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Daisuke Ikegami

Abstract

Decoding binary linear block codes is one of the most fundamental and signi�cant
topics in the study of error correcting codes. There are two measures to evaluate de-
coding algorithms: the performance of correcting errors and the complexity of the
algorithms. These two measures are in a trade-off relation. A decoding scheme which
maximizes the performance is called the maximum-likelihood decoding (MLD), how-
ever, the complexity for MLD grows exponentially to the size of codes. At the sacri�ce
of the performance of MLD, it is possible to reduce the complexity. An efficient de-
coding scheme whose complexity is reduced is called a sub-optimum decoding. In the
�rst half of this thesis, a new sub-optimum decoding algorithm is discussed. Recently,
Fossorier and Lin have proposed a remarkable sub-optimum decoding algorithm which
is based on ordered statistics of the communication channel. Their algorithm is simple
and shows near optimum performance. By combining techniques of MLD and Fos-
sorier's algorithm, a new sub-optimum decoding algorithm is obtained in this thesis.
In the last half of this thesis, a novel MLD algorithm is proposed. Our idea is to reduce
the problem of MLD into an integer program with binary variables. Recently, Conti
and Traverso have developed an algorithm to solve a certain class of integer programs
by making use of Gröbner bases. In this thesis, Conti's algorithm is extended to solve
integer programs which represent MLD. The new MLD algorithm �rst reduces MLD
to an integer program, to which an extended Conti's algorithm is applied.

Keywords: error correcting code, maximum likelihood decoding, integer program-
ming, Gröbner basis, soft-decision decoding
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線型符号の代数的最尤復号法及び準最尤復号法∗

池上大介

内容梗概

誤り訂正符号理論において、良い復号法を模索することは最も基本的かつ重要

な課題である。誤り訂正符号の復号アルゴリズムには、誤り訂正能力と計算量の

2つの評価尺度があり、これらは一般にトレード・オフの関係にある。最尤復号
法は誤り訂正能力を極限まで追求するが、計算量は符号長の指数オーダで増大す

る。一方、誤り訂正能力を犠牲にして計算量を削減することが可能であり、その

ような復号法は準最尤復号法と呼ばれる。本論文の前半では、準最尤復号につい

て議論する。これまで多数の準最尤復号法についての研究が行われているが、中

でも Fossorier と Lin によって提案された、通信路の順序統計量に基づく準最尤
復号法に注目する。この準最尤復号法は単純で、かつ最尤復号法と極めて近い誤

り訂正能力を持つ。本研究では、最尤復号法と Fossorier の復号法を組合せるこ
とで、新しいタイプの準最尤復号法を構成した。一方、本論文の後半では、最尤

復号の問題を 2元整数計画問題に帰着させるというアイデアに基づき、新しいタ
イプの最尤復号アルゴリズムを提案する。近年、 Contiと Traversoはグレブナ基
底を利用して、ある種の制約をみたす整数計画問題を解くアルゴリズムを提案し

た。本論文では、Contiのアルゴリズムを最尤復号に対応する整数計画問題のク
ラスに拡張し、これを適用することで最尤復号法を実現する手法を示す。

キーワード

誤り訂正符号,最尤復号,整数計画,グレブナ基底,軟判定復号
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1. Introduction

1.1 Error correcting codes and their decoding

Error correcting code is a well-known and widely-accepted technique to realize a
reliable communication system of digital information over noisy communication chan-
nels. Linear block codes are families of error correcting codes which are easy to han-
dle with, and have been studied deeply. The most important problem concerning linear
block codes is, both from theoretical and practical viewpoints, realization of an effi-
cient decoding algorithm.

Decoding of an error-correcting code is to correct errors in a received sequence. In
other words, decoding is a problem to estimate the most likely transmitted codeword
from the received sequence which is observed from a noisy channel. Here we introduce
some elementary notations for error-correcting codes. We consider binary linear block
codes through the thesis. A codeword c = (c1, . . . , cn) ∈ {0, 1}n is said to have length n.
A linear vector space which consists of codewords is also called a linear block code. If
k is the dimension of the code, we call the code an [n, k] code. Since this code uses n
symbols to send k message symbols, it is said to have rate R = k/n. A codeword c of an
error correcting code is said to be the most likely codeword for a received sequence r if
c maximizes P(r | c), which is the probability of receiving r when the codeword c was
transmitted, among all codewords of the code. Thus the primal purpose of decoding is
to �nd the most likely codeword for a received sequence.

There are two approaches to realizing a decoding algorithm (or decoder) of error
correcting codes. The �rst approach is to try to �nd the most likely codeword for
a received sequence. A decoding scheme which is based on this approach is called
the maximum likelihood decoding (MLD). MLD is a powerful decoding scheme but it
usually consumes a large amount of computing time and space. Indeed it is known that
MLD is an NP-complete problem if arbitrary linear block codes are considered. For
this reason, MLD for linear block codes is considered practical only if the code to be
used is very small, say length 32 or less. In the second approach to realizing decoders,
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CHAPTER 1. INTRODUCTION

we allow a decoder to make some mistakes. That is, a decoder successfully �nds the
most likely codeword in most cases, but it sometimes fails to �nd the correct most
likely codeword. Of course this will degrade the reliability of communication, but the
computational complexity for decoding is expected to be reduced. A decoding scheme
which is based on this approach is called a sub-optimum decoding. Sub-optimum
decoding is important from the practical reason, and a large number of algorithms for
sub-optimum decoding have been proposed.

In the rest of this chapter, we brie�y review some results on MLD and sub-optimum
decodings. Outline of this thesis is also provided.

1.2 Maximum likelihood decoding

A straight-forward method for realizing MLD is by a brute-force exhaustive search.
The brute-force approach to MLD of a binary linear block code requires the compu-
tation of 2k conditional probabilities where k is the dimension of the code. The time
required for this method rapidly becomes too large to implement a decoder as k in-
creases and more effective methods are therefore needed.

Several researchers have presented techniques for decoding linear block codes. One
common approach is by converting the decoding problem into a graph-oriented prob-
lem on a trellis diagram which is derived from the code. The best-known and most
commonly used MLD algorithm is the Viterbi algorithm [14,34,39,52]. In the context
of MLD, a trellis diagram is considered as a weighted and directed graph. The Viterbi
algorithm is based on Dijkstra's algorithm which �nds a minimum cost path from the
start node to every other node of a weighted and directed graph. The Viterbi algorithm
is a simple and efficient method for implementing MLD. This algorithm is especially
good for convolutional codes [52], since the complexity of the Viterbi algorithm is
proportional to the size of the trellis, and convolutional codes usually have a small and
simple trellis diagram. However, the Viterbi algorithm is not appropriate for block
codes with long length and large dimension because block codes have large, compli-
cated and time-varying trellis diagrams in general. Therefore other efficient algorithms

2



CHAPTER 1. INTRODUCTION

are strongly needed.
Many efforts have been devoted to �nding an efficient algorithm for MLD of linear

block codes; a detailed bibliography of classical contributions in this area can be found
in [6]. Recently, Han et al. proposed an algorithm which is now known as an A∗

algorithm [19]. The A∗ algorithm �rst re-orders received symbols according to their
con�dence values and then performs a tree search similar to the sequential decoding.
The search is guided by a cost function which de�nes the present cost and estimated
future contributions for each node of the search tree. Using the cost function, the
algorithm tries to �nd the most likely codeword (or best leaf node) in an adaptive
manner. This algorithm allows MLD to work on long block codes efficiently for high
SNR's. In some bad cases which typically occur in low to medium SNR's, however,
this algorithm requires both numerous computations and very large memory.

There are efforts to reduce the overall complexity of the trellis decoding by taking
advantage of the decomposable structure of certain codes [6, 15, 31, 37]. Lafourcade
and Vardy tried to reduce the computational complexity of the Viterbi algorithm by us-
ing the optimally sectionalized trellis diagram instead of the naive trellis [32]. It surely
reduces the complexity, but the improvement is not so much and the trellis complexity
still grows exponentially with the dimension of any sequence of good codes.

Fujiwara et al. noticed that if the trellis is �divided� into small sections, then each
section contains many duplicated structures. By making use of this structural property
of the trellis, they proposed an efficient algorithm which they call the recursive MLD
algorithm [18]. Kaji et al. brought the strategy of a call-by-need computation (lazy
evaluation) into the recursive MLD algorithm, and showed that the complexity can be
extremely reduced [29].

1.3 Sub-optimum decoding

There are many sub-optimum decoding algorithm nowadays. The generalized min-
imum distance (GMD) decoding proposed by Forney [13] is one of the oldest sub-
optimum decodings. The GMD decoding uses an algebraic decoder to produce a list

3



CHAPTER 1. INTRODUCTION

of likely codewords. For each codeword in the list, a test is then performed, with re-
spect to a sufficient condition for optimality. The best codeword which passed the test
is chosen as the decoded codeword.

Following an idea similar to the GMD decoding, Chase provided an algorithm which
testi�es a �xed number of error patterns, where the error patterns are generated sys-
tematically according to the reliability of received symbols [2]. A naive approach to
generating the error patterns is to �x symbol positions, usually least reliable ones, and
consider all error patterns which involve errors only in the �xed positions. For this
algorithm, the maximum number of considered codewords and the error performance
depend on the number of �xed positions. Chase's algorithm has then been modi�ed
so that the error patterns cover symbol positions which have less reliabilities than a
predetermined threshold [49]. One drawback of this modi�cation is that the maximum
number of computations depends on both the choice of a threshold and the signal-to-
noise ratio. It is unavoidable for sub-optimum decoding algorithms to have degrada-
tion in performance. In the case of the GMD and Chase algorithms, the performance
degradation is not so much if the code has small rate. However, the degradation to
MLD increases as the code rate increases.

Recently, a more improved algorithm based on the same idea has been proposed
[30]. The algorithm tries to search good codewords iteratively. There is no limitation
on the search space at the beginning of the algorithm, but at each iteration, a sufficient
condition for optimality to terminate the algorithm is tested. After each test, the search
space is reduced, and the iteration continues until the search space converges to a
unique solution. The algorithm is also equipped with a termination criterion, which
works effectively to reduce the computational complexity for short codes. However,
the complexity of this algorithm still increases exponentially to the dimension of the
code.

Another well-known technique is to perform syndrome decoding on the received
sequence, and then use the syndrome information to modify and improve the original
hard-decision decoding. In this approach, there is a room to consider a good strategy

4



CHAPTER 1. INTRODUCTION

for the search of the most likely codeword. In the original study [44], a simple strategy
which makes use of the order of symbol reliabilities is considered. Different search
schemes based on binary trees and graphs are presented in [35]. For an [n, k] code, the
methods presented in [35,44] both require that n− k should be relatively small because
the search is carried out over most of the column patterns of the parity check matrix
of the code. For very high rate codes, it is possible to reduce the search space of [44]
as shown in [43]. Roughly speaking, it is shown in [43] that we can predetermine
a necessary and sufficient list of error patterns, based on the parity check matrix of
the code and a partial ordering of the reliability measures. However, the technique
becomes rapidly impractical whenever n− k exceeds 8. Also we cannot induce enough
number of general and effective conditions for error patterns to survive [16, 42].

There are studies which make an MLD algorithm a sub-optimum one. For example,
a sub-optimum version of the A∗ algorithm has been devised where the maximum
number of codeword candidates is limited by a threshold [16, 20].

Among many sub-optimum decoding algorithms, the author is interested in the soft-
decision decoding algorithm based on ordered statistics of the communication channel
by Fossorier and Lin [16] because the algorithm achieves near optimum error perfor-
mance with considerably small decoding complexity. Different from the Viterbi algo-
rithm, the Fossorier's algorithm does not use trellis diagram of the code. In addition,
the worst case complexity of the Fossorier's algorithm can be exactly evaluated while
it is hard to evaluate the worst case complexity for other sub-optimum algorithms. The
Fossorier's algorithm is simple and consists of the following three steps:(1) choose k
symbol positions so that the chosen symbol positions constitute information symbol
positions in a codeword, and the reliability of symbols at the corresponding positions
in the received sequence is as large as possible, (2) make a binary vector of length k,
say a, as the hard-decision of the received symbols which correspond to the chosen
k positions, and �nally (3) encode a and obtain a codeword, which is the estimation
of the transmitted codeword. Fossorier refers to this algorithm as the 0-th order re-
processing algorithm. If the vector a does not involve an error, then the 0-th order
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CHAPTER 1. INTRODUCTION

reprocessing algorithm can estimate the correct transmitted codeword. However, if a
involves errors, the result is not correct. To avoid this issue, Fossorier also investi-
gated higher-order reprocessing algorithms. In the l-th order reprocessing algorithm,
we examine every vector which has length k and whose Hamming distance from a is
l or less. Thus ∑l

i=0
(

k
i

)
encoding operations are executed in the l-th order reprocessing

algorithm in general. Fossorier and Lin have also proposed a condition to reduce the
number of the computations (Theorem 4 in [16], which also improves the extended
distance test introduced in [48]), though the computation of the l-th order reprocessing
increases as the dimension k and the level l increase.

1.4 Outline of the thesis

In chapter 2 of this thesis, we consider a new algorithm for sub-optimum decod-
ing [23, 28]. The algorithm takes an approach similar to Fossorier's 0-th order repro-
cessing algorithm. Instead of choosing k symbol positions, the proposed algorithm
chooses t symbol positions with t ≤ k. The received symbols at the chosen positions
are quantized and t symbols in a codeword is decided. The estimation of the remaining
part of the codeword is performed by an MLD algorithm because the remaining part
can be regarded as a codeword in an punctured [n − t, k − t] linear code. The error
performance and the complexity are evaluated analytically as in the case of Fossorier's
method. By computer simulation, we show that our extended Fossorier's algorithm has
almost the same performance and complexity as the 2-nd order reprocessing. One of
the aims of our approach is to provide much �exibility for Fossorier's algorithm. We
show that the parameter t considered in the algorithm is more �exible than the Fos-
sorier's parameter l in practice. In addition, since any MLD technique can be applied
to our algorithm, if an efficient MLD algorithm is constructed, then the complexity of
the proposed algorithm will be further improved.

In chapter 3, we propose a novel and quite different algorithm for MLD [25,26]. The
essential idea is that MLD is equivalent to solving a certain integer program with binary
variables. This idea itself is not very new. Many coding theorists have noticed the
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CHAPTER 1. INTRODUCTION

relation between MLD and integer programming. However, solving an integer program
is another very difficult problem in general. The aim of chapter 3 is to reduce MLD into
a class of integer programs for which an effective algorithm has been devised. In [5],
Conti and Traverso have developed a method of solving an integer program based on
a Gröbner basis. The Conti's method consists of three major steps. The �rst step
is to translate a given minimization (or maximization) problem of a target function
into a minimization problem of a linear function with nonnegative coefficients. The
constraint equations which the solution must satisfy are also modi�ed in this step. The
second step is to compute a Gröbner basis for an ideal of a polynomial ring which
is de�ned from the constraint equations, and the �nal step is to compute the solution
which minimizes the target function using the Gröbner basis.

We have extended the Conti's method for integer programs with modulo arithmetics,
which is necessary to achieve MLD for binary linear block codes. Our key idea is the
following two points: introduction of some binomials for modulo arithmetics in addi-
tion to generators of the Conti's proposed ideal, and consideration for an operation of
matrices, also known as the Lawrence lifting, for non-positive target functions. Since
the integer programs with binary modulo arithmetic include MLD for binary linear
block codes on some channels (including the binary symmetric channel and the addi-
tive white Gaussian channel (AWGN)), we can obtain a new MLD algorithm which
uses our extended Conti's algorithm.

The contribution of this study is that this is the �rst work which points out the re-
lation between MLD and Gröbner bases. For arbitrary linear codes, the bounded dis-
tance decoding algorithm based on Gröbner bases is known [9, 12]. However, to the
best of the author's knowledge, the idea of utilizing Gröbner bases in MLD is new.
The decoding complexity of our proposed method is larger than other known MLD al-
gorithm if we consider the AWGN channel. This is mainly because the computation of
Gröbner bases consumes much time and space. If we can �nd an efficient algorithm for
computing Gröbner bases, then the complexity of our method will be improved. Fortu-
nately, for the binary symmetric channel, we can consider a different transformation of

7
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MLD to integer programs. In this transformation, we can exclude the computation of
Gröbner bases as a pre-computation. Hence each decoding operation is more efficient
than the above AWGN case. Since the size of Gröbner bases grows exponentially with
the length and dimension of the code, reducing the space complexity is an important
work in future. We �nd an interesting class of codes which can be decoded with our
algorithm based on Gröbner bases with less complexity [38].

In chapter 4, we introduce another construction of ideals appeared in the Conti-like
MLD to reduce the complexity of the decoder [27]. As we mentioned, the Conti-like
MLD algorithm which is discussed in chapter 3 needs to compute Gröbner bases of an
ideal. We can compute Gröbner bases by Buchberger algorithm [1, 7]. However, un-
fortunately, the complexity of Buchberger algorithm is a strongly increasing function
of the number of variables and the number of generators of ideals. Hence it would be
useful to reduce the numbers for computing Gröbner bases. The main result of chapter
4 is to reduce both the number of the variables and generators of the ideal which is
needed in the Conti-like MLD algorithm.

In chapter 5, we provide concluding remarks.

8



2. The ordered-statistics and the MLD techniques

2.1 Summary of this chapter

Fossorier and Lin developed a soft-decision decoding algorithm based on the ordered-
statistics (OS) [16]. Their algorithm consists of two steps; hard-decision decoding and
reprocessing. The hard-decision decoding is based on the ordered reliability values of
the received symbols. Assume that an [n, k] binary linear block code C is used over a
memoryless channel. In the hard-decision decoding step, we �rst choose k symbols in
the received sequence so that the symbols are as reliable as possible and the symbol
positions can constitute information symbol positions of the code C. If the k quantized
value do not involve errors, then the constructed codeword is the correct estimation of
the transmitted codeword. However, if the quantized values involve errors, then the
result of the decoding is not correct. To avoid this issue, the algorithm has the second
step called reprocessing. There are 2k =

∑k
i=0

(
k
i

)
patterns of information symbols. For

a given parameter l called order, at most ∑l
i=0

(
k
i

)
patterns are tested in the l-th order

reprocessing process.
In [16], it is shown that the performance of the order-2 reprocessing is near the

optimum MLD for some codes, including Reed-Muller (RM) codes. In this thesis, we
will propose a sub-optimum MLD algorithm based on order-0 Fossorier's algorithm
for arbitrary binary linear block codes. Our best simulation results (see �gure 2.1
on page 16 and table 2.1 on 18) have been achieved for RM codes in practice. The
simulation results show that the performance of the proposed decoding is near one of
order-2 Fossorier's decoding, or one of MLD for low SNR's, while the complexity of
the worst case of the proposed algorithm is smaller than one of order-2 Fossorier's
decoding.

9
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2.2 Notation

Suppose an [n, k, d] binary linear block code C with a generator matrix G is used
for error control over the additive white Gaussian noise (AWGN) channel with binary
phase shift keying (BPSK) signaling. Also suppose each codeword is equally trans-
mitted. Let c = (c1, . . . , cn) ∈ C be a codeword. For BPSK transmission, the codeword
c is mapped into the bipolar sequence z = (z1, . . . , zn) ∈ {−1, 1}n where zi = 2ci − 1 for
i = 1. . . . , n. After transmission, the received sequence at the output of the sampler in
the demodulator is r = (r1, . . . , rn) ∈ Rn with ri = zi + ei for i = 1, . . . , n, where ei's
are statistically independent Gaussian random variables with zero mean and a �xed
variance. See also [41] for details about the AWGN channel with BPSK signaling. We
denote by a ◦ b the concatenation of two vectors a and b.

2.3 The decoding algorithm based on ordered-statistics

Fossorier's Ordered statistics decoding (OSD) is a probabilistic information set de-
coding method. The original algorithm can be found in [16, 17]. The OSD method is
a reduced-complexity soft decision decoding method for arbitrary binary linear block
codes. For RM codes of lengths up to 64 bits, it is shown that the OSD achieve near
optimum decoding by the computer simulation.

Their decoding algorithm consists of two major steps: the hard-decision step and
the reprocessing step. In the hard-decision step, the decoding begins with reordering
the components of the received sequence r by its absolute values. By this procedure,
the decoder �nds k information positions which is estimated by the hard-decision. If
the hard-decision decoding has no error, then the decoder can obtain the transmitted
word to encode the k symbols. Otherwise, the decoder needs to estimate the received
sequence again for correcting errors. Fossorier's decoding has a threshold parameter
l named order to design the performance and the complexity of the latter estimation.
The performance and the complexity of the estimation are in a trade off relation. In the
second step, which is called the l-th order reprocessing step, the decoder tests at most

10
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∑l
i=1

(
l
i

)
patterns of codewords for �nding the most likely codeword in the patterns.

Fossorier and Lin have presented not only the decoding algorithm but also a theo-
retical evaluation of the algorithm. Both the performance and the complexity of OSD
algorithm can be evaluated using the ordered statistics on the noise of the communica-
tion channel.

2.4 Proposed decoding algorithm

2.4.1 Overview of the algorithm

The overview of the proposed decoding algorithm is brie�y introduced in this sec-
tion. The details will be discussed in the following subsections. Our proposed algo-
rithm consists of two major steps: (1) the reordering step and (2) the MLD step. Let
t be a non-negative integer which is equal to or less than k. In the reordering step, t
most reliable independent symbols are chosen from the received sequence, as in the
ordered-statistic approach in [16]. The chosen symbols are quantized to binary values
0 or 1, and the binary symbols are regarded as the �correct symbols in the transmitted
codeword�. Remark that the set of codewords which have the chosen symbols at the
chosen positions is a coset of linear punctured subcode of the original code C. Hence,
in the MLD step, we can apply the soft-decision MLD algorithm over the set of the
possible codewords to estimate the remaining symbols in the transmitted codeword.
The details of each step, including the discussion of the error probability, are presented
in the following.

2.4.2 Reordering step

Let G = (g1, . . . , gn) be a generator matrix of the code C where gi with 1 ≤ i ≤ n
is the column vector of G, and let r = (r1, . . . , rn) be the received sequence. In this
reordering step, t integers α1, . . . , αt are chosen so that

• column vectors gα1 , . . . , gαt are linearly independent, and

11



CHAPTER 2. THE ORDERED-STATISTICS AND THE MLD TECHNIQUES

• |rαi | with 1 ≤ i ≤ t is as large as possible.

The computation of α1, . . . , αt is easily possible by using G and r. (see section 2.6 and
[16] for the detail). The symbols rα1 , . . . , rαt are called the t most reliable independent
(MRI) symbols of r. De�ne a matrix G′ as G′ = (gα1 , . . . , gαt ,G−) where G− is the
matrix obtained by deleting column vectors gα1 , . . . , gαt from G. To make the following
discussion easier, we perform elementary operations on row vectors of G′, and consider
that G′ is of the form

G′ =


1t ∗

0k−t,t Ḡ

 (2.1)

where 1t is the t × t identity matrix, 0k−t,t is the (k − t) × t zero matrix and Ḡ is a
(k − t) × (n − t) matrix. Let C′ be the code which is generated by G′, and let r′ =

(r′1, . . . , r′n) be the sequence which is obtained by reordering symbols in r as the same
corresponding order as G′. De�ne

ui :=


0 if r′i < 0,
1 otherwise.

for 1 ≤ i ≤ t. That is, u1, . . . , ut are the hard-decision values of the �rst t MRI symbols.
Let Cu be the set of vectors such that Cu = {v : u ◦ v ∈ C′}, that is, Cu is the set of
vectors which are �connectible� to u = (u1, . . . , ut). In the following MLD step, we
perform the MLD of Cu to �nd the most likely codeword, say vm, in Cu. Since the
communication channel is memoryless, u ◦ vm is the most likely codeword among all
codewords whose �rst t symbols are u1, . . . , ut. Thus, if u = (u1, . . . , ut) involves no
error, then u ◦ vm is the most likely codeword in C′.

In the rest of this section, we evaluate the probability that the vector u involves an
error. This probability, denoted PH in the following, affects the total error performance
of the proposed algorithm. The precise analysis of PH is complicated and beyond the
scope of this paper, but it is possible in a similar way to the analysis in [16, Equation
61].

PH ≤
n−t∑

j=0
Pt, j(

t+ j−1∑

i=0
Pe(t + j − i; n)) (2.2)

12
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where, for 1 ≤ i ≤ n, Pe(i; n) is the probability that the hard-decision of r′i is different
from the transmitted symbol (i.e. involves an error), and Pt,i is the probability that the
(reordered) received sequence r′ contains i symbols satisfying |r′j| > |r′t | and j > t.
The probability (2.2) will be used to evaluate the error performance of the proposed
algorithm.

2.4.3 MLD step

In the MLD step, the algorithm compute the most likely codeword in Cu for the
remaining part of the received sequence r̄′ = (r′t+1, . . . , r′n). In general, any MLD algo-
rithm for linear codes cannot be applied to Cu directly for estimation of r̄′ since Cu is
not linear, but the following lemma leads that we can use an MLD algorithm for the
estimation.

Lemma 2.1. Let C̄ be the code which is generated by Ḡ, which is appeared in the
equation 2.1, and let y = (yt, . . . , yn) be the vector of length n − t such that

u ◦ y = (u ◦ 0k−t)G′,

where 0k−t is the zero vector whose length is k − t. Then Cu = y + C̄.

Proof. From the de�nition of the MRI symbols and G′, we have |Cu| = 2n−t. Since we
have also |y + �C| = 2n−t, in order to prove the lemma, we need to see that if v ∈ Cu,
then v − y ∈ �C. Let A be a t × (n − t) matrix such that

G′ =


1t A

0k−t,t �G

 . (2.1′)

Then we have y = uA from the de�nition of y. On the other hand, since v ∈ Cu, v must
be written as

v = uA + w �G

where w is a binary vector whose length is k − t. �

13
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Lemma 2.1 shows that the MLD of Cu is possible by using an ML decoder of C̄. Let
�r′ = (�r′t+1, . . . , �r′n) where

�r′i :=


−r′i if yi = 1

r′i otherwise

and let v̄m be the most likely codeword in C̄ for the sequence �r′. It is clear that the most
likely codeword in Cu for the sequence �r is gained as vm = y + �vm.

If the vector u involves no error, then u ◦ vm is the most likely codeword in C′.
In this case, the probability that the MLD on C̄ is erroneous equals the probability
that this codeword is different from the transmitted codeword. By applying the union
bound [41], the former probability PS is bounded as

PS ≤ ((2k−t − 1)/2) exp(−σ(k − t)(d − t)/(2n)), (2.3)

where σ is a constant which is determined by the variance of the noise of the AWGN
channel (see also [41, p.407, Equation(5.2.67)]). This probability (2.3) will be recalled
to evaluate the error performance of our proposed algorithm.

2.4.4 Proposed algorithm revised

We can summarize the previous discussion in the following decoding algorithm (Al-
gorithm 2.1).

2.5 Evaluation of the algorithm

The error performance and the complexity of our proposed algorithm are evaluated
in this section.

2.5.1 Error performance

First, we evaluate the error performance of our proposed decoding algorithm. Let
P be the probability of the decoding error of the proposed algorithm. The algorithm

14
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Algorithm 2.1 Proposed decoding algorithm using the ordered-statistics and the MLD
technique
Input: The received sequence r, a generator matrix G and a threshold parameter t.
Output: An estimated codeword.

1: Find the most reliable symbols of r.
2: Reorder r and constitute the sequence r′. Also reorder the column vectors of G,

perform elementary row operations and constitute the generator matrix G' of the
form in the equation (2.1).

3: Make the hard-decision of the �rst t symbols of r′, and obtain the vector u.
4: Determine the vector y satisfying u ◦ y = (u1, . . . , ut, 0, . . . , 0)G′.
5: Compute �r′ from r′ and y.
6: Compute the most likely codeword vm ∈ Cu for r′ using the ML decoder of C̄.
7: Reorder symbols in u◦vm to obtain the codeword of the original code C and output

the reordered vector.

makes a decoding error if the hard-decision involves errors, or the MLD procedure
makes a decoding error though the hard-decision involves no error. Therefore we have

P ≤ PH + (1 − PH)PS ,

where PH and PS are probability which is given in the equations (2.2) and (2.3). How-
ever, unfortunately, this inequality is too complex to compute and the bound is rather
quite loose. Hence we evaluate the error performance by computer simulations in this
thesis.

The �gure 2.1 shows that the performance of the proposed algorithm depends on the
choice of the threshold parameter t. We can see from the �gure that the proposed algo-
rithm with t = 20 or 30 achieves almost the same error performance as the Fossorier's
algorithm. Actually, when the SNR is 1.0dB, the word error rate of order-2 Fossorier's
algorithm is 10−0.428, while that of the proposed algorithm is 10−0.41 for t = 30, and
10−0.50 for t = 20.
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2.5.2 Complexity

Next, we discuss the complexity of the proposed algorithm. We use the number
of additions and comparisons of the reliability information or entries of the received
sequence as the measure of the complexity. For the �rst reordering step, we need
at most n log2 n operations to choose the MRI symbols. To obtain the hard-decision
of t MRI symbols, we need t comparisons of reliability information. Therefore the
complexity of the proposed algorithm is upper-bounded by

n log2 n + t + TMLD,

where TMLD is the complexity necessary in the MLD step. Note that TMLD depends on
the algorithm to be used for the subcode �C. In the following discussion, we consider
to apply the MLD algorithm presented in [29].

By using computer simulation, we evaluated the average of the actual number of
operations consumed in the proposed algorithm. Figure 2.2 shows the average number
of operations necessary for decoding the [64, 42] RM code. The complexity decreases
as the SNR increases because TMLD decreases as the SNR increases.

To compare the proposed algorithm to Fossorier's algorithm, we also discuss the
complexity in the worst case. As we saw in the previous section, the proposed algo-
rithm achieves almost the same performance as order-2 Fossorier's algorithm, if we
take t = 20 or 30. Table 2.1 shows the computer simulation results. In the worst
case, the complexity of the proposed algorithm with t = 30 is slightly bigger than that
of Fossorier's algorithm, while the error performance of the proposed algorithm with
t = 30 is better than that of Fossorier's algorithm.

2.6 Implementation issue

For the implementation of the proposed algorithm, we need to calculate the t MRI
symbols rα1 , . . . , rαt of the received sequence r = (r1, . . . , rn), as we have seen in sec-
tion 2.4.2. We can �nd the t MRI symbols using the elementary row operations of
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Table 2.1 Complexity of the worst case for RM [64, 42] code on SNR=1.0dB

combining Kaji et al. 's [29] and OS
t = 20 19,665
t = 30 39,033

Fossorier and Lin [16] 2nd order 20,208
Viterbi [16] 544,640
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a generator matrix and the permutation of symbols. In this section, we introduce the
method of �nding MRI symbols in [16].

First, let λ : {1, . . . , n} → {1, . . . , n} be a permutation map such that

|rλ(1)| ≥ |rλ(2)| ≥ · · · ≥ |rλ(n)|.

Then we permute the columns of the generator matrix G based on λ. This results in the
following matrix:

Gλ := (gλ(1), . . . , gλ(n))

Then starting from the most left column gλ(1) of Gλ, we can �nd t independent
columns to apply the elemental transform of rows of Gλ (or Gaussian elimination) with
the largest associated reliability values |rλ(i)| for i = 1, . . . , n. Therefore we can �nd the
positions of t independent columns α1, . . . , αt. The process of elemental transform is
also useful to obtain the matrix

G′ =


1t ∗

0k−t,t �G

 .

2.7 Conclusion of this chapter

In this chapter, we have considered a sub-optimum decoding algorithm. The algo-
rithm uses the techniques of ordered-statistics decoding of Fossorier et al. to determine
t information symbols where t is a parameter, and an MLD algorithm to determine the
remaining symbols. The error performance and the decoding complexity can be con-
trolled by choosing t. If we choose t smaller, then the error performance makes smaller,
but the decoding complexity increases. Further, if we choose t so that the error perfor-
mance of the proposed algorithm is almost the same as that of Fossorier's algorithm,
then the decoding complexity of the proposed algorithm also becomes almost the same
as that of Fossorier's algorithm.

Unfortunately, the error performance of the proposed algorithm, with the similar
complexity of Fossorier's decoding, is little bit inferior to that of the order-2 Fossorier's
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decoding. However, if an MLD algorithm whose complexity is less than Kaji's decod-
ing [29] may appear, then the performance and complexity of our decoding should be
improved to apply their MLD technique.
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3. Decoding, integer programming and Gröbner bases

3.1 Summary of this chapter

The soft-decision maximum likelihood decoding can be considered as an integer
program with binary arithmetics [34]. For binary linear block codes, the soft-decision
maximum likelihood decoding is to �nd a codeword which maximizes inner products
with the received sequence. It is equivalent to an integer programming which maxi-
mizes the inner products with the received sequence and a binary vector subject to the
parity check equations with binary arithmetics.

In 1991, Conti and Traverso constructed an algorithm to solve integer programming
using Gröbner bases of the toric ideal in polynomial rings over �elds [5]. Their al-
gorithm is interesting from a viewpoint in the theory of Gröbner bases and produces
fruitful algebraic results [45].

In this chapter, we extend Conti's algorithm for integer programming with modulo
arithmetic, especially with binary arithmetics for the soft-decision decoding [22, 24�
26].

However, the proposed algorithm based on Gröbner bases is not efficient since the
step to calculate Gröbner bases is computationally hard. There are several algorithms
to calculate Gröbner bases, for example, Buchberger algorithm and improved Buch-
berger algorithms. In addition, since ideals in our algorithm has some algebraic prop-
erties such as binomial, zero-dimensional and radical, another algorithm to calculate
Gröbner bases can be applied.

The aim of the Gröbner bases approach to the decoding is to �nd a class of codes
which can be decoded efficiently. We consider a class of binary linear block codes of
which parity check matrix equals the vertex-edge incident matrix of a �nite graph. We
explicitly show Gröbner bases in our proposed decoding algorithm for the class [38].
Therefore we can obtain Gröbner bases for the class of codes without using a time-
consuming algorithm.
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3.2 Preliminaries

3.2.1 MLD as integer programming

An integer program is a problem to �nd a nonnegative integral vector that minimizes
(or maximizes) a linear target function subject to linear constraint equations with inte-
gral coefficients on the vector. Let Z and R be the set of integers and reals. For an m×n
integral matrix A ∈ Zm×n, an integral column vector b ∈ Zm of length m, and a real row
vector w ∈ Rn, we write IPA,w(b) for the integer program to �nd u ∈ Zn

≥0 that minimizes
the inner product w ·u ∈ R subject to the linear constraint equations Au = b, where Z≥0

denotes the set of nonnegative integers. A solution u ∈ Zn
≥0 which satis�es Au = b is

called optimal if u minimizes w · u in every solutions. Similarly, for an integer q ≥ 2,
we write IPA,w,q(b) for the integer program to �nd u ∈ Zn

q that minimizes w · u subject
to Au ≡ b mod q, where in this case A ∈ Zm×n

q ,b ∈ Zm
q for Zq = {0, 1, . . . , q−1} ⊂ Z≥0.

De�ne the optimal solution for IPA,w,q(b) in the same way. Conti-Traverso algorithm,
which we will see later, solves integer programs represented as IPA,w(b). In this the-
sis, we will propose an extended Conti-Traverso algorithm to solve integer programs
represented as IPA,w,q(b).

The MLD for binary linear block codes can be regarded as an integer program
IPA,w,2(b) as follows. Let C be a binary linear block code of length n and hence there
exists a parity check matrix H of C with C = {u ∈ {0, 1}n : Hu ≡ 0 mod 2}. A
sender chooses a codeword u ∈ C uniformly and transmits u over a noisy memoryless
channel. The vector r observed at the receiver's end is possibly different from u due to
the noise on the channel. The maximum likelihood decoding (MLD) is to estimate the
most-likely codeword u from r. There are two different types of MLD: a hard-decision
and a soft-decision. In the hard-decision MLD, the received vector r is quantized as
a binary vector. The hard-decision MLD on the binary symmetric channel is to �nd
an error vector e = (e1, . . . , en) ∈ {0, 1}n that has the smallest Hamming weight among
all vectors in {0, 1}n satisfying He ≡ Hr mod 2, where the Hamming weight of e is
de�ned to be |{i : ei , 0, i = 1, . . . , n}| = e1 + · · · + en. Note that the Hamming weight
of e equals the inner product 1 · e, where 1 = (1, . . . , 1). Therefore the hard-decision
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MLD is equivalent to solve the integer program IPH,1,2(Hr).
On the other hand, with appropriate transformation (see section 3.4.2), the soft-

decision MLD can be regarded as a problem to �nd a binary vector u ∈ {0, 1}n that
maximizes r · u subject to Hu ≡ 0 mod 2. Since to maximize r · u is equivalent to
minimize −r · u, the soft-decision MLD is to solve IPH,−r,2(0). In the soft-decision
MLD, −r may contain negative components. In the following discussion (in section
3.3 and 3.4.2), we will need a little attention for this issue.

3.2.2 Notation

Conti-Traverso algorithm uses the theory of Gröbner bases, hence we brie�y review
some notations in this section. Also refer to [1, 7, 8] for more detail.

Let F be a �eld and F[X1, . . . , Xm] be the collection of all polynomials in m variables
X1, . . . , Xm with coefficients in F. For f1, . . . , fs ∈ F[X1, . . . , Xm], let 〈 f1, . . . , fs〉 be the
collection

〈 f1, . . . , fs〉 = {
s∑

i=1
hi fi : hi ∈ F[X1, . . . , Xm]}.

Note that 〈 f1, . . . , fs〉 forms an ideal in F[X1, . . . , Xm] and is called the ideal generated
by f1, . . . , fs. On the other hand, for an ideal I, if there exists f1, . . . , fs ∈ F[X1, . . . , Xm]
such that I = 〈 f1, . . . , fs〉 then we say that { f1, . . . , fs} is a basis of I. Note that every
ideal of F[X1, . . . , Xm] has a �nite basis.

A monomial in F[X1, . . . , Xm] is a product Xv1
1 · · · Xvm

m with vi ∈ Z≥0 for 1 ≤ i ≤
m. To abbreviate, we will sometimes write the above monomial as Xv, where v =

(v1, . . . , vm) is the vector of exponents in the monomial. A binomial in F[X1, . . . , Xm]
is a subtraction of two different monomials and written as Xu −Xv with u, v ∈ Zm

≥0 and
u , v. An ideal in F[X1, . . . , Xm] is called a binomial ideal if it is generated by only
binomials. We will consider only binomial ideals through this part of thesis.

A monomial order ≺ on F[X1, . . . , Xm] is a total order on the set of monomials in
F[X1, . . . , Xm] that satis�es following conditions: (i) if Xu1 ≺ Xu2 , then Xu1+v ≺ Xu2+v

for all u1,u2, v ∈ Zm
≥0; (ii) X0 = 1 ≺ Xv for all v ∈ Zm

≥0. For a monomial order ≺ and
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a nonzero polynomial f =
∑

v cvXv ∈ F[X1, . . . , Xm] with cv ∈ F for any v ∈ Zm
≥0, the

leading term of f with respect to ≺ is the term cvXv with v the largest in {Xv : cv , 0}
with respect to ≺. The leading term of f is denoted by LT≺( f ).

For an ideal I ⊂ F[X1, . . . , Xm], we denote by LT≺(I) the set of leading terms of ele-
ments of I and by 〈LT≺(I)〉 the ideal generated by the elements of LT≺(I). A nonempty
�nite subset G = {g1, . . . , gt} ⊂ F[X1, . . . , Xm] is said to be a Gröbner basis of an ideal
I with respect to ≺ if and only if

〈LT≺(g1), . . . ,LT≺(gt)〉 = 〈LT≺(I)〉.

If G = {g1, . . . , gt} is a Gröbner basis of I, then G generates I. In particular, each
gi with 1 ≤ i ≤ t belongs to the ideal I. Conversely, for a monomial order ≺, every
nonempty ideal in F[X1, . . . , Xm] has a Gröbner basis with respect to ≺. By a monomial
order ≺ and a Gröbner basis G with respect to ≺, the remainder of a polynomial f ∈
F[X1, . . . , Xm] divided by every elements of G with respect to ≺ is uniquely determined
according to the division algorithm in F[X1, . . . , Xm]. The unique remainder of f is
called the normal form of f by G and denoted by f G. For f , h ∈ F[X1, . . . , Xm], it
follows that f G = hG if and only if f − h ∈ I. Especially, f G = 0 if and only if f ∈ I.
We write f ≡ h mod I if f G = hG.

3.2.3 Conti-Traverso algorithm

In [5], Conti and Traverso have proposed an algorithm to solve IPA,w(b). Their
algorithm �rst de�nes an ideal �IA, a monomial order ≺w and a monomial fb for the
given input A,w and b. The de�nition �IA,≺w will be introduced in section 4.4.1 for
discussion more technical terms. On the other hand, the de�nition of fb is beyond the
scope of this thesis and omitted here. The algorithm then computes Gröbner basis GA,w

of �IA with respect to ≺w, and computes the normal form fb
GA,w . The normal form turns

out to be a monomial and its exponent shows an optimal solution of IPA,w(b).
In the Conti-Traverso algorithm, the computation of GA,w consumes much complex-

ity. Gröbner basis GA,w depends only on A and w, and independent from b. Thus if
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Algorithm 3.1 Conti-Traverso algorithm
Input: A ∈ Zm×n, b ∈ Zm, w ∈ Rn

Output: An optimal solution of IPA,w(b).
1: Compute a Gröbner basis GA,w of �IA with respect to ≺w.
2: Compute the normal form of the monomial fb by GA,w with respect to ≺w.
3: Return the exponent vector of the normal form.

we solve IPA,w(b) for a given A,w and b, then we can solve IPA,w(b′) for a different
vector b′ much more efficiently than the �rst time. At this point readers should recall
the hard-decision MLD discussed in the previous section. The hard-decision MLD is
equivalent to solve IPH,w,2(Hrt), where H and w do not change for the received vector.
Therefore we can pre-compute Gröbner basis before we actually receive a vector from
the channel, and we can use the same Gröbner basis in the following communication,
which will make the hard-decision MLD much efficient; see section 3.4.1 for more in
detail.

3.3 Extension of Conti-Traverso algorithm

We extend Conti-Traverso algorithm so that it can solve IPA,w,q(b). For this sake, we
need to extend some lemmata presented in [5, 8] to the modulo q arithmetics. There
are two key ideas for the extension: one is to add binomials Xq

j − 1's into the ideal in
Conti-Traverso algorithm, and another is to consider the Lawrence type matrix [45].
According to the former idea, Conti-Traverso algorithm is extended to solve an integer
programming with q modulo arithmetics. On the other hand, the latter idea is used to
extend Conti-Traverso algorithm to work for the target vectors contain negative values.
To make discussion simpler, we �rst consider the case with w ∈ Rn

≥0, where R≥0 is the
set of non-negative real numbers. The case with arbitrary w ∈ Rn is discussed later.
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3.3.1 The case with w ∈ Rn
≥0

Let A = (ai, j) be a full row rank m × n matrix and ai, j ∈ Zq for i = 1, . . . ,m, j =

1, . . . , n. Let X denote m variables X1, . . . , Xm, and Y denote n variables Y1, . . . , Yn. In
the context of MLD, A is the parity check matrix of the code, n equals to the length of
the code and m equals to the number of parity check symbols. For a vector u ∈ Zn

≥0,
de�ne θ(u) = Aut and Θ : F[Y1, . . . , Yn] → F[X1, . . . , Xm], Θ(Yu) = Xθ(u) and, for any
f =

∑
v cvYv ∈ F[Y1, . . . , Yn], Θ( f ) = f (Θ(Y1), . . . ,Θ(Yn)) =

∑
v cvXθ(v). It follows

immediately from the de�nition that Aut = b if and only if Θ(Yu) = Xb. Under the
modulo q arithmetics, we have the following lemma. Let J be a binomial ideal de�ned
by J = 〈Xq

1 − 1, . . . , Xq
m − 1〉 ⊂ F[X1, . . . , Xm].

Lemma 3.1. Aut ≡ b mod q if and only if Θ(Yu) ≡ Xb mod J.

Proof. Let b = (b1, . . . , bm)t ≡ Aut mod q with b ∈ Zm
q and hence bi ≡ ∑n

j=1 ai, ju j

mod q for 1 ≤ i ≤ m. First we show that X
∑n

j=1 ai, ju j
i ≡ Xbi

i mod Xq
i − 1. Since bi ≡∑n

j=1 ai, ju j mod q, there is a nonnegative integer pi with ∑n
j=1 ai, ju j = piq + bi. Hence

X
∑n

j=1 ai, ju j
i − Xbi

i = Xpiq+bi
i − Xbi

i

= Xbi
i (Xpiq

i − 1)

= Xbi
i (X(pi−1)q

i + X(pi−2)q
i + · · · + 1)(Xq

i − 1),

and we have X
∑n

j=1 ai, ju j
i ≡ Xbi

i mod Xq
i − 1. Now we have X

∑n
j=1 ai, ju j

i ≡ Xbi
i mod J since

Xq
i − 1 is one of the generators of J, and

Θ(Yu) =

m∏

i=1
X

∑n
j=1 ai, ju j

i ≡
m∏

i=1
Xbi

i mod J. (3.4)

To show the converse, assume that (3.4) holds. Since generators of J are relatively
prime, it follows that X

∑n
j=1 ai, ju j

i ≡ Xbi
i mod Xq

i − 1 for each i with 1 ≤ i ≤ m. If
∑n

j=1 ai, ju j . bi mod q, then X
∑n

j=1 ai, ju j
i . Xbi

i mod Xq
i − 1. Hence ∑n

j=1 ai, ju j ≡ bi

mod q for 1 ≤ i ≤ m and the lemma holds. �
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Let φ j = Θ(Y j) =
∏m

i=1 Xai, j
i for 1 ≤ j ≤ n and IA be a binomial ideal de�ned by

IA = 〈φ1 − Y1, . . . , φn − Yn, Xq
1 − 1, . . . , Xq

m − 1〉
⊂ F[X1, . . . , Xm,Y1, . . . , Yn].

We say that a monomial order ≺e is an elimination monomial order if any monomial
containing at least one of Xi with 1 ≤ i ≤ m is greater than any monomial containing
only Y j's. Hereafter, we �x an elimination monomial order ≺e and let G be a Gröbner
basis for the ideal IA with respect to ≺e. Let ψ = Xb =

∏m
i=1 Xbi

i , where b ≡ Aut

mod q, and ψG be the normal form of ψ by G with respect to ≺e.

Lemma 3.2. The normal form ψ
G is a monomial containing only Y1, . . . , Yn and Θ(ψG) ≡

Xb mod J.

For the proof of Lemma 3.2 we need the following Lemma 3.3 and Lemma 3.4.

Lemma 3.3. For f ∈ F[X1, . . . , Xm] the following conditions are equivalent:

1. There exists h ∈ F[φ1, . . . , φm] such that h ≡ f mod J.

2. f G ∈ F[Y1, . . . , Yn].

In particular, if f G ∈ F[Y1, . . . , Yn] then f ≡ f G(φ1, . . . , φn) mod J.

Proof. This lemma is an extension of Proposition 1.8(a, b) in Chapter 8 of [8]. 1
⇒ 2: Let h ∈ F[φ1, . . . , φn] such that h ≡ f mod J. Since J ⊂ IA, it follows that
h ≡ f mod IA, and hG = f G. Therefore it suffices showing that hG ∈ F[Y1, . . . , Yn].
To prove this, �rst note that in F[X1, . . . , Xm,Y1, . . . , Yn], a monomial φv1

1 · · · φvn
n with

(v1, . . . , vn) ∈ Zn
≥0 can be written as follows:

φv1
1 · · · φvn

n = (Y1 + (φ1 − Y1))v1 · · · (Yn + (φn − Yn))vn

= Yv1
1 · · · Yvn

n + B1(φ1 − Y1) + · · · + Bn(φn − Yn)

for some B1, . . . , Bn ∈ F[X1, . . . , Xm,Y1, . . . , Yn]. Therefore we can write the polyno-
mial h as

h = C1(φ1 − Y1) + · · · + Cn(φn − Yn) + D
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with C1, . . . ,Cn ∈ F[X1, . . . , Xm,Y1, . . . ,Yn], and D ∈ F[Y1, . . . , Yn]. It follows that
hG = DG since each C j(φ j − Y j) ∈ IA for 1 ≤ j ≤ n.

Let G′ = G ∩ F[Y1, . . . ,Yn] = {g1, . . . , gs}. By representing D with g1, . . . , gs and its
remainder, we can write D as follows:

D = E1g1 + · · · + Esgs + r

with E1, . . . , Es, r ∈ F[Y1, . . . , Yn]. Consequently we have DG = rG.
Now we claim that r = rG, in other words, any leading term of elements of G with

respect to ≺e cannot divide r. For a proof by contradiction, suppose that G contains a
binomial g such that LT≺e(g) is a term which contains only Y j's and LT≺e(g) divides r.
This implies that the binomial g should be in F[Y1, . . . , Yn], because of the elimination
property of ≺e and the fact that LT≺e(g) is the greatest with respect to ≺e. Thus g ∈ G′
but this is a contradiction because any element of G′ cannot divide r. Therefore we
have shown that f G = hG = DG = rG = r ∈ F[Y1, . . . , Yn].

2⇒ 1: Let f G ∈ F[Y1, . . . , Yn] and G = {g1, . . . , gt}. By representing f with genera-
tors in G and its remainder, we can write

f = Z1g1 + · · · + Ztgt + f G (3.5)

with Z1, . . . , Zt ∈ F[X1, . . . , Xm,Y1, . . . , Yn]. To show variables in gi explicitly, we say
to write

gi(X1, . . . , Xm,Y1, . . . , Yn)

for gi. For each 1 ≤ j ≤ n, substitute φ j for Y j in the above formula (3.5). This
substitution does not affect the left hand side of (3.5) since f ∈ F[X1, . . . , Xm] does not
contain Y j's. Therefore

f = Z1g1(X1, . . . , Xm, φ1, . . . , φn) + · · · + Ztgt(X1, . . . , Xm, φ1, . . . , φn) + f G.

Remark that if we substitute φ j for Y j, then the generator φ j − Y j in IA reduces to 0
mod IA. Hence if g ∈ IA, then g(X1, . . . , Xm, φ1, . . . , φn) ∈ J because of the de�nitions
of J and IA. This implies that

gi(X1, . . . , Xm, φ1, . . . , φn) ∈ J,
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and for 1 ≤ j ≤ n,

Z j(X1, . . . , Xm, φ1, . . . , φn) · g j(X1, . . . , Xn, φ1, . . . , φn) ≡ 0 mod J.

Consequently we have f ≡ f G(φ1, . . . , φn) mod J. It is obvious that f G(φ1, . . . , φn) ∈
F[φ1, . . . , φn]. �

Lemma 3.4. Let f ∈ F[φ1, . . . , φn] be a monomial in X1, . . . , Xm. Then f G ∈ F[Y1, . . . , Yn]
is also a monomial.

Proof of Lemma 3.4. This lemma is an extension of Proposition 1.8(c) in Chapter 8
of [8]. Lemma 3.3 implies f G ∈ F[Y1, . . . , Yn]. Since G is a Gröbner basis of the
binomial ideal IA, each polynomial in G is a binomial. Because the remainder of a
monomial by a binomial is a monomial, f G must be a monomial. �

Proof of Lemma 3.2. This lemma is an extension of Proposition 1.6 in Chapter 8 of [8].
Because the matrix A is of full rank, there is a solution of the equations Aut ≡ b
mod q. Therefore Lemma 3.1 implies that ψ = Xb ≡ Θ(Yu) mod J. Note that Θ(Yu)
is a monomial in Θ(Y j) = φ j with 1 ≤ j ≤ n and ψ ∈ F[φ1, . . . , φn]. Lemma 3.4 implies
that ψG is a monomial containing only Y j's, and Lemma 3.3 implies ψ ≡ ψG(φ1, . . . , φn)
mod J. Remark that

Θ(ψG(Y1, . . . , Yn)) = ψ
G(Θ(Y1), . . . ,Θ(Yn))

= ψ
G(φ1, . . . , φn) ≡ ψ = Xb mod J.

�

Corollary 3.5. If ψG = Yu1
1 · · · Yun

n , then u ∈ Zn
q and Aut ≡ b mod q.

Proof. For j = 1, . . . , n, we have

Yq
j − 1 = Yq−1

j (Y j − φ j) + Yq−2
j φ j(Y j − φ j) + · · · + φ

q−1
j (Y j − φ j) + φ

q
j − 1

= φ
q
j − 1 − (φ j − Y j)

q−1∑

i=0
Y i

jφ
q−1−i
j .
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Remark that φq
j − 1 ∈ J since φq

j − 1 = (∏m
i=1 Xai, j

i )q − 1. Therefore we have Yq
j −

1 ∈ IA and Yq
j − 1

G
= 0. First we show that if ψG = Yu1

1 · · · Yun
n , then u j ∈ Zq for

1 ≤ j ≤ n. For the proof by contradiction, assume that there is j with u j ≥ q. Let
u j = pq + r where p, q, r ∈ Z≥0 with r < q. De�ne f = Yu1

1 · · · Yun
n − Yr

j
∏

i, j Yui
i .

Since f = (Y pq
j − 1)Yr

j
∏

i, j Yui
i and Y pq

j − 1
G

= 0, we have f G = 0. On the other hand,
LT≺e( f ) = Yu1

1 · · · Yun
n = ψ

G since r < u j. Note that LT≺e( f ) = ψ
G is already a remainder

and cannot be divided by G with respect to ≺e and this contradicts to f G = 0. Then
we have u ∈ Zn

q. The rest of the assertion follows from Lemma 3.2 and 3.1. In fact,
Lemma 3.2 implies that Θ(ψG) = Θ(Yu1

1 · · · Yun
n ) ≡ Xb mod J, which implies Aut ≡ b

mod q by Lemma 3.1. �

Corollary 3.5 suggests that we can �nd a solution to Aut ≡ b mod q by computing
the remainder of ψ by G. A different choice of an elimination order ≺e results in
different solution, while we would like to �nd an optimal solution u that minimizes
w · u. For this purpose, we need to choose the elimination order appropriately. The
following de�nition is an extension of De�nition 1.10 in Chapter 8 of [8].

De�nition 1. A monomial order ≺w on F[X1, . . . , Xm, Y1, . . . , Yn] is adapted to an
integer programming IPA,w,q(b) if it has the following two properties:

• (Elimination) The monomial order ≺w is an elimination order.

• (Compatibility with w) For any u, v ∈ Zn
q with Θ(Yu) ≡ Θ(Yv) mod J , if

w · u < w · v, then Yu ≺w Yv.

Let ≺w be a monomial order adapted to IPA,w,q(b) and �G be a Gröbner basis of the
ideal IA with respect to ≺w.

Theorem 3.6. The monomial ψ
�G ∈ F[Y1, . . . , Yn] will give an optimal solution of

IPA,w,q(b). In other words, if ψ
�G

= Yu1
1 Yu2

2 · · · Yun
n then u = (u1, . . . , un) ∈ Zn

q minimizes
w · u subject to Aut ≡ b mod q.

This theorem leads an extended Conti-Traverso algorithm (Algorithm 3.2) to com-
pute an optimal solution of the integer programming IPA,w,q(b) when w ∈ Rn

≥0. For the
proof of this theorem, we need another lemma.
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Algorithm 3.2 Extended Conti-Traverso algorithm
Input: A ∈ Zm×n

q , b ∈ Zm
q , w ∈ Rn

≥0, q ∈ Z≥0 with q ≥ 2.
Output: u ∈ Zn

q which is an optimal solution of the integer programming IPA,w,q(b).
1: Compute the Gröbner basis �G of IA with respect to a �xed adapted monomial order
≺w.

2: Compute the normal form ψ
�G.

3: Return the exponent of ψ
�G.

Lemma 3.7. If f ∈ F[Y1, . . . , Yn] and Θ( f ) ≡ 0 mod J then f ∈ IA.

Proof. The proof is similar to the proof of 1 ⇒ 2 in Lemma 3.3. A monomial
Yu1

1 · · · Yun
n with (u1, . . . , un) ∈ Zn

q can be written as

Yu1
1 · · · Yun

n = φu1
1 · · · φun

n + B1(Y1 − φ1) + · · · + Bn(φn − Yn)

with B1, . . . , Bn ∈ F[X1, . . . , Xm,Y1, . . . , Yn]. Then f can be written as

f (Y1, . . . , Yn) = f (φ1, . . . , φn) + C1(φ1 − Y1) + · · · + Cn(φn − Yn)

with C1, . . . ,Cn ∈ F[X1, . . . , Xm,Y1, . . . , Yn]. From the assumption, we have

Θ( f ) = f (Θ(Y1), . . . ,Θ(Yn)) = f (φ1, . . . , φn) ≡ 0 mod J,

and f ∈ IA. �

Proof of Theorem 3.6. Let u = (u1, . . . , un) such that ψ
�G

= Yu1
1 · · · Yun

n . Corollary 3.5
implies that u ∈ Zn

q. Assume that there is some v = (v1, . . . , vn) ∈ Zn
q such that v , u,

Avt ≡ b mod q and w ·v < w ·u. De�ne f = Yu1
1 · · · Yun

n −Yv1
1 · · · Yvn

n , then from Lemma
3.2 we have

Θ( f ) = Θ(Yu1
1 · · · Yun

n ) − Θ(Yv1
1 · · · Yvn

n )

≡ Xb − Xb ≡ 0 mod J.

Now by Lemma 3.7 it follows that f ∈ IA and f G = 0. On the other hand LT≺w( f ) must
be Yu1

1 · · · Yun
n because ≺w satis�es the compatibility with w, though, the term Yv1

1 · · · Yvn
n

is already a remainder and cannot be divided by �G with respect ≺w. This contradiction
shows that u minimizes w · u subject to Aut ≡ b mod q. �
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3.3.2 The case of an arbitrary w ∈ Rn

We cannot apply the discussion in the previous section if w = (w1, . . . ,wn) contains
a negative value, because we cannot de�ne an adapted monomial order ≺w. In this
section, we consider to transform a given problem so that this issue does not occur.

For a given matrix A ∈ Zm×n
q , consider an enlarged matrix

A′ =


A 0
1 1

 ,

where 0 is the m × n-zero matrix and 1 is the n × n-identity matrix. The (m + n) × 2n-
matrix A′ is called the Lawrence Lifting of A [45]. Let c = (q − 1, . . . , q − 1) ∈ Zn

q

whose components are all q − 1 and set b′ = (b, c) ∈ Zm+n
q . Let µ = max{|wi| :

wi < 0, i = 1, . . . , n} ∪ {0} ∈ R≥0 and set w1 = (w1 + µ, . . . ,wn + µ) ∈ Rn
≥0, w2 =

(µ, µ, . . . , µ) ∈ Rn
≥0 and w′ = (w1,w2) ∈ R2n

≥0. Next theorem shows that IPA,w,q(b) is
equivalent to IPA′,w′,q(b′). Remark that even if w in IPA,w,q(b) contains negative values,
w′ in IPA′,w′,q(b′) contains only nonnegative values and the algorithm in the previous
section is applicable.

Theorem 3.8. Let u1,u2 ∈ Zn
q. If u = (u1,u2) ∈ Z2n

q is an optimal solution of
IPA′,w′,q(b′) then u1 is an optimal solution of IPA,w,q(b).

Proof. If u is an optimal solution of IPA′,w′,q(b′), then A′u ≡ b′ mod q, in other words,

A 0
1 1



u1

u2

 ≡

b
c

 mod q.

This linear constraint equations mean that Aut
1 ≡ b mod q and u1 + u2 ≡ c mod q.

Let u1 = (u1, . . . , un) and u2 = (un+1, . . . , u2n). Then u1 + u2 ≡ c mod q implies that
ui + un+i ≡ q − 1 mod q for i = 1, . . . , n. Since each ui ∈ Zq with i = 1, . . . , n, these
equations leads ui + un+i = q − 1. Let w′ = (w1,w2) = (w1, . . . ,w2n) ∈ Rn

≥0. Then we
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have

w′ · u =

2n∑

i=1
wiui =

n∑

i=1
(wi + µ)ui +

2n∑

i=n+1
µui

=

n∑

i=1
wiui +

2n∑

i=1
µui =

n∑

i=1
wiui + µn(q − 1)

= w · u1 + µn(q − 1).

Since µn(q − 1) is a constant independent from u, if u minimizes w′ · u, then u1 mini-
mizes w · u1. �

3.4 MLD using Gröbner bases

In this section, we will present an application of the extended Conti-Traverso al-
gorithm (Algorithm 3.2) in the previous section for decoding codes. We will show
that either hard-decision or soft-decision MLD for binary linear block codes can be
achieved by the proposed algorithm based on Gröbner bases. Through the section let
H ∈ Zm×n

2 be a parity check matrix of the code C. Note that C = {c ∈ Zn
2 : Hct ≡ 0

mod 2}.

3.4.1 Hard-decision MLD

In this section, we assume that the communication channel is the binary symmet-
ric channel. Let c ∈ C be the transmitted vector, �e ∈ Zn

2 the error vector and r =

(r1, . . . , rn) ≡ c + �e mod 2 be the received vector. The hard-decision MLD is equiv-
alent to the syndrome decoding [36]. In other words, the decoder algorithm chooses
the candidate error vector e = (e1, . . . , en) ∈ Zn

2 which minimizes the Hamming weight
|{i : ei , 0, i = 1, . . . , n}| subject to Het ≡ Hrt mod 2.

Let w = (1, 1, . . . , 1) whose components are all 1. Then the Hamming weight of
e equals the inner product w · e. Therefore the hard-decision MLD for binary linear
block codes is equivalent to IPH,w,2(b) with b = Hrt,b ∈ Zm

2 , and can be solved using
the extended Conti-Traverso algorithm (Algorithm 3.2).
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Let �G be a Gröbner basis of the ideal IH with respect to an monomial order ≺w

adapted to IPH,w,2(b).

Lemma 3.9. Let �G′ = �G ∩ F[Y1, . . . , Yn]. Then �G′ is a Gröbner basis of the ideal
IH ∩ F[Y1, . . . , Yn] with respect to ≺w and the normal form of the monomial Yr =

Yr1
1 · · · Yrn

n by �G′ with respect to ≺w is also a monomial.
In addition, let e be the exponents vector of the normal form. Then e is an optimal

solution of IPH,w,2(b), in other words, r − e mod 2 is the most likely codeword.

Proof of Lemma 3.9. The previous assertion is followed by the elimination theorem
[7]. The rest of the proof is similar to Theorem 3.6 and omitted. �

Note that the decoder can compute Gröbner bases of IH beforehand because Gröbner
basis is independent of the received vector r.

Example 1. Suppose a code C = {(0, 0, 0), (1, 1, 1)} and a parity check matrix H =

( 1 0 1
0 1 1 ). Then a Gröbner basis �G of the ideal IH with respect to ≺w can be calculated

using the Buchberger algorithm. We have that �G′ = �G ∩ F[Y1, . . . , Yn] is {Y1Y2 −
Y3,Y1Y3 − Y2,Y2Y3 − Y1,Y2

1 − 1,Y2
2 − 1,Y2

3 − 1}. Let r = (1, 0, 1) be the received vector.
The decoder can calculate the normal form of Yr = Y1Y3 by the �G′. We �nd that
Y1Y3

�G′
= Y2 as expected, which suggests the error pattern (0, 1, 0) and the most likely

codeword (1, 1, 1) = (1, 0, 1) − (0, 1, 0) mod 2.

Algorithm 3.3 Hard-decision MLD using Gröbner bases
Input: r = c + �e mod 2 and �G′ = �G ∩ F[Y1, . . . , Yn], where �G is a Gröbner basis of

IH with respect to an adapted monomial order.
Output: The most likely codeword u ∈ C.

1: Set f = Yr1
1 Yr2

2 · · · Yrn
n .

2: Compute the normal form f
�G′ .

3: Let e be the exponents vector of the monomial f
�G′ .

4: Return u = r − e mod 2.
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3.4.2 Soft-decision MLD

In this section, we present another application of the extended Conti-Traverso algo-
rithm (Algorithm 3.2) for a soft-decision decoding. Suppose that the channel is ad-
ditive white Gaussian noise (AWGN) channel with binary phase-shift keying (BPSK)
signaling . In other words, if the codeword c = (c1, . . . , cn) ∈ C is transmitted, the
modulator maps c into a bipolar sequence represented by (l1, . . . , ln) ∈ {−1, 1}n with
li = 2ci − 1 for i = 1, . . . , n. The received sequence r = (r1, . . . , rn) ∈ Rn can be repre-
sented by ri = li + zi for i = 1, . . . , n, where each zi is a statistically independent real
valued Gaussian random variable with 0 mean and a �xed variance.

For soft-decision MLD, the decoder �nds the candidate codeword u which maxi-
mizes r·u subject to Hut ≡ 0 mod 2 (see [34]). In other words, the soft-decision MLD
for binary linear block codes is equivalent to IPH,−r,2(0). By Theorem 3.8, the integer
programming IPH,−r,2(0) is equivalent to IPA,w,2(b), where A ∈ Z(m+n)×2n

2 is the Lawrence
lifting of H, b = (0, 0, . . . , 0, 1, 1, . . . , 1) ∈ Zm+n

2 , w = (µ − r1, . . . , µ − rn, µ, µ, . . . , µ) ∈
R2n
≥0 and µ = max{ri : ri > 0}∪ {0} which can be solved by the extended Conti-Traverso

algorithm using the Gröbner basis of IA.

Example 2. Suppose a code

C = {(0, 0, 0), (1, 1, 0), (0, 1, 1), (1, 0, 1)}

and a parity check matrix H = (1, 1, 1). If the received sequence is r = (−2,−3, 9),
then the most likely codeword is (1, 0, 1). In this case, m = 1 and n = 3. Now µ = 9
and w = (11, 12, 0, 9, 9, 9). We can compute the Gröbner basis �G of IA with respect to
≺w using the Buchberger algorithm. Then we �nd that �G contains 18 binomials and
the normal form of Xb = X2X3X4 by �G turns out to be Y1Y3Y5 as expected, giving the
optimal solution (1, 0, 1, 0, 1, 0) and the most likely codewords (1, 0, 1) appeared at the
left half 3 components.

Let �G be a Gröbner basis of the ideal IA with respect to an adapted monomial or-
der ≺w. As same as Lemma 3.9, the following lemma (Lemma 3.10) can be proved.
Lemma 3.10 leads a variant soft-decision algorithm of Algorithm 3.4.
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Algorithm 3.4 Soft-decision MLD using Gröbner bases
Input: The parity check matrix H ∈ Zm×n

2 and the received sequence r ∈ Rn.
Output: The most likely codeword u ∈ C.

1: Find µ = max{ri : ri > 0} ∪ {0}.
2: Set w = (µ − r1, . . . , µ − rn, µ, µ, . . . , µ) ∈ R2n

≥0.
3: Let A = ( H 0

1 1 ) be the Lawrence matrix of H.
4: Compute a Gröbner basis �G of IA with respect to an adapted monomial order ≺w.
5: Set f = Xm+1 · · · Xm+n.
6: Compute the normal form f

�G.
7: Return u = (u1, . . . , un) with

f
�G

= Yu1
1 · · · Yun

n Yun+1
n+1 · · · Yu2n

2n .

Algorithm 3.5 Modi�ed soft-decision MLD using Gröbner bases
Input: The parity check matrix H ∈ Zm×n

2 and the received sequence r ∈ Rn.
Output: The most likely codeword u ∈ C.

1: Find µ = max{ri : ri > 0} ∪ {0}.
2: Set w = (µ − r1, . . . , µ − rn, µ, µ, . . . , µ) ∈ R2n

≥0.
3: Let A = ( H 0

1 1 ) be the Lawrence matrix of H.
4: Compute a Gröbner basis �G′ of IA∩F[Y1, . . . , Yn] with respect to an adapted mono-

mial order ≺w.
5: Choose an initial codeword c = (c1, . . . , cn) ∈ C, and let c̄i = 1 − ci mod 2 for

i = 1, . . . , n.
6: Set f = Yc1

1 · · · Ycn
n Y c̄1

n+1 · · · Y c̄n
2n.

7: Compute the normal form f
�G.

8: Return u = (u1, . . . , un) with

f
�G

= Yu1
1 · · · Yun

n Yun+1
n+1 · · · Yu2n

2n .
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Lemma 3.10. Let �G′ = �G ∩ F[Y1, . . . , Y2n]. Then �G′ is a Gröbner basis of the ideal
IA ∩ F[Y1, . . . , Y2n] with respect to ≺w. Choose c = (c1, . . . , cn) ∈ C and let c̄i = 1 − ci

mod 2 for i = 1, . . . , n. Let f = Yc1
1 · · · Ycn

n Y c̄1
n+1 · · · Y c̄n

2n and the normal form f
�G′

=

Yu1
1 · · · Yun

n Yun+1
n+1 · · · Yu2n

2n . Then the left hand-side vector (u1, . . . , un) is the most likely
codeword.

Proof. Since the assertion is followed by Lemma 3.9 straightforwardly, the proof is
omitted. �

Example 3 (Continued). The reduced Gröbner basis �G′ = �G ∩ F[Y1, . . . , Y2n] in Ex-
ample 2 consists of 14 binomials. Let the initial codeword c = (c1, c2, c3) = (1, 1, 0)
at Step 5 in Algorithm 3.5. Then c̄ = (c̄1, c̄2, c̄3) = (0, 0, 1) and we can compute the
normal form of Yc1

1 Yc2
2 Yc3

3 Y c̄1
4 Y c̄2

5 Y c̄3
6 = Y1Y2Y6 by �G′ which turns out to be Y1Y3Y5 as

expected. If we let another codeword for the initial codeword at Step 5, for example,
(0, 1, 1) ∈ C, we �nd that the normal form of the monomial Y2Y3Y4 related (0, 1, 1) is
also Y1Y3Y5.

3.5 Discussion on complexity

In this section, we discuss the complexity of the proposed algorithms. On the hard-
decision MLD algorithm (Algorithm 3.3), the complexity depends on the calculation
of the normal form at step 2. In the case of the modi�ed soft-decision MLD algorithm
(Algorithm 3.5), the complexity depends on not only the calculation of the normal form
but also the calculation of the Gröbner basis at step 4. Unfortunately, it is difficult to
estimate the complexity necessary for these operations even though it guarantees that
the algorithms terminate de�nitely. Experimentally, the computation of a Gröbner ba-
sis using the basic Buchberger algorithm takes tremendously long time and consumes a
huge amount of storage space for codes with practical length and dimension. In section
4, we will discuss the complexity of computing Gröbner bases in detail.

In the following, for the evaluation of the space-complexity of the proposed algo-
rithms, we try to estimate the number of the polynomials in the Gröbner basis in the
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algorithms. Note that the Gröbner basis which we consider in the proposed algorithms
consists of only binomials. Let �G′ be the Gröbner basis of the ideal IH ∩ F[Y1, . . . , Yn]
with respect to the adapted monomial order in the hard-decision decoding algorithm.
Since Y2

j −1 ∈ IH for each j = 1, . . . , n, if Yu−Yv ∈ �G′ with u , v , 0, then both u and
v are in Zn

2 when �G′ is reduced. Therefore the number of the binomials in the reduced
Gröbner basis �G′ is less than 22n−1 + n. This estimation may be loose in practice, in
fact, | �G|′ = 6 in Example 1, while the bound is 22n−1 + n = 35. As the same reason, the
number of the binomials in the Gröbner basis in the modi�ed soft-decision algorithm
(Algorithm 3.5) is less than 24n−1 + 2n. The number of the binomials in the Gröbner
basis for a special class of codes can be estimated tightly [38].

3.6 Conclusion of this chapter

In this chapter, an extended Conti-Traverso algorithm to solve integer programs with
modulo arithmetics have been proposed. Furthermore, we have proposed the hard-
decision and soft-decision MLD algorithms for binary linear block codes based on
the extended Conti-Traverso algorithm using Gröbner bases. The proposed MLD al-
gorithms are not as efficient as the known algorithms because of the complexity to
calculate Gröbner bases. Future study should include an investigation of algorithms
for computing Gröbner bases which are more efficient than the Buchberger algorithm
or the changing ordering algorithm [11].
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4. Generators of ideals in the Conti-like MLD algorithm

4.1 Finding generators of ideals in the Conti-like MLD

In chapter 3, we proposed the Conti-like MLD algorithm based on Gröbner bases
of a certain ideal in a polynomial ring. In this chapter, we are interested in comput-
ing a Gröbner basis for an ideal which is appeared in the Conti-like MLD. To compute
Gröbner bases can be accomplished applying Buchberger algorithm [1,7], however un-
fortunately, the complexity of Buchberger algorithm is a strongly increasing function
of the number of variables and one of generators of ideals. Hence it would be useful to
reduce both the numbers for calculating Gröbner bases. The main result of this chapter
is to obtain another generators of the ideal which is appeared in the Conti-like MLD
for reducing both the numbers of generators and one of the variables.

The Conti-like MLD algorithm consists in the �rst step of computing a Gröbner
basis of the ideal which is determined in section 3. The second step then involves a
reduction of a monomial by the Gröbner basis. The latter step is a subject of investiga-
tion of its own, and can be solved efficiently to use a reduced Gröbner basis (see [1,7]
for the de�nition), so we concentrate on the �rst step only to speed up.

The conception in section 4 is derived from the study of Conti-Traverso algorithm
by Hosten and Sturmfels [21], and by Di Biase and Urbanke [10]. The basic problem
in Conti-Traverso algorithm is the complexity of computing Gröbner bases, as similar
as the Conti-like MLD algorithm. Their concept to conquest of this problem is to
consider a certain ideal which is de�ned from the integral kernel of the coefficient
matrix of the integer program, and then to compute the generators of an ideal which
is de�ned by the kernel. The difference between the Hosten-Sturmfels method and the
Di Biase-Urbanke method lies at the latter step. On the Other hand, their methods are
in common at the former step.

In the case of Conti-like MLD, the coefficient matrix is the parity check matrix as we
have discussed in chapter 3, and its kernel over binary �eld forms a generator matrix.
We consider an ideal which is de�ned by a generator matrix of the code as similar as
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Hosten-Sturmfels or Biase-Urbanke, and show that the complexity of the computation
of Gröbner bases in the Conti-like MLD can be improving theoretically [27].

4.2 Preliminaries

Let us �x every notation for the whole of section 3.

F is a �eld. F[X1, . . . , Xm] is a polynomial ring in m variables X1, . . . , Xm

with coefficients in F. IPA,w(b) is an integer program with a coefficient
matrix A, a target vector w and a right-hand vector b. IPA,w,q(b) is an
integer program with a coefficient matrix A, a target vector w and a right-
hand vector b using modulo q arithmetics.

For f ∈ F[X1, . . . , Xm] and an ideal I ⊂ F[X1, . . . , Xm], the ideal quotient (I : f∞) is
the set

{g ∈ F[X1, . . . , Xm] : f rg ∈ I for some r ∈ Z≥0}.
For u = (u1, . . . , um) ∈ Zm

≥0, a support of u is the set {i : ui , 0}. Every u ∈ Zm can be
written uniquely as u = u+ − u− where u+ and u− are non-negative and have disjoint
supports. A graded reverse lexicographic order ≺grevlex is de�ned as follows:

Xu ≺grevlex Xv ⇔ |u| =
m∑

i=1
ui < |v| =

m∑

i=1
vi, or

|u| = |v| and, in v − u, the right-most nonozero entry is negative. A weighted order ≺w

with w ∈ Rm
≥0 is de�ned as follows:

Xu ≺w Xv ⇔ w · u =

m∑

i=1
wiui < w · v =

m∑

i=1
wivi, or

w ·u = w · v and u ≺grevlex v. Both ≺grevlex and ≺w with w ∈ Rm
≥0 form monomial orders.

4.3 Integer programming and Gröbner bases

In this section, we will see Conti-Traverso algorithm [5] and the Conti-like MLD
algorithm [26] for discussion of their difference.
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4.3.1 Conti-Traverso algorithm

Conti and Traverso have proposed an algorithm to solve IPA,w(b), as we introduced
in section 3.2.3. Their algorithm uses the theory of Gröbner bases, hence we brie�y
review some basic notation in this section. Refer [1, 7, 8] for more detail.

Conti-Traverso algorithm �rst de�nes an ideal �IA, a monomial fb or the given input
A and b. We will see the de�nition of �IA soon in section 4.4.1. The algorithm then
computes a Gröbner basis G of �IA with respect to the weighted order ≺w with the target
vector w. After the computation, the algorithm computes the normal form of fb by the
basis G.

The computation of Gröbner bases can be accomplished by Buchberger algorithm.
However, unfortunately, it takes much time and space to compute G by Buchberger
algorithm. There are two improved methods for computing Gröbner bases for Conti-
Traverso algorithm: one is proposed by Hosten and Sturmfels [21], and another is
proposed by Di Biase and Urbanke [10]. In this thesis, we refer [45] for their methods
since the key ideas of them are summarized in [45].

Conti-Traverso algorithm have been further developed in [40,46,47,50,51] with the
development of the theory of toric ideals. The ideals �IA and �IA ∩ F[Y1, . . . , Yn] are
called toric ideals [47]. Algorithm 4.1 is a modi�ed Conti-Traverso algorithm with an
ideal which consists of fewer variables and generators than one of the original. Note
that the original Conti-Traverso algorithm and the modi�ed algorithm can be extended
in the case where w has negative values, however the details are beyond of this thesis
and omitted.

Algorithm 4.1 Modi�ed Conti-Traverso algorithm
Input: A ∈ Zm×n, b ∈ Zm, w ∈ Rn

≥0

Output: An optimal solution of IPA,w(b).
1: Compute a Gröbner basis GA,w of �IA ∩ F[Y1, . . . , Yn] with respect to the weighted

order ≺w, which is determined by w.
2: Compute the normal form of the monomial fb by GA,w with respect to ≺w.
3: Return the exponent vector of the normal form.
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4.3.2 MLD Using Gröbner bases

In section 3.3, we proposed a maximum likelihood decoding algorithm which is
based on an extended Conti-Traverso algorithm. The proposed decoding algorithm is
called the Conti-like MLD algorithm in this section.

For the soft-decision MLD (Algorithm 4.2), at step 2, we need a Gröbner basis of
IΛ(H)∩F[Y1, . . . , Yn], where Λ(H) is the Lawrence lifting of the parity check matrix H.
We will reviewed the de�nition of IA for an integeral matrix A in section 4.4.2.

On the other hand, for the hard-decision MLD (Algorithm 4.3), we does not need to
compute Gröbner bases since it should be given as input of the algorithm. However, we
also consider the complexity of computing Gröbner bases of the hard-decision MLD
algorithm in this section for practical application.

Algorithm 4.2 The Conti-like MLD algorithm for the soft-decision (Algorithm 3.5
revised)
Input: The received vector r ∈ Rn and the parity check matrix H.
Output: The most likely codeword.

1: Prepare a vector w.
2: Compute a Gröbner basis G of IΛ(H) with the weighted order ≺w.
3: Compute the normal form of a monomial by G.
4: Return the left-half of the exponent vector of the normal form.

Algorithm 4.3 The Conti-like MLD algorithm for the hard-decision (Algorithm 3.3
revised)
Input: The received vector r ∈ {0, 1}n and G, where G is a Gröbner basis of IH ∩

F[Y1, . . . , Yn] and a parity check matrix H.
Output: An estimated error vector.

1: Prepare a monomial fr.
2: Compute the normal form of fr by G.
3: Return the exponent vector of the normal form.

42



CHAPTER 4. GENERATORS OF IDEALS IN THE CONTI-LIKE MLD ALGORITHM

4.4 Computing Gröbner bases

4.4.1 In the original Conti-Traverso algorithm

In order to focus upon the computation of a Gröbner basis of �IA ∩ F[Y1, . . . , Yn] at
the step 1 of the modi�ed Conti-Traverso algorithm (Algorithm 4.1), we introduce the
de�nition of �IA. Let A be a non-negative integral m × n matrix and ai ∈ Zm

≥0 be the i-th
column vector of A with i = 1, . . . , n. De�ne �IA ⊂ F[X1, . . . , Xm,Y1, . . . , Yn] as follows:

�IA := 〈Yi − Xai : i = 1, . . . , n〉.

We can �nd a Gröbner basis of

�IA ∩ F[Y1, . . . , Yn]

after computing a Gröbner basis of �IA by Buchberger algorithm since the elimination
theorem [1, 7] leads the former Gröbner basis equals polynomials which consisits of
Yi's in the latter Gröbner basis with an suitable monomial order.

However, the previous method is harder than to compute the Gröbner basis directory
in general, since the number of variables and the number of generators of �IA are larger
than one of �IA ∩ F[Y1, . . . , Yn], respectively.

There are two methods for the direct computation which is proposed by Hosten and
Sturmfels [21], and by Di Biase and Urbanke [10]. In this section, we refer [45] for
describing their methods. For computing Gröbner bases, Buchberger algorithm needs
generators of the ideal as input. However, it is not clear to write the generators of
IA∩F[Y1, . . . , Yn] explicitly. Then we meet a problem how to determine the generators.
First we introduce a basic lemma which exposes the generators theoretically.

Lemma 4.1.

�IA ∩ F[Y1, . . . , Yn] = SpanF{Yu − Yv : Au = Av,u, v ∈ Zn
≥0}

= 〈Yu+ − Yu− : Au = 0,u ∈ Zn,u = u+ − u−,u+,u− ∈ Zn
≥0〉,

where SpanF{ f1, . . . , fs} for f1, . . . , fs ∈ F[Y1, . . . ,Yn] means a vector space over F
which is generated by f1, . . . , fs as a F-basis.
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Proof. See Lemma 4.1, Corollary 4.3 and Algorithm 4.5 in [45]. �

Unfortunately, this lemma is not useful to compute the generators since it is hard to
�nd pairs (u, v) which satis�es Au = Av, or since the number of vectors where Au = 0
is in�nite in general. Therefore we needs other techniques to �nd generators explicitly.

First we introduce Hosten-Sturmfels' method. Let KerZ A = {u ∈ Zn : Au = 0}.
The kernel KerZ A forms a lattice over Z. Let E = {e1, . . . , es} ⊂ Zn be a lattice
basis of KerZ A. We can compute E explicitly as Hermite normal form by the LLL
algorithm which is found by Lenstra, Lenstra and Lovász [33]. See also Algorithm
2.3.1 and Algorithm 2.4.10 in [4] for details on the LLL algorithm. Then we associate
the following ideal �JE in F[Y1, . . . , Yn] with �IA ∩ F[Y1, . . . , Yn];

�JE = 〈Ye+
i − Ye−i : i = 1, . . . , s, ei = e+

i − e−i , e+
i , e−i ∈ Zn

≥0〉.

Since Ae+
i = Ae−i for every i = 1, . . . , s, Lemma 4.1 says that �JE is a subideal of

�IA ∩ F[Y1, . . . , Yn]. The next lemma shows that an ideal quotation of �JE helps to �nd
the generators of �IA ∩ F[Y1, . . . ,Yn].

Lemma 4.2 ( [21]).

�IA ∩ F[Y1, . . . , Yn] = ( �JE : (Y1 · · · Yn)∞)

Proof. See Lemma 12.2 in [45]. �

Hosten and Sturmfels have developed an algorithm to compute generators of the
ideal quotation ( �JE : (Y1 · · · Yn)∞). Refer Algorithm 12.3 in [45] for detail.

On the other hand, Di Biase and Urbanke have developed another algorithm to com-
pute generators of �IA ∩ F[Y1, . . . , Yn] using the subideal �JE by the following lemma.

Lemma 4.3 ( [10]). If there exists ei ∈ E whose coordinates are all positive for some
i, then �JE = �IA ∩ F[Y1, . . . , Yn].

Proof. See Lemma 12.4 in [45]. �
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In general, since every vector ei ∈ E has some negative coordinates, while the lattice
basis E of KerZ A is not de�ned uniquely, Lemma 4.3 may not be applied. However,
Lemma 4.3 can be useful to compute generators of �IA ∩ F[Y1, . . . , Yn] for combining a
simple algorithm. Their algorithm is also described as Algorithm 12.6 in [45].

On both Hosten-Sturmfels and Di Biase-Urbanke algorithms, the subideal �JE plays
an important role to compute generators of IA ∩ F[Y1, . . . , Yn]. In the next section,
we will consider an analogy of Lemma 4.1 and �JE for reducing the complexity of the
Conti-like MLD algorithm.

4.4.2 In the Conti-like MLD

In this section, our concern turns into an integer program IPA,w,2(b) for the Conti-like
MLD algorithm from original Conti-Traverso algorithm. We focus the ideal IA, which
has been de�ned in section 3.3. Note that the following discussion in this section can
be extended for IPA,w,q(b) with an arbitrary prime q ≥ 2 easily.

Let A be a binary m × n matrix and ai ∈ {0, 1}n be the i-th column vector of A.
Remind that the de�nition of the ideal IA is following;

IA := 〈Yi − Xai , X2
j − 1 : i = 1, . . . , n, j = 1, . . . ,m〉.

Assume m < n. Then there exists a binary (n − m) × n matrix A∗ which satisi�es
A∗At ≡ 0 mod 2, where At is the transpose of A. Especially, it is well-known that, for
a parity check matrix H of binary codes, H∗ becomes a generator matrix of the codes.

Let a∗i be the i-th row vector of A∗ and de�ne a binomial ideal JA∗ ⊂ F[Y1, . . . , Yn]
as follows;

JA∗ := 〈Ya∗i
i − 1,Y2

j − 1 : i = 1, . . . , n − m, j = 1, . . . , n〉.

The key theorem of this section is following.

Theorem 4.4.
IA ∩ F[Y1, . . . , Yn] = JA∗
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Remark that Theorem 4.4 looks like Lemma 4.3, but, our theorem does not need
any assumption without only m < n. For the proof of the theorem, we needs another
auxiliary lemma.

Lemma 4.5. A binomial Yu − Yv ∈ IA ∩ F[Y1, . . . , Yn] for u, v ∈ Zn
≥0 if and only if

Au ≡ Av mod 2.

Proof. By the de�nition of the binomial, we have

Yu − Yv =
∏

i:ui=1
(Yi − Xai) −

∏

i:vi=1
(Yi − Xai) + XAu − XAv.

Therefore if Yu − Yv ∈ IA, then XAu − XAv must be in the ideal 〈X2
i − 1 : i = 1, . . . , n〉.

It leads Au ≡ Av mod 2 immediately.
On the other hand, if Au ≡ Av mod 2, then the statement Yu − Yv ∈ IA is followed

straightly by Lemma 3.1 in section 3.3. �

Proof of Theorem 4.4. The statement of the theorem is reduced into the following two
claims:

Claim 1:

IA ∩ F[Y1, . . . , Yn] = 〈Yu − Yv,Y2
i − 1 : Au ≡ Av mod 2, i = 1, . . . , n〉.

Claim 2:

〈Yu − Yv,Y2
i − 1 : Au ≡ Av mod 2, i = 1, . . . , n〉 = JA∗ .

First, we have Y2
i −1 ∈ IA with i = 1, . . . , n by Lemma 3.7. Lemma 4.5 leads the rest

of proof of Claim 1.
We have Aa∗i ≡ 0 mod 2 with i = 1, . . . , n − m from the de�nition of a∗i . Therefore

it is clear that the left hand ideal in claim 2 includes JA∗ . Conversely, suppose that
Au ≡ Av mod 2 for u, v ∈ {0, 1}n. Then there exists l,u′, v′ ∈ {0, 1}n such that

u ≡ u′ + l mod 2,

v ≡ v′ + l mod 2, and

Au′ ≡ Av′ ≡ 0 mod 2.
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We can write u′ as u′ =
∑n−m

i=1 pia∗i with some pi ∈ {0, 1} with i = 1, . . . , n − m. As
similar manner, we can write also v′ =

∑n−m
i=1 qia∗i for qi ∈ {0, 1}. Then we obtain

Yu − Yv = Yl(Yu′ − Yv′)

≡ Yl(
∏

i:pi=1
Ya∗i −

∏

i:qi=1
Ya∗i ) mod 〈Y2

i − 1 : i = 1, . . . , n〉

Since ∏
i:pi=1 Ya∗i −∏

i:qi=1 Ya∗i ∈ 〈Ya∗i − 1 : i = 1, . . . , n − m〉, we have proved Claim
2. �

The Conti-like MLD can be applied for the hard-decision MLD and the soft-decision
MLD. In the hard-decision case, we consider an ideal IH, where H is the parity check
matrix of the code (See section 3.3 for details). Since H∗ is a generator matrix of the
code, the number of variables and one of generators of JH∗ is smaller than one of IH

(Table 4.2).

Table 4.2 Number of variables and generators in the hard-decision MLD
variables generators

section 3.3, [26] 2n − k 3n − k
proposed in this section n n + k

On the other hand, in the soft-decision case, we consider an ideal IΛ(H), where Λ(H)
is the Lawrence lifting of H. Since Λ(H)∗ is the k × 2n matrix (H∗H∗), the number of
variables and one of generators of JΛ(H)∗ is also smaller than one of IΛ(H) (Table 4.3).

Table 4.3 Number of variables and generators in the soft-decision MLD
variables generators

section 3.3, [26] 4n − k 6n − k
proposed in this section 2n 2n + k
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4.5 Conclusion of this chapter

We present another construction of generators of an ideal which is appeared in the
Conti-like MLD [26]. We show that the number of variables and the number of gener-
ators can be reduced for applying Buchberger algorithm to the Conti-like MLD. How-
ever, unfortunately, the improved Conti-like MLD takes much time and spaces because
of the complexity of Buchberger algorithm. Another computation method for Gröbner
bases is needed in future works.
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5. Conclusion
In this thesis, two different approaches to realizing decoding algorithms have been

discussed. Both approaches can be used for arbitrary binary linear block codes.
In chapter 2, we investigated a sub-optimum algorithm which makes use of the tech-

niques of the ordered-statistics decoding and the maximum likelihood decoding. The
algorithm can be regarded as an extension of the OSD algorithm with 0-th order re-
processing. The aim of our extension is to provide much �exibility for the OSD de-
coding. By adjusting the parameter t, we can control both decoding complexity and
error correcting performance simultaneously. We presented analytical estimation of
the complexity, and evaluated the complexity and the error performance by computer
simulation. Combining Kaji's call-by-need decoding algorithm, we could show that
our algorithm achieves almost the same performance and complexity as the OSD al-
gorithm with 2-nd order reprocessing. We remark that our algorithm can employ an
arbitrary MLD algorithm. Therefore, the complexity of the proposed algorithm can be
further improved if a new efficient MLD algorithm is found in the future.

In chapter 3, we constructed a novel MLD algorithm based on an idea of utilizing
Gröbner bases to solve integer programs with modulo arithmetics. For this sake, we
extended Conti-Traverso algorithm to a modulo arithmetics case. Since an MLD of
a binary linear block code can be regarded as an integer program with binary arith-
metic, our extended Conti-Traverso algorithm induces a novel MLD algorithm. This
approach provides a new viewpoint in coding theory and Gröbner bases theory. Un-
fortunately, our MLD algorithm based on Gröbner bases is not efficient in practice
because computing Gröbner bases is hard. In the case of the hard-decision MLD, the
Gröbner bases can be obtained by a pre-computation, which avoids the complexity is-
sues of computing Gröbner bases. For another direction for this problem, we could
�nd a class of codes which can be decoded efficiently with the Gröbner bases method.

In chapter 4, we have continued discussion for the Conti-like MLD. In this chapter,
we have obtained another construction of generators of ideals in the Conti-like MLD
for practical application. We can tie the results about decoding in the chapter together
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with the theory of toric ideals, which is a popular topic in the recent algebraic geometry.
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