.2 Hierarchical Tag Set

To construct a tag model that captures exceptional connections, we have to
consider word-level context as well as tag-level context. In a more general form,
we introduce a tag set that has a hierarchical structure. Our tag set has a three-
level structure (Fig. 4.1). The topmost and the second levels of the hierarchy
are the part-of-speech level and the part-of-speech subdivision level, respectively.
Although stochastic taggers usually make use of the subdivision level, the part-
of-speech level is remarkably robust against data sparseness. The bottom level
is the word level and is indispensable in coping with exceptional and colloquial
sequences of words. Our objective is to construct a tag model that precisely
evaluates P(t;|t1,i-1,w1;) (in equation (4.1)) by using the three-level tag set.

To construct this model, we have to answer the following questions.
1. Which level is appropriate for t; ?
2. Which length is to be considered for ¢;;_; and w ; ?

3. Which level is appropriate for ¢;;_; and w;; ?

To resolve the first question, we fix ¢; at the subdivision level, as is done in other

tag models. The second and third questions are resolved by introducing hierar-

ol



chical tag contest trees and a boosting method that are respectively described in
Section 4.2 and Section 4.3.

Before moving to the next section, let us define the basic tag set. If all words
are considered context candidates, the search space will be enormous. Thus,
it is useful for the tagger to constrain the candidates to frequent open class
words and closed class words. The basic tag set is the set of the most detailed
context elements that comprises the words selected above and the part-of-speech

subdivision level.

4.2. Hierarchical Tag Context Tree

A hierarchical tag context tree is constructed by a two-step methodology. The
first step produces a context tree by using the basic tag set. The second step then
produces the hierarchical tag context tree. It generalizes the basic tag context
tree and avoids over-fitting the data by replacing excessively specific context in
the tree with more general tags. Finally, the generated tree is transformed into a

finite automata to improve tagging efficiency [69].

4.2.1 Constructing a Basic Tag Context Tree

In this section, we construct a basic tag context tree. Before going into the details
of the algorithm, we will briefly explain the context tree by using a simple binary
case. The context tree was originally introduced in the field of data compres-
sion [68, 81, 19] to represent how many times and in what context each symbol
appeared in a sequence of symbols. Figure 4.2 exemplifies two context trees com-
prising binary symbols ‘@’ and ‘b’. T(4) is constructed from the sequence ‘baab’
and T(6) from ‘baabab’. The root node of T(4) explains that both ‘e’ and ‘b’ ap-
peared twice in ‘baab’ when no consideration is taken of previous symbols. The
nodes of depth 1 represent an order 1 (bi-gram) model. The left node of T(4)
indicates that both ‘a’ and ‘b’ appeared only once after symbol ‘a’, while the
right node of T(4) indicates that only ‘a’ occurred once after ‘b’ In the same
way, the node of depth 2 in T(6) represents an order 2 (tri-gram) context model.

This binary tree can be directly extended to a basic tag context tree. In
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Figure 4.2. Context Trees for ‘baab’ and ‘bacbab’

this case, context symbols ‘e’ and ‘b’ are replaced by an element of the basic
tag set, and the frequency table of each node then consists of the part-of-speech
subdivision set.

Table 4.1 shows the algorithm construct-btree, which constructs a basic tag
context tree. Let a set of subdivision tags be s, - -, s,. Let weight[t] be a weight
vector attached to the tth example z(t). Initial values of weight[t] are set to 1
for all t.

4.2.2 Constructing a Hierarchical Tag Context Tree

This section describes how a hierarchical tag context tree is constructed from a
basic tag context tree. Before describing the algorithm, we prepare some defini-
tions and notations.

Let A be a part-of-speech subdivision set. As described in the previous section,
frequency tables of each node consist of the set A. At any node s of a context tree,
let n(als) and P(a|s) be the count of element a and its probability, respectively.

P(als) = HAL, ... 8
Locan(bls) :
We introduce an information-theoretical criteria A(sb) [80] to evaluate the

gain of expanding a node s by its daughter sb.
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1. the only node, the root, is marked with the count table (c(s1,A), -, c(8n,M)

= (0,+-0).

2. Apply the following recursively. Let T(t-1) be the last constructed tree
with counts of nodes z, (¢(51,2)," - ,¢(8n,2)). After the next symbol with
subdivision z(t) is observed, generate the next tree T(t) as follows. Follow
T(t-1), starting at the root and taking the branch indicated by each suc-
cessive symbol in the past sequence by using basic tag level. For each node
2 visited, increment the component count ¢(z (t),z) by weight[t]. Continue

until node w is a leaf node.

3. If wis a leaf, extend the tree by creating new leaves:

c(z(t),wsy )= - -=c(z(t),ws,) = weight[t], c(z(t),ws;)=" = c(z(t),wsn)=0.
Define the resulting tree to be T(t).

Table 4.1. Algorithm construct-btree

AN(ad)= 3 n(a|sb)log£(il@ ol )
aCA P(als)

A(sb) is the difference in optimal code lengths when symbols at node sb are
compressed by using probability distribution P(-|s) at node s and P(-|sb) at node
sb. Thus, the larger A(sb) is, the more meaningful it is to expand a node by sb.

Now, we go back to the hierarchical tag context tree construction. As illus-
trated in Figure 4.3, the construction process amounts to the iterative selection
of b out of word level, subdivision, part-of-speech and null (no expansion). Let
us look at the procedufe from the information-theoretical viewpoint. Breaking
out equation (4.2) as equation (4.2.2), A(sb) is represented as the product of
the frequencies of all subdivision symbols at node sb and Kullback-Leibler (KL)

divergence.

Alsh) =n(eh) 3 "TE‘(”S‘Z’)’) lo fﬁ(glsg 1

n(sh) Tacs Plalsh)log A = n(sb) Dxcr (P(:|sb), P(]5))(4:3)

P(als)
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Figure 4.3. Constructing Hierarchical Tag Context Tree

Because the KL divergence defines a distance measure between prdbability
distributions, P(-|sb) and P(-|s), there is the following trade-off between the two
terms of equation (4.2.2).

e The more general b is, the more subdivision symbols appear at node sb.

e The more specific b is, the more P(-|s) and P(-|sb) differ.

By using the trade-off, the optimal level of b is selected.

Table 4.2 summarizes the algorithm construct-htree that constructs the hi-
erarchical tag context tree. First, construct-hiree generates a basic tag context
tree by calling construct-biree. Assume that the training examples consist of a
sequence of triples, < py, 8¢, w¢ >, in which p;, s; and w; represent part-of-speech,
subdivision and word, respectively. Each time the algorithm reads an example, it
first reaches current leaf node s by following the past sequence, computes A(sb),
and then selects the optimal b. The initially constructed basic tag context tree is

used to compute A(sb)s.
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1. Initialize weight[j] = 1 for all examples j
t=1

2. call construct-biree

3. do
Read tth example z:(< py, di, wy >)
Follow z;_1,Z4_2, - - -, Tt—(i—1) and Reach leaf node s
low = swy_i, high = sd;_;
while(maz (A (low), A(high)) > Threshold) {
if(A(low) > A(high))
Expand the tree by the node low
else if(high==sp;_;)
Expand the tree by the node high
else low = sd;_;, high = sp;_;
}
t=t+1
while(z, is not empty)
Table 4.2. Algorithm construct-htree

4.3. Mistake-Driven Mixture of Hierarchical Tag
Context Trees

Up to this section, we introduced a new tag model that uses a single hierarchical
tag context tree to cope with the exceptional connections that cannot be captured
by just the part-of-speech level. However, this approach has a clear limitation:
the exceptional connections that do not occur so often cannot be detected by
the single tree model. In such a case, the first term n(sb) in equation (4.2.2) is

enormous for general b and the tree is expanded by using more general symbols.

To overcome this limitation, we introduced the mistake-drivén mizture ap-
proach that uses the Adaboost algorithm summarized in Table 4.3. The algorithm

constructs T context trees and outputs a final tag model. It sets the weights to 1
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for all exambles and repeats the following procedures T' times. The algorithm first
construct a hierarchical context tree by using the current weight vector. Example
data are then tagged by the tree and the weights of correctly handled examples
are reduced by (A). Finally, the final tag model is constructed by mixin-g T trees

according to equation (B).

1. Input: sequence of N examples < p;,dy,w; >, ..., < py, dy, wy >
in which p;, d; and w; represent part-of-speech, subdivision and word, re-

spectively.
2. Initialize the weight vector weight[i] =1fori=1,...,N

JiBofmi=1.0....T
Call construct-htree providing it with the weight vector weight and
Construct a part-of-speech tagger h;
Let Error be a set of examples that are not identified by h,
Compute the error rate of hy: €' = ¥ prror weight[i]/ SN | weightli] |
B = 5=
For examples correctly predicted by h;, update the weights vector to be

weight[i] = weight[i]3, (A)

4. Output a final tag model by = ;-rzl(log’-;:)ht/ Eiil(logé) (B)

Table 4.3. Algorithm Adaboost

By using the mistake-driven mixture approach, the constituents of a series of
hierarchical tag context trees gradually change from broad coverage tags (e.g.,
noun) to specific exceptional words that cannot be captured by part-of-speech
and subdivisions. The method, by mixing different levels of trees, incorf)ora'ges
not only frequent connections but also infrequent ones that are often considered

colloquial without over-fitting the data.
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4.4. Margin Theory and Adaboost Algorithm

This section briefly overviews the two theorems related to the generalization abil-
ity of the Adaboost algorithm [72] in classification. The first theorem is relevant
for any voting method such as boosting and bagging [2]. It explains the gener-
alization error of any aggregating algorithm in terms of the margin (79, 18] for
the training examples and the complexity of the base hypothesis (no dependence
on the number of iterations). The second theorem gives the probability bound of
the small margin in terms of the training errors of the base hypotheses.

The margin intuitively represents the distance to a classification boundary.
Figure 4.4 illustrates a simple two-class case, in which black and white circles
are training examples from two distinctive classes. The examples with a line are
small-margin examples. Dotted lines represent a small positive margin because
they are classified correctly by the boundary. On the other hand, solid lines
represent a negative-valued margin because they are misclassified. As shown in
Figure 4.4, the larger the margin of an instance is, the easier it is to classify.
The following two theorems prove that the generalization error of a aggregated
classifier is bounded by the sum of the error for the training examples and a
decreasing function of the margins, and that the Adaboost algorithm continuously
increases the margin for training examples, respectively.

Let H denote the space from which each base hypothesis is chosen; for exam-
ple, a context tree or a decision tree of an appropriate size. A base hypothesis
h € H is a mapping from an instance space X to class {-1,+1}%. We assume
that examples are generated independently at random according to some fixed
but unknown distribution D over X x {-1, +1} The training set is a list of m
pairs S =< (£1,%1),-"*» (Tm,Ym) > chosen according to D. We use Pz 4)[A] to
denote the probability of the event A when the example (z,y) is chosen accord-
ing to D and Pz 4)[A] to denote probability with respect to choosing an example
uniformly at random from the training set. We abbreviate these by Pp[A] and
Ps[A].

We define the convex hull C of H as the set of mappings that can be: generated

2The following theorems hold for larger finite sets of labels.
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Figure 4.4. Margin of Examples

by taking a weighted average of hypotheses from H:

C={f:z— Zahh(:r) | ap EO;Zahzl}.
heH h

The majority vote rule that is associated with f gives a wrong prediction for the
example (z,y) only if yf(z) < 0. Also, the margin (feasibility of classification) of
an example (z,y) in this case is simply y f(z).

The following Theorem 4.4.1 implies that with high probability, the gener-
alization error of any majority vote hypothesis can be bounded in terms of the
number of training examples with margin below a threshold @, plus an additional
term that depends on the number of training examples, VC-dimension [79, 46]
of H and the threshold 6. Note that the theorem applies to every majority vote

hypothesis, regardless of how it is computed.

Theorem 4.4.1 [1, 72] Let D be a distribution over X x {—1,+1}, and let S be
a sample of m ezamples chosen independently at random according to D. Suppose
the base hypothesis space H has VC-dimension d, and let § > 0. Assume that
m > d > 1. Then with probability at least 1 — § over the random choice of the

59



training set S, every weighted average function f € C satisfies the following bound
for all 6 > 0:

gD ap)

Pplyf(z) < 0] < Ps[yf(z) < 6]+ O(

The following Theorem 4.4.2 implies that the fraction of training examples
for which yf(z) < @ decreases to zero exponentially with the number of base

hypotheses (boosting iteration 1)

Theorem 4.4.2 [72] Suppose the base learning algorithm (say, a context tree or
a decision tree algorithm), when called by Adaboost, generates hypotheses with
weighted training errors €1,€z," -, €r- Then for any 6, the following inequality
holds.

Paylyf(z) < 6] < H Vel (1 — )1+
t=1
From the above two theorems, the Adaboost algorithm is found to produce a
larger margin hypothesis on the training example set (Theorem 4.4.2) and then
to yield smaller generalization error (Theorem 4.4.1). It can thus deal with the
originally small-margin instances that correspond to the infrequent and difficult

expressions from the viewpoint of natural language processing.

4.5. Experimental Results

We performed a preliminary evaluation using the first 8,939 Japanese sentences
in a year’s volume of newspaper articles [57]. We first automatically segmented
and tagged these sentences and then revised them by hand. The total number of
words in the hand-revised corpus was 226,162. We trained our tag models on the
corpora with every tenth sentence removed (starting with the first sentence) and
then tested the removed sentences. There were 22,937 words in the test corpus.
As the first indicator of performance, we tested a hand-crafted tag model of
JUMAN [52], the most widely used Japanese part-of-speech tagger. Tile tagging
accuracy of JUMAN for the test corpus was only 92.0%. This shows that our

60



corpus is difficult to tag because the corpus contains various genres of texts,
ranging from obituaries to editorials.

Next, we compared the mixture of bi-grams and the mixture of hierarchical
tag context trees. In this experiment, only post-positional particles and auxil-
iaries were word-level elements of basic tags and all other elements were in the
subdivision level. In contrast, a bi-gram model was constructed by using the sub-
division level. We set the iteration number 7" to 5. The results of our experiments

are summarized in Figure 4.5.
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Figure 4.5. Context Tree Mixture vs. Bi-gram Mixture

As a single tree estimator (Number of Mixture = 1), the hierarchical tag
context tree attained 94.1% accuracy, while bi-gram yielded 93.1%. A hierarchical
tag context tree offers a slight improvement, but not a great deal. This conclusion
agrees with Schiitze and Singer’s experiments that used a context tree of usual
part-of-speech.

When we turn to the mixture estimator, a great difference is seen between
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hierarchical tag context trees and bi-grams. The hierarchical tag context trees
produced by the mistake-driven mizture approach greatly improved the accuracy,
and over-fitting data was not serious. The best and worst performances were
96.1% (Number of Mixture = 3) and 94.1% (Number of Mixture = 1), respectively.
On the other hand, the performance of the bi-gram mixture was not satisfactory.
The best and worst performances were 93.8% (Number of Mixture = 2) and 90.8%
(Number of Mixture = 5), respectively.

From these results, we may say that exceptional connections are well captured
by hierarchical context trees but not by bi-grams. Bi-grams of subdivision are too

general to selectively detect exceptions.

4.6. Related Work

Although statistical natural language processing has mainly focused on Maximum
Likelihood Estimators, [65] proposed a mixture approach to predict next words
by using the Context Tree Weighting (CTW) method [81]. The CTW method
computes probability by mixing subtrees in a single context tree in Bayesian
fashion. Although the method is very efficient, it cannot be used to construct
hierarchical tag context trees.

Various kinds of re-sampling techniques have been studied in statistics [24, 25]
and machine learning [2, 37, 27]. The Adaboost was designed to construct a high-
performance predictor by iteratively calling a weak learning algorithm (which
is slightly better than a random guess). An empirical work reports that the
method greatly improved the performance of decision-tree, k-nearest-neighbor,
and other learning methods given relatively simple and small data [26]. We
used the algorithm to detect exceptional connections and first proved that such
a re-sampling method is also effective for a practical application using a large
amount of data. The next step is to fill the gap between theory and practice.
Most theoretical work on re-sampling assumes .t.d. (identically, independently
distributed) samples. This is not a realistic assumption in part-of-speech tagging
and other NL applications because they usually involve optimization. that uses

dynamic programming. An interesting future research direction is to construct a

62



theory that handles the Markov processes.

4.7. Summary

This chapter has described a new tag model that uses a mistake-driven mizture
approach to produce hierarchical tag contest trees that can deal with exceptional
connections whose detection is not possible at the simple part-of-speech level.
Our experimental results show that combining hierarchical tag contezt trees with
the mistake-driven mizrture approach is effective for 1. incorporating exceptional
connections and 2. avoiding data over-fitting. Although we have focused on part-
of-speech tagging in this chapter, the mistake-driven mizture method is useful
for other applications. The next chapter describes a Japanese dependency parser

that boosts decision trees.
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Chapter 5

Mistake-Driven Mixture
Approach to Dependency
Analysis

With the recent availability of large annotated corpora, there is growing inter-
est in stochastic parsing methods to replace labor-intensive rule compilation by
automated learning algorithms. Conventional parsers with practical levels of per-
formance require a number of sophisticated rules that have to be hand-crafted by
human linguists. It is time-consuming and cumbersome to maintain these rules

for the following two reasons.

e The rules are specific to the application domain.

e Specific rules for handling infrequent expressions create side effects. Such
rules often deteriorate the overall performance of the parser. It is generally
difficult to decide whether to include a specific rule, particularly when the

number of rules becomes large.

The stochastic approach, on the other hand, has the potential to overcome
these difficulties. Because it induces stochastic rules to maximize overall per-
formance against training data, it not only adapts to any application domain

but also avoids over-fitting the data. Now that machine learning techniques are
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mature enough to deal with real-world applications, it is promising to construct

practical parsers by using machine learning methods.

In the late 80s and early 90s, the induction and parameter estimation of prob-
abilistic context free grammars (PCFGs) from corpora were intensively studied.
Because these grammars comprise only nonterminal and part-of-speech tag sym-
bols, their performances were not good enough to be used in practical applica-
tions [9]. A broader range of information, in particular lexical information, was
found to be essential in disambiguating the syntactic structures of real-world sen-
tences. SPATTER parser [56] replaced the pure PCFG with transformation (ex-
tension and labeling) rules that are augmented with a number of lexical attributes.
The parser controlled applications of eéch rule by using the lexical constraints
resulting from using a decision tree algorithm [3]. The SPATTER parser attained
86% accuracy and first made stochastic parsers a practical choice. The other type
of high-precision parser, which is based on dependency analysis, was introduced
by Collins [16]. Dependency analysis first segments a sentence into syntactically
meaningful sequences of words and then considers the modification of each seg-
ment. Collins’ parser computes the likelihood that each segment modifies the
other (2 term relation) by using large corpora. These modification p&obabilities
are conditioned by headwords of two segments, the distance between the two
segments and other syntactic features. Although these two parsers have shown
similar performance, the keys to their successes are slightly different. SPATTER
parser performance greatly depends on the feature selection capability of the
decision tree algorithm rather than its linguistic representation. On the other
hand, dependency analysis plays an essential role in Collins’ parser for efficiently

extracting information from corpora.

This chapter describes a practical Japanese dependency parser that uses de-
cision trees. In the Japanese language, dependency analysis has been shown
to be powerful because the segment (bunsetsu) order in a sentence is relatively

unrestricted compared to European languages.

Japanese dependency parsers generally proceed in three steps..

1. Segment a sentence into a sequence of bunsetsu.
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2. Prepare a modification matrix, each value of which represents how one

bunsetsu is likely to modify another.

3. Find optimal modifications in a-sentence by dynamic programming.

The most difficult step is the second: how to construct a sophisticated modifica-
tion matrix. With conventional Japanese parsers, the linguist must classify the
bunsetsu and select appropriate features to compute modification values. The
parsers also suffer from the diversity of application domains and the side effects
of specific rules. _

Stochastic dependency parsers like Collins’, on the other hand, define a set
of attributes and condition the modification probabilities by all of the attributes
regardless of the bunsetsu type. These methods can encompass only a small
number of features if the probabilities are to be precisely evaluated from a finite
number of data. Our method constructs a more sophisticated modification matrix
by using decision trees. It automatically selects a sufficient number of significant
attributes according to the bunsetsu type. We can thus use an arbifrary number
of attributes that potentially increase parsing accuracy.

Natural languages are full of exceptional and colloquial expressions, and it
is difficult for machine learning ‘algorithms, as well as human linguists, to judge
whether a specific rule is relevant in terms of overall performance. Because the
maximal likelihood estimator (MLE) emphasizes the most frequent phenomena,
an exceptional expression is placed in the same class as a frequent one. To tackle
this problem, we investigate the mixture of sequentially generated decision trees.
Specifically, we use the Adaboost algorithm [27] as in Chapter 4. The algorithm

iteratively performs two procedures:
1. construct a decision tree based on the current data distribution

2. update the distribution by focusing on data that are not well explained by

the constructed tree

The final modification probabilities are computed by mixing all of the decision
trees according to their performance. The sequential decision trees gradually

change from broad coverage to specific exceptional trees that cannot be captured
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by a general tree. In other words, the method incorporates not only general
expressions but also infrequent specific ones.

The rest of this chapter is organized as follows. Section 5.1 summarizes the de-
pendency analysis for the Japanese language. Section 5.2 introduces our feature
setting for learning and then explains decision tree models that compute modifi-
cation probabilities. Section 5.3 presents experimental results obtained by using
the EDR. Japanese annotated corpora. Section 5.4 relates our parser to other re-
search from both natural language processing and machine learning viewpoints.

Finally, Section 5.5 gives the summary.

5.1. Dependency Analysis in Japanese Language

This section overviews the dependency analysis in the Japanese language. The

parser generally performs the following three steps.

1. Segment a sentence into a sequence of bunsetsu.

2. Prepare a modification matrix, each value of which represents how one

bunsetsu is likely to modify the other.

3. Find optimal modifications in a sentence by a dynamic programming tech-

nique.

Because there are no explicit delimiters between words in Japanese, input
sentences are first word segmented, part-of-speech tagged and then chunked into
a sequence of segments (bunsetsu). Bunsetsu basically consists of a set of non-
function words + function words, although its definition greatly depends on the
user and usage. In our system, word segmentation and part-of-speech tagging are
performed by a Japanese morphological analyzing program called Chasen [60].
Then the output from the tagger is passed to an automatic bunsetsu segmenter
developed by Fujio [28]. The bunsetsu segmenter is implemented in Per]l and
contains 1,311 rules in the form of regular expressions to determine the bunsetsu
boundaries. The first step yields, for the following example, the sequence of
bunsetsu displayed below. The parenthesis in the Japanese expression.s represent

the internal structures of the bunsetsu (word segmentations).
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Example: FEHOFFIEFOFESHT A ¥ R RAL
(FEE)(@)) (U H)(2) (CEA)(®) (F&H)(#) (74 ¥)(%))

kinou-no yuugata-ni  kinjo-no kodomo-ga Wain-wo
yesterday-NO evening-NI  neighbor-NO  children-GA wine-wo
(B A) ()
nomu-+ta

drink+PAST

The second step of parsing is to construct a modification matrix whose values
represent the likelihood that one bunsetsu modifies another in a sentence.

In the Japanese language, almost all practical parsers assume the following
two constraints [83]. Although there are a small number of exceptions (i.e.,
inversion) for these two constraints, the majority of them can be avoided by
devising corpus annotations and bunsetsu definitions. These two constraints with
careful bunsetsu definitions can improve the parsing performance by cutting off
excessive modification candidates.

1. Every bunsetsu except the last one modifies only one posterior bunsetsu.

2. No modification crosses to other modifications in a sentence.

Table 5.1 illustrates a modification matrix for the example sentence. In the
matrix, columns and rows represent anterior and posterior bunsetsus, respectively.
For example, the first bunsetsu ‘kinou- no’ modifies the second ‘yuugata-ni’ with
score 0.70 and the third ‘kinjo-no’ with score 0.07. The aim of this chapter is to
generate a modification matrix by using decision trees.

The final step of parsing optimizes the entire dependency structure by using
the values in the modification matrix. A chart parsing algorithm [44] is adopted
to determine the optimal dependencies (best parse).

Before going into the details of the proposed method, we introduce here the
notations that will be used in this chapter. Let S be the input sentence. S
generally comprises a bunsetsu set B of length m ({< by, f1 >, *, < bm, fm >1}),
in which b; and f; represent the ith bunsetsu and its features. We define’ D as a
modification set; D = {mod(1),- - - ,mod(m—1)}, in which mod(7) is the bunsetsu

modified by the ith bunsetsu. Because of the first assumption above, the length
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kinou-no

yuugata-ni 0.70 yuugata-ni

kinjo-no 0.07 0.10 kinjo-no

kodomo-ga 0.10 0.10 0.70  kodomo-ga

Wain-wo 0.10 0.10 0.20 0.05 wain-wo
nomu-ta 0.03 0.70 0.10 0.95 1.00

Table 5.1. Modification Matrix for Sample Sentence

of D is always m — 1. Using these notations, the result of the third step for the

example sentence is Dyest = {2,6,4,6,6} as shown in Figure 5.1

¢ 3
kinou-no  yougata~ui kinjo-no kodomo-ga  wain-Wo o

Figure 5.1. Modification Set for Sample Sentence

5.2. Decision Trees for Dependency Analysis

5.2.1 Linguistic Feature Types Used for Learning

This section explains the concrete feature set used for learning. Outiof fy,:«+, fens
we construct the feature set f;; for the two bunsetsu b; and b;, which form each
piece of the modification data. We use thirteen features for a fij, ten directly
from the two bunsetsu under consideration and three for the other bunsetsu
information summarized in Table 5.2. B

Each bunsetsu (anterior and posterior) has the five features shown as No. 1 to
No. 5 in Table 5.2. Features No. 6 to No. 8 are related to bunsetsu pairs. Both
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No. | Two Bunsetsu | No. | Others

lexical information of headword | 6 | distance between two bunsetsu

part-of-speech of headword 7 | particle ‘wa’ between two bunsetsu

type of bunsetsu 8 | punctuation between two bunsetsu

punctuation

ot |WIN |-

parentheses

Table 5.2. Linguistic Feature Types Used for Learning

Feature

Values

V%45, BB, i 5, BA%E, KA, BR A, RHEE, FHsE, A, 865,
B, wog, BOREIE, RECRIG, 85, BiF R e, RERIF, FHEEE, HERIF,
B4, A5, RIFLEERE, BN AR, LFBRERA, AAtaF B,

AN AARR R, AR, & FRER, RERIE, BRI, E4F, BEERE

2 (bW FE ThE, HhEL, 28, 2k, & 8%, L, L, Le, Thbb, 76, T,
T, T, &, ELT, BN, B, 12, 15, o T, 2D, 0,07 5,5 T, 22, k,

Ea, kb, B, %, b, e, L, BULIE, 2, B E, B E, BT, 2D,
BAD, RAT, IS, 0,0, D&, 13, EP),~13E, T1, #7201, T, b, b LI,

LD, bOD, R, %0, X, kS, kN, 5, b, &, VE&H, B, EH, BHE, £4, £5,
R, £, B4, WER, WEAhmnRt, AT, B8, MR, BHs T,
Gt N, B, BE, B6E, 1%, +, LR, BEAR, BF, R SEH, FMe,
EERIE, TEL 5, BF, REERE, BANGH, B0, XL, KK, LRTMERTH,
LAMEERRE, LT, ZALETERE, G4, RERNR,

BEIF, E G, BT, WAEERE, A

no, #HA., A

no! ‘1 ('.\ “’ [-! r1 [! <! [3,5”5))>’J,J)1,]

A(0), B(1 ~ 4), C(25)

yes, no

00| | O |

yes, no

Table 5.3. Possible Values for Each Feature
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No. 1 and No. 2 concern the headword of the bunsetsu. No. 1 takes values of fre-
quent words or thesaurus categories [40]. No. 2, on the other hand, takes values
of part-of-speech tags. No. 3 deals with bunsetsu types consmtmg of functional
word chunks or part-of-speech tags that dominate the bunsetsu’s syntactlc char-
acteristics. No. 4 and No. 5 are binary features and correspond to punctuation
and parentheses, respectively. No. 6 represents how many bunsetsu exist between
the two bunsetsu. Possible values in our setting are A (0), B (0 ~ 4) and C (=5)-

No. 7 deals with the post-positional particle ‘wa’ which greatly influences the
long-distance dependency of subject-verb modifications. Finally, No.8 addresses
the punctuation between the two bunsetsu. The detailed values of each feature
type are summarized in T able 5.3.

The data for the decision tree learning comprise any unordered combination of
two bunsetsu in a sentence. The features used for learning are from the linguistic
information shown in Table 5.2. Table 5.4 illustrates the sample data generated
from the example sentence discussed in Section 5.1. t-noun and c-noun in the
table represent the temporal noun and the common noun, respectively. Note also
that no in italic and no in Roman mean the Japanese post positional particle ‘no’
and a binary value ‘no’, respectively.

Each of the first 13 rows corresponds to the features shown in Table 5.2. The
first 5 and the second 5 rows represent No. 1 to No. 5 features for both anterior
and posterior bunsetsu. The remaining 3 features handle No. 6 to No. 8 features in
this order. The last row takes the binary class values (yes and no) that delineate
whether the data (the two bunsetsu) have a modification relation or not. In this
setting, the decision tree algorithm automatically and consecutively selects the

significant features for discriminating modify/non-modify (yes/no) relations.

5.2.2 Stochastic Model and Decision Trees

The stochastic dependency parser assigns the most plausible modification set

Diest t0 a sentence in terms of the training data distribution as equation (5.1).

Dpest = argmazpP(D|S) = argmazpP(D|B) i (5.1)

Although modifications in a sentence are in fact dependent on each other, as il-
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ot Anterior . Posterior Others Class

1 2 3 |4 |5 1 v 3 4 |5 N

kinou t-noun | no | no | no || yuugata | c-noun | ni no |no || A | no| no| yes
kinou t-noun | no | no | no || kinjo c-noun | no no |{no || B | no | no || no
kinou t-noun | no | no | no || kodomo | c-noun | ga no |no || B | no | no || no
kinou t-noun | no | no | no || wain cnoun |we |no|nofl B |no| noli no
kinou t-noun | no | no | no || nomu verb verb [ no {no || B | no | no || no
yuugata | c-noun | ni | no | no || kinjo c-noun | no no |no | A|no|noll no
yuugata | c-noun | ni | no | no || kodomo | c-noun | ga no |no || B | no | no | no
yuugata | c-noun | ni | no | no || wain c-noun | wo no (no || B | no| no || no
yuugata | c-noun | né | no | no || nomu verb verb | no | no || B | no | no || yes
kinjo c-noun | no | no | no || kodomo | c-noun | ga no |no || A | no|nolj yes
kinjo c-noun | no | no | no || wain cnoun |wo |no|nof B|no|mnol no
kinjo c-noun | no | no | no || nomu verb verb | no [ no | B | no | no || no
kodomo | ¢-noun | ga | no | no || wain cnoun | wo |no |no| A|no|mnol| no
kodomo | ¢-noun | ga | no | no || nomu verb verb | no | no || B | no | no || yes
wain c-noun | wo | no | no || nomu verb verb [ no [ no || A | no | no || yes

Table 5.4. Training Data Generated from Example Sentence

lustrated by the two constraints in Section 5.1, it is generally difficult to efficiently
determine what range of modification should be considered in the online compu-
tation of modification probability of two bunsetsus. In addition, the learning of
such dependencies would require large amounts of training data. We thus adopt
the usual independence assumption for efficient learning from a limited amount
of training data. By assuming the independence of modifications, P(D|B) can be
transformed as equation (5.2). P(yes|b;, b;, fi;) means the probability that a pair
of bunsetsu b; and b; have a modification relationship given the features set f;;.
Note that f;; contains the information of other bunsetsu despite the assumption
of independence. In other words, features from other bunsetsus are also assumed
to decide whether the two bunsetsus have a modification relationship. 'We. use
decision trees to dynamically select appropriate features for each combination of
bunsetsus (Table 5.4).
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P(D|B) = [T P(yeslti,bs, fi) (5.2)

i=1

Let us first consider the single tree case. We slightly changed C4.5 [66] pro-
grams to be able to extract class frequencies at every node of the decision tree
because our task is regression rather than classification. The following will ex-
plain how a decision tree is constructed in C4.5. The algorithm is given samples
of feature-value vectors associated with their class labels. Table 5.4 shows the
samples generated from the example sentence. The first task of the algorithm is
to construct a decision tree that completely classifies these samples. The C4.5
program recursively splits the samples by selecting a feature that maximizes a
heuristic gain_ratio criteria.

Let S and C; be a set of samples and the ith (total number = k) class,
respectively. freq(C;, S) represents the number of samples in S that are classified
C;. |S| and m represent the number of samples in S and the number of splits.
Consider a random sample from S classified Cj. The probability of the event is

freq(C;, 5)
o
The information of the event can be computed as

freq(C;, 5)

bits.
S|

—log,

By taking the expectation over 5,

. o C
info(S Z TquSIJ ) 4 longﬁql(_Sflﬂ bits

=1

is the entropy of S.
For training samples 7', info(T') represents the average information to classify
a sample in T Similarly, we define in fos(T) which is average information when

we split T' by using a feature f.

infos(T) = z llrisl‘ x info(T;)

The split of the data by using a feature f is useful only when the predlctmn of

the classes becomes easier. In other words, the class distribution should be more
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concentrated. To test the usefulness of f, we can utilize gain(f), which is the

difference between info(T') and infos(T).

gain(f) = info(T) — infoy(T)

Because gain(f) tends to bias the feature with many splits, we introduce gain_ratio(f)

by regularizing the gain(f) over the following splitinfo(f).

b = |Ti| |T;|

Bt intfol) & -5 B S foni b

split_info(f) i§=1 ] x logy W
gain(f)

ga.m_ratw(f) = m

Although the constructed decision tree can completely classify the training
samples, it does not achieve very high performance against outside (unknown)
samples. To avoid over-fitting training samples, the second task is pruning the
constructed tree. The C4.5 program employs a pruning technique based on the
statistical test in which the confidence level varies from 0% to 100%. The smaller
the confidence level is, the more the decision tree is pruned.

Figure 5.2 illustrates the simplified version of an unpruned decision tree. The
tree is generated from the training data shown in Table 5.4. Each node and edge
in the tree is labeled with a feature name and its value, respectively. This means
that the data are split by the feature according to its values. These features and
values are selected in order to maximally separate class labels of the data. The
finally separated class values are attached to each leaf node of the tree. In the

current example, the decision tree first selects the feature Distance at the top

| node. If its value is A and the value of the next feature anterior type is no, the
“ class of data is then determined as yes. The rest of the data can be correctly
classified in the same way. Note here that we can extract the class frequencies
from each node. For example, the circled node of depth 1 stores 5 examples of
Table 5.4 whose distance values are A. The class frequency at this node is (yes,
no) = (3, 2). We can thus compute at this node the probability of yes as 3 /(3+2)
= 0.6.

In the case of the pruned decision tree, we can also compute the probability

Ppr(yes|bi, bj, fij), which is the Laplace estimate of the empirical likelihood that
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Distance

Figure 5.2. Simple Decision Tree Generated from Example Data

b; modifies b; at the leaf of the constructed decision tree DT. Note that it is
necessary to normalize Ppr(yes|b;, b;, fij) to approximate P(yes|bi, by, fij). By
considering all candidates posterior to b;, P(yes|bi,b;, fij) is computed using a
heuristic rule (5.3). Such a normalization technique is also utilized by Collins [16].
It is of course reasonable to normalize class frequencies instead of the probability
Ppr(yes|bi, bj, fij). Equation (5.3) tends to emphasize long-distance dependencies

more than in the case of frequency-based normalization.

PDT(yeslbtn bjs fl_’l)
zkw PDT(yGBSlb,, be fl])

Let us extend the above to use a set of decision trees. As briefly mentioned

P(yes‘bi)bj:flzl")fm) (5.3)

at the beginning of the chapter, a number of infrequent and exceptional expres-
sions appear in any natural language phenomena; they deteriorate the overall
performance of application systems. It is also difficult for automated learning
systems to detect and handle these expressions because exceptional expressmns
are placed in the same class as frequent ones. To tackle this difficulty, we generate

a set of decision trees by introducing the Adaboost [27] algorithm illustrated in
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Table 5.5. The algorithm first sets the weights to 1 for all (training) examples (2
in Table 5.5) and repeats the following two procedures T times (3 in Table 5.5).

1. A decision tree is constructed by using the current weight vector ((a) in
Table 5.5)

2. The same training data are then parsed by using the tree, and the weights
of correctly handled data are reduced ((b) and (c) in Table 5.5)

1. Input: sequence of N training examples < ej,w; >,...,< ey, wn > in which

e; and w; represent an example and its weight, respectively.
2. Initialize the weight vector w; =1 fori=1,..., N

3. Defori=%12....T

(a) Call C4.5 providing it with the weight vector w;s and Construct a modifi-
cation probability set h;

(b) Let Error be a set of training examples that are not identified by h;
Compute the pseudo error rate of hy:
N
€1 = z:‘cErro'r w‘i/ Zi:l w;
if ¢, > %, then abort loop

& €
B = =%

(c) For training examples correctly predicted by h;, update the weights vector
to be w; = w;f;

4. Output a final probability set:
By il

s
hy = Y (tog )/ E“"gbl:)

t_=1

Table 5.5. Combining Decision Trees by Adaboost Algorithm

The final probability set hy is then computed by mixing T trees according
to their performance (4 in Table 5.5). Using hy instead of Ppr(yes|bi, b;, fi;) in
equation (5.3) generates a boosted version of the dependency parser. The sequen-

tial decision trees gradually change from broad coverage to specific exceptional
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trees that cannot be captured by a general tree. In other words, the method

incorporates not only general expressions but also infrequent specific ones.

5.3. Experimental Results

The proposed parser was evaluated by using the EDR Japanese annotated cor-
pus [23]. The experiment consisted of two parts. One evaluated the single-tree
parser and the other the boosted counterpart. In the rest of this section, parsing
accuracy refers only to precision, that is, how many of the system’s outputs are
correct in terms of the annotated corpus. We do not show recall because we as-
sume every bunsetsu modifies only one posterior bunsetsu. The features used for
learning were non-headword features, (i.e., types 2 to 8 in Table 5.2). Section 5.9
investigates the lexical information of headwords such as frequent words and the-
saurus categories. Before going into the details of the experimental results, we

summarize here how training and test data were constructed.

1. After all sentences in the EDR corpus were word-segmented and part-of-

speech tagged, they were then chunked into a sequence of bunsetsu.

9. All bunsetsu pairs were compared with EDR bracketing annotation (bun-
setsu segmentations and modifications). If a sentence contained a bunsetsu
pair inconsistent with the EDR annotation, the sentence was removed from
the data.

3. All data examined (total number of sentences: 207,802, total number of
bunsetsu: 1,790,920) were divided into 20 files. Training and test data were
completely differentiated. The training data was 50,000 sentences, which
were the first 2,500 sentences of the 20 files. Test data (10,000 sentences)
were the 2,501th to 3,000th sentences of each file.

Because there are no explicit delimiters between words in Japanese, the pri-
mary task is to word segment and part-of-speech tag the input sentences The
part-of-speech information contained in the EDR corpus is too coarse to be used

in parsing. We thus employed only bracketing information from the corpus. For
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the POS tagging, we used a Japanese morphological analyzing program called
Chasen [60] to make use of the well-grained tag information to address the syn-
tactic ambiguities. After part-of-speech tagging, a sequence of bunsetsus was
automatically generated by utilizing the automatic bunsetsu segment;ar devel-
oped by Fujio [28]. The bunsetsu segmenter is implemented in Perl and contains
1311 segmentation rules.

The second step detects the modification relationships existing in the EDR
corpus. Due to the difference between our definition of bunsetsu and that used in
the EDR corpus, some discrepancies of bunsetsu boundary occurred. We removed
from the data those sentences that contained these discrepancies. Note that the
removal has no effect on the use of the resulting parser because all bunsetsu
segmenta.ﬁons in use are performed according to our bunsetsu definition.

The third step is to construct completely differentiated training and test data.
For both data, we took the same number of sentences from 20 different files in
order to avoid imbalances in the genres of texts.

In the single-tree experiments, we evaluated the following four properties of

the new 'dependency parser.
e Tree pruning and parsing accuracy
e Number of training sentences and parsing accuracy
e Significance of features other than Headword Lexical Information

e Significance of Headword Lexical Information

5.3.1 Pruning and Parsing Accuracy

Table 5.6 summarizes the parsing accuracy with various confidence levels of prun-
ing. The number of training sentences was 10,000.

In C4.5 programs, a larger value of confidence means weaker pruning; 25%
is commonly used in various domains [66]. Our experimental results show that
75% pruning attains the best performance, i.e. weaker pruning than usual., In
the remaining single-tree experiments, we used the 75% confidence level. .AI-

though strong pruning handles infrequent data as noise, parsing involves many
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Confidence Level 25% 50% 75% 95%
Parsing Accuracy | 82.01% 83.43% 83.52% 83.35%

Table 5.6. Pruning Confidence Level vs.Parsing Accuracy

exceptional and infrequent modifications as mentioned before. Our results indi-
cate that information included in only a small number of samples is useful for

disambiguating the syntactic structure of sentences.
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Figure 5.3. Learning Curve of Single Decision Tree

5.3.2 Amount of Training Data and Parsing Accuracy

Figure 5.3 and Table 5.7 show how the number of training sentences influences the
parsing accuracy for the same 10,000 test sentences. They illustrate the following

two characteristics of the learning result.

1. Parsing accuracy rapidly rises up to 30,000 sentences and is almost flat at

around 50,000 sentences.
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2. The maximum parsing accuracy is 84.33% at 50,000 training sentences.

Number of Training Sentences || 3000 6000 10000 20000 30000

50000

Parsing Accuracy || 82.07% 82.70% 83.52% 84.07% 84.27%

84.33%

Table 5.7. Number of Training Sentences vs. Parsing Accuracy

We will discuss the maximum accuracy of 84.33%. Compared to recent stochas-
tic English parsers that yield 86 to 87% accuracy [16, 56], our result is not so
impressive at a glance. The main reason lies in the difference between the two
corpora used: Penn Treebank [58] and the EDR corpus [23]. Penn Treebank is
also used to induce part-of-speech (POS) taggers because the corpus contains
very detailed POS information as well as bracket annotations. In addition, En-
glish parsers incorporate the syntactic tags that are contained in the corpus. The
EDR corpus, on the other hand, contains only coarse POS tags. We had to uti-
lize another Japanese POS tagger [60] to make use of well-grained information for
disambiguating syntactic structures. Only the bracket information in the EDR
corpus was considered. We conjecture that the difference between the parsing
accuracies is due to the difference of the corpus information available. Other
research seems to support this conjecture. [28] constructed another EDR-based
dependency parser by using a similar method to Collins’ [16]. The performance
of the parser was 80.48 % precision with the same evaluation method as ours.
Furthermore, the features they used were exactly the same as ours although pos-
sible values of each feature were slightly different. They also employed the same
part-of-speech tagger and bunsetsu segmenter. Although we do not exactly know
what portion of the EDR corpus was used as their 200,000 training and 10,000
test sentences, a comparison of the two parsers would give some information on
the characteristics of the EDR corpus because of the great similarity in our set-
tings. The two parsers difference in performance probably arises mainly from .the

feature selection capability of the decision tree algorithm.
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5.3.3 Significance of Non-headword Features

We will now summarize the significance of each non-headword feature introduced
in Section 5.2. The influence of the lexical information of headword will be
discussed in the next section. Table 5.8 illustrates how the parsing accuracy
was reduced when each feature was removed. The number of training sentences
was 10,000. In the table, ant and post represent the anterior and the posterior

bunsetsu, respectively.

Feature Accuracy Decrease
ant POS of head -0.07%
ant bunsetsu type +9.34%
ant punctuation +1.15%
ant parentheses +0.00%
post POS of head +2.13%
post bunsetsu type +0.52%
post punctuation +1.62%
post parentheses +0.00%
distance between two bunsetsu +5.21%
punctuation between two bunsetsu +0.01%
‘wa’ between two bunsetsu +1.79%

Table 5.8. Decrease of Parsing Accuracy When Each Attribute Removed

Table 5.8 clearly demonstrates that the most significant features are anterior
bunsetsu type and distance between the two bunsetsu. This result may partially
support an often used heuristic requiring that bunsetsu modification distance be
as short-range as possible, provided the modification is syntactically possible.
Thus, we need to concentrate on the types of bunsetsu to attain a higher level of
accuracy. Most features contribute, to some extent, to parsing performance. In
our experiment, information on parentheses has no effect on perfi)rmz_mce. The
reason may be that EDR contains only a small number of parentheses. One

exception in our features is anterior POS of head. We currently hypothesize that
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this drop in accuracy is due to the following two reasons.

e In many cases, the POS of a headword can be determined from the bunsetsu
type.

e Our POS tagger sometimes assigns verbs for verb-derived nouns.

5.3.4 Significance of Headword Lexical Information

We focused on the headword feature by testing the following four lexical sources
with the 10,000 training sentences. The first and the second are the 100 and 200
most frequently occurring words. The third and the fourth are derived from a,
broadly used Japanese thesaurus, Word List by Semantic Principles [40], in which
Level 1 and Level 2 classify words into 15 and 67 categories, respectively.

1. 100 most Frequent words
2. 200 most Frequent words
3. Word List Level 1

4. Word List Level 2

Headword Information Added | 100 words 200 words Level 1 Level 2

Parsing Accuracy , 83.34% 82.68% 82.51% 81.67%

Table 5.9. Headword Information vs. Parsing Accuracy

Table 5.9 displays the parsing accuracy when each of the above four types of
headword lexical information was used in addition to the previous features. In
all cases, the performance was worse than 83.52%, which was the level attained
without them. More surprisingly, more headword information yielded worse per-
formance. Why does lexical information not improve the parsing accuracy even
though lexical information is reported to be very effective for parsing Europea.n

languages? In the Japanese language, the functional words such as post positional
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particles offer stronger clues for dependency structures than is true in European
languages. Note that these most influential word forms are utilized in another
feature, type of bunsetsu (3 in Table 5.2). Other lexical information may have
to be more elaborate to further improve the j)arsing accuracy of Japanese texts.
It may be helpful to incorporate the more structured lexical information (case
frame information) as in [17]. We will briefly discuss problems involved in word
statistics and thesaurus information we used in turn.

For frequently occurring words, there remains the possibility that the perfor-
mance was worse because we considered directly a limited number (100 and 200)
of words. Other research [28] has reported that considering all content words with
the same smoothing technique as Collins slightly improves the parsing accuracy.

The preprocessing of the head word co-occurrence might be helpful even for
our decision tree learning method. For example, the feature used for learning
may be a quantized co-occurrence probability between two head words. Anyway,
these two results indicate that word statistics does not have as strong an impact
in parsing the EDR corpus as it does in European language corpora. The reason
for this difference may be that the EDR corpus comprises more diverse genres
of texts than Penn Treebank (Wall Street Journal articles). We need further
research to test this possibility.

The result from Word List by Semantic Principles involves more sensitive and
complicated problems. First, the categories of the thesaurus may be too coarse to
be used in parsing. Second, the entries of the thesaurus contain only 30,000 words.
These two shortcomings of the thesaurus may deteriorate the overall performance.
Thus, further investigation of other thesaurus [39] and clustering [10] techniques
might improve the parsing performance.

In summary, it may now be safely said, at least for the Japanese corpus,
that we cannot expect lexical information of content words to consistently make

significant improvement in performance.

5.3.5 Boosting Experiments

This section reports experimental results on the boosted version of our parser.

In all experiments, pruning confidence levels were set to 55%. Table 5.10 and
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Figure 5.4 show the parsing accuracy when the number of training examples was
increased. Because the number of iterations in each data set changed between
5 and 8, we will show the accuracy by combining the first 5 decision trees. In
Figure 5.4, the dotted line plots the learning of the single-tree case (-identica.l to
Figure 5.3) for the reader’s reference. The characteristics of the boosted version

can be summarized as follows in comparison with the single-tree version.

e The learning curve rises more rapidly with a small number of examples. It
is surprising that the boosted version with 10,000 sentences performs better

than the single-tree version with 50,000 sentences.

e The boosted version significantly outperforms the single-tree counterpart for

any number of sentences, although they use the same features for learning.

Number of Training Sentences | 3000 6000 10000 20000 30000

50000

Parsing Accuracy 83.10% 84.03% 84.44% 84.74% 84.91%

85.03%

Table 5.10. Number of Training Sentences vs. Parsing Accuracy

Next, we discuss how the number of iterations influences the parsing accuracy.
Table 5.11 shows the parsing accuracy for various iteration numbers when 50,000

sentences were used as training data. The results have two characteristics.
e Parsing accuracy rose rapidly at the second iteration.

e No over-fitting of data was observed. The performance of each generated
tree fell to around 30% at the final stage of iteration, showing that the trees

become more specialized.

5.4. Related Work

We first relate our work to other research in the parsing community. Recent so-
phisticated English parsers (56, 10] replaced PCFG with transformation (exten-

sion and labeling) rules that are augmented with several attributes, in particular
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Figure 5.4. Learning Curve of Boosting Parser
Number of Iteration 1 2 3 4 5 6
Parsing Accuracy 84.32% 84.93% 84.89% 84.86% 85.03% 85.01%

Table 5.11. Number of Iteration vs. Parsing Accuracy

lexical information. However, we adopt dependency analysis because word order
in Japanese, particularly bunsetsu order, is relatively unrestricted compared to
European languages. Our approach is, in spirit, similar to Collins’ dependency-
based English parser. The main difference lies in the feature selection process. A
Collins-type parser [16, 28] predefines a set of features and conditions the mod-
ification probabilities by all of the attributes, regardless of the bunsetsu type.
The method can incorporate only a small number of features to precisely eval-
uate parameters from a finite amount of data. Our decision tree method offers
more sophisticated feature selection to automatically detect the most significant
features according to the bunsetsu type. Thus, we can use an arbitrary number
of features that may contribute to parsing accuracy. These potential features for

learning have been enumerated in many papers on conventional hand-compiled
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parsers. For example, [51, 42] consider many features (types of characters, similar-
ity of bunsetsu sequence, etc.). Collins incorporates subcategorization frames in
his extended generative model [17] and reports 2.3% improvement of performance
over his dependency model [16]. Such structured lexical information should be
useful in our decision tree based parsers.

There are also some interesting points from the machine learning viewpoint.
Various kinds of re-sampling techniques have been studied in statistics [24, 25]
and machine learning [2, 37, 27]. The Adaboost method was designed to con-
struct a high-performance predictor by iteratively calling a weak learning algo-
rithm (which is slightly better than random guessing). An empirical work reports
that the method greatly improved the performance of decision-tree, k-nearest-
neighbor, and other learning methods [26, 22]. In the context of natural language
processing, Chapter 4 reports that the Adaboost improves the performance of a
Japanese part-of-speech tagger that uses hierarchical context trees [68, 34]. How-
ever, most of these experiments were done with a small number of examples, and
no asymptotic results were reported. We tested the proposed algorithm with one
million pieces of training data (50,000 sentences) in a real-world parsing task.
Our results confirm the usefulness of the Adaboost algorithm in both the rapid-
ity of learning curve improvement and the improved performance after sufficient

data are given to the parser.

5.5. Summary

This chapter has described a new Japanese dependency parser that uses decision
trees. First, we introduced a single-tree parser to clarify the basic characteristics
of our parser. The experimental results show that it achieves an accuracy of
84% outperforming conventional stochastic parsers. Next, the boosted version of
our parser was introduced. The promising results of the boosted parser can be

summarized as follows.

e An accuracy of 85%, outperforming the single-tree counterpart regardless

of the amount of training data.

e No data over-fitting was observed when the number of iterations changed.
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This research should be continued in two directions. One is to make the parser
available to a broad range of researchers and to use their feedback to revise the
features for learning. Second, the method should be tested with other languages
such as English. Although we have focused on the Japanese language, our parser

could be easily modified to work with other languages.
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Chapter 6

AIDA: An Adaptive and
Integrated Dictionary Agent

6.1. Need for Integrating Various Language Re-

sources

This chapter reports an adaptive dictionary environment called AIDA (Adaptive
and Integrated Dictionary Agent) as a concrete application of corpus-based nat-
ural language processing techniques. The following competitive requirements for

foreign language dictionaries motivated the development of the system.

brevity and context dependence Although brief descriptions for an entry are
desirable, they should contain explanations and examples that indicate the

correct usage of words.

generality and specificity of word usage There are several kinds of words
from domain-specific words such as technical terms to general words such
as frequently used verbs. The former mainly requires word-to-word transla-

tion, while the latter also demands subtle nuance and cultural background.

A single dictionary cannot satisfy these requirements because a larger dictio-
nary does not always subsume smaller ones. Users have to use several dictionaries
according to a given purpose [77]. Even if users try to utilize different dictionaries

simultaneously, there are the following drawbacks.
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e Each dictionary is a separate piece of work. It is not assumed by developers

that dictionaries' are mutually linked for the flexible use.

e Dictionaries are static; they do not offer adaptation to new domains or

personal customization for users.

To address these issues, AIDA is designed to be an adaptive dictionary envi-
ronment that can be changed on-line according to a user’s preferences. By using
corpus-based language processing techniques, this system provides us with a cross
reference of various dictionaries and corpora in a single graphical user interface.

More specifically, AIDA offers the following functions to users.

1. Cross reference. for dictionaries and corpora Users can access any
language source in their favorite direction, say from a Japanese-English
dictionary to an English monolingﬁal corpus or from a bilingual corpus to
an English-English dictionary. This cross referencing is realized by sharing

a common index structure among all language sources.

2. Flexible expression retrieval from corpora
AIDA outputs corpus sentences in the order of similarity with an input
expression. Similarity is computed as the sum of active feature weights.
The features are syntactic and semantic characteristics of a sequence of
words. They are extracted from input by morphological analysis. The
weights for each feature can be learned through interactions between the

system and users.

3. Automatic extraction of bilingual and monolingual collocations
The statistical methods reported in Chapter 3 can extract bilingual and
monolingual collocations from corpora. These collocations are linked with
other language resources in AIDA. They are very effective for adapting
AIDA to the application domain of each user.

4. Integrated user interface implemented on Netscape
The functions summarized above can be accessed through a sirigle graphical
interface implemented on Netscape. The interface enables users to share and

access various language resources via the Internet.
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The organization of the chapter is as follows. Section 6.2 describes the imple-
mented functions of AIDA. Section 6.3 discusses the flexible retrieval of corpora.
The retrieval algorithm, the features used and the learning mechanism of feature
weights are explained in this order. Finally, Section 6.4 relates AIDA with other

research, and Section 6.5 summarizes the chapter.

6.2. Overview of AIDA

The input to the system is any kind of dictionary annotated with SGML, in-
cluding sentence aligned bilingual corpora and monolingual corpora. Table 6.1
illustrates the language resources we implemented in AIDA?. In the initialization
step, the input. data is part-of-speech tagged [60, 4] and then word-indexed by
using Patricia trees [32]. The collocation extraction is then performed for both

the bilingual and monolingual corpora.

Data Type Name (Volume)

Dictionary Anchor Eng.-Japanese, Anchor Japanese-Eng., Concise Eng.-Eng.

Bilingual Corpus | Nikkei Science (65000 pair), Yomiuri Editorial (7000 pair)

English Corpus | Wall Street Journal (1987-1989)

Table 6.1. Data Incorporated in AIDA

Figure 6.1 is a screenshot image of a user looking up the English word ‘habit’
in the English-Japanese dictionary. The underlined words in the image signify
that they have entries in other dictionaries. The left window displays the entry
for ‘nature’ of the English-English dictionary accessed ‘from the right window.

Figure 6.2 shows the screenshot image when a user consults the bilingual
collocation dictionary linked from the Nikkei Science. The right window shows
the list of collocations extracted from the data. The left window displays example
sentences including the collocation ‘7 )V VN4 <= —J@EHE - Alzheimer patients’.

1\?V_e would like to thank Nikkei Science Publishing Co. and Yomiuri Shinbun Co. for
permitting us to use the data.
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Figure 6.1. Looking Up Dictionaries

Let us move on to the flexible retrieval of corpora. When a user inputs an
expression, the AIDA system outputs similar expressions by using a dynamic
programming technique. The user then interacts with the system and evaluates
the outputs. When an appropriate expression is provided with low similarity
or an inappropriate expression with high similarity, the system can be supplied
error feedback from the user. The system adapts to the user’s preferences by
changing the feature weights according to the feedback. Figure 6.3 is a screenshot
image when a user inputs the Japanese expression ‘FH#OREz 2 CLEHNH 5’
to retrieve bilingual sentences. The left window displays the resulting sentence

pairs. The right window 1is used to evaluate (feedback) the output.

Although we have so far discussed the dictionaries, the collocations and the
retrieval of expressions separately, the actual use of the AIDA systém is com-

plex and integrates processes according to text domains and the user’s ability in

92



Fié;ure 6.2. Looking Up Bilingual Collocations

English.

6.3. Retrieving Corpora

6.3.1 DP Search Algorithm at Word-POS level

In retrieving corpora, the following three stages of preprocessing are done for the

raw corpus.
1. Nothing is done; the character level search is performed.

2. Only morphological analysis is done; the word and local structure level
search is performed. 3

3. Dependency analysis is done; the global structure level search is performed.
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Figure 6.3. Flexible Expression Retrieval and Evaluation Image

Because kanji characters carry semantic information, the character-level search
in Japanese has an advantage in utilizing the limited semantics. However, the
method cannot capture the syntactic structures of a sequence of words. The
global level search with parsing, on the other hand, incorporates the long-distance
dependency in a sequence. It depends on the user’s demand whether the long-
distance dependency is needed or not. Because our main target is phrase search
within middle-size bilingual corpora, the current version of AIDA uses a local
structure level search. The following summarizes the main reasons. Of course, a
more global search (say, example-based translation) requires long-distance depen-
dencies. An important future direction is to incorporate the parsing technique

introduced in Chapter 5.

e Most user demands are for short expressions that are well handled by mor-

phological analysis alone.
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e A long-distance dependency is effective only when the volume of available

data is large.

e The accuracy of parsing techniques is not as stable as morphological anal-

ysis.

Let sim(m,n) be a similarity measure between a morphologically analyzed
input s(s;, 89, ", 8mn) and a corpus sentence t( ¢1,%2,--+,%,). The computation
of sim(m,n) proceeds as follows by a dynamic programming method. In the
equation, m(i, j) represents the contribution of words s; and ¢; to the total simi-
larity sim(m,n). m(i,j) is computed by summing the weight of active features.
The actual features used will be explained in the next section. Dynamic program-
ming (search width=4) with the morphological analysis can efficiently consider

the local phrase structures as well as the word level concordances.

0 tfi=0vji=0)
maz sim(i —1,7)
| sim(i,j — 1)

6.3.2 Features Used for Similarity Estimation

Table 6.2 illustrates the features for Japanese that produce the similarity m(z, j)
between two words s; and ¢;. The right column shows the number of parameters.
m(i, 7) is computed by summing the weights of active features that are satisfied
by s; and t;. Figure 6.3 clearly indicates that these simple features well capture
semantic and syntactic characteristics of the input sequence. A future direction is
to consider other features such as the categories of a thesaurus and the character

level information of kanji.

6.3.3 On-line Learning of Feature Weights

This section describes how the weight learning is performed. Because a user’s con-
sultation and feedback occur interactively, we have to employ an on-line learning

algorithm rather than a batch algorithm in which induction is performed by using
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Type of feature Number

Word surface 1
Part-of-speech POS symbols
Conjugation conjugation type

Word surface of s;_; and t;_; | POS symbols®

Last word surface 1
Last part-of-speech POS symbols
First word surface 1
First part-of-speech POS symbols

Table 6.2. Features Used

the stored samples at one time. We introduce a simple on-line algorithm called
WINNOW [53, 54]. WINNOW learns weights of linear separable models. The-
oretical analysis shows that the algorithm is very tolerant to irrelevant features.
More specifically, the upper bound of the number of mistakes is in the linear or-
der of relevant features and in the logarithmic order of total number of features.
This is the main reason WINNOW is used in applications with large dimension-
ality such as the text categorization task. In our setting, WINNOW updates the
feature weights every time AIDA outputs an inappropriate result labeled by the
user feedback through the graphical interface in Figure 6.3.

Let 6, a (>1) be a threshold and a learning parameter. WINNOW performs
the following procedures in Table 6.3 to obtain the feature weights. WINNOW
enables AIDA to adapt to cope with a user’s preferences by updating feature
weights.
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1. Initialize weight vectors w = (wy, wa, ..., wy).

2. When feedback is given, the two strategies are iterated until al] the given

examples converge.
(a) When AIDA’s similarity is too small, update the weights of active
features by multiplying «, (w + a - w).

(b) When AIDA’s similarity is too large, update the weights of active
features by multiplying 1/, (w + 1/a -w).

Table 6.3. Weight Update by WINNOW

6.4. Related Work

This section relates AIDA to other previous research. [76] and [70] concern the
methods for flexible retrieval of a bilingual corpus. [76] reduces useless expres-
sions by incorporating a case frame structure of verbs. The generalization using
case frames is effective only when a large amount of data is available. In ad-
dition, the accuracy of current parsing techniques may become an obstacle to
the approach. [70] proposes a character level search to make the best use of the
kanji information. For example, the method detects the similarity between ‘#1
£’ and ‘Bl#l’. However, more frequent phrase retrieval requires generalization
with part-of-speech tags. We consider the local level structures by performing
morphological analysis. Although there were about 5% errors in the results of
the morphological analysis, no serious problems were found because the errors
occurred consistently both in corpus and input word sequences. Note that our
method can easily incorporate the character level information of Kanji and the
semantic categories of a thesaurus as proposed in the above research.

Although [48, 64] combined an online dictionary and corpus, their objectives
are quite different from that of AIDA. [48] proposes a method to augment an
existing bilingual dictionary with a new usage and its frequency information taken

from corpora. The method was tested only with a small number of verbs. [64] on
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the other hand aims at foreign language support. Users can look up words from
o French-Dutch dictionary and a French corpus through a graphical interface.

AIDA applied corpus-based natural language techniques to various language
sources and combined them. In this example-driven spirit, it was éreatly inspired
by the COBUILD English dictionary [15]. The difference lies in the adaptive
functions such as the language source selection, the collocation extraction and the
Jearning of user preferences. In addition, AIDA emphasizes the use of bilingual
COrpora.

Further functions are needed to augment AIDA. For example, word sense dis-
ambiguation is important to reduce useless outputs. The stochastic approach [55]
can also be applied to couple a dictionary and a corpus by determining which

entry of the dictionary a word usage in the corpus belongs to.

6.5. Summary

This chapter has described an adaptive and integrated dictionary agent AIDA.
By combining morphological analysis and simple machine learning methods, we
can tightly couple dictionaries and corpora. Further research will be needed to
provide the system with rich functions by investigating the actual use of AIDA

in various communication roles.
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Chapter 7

Conclusions

7.1. Summary

This thesis has described the machine learning approach to natural language pro-
cessing in order to tackle the knowledge problem. The construction of knowledge
for NLP has been conceptually classified into three steps.

1. Enumerate linguistic features that potentially influence the target language
task.

2. Select features and combine them into a form of rules.

3. Determine preference parameters of rules.
Throughout the thesis, I have tried to emphasize two points.

1. The first step cannot be easily solved by the current machine learning tech-
niques, which instead help human linguists by only extracting significant

co-occurrence of words and phrases.

2. The second and third steps can be robustly performed by state-of-the-art
machine learning techniques, particularly when the representation of the

task has a simple structure such as a context tree or decision tree.
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The machine learning approach (probably other approaches, too) succeeds
when good features, good and simple representations, and a good learning algo-
rithm are all prepared. Although not all of the NLP tasks have these properties,
the problems described in the thesis satisfy these requirements: -

1. Bilingual Sentence Alignment Using Statistical and Dictionary In-
formation The only linguistic feature used is the word-correspondence of
dictionaries. The representation is a non-crossing, weighted and undirected
graph. The learning algorithm corresponds to iterative refinements of the
weights. Although sentence alignment is essentially an unsupervised learn-
ing task, the performance of the method is good because each of the three

steps has very a simple structure. -

2. Learning Bilingual Collocations by Word-level Sorting The linguis-
tic features used are word forms and part-of-speech tags. The representation
for fixed collocations is the pointer table, and the learning algorithm is very
simple statistics. Although the task is unsupervised, fixed collocations are
accurately extracted. Flexible collocations aren’t on the other hand. This

may be because the two linguistic features are too weak for the task.

3. Mistake-Driven Mixture Approach to Morphological Analysis The
linguistic features are part-of-speech tags and frequent word forms. The
representation is hierarchical context trees, and boosting is adopted as
the learning algorithm. Because these three components complement each

other, the proposed method attains good performance.

4. Mistake-Driven Mixture Approach to Dependency Analysis Sev-
eral features are devised by human linguists. The representation is a simple
decision tree that can utilize the features effectively. Boosting is adopted

as the learning algorithm and found to be very powerful.

5. AIDA: Adaptive and Integrated Dictionary Agent Several features
are prepared by a human linguist. The representation is in-the form of a

feature-weight vector. The learning algorithm is the well-known WINNOW
method.
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7.2. Future Directions

When we decide to further develop the machine learning approach for language
processing, what. kind of research will be needed in the future? In the rest of the
chapter, I will discuss the directions that seem to be important fro extending the
research conducted in the thesis.

1. The most important and challenging research direction concerns how lin-
guistic features are constructed (the first step), a question which has sig-
nificant influence on the target language task. In this thesis, I have only
shown applications whose features are simple or can be empirically handled
by experienced language engineers. However, the success of more compli-
cated tasks requires automatic detection of the language features. Feature
detection is one of the greatest bottlenecks of symbol processing because
learning them is tightly coupled with sensory signals. We humans acquire
and use languages in association with vision, motion and audition of the
real world. Therefore, the computational neuroscience approach [43] to cog-

nitive activities might be promising to the basic research in this direction.

2. More practical research should pursue learning algorithms suitable for lan-
guage processing (the second and the third steps). In unsupervised learning,
the most interesting direction is to extract full translation patterns from a
bilingual corpus. The sentence alignment algorithm, the fixed collocation
extraction method and the robust dependency analysis method reported
in this thesis should provides strong clues for the task. Furthermore, a
new extraction algorithm should consider not only translation patterns but
also the overall performance of the translation system. In other words, the
learning algorithm needs to decide how the extracted rules are used (the
third step) as well as what are the rules (the second step).

Now let us move on to supervised learning. The Adaboost algorithm [27]
effectively deals with infrequent and colloquial expressions of natural lan-
guage, as shown in the thesis. Other margin-based [79] leaning algorithms
such as Support Vector Machine [18, 79] might be helpful to handle natu-
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ral language corpus data. It would be interesting to investigate values of

margin for various types of language tasks.

. An alternative promising direction concerns the cooperation’ between com-
putational linguists and machine learning researchers. As I have emphasized
in this thesis, the most practical machine learning approach at present is for
human linguists to find effective features by using machine learning tech-
niques. The current machine learning techniques and high-spec computers
have made the second and third steps feasible. The preference parameters
are automatically set when a machine learning algorithm quantitatively
selects the significant features. This cooperative strategy will reduces the
human burden involved in the conventional trial-and-error rule compilation.
I believe this cooperative approach will be a new shape of natural language
engineering in the near future. The following summarizes several issues to

be resolved in this direction.

e Machine learning techniques for language processing are now mature
enough to cooperate with computational linguists who have engaged
in the development of practical systems. The computational linguists
know which features have an effect on the performance of the system,
but cannot optimize the preference parameters because the size of rules
is too large. The power of the machine learning approach should be
proved in such a situation. I think the most promising domain for
such cooperation is dependency analysis because the features for the
task are already known to some extent and their combinations and

preferences are difficult to set.

e I proposed a new learning-driven language engineering in which a com-
putational linguist tests the potential features in his mind by a learning
algorithm. If a feature is judged to be significant, rules and preferences
are automatically determined by the algorithm. Such an interaction
between human and machine requires a sophisticated interface. The
computational linguist should know the effect of each feature and un-

derstand the output rules of the algorithm to further improve the fea-

102



ture set. A graphical environment for this purpose is needed to advance

the leaning-driven language engineering.
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