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Preface

\Assumption is the mother of all screw-ups."

fortune, slakware-3.6.0

Congratulations. You are one of the few who started reading this thesis. If you

have the patience, read it all. But who has. So if you just want to skip through it, read

at least this preface to know in what order to skip.

This thesis deals with supervised learning from sequential data, always having the

quote above in mind. Read the introduction (chapter 1), if you don't know what I

mean by supervised learning or sequential data. Chapter 2 summarizes the necessary

basics to understand the underlying problem and possible approaches to solve it. Don't

be afraid, the ideas (chapter 3 and 4) presented in this thesis are, compared to what

you can �nd elsewhere, relatively simple. In chapter 3 a recurrent neural network

structure is extended to a bidirectional structure to model probabilistic expressions

occuring when you treat 'learning from sequences' as a pattern recognition problem.

The probably most interesting section is the one about the recurrent mixture density

networks. Read chapter 4 if you want to know how I implemented a stack decoder

for speech recognition, a challenging sequential-data problem. If you wonder why two

so very di�erent topics are addressed in one thesis, read chapter 2 again, because: To

predict (recognize) a sequence you need always two parts, a generative part (chapter

3) and a search part (chapter 4), given the current state of research.

This thesis is available in postscript from the WWW server of the Nara Institute

of Science and Technology:

http://isw3.aist-nara.ac.jp/IS/Shikano-lab/database/library/paper/

DT9661205.ps.gz

http://isw3.aist-nara.ac.jp/IS/Shikano-lab/database/library/paper/

DT9661205withJapanese.ps.gz

There are two version, one completely in English and one that contains a Japanese

abstract and some Japanese references. If you don't have Japanese postscript fonts

then the Japanese version will not display correctly in your postscript viewer. Also,

you need a printer with Japanese fonts to print it out.
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On supervised learning from sequential data
with applications for speech recognition �

Michael Schuster

Abstract

Many problems of engineering interest, for example speech recognition, can be for-

mulated in an abstract sense as supervised learning from sequential data, where an

input sequence xT1 = fx1;x2;x3; : : : ;xT�1;xT g has to be mapped to an output se-

quence yT1 = fy1;y2;y3; : : : ;yT�1;yTg. This thesis gives a uni�ed view of the abstract

problem and presents some models and algorithms for improved sequence recognition

and modeling performance, measured on synthetic data and on real speech data.

A powerful neural network structure to deal with sequential data is the recurrent

neural network (RNN), which allows one to estimate P (ytjx1;x2; : : : ;xt), the output
probability distribution at time t given all previous input. The �rst part of this thesis

presents various extensions to the basic RNN structure, which are

a) a bidirectional recurrent neural network (BRNN), which allows the estimation of

expressions of the form P (ytjxT1 ), the output at t given all sequential input, for

uni-modal regression and classi�cation problems,

b) an extended BRNN to directly estimate the posterior probability of a symbol

sequence, P (yT1 jxT1 ), by modeling P (ytjyt�1;yt�2; : : : ;y1;xT1 ) without explicit

assumptions about the shape of the distribution P (yT1 jxT1 ),
c) a BRNN to model multi-modal input data that can be described by Gaussian mix-

ture distributions conditioned on an output vector sequence, P (xtjyT1 ), assuming
that neighboring xt;xt+1 are conditionally independent, and

d) an extension to c) which removes the independence assumption by modeling

P (xtjxt�1;xt�2; : : : ;x1;yT1 ) to estimate the likelihood P (xT1 jyT1 ) of a given output
sequence without any explicit approximations about the use of context.

The second part of this thesis describes the details of a fast and memory-e�cient

one-pass stack decoder for speech recognition to perform the search for the most prob-

able word sequence. The use of this decoder, which can handle arbitrary order N-gram

language models and arbitrary order context-dependent acoustic models with full cross-

word expansion, led to the best reported recognition results on the standard test set of

a widely used Japanese newspaper dictation task.

Keywords: speech recognition, recurrent neural networks, stack decoder

�PhD Thesis, Department of Information Processing, Graduate School of Information Science, Nara

Institute of Science and Technology, NAIST-IS-DT9661205, February 15th, 1999.
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情報系列からの教師付き学習とその音声認識への応用�

シュスター・マイク

内容梗概

音声認識に代表される情報系列の認識問題は工学的に非常に興味深い分野であり、その
多くの場合において、入力系列 xT1 = fx1;x2;x3; : : : ;xT�1;xTgから出力系列 yT1 = fy1;
y2;y3; : : : ;yT�1;yT gへのマッピングを、情報系列データから教師付きで学習する問題とし
ての定式化が可能である。本論文では、種々の問題を一般の情報系列認識問題として統一的
に扱う視点に立ち、モデリング性能、及び認識性能を向上させるための枠組みとアルゴリズ
ムについて述べるとともに、これらを擬似的に合成したデータと実際の音声データを用いて
評価した結果を示す。
リカレント・ニューラル・ネットワーク（RNN）は、従来のニューラル・ネットワーク

に対して情報系列を取り扱うのに適した構造を持たせた強力なモデリング手法であり、これ
により時刻 tまでに与えられた全ての入力情報に対する出力情報出現確率 P (ytjx1;x2; : : : ;xt)
が推定可能である。本論文の前半部では、基本的なRNNを以下に示す通り様々に拡張した
ものについて述べる。

a) 双方向リカレント・ニューラル・ネットワーク（BRNN）：最終時刻までの全ての入
力情報に対する出力情報出現確率 P (ytjxT1 )を推定可能とするものであり、単峰形関
数に基づく回帰、及び識別問題に適用可能

b) 拡張 BRNN： P (ytjyt�1;yt�2; : : : ;y1;xT1 )をモデリングすることによって、出力情
報系列の出現事後確率 P (yT1 jxT1 )を直接推定可能とするもの

c) 多峰形の分布に従う入力情報に対して、ある出力情報系列の条件下での出現確率 P (xtjyT1 )
を、隣接する入力情報 xt;xt+1が互いに独立と仮定して推定する BRNN

d) c)の拡張として、隣接入力情報間に独立性が仮定できない場合に、 P (xtjxt�1;xt�2;
: : : ;x1;y

T
1 )をモデリングすることによって、 P (xT1 jyT1 )を近似なしに推定可能な BRNN

また、本論文の後半部では、最も確からしい単語系列を高速に、かつ少ないメモリ量で
探索可能な、音声認識用 one-passスタックデコーダについて述べる。本デコーダは、任意
次数のN-gram言語モデル、及び単語境界音素環境も考慮した任意次数の音素環境依存音響
モデルが使用可能で、現在広く用いられている日本語新聞ディクテーションタスクでの評価
により最高レベルの性能が示された。

キーワード: 音声認識, リカレントニューラルネットワーク, スタック デコダ

�奈良先端科学技術大学院大学 情報科学研究科 情報処理学専攻 博士論文, NAIST-IS-DT9661205, １９９９
年２月１５日.
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X = xT1 = fx1;x2;x3; : : : ;xT�1;xT g : : : : : : : : : : : : : : : input vector sequence

Y = yT1 = fy1;y2;y3; : : : ;yT�1;yT g : : : : : : : : : : : : : : output vector sequence

T = tT1 = ft1; t2; t3; : : : ; tT�1; tT g : : : : : : : : : : : : : : : : : target vector sequence

S = s
T
1 = fs1; s2; s3; : : : ; sT�1; sT g : : : : : : : : : : : categorical symbol sequence

Q = q
T
1 = fq1; q2; q3; : : : ; qT�1; qT g : : : : : : : : : : : : : : : : :Markov state sequence

J; j : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :number of Markov states, index

q

j
t : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : jth Markov state at time t

q
I
; q

E
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : initial state, �nal exit state

q(t) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : state index of state q

N(qj);N(qiqj) : : : : : : : : : number of times state qj (state pair qiqj) appears

P (�) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : probability or probability density

�j(t) : : : : : : : : : : : : : : : : : : : : : : : : : : : forward likelihood for jth state at time t

�j(t) : : : : : : : : : : : : : : : : : : : : : : : : : :backward likelihood for jth state at time t


j(t) : : : : : : : : : : : : : : : : : :state occupation probability for jth state at time t


ij(t) : : : : : : : : : : : : : : : : : : : : : : : : : state pair occupation probability at time t

�j(t) : : : : : : : : : : : : : : : : : : : : : : : : : : : :Viterbi likelihood for jth state at time t

�j(t) : : : : : : : : : : : : : : : : Viterbi backtrace state index for jth state at time t

xv



xvi List of Symbols

L : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : likelihood

cm : : : : : : : : : : : : : : : : : : : : : : : : : : :mixture weight for mth mixture component

�m; �
d
m : : : : : : : : :mean vector for mth mixture component, dth component

�m : : : : : : : : : : : : : : : : : : : : : : : covariance matrix for mth mixture component

�m : : : : : : : : : : : : : : : : : root of radial covariance for mth mixture component

�
d
m root of dth diagonal covariance component for mth mixture component

D : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : data

W;w : : : : : : : : : : : : : : : : number of weights (or word sequence), weight index

W : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : all possible word sequences

W ;w; ww : : : : : : parameter weight vector space, weight vector, wth weight

E(�) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :error function, objective function
�w : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : stepsize for wth weight

� : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :multiplication factor for gradient

� : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :multiplication factor for momentum

�+; �� : : : : : : : : : : : : : : : : : : : : : : : : : stepsize multiplication factors for RPROP

a; fact(a) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : activation, activation function

h�i : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : expectation operator

/ : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :proportional to

� : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :approximately equal to

:= : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : is assigned to



Chapter 1

Introduction

Abstract

In this chapter the motivation and background for the research conducted for this

thesis is discussed. A few examples to classify basic learning problems and links

to related scienti�c areas are shown to de�ne the scope of the thesis. Finally, the

general structure of the thesis is brie
y explained.

1.1 MOTIVATION AND BACKGROUND

This thesis was started out of an interest for the general problem of learning from

examples, also called learning from data. The simple concept of having only a limited

amount of data and a procedure to learn from it to explain and imitate human learning

behavior and reasoning is very attractive, not only because of its simplicity, but also

for the purpose of making practical use of it to enhance our living standard.

1.1.1 Learning from examples

Learning from data can be divided into the two parts

� unsupervised learning and

� supervised learning,

as illustrated in Figure 1.1.

1.1.1.a Unsupervised learning

Unsupervised learning refers to model data from one space X , which is usually a vector
space such that data samples from that space are vectors notated as x. Learning in

that case means to discover structure in the unknown space X by looking at examples

from it. Once the structure is discovered, or approximated by a model, it can be used

to predict certain areas in the space X which haven't been observed. An example for

unsupervised learning is the task of understanding the range of the outside temperature

1
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Figure 1.1: Learning from sequential data

OTHER

UNSUPERVISED
LEARNING

(data in one space X)

DATA
SEQUENTIAL

SUPERVISED
LEARNING

(data mapped from 
space X to space Y)

LEARNING FROM DATA

ORDER OF SAMPLES
DOESN’T MATTER

ORDER OF SAMPLES
DOES MATTER

Classi�cation of the problem of supervised learning from sequential data as used in this thesis.

x, de�ning the space X , which has in this case as elements scalars (one-dimensional

vectors). Let's assume the only way to �nd out about the outside temperature is to

leave the house and measure it. Before leaving the house the �rst time we make certain

assumptions about the temperature, for example that it is continuous and not discrete

{ we de�ne a model M for it. We also decide not to have a preference for any speci�c

temperature. If we would never leave the house, the outside temperature could be

anything, it could be x = �80�C or x = 80�C, each possible temperature would have

the same probability. Leaving the house a few times (to collect a few samples of data)

would tell us for example that the temperature is usually around x = 20�C and rarely

below zero or above x = 30�C . By leaving the house many, many times to collect

a large number of data samples we will understand more about the properties of the

temperature data space X { for example we will assume that x never reaches 80�C,

because we haven't observed a sample near to it, like x = 70�C or x = 60�C. Now

we have learned something about the structure of the data space that allows us to

make predictions about areas of it we haven't observed. We could make for example

statements of the form: \The temperature is with 60% chance between 25�C and 30�C",

meaning P (25 < x < 30) = 0:6", or \The temperature is never above 80�C", meaning

P (x > 80) = 0.

1.1.1.b Supervised learning

Supervised learning means to model data that is mapped from an input space X to

an output space Y. Another expression for that is to say that Y is conditioned on X .
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An example would be the task of predicting the outside temperature (output space Y)
by checking the brightness of the incoming light through a window (input space X ).
Measuring brightness and outside temperature or observing samples of data pairs will

tell us how to make predictions about the outside temperature without leaving the

house1. We will for example say that if it is very bright, i.e. x = 100, it is with 80%

chance between 25�C and 30�C, or P (25 < y < 30 given x = 100) = 0:8.

1.1.2 Does the order of the data samples matter?

A further subdivision of learning from data can be made by assuming that the

� order of observing the data samples doesn't matter or that the

� order of observing the data samples matters.

1.1.2.a Order of data samples doesn't matter

An example for the case where the order doesn't matter would be a measurement of

the outside temperature by many di�erent people at the same time, each contributing

one sample of the data. Since it is reasonable to assume that a measurement by Mrs. A

doesn't in
uence the measurement by Mrs. B, the order of the samples does not matter

in this case { the samples are assumed to be statistically independent.

1.1.2.b Order of data samples matters

An example for the case where the order matters would be when measurements for the

temperature are made on consecutive days. Although the range of the temperature

over the whole year might be between �20�C and +40�C, the temperature does never

change by 60�C over two consecutive days. Therefore the order of the data samples

contains information that allows us to build a better model for the data space to make

predictions. In this thesis this kind of data will be referred to as sequential data, when

the structure of the order can be represented in a one-dimensional space.

1.1.3 Example applications

Supervised learning from sequential data has many possible applications. In practical

systems it is in general required to predict a sequence in the output space given a

sequence from the input space. Some of the applications in this context are for example:

Speech recognition: Speech recognition is often de�ned as the automatic transcrip-

tion of human utterances as sequences of words. In the training phase, given a

large number of utterances with their correct transcriptions, the task is to learn

the mapping from the acoustic signal to the word sequence, so as to later be able

to recognize new, previously unknown utterances. Considering the number of

1a de�nite enhancement of our living standard!
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examples and the complexity of the models, speech recognition is currently one

of the most advanced areas that uses the principle of learning from examples.

Automatic translation: The task is to learn the mapping from a sequence of words in

one language to a sequence of words in another language, which can be viewed as

a sequence prediction problem with categorical variables in the input and output

space. Automatic translation with useful results between two arbitrary languages

is an unsolved problem. However, for some pairs of languages with similar roots

and grammar structures, like French and English, statistical methods similar to

the ones addressed in this thesis have been applied with reasonable success.

Hand-writing recognition: Hand-writing recognition can today be done to some

extent by many hand-held computers and PDAs. Most of the used approaches to

the problem of online hand-writing recognition again use the principle of 'learning

from examples'. A large number of words are written by an appropriate number

of people with di�erent writing styles { the movement of the pen is recorded

using a digitizer board. Based on the sequential data describing the relationship

between pen-movement and the corresponding words or letters, models are built

that are used to recognize new words.

Stock market prediction: The problem of predicting the value of stocks or curren-

cies can be formulated as a sequence prediction problem. History provides the

example sequences. For example, the change of the ruling party of a country usu-

ally has some in
uence on the stock market. One of the input variables recorded

over time could be a categorical variable which would indicate either 'party A' or

'party B'. The output variable could be the country's currency value, that could

be predicted by learning from examples. The training data in this case would

be the currency value and its history conditioned on the status of the 'party'

variable.

1.1.4 Related scienti�c areas

All of the sequence prediction problems discussed above seem to be of very di�erent

nature. Any scienti�c approach to solving them involves �rst a uni�cation and abstrac-

tion of all the speci�c problems to one scienti�c core problem, which allows us to use

established scienti�c methods and knowledge from other scienti�c areas, as in this case:

Pattern recognition: Pattern recognition (Berger, 1985; Bishop, 1995; Duda and

Hart, 1974; Ripley, 1996; Sivia, 1996) is the basis for many problems discussed

in this thesis, and is often understood as learning from examples like discussed

above. Pattern recognition involves the de�nition of stochastic models like neural

networks (Bishop, 1995; Hertz et al., 1991) or Hidden Markov Models (Huang

et al., 1990; Rabiner and Juang, 1993), which are trained on given training data

and tested on unseen test data. It relies on the practical aspects of probability
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theory (MacKay, 1999), and is strongly related to coding and compression (Bell,

1990).

Information theory: Information theory (Hamming, 1986; MacKay, 1999; Milden-

berger, 1992) de�nes consistent ways of measuring the amount of information in

data, called the entropy. Many problems of pattern recognition, which are for-

mulated to maximize a probability, can often also be formulated to maximize the

amount of information 
ow through some channel.

Computer science: Pattern recognition and information theory live from their usage

in implementations to solve real world problems. Computer science gives the

algorithms and tools (Cormen et al., 1990; Press et al., 1992) to make pattern

recognition work on computers. It is amazing how much time in research is spent

on issues that are more related to the application of computer science than on

issues related to the original problem.

1.2 THESIS STRUCTURE

The introduction de�ned the problem of supervised learning from sequential data in

a loose way. Some examples for di�erent learning problems were given and some real

world applications were brie
y discussed. The remainder of this thesis is organized as

follows:

Chapter 2: The second chapter reviews basic notation and algorithms which are used

throughout the thesis. A classi�cation of the type of problems occuring for se-

quence modeling is given. Two frequently used approaches to decompose the

posterior probability of a complete sequence conditioned on an input sequence

are discussed. The basics of Hidden Markov Models, an important type of model

for sequence modeling and sequence prediction, are reviewed.

Chapter 3: In the third chapter, various approaches to supervised learning from se-

quences using arti�cial neural networks are discussed. First the necessary basics

of neural networks, commonly used architectures and their problems with respect

to sequence processing are reviewed. Then a new architecture, based on a re-

current neural network, called a bidirectional recurrent neural network, that is

especially useful for supervised learning from sequences, is introduced and eval-

uated for uni-modal regression and classi�cation problems. Another extension

is presented which allows the estimation of the posterior probability of a vec-

tor sequence conditioned on an input vector sequence. Finally the architecture

is extended to model target sequences which can be described by multi-modal

continuous distributions.

Chapter 4: In the fourth chapter, the concept of search for the prediction of symbol

sequences conditioned on vector input sequences is addressed. The search proce-

dure is an important part in the general class of sequence processing problems,
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and has generated a lot of research interest in the area of speech recognition. In

this chapter a time- and memory-e�cient implementation of a search algorithm

for large vocabulary continuous speech recognition is presented. Advantages and

problems of di�erent search algorithms are discussed. Requirements for a modern

decoder from an expert user's point of view are de�ned. It is shown how most of

these can be integrated into a single decoder. Finally results from experiments

on a Japanese newspaper dictation task are presented.

Chapter 5: Chapter �ve summarizes the main issues of this thesis, gives directions

for future work and discusses extensions and improvements of the models and

algorithms presented.

The bibliography concludes the thesis. All used �gures, tables and the most common

mathematical symbols are listed before the �rst chapter.



Chapter 2

Supervised learning from

sequential data

Abstract

This chapter discusses some of the basic techniques which are necessary for super-

vised learning from sequential data and introduces basic concepts, algorithms and

notation, which are used in or strongly related to later chapters of this thesis.

As discussed in the introduction chapter, the prediction or recognition of sequences

conditioned on another sequence has a number of potential applications. A uni�cation

of the core problems of these applications, which can be tackled with similar concepts,

and creating a framework that is open to measurable improvements of these, requires

an abstract de�nition of the problem. This includes a consistent notation and a metric

that can be used to measure and compare the performance of sequence prediction

algorithms, which can then be improved by applying new ideas and concepts.

This chapter �rst introduces the concept and a notation for the sequence prediction

problem which is used throughout the thesis. Then a suitable measure based on a sound

statistical technique is discussed. Two approaches to decompose the original problem

into smaller independent problems are shown, which make it possible to use established

methods from other areas. It is also shown how sequence prediction necessarily always

decomposes into a modeling problem for hypothesized sequences and a search part for

selecting between them. Challenges and speci�c problems regarding the in
uence of

context in sequences are discussed. Finally, (Hidden) Markov Models, an important

group of models speci�cally designed to be used for sequence modeling and prediction,

are reviewed.

2.1 DEFINITION OF THE PROBLEM

Consider a (time) sequence of input data vectors of dimensionality D

X = xT1 = fx1;x2;x3; : : : ;xT�1;xTg (2.1)

7
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from the input sequence data space X and a sequence of corresponding output target

data vectors of dimensionality K

T = tT1 = ft1; t2; t3; : : : ; tT�1; tTg; (2.2)

in an output sequence data space1 Y , with neighboring data-pairs (in time) are assumed
to be statistically dependent on each other. Given a �nite amount of paired sequences

xT1 and tT1 as training data, the aim is to learn the rules to predict the output data

given the input data, which is equivalent of �nding the mapping M from the input

space to the output space, X M�! Y . The performance of the model that has been

trained can be checked on a set of unseen sequences to measure an error rate that is

yet to be de�ned. Then the question is:

� How is it possible to build and improve models for sequence prediction in a

consistent way?

Treating sequences as patterns allows to apply the theory of pattern recognition,

which is well described in several books (Duda and Hart, 1974; Fukunaga, 1990; Bishop,

1995). If a sequence is treated as a block (pattern), then the aim becomes to predict

correct and complete sequences, which is a great simpli�cation of the original prob-

lem. A sequence that has one predicted component wrong is as wrong as a sequence

that has all components wrong, which seems to be a crude assumption since a human

would de�nitely grade this performance, but models built using this assumption work

reasonably well in practice.

The aim of pattern recognition is to minimize the expected number of wrong predic-

tions when learning the mapping function X M�! Y . Since in general this mapping is

not deterministic (there is not exactly one Y for eachX), which could be easily realized

by a implementing a look-up table Y = f(X), and the training data samples in general

don't cover the complete space X and Y , it is appropriate to formulate the problem in

an approximate manner by introducing probability distributions 2 over X and Y . The
problem then becomes to maximize the posterior probability of the output given the

input. The sequence prediction problem can then be written as:

Y? = arg max
Y

P (YjX) (2.3)

with X = xT1 being the input sequence, Y = yT1 being any valid output sequence and

Y? being the predicted sequence with with the highest probability among all sequences.

The general problem is visualized in Figure 2.1.

1a sample sequence of the training target data is denoted as T, while an output sequence in general
is denoted as Y, both live in the output space Y

2to simplify notation, throughout this thesis random variables and their values, are often not denoted

as di�erent symbols, when their identity is obvious from the context. This means, P (x) = P (X = x).
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Figure 2.1: Supervised learning from sequences

input sequence X

output sequence Y

T

mapping M:  P(Y|X) = ?

Visualization of the general problem of supervised learning from sequences, here shown for a
mapping with one-dimensional continuous input and one-dimensional continuous output. Each
dotted line represents one data pair input/output vector. Inputs and/or outputs can in general
be categorical also.

Training of a sequence prediction system corresponds to estimating the probability

distribution 3
P (YjX) from a number of samples which includes (a) de�ning an appro-

priate model M and (b) estimating its parameters w by maximizing some prede�ned

optimality criterion. In practice the model M consists of several modules with each of

them being responsible for a di�erent part of P (YjX).

Testing (usage) of the trained system or recognition for a given input sequence X

corresponds principally to the evaluation of P (YjX) for all possible output sequences to

�nd the best oneY?. This procedure is called the search and its e�cient implementation

is important for many applications. The search problem is discussed in more detail in

chapter 4 of this thesis.

In order to build a model to predict sequences it is necessary to decompose the

sequences such that modules responsible for smaller parts can be build. There are

two basic possibilities of decomposing the sequence posterior probability P (YjX) into

smaller parts, that is

� Decomposition into a generative model part and a prior model part, and

� Direct decomposition,

which are discussed in the next two sections.

3throughout this chapter there is no distinction made between probability mass and density, usually

denoted as P and p, respectively. If the variable Y to model is categorical, a probability mass is

assumed, if it is continuous, a probability density is assumed.
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2.2 Decomposition into a generative and a prior model

part

Using Bayes' rule P (BjA) = P (AjB)P (B)=P (A) decomposition into two parts is pos-

sible as:

Y? = arg max
Y

P (YjX)

= arg max
Y

P (XjY)P (Y)

P (X)

= arg max
Y

P (XjY)P (Y) (2.4)

For a certain observed input sequence X the denominator P (X) is constant for any

choice of Y and can therefore be omitted because only the Y with maximum P (YjX)

is needed, not the maximum P (YjX) itself. The �rst term in (2.4), the conditional

probability of the input X given the output Y is called the likelihood of an input se-

quence X assuming it was generated by a hypothesized output sequence Y. The second

term is the prior probability of the hypothesized output sequence totally independent

of the input.

2.2.1 Context-independent model

Using Bayes' rule and the product rule of probability theory P (A;B) = P (A)P (BjA)
the conditional sequence probability P (YjX) can for a simple example be broken down

to three terms as:

Y? = arg max
Y

P (XjY)P (Y)

= arg max
Y

P (xT1 jyT1 )P (yT1 )

= arg max
Y

h TY
t=1

P (xtjx1;x2; : : : ;xt�1;yT1 )
ih TY

t=1

P (ytjy1;y2; : : : ;yt�1)
i
(2.5)

� arg max
Y

h TY
t=1

P (xtjyt)
ih TY

t=1

P (ytjyt�1)
i

(2.6)

= arg max
Y

h TY
t=1

P (ytjxt)
P (yt)

P (ytjyt�1)
i

(2.7)

making some simplifying approximations. These are for this example:

(1) Every output yt depends only on the previous output yt�1 and not on all previous

outputs, making it a �rst order Markov model:

P (ytjy1;y2; : : : ;yt�1)) P (ytjyt�1) (2.8)
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(2a) The inputs are assumed to be statistically independent in time:

P (xtjx1;x2; : : : ;xt�1;yT1 )) P (xtjyT1 ) (2.9)

(2b) The likelihood of an input vector xt given the complete output sequence yT1 is

assumed to depend only on the output found at t and not on any other ones,

making it in this simple case a context-independent model:

P (xtjyT1 )) P (xtjyt) (2.10)

(2.6) and (2.7) or very similar expressions are the basis for many frequently used

approaches to predict sequences. In these equations there are two kinds of probabilistic

terms,

� P (AjB): a conditional probability expression, and

� P (A): an unconditional probability expression,

for which e�cient types of models, depending on whether the variables are continuous

or categorical, are known. Several of these model types will be discussed throughout

this thesis. The remaining probability expressions in (2.6) and (2.7) to model are:

(1) P (xtjyt) { the likelihood of input vector x given output vector y at time t. For

this case x is often continuous and y categorical, which is usually coded such

that exactly one component of y is one and all others zero. Then it is possible

to build an unconditional model for each category, e.g. Pk(x) for 1 � k � K. A

popular model for unconditional density estimation is a parametric representation

as Gaussian mixtures, which is discussed further in section 2.4.3.

(2) P (ytjxt) { the posterior probability of vector y given input vector x at time t.

For this type of problem often neural networks as discussed in chapter 3 are used

as models. Depending on the type of the variable y (categorical or continuous)

certain assumptions are made about the distribution of y, which leads to di�erent

types of neural networks.

(3) P (yt) { the unconditional prior probability, which in the case of a categorical y

is approximated by a discrete distribution, for example by the relative frequency

of observing the possible categories of y in the training data, and in the case of

a continuous y by a parametric distribution.

(4) P (ytjyt�1) { the conditional probability of observing category yt given the neigh-
boring category yt�1, also called transition probability, which can also be esti-

mated from the training data using the techniques from section 2.4.1 in the case

of a categorical variable y.

Often the expression ~
P (xtjyt) = P (ytjxt)=P (yt) is referred to as the scaled likelihood,

because it is proportional to the real likelihood P (xtjyt).
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2.2.2 Context-dependent model

The approximations used to derive (2.6) ignored all context e�ects, on the input side

by ignoring neighboring vectors of xt and on the output side by ignoring the e�ects of

hypothesized neighboring output vectors of yt. For the listed approximations (1), (2a)

and (2b) several improvements are possible and used frequently in real-world applica-

tions.

(1) Although the basic model is often a �rst order Markov model, with the transition

probabilities depending only on the previous state, long-span dependencies can

be used by arti�cially increasing the state space. Assume the categorical output

variable y has dimensionality K , representing K categories with K states and

K
2 transition probabilities, if �rst order Markov Models using a history of length

one are used and every transition is possible. A model that can di�erentiate a

history of length two can be created by increasing the number of states to K
2

representing all combinations of any two original states, simulating a second order

Markov Model in the original state space. The number of possible transitions

increases then from K
2 to K

3. Note that the number of possible observation

probability distributions associated to states, as introduced in section 2.4.1, does

not increase. An example is shown in Figure 2.2.

Figure 2.2: Markov Model history length expansion

a
112

a
121

a
211

a
122

a
212

a
221

a
111

a
222

q12 q

q21

22

q11

a
11

a
22

a
12

a
21

1q q2

Expansion of a �rst order Markov Model (left) to a second order Markov Model (right) to
di�erentiate a history of length two instead one.

(2a) Neighboring inputs xt;xt+1 are assumed to be statistically independent, that is

P (xt;xt+1) = P (xt)P (xt+1). This means that by knowledge of any xt nothing

is known about xt+1. Since this is in general a poor assumption for sequential

data, e�orts are made to make neighboring input vectors less dependent on each

other. One method successfully applied in speech recognition and hand-writing

recognition is the extension of the input vectors xt at each time t by estimates

of the �rst and second order derivatives of an assumed smooth function that the

original sequence xT1 describes.
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(2b) The likelihood of an input vector is, after applying assumption (2a), conditioned

on the complete hypothesized output sequence, which has been approximated by

only the output vector at time t for the context-independent model described in

section 2.2.1. The likelihood can be made dependent on more context information

like neighboring output vectors or groups of output vectors as used in speech

recognition to construct for example triphones (a phone in the context of two

other phones, each modeled by a group of output symbols or states). Assume

that for the context-independent model it is required to model the likelihood of

a vector given a certain class s as P (xjs), then for the context-dependent model

one would have to model P (xjs; �) if � describes the context of s.

The use of context-dependent models raises a number of issues which are beyond

the scope of this introduction. Including additional context usually increases the

number of potential output classes which in general has to be reduced by clus-

tering and parameter sharing to have enough training data to robustly estimate

the parameters of the associated distributions. A number of such clustering tech-

niques and generation of context-dependent models successfully used for speech

recognition are discussed in for example (Bahl et al., 1991) and (Odell, 1995).

In case of an implementation using (2.7), which requires the posterior and prior

probability of a class s in its context �, the resulting expression for the scaled

likelihood ~
P (xjs; �) is often decomposed as

~
P (xjs; �) =

P (s; �jx)
P (s; �)

=
P (�js;x)
P (�js) � P (sjx)

P (s)
; (2.11)

which results in four independent probability expressions that can be estimated in-

dividually. A more detailed decomposition consisting of more terms is a straight-

forward extension of (2.11). A very appealing method to discriminate thousands

of classes by automatically growing a tree structure, where decomposition at each

node in the tree is based on the basic idea of decomposing posterior probabilities,

has been applied successfully to a speech recognition problem and is described in

(Fritsch, 1998a) and (Fritsch, 1998b).

A new modeling approach which removes the independence assumption (2a) and the

context-dependency assumption (2b) completely, using neural networks as models, is

shown in section 3.3.

2.3 Direct decomposition

Another possibility to split up the posterior sequence probability P (YjX) is to use the

rule P (A;B) = P (A)P (BjA) for decomposing joint probability expressions directly T
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times to yield:

Y? = arg max
Y

P (YjX)

= arg max
Y

P (yT1 jxT1 )

= arg max
Y

TY
t=1

P (ytjyt+1;yt+2; : : : ;yT ;x
T
1 )| {z }

backward posterior probability

(2.12)

= arg max
Y

TY
t=1

P (ytjy1;y2; : : : ;yt�1;xT1 )| {z }
forward posterior probability

(2.13)

Now the posterior sequence probability P (YjX) has been broken down into a product

of conditional probabilities of output vectors yt given the complete input sequence xT1
plus the output vectors on either the left hand side of t, that is fy1;y2; : : : ;yt�1g, or
on the right hand side of t, that is fyt+1;yt+2; : : : ;yT g. These decompositions have

the disadvantage that no parts of P (YjX) have completely been separated as done in

section 2.2, which limits the 
exibility of this approach. The advantage is though, that,

at least up to this point, no approximations have been made to decompose P (YjX) {

the decomposition results from a strict application of probability rules. For a practical

implementation it will of course be necessary to make approximations by cutting input

and/or output sequences appropriately. Note that the two decompositions shown here

are not the only ones possible, because the sequence can be broken down in any order

and not necessarily sequentially from left to right or right to left.

This decomposition will be explored in chapter 3, where a neural network structure

is developed, that exactly models expression 2.12 or 2.13 to allow the estimation of

conditional sequence probabilities by a single neural network.

2.4 HIDDEN MARKOV MODELS

Hidden MarkovModels (HMMs) are simple, but very powerful and successful models for

the prediction of categorical symbol sequences. They are the basis for many applications

like for example speech recognition and on-line hand-writing recognition. The main

reason for their success is the fact, that they can not only model given sequences

reasonably well, but their use also greatly simpli�es the search to predict sequences

(Viterbi-Search).

This section introduces the basic terminology and algorithms which are related to

this thesis. There exist a number of well written tutorials on HMMs (Huang et al., 1990;

Rabiner and Juang, 1993), so here only a short introduction is given. The notation for

HMMs used in this section conforms mainly with that found in (Young et al., 1997)

and (Odell, 1995).
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2.4.1 Basic HMM formulation

An HMM is a model for a random process generating a sequence of vectors that can

be described by a progression through a hidden state sequence to model exactly proba-

bilistic expressions of the form (2.6), and are therefore well suited for the prediction of

sequences. Elements of HMMs are a number of J states Q = fq1; q2; : : : ; qJg which are

connected by directed arcs, called transitions. They are called �rst order HMMs, when

each transition depends only on the previous state and not on more states. Each state

allows the calculation of a likelihood for a certain observation vector (input vector) x,

which is called the observation likelihood, notated as bi(x) = P (xjqi) and often jointly

notated as B. The probability distributions b(�) can be discrete or continuous and must

obey the rules of probability, i.e. for discrete distributionsX
X

bi(x) = 1 (2.14)

and Z
X

bi(x) dx = 1 (2.15)

for continuous distributions. For simpler notation it is sometimes convenient to think of

an initial state qI and a �nal exit state qE which do not have an observation probability

distribution b(�) associated with them and are therefore non-emitting states. The con-

necting arcs have probabilities associated that are called transition probabilities, which

are notated as aij for the transition probability from state i to state j and collected in a

transition matrix A. Transitions can also be self-transitions describing the probability

of staying in a state for one time-step. All transitions from a certain state i have to

sum up to one:
JX
j=1

aij = 1 (2.16)

A typical single HMM representing a certain symbol, notated here as M = fA;Bg, as
often used in speech recognition is shown in Figure 2.3.

An observed input sequence x61 = fx1;x2;x3;x4;x5;x6g could have been generated

by the HMM in the example by �rst staying three time steps in state q1 for the genera-

tion of input vectors x1;x2;x3, then one time step in state q
2 to generate x4, and �nally

two time steps in state q3 to generate x5 and x6. The likelihood that this particular

state sequence was generated by the HMM model M can be calculated as:

P (x61jq1q1q1q2q3q3;M) = aI1b1(x1)a11b1(x2)a11b1(x3)a12b2(x4)a23b3(x5)a33b3(x6)a3E

This is only one possibility for an alignment of input vectors to states. Many more

possible di�erent progressions generating the same sequence of vectors x61 are possible,

which can all be calculated in a similar manner and are in general:

P (XjQ;M) = aI1

TY
t=1

bq(t)(xt) aq(t)q(t+1) (2.17)
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Figure 2.3: Example Hidden Markov Model structure
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Example for a typical Hidden Markov Model structure as often used in speech recognition.

for a single state sequence. The sum over all possible state sequences through the model

(which are not observed or hidden) for a certain input sequence X is the full likelihood

for the generation of the sequence by the HMM model M and can be written as:

P (XjM) =
X
Q

P (XjQ;M) (2.18)

=
X
Q

aI1

TY
t=1

bq(t)(xt) aq(t)q(t+1) (2.19)

An alternative to calculating the full likelihood is the likelihood of only the single best

state sequence, that is:

b
P (XjM) = MAX

Q

n
aI1

TY
t=1

bq(t)(xt) aq(t)q(t+1)

o
(2.20)

Direct evaluation of these expressions is infeasible, but an e�cient recursive algorithm

to calculate them is known and described in section 2.4.2.a.

There are two important problems to be solved to make use of HMMs as models

for the prediction of sequences.

Problem 1: How do we train the model? Given the observation input sequence X =

fx1;x2; : : : ;xT g and the HMM model M = fA;Bg, how do we adjust the model

parameters A;B to maximize P (XjM)?

Problem 2: How do we use the model? Given the observation input sequence X =

fx1;x2; : : : ;xT g and the HMM model M = fA;Bg how do we e�ciently �nd the

single state sequence that is most probable?
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The idea for training HMMs runs roughly as follows: Assume a best state sequence

for every training pattern is known, that is, every observation vector x belongs to a

certain state q that is was generated by. Then all observation vectors for a particular

state q
i could be collected to update the parameters of its observation probability

distribution bi(�), such that the emission of the observation vectors by this distribution

becomes most likely for that state. Knowledge of this alignment from observation

vectors to states would also imply how to set the transition probabilities A as relative

frequencies aij = N(qiqj)=N(qi) by counting from the aligned training data.

The problem is that a best state sequence is not known, because a particular ob-

servation vector sequence could have been generated by many state sequences as dis-

cussed above. In that case the assignment to states becomes fuzzy and a smooth value

for the counts would replace the original alignments, which then can be used to up-

date the observation distributions and transition probabilities. An algorithm called

the Forward-Backward algorithm to calculate these statistics e�ciently is explained in

section 2.4.2.a.

Usage of HMMs for recognition (prediction) or a simpli�ed training procedure re-

quires a decision for a certain set of models to progress through, which generated the

observed vector sequence. In the simplest case the progression through the set of mod-

els is approximated by the best single state sequence that has the highest probability,

which can be understood as a simpli�cation of the Forward-Backward algorithm.

2.4.2 Calculation of state occupation probabilities

Updating the parameters of the model requires the calculation of a state occupation

probability 
i(t), the probability of the transition from the initial state qI to the �nal

exit state qE and being in state qi at time t given the modelM and the observed vector

sequence xT1 , i.e.


i(t) = P (qI ! (qt = q
i)! q

E jx1;x2; : : : ;xT ;M); (2.21)

which is necessary to update the observation distribution parameters B. A state pair

occupation probability 
ij(t), the probability of the transition from the initial state qI

to the �nal exit state qE and being in state qi at time t and and state qj at time t+1,

i.e.


ij(t) = P (qI ! (qt = q
i
; qt+1 = q

j)! q
Ejx1;x2; : : : ;xT ;M); (2.22)

is necessary to update the transition probabilities A. These probabilities can exactly

be calculated e�ciently using the Forward-Backward algorithm, which is explained in

the next section. An often used approximation is the Viterbi algorithm (section 2.4.2.b)

that is also used for recognition.
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2.4.2.a Forward-backward algorithm

Consider the two intermediate probability expressions:

� the forward likelihood of the joint event of starting in state qI and being in state

q
i at time t after observing the partial sequence x1;x2; : : : ;xt, given the model

M:

�i(t) = P (x1;x2; : : : ;xt; q
I ! (qt = q

i)jM); (2.23)

� and the backward likelihood of observing the partial sequence xt+1;xt+2; : : : ;xT ,

given the model M and that the state sequence starts in state qi at time t and

ends in state qE :

�i(t) = P (xt+1;xt+2; : : : ;xT j(qt = q
i)! q

E
;M); (2.24)

which is not symmetrical to the forward likelihood.

These expressions can e�ciently be calculated recursively for all J emitting states with

the Forward algorithm as

�j(1) = aIjbj(x1)

�j(1 < t � T ) =
JX
i=1

�i(t� 1)aijbj(xt) (2.25)

�J (T
+) =

JX
i=1

�i(T )aiE;

and in a similar way with the Backward algorithm as:

�i(T ) = aiE

�i(1 � t < T ) =
JX
j=1

aijbj(xt+1)�j(t+ 1) (2.26)

�1(1
�) =

JX
j=1

aIjbj(x1)�j(1)

Here is enforced that any state progression starts in the initial state qI and ends in the

�nal exit state qE . The time indices t = 1� and t = T
+ are a convenient notation for

the boundary indices, with t = 1� being the time index before t = 1 and t = T
+ being

the time index after t = T . If (2.25) and (2.26) are implemented exactly as notated, the

recursively used multiplications will lead to a numerical under
ow. Therefore either an

implementation based on logarithms or some normalization of the �j(�) and �i(�) after
each time step must be used.
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The full likelihood L = P (XjM) based on the de�nitions of the forward and back-

ward likelihoods �i(t) (2.23) and �i(t) (2.24) is then

L = P (XjM) = P (x1;x2; : : : ;xT ; q
I ! (qT+ = q

E)jM)

= �J(T
+) (2.27)

= P (x1;x2; : : : ;xT ; (q1� = q
I)! q

E jM)

= �1(1
�) (2.28)

One possible expression for the state occupation probability 
j(t) is therefore using

(2.21):


j(t) = P (qI ! (qt = q
j)! q

E jx1;x2; : : : ;xT ;M)

=
P (x1;x2; : : : ;xT ; q

I ! (qt = q
j)! q

E jM)

P (x1;x2; : : : ;xT ; qI ! q
E jM)

=
�j(t)�j(t)

L (2.29)

The state pair occupation probability 
ij(t) is then using (2.22):


ij(t) =
�i(t)aijbj(xt+1)�j(t+ 1)

L (2.30)

2.4.2.b Viterbi algorithm

The Viterbi algorithm is a simpli�cation of the Forward-Backward algorithm, that leads

to the likelihood b
P (XjM) of the single best state path through the model. The path it-

self, like necessary for recognition, can easily be reconstructed with little computational

overhead.

Instead of summing over all possible states at each time t, a decision is made and

only the best local path is considered. If �j(t) is the likelihood of the single most likely

state sequence ending in state qj at time t, then:

�j(1) = aIjbj(x1)

�j(1 < t � T ) =
J

MAX
i=1

f�i(t� 1)aijgbj(xt) (2.31)

�J (T
+) =

J

MAX
i=1

f�i(T )aiEg

According to the de�nition of �j(t) and (2.20) the Viterbi likelihood is then:

b
P (XjM) = �J(T

+) (2.32)

The best state sequence can be reconstructed by a trace-back giving the best state

number for each time t. This requires that the maximum decision made at each time
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during the forward progression is recorded as:

�j(1 < t � T ) =
J

arg max
i=1

f�i(t� 1)aijg (2.33)

�J(T
+) =

J
arg max

i=1

f�i(T )aiEg; (2.34)

which can then be back-traced to recover the most likely state-sequence as:

q(T ) = �J (T
+) (2.35)

q(1 � t < T ) = �q(t+1)(t+ 1) (2.36)

The use of the Viterbi algorithm for training leads to state occupation probabilities


j(t) of either one or zero for any state q
j at time t, because only a single path and no

weighted average of paths is considered. The same is true for the state pair occupation

probabilities.

Note that the computational complexity of �nding the best state sequence guaran-

teed is only of order O(J2
T ) (by examining (2.31), for each t and for each state qj the

maximum over J states has to be found) and not of order O(JTT ), which would de�ne

an exhaustive search over all possible state sequences for a fully connected HMM (for

each of the JT state combinations T operations would be necessary to calculate the

likelihood, the backtrace operations are ignored). This improvement in e�ciency for

the search is one of the main reasons for the success of Hidden Markov Models in many

applications.

2.4.3 Parameter estimation for output probability distributions

For the output probability distributions b(�) to generate the likelihoods many di�erent
parametric and non-parametric approaches are possible. The most common are

� likelihoods from continuous density distributions with Gaussian kernels,

� likelihoods from discrete distributions and

� scaled likelihoods by posterior conversion,

which are discussed in the next sections.

2.4.3.a Continuous density likelihoods

Continuous density likelihoods come often from a mixture of M basic functions

p(xjq = q
j) = bj(x) =

MX
m=1

cjmbjm(x) (2.37)
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with Gaussian kernels

bjm(x) = N (x;�jm;�jm)

=
1

(2�)D=2j�jmj1=2
exp

n
� 1

2
(x� �jm)0��1

jm(x� �jm)
o

(2.38)

(2.39)

where the dimensionality of the data is D and cjm, �jm and �jm being the mixture

weights, means and covariance matrices for the m-th component of the Gaussian mix-

ture for state qj. The parameters of the model can be estimated e�ciently using the

expectation-maximization (EM) algorithm (McLachlan and Krishnan, 1997) to max-

imize the likelihood of the data. The maximum likelihood estimates for observation

distributions of Markov chains using the state occupation probabilities are weighted

averages as

bcjm =

PT
t=1 
jm(t)PT
t=1 
j(t)

(2.40)

b�jm =

PT
t=1 
jm(t) � xtPT
t=1 
jm(t)

(2.41)

b�jm =

PT
t=1 
jm(t) � (xt � b�jm)(xt � b�jm)0PT

t=1 
jm(t)

=

PT
t=1 
jm(t) � xtx0tPT

t=1 
jm(t)
� b�jmb�0jm (2.42)

where xt is the tth vector of the training data sequence and 
jm(t) is the probability

that observation vector xt was produced by mixture m of state qj given by


jm(t) = 
j(t)
cjmbjm(xt)

bj(xt)
: (2.43)

This set of equations, which is easily generalized to deal with multiple training se-

quences, is called in combination with the Forward-Backward algorithm to calculate

the state occupation probabilities Baum-Welch re-estimation (Baum et al., 1970; Baum,

1972), which is a form of the EM algorithm. In general the data used for the M-step

in (2.40), (2.41) and (2.42) is the same as for the E-step in (2.43), but it is sometimes

useful to estimate parameters of new distributions in the M-step based on state occu-

pation probabilities from well trained models from the E-step. The expressions (2.40)

{ (2.43) can be found in similar form in (Young et al., 1997) (pages 138-143), (Huang

et al., 1990) or in (Rabiner and Juang, 1993).

2.4.3.b Discrete likelihoods

For discrete likelihoods all state distributions are based on a number of M codebook

vectors usually found by vector-quantizing (Gray, 1984) the observations, such that the
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sequence of continuous vectors becomes a sequence of categorical symbols. Observation

vectors are assigned to the closest codebook vector usually based on an Euclidean

distance measure.

Because discrete distributions are implemented as look-up tables, they can be eval-

uated quickly, which is their most important advantage. Their disadvantage is, that

the vector quantizer introduces additional noise into the observations, which usually

leads to suboptimal results. Further discussion of models using discrete likelihoods can

be found in (Huang et al., 1990).

For discrete distributions the relative codebook vector frequencies for each model

must be estimated based on the state occupation probabilities. Suitable expressions

can be derived by thinking of a discrete distribution as a mixture distribution over

all available mixture components in the model, with the number of mixtures being

the number of codebook vectors. This leads then to expressions similar to (2.40) and

(2.43).

2.4.3.c Scaled likelihoods

(2.7) suggests an alternative way of obtaining likelihoods of the form P (xjq = q
j). If

the posterior probability of the state given the observation vector P (q = q
jjx) is known,

then a scaled likelihood can be calculated using Bayes' rule by division through the prior

probability P (q = q
j) of that state (and ignoring the prior probability P (x), because

it is constant for a given observation sequence xT1 ), i.e.

P (xjq = q
j) / P (q = q

j jx)
P (q = q

j)
; (2.44)

which is an equivalent expression for the determination of the most likely output se-

quence. This approach can be used when suitable models for the estimation of the

posterior probability are available, e.g. neural networks as sometimes used for speech

recognition, or other non-parametric models whose outputs can be interpreted as pos-

terior probabilities.

For distributions found by likelihood conversion to scaled likelihoods usually only

the Viterbi algorithm is used for training (Robinson et al., 1996), giving a distinct

best state sequence for every training sequence, although training based on a soft

alignment is also possible (Senior and Robinson, 1996). Parameter estimation for these

distributions means to train a separate model to estimate the posterior probability

P (q = q
jjx), for which often neural networks are used. This is discussed in more detail

in chapter 3. The maximum likelihood estimates for the prior probabilities P (q = q
j)

are in this case the relative frequencies of the states in the training data.
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2.4.4 Parameter estimation for transition probabilities

A formula similar to (2.40) is used to update the transition probabilities using the state

pair occupation probabilities 
ij(t) as

aij = P (qt = q
jjqt�1 = q

i) =

PT
t=1 
ij(t)PT
t=1 
i(t)

; (2.45)

which is easily generalized for multiple utterances.

2.5 SUMMARY

This chapter has outlined some basic techniques and models for supervised learning

from sequences. Two di�erent approaches to decompose the posterior probability of a

complete sequence conditioned on an input sequence have been shown and discussed.

Basics of Hidden Markov Models, an important type of model for sequence prediction,

have been reviewed. Further chapters will develop some of the shown approaches { an

improved model to learn from sequences (chapter 3) to model expressions of the form

P (ytjxT1 ), a model to directly estimate the posterior probability of sequences (chapter

3) by modeling expressions of the form P (ytjyt�1;yt�2; : : : ;y1;xT1 ), a model to estimate
expressions of the form P (xtjyT1 ) and P (xtjxt�1;xt�2; : : : ;x1;yT1 ) (chapter 3) and an

extension of the basic Viterbi algorithm such that it is suitable for large vocabulary

speech recognition (chapter 4).
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Chapter 3

Neural networks for supervised

learning from sequences

Abstract

In this chapter, various approaches of supervised learning from sequences using

arti�cial neural networks are discussed. First, the basics of neural networks, com-

monly used architectures and their problems with respect to sequence processing

are reviewed. It is shown why recurrent neural networks are particularly useful

for supervised learning from sequential data. Then, a new architecture based on a

recurrent neural network, is introduced and evaluated for uni-modal regression and

classi�cation problems assuming that the output data within the sequence is statis-

tically independent. To deal with statistically dependent output data, a variation

of this architecture is developed. Finally, the architecture is extended to model

target sequences which can be described by multi-modal continuous distributions.

Many classi�cation and regression problems of engineering interest are currently

solved with statistical approaches using the principle of \learning from examples". For

a certain model with a given structure, inferred from the prior knowledge about the

problem and characterized by a number of parameters, the aim is to estimate these

parameters accurately and reliably using a �nite amount of training data to estimate

the target data's underlying distribution, which is conditioned on the input data. In

general, the parameters of the model are determined by a supervised training process,

while the structure of the model is de�ned in advance. Choosing a proper structure for

the model is often the only way for the designer of the system to put in prior knowledge

about the solution of the problem.

Arti�cial neural networks (NNs) are one group of models, which take the principle

\infer the knowledge from the data" to an extreme, since the structure is in general

less speci�ed than for other types of models. This chapter deals with NN structures for

one particular class of problems which are represented by temporal sequences of input-

output data pairs. For these types of problems, which occur for example in speech

recognition, time series prediction, dynamic control systems, etc., one of the challenges

is to choose an appropriate network structure which at least theoretically is able to use

25
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all available input information to predict a point in the output space.

Many NN structures have been proposed in the literature to deal with time varying

patterns. Multi-layer perceptrons (MLPs) have the limitation that they can only deal

with static data patterns (i.e., input patterns of a prede�ned dimensionality), which

requires to de�ne the size of the input window in advance. (Waibel, 1989) have pursued

time delay neural networks (TDNNs), which have proven to be a useful improvement

over regular MLPs in many applications. The basic idea of a TDNN is to tie certain

parameters in a regular MLP structure without restricting the learning capability of

the NN too much. Recurrent neural networks (RNNs) (Rumelhart et al., 1986; Giles

et al., 1994; Pearlmutter, 1989; Robinson, 1994; Robinson et al., 1996) provide another

alternative for incorporating temporal dynamics and are discussed in more detail in a

later section.

In this chapter, several di�erent NN structures for incorporating temporal dynamics

are investigated. A number of experiments using both arti�cial and real-world data are

conducted. The superiority of RNNs over the other structures is demonstrated. After

pointing out some of the limitations of RNNs, a modi�ed version of an RNN (called a

bidirectional recurrent neural network) is proposed, which overcomes these limitations.

Various extensions of the bidirectional structure and their potential applications are

discussed.

3.1 BASICS OF NEURAL NETWORKS

Arti�cial neural networks (see (Bishop, 1995) for an excellent introduction) can be used

for many supervised learning tasks. Given as training data N input/target data vector

pairs D = fxn; tng (a mapping from input to a target data), with dimensions D and K,

respectively, the aim of a supervised learning process is to learn how to predict output

data given new input data, which is written as a K-dimensional function y
k(xn;w)

depending on the current input vector x and the NN parameter value vector w with W

weights. The weights are combined in structures, whose di�erent types are discussed

in more detail in a later section.

3.1.1 Parameter estimation by maximum likelihood

The estimation of the parameters of the model is often guided by the maximum likeli-

hood principle, which can be stated as follows:

There is given training data D and a model structure M, which is characterized by

the parameter vector w out of all possible parameter vectors in the space W , and all

parameter value sets are assumed to be equally probable

P (w) = const: (3.1)

Then the goal of the parameter estimation process is to �nd a single set of parameter

valuesw? that maximize the probability of the model parameters given the data, which
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is called MAP (maximum a posteriori) estimation. Given assumption (3.1) and the fact

that the unconditional probability of the data D is independent of the parameters w

this can be simpli�ed to

w? = arg max
W

fP (wjD)g (3.2)

= arg max
W

n
P (Djw)P (w)

P (D)
o

(3.3)

= arg max
W

fP (Djw)P (w)g (3.4)

= arg max
W

fP (Djw)g (3.5)

such that the problem becomes now to maximize the likelihood of the data given the

model with its parameters w without having a preference for certain parameter sets

that seem to be more plausible than others () p(w) = const:).

In the case of supervised learning with training data D = fxn; tng, whose data

pairs are assumed to be conditionally independent given w, the likelihood L becomes

L = P (Djw) (3.6)

=
Y
N

P (tn;xnjw) (3.7)

=
Y
N

P (tnjxn;w)P (xnjw) (3.8)

/
Y
N

P (tnjxn;w); (3.9)

because for neural networks as considered in this thesis the inputs are not modeled and

do not depend on w, the term
Q
N P (xnjw) is constant for all w and therefore vanishes

during maximization of L. With the negative logarithm taken, the function becomes

E(D;w) = �ln
Y
N

P (tnjxn;w) (3.10)

= �
X
N

ln P (tnjxn;w) (3.11)

which is called an objective function or error function that has to be minimized dur-

ing training. Making appropriate assumptions for the conditional output distribution

P (tnjxn;w) makes it possible to classify the types of problems to be solved by neural

networks, which is discussed in the next section.

3.1.2 Problem classi�cation

Problems suitable to be solved with neural networks can be divided into three groups

depending on the type of input and target variables. Inputs and targets can, in gen-

eral, be continuous and/or categorical variables, which de�nes the two categories of
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supervised learning problems. When targets are continuous, the problem is known as

a regression problem, when they are categorical (class labels), the problem is known as

a classi�cation problem. Regression can again be subdivided into uni-modal regression

and multi-modal regression, depending on whether the output can be characterized by a

distribution with only one mode (usually a Gaussian) or requires one with many modes

(mixture of Gaussians), respectively. Within this chapter, the term prediction is used

as a general term which includes classi�cation and both types of regression.

3.1.2.a Uni-modal regression

For uni-modal regression or function approximation, the components of the output

vectors are continuous variables. The NN parameters are estimated to minimize some

prede�ned error criterion, e.g. maximize the likelihood of the target data given the

model and the input data

P (Djw) /
NY
n=1

P (tnjxn;w) (3.12)

as discussed above. When it is assumed that

a) the distribution of the errors between the desired target and the estimated output

vectors is a single Gaussian with zero mean and a global data-dependent variance

and

b) all K outputs are conditionally independent,

then the likelihood criterion reduces to the convenient Euclidean distance measure

between the desired and the estimated output vectors or the squared-error function,

E =
X
N

X
K

(yk(xn;w) � t
k
n)

2 (3.13)

which has to be minimized during training. It has been shown several times (Bishop,

1995) that neural networks can estimate the conditional average of the desired target

vectors at their network outputs; i.e., yk(x;w?) = htkjxi, where h�i is an expectation

operator and w? is the parameter (weight) vector at the minimum of the error function.

For uni-modal regression the network outputs can be interpreted as the mean of a

Gaussian distribution, which varies depending on the current input.

3.1.2.b Multi-modal regression

For multi-modal regression, the components of the output vectors are, as in the uni-

modal case, continuous variables, and the parameters are estimated to maximize the

likelihood of the target data. The di�erence to uni-modal regression is that the dis-

tribution of errors between the desired target and the estimated output vectors is not

assumed to be a single Gaussian, but a weighted sum of Gaussians with a given number
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of mixture components and a given covariance type as discussed for a simple case in

(Bishop, 1995). The objective function to be maximized is here the full likelihood of

the target data given the input data and the model.

E =
X
N

ln P (tnjxn;w) (3.14)

For multi-modal regression the network outputs represent all parameters of the assumed

distribution, i.e. mixture weights, mean vectors and covariance matrices. This case is

discussed in more detail in section 3.3.

3.1.2.c Classi�cation

In the case of a classi�cation problem, one seeks the most probable class out of a given

pool of K classes for each input vector xn. To make this kind of problem suitable

to be solved by a NN, the categorical target variables are usually coded as vectors

as follows. Consider that k is the desired class label for an input vector x. Then

construct a K-dimensional target vector t such that its kth component is one and all

other components are zero. The kth component can be interpreted as the probability of

x belonging to class k. The target vectors tn constructed in this manner along with the

input vectors xn can be used to train the NN under some optimality criterion, usually

the cross-entropy function,

E = �
X
N

X
K

t
k
nln(y

k(xn;w)) (3.15)

which results from a maximum likelihood estimation assuming a multinomial target

distribution (Bishop, 1995). It has been shown (Richard and Lippman, 1991; Bishop,

1995) that the kth network output can be interpreted as an estimate of the conditional

posterior probability of class membership (yk(x;w?) = P (C = kjx)), with the quality

of the estimate depending on the amount of training data and the complexity of the

network.

3.1.3 Neural network training

Training of neural networks as discussed here is equivalent to adjusting the weights w

iteratively such that an error function is minimized, which is depending on the type

of problem either the squared error, the cross-entropy or the general likelihood of the

target data. Function minimization is a problem occuring in many disciplines of science

and standard procedures are well documented (Bishop, 1995; Press et al., 1992; Battiti,

1992). Usual approaches for neural networks are

(1) �rst order methods, which use the �rst derivative of the error function ( @
@wE) to

be minimized, for example gradient descent, gradient descent with momentum,

RPROP, and
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(2) second order methods (Shepherd, 1997), which also use the second derivative

(Hessian) or approximations to it, for example quasi-Newton, conjugate gradient,

Levenberg-Marquardt, BPQ (Saito and Nakano, 1997) or Quickprop (Fahlmann,

1988).

The �rst (and also second) derivative of the error function in feed-forward neural

networks can be calculated e�ciently with a procedure called back-propagation (Rumel-

hart et al., 1986; Bishop, 1995), which requires a forward pass (calculate yk(xn;w) 8 k)
and a backward pass (calculate @

@w
E vector) through the network for each of the N

training vector pairs. All training procedures can be

(1) o�-line or batchmethods, for which the weightsw are updated after all N training

samples have been used to calculate the �rst derivative, or

(2) on-line methods, for which only a part of the training samples is used to get an

estimate of the �rst derivative which is then used to update the weights.

The use of neural networks for large scale real-world problems like for example

speech recognition adds two practical problems to training: (1) The number of param-

eters W (weights) is considerably high, often in the range of 10000 - 2000000. (2) The

number of training data vectors N is often in the range of one million to 100 million,

being also much higher than for the average NN application (medical applications etc.).

These two problems rule out many of the theoretically superior and more sophisticated

second order training algorithms because of insu�cient memory resources and/or a too

complicated implementation. Algorithms used in practice for large scale problems are

currently mostly �rst order methods, i.e. (1) online gradient descent and (2) online

RPROP procedures.

3.1.3.a Gradient descent training

Gradient descent training refers to adjusting the weight vector w after each iteration i

by a small vector �w proportional to the negative gradient� @
@w

E
(i) = � @

@w
E(D;w(i)):

�w(i) = �� @

@w
E

(i) (3.16)

w(i+1) = w(i) +�w(i) (3.17)

This procedure can be re�ned by making the weight change �w linearly dependent on

the previous change

�w(i) = �� @

@w
E
(i) + � ��w(i�1)

; (3.18)

which often leads to a considerable speed-up. Good values for � and � heavily depend

on the used NN structure, the training data and the initialization of w (which is often

random using small values) and have to be found by experiments. An improved ini-

tialization procedure based on the training data and the structure of the network, that
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uses a combination of data driven methods for the input layer weights and supervised

procedures for the output layer weights, is discussed in appendix A.

If an online procedure is used, then the estimated gradient to be used for one

update depends only on a small part of the available training data, which might lead

to a large 
uctuation of the gradient and therefore to slower training. In this case the

local gradient estimate may be smoothed and improved by

@

@w
E
(i) := (1� �) � @

@w
E
(i�1) + � � @

@w
E
(i) (3.19)

with 0 � � � 1 controlling the amount of smoothing. As an additional improvement �

can be made variable slowly increasing towards one during training.

3.1.3.b RPROP training

A procedure, that has been named RPROP in (Riedmiller and Braun, 1993), is a

simple, heuristic �rst order procedure, that has been proposed in many variations by

di�erent researchers (see (Bishop, 1995)), and works reasonably well also for large scale

problems. The idea is to keep a step-size �w for each weight individually and make the

update dependent only on the sign of the wth component of the gradient @
@w
E
(i) as:

IF @
@wE

(i)
> 0 THEN w

(i+1)
w := w

(i)
w � �

(i)
w

ELSE IF @
@wE

(i)
< 0 THEN w

(i+1)
w := w

(i)
w + �

(i)
w

The step-size itself is updated depending on the gradient component change as

IF @
@wE

(i) � @
@wE

(i�1)
> 0 THEN �

(i+1)
w = �

(i)
w � �+

ELSE �
(i+1)
w = �

(i)
w � ��

with good values being �+ = 1:2 and �
�

= 0:5 for many problems. It is useful to

limit �w to not exceed a certain range, which is not very critical and often set to

0:000001 < �w < 50. A good initial start value for �w is often �w = J=10, with J being

the number of input weights to a certain neuron. An online version of RPROP using

gradient smoothing like shown above was used for most experiments described in this

thesis.

3.1.3.c ARPROP training

A simple adaptive re�nement of the RPROP procedure, that was found to be very

robust against variations of the data block sizes used for an update of the weights and

therefore well suited for online training, was used for some experiments of this thesis.

The problem of RPROP for online training, which is necessary to train large networks

with lots of data, is that in general the step sizes approach zero too quickly. This can be

avoided by heuristically increasing the step-sizes after a certain number of iterations, or

by an automatic procedure, here called Automatic RPROP or ARPROP. An e�cient

method was found to be the following:
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� An average step-size �average is calculated after each update of the weights as

�average =
1

W

WX
w=1

�w:

� If the average step-size of the current update �
(i)
average is below the average step-

size from the previous update �
(i�1)
average, the parameter �+ controlling the step-size

increase, is decreased by a small value C , otherwise it is increased, that is

IF �

(i)
average > �

(i�1)
average AND �

(i)
+ > 1:0 THEN �

(i+1)
+ = �

(i)
+ � C

ELSE �

(i+1)
+ = �

(i)
+ + C;

with C = 0:01, �
(0)
+ = [1:1; 1:2] and �� = [0:5; 0:9] being useful values for all experiments

conducted for this thesis. In this way the average step-size decreases very slowly and a

complete training until convergence could be run without any human-induced restarts.

3.1.4 Neural network architectures

For supervised learning (from sequences) several di�erent neural network architectures

are in use. The most common are Multi-Layer-Perceptrons (MLPs), Time Delay Neural

Networks (TDNNs) and Recurrent Neural Networks (RNNs) and are brie
y discussed

below. Other common architectures like Radial Basis Functions (RBFs) and Hierarchi-

cal Mixtures of Experts (HMEs) (Jordan and Jacobs, 1994) have interesting properties

but haven't been used for this thesis and their explanation is therefore omitted here.

The type of neural networks discussed here have as elements neurons connected

by directed connection weights representing scalar parameters w, which are combined

in a structure to provide an D- (input) to K-dimensional (output) mapping. Each

neuron has one output o and many (for example J) inputs connected to outputs of

other neurons or the input vector itself (Figure 3.1). The output o of each neuron is a

function of its activation a, so o = fact(a), with the activation calculated as a sum of

all inputs to the neuron multiplied by its corresponding weight, a =
P

J ojwj. Usually

there is also a bias weight which acts as an additional input constantly set to one and

in general treated like one of the J inputs.

The neurons are often organized in layers as groups of neurons, with consecutive

layers being usually fully connected, meaning that each neuron of a layer is connected

to all neurons of the next layer. When neurons' outputs are used as one of the K neural

network outputs, they belong to the output layer, otherwise they belong to one of the

hidden layers. As activation functions for hidden layer neurons commonly the sigmoid

function fact(a) = 1=(1 + e
�a) or its equivalent by a linear transformation, the tanh-

function fact(a) = (ea�e�a)=(ea+e�a) is used (note that 2fsigmoid
act (2a)�1 = f

tanh
act (a)),

with the latter one leading often to slightly faster convergence using commonly used

training procedures. The choice of the sigmoid activation function is motivated by
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Figure 3.1: Elements of general feed-forward neural networks
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Elements of feed-forward neural networks as used in this thesis are neurons and connection

weights in a structure.

its distinct property of being the discriminant function for a two-class classi�cation

problem that makes the output the posterior probability of class membership, if the

input distributions are Gaussian with equal covariance matrices (Bishop, 1995). The

choice of activation functions for the output layer depends on the problem to be solved.

If it is a uni-modal regression problem, the output of the network represents the mean

of a Gaussian distribution, which shouldn't be bounded. Therefore usually the linear

activation function fact(a) = a is used. If it is a classi�cation problem, the softmax

(Bridle, 1989) function fact(a) = e
a
=

P
K e

ak is used, which can be interpreted as the

generalized sigmoid for the K-class classi�cation problem (Bishop, 1995). For multi-

modal regression problems the outputs of the network represent various parameters

of a distribution, i.e. means, covariances and mixture weights. Their range requires

di�erent types of activation functions, e.g. the linear function to model the unbounded

means, the partially bounded exponential activation function fact(a) = e
a to model the

variances (actually standard variations) and the softmax activation function to model

the mixture weights to account for the fact that the sum of the mixture weights has

to sum up to one (Bishop, 1995). Multi-modal regression is discussed in more detail in

section 3.3.1. The combinations of objective function and output activation functions

depending on the problem to be solved are summarized in Table 3.1.

3.1.4.a Multi-Layer-Perceptrons

Multi-Layer-Perceptrons (MLPs) are the most common type of architecture, in many

practical applications only with two layers of weights, one hidden and the output layer
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Table 3.1: Common setups for neural networks.

Problem Objective Function Output Activation Function

uni-modal regression squared error linear

multi-modal regression log-likelihood linear, exponential, softmax

classi�cation cross-entropy softmax

Typical combinations of objective functions and output activation functions depending on the
problem to solve.

like shown in the left part of Figure 3.1. More layers are possible but not necessary,

since there are proofs that any mapping can be approximated with arbitrary accuracy

with only two layers ((Bishop, 1995) and references therein), although using more layers

can be a more e�cient realization of a certain mapping. In practice, although, more

than two layers are rarely used because of little expected performance gain and practical

problems during training.

For sequence processing with neighboring vector pairs being correlated, it is com-

mon to use besides the current input vector xt also information from its 2L neighboring

vectors xt�L;xt�L+1; : : : ;xt�1 and xt+1;xt+2; : : : ;xt+L from a window as input to the

MLP to improve prediction. The optimal width of the window to reach a good per-

formance on unseen test data drawn from the same distribution depends obviously

heavily on the type of data and the prede�ned structure. If the window is too small,

not enough information will be present to provide an optimal prediction. If the win-

dow is very large, the performance on the training data will be almost perfect, but the

performance on test data will be poor. Hence, an optimal window size has to be found

by trial and error on development data.

3.1.4.b Time-Delay Neural Networks

Time-Delay-Neural-Networks (TDNNs) (Waibel, 1989) have the same structure as a

regular MLP, but a reduced number of total weight parameters, and have proven to be

a useful improvement over regular MLPs in many applications. This is achieved by a

user-de�ned hard-tying of parameters, meaning forcing certain parameters to have the

same values. Which parameters are useful to tie depends heavily on the used data and

can only be found by experiments.

3.1.4.c Recurrent Neural Networks

For many applications the data D is not a collection of vector pairs in arbitrary order,

but the data comes in sequences of vector pairs, with the order being not arbitrary.

Speech recognition is a typical example for this case { every preprocessed waveform is

an array of vectors xT1 , that is to be mapped to an array of target classes sT1 in the

form of K-dimensional vectors tT1 .
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One type of Recurrent Neural Networks (RNNs) provides an elegant way of dealing

with (time) sequential data that embodies correlations between data points that are

close in the sequence. Figure 3.2 shows a basic RNN architecture with a delay line and

unfolded in time for two time steps. In this structure, the input vectors xt are fed one

at a time into the RNN. Instead of using a �xed number of input vectors as done in the

MLP and TDNN structures, this architecture can make use of all the available input

information up to the current time frame tc (i.e., fxt; t = 1; 2; : : : ; tcg) to predict ytc .

How much of this information is captured by a particular RNN depends on its structure

and the training algorithm. An illustration of the amount of input information used

for prediction with di�erent kinds of NNs is given in Figure 3.3.

Figure 3.2: Recurrent neural network
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t−1

INPUTS

GROUP OF WEIGHTS WITH
INFORMATION FLOW

OUTPUT NEURON GROUP

HIDDEN (STATE) NEURON
GROUP
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(b)

General structure of a regular unidirectional RNN shown (a) with a delay line, and (b) unfolded
in time for two time steps.

Future input information coming up later than tc is usually also useful for prediction.

With an RNN, this can be partially achieved by delaying the output by a certain

number of S time frames to include future information up to xtc+S to predict ytc
(Figure 3.3). Theoretically S could be made very large to capture all the available

future information, but in practice it is found that prediction results drop if S is too

large. A rough explanation for this could be that with rising S the modeling power of

the RNN is more and more concentrated on remembering the input information up to

xtc+S for the prediction of ytc , leaving less modeling power for combining the prediction

knowledge from di�erent input vectors.

While delaying the output by some frames has been used successfully to improve

results in a practical speech recognition system (Robinson, 1994) (this was also con-

�rmed by the experiments described in this thesis) the optimal delay is task dependent

and has to be found by the \trial and error" error method on a validation test set.

Certainly, a more elegant approach would be desirable. One possibility to get around

this user-de�ned delay is to use bidirectional recurrent neural networks (BRNNs), which

are discussed in the next chapter and in (Schuster and Paliwal, 1997).
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Figure 3.3: How much input information is used?
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Visualization of the amount of input information used for prediction by di�erent network struc-
tures.

To use all available input information, it is possible to use two separate networks {

one for each time direction, and then somehow merge the results. Both networks can

then be called experts for the speci�c problem the networks are trained on. One way

of merging the opinions of di�erent experts is to assume that the opinions are statis-

tically independent and distributed itself by some hyper-distribution. Making certain

simplifying assumptions about these distributions leads to the often used arithmetic

averaging for uni-modal regression and to geometric averaging (what corresponds to an

arithmetic averaging in the log-domain) for classi�cation. These merging procedures

are referred to as linear opinion pooling and logarithmic opinion pooling, respectively

(Berger, 1985; Jacobs, 1995). Although simple merging of network outputs has been

applied successfully in practice (Robinson et al., 1994), it is generally not clear how to

merge network outputs in an optimal way, since di�erent networks trained on the same

data cannot be regarded as independent anymore.

Because of their recurrent connections, training of RNNs is slightly more compli-

cated than for feed-forward neural networks like MLPs. An often used training pro-

cedure is back-propagation through time (BPTT). For BPTT �rst the RNN structure

is unfolded up to the length of the training sequence as shown for two time steps in

Figure 3.2, which transforms the RNN in a large feed-forward neural network. Now

regular back-propagation can be applied, only at the beginning and the end of the

training data sequence some special treatment is necessary. The state inputs at t = 1

are not known and can be set to an arbitrary, but �xed, value in practice. Also, the

local state derivatives at t = T are not known and can be set to zero, assuming that

input information beyond that point is not important for the current update, which is

for the boundaries certainly the case.



3.2. BIDIRECTIONAL RECURRENT NEURAL NETWORKS 37

3.2 BIDIRECTIONAL RECURRENT NEURAL NET-

WORKS

In this section a regular recurrent neural network is extended to a bidirectional recurrent

neural network (BRNN). Given a series of paired input/target vectors f(xt; tt); t =
1; 2; : : : ; Tg, the bidirectional recurrent neural networks is to be trained to perform the

following two tasks:

Prediction assuming independent outputs: Unimodal regression (i.e., compute

yt = t̂t = httjxT1 i) or classi�cation (i.e., compute ŷ
k
t = P (Ct = kjxT1 ) for each

output class k and decide the class using the maximum a posteriori decision rule).

In this case, the outputs are treated to be statistically independent. Experiments

for this part are conducted for arti�cial toy data as well as for real data.

Prediction assuming dependent outputs: Estimation of the conditional probabil-

ity of a complete sequence of classes of length T using all available input informa-

tion (i.e., compute P (s1; s2; :::; sT jxT1 )). In this case, the outputs are treated to

be statistically dependent, which makes the estimation more di�cult and requires

a slightly di�erent network structure than the one used in the �rst part. For this

part, results of experiments using real data are reported.

3.2.1 Prediction assuming independent outputs

To overcome the limitations of a regular RNN outlined in the previous section, here a

bidirectional recurrent neural network (BRNN) which can be trained using all available

input information in the past and future of a speci�c time frame, is proposed.

3.2.1.a BRNN architecture

The idea is to split the state neurons of a regular RNN in one part which is responsible

for the positive time direction (forward states) and a second part for the negative time

direction (backward states). Outputs from forward states are not connected to inputs

of backward states and vice versa. This leads to the general structure which can be seen

in Figure 3.4, where it is unfolded over three time steps. It is not possible to display

the BRNN structure in a �gure similar to Figure 3.2 with the delay line, since the

delay would have to be positive and negative in time. Note that without the backward

states this structure simpli�es to a regular unidirectional forward RNN, like shown

in Figure 3.2. If the forward states are taken out, it results in a regular RNN with

a reversed time axis. With both time directions taken care of in the same network,

input information in the past and the future of the currently evaluated time frame

can directly be used to minimize the objective function, without the need of delays to

include future information as for the regular unidirectional RNN discussed above.
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Figure 3.4: Bidirectional recurrent neural network
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General structure of the bidirectional recurrent neural network (BRNN) with hidden states in
forward and backward time direction, shown unfolded in time for three time steps.

3.2.1.b BRNN training

The BRNN can in principle be trained with the same algorithms as a regular unidirec-

tional RNN because there are no interactions between the two types of state neurons,

and therefore can be unfolded into a general feed-forward network. However, if for

example any form of back-propagation through time (BPTT) is used, the forward and

backward pass procedure is slightly more complicated, because the update of state and

output neurons can not be done one at a time anymore. If BPTT is used, the forward

and backward pass over the unfolded BRNN over time are done almost in the same

way as for a regular MLP - only at the beginning and the end of the training data some

special treatment is necessary. The forward state inputs at t = 1 and the backward

state inputs at t = T are not known. Setting these could be made part of the learning

process, but here they are set arbitrarily to a �xed value (0.5). Also, the local state

derivatives at t = T for the forward states and at t = 1 for the backward states are not

known, and are set here to zero. The training procedure for the unfolded bidirectional

network over time can be summarized as follows:

1. FORWARD PASS

Feed all input data for one time slice 1 � t � T into the BRNN and determine

all predicted outputs.

(a) Do forward pass just for forward states (from t = 1 to t = T ) and backward

states (from t = T to t = 1).

(b) Do forward pass for output neurons.

2. BACKWARD PASS

Calculate the part of the objective function derivative for the time slice 1 � t � T

used in the forward pass.
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(a) Do backward pass for output neurons.

(b) Do backward pass just for forward states (from t = T to t = 1) and backward

states (from t = 1 to t = T ).

3. UPDATE WEIGHTS

One obvious disadvantage of the bidirectional structure is the fact, that for its

usage theoretically the complete input sequence must be known, which prohibits any

online processing for time-sequential data. This disadvantage can be partially removed

by cutting the sequences in shorter chunks, which are used for training and testing.

If these chunks are long enough to include all context e�ects that can be used by

the BRNN, then this representation with many short sequences is equivalent to the

original one with one long sequence. In this case only a time-lag equal to the length of

the chunks would occur, if an online procedure is used.

3.2.1.c Extensions for the BRNN architecture

For BRNNs there are several extensions possible to improve convergence speed, to take

advantage of symmetry in the data or to remove some minor disadvantages of the

bidirectional structure, which are brie
y discussed below.

Short cuts: It is possible to add an additional layer of weights from the inputs directly

to the output layer, which can be thought of a one-layer non-recurrent NN working in

parallel to the bidirectional structure. In informal experiments training with such short

cuts converged much faster than without for many problems.

Additional output layer: There are proofs (Bishop, 1995) that an MLP with one

su�ciently large hidden layer can approximate any mapping to arbitrary accuracy pro-

vided the NN has enough degrees of freedom. A similar argument applied to recurrent

neural networks would imply that any mapping of input sequences to targets could be

approximated with arbitrary accuracy. This argument cannot be applied to the struc-

ture shown in Figure 3.4 for the following reason. The hidden neurons (forward and

backward states) cannot represent arbitrary properties of the input data, because the

forward neurons cannot make use of the data after t while backward neurons cannot

make use of the data before t. The features of the data that depend on information

before and after t are not fed through another layer of a su�ciently large number of

neurons, which would be required to approximate any input sequence to target map-

ping. In principle an additional layer between the forward/backward state neurons and

the output layer can resolve that problem. In practice, however, an additional output

layer causes additional di�culty in converging during training of the network and its

usefulness depends a lot on the data that is used for training. Informal experiments

showed that for the data as used for this thesis no performance gain could be achieved

by adding this layer.
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Weight sharing for symmetrical data: Assume that the given sequential input

data is known to be symmetrical around every t in the absence of input noise. In

practice, though, input noise is present that causes distortions in the symmetry.

One way to include the prior knowledge that the input data is symmetrical is to hard-

tie the weights that connect the inputs to the forward and backward states, meaning

to force them to have the same values. Another way is to use a regular uni-directional

RNN and train it with every training sequence twice, once in positive time direction

and once in negative time direction.

Long term delays: In (Bengio et al., 1994) it is shown that long-term delays are

di�cult to learn for NNs trained with gradient descent procedures. One way of favor-

ing the learning of long-term dependencies is to change the structure of the network

by allowing not only connections between neighboring forward (or backward) neurons

in time, but to connect hidden neurons that are further apart. In informal experi-

ments with small networks this improved convergence speed and results in some cases,

depending on the used data.

3.2.2 Experiments and results

In this section a number of experiments with the goal to compare the performance of

the BRNN structure with that of other structures, is described. In order to provide

a fair comparison, di�erent structures with a comparable number of parameters as a

rough complexity measure were used. Experiments were run for arti�cial data for both

uni-modal regression and classi�cation tasks with small networks to allow extensive

experiments, and for real data for a phoneme classi�cation task with larger networks.

3.2.2.a Experiments with arti�cial data

Description of data: In these experiments, an arti�cial data set was used to conduct

a set of uni-modal regression and classi�cation experiments. The arti�cial data was

generated as follows. First a stream of 10000 random numbers between zero and one

was created as the one dimensional input data to the NN. The one-dimensional target

data (the desired output) was obtained as the weighted sum of the inputs within a

window of 10 frames to the left and 20 frames to the right with respect to the current

frame. The weighting falls of linearly on both sides as follows:

y(t) =
1

10

�1X
�t=�10

x(t+�t) � (1� j�tj
10

) +
1

20

19X
�t=0

x(t+�t) � (1� j�tj
20

): (3.20)

The weighting procedure introduces correlations between neighboring input/target

data pairs which become less for data pairs further apart. Note that the correlations

are not symmetrical, being on the right side of each frame twice as \broad" as on the

left side. For the classi�cation experiments, the output data was mapped to two classes,
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with class 0 for all output values below (or equal to) 0.5 and class 1 for all output values

above 0.5, giving approximately 59% of the data to class 0 and 41% to class 1.

Experiments: Separate experiments were conducted for uni-modal regression and

classi�cation tasks. For each task, four di�erent architectures were tested (Table 3.2).

Type \MERGE" refers to the merged results of type RNN-FOR and RNN-BACK,

being regular unidirectional recurrent neural networks trained in forward and backward

time direction, respectively. The �rst three architecture types were also evaluated over

di�erent shifts of the output data in positive time direction, allowing the RNN to use

future information as discussed above.

Table 3.2: Types of experiment for prediction assuming independent outputs.

Structure Neurons Shift Range

(forward/backward)

RNN-FOR 2/0 -5 to +20

RNN-BACK 0/2 +5 to -20

MERGE 2/2 -2/+2 to +10/-10

BRNN 2/2 none

Architectures evaluated for uni-modal regression and classi�cation. The shift range is the
number of frames that the target data has been moved arti�cially in positive time direction
seen from the time axis of the network to include future context e�ects.

Every test (NN training/evaluation) was run 100 times with di�erent initializations

of the NN to get at least partially rid of random 
uctuations of the results due to

convergence to local minima of the objective function. All networks are trained with 200

cycles of a modi�ed version of the resilient propagation (RPROP) technique, extended

to a RPROP through time variant. All weights in the structure were initialized in the

range of [�1; 1] drawn from the uniform distribution, except the output biases, which

were set so the corresponding output gives the prior average of the output data in case

of zero input activation.

For the uni-modal regression experiments, the networks contain the tanh() activa-

tion function for the hidden layers and linear activation function for the output layer,

and were trained to minimize the squared-error objective function. For type \MERGE",

the arithmetic mean of the network outputs of \RNN-FOR" and \RNN-BACK" was

taken (linear opinion pool).

For the classi�cation experiments, the output layer uses the \softmax" output func-

tion, so that outputs add up to one and can be interpreted as probabilities. As com-

monly used for NNs to be trained as classi�ers, the cross-entropy objective function is

used as the optimization criterion. Because the outputs are probabilities assumed to be

generated by independent events, for type \MERGE" the normalized geometric mean

(logarithmic opinion pool) of the network outputs of \RNN-FOR" and \RNN-BACK"
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is taken.

Results: The results for the regression and the classi�cation experiments averaged

over 100 training/evaluation runs can be seen in Figure 3.5 and Figure 3.6, respectively.

For the regression task, the mean squared error depending on the shift of the target

data in positive time direction seen from the time axis of the network is shown. For

the classi�cation task, the recognition rate instead of the mean value of the objective

function (which would be the mean cross-entropy) is shown, because it is a more familiar

measure to characterize results of classi�cation experiments.

Figure 3.5: Results for arti�cial regression problem
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Averaged results (100 runs) for the regression experiment on arti�cial data over di�erent shifts
of the output data with respect to the input data in future direction (viewed from the time axis
of the corresponding network) for several structures.

Several interesting properties of RNNs in general can be directly seen from these

�gures. The minimum (maximum) for the regression (classi�cation) task should be

at 20 frames delay for the forward RNN and at 10 frames delay for the backward

RNN because at those points all information for a perfect regression (classi�cation)

has been fed into the network. Neither is the case because the modeling power of the
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Figure 3.6: Results for arti�cial classi�cation problem
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Averaged results (100 runs) for the classi�cation experiment on arti�cial data over di�erent
shifts of the output data with respect to the input data in future direction (viewed from the
time axis of the corresponding network) for several structures.

networks given by the structure and the number of free parameters is not su�cient for

the optimal solution. Instead, the single time direction networks try to make a trade-

o� between \remembering" the past input information which is useful for regression

(classi�cation), and \knowledge combining" of currently available input information.

This results in an optimal delay of one (one) frame for the forward RNN and �ve (six)

frames for the backward RNN. The optimum delay is larger for the backward RNN

because the arti�cially created correlations in the training data are not symmetrical,

with the important information for regression (classi�cation) being twice as dense on

the left side as on the right side of each frame. In the case of the backward RNN, the

time series is evaluated from right to left with the denser information coming up later.

Because the denser information can be evaluated easier (less parameters are necessary

for a contribution to the objective function minimization), the optimal delay is larger

for the backward RNN. If the delay is so large that almost no important information can

be saved over time, the network converges to the best possible solution based only on
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prior information. This can nicely be seen for the classi�cation task with the backward

RNN which converges to 59 % (prior of class 0) for more than 15 frames delay.

Another sign for the trade-o� between \remembering" and \knowledge combining"

is the variation in the standard deviation of the results which is only shown for the

backward RNN in the classi�cation task. In areas where both mechanisms could be

useful (3 to 17 frames shift), di�erent local minima of the objective function corre-

spond to a certain amount to either one of these mechanisms which results in larger


uctuations of the results than in areas where \remembering" is not very useful (-5 to

3 frames shift) or not possible (17 to 20 frames shift).

If the outputs of forward and backward RNNs are merged, so that all available

past and future information for regression (classi�cation) is present, the results for the

delays tested here (-2 to 10) are in almost all cases better than with only one network.

This is no surprise because besides the use of more useful input information the number

of free parameters for the model doubled.

For the BRNN, it does not make sense to delay the output data because the structure

is already designed to cope with all available input information on both sides of the

currently evaluated time point. Therefore, the experiments for the BRNN are only run

for SHIFT = 0. For the regression and classi�cation tasks tested here, the BRNN clearly

performs better than the network \MERGE" built out of the single time-direction

networks \RNN-FOR" and \RNN-BACK", with a comparable number of total free

parameters.

3.2.2.b Experiments with real data I

The goal of the experiments with real data is to compare di�erent NN structures for

the classi�cation of phonemes from the TIMIT speech database. Several regular MLPs

and recurrent neural network architectures, which make use of di�erent amounts of

acoustic context, are tested here.

Description of data: The TIMIT phoneme database is a well established database

consisting of 6300 sentences spoken by 630 speakers (10 sentences per speaker). Follow-

ing o�cial TIMIT recommendations, two of the sentences (which are the same for every

speaker) are not included in our experiments, and the remaining data set is divided

into two sets, the

1) training data set consisting of 3696 sentences from 462 speakers, and the

2) test data set consisting of 1344 sentences from 168 speakers.

The TIMIT database provides hand-segmentation of each sentence in terms of phonemes

and a phonemic label for every segment out of a pool of 61 phonemes. This results in

142910 phoneme segments for training and 51681 for testing.

In our experiments, every sentence was transformed into a vector sequence using

three levels of feature extraction. First, features were extracted every frame to represent
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the raw waveform in a compressed form. Then, with the knowledge of the boundary

locations from the corresponding label �les, segment features were extracted to map

the information from an arbitrary length segment to a �xed dimensional vector. A

third transformation was applied to the segment feature vectors to make them suitable

as inputs to a neural net. These three steps are brie
y described below.

1. Frame Feature Extraction: As frame features, 12 regular MFCCs (from 24

mel-space frequency bands) plus the log-energy are extracted every 10 ms with a

25.6 ms Hamming window and a preemphasis of 0.97. This is a commonly used

feature extraction procedure for speech signals at the frame level (Young, 1996).

2. Segment Feature Extraction: From the frame features, the segment features

are extracted by dividing the segment in time into �ve equally spaced regions

and computing the area under the curve in each region, with the function values

between the data points linearly interpolated. This is done separately for each

of the 13 frame features. The duration of the segment is used as an additional

segment feature. This results in a 66-dimensional segment feature vector.

3. Neural Network Preprocessing: Although NNs can principally handle any

form of input distributions, it was found in the experiments conducted here that

the best results are achieved with Gaussian input distributions which matches

the experiences from (Robinson, 1994). To generate an \almost-Gaussian distri-

bution", the inputs were �rst normalized to zero mean and unit variance on a

sentence basis, and then every feature of a given channel1 was quantized using a

scalar quantizer having 256 reconstruction levels (1 byte). The scalar quantizer

is designed to maximize the entropy of the channel for the whole training data.

The maximum entropy scalar quantizer can be easily designed for each channel

by arranging the channel points in ascending order according to their feature

values and putting (almost) an equal number of channel points in each quanti-

zation cell. For presentation to the network, the byte-coded value is remapped

with value = erf�1(2 � (byte + 1=2)=256 � 1), where (erf�1 is the inverse error

function, erf() is part of math.h library in C). This mapping produces on average

a distribution that is similar to a Gaussian distribution.

The feature extraction procedure described above transforms every sentence into

a sequence of �xed dimensional vectors representing acoustic phoneme segments. The

sequence of these segment vectors (along with their phoneme class labels) were used to

train and test di�erent NN structures for classi�cation experiments as described below.

Experiments: Experiments were performed here with di�erent NN structures (e.g.,

MLP, RNN and BRNN), which allow the use of di�erent amounts of acoustic context.

The MLP structure is evaluated for three di�erent amounts of acoustic context as input:

1Here each vector has a dimensionality of 66. Temporal sequence of each component (or, feature)

of this vector de�nes one channel. Thus, there are 66 channels.
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(1) one segment,

(2) three segments (middle, left and right), and

(3) �ve segments (middle, two left and two right).

The evaluated RNN structures are unidirectional forward and backward RNNs which

use all acoustic context on one side, two forward RNNs with one and two segment

delays to incorporate right hand information, the merged network built out of the

unidirectional forward and backward RNNs, and the BRNN. The structures of all

networks were adjusted so each of them has about the same number of free parameters

(approximately 13000 here). The networks were trained with RPROP.

Results: Table 3.3 shows the phoneme classi�cation results for the full training and

test set. Although the database is labeled to 61 symbols, a number of researchers have

chosen to map them to a subset of 39 symbols. Here results are given for both versions,

with the results for 39 symbols being simply a mapping from the results obtained for

61 symbols. Details of this standard mapping can be found in (Robinson, 1991).

Table 3.3: Results for prediction assuming independent outputs.

Structure Classi�cation Rate % Classi�cation Rate %

TRAIN 61 (39) TEST 61 (39)

MLP-1 (1 segment) 61.32 (70.20) 59.67 (68.95)

MLP-3 (3 segments) 68.37 (75.74) 65.69 (73.48)

MLP-5 (5 segments) 66.97 (74.60) 64.32 (72.35)

FOR-RNN 65.42 (74.27) 63.20 (72.51)

BACK-RNN 64.57 (72.83) 61.91 (70.94)

FOR-RNN (1 delay) 68.45 (75.37) 65.83 (73.00)

FOR-RNN (2 delay) 65.97 (73.03) 63.27 (70.77)

MERGE (FOR+BACK) 66.94 (75.01) 65.28 (73.73)

BRNN 70.73 (77.33) 68.53 (75.48)

TIMIT phoneme classi�cation results for full training and test data sets with � 13000 param-
eters. The BRNN performs best among all evaluated architectures.

The baseline performance assuming neighboring segments to be independent gives a

recognition rate of 59.67% (MLP-1) on the test data. If three consecutive segments are

taken as the inputs (MLP-3), loosening the independence assumption to three segments,

the recognition rate goes up to 65.69%. Using �ve segments (MLP-5), the structure

is not 
exible enough to make use of the additional input information, and as a result

the recognition rate drops to 64.32%. The forward and backward RNNs (FOR-RNN,

BACK-RNN), making use of input information only on one side of the current segment,
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give lower recognition rates (63.2% and 61.91%) than the forward RNN with one seg-

ment delay (65.83%). With a two segment delay, too much information has to be saved

over time and the result drops to 63.27% (FOR-RNN, 2 delay), although theoretically

more input information than for the previous network is present. The merging of the

outputs of two separate networks (MERGE) trained in each time direction results in

a recognition rate of 65.28%, and is worse than the forward RNN structure using one

segment delay. The bidirectional recurrent neural network (BRNN) structure results

in the best performance (68.53%).

3.2.2.c Experiments with real data II

In a second set of experiments on the TIMIT database not classi�cation of phoneme

segments, but recognition of phoneme sequences (utterances) was evaluated. This comes

closer to actual speech recognition, because part of the problem becomes now not only

the assignment of acoustic segments to phonemes, but also the segmentation of the

feature vector sequence into acoustic segments.

Description of data: Each sentence of the TIMIT phoneme database, as described

in section 3.2.2.b, was �rst transformed into a feature vector sequence representing the

waveform in a compressed form in a similar way as shown in the last section.

1. Frame Feature Extraction: As frame features, 14 regular MFCCs (from 24

mel-space frequency bands) plus the log-energy are extracted every 16 ms with

a 25.6 ms Hamming window and a preemphasis of 0.97. First order derivatives

of the underlying smooth progression of feature vectors were appended to the

original sequence to decorrelate neighboring vectors in the sequence, although if

used as inputs to BRNNs this might not really be necessary since the network itself

can approximate the generation of delta-features. This leads to 30-dimensional

feature vectors, altogether to 702438 from the training data and 256617 from the

test data.

2. Neural Network Preprocessing: In the same way as described in 3.2.2.b, the

resulting vector streams were transformed to \almost-Gaussian distributions" for

each vector component, which also had the e�ect of adjusting the range of the

data, such that it is suitable for input to a neural network with initial weights

drawn from a uniform distribution in the range ]� 1; 1[.

Experiments: The goal of the experiments was to �nd the best output frame se-

quence by using the concept of (2.7), which requires to get estimates for three prob-

ability expressions. The posterior probability of a context-independent phone class ci
(out of 61 possible) given the acoustic features, i.e. P (cijx), was approximated by sev-

eral BRNNs with a di�erent number of hidden forward and backward neurons. The

prior class probability P (ci) was estimated by the relative frequency of the frames of
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that class in the training data. The transition probabilities P (cjjci) were also estimated
by relative frequencies as P (cjjci) = N(i; j)=N(i) like explained in 2.4.1. To account

for unseen transitions (N(i; j) = 0), which would result in a transition probability of

zero, N(i; j) was set to 0:5 in those cases to 
oor the transition probabilities. To �nd

the single best sequence using (2.7) a simple Viterbi search (section 2.4.2.b) was imple-

mented. Note that the models used here learn to use an arbitrary amount of acoustic

context because of their bidirectional structure, but they are still context-independent

models in the sense of section 2.2.2, because no use of the context on the output side

is made.

Training of the BRNNs was the most di�cult part of the experiments because of the

relatively large number of training vectors (large compared to other tasks where neural

networks are used) and the large number of parameters in the networks. In the �rst

stages of the experiments high-end workstations were not available. Therefore the �rst

version of the training was done on a multi-processor machine (Kendall Square Research

I with 96 processors). The training data was divided into blocks of approximately

30 sentences each. A weight update was done after the gradient for each block was

calculated, smoothed like shown in section 3.1.3.a. The basic algorithm was RPROP,

extended to a RPROP through-time variant. The problem of this training procedure

was that up to a 128 passes through the complete training data were necessary to

achieve su�cient convergence.

Once faster workstations became available, training was moved to single proces-

sor machines (like the DEC ALPHA 500 MHz) using the better automatic RPROP

procedure shown in section 3.1.3.c. One pass through the training data then took

approximately 20 min (35000 vectors/min), and because of the better ARPROP al-

gorithm with smaller block sizes less passes were necessary (< 32) to reach su�cient

convergence. In addition, training was sped up by parallelizing it to run on workstation

clusters using the publically available P4 library.

Results: For these experiments two measures of performance are of interest:

� the frame classi�cation rate is what is optimized by training the NN using the

cross-entropy measure like discussed in section 3.1.2.c, and

� the phoneme recognition rate, which is found by application of (2.7) using a Viterbi

search. The phoneme recognition rate has to be calculated by aligning the output

phoneme sequence to the correct phoneme sequence with a dynamic programming

technique (Rabiner and Juang, 1993). The recognition rate is de�ned as

r =
N � I �D � S

N

(3.21)

with N being the number of symbols in the correct sequence, I being the wrongly

inserted, D the deleted and S the number of substituted symbols in the recognized

sequence.
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Results from experiments with the complete TIMIT database showing both perfor-

mance measures for various sizes of BRNNs are summarized in Table 3.4.

Table 3.4: Results for phoneme recognition on the TIMIT database using BRNNs as

observation probability estimators.

Structure Rec.-Rate (frame-rate) % Rec.-Rate (frame-rate) %

forward/backward states TRAIN TEST

32/32 70.6 (68.31) 64.4 (62.74)

64/64 71.5 (70.21) 66.2 (63.94)

128/128 73.6 (72.12) 68.0 (65.11)

176/0 (+4 delay) 75.4 (70.57) 69.3 (65.31)

Phoneme recognition (and frame classi�cation) results for the full TIMIT training and test data
with 61 symbols. The last column states the results from (Robinson, 1994), which only contains
phoneme recognition results for the test data. The missing numbers were obtained from the
software that was used to reproduce these results, which is publically available on the FTP
server mentioned in (Robinson, 1994).

Recognition results using a BRNN for a di�erent number of hidden forward/backward

states are compared to the results published in (Robinson, 1994), where a regular uni-

directional RNN with a shift of four frames was used to include right-hand context.

The BRNN was trained without any delay of the data, because the bidirectional struc-

ture can already make use of all available input without any delay. The �rst notable

and unexpected result is that none of the systems with the BRNNs achieved a better

phoneme recognition rate than the system with the regular RNN described in (Robin-

son, 1994), although the frame recognition rate for the training data is almost 1.5%

higher in the best case. This is partially due to an over-training e�ect since the di�er-

ence for the frame classi�cation results for the BRNN systems are larger than for the

uni-directional RNN system. But even on the training data for the best BRNN the

phoneme recognition results are almost two absolute percent worse. The reason for this

might be, that either the BRNN parameters are stuck in a worse local minimum than

the RNN, or that the modeling assumptions used to derive (2.7) have a more severe

e�ect when it comes to evaluate the overall phoneme recognition rate.

These results show that choosing an appropriate NN architecture for the problem

is essential for obtaining good results. In the experiments here neither the complexity

of the network nor the number of training passes were particularly optimized for the

speci�c problem of maximizing the phoneme recognition rate on the test data.

3.2.3 Prediction assuming dependent outputs

In the preceding section, an e�cient architecture for the estimation of the condi-

tional posterior probability P (Ct = kjxT1 ) of a single class k at a certain time point

t given the sequence of input vectors xT1 was presented. For some applications, it is
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necessary to estimate instead of P (Ct = kjxT1 ) the conditional posterior probability

P (s1; s2; : : : ; sT jxT1 ) of a sequence of all classes from t = 1 to t = T given the sequence

of input vectors. This is a di�cult problem and no general practical solution is known,

although this type of estimation is essential for many pattern recognition applications

where sequences are involved.

3.2.3.a Approach

Bidirectional recurrent neural networks can provide an approach to estimate terms of

the form P (s1; s2; : : : ; sT jxT1 ). Using the rule P (A;B) = P (AjB)P (B), the sequence
posterior probability can be decomposed as follows (section 2.3):

P (s1; s2; : : : ; sT jxT1 ) =
TY
t=1

P (stjst+1; st+2; : : : ; sT ;x
T
1 )| {z }

backward posterior probability

(3.22)

=
TY
t=1

P (stjs1; s2; : : : ; st�1;xT1 )| {z }
forward posterior probability

(3.23)

The probability term within the product is the conditional probability of an out-

put class given all the input to the right and left hand side plus the class sequence

on one side of the currently evaluated input vector. The two ways of decomposing

P (s1; s2; : : : ; sT jxT1 ) are here referred to as the forward and the backward posterior

probabilities. Note that these decompositions are only a simple application of prob-

ability rules; i.e., no assumptions concerning the shape of the distributions are made

yet. Also note, that many other decompositions are possible. The two chosen here are

just the ones which are most convenient and most popular.

In the present approach, the goal is to train a network to estimate conditional prob-

abilities of the kind P (stjs1; s2; : : : ; st�1;xT1 ), which are of the form of the probability

terms in the products in (3.22) and (3.23).

The estimates for these probabilities can then be combined by using the formulae

above to estimate the full conditional probability of the sequence. It should be noted

that the forward and the backward posterior probabilities are exactly equal, provided

that the probability estimator is perfect. However, if neural networks are used as proba-

bility estimators, this will rarely be the case because di�erent architectures or di�erent

local minima of the objective function to be minimized correspond to estimators of

di�erent performance. It might therefore be useful to combine several estimators to

get a better estimate of the quantity of interest using the methods of the previous

section. Two candidates that could be merged here are P (stjs1; s2; : : : ; st�1;xT1 ) and
P (stjst+1; st+2; : : : ; sT ;x

T
1 ) at each time point t.
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3.2.3.b An architecture to estimate the posterior probability of a symbol

sequence

A slightly modi�ed BRNN structure can be used e�ciently to estimate the conditional

probabilities of the kind P (stjs1; s2; : : : ; st�1;xT1 ), which is conditioned on continuous

(xT1 ) and discrete sequential inputs (s1; s2; : : : ; st�1). Figure 3.7 shows a visualization

of the problem.

Figure 3.7: Forward probability estimation in extended BRNN

1x 3x2x 4x 5x 6x
s 1 2s 3s

4s = ?

xT

. . . . . .

Visualization of the subproblem occuring during the estimation of the posterior probability
of vector sequences conditioned on another sequence, here for the forward probability part
P (s4js1; s2; s3;x

T

1
).

Assume that the input for a speci�c time tc is coded as one long vector containing

the target output class st and the original input vector xt, with for example the dis-

crete input st coded in the �rst L dimensions of the input vector. One way of making

the BRNN suitable to estimate P (stjs1; s2; : : : ; st�1;xT1 ), two changes of the original

architecture from Figure 3.4 are necessary. First, instead of connecting the forward

and backward state neurons to the current output neurons, they are connected to the

next and previous output neurons, respectively, and the inputs are directly connected

to the outputs. Second, if in the resulting structure the �rst L weight connections from

the inputs to the backward states and the inputs to the outputs are cut, then only

discrete input information from t < tc can be used to make predictions. This is exactly

what is required to estimate the forward posterior probability P (stjs1; s2; : : : ; st�1;xT1 ).
Figure 3.8 illustrates this change of the original BRNN architecture. Cutting the input

connections to the forward states instead of the backward states provided the architec-

ture for estimating the backward posterior probability. Theoretically all discrete and

continuous inputs s1; s2; : : : ; st�1;x
T
1 which are necessary to estimate the probability

are still accessible for a contribution to the prediction. During training the bidirectional

structure can adapt to the best possible use of the input information, as opposed to

structures which do not provide part of the input information because of the limited size

of the input windows (e.g., in MLP and TDNN) or one-sided windows (unidirectional

RNN).
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Figure 3.8: Extended bidirectional recurrent neural network

t−1
INPUTS

OUTPUTS

L = 6

(BACKWARD
STATES)

t

Modi�ed bidirectional recurrent neural network structure to estimate the posterior probability
of a hypothesized sequence conditioned on an input sequence, shown here with extensions for
the forward posterior probability estimation. Note that the extensions apply to both marked
layers.

3.2.4 Experiments and results

Experiments using the modi�ed BRNN structure to estimate the full conditional poste-

rior probability of symbol sequences were run on the TIMIT database, which was also

used for some experiments in the previous section of this chapter. The goal was here to

estimate the probability of a phone sequence conditioned on a waveform, that was pre-

processed to a feature vector sequence. Each vector of the input sequence represented

an arbitrary long part of the original waveform.

3.2.4.a Experiments

Experiments were performed using the full TIMIT data set. To include the output

(target) class information, the original 66-dimensional feature vectors, that were also

used in section 3.2.2.b, were extended to 72 dimensions. In the �rst six dimensions,

the corresponding output class is coded in a binary format (binary [0,1] ! network

input [-1,1]). Two di�erent structures of the modi�ed BRNN, one for the forward,

and the other one for the backward posterior probability, were trained separately as

classi�ers using the cross-entropy objective function. The output neurons had the

softmax activation function, and the remaining ones the tanh() activation function.

The forward (backward) modi�ed BRNN has 64 (32) forward and 32 (64) backward

states. Additionally, 64 hidden neurons were implemented before the output layer.

This resulted in a forward (backward) modi�ed BRNN structure with 26333 weights.

These two structures by themselves as well as their combination, merged as a linear

and a logarithmic opinion pool, were evaluated for phoneme classi�cation on the test
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data.

3.2.4.b Results

The results for the phoneme classi�cation task are shown in Table 3.5.

Table 3.5: Results for prediction assuming dependent outputs.

Structure Classi�cation Rate % Classi�cation Rate %

TRAIN 61 (39) TEST 61 (39)

forward modi�ed BRNN 79.11 (84.42) 72.70 (79.08)

backward modi�ed BRNN 79.38 (83.27) 72.74 (77.44)

both merged, linear 83.57 (87.17) 77.53 (82.11)

both merged, logarithmic 83.89 (87.45) 77.75 (82.38)

Classi�cation results for full TIMIT training and test data with 61 (39) symbols. Hypothesized
input sequences are all test sentences.

It can be seen that the combination of the forward and backward modi�ed BRNN

structures results in much better performance than the individual structures. This

shows that the two structures, though trained on the same training data set to com-

pute the same probability P (s1; s2; : : : ; sT jxT1 ), are providing di�erent estimates of this
probability, and as a result the combination of the two networks is giving better re-

sults. The slightly better results for the logarithmic opinion pool in contrast to the

linear opinion pool show that it is reasonable to assume the two estimates for the prob-

ability P (s1; s2; : : : ; sT jxT1 ) as independent, although the two structures are trained on

the same data set.

It should be noted that the modi�ed BRNN structure is only a tool to estimate the

conditional probability of a given class sequence, it does not provide a class sequence

with the highest probability, which is the ultimate goal. For this purpose, all possible

class sequences have to be searched to get the most probable class sequence. The search

itself involves many more challenging problems. A discussion and an example for a real

application of a search for symbol sequences is given in chapter 4. In the experiments

reported in this section, the class sequence provided by the TIMIT data base was used

as the hypothesized class sequence that is fed into the network. Therefore, the context

on the (right or left) output side is known and correct.
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3.3 MIXTURE DENSITY RECURRENTNEURALNET-

WORKS

One way of obtaining the optimal output vector sequence is to use the approach sug-

gested by (2.7), which involves to build models that estimate an output vector given

the input. This approach has been focussed on in section 3.2. A second approach,

which is addressed in this section, is to use (2.6) and (2.5) directly. This involves, in

contrast to the approach discussed up to now, building models of the input sequence

given a hypothesized output sequence, which is equivalent to estimating the conditional

sequence likelihood as

P (XjY) =
TY
t=1

P (xtjx1;x2; : : : ;xt�1;yT1 ): (3.24)

or

P (XjY) =
TY
t=1

P (xtjxt+1;xt+2; : : : ;xT ;y
T
1 ) (3.25)

in its symmetrical version. These models are often called generative models, because

they can be used to generate data with statistical properties that are similar to those

of the data used to train the model.

Assume we want to model a continuous vector sequence, conditioned on a sequence

of categorical variables (symbols) as shown in Figure 3.9. One approach, as discussed

in section 3.2.2.a, is to assume that the vector sequence can be modeled by a uni-modal

Gaussian distribution with a constant variance, making it a uni-modal regression prob-

lem. There are many practical examples where this assumption doesn't hold, requiring

a more complex output distribution to model multi-modal data as brie
y discussed in

section 3.1.2.b. One example is the attempt to model the sounds of phonemes based

on data from multiple speakers. A certain phoneme will sound completely di�erent

depending on its phonetic environment or on the speaker, and using a single Gaussian

with a constant variance would lead to a crude averaging of all examples.

One traditional approach is to build models for each symbol (or group of symbols)

separately as described in section 2.2.1 and 2.2.2. If conventional Gaussian mixtures

are used to model the observed input vectors, then the parameters of the distribution

(means, covariances, mixture weights) usually do not change with the temporal po-

sition of the vector to model within a given state segment of that symbol. This has

many practical advantages regarding the parameter estimation process, but is probably

suboptimal since the models' parameters are constant within the state and change in

discrete steps at state boundaries as shown in Figure 3.10.

When used to model speech, a procedure often used to cope with this problem is to

increase the number of symbols by grouping often appearing symbol sub-strings into

a new symbol as described in section 2.2.2 and by subdividing each original symbol

into a number of states as discussed in section 2.4.1. Another approach is to model the

parameters of the distribution by time-varying functions, usually polynomials, as done
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Figure 3.9: An arti�cial multi-modal regression problem

KKKEEEEEEEEEEIIIIIIIIIIIKKKOOOOOOOOOO

TIME

Abstract visualization of the problem to model human speech. A large number of example
sequences of observation vectors (shown connected as continuous trajectories) depending on a
given sequence of class labels, with each class representing for example a phoneme (here the
name Keiko with given durations). In this synthetic example, the one-dimensional target data
would be represented poorly by a uni-modal Gaussian distribution with a constant variance
(which corresponds to using the squared-error objective function), which would average the
two separate branches, indicated by the fat lines as the mean and constant variance of the
single Gaussian. Compare this �gure with Figure 3.10, Figure 3.11 and Figure 3.12 to see a
subsequent improvement of the model.

for the Gaussian means in (Gish and Ng, 1996). These polynomial segment models can

be extended to other distribution parameters at the cost of a more complex formalism

(Fukada et al., 1998). A summary of various kinds of segment models can be found in

(Ostendorf, 1996). An example of this approach is visualized in Figure 3.11.

Yet another alternative is explored in this section, where all parameters of the distri-

bution modeling the continuous multi-modal targets are predicted by one bidirectional

recurrent neural network, extended to model mixture densities conditioned on a vector

sequence. The basic underlying problem has been discussed in section 3.1.2.b. Basics of

non-recurrent mixture density networks, as introduced in (Bishop, 1994) and (Bishop,

1995), are reviewed in section 3.3.1. The bidirectional mixture density model structure

proposed here removes some disadvantages of traditional approaches to model speech

data. In particular it allows the modeling of smoothly time-varying means, variances

(actually standard variations) and mixture weights of a Gaussian mixture distribu-

tion conditioned on a hypothesized output class sequence, as shown in Figure 3.12.

An extension to the architecture similar to the one discussed in section 3.2.3 allows

the estimation of time varying mixture densities conditioned on a hypothesized output

sequence and a continuous vector sequence to model exactly the probabilistic terms

occuring in (3.24) without any explicit approximations about the use of context. Ex-

periments (section 3.3.3) show that both proposed approaches give a higher likelihood

on test data when compared to the traditional approach using models of similar com-

plexity.



56 Chapter 3. Neural networks for supervised learning from sequences

Figure 3.10: Conventional Gaussian mixtures for multi-modal regression
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One traditional approach to model multi-modal observation sequences conditioned on symbol
states (here letters). Every state has an observation probability distribution, whose parameters
are estimated from the observed data. Shown here are the means (and two selected variances
for the state 'E') of a Gaussian distribution with two mixture components (fat lines). In general
the parameters don't change within a state, which can be a poor approximation to represent
the data in some areas, as indicated by the shown variances.

3.3.1 Basics of mixture density networks

In this section non-recurrent mixture density networks, as described for a simple case

in (Bishop, 1994; Bishop, 1995) to model multi-modal target data distributions, are

reviewed. The multi-modal target data distribution for the observation data x is here

chosen as a mixture of kernel functions

b(xjy) =
MX
m=1

cm(y)bm(xjy); (3.26)

with M being the number of mixture components and cm(y) being the parameters for

the mixing coe�cients conditioned on the input data y to the network. The function

bm(xjy) represents the conditional density of x for the mth kernel. Note that the

target vectors, that have to be modeled, live here in contrast to the rest of this thesis

in the D-dimensional space X and are not denoted by a special symbol to simplify

notation. The simplest choice for the kernel functions b(xjy) are Gaussians, here with
radial covariances (diagonal covariance matrix with one common variance per mixture

component)

bm(xjy) = 1

(2�)D=2�Dm(y)
exp

�
� 1

2

DX
d=1

�
x
d � �

d
m(y)

�m(y)

�2�
(3.27)

with �
2
m(y) denoting the single variance per mixture component and �m(y) being the

mean vector of the mth mixture component, both conditioned on the K-dimensional
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Figure 3.11: Polynomial segment models for multi-modal regression
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An extension of the approach shown in Figure 3.10 allows the means in each state to vary with
time constrained to a polynomial, here of �rst order. Compared to the model used in Figure 3.10
this model can be expected to give a better representation of the data, also indicated by smaller
variances. Note that there are still discontinuities between states.

data y. An example structure for a mixture density network with radial covariances is

shown in Figure 3.13.

Another useful choice for the kernel functions are Gaussians with diagonal covari-

ances

bm(xjy) = 1

(2�)D=2
QD
d=1 �

d
m(y)

exp

�
� 1

2

DX
d=1

�
x
d � �

d
m(y)

�
d
m(y)

�2�
(3.28)

with �dm(y) representing the root of the variance for the dth data vector component in

the mth mixture component.

The goal of training is to maximize the likelihood of the training data (section

3.1.1), which leads for mixture density networks to the objective function

E =
X
N

ln

� MX
m=1

cm(yn)bm(xnjyn)
�
: (3.29)

Compared to the uni-modal regression case discussed in section 3.1.2.a, the use of this

objective function doesn't require the assumption that the output distribution can be

described by a single Gaussian nor that the outputs have to be conditionally inde-

pendent. For the case discussed here, though, the covariance matrices of the kernel

functions have no o�-diagonal elements and therefore cannot model correlations be-

tween any components of the observation data.

A neural network modeling the parameters of the distribution (3.27) will have D

outputs for every mean vector from each of the M mixture components, denoted as

activation a[�dm] before being fed through the output layer, M outputs for the root of

the variance per mixture component �m(y), denoted as a[�m] before being fed through

the output layer, and M outputs for mixing coe�cients cm(y), denoted as a[cm] before
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Figure 3.12: BRNNs for multi-modal regression
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Bidirectional mixture density networks allow to model smoothly time-varying means, variances
and mixture weights of a Gaussian distribution (means shown as fat lines with variances at two
selected points) conditioned on a state sequence.

being fed through the output layer, giving in this case M(D + 2) outputs altogether.

For diagonal covariances using (3.28) the total number of outputs is 2M(D + 1).

The predicted parameters have to ful�ll certain constraints to insure that the result-

ing distribution is normalized, that is
R
X
b(x)dx = 1. This can be achieved by choosing

appropriate activation functions (see section 3.1.4) for the network outputs modeling

the means, variances and mixture weights. In particular this means:

� mean vectors �m(y)

There are no constraints on the range of the mean vectors, making the linear

activation function fact(a) = a the most appropriate, such that

�
d
m(y) = a[�dm]: (3.30)

� roots of variances �m(y); �dm(y)
Variances and corresponding standard deviations cannot be negative. An ap-

propriate activation function is the always non-negative exponential function

fact(a) = e
a, modeling the root of the variances as

�m(y) = e
a[�m] (3.31)

�
d
m(y) = e

a[�dm]
: (3.32)

� mixture weights cm(y)
The mixture weights have to be greater zero and have to sum up to one, making

the softmax function the appropriate activation function, such that

cm(y) =
e
a[cm]PM

i=1 e
a[ci]

: (3.33)
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Figure 3.13: Mixture density network

exponential softmaxlinear

MEANS MIXTURE
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output distribution: b(x|y)

input data: y
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HIDDEN
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Basic non-recurrent mixture density network structure, here shown for 3-dimensional input data
and 2-dimensional output data for 3 mixture components and a radial covariance matrix.

The choice of the output activation functions together with the objective function (3.29)

to minimize leads to the equations to calculate the gradient of (3.29) with respect to the

network weights, which can then be used to update the network parameters iteratively

by gradient descent procedures. The gradient for all weights can be calculated using

back-propagation when suitable expressions of the "error" at the outputs of the network

are available. For radial covariances this leads for the contribution of the nth data

pattern using to

@En

@a[�dm]
= �m(xn;yn)

�
�
d
m(yn)� x

d
n

�
2
m(yn)

�
(3.34)

@En

@a[�m]
= ��m(xn;yn)

� DX
d=1

��
x
d
n � �

d
m(yn)

�m(yn)

�2

� 1

��
(3.35)

@En

@a[cm]
= cm(yn)� �m(xn;yn) (3.36)
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and for diagonal covariances to

@En

@a[�dm]
= �m(xn;yn)

�
�
d
m(yn)� x

d
n

(�dm(yn))
2

�
(3.37)

@En

@a[�dm]
= ��m(xn;yn)

��
x
d
n � �

d
m(yn)

�
d
m(yn)

�2

� 1

�
(3.38)

@En

@a[cm]
= cm(yn)� �m(xn;yn) (3.39)

with

�m(xn;yn) =
cm(yn)bm(xnjyn)PM
i=1 ci(yn)bi(xnjyn)

; (3.40)

which can be back-propagated to calculate @E=@w. Detailed derivations of the expres-

sions (3.34), (3.35) and (3.36) in similar form can be found in (Bishop, 1995). In an

actual implementation care must be taken to insure that

MX
i=1

ci(yn)bi(xnjyn) 6= 0 (3.41)

for any of the N data patterns, which might be violated if D is large and the network is

initialized to give mean and variance values far away from the actual solution. A simple

solution in these cases is to set �m = 1=M , corresponding to an unconditional uniform

prior for the probability that vector xn was generated by any mixture component.

3.3.2 Mixture density extension for BRNNs

Here two types of extensions of recurrent neural networks to mixture density networks

are considered:

I) An extension to model expressions of the type P (xtjyT1 ), a probability distribu-

tion of a continuous vector conditioned on a vector sequence yT1 , here labeled as

mixture density BRNN of Type I.

II) An extension to model expressions of the type P (xtjx1;x2; : : : ;xt�1;yT1 ), a prob-
ability distribution of a continuous vector conditioned on a vector sequence yT1
and on its previous context in time x1;x2; : : : ;xt�1. This architecture is labeled

here as mixture density BRNN of Type II.

The �rst extension of recurrent neural networks, as shown in Figure 3.4, to mixture

density networks is not particularly di�cult compared to the non-recurrent implemen-

tation, because for recurrent neural networks the outputs are treated the same way as

for non-recurrent networks (that is, independently, which is necessary to use expressions

of the form (3.11)). It is important to notice that this case is still an approximation to

(3.24), because the generated distribution is not conditioned on the previous observa-

tions as required.
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The second extension is very similar to the idea that was used in section 3.2.3,

but here a slightly di�erent approach was chosen. The basic architecture is shown in

Figure 3.14. Note that this architecture allows to estimate the terms in (3.24) or (3.25)

in its symmetrical version without making any explicit assumptions (see section 2.2.1),

since all the information xt is conditioned on is theoretically available.

Figure 3.14: BRNN mixture density extension (Type II)

BACKWARD
STATES

t−1 t t+1

FORWARD
STATES

A BRNN is extended to model expressions of the form P (xtjx1;x2; : : : ;xt�1;y
T
1
), with x being

continuous and y being categorical in the case discussed here. This structure is similar to the
one shown in Figure 3.8. For any t the neighboring xt�1;xt�2; : : : are incorporated by adding an
additional set of weights to feed the hidden forward states with the extended inputs (the targets
for the outputs) from the time step before. This includes xt�1 directly and xt�2;xt�3; : : :x1
indirectly through the hidden forward neurons.

Di�erent from non-recurrent mixture density networks, the extended BRNNs can

predict the parameters of a Gaussian mixture distribution conditioned on a vector

sequence rather than a single vector, that is, at each (time) position t one parameter

set (means, variances, mixture weights) conditioned on yT1 for the BRNN of type I and

x1;x2; : : : ;xt�1;y
T
1 for the BRNN of type II.

3.3.3 Experiments and results

The goal of the experiments is to show that mixture density BRNNs are more suitable to

model speech data than traditional approaches, because they rely on fewer assumptions.

The speech data used here has observation vector sequences representing the original

waveform in a compressed form, where each vector is mapped to exactly one out of K

phonemes. Here several approaches are compared, which allow the estimation of the

likelihood P (XjY) with various degrees of approximations:

� Conventional Gaussian mixture model (baseline)

� Bidirectional recurrent mixture density network (Type I)

� Bidirectional recurrent mixture density network (Type II)
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Conventional Gaussian mixture model (baseline):

P (XjY) �
TY
t=1

P (xtjyt) (3.42)

According to (2.6) and section 2.4.3 the likelihood of a phoneme class vector is

approximated by a conventional Gaussian mixture distribution, that is, a sepa-

rate mixture model is built to estimate P (xjy) = Pk(x) for each of the possible

K categorical states in Y . In this case two assumptions are made, as already

discussed in section 2.2.1:

I) The local likelihood is assumed not to depend on context around yt, which

can be relaxed by introducing more states per phoneme and/or more states

depending on neighboring phonemes (section 2.2.2).

II) The local likelihood is assumed not to depend on the neighboring vectors

around xt, which is equivalent of assuming that neighboring x are indepen-

dent of each other. As introduced in section 2.2.1, this assumption is called

the independence assumption (2.9) and is for most sequential data considered

to be a strong assumption, since neighboring vectors are often in a similar

range and therefore not independent.

For the variance a radial covariance matrix (single diagonal variance for all vector

components) is chosen to match it to the conditions for the BRNN cases below.

The data is preprocessed such that all components of the input data vectors have a

unit variance. For each of the K phonemes a separate model with a given number

of mixture components is built based on the data associated to that phoneme

class. The number of parameters for the complete model is KM(D+ 2). Several

models of di�erent complexity were trained (Table 3.6).

Bidirectional recurrent mixture density network (Type I):

P (XjY) �
TY
t=1

P (xtjyT1 ) (3.43)

One mixture density BRNN of type I, with the same number of mixture compo-

nents and a radial covariance matrix for its output distribution as in the approach

above, is trained by presenting complete sample sequences to it. Note that for

type I all possible context-dependencies (assumption I) are automatically taken

care of, because the probability is conditioned on complete sequences yT1 . The

complete sequence yT1 contains for any t not only the information about neigh-

boring phonemes, but also the position of a frame within a phoneme. In conven-

tional systems this can only be crudely modeled by introducing a certain number

of states per phoneme. The number of outputs for each network depends on the

number of mixture components and isM(D+2). The total number of parameters
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can be adjusted by changing the number of hidden forward and backward state

neurons, and was set here to 64 each.

Bidirectional recurrent mixture density network (Type II):

P (XjY) =
TY
t=1

P (xtjx1;x2; : : : ;xt�1;yT1 ); (3.44)

One mixture density BRNN of type II, again with the same number of mixture

components and a radial covariance matrix for its output distribution as in the

approach above, is trained by presenting complete sample sequences to it. Note

that in this case assumption I and assumption II are taken care of, because exactly

expressions of the required form (3.24) can be modeled by a mixture density

BRNN of type II.

3.3.3.a Description of data

The recommended training and test data of the TIMIT database was used for the

experiments. The number of possible categorical classes is the number of phonemes,

K = 61. The TIMIT database comes with hand-aligned phonetic transcriptions for

all utterances, which were transformed to sequences of categorical class numbers. The

categorical data (input data for the BRNNs) is represented as K-dimensional vectors

with the kth component being one and all others zero. The feature extraction for

the waveforms, which resulted in the vector sequences xT1 to model, was done in the

same way as for the experiments described in section 3.2.2.c. Note that because of

the normalization of the variances a single variance for each mixture component is a

reasonable choice.

3.3.3.b Experiments

All three model types were trained with M = 1; 2; 3; 4, the conventional Gaussian

mixture model also with M = 8; 16 mixture components. The number of resulting

parameters, used as a rough complexity measure for the models, is shown in Table 3.6.

The states of the triphone models were not clustered.

Training for the conventional approach using mixtures of Gaussians with radial

covariances for each model was done using the EM algorithm, which converged after

a few iterations (10 were used). The means of the Gaussians were initialized with

a k-means clustering algorithm, with the number of clusters increased one at a time

by splitting the cluster with the highest absolute likelihood, until the desired number

of mixture components was reached. The variances were initialized with the cluster

variances, the mixture weights were set to the relative frequency of the data vectors

belonging to a certain cluster.

Training of the BRNNs of both types must be done using a gradient descent algo-

rithm. Here ARPROP (section 3.1.3.c) was used (�+ = 1:1; �� = 0:5), with a weight
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Table 3.6: Number of parameters for di�erent types of models

mixture mono61 mono61 tri571 BRNN I BRNN II

components 1-state 3-state 3-state

1 1952 5856 54816 20256 22176

2 3904 11712 109632 24384 26304

3 5856 17568 164448 28512 30432

4 7808 23424 219264 32640 34560

8 15616 46848 438528 { {

16 31232 93696 877056 { {

Note that the number of parameters of the BRNN models (64 forward-/backward neurons each)
is not as sharply increasing as the number of parameters of the conventional Gaussian mixture
models, because the number of hidden neurons was not altered.

update after each presentation of 1=100 of the training data set. All weights were ini-

tialized randomly in the range w = [�0:01; 0:01], the initial step-size was chosen as

�start = 0:001. The training of the networks, using a cluster of eight workstations,

converged to useful solutions after a few (8-16) passes through the training data. Total

training time was between two and �ve hours per network.

The measure used in comparing these approaches is the log-likelihood of training and

test data given the models built on the training data. In absence of a search algorithm

to perform recognition this is a valid measure to evaluate the models since maximizing

log-likelihood is the training criterion. It has to be noted though, that an increase in

log-likelihood is not necessarily a sign of better performance, because it is possible that

it is caused by pathological solutions caused by data sparseness (variances approaching

zero), as discussed in (Bishop, 1995)(page 63). For the training of the conventional

Gaussian mixture models, this case was treated by decreasing the number of mixture

components for the problematic model until a stationary point of the likelihood was

reached. During training of the BRNN models pathological solutions were not found

in the experiments conducted for this thesis. Note that the given alignment of vectors

to phoneme classes for the test data is used in calculating the log-likelihood on the test

data { there is no search for the best alignment. A search procedure using the proposed

mixture density BRNN models, necessary for a problem like speech recognition, is a

separate issue and is addressed in the discussion of the results.

3.3.3.c Results

Figure 3.15 shows the average log-likelihoods depending on the number of mixture

components for all tested approaches on training (upper line) and test data (lower line).

The baseline 1-state monophones give the lowest likelihood. The 3-state monophones

are slightly better, but have a larger gap between training and test data likelihood. For

comparison on the training data a system with 571 distinct triphones with 3 states each
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was trained also. Note that this system has a lot more parameters than the BRNN

systems (see Table 3.6) it was compared to. The results for the traditional Gaussian

mixture systems show how the models become better by building more detailed models

for di�erent (phonetic) context, i.e., by using more states and more context classes.

The mixture density BRNN of type I gives a higher likelihood than the traditional

Gaussian mixture models. This was expected because the BRNN type I models are,

in contrast to the traditional Gaussian mixture models, able to include all possible

phonetic context e�ects { i.e. a frame of a certain phoneme surrounded by frames of

any other phonemes with theoretically no restriction about the range of the contextual

in
uence.

The mixture density BRNN of type II, which in addition removes the independence

assumption (2.9), gives a signi�cant higher likelihood than all other models. Note

that the di�erence in likelihood on training and test data for this model is very small,

indicating a useful model for the underlying distribution of the data. An interesting

point is, compared to the BRNN of type I, the approaching saturation in likelihood

for the BRNN II model for four mixture components. It is reasonable to assume that

because the predicted distribution at each time is also conditioned on the previous input

observations, the resulting distribution is not as spread out as it would be without being

conditioned on the previous input observations, such that a model with a low number

of mixture components can approximate the real distribution reasonably well.

It is important to notice that the number of parameters for both BRNN models,

used as a rough complexity measure, doesn't increase as quickly as the number of

parameters for the traditional Gaussian mixture models. This explains the slower

increase in likelihood for the BRNN models.

3.3.4 Discussion

The BRNN models of both types are signi�cantly di�erent from conventional Gaussian

mixture models, which leads to a number of advantages and disadvantages. These and

possible improvements are discussed in this section.

Modeling context-dependencies: In the conventional Gaussian mixture approach

context-dependency is modeled by increasing the state space { within a phone by

usually three states per phone, and across phones by building triphones or even

higher order context-dependent models. Also, context-dependency is taken care

of by allowing a large number of mixture components per state.

The BRNN model of type I automatically takes care of all possible context-

dependencies without increasing the number of output classes, but speaker depen-

dencies are not modeled at all, such that a rising number of mixture components

for the BRNN I model can be expected to have the e�ect of modeling speaker

di�erences.

Modeling speaker dependencies: In the conventional Gaussian mixture approach

speaker dependencies are taken care of by allowing a large number of mixture
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components per state. This is also true for the BRNN model of type I. For the

BRNN II model speaker dependencies are better incorporated, because the likeli-

hood is also conditioned on the previous observations. Knowledge of the previous

observation vector limits the range of the distribution to predict signi�cantly,

leading to considerably higher likelihoods as shown in Figure 3.15.

Automatic parameter sharing: One signi�cant di�erence of the BRNNmodels com-

pared to the Gaussian mixture models is, that all available parameters are au-

tomatically shared in the BRNN model, which has to be taken care of explicitly

for the Gaussian mixture models. The use of all model parameters is optimized

during training to maximize the likelihood on the data.

Using mixture density BRNNs for search: The ultimate goal is to perform pre-

diction or recognition of sequences, as done in speech recognition. This is di�cult

using the BRNN models discussed here, because the estimation of the output dis-

tributions is conditioned on the complete hypothesized output sequence yT1 , which

corresponds to an in�nite number of states, if it would be used with a Viterbi

search. To make these models suitable for recognition using a Viterbi search

approximations will have to be made.

It is reasonable to assume that the local likelihood does depend signi�cantly on

only the hypothesized symbols near yt and not on symbols far away. Therefore

it is possible to use only context within a window of a few frames, for example

P (xtjx1;x2; : : : ;xt�1;yT1 ) � P (xtjxt�1;yt�1;yt;yt+1); (3.45)

which limits in this case the number of Markov states to a maximum of K3, if

K is the number of possible states in space Y . This expression can be estimated

by a mixture density BRNN, if all training and test sequence samples are cut to

length three, ignoring any further context. If the window width is very small,

an alternative to the recurrent version of the mixture density BRNN is to use a

non-recurrent mixture density network.

Introducing additional prior knowledge: In the experiments conducted here there

was one input per phoneme, which was either set to 1 or 0. A better representa-

tion might be the description of phonemes by an attribute vector, that describes

the phonemes in a lower-dimensional space. In this way the dimensionality of the

input vectors could be reduced and this method would allow to present additional

prior knowledge about phonemes to the network (for example, vowel or conso-

nant, plosive or non-plosive etc.), that is usually included by clustering states

using a decision tree.

Computational e�ciency: One disadvantage of the mixture density BRNN mod-

els is, that the likelihood calculation time compared to conventional Gaussian

mixture models will increase if the same number of mixture components is used,
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because besides evaluation of the likelihood using a given distribution this distri-

bution has to be generated �rst using the mixture density BRNN. This doesn't

necessarily mean that applications using mixture density networks will be slower,

because the run-time of practical applications depends heavily on the quality of

the models.

In summary, the mixture density BRNN seems to be a very suitable model for multi-

modal regression problems involving sequences. In particular, one simple extension

to the basic model makes it possible to remove the independence assumption (2.9)

completely.

3.4 SUMMARY

In this chapter to some extent the use of neural networks for supervised learning from

sequences was discussed.

Basics of neural networks: In the �rst section, necessary basics of neural networks

were reviewed and common architectures for supervised learning from sequences

were shown.

Bidirectional recurrent neural networks: In the second section, a simple exten-

sion to a regular recurrent neural network structure has been presented which

makes it possible to train the network in both time directions simultaneously

to model probabilistic expressions of the type P (ytjxT1 ). Because the network

concentrates on minimizing the objective function for both time directions si-

multaneously, there is no need to merge outputs from two separate networks,

each being responsible for one time direction. There is also no need to search

for an \optimal delay" (an additional search parameter during development) to

minimize the objective function in a given data/network structure combination,

because all future and past information around the currently evaluated time point

is theoretically available and does not depend on a prede�ned delay parameter.

Through a number of experiments, it has been shown that the bidirectional re-

current neural network structure leads to better results than other NN structures

for many problems. In all these comparisons the number of free parameters, used

as an approximate measure for the complexity of the models, has been kept ap-

proximately the same. The training time for the BRNN is therefore about the

same as for the other RNNs.

In the second section it has been shown how to use a slightly modi�ed bidi-

rectional recurrent neural network structure to directly estimate the conditional

probability of hypothesized symbol sequences by modeling expressions of the form

P (ytjyt�1;yt�2; : : : ;y1;xT1 ) without making any explicit assumption about the

shape of the output probability distribution. It should be noted that this mod-

i�ed BRNN structure is only a tool to estimate the conditional probability of
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a given class sequence, it does not provide the class sequence with the highest

probability. For this, all possible class sequences have to be searched to get the

most probable class sequence.

Mixture density recurrent neural networks: In the third section the proposed

bidirectional structure was extended to model sequences which can be described

by multi-modal target distributions. It was shown that recurrent mixture density

recurrent neural networks can accurately model the parameters of a Gaussian

distribution with a variable number of mixture components conditioned on a

label input sequence. With the experiments it was shown that the predicted

progression of speech conditioned on a label input sequence with the proposed

models was better than with conventional methods based on Gaussian mixture

distributions by comparing likelihoods measured on test data.

The mixture density BRNN model of type I, which takes care of all possible con-

text dependency on the output side by modeling expressions of the form P (xtjyT1 ),
improved the likelihood on the test data over the traditional approach with con-

ventional Gaussian mixture models. The mixture density BRNN model of type

II, which in addition removes the independence assumption for the observation

vectors by modeling expressions of the form P (xtjx1;x2; : : : ;xt�1;yT1 ), gave the
best results. The BRNN model of type II can be regarded as the optimal model

architecture in the sense that it makes it possible to model expressions which are

necessary for sequence recognition problems without any explicit assumptions

about the use of context. The complexity of both types of BRNN models can be

controlled easily by changing the number of hidden neurons.
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Figure 3.15: Mixture density BRNNs for multi-modal regression: Results
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Average log-likelihoods for training (upper line) and test data (lower line) from the TIMIT
database for all three tested approaches depending on the number of mixture components,
using a radial covariance. The baseline 1-state monophones give the lowest likelihood. The
3-state monophones are slightly better, but have a larger gap between training and test data
likelihood. For comparison on the training data a system with 571 distinct triphones with
3 states each was trained also. Note that this system has a lot more parameters than the
BRNN systems (see Table 3.6) it was compared to. The results for the traditional Gaussian
mixture systems show how the models become better by building more detailed models for
di�erent (phonetic) context, i.e., by using more states and more context classes. The mixture
density BRNN of type I gives a higher likelihood than the traditional Gaussian mixture models.
This was expected because the BRNN type I models, in contrast to the traditional Gaussian
mixture models, are able to include all possible phonetic context e�ects { i.e. a frame of a
certain phoneme surrounded by frames of any other phonemes with theoretically no restriction
about the range of the contextual in
uence. The mixture density BRNN of type II, which in
addition removes the independence assumption, gives a signi�cant higher likelihood than all
other models. Note that the di�erence in likelihood on training and test data for this model is
very small, indicating a useful model for the underlying distribution of the data. An interesting
point is, compared to the BRNN of type I, the approaching saturation in likelihood for the
BRNN II model for four mixture components. It is reasonable to assume that because the
predicted distribution at each time is also conditioned on the previous input observations, the
resulting distribution is not as spread out as it would be without being conditioned on the
previous input observations, such that a model with a low number of mixture components can
approximate the real distribution reasonably well. It is important to notice that the number of
parameters for both BRNN models, used as a rough complexity measure, doesn't increase as
quickly as the number of parameters for the traditional Gaussian mixture models. This explains
the slower increase in likelihood for the BRNN models.
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Chapter 4

Memory-e�cient LVCSR search

using a one-pass stack decoder

Abstract

In this chapter a time- and memory-e�cient implementation of a search algorithm

for large vocabulary continuous speech recognition is presented. Advantages and

problems of di�erent search algorithms are discussed. Requirements for a modern

decoder from an expert user's point of view are de�ned. It is shown how most of

these can be integrated into a single decoder. Finally results from experiments on

a Japanese newspaper dictation task are presented.

Speech recognition is one of the most attractive sequence processing problems.

Finding the word sequence with the highest posterior probability given a stream of

preprocessed acoustic input using all available constraints from the acoustic model,

the language model and the pronunciation dictionary is a non-trivial task. There are

in general thousands of possible words in the dictionary, which theoretically can be

recognized in any combination to form an immense number of possible sentences. A

challenging problem is how to do the search for the best sentence e�ciently in time-

and memory requirements.

This chapter describes the details of a fast, memory-e�cient one-pass stack decoder

for e�cient evaluation of the search space for large vocabulary continuous speech recog-

nition. A modern, e�cient search engine is not based on a single idea, but is a rather

complex collection of separate algorithms and practical implementation details, which

only in combination make the search e�cient in time and memory requirements. Being

the core of a speech recognition system, the software design phase for a new decoder

is often crucial for its later performance and 
exibility. This chapter tries to empha-

size this point { after de�ning the requirements for a modern decoder, it describes

the details of an implementation that is based on a stack decoder framework. It is

shown how it is possible to handle arbitrary order N-grams, how to generate N-best

lists or lattices next to the �rst-best hypothesis at little computational overhead, how

to e�ciently handle cross-word acoustic models of any context order, how to e�ciently

71
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constrain the search with word-graphs or word-pair grammars, and how to use a fast-

match with delay to speed up the search, all in a single left-to-right search pass. The

details of a disk-based representation of an N-gram language model are given, which

make it possible to use LMs of arbitrary (�le) size in only a few hundred kB of mem-

ory. On-demand N-gram smearing, an e�cient improvement over the regular unigram

smearing used as an approximation to the LM scores in a tree lexicon, is introduced.

It is also shown how lattice rescoring, the generation of forced alignments and detailed

phone-/state-alignments can e�ciently be integrated into a single stack decoder.

The decoder named \Nozomi" 1 was tested on a Japanese newspaper dictation task

using a 5000 word vocabulary. Using computationally cheap models it is possible to

achieve realtime performance with 89% word recognition accuracy at about 1% search

error using only 4 MB of total memory on a 300 MHz Pentium II. With computationally

more expensive acoustic models, which also cover cross-word e�ects, that are essential

for the Japanese language, more than 95% recognition accuracy 2 is reached.

4.1 INTRODUCTION

Large vocabulary continuous speech recognition (LVCSR), here de�ned as the recog-

nition of arbitrary, continuously spoken sentences using a vocabulary of 5000 words or

more, is currently limited to workstations and fast high-end laptops with a lot of mem-

ory. To make LVCSR work on PDAs, cellular phones, user-interfaces, wrist watches

etc., it is necessary to �nd time- and memory-e�cient algorithms. The e�ciency of

the search engine of a speech recognition system, that takes as input an utterance and

generates in its simplest form the most probable word string, is unfortunately not based

on a single algorithm, but on a complex collection of ideas and implementation details

which only in combination make the search e�cient. While the basic ideas can often be

stated in a few words, their details and the implementation, which is crucial for good

performance, is often not obvious and should be explained to the necessary detail in

those cases.

Because the search engine combines all parts (pronunciation dictionary, feature

vectors, acoustic models, language models) of a speech recognition system, it often

de�nes the formats for module communication and is to a great extent responsible

for the overall complexity of the whole system. The author's observation is, that the

problem of too marginal improvements of state-of-the-art LVCSR systems has its origin

not necessarily in a lack of innovative ideas, but often is due to a lack of possibilities for a

scienti�c procedure to test them. The reason is in general an overwhelming complexity

of the complete system, and research has to be aimed at reducing it.

Therefore, the goal for implementation of any search engine must be to

� minimize time and memory requirements and to

1\Nozomi" is the name of the fastest, most comfortable and most expensive bullet train in Japan,

and also means \hope" in Japanese
2these are currently the best reported results on this task
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� minimize overall complexity of the system while

� maximizing its 
exibility

using all available knowledge sources to search for the desired output.

4.1.1 Organization of this chapter

In the �rst (general) part of the introduction (section 4.1.2) the term \search" for

speech recognition is used in a loose way and necessary requirements for a modern

search engine are de�ned. In the second (technical) part (section 4.1.3) de�nitions for

the used terms are given and explained using the necessary mathematical equations. In

the third part (section 4.1.4) known decoder types are classi�ed and brie
y explained.

Section 4.2 explains the details of a memory-e�cient one-pass stack decoder. Section

4.3 shows experiments and results for a 5000 word Japanese newspaper dictation task

using this decoder. Speci�c problems regarding decoding for the Japanese language are

discussed. The chapter concludes with section 4.4.

4.1.2 General

The essential content of any search algorithm for the best hypothesis in a LVCSR

system can be summarized in simple words as:

1. Consider all possible hypotheses (di�erent word sequences, pronunciations, align-

ments) using the dictionary

2. Assign a score to each hypothesis using the language model and the acoustic

model

3. Put out the hypothesis with the highest score.

If this method would be applied in this form in practice, it would be impossible to �nd

the best hypothesis because of the very large number of possible combinations of words,

pronunciations and alignments for any reasonable sized dictionary in combination with

the commonly used trigram language model.

As discussed above, the primary goal of any search algorithm must be to minimize

the time and memory requirements for �nding the best hypothesis while maintaining a

minimal search error. Any practical search implementation (Alleva, 1997; Gopalakrish-

nan, 1995; Ney and Aubert, 1996; Odell, 1995; Paul, 1992; Ravishankar, 1996; Renals

and Hochberg, 1996; Schwartz et al., 1996; Soong and Huang, 1991; Robinson and

Christie, 1998) based on 1st order Hidden Markov Models (HMMs) uses various meth-

ods to achieve that. Some of them are: the Viterbi search to linearize the search with

respect to time, the beam search to heuristically reduce the number of hypothesis at any

time point, the use of a tree lexicon for the pronunciation dictionary to share computa-

tions for beginnings of words, the language model lookahead (Steinbiss et al., 1994), to
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approximate LM scores within words, the fast-match (Bahl et al., 1992; Gopalakrishnan

and Bahl, 1996) to generate quickly acoustically likely word hypotheses.

A second goal for a search engine that is used in a research environment, or in

cases where the output of the search engine is used as input to post-processing modules

like translation engines, is its 
exibility. It is often not enough to allow as input only

a sequence of feature vectors to produce a word sequence with the highest score. In

many cases more detailed outputs like lattices, N-best lists or detailed word, phone, or

state-alignments are required. As language model search constraints one might want

to use arbitrary order N-gram language models, word-pair grammars, word-graphs to

simulate �nite state automatons, or transcriptions to produce forced alignments. These

and other requirements for a modern search engine, from an expert user's point of view,

can be listed as:

� possible inputs:
{ utterance feature vectors (for on-demand likelihood calculation) or precal-

culated likelihoods (as often produced by neural network based systems)

{ lattice in standard lattice format (SLF)

� possible outputs:
{ �rst-best hypothesis (text or SLF)

{ N-best (text or SLF))

{ lattice in SLF

{ phone-/state-alignments

� tree lexicon (possibly > 65536 words) with multiple pronunciations and optional

pronunciation scores

� possible LM search constraints:

{ arbitrary order N-gram language models

{ word-pair grammar (with scores)

{ word-graph in SLF

{ word transcription (for forced alignment)

� support for word-within/cross-word context-dependent acoustic models

of any context order without needing to change the monophone dictionary

� optional disk-based LM to save memory

� e�cient LM lookahead (unigram-smearing or on-demand N-gram smearing)

to incorporate LM scores in tree lexicon as early as possible

� optional use of fast-match models to speed up search
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A third goal is the realization of the search in a single left-to-right pass, using all

available search constraints as early as possible. This reduces overall complexity of the

search process, is conceptually attractive and is essential for on-line systems. Being

able to run the search in one pass of course doesn't imply that it has to be run in

one pass. In many cases, especially in a research environment, it often turns out that

multi-pass strategies are more time-e�cient for �nding optimal solutions.

4.1.3 Technical

Speech recognition relies on the framework of statistical pattern recognition (Bishop,

1995; Duda and Hart, 1974; Huang et al., 1990), which has been shown to work

well in practice. The goal for the search engine is to �nd the word sequence Ŵ =

w1; w2; : : : ; wM with the highest probability among all possible word sequences W,

which is conditioned on a feature vector sequence X = x1;x2; : : : ;xt�1;xT . Every word

of the dictionary (see 4.1.3.a for de�nition of terms), is usually mapped to a sequence of

Hidden MarkovModels (HMMs) (Huang et al., 1990), which themselves consist of states

q, such that every word is equivalent to a Markov state sequence Q = q1; q2; : : : ; qt�1; qT .

Using Bayes' rule P (BjA) = P (AjB)P (B)=P (A) and the product rule of probability

P (A;B) = P (A)P (BjA) the conditional sequence probability P (W jX) can be broken

down to three terms and simpli�ed as:

Ŵ = arg max
W

P (W jX)

= arg max
W

P (XjW ) � P (W )

= arg max
W

X
Q

P (XjW;Q) � P (W;Q)

� arg max
W

X
Q

P (XjQ) � P (W;Q)

� arg max
W

MAX
Q

P (XjQ) � P (W;Q)

= arg max
W

MAX
Q

P (XjQ) � P (W ) � P (QjW )

= arg max
W

MAX
Q�QW

P (XjQ) � P (W ) � P (Q) (4.1)

Several assumptions have been made in this derivation:

a) The likelihood of the feature vector sequence given the state and the word se-

quence is equal to the likelihood of the feature vector sequence given only the

state sequence, P (XjW;Q) = P (XjQ). This implies that all acoustic informa-

tion is captured by the state sequence and is independent of the actually uttered

words.

b) The sum over all possible state sequences for a particular word sequence is ap-

proximated by the single best state sequence, which is termed the Viterbi approxi-

mation. This assumption in general doesn't e�ect the result but greatly simpli�es
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the actual search and makes it possible to speak of state alignments and actual

word boundaries (which would be fuzzy, if this assumption wouldn't be used).

The remaining three expressions stand for:

a) The observation likelihood 3

P (XjQ) =
TY
t=1

P (xtjx1;x2; : : : ;xt�1; qT1 ) �
TY
t=1

P (xtjqt); (4.2)

which is generally modeled by a continuous density Gaussian mixture model or

by a neural network. The evaluation of P (xtjqt) during the search usually takes

a great percentage (typically 40-80 %) (Beyerlein and Ullrich, 1995) of the ac-

tual search time, so e�ort has to be made to reduce the number of likelihood

calculations as much as possible.

b) The transition probability of the state sequence within words

P (Q) =
TY
t=1

P (qtjq1; q2; : : : ; qt�1) �
TY
t=1

P (qtjqt�1); (4.3)

which is usually approximated by a �rst order Markov model.

c) The unconditional probability of the word sequence (language model probability)

P (W ) =
MY
m=1

P (wmjw1; w2; : : : ; wM�1)

�
MY
m=1

P (wmjwm�1; wm�2; : : : ; wm�(N�1)); (4.4)

which is often approximated by an N-gram; the probability of a word given its

N � 1 predecessors.

In practical systems the search is never based on the raw probability estimates, but

on their logarithms to stay in the given 
oating point range of current computers. This

also converts the multiplications in (4.2), (4.3) and (4.4) to simpler additions. It is then

usual to speak of a score rather than of a probability.

In practice it is found, that an exact implementation of (4.1) is often not optimal to

achieve the best word recognition results. In general acoustic and language models are

estimated on completely di�erent corpora and many assumptions have to be made to

make a practical implementation of a speech recognition system possible. To cope with

these assumptions it is usually useful to weight the LM score against the acoustic score,

3throughout this chapter there is no distinction made between probability mass and density, usually

denoted as P and p, respectively, because it is not necessary for discussion of the search
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which is often realized by a multiplication of the language model score (log P (W )) by

a language model scale factor �. Also, there is often a word deletion penalty WDP ,

which is added to the LM score at every word end. A high WDP encourages word

insertions, therefore penalizes word deletions. For M words in the hypothesis the use

of these two heuristic parameters can be summarized as:

LMscore = � � log P (W ) +M �WDP (4.5)

4.1.3.a De�nitions

Here de�nitions of terms are collected, which are frequently used in the context of

search for speech recognition, and also in this thesis.

word: the ASCII sequence de�ning a word in the conventional sense, for example \car"

word-ID: a unique identi�cation number or ASCII sequence for any logical word in the

dictionary (note that homonyms like \arm" (part of body) and \arm" (weapon)

would have a di�erent word-ID)

word-ID list: a list of all word-IDs that are used during the search, contains informa-

tion about whether a word triggers the language model or not (like for example

silence, laughter, cough etc.)

(physical) state: smallest units of the acoustic model, which are each characterized

by a method (function) to calculate its observation likelihood P (xtjq(i)) at any
time; in typical systems there are between 500 and 30000 di�erent physical states

(logical) state: smallest unit of an HMM model, is characterized by its observation

number (from the physical state) and its directed connections to other logical

states (transitions)

HMM model: a collection of logical states, typically three to model a phone plus a

non-emitting init and exit state; in a tied-state system di�erent HMM models

can share several physical states

phone: smallest modeling unit for a word, represented by a single HMM model; there

are context-independent phones (monophones) or context-dependent phones (tri-

phones, quintphones etc.) { context-dependent phones that depend on informa-

tion beyond word boundaries are called cross-word models

pronunciation: a sequence of phones which specify the pronunciation of a word; can

have a pronunciation weight associated

recognition unit: a word-ID plus its pronunciation; equal word-IDs with di�erent

pronunciations (and vice versa) are di�erent recognition units
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dictionary: a list of recognition units (word-IDs plus pronunciation), optional outputs

and optional pronunciation weights; three example lines:

arm 1 [arm] 0.234 aa r mh

arm 2 [arm] 0.456 aa r mh

armageddon 0.55 aa r mh ae g ae dd n

a word-ID can occur several times to account for alternative pronunciations of a

word

tree lexicon: internal representation of the pronunciation dictionary; a tree-based

collection of all pronunciations in the dictionary as lexical nodes each representing

a phone (HMM model), such that equivalent beginnings of pronunciations are

shared

lexical node: smallest unit of the tree lexicon, representing an HMM model; a node is

an end-node if a pronunciation ends at it { note that end-nodes are not necessarily

leaf-nodes of the tree (\arm" and \armageddon" share the �rst three phones and

\arm" ends within the pronunciation of \armageddon"); equal pronunciations

will have the same lexical end-node

acoustic model: collection of HMM models, which allow the computation of P (XjQ)
and P (Q) for any valid state sequence; is typically based either on continuous

density Gaussian mixtures, discrete distributions or on neural networks

language model: the module which allows the computation of

P (W ) =
MY
m=1

P (wmjw1; w2; : : : ; wM�1)

N-gram: language model which makes the approximation

P (W ) =
MY
m=1

P (wmjwm�1; wm�2; : : : ; wm�(N�1));

with N being typically three (trigram) or two (bigram); usually allows the com-

putation of P (W ) for any W using a backo� procedure

word-pair grammar: language model which makes the approximation

P (W ) =
MY
m=1

P (wmjwm�1)

for a limited set of word-pairs; P (wmjwm�1) for word-pairs not in the set are zero
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hypothesis: a word sequence including its pronunciation and word start/stop times,

which is hypothesized by the decoder

language model state: two hypotheses are in the same LM state, if their tail cannot

be distinguished by the currently used language model (example: the LM histories

\I love you" and \I don't love you" are in the same LM state using a trigram LM,

because the last two words are the same)

�rst-best hypothesis: the hypothesis with the highest total score

lattice: a graph made out of arcs and nodes, containing all hypotheses considered

during the search including all di�erent alignments and pronunciation variants

standard lattice format (SLF): a lattice format that can be passed around easily

betweenmodules (usually an ASCII string); a useful format is suggested in (Young

et al., 1997)

node: part of a lattice, that joins partial hypotheses which end at the same time and

are in the same LM state

arc: part of a lattice joining two nodes; an arc represents a recognition unit associated

with at least its acoustic score

N-best list: the N best hypotheses, which di�er by at least one word-ID (di�erent

alignments or pronunciations of the same word-ID sequence belong to the same

hypothesis for this purpose)

state/phone alignment: every frame of an utterance labeled with a state number

and a phone number

pass: one pass means to search once from left to right through the utterance (or from

right to left) incorporating more of the available knowledge than in the last pass

full search: exhaustive search over all possibilities given the dictionary and the LM

constraints ) in general not feasible

beam search: at any time point t only partial hypotheses of a score within a beam

around some best score at that point are kept (Lt >= LBEST ;t� beam); heuristic

use of beams makes any search non-admissible

admissibility: a search is called admissible if the algorithm guarantees to �nd the best

hypothesis

LM lookahead: heuristic approximation of the LM scores within words, usually used

with a tree lexicon

fast-match: method to quickly �nd acoustically likely matches for words
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stack: collection of partial word hypotheses

search error: error that is caused by the search algorithm (usually by too heavy

pruning) and not by a badly estimated acoustic model or language model

4.1.4 Decoder types

Every decoder implementation is di�erent and a clear distinction between di�erent

decoder types can often not be made. In this thesis, it has been tried to distinguish

them by their basic search strategy, namely the time-synchronous transition network

decoders and the usually time-asynchronous stack decoders.

4.1.4.a Transition network decoders

The majority of the decoders currently in use are transition network decoders (Alleva,

1997; Murveit et al., 1993; Gauvain et al., 1994; Ney and Aubert, 1996; Odell, 1995;

Ravishankar, 1996; Schwartz et al., 1996; Shimizu et al., 1997; Soong and Huang,

1991) which are based on a transition network of words (as HMM state sequences)

that incorporates the used language model in its word transitions. In its simple static

form all word-ends are connected to all word-beginnings via transitions that contain

word bigram probabilities, such that the whole network can be viewed as a large �rst-

order HMM containing thousands of logical states. This makes it possible to use the

e�cient and admissible Viterbi algorithm as well explained in (Rabiner and Juang,

1993) (pages 339{340) and (Young et al., 1997) (pages 11{13) to search for the optimal

state sequence time-synchronously. Discarding states with a relatively low score at each

time t has proven to e�ciently reduce the amount of needed computation time to �nd

the �rst-best hypothesis at no or little search errors. Pruning of states is often based on

a heuristic beam around the best state or/and on a prede�ned number of states with

a high score that remain active.

It is easy and e�cient to use word unigrams and bigrams in such a network, be-

cause their scores can be incorporated into the transition network before the actual

search starts, but it doesn't extend automatically to long-span language models (3-

grams, 4-grams), which are necessary to reduce modeling assumptions and to achieve

good performance in LVCSR. Long-span LMs are either incorporated through dynamic

building of the network during the search or through multi-pass rescoring strategies

(Schwartz et al., 1996), which are often also necessary to construct lattices or true

N-best lists. These implementations require then a dynamic LM score lookup which is

not needed if only unigrams (in case of a tree lexicon) or bigrams (in case of a linear

lexicon) are used.

Since transition network decoders are run time-synchronously, meaning the state-

space evaluation over for t+ 1 is done after it was done for t, it is possible to run real

on-line recognition without any additional delay imposed by the decoding algorithm.
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4.1.4.b Stack decoders

Stack decoders can be de�ned as decoders that during decoding use some kind of

a stack of partial sentence hypotheses each consisting of a certain number of words.

In general the partial hypotheses on a stack are expanded by complete words time-

synchronously using the dictionary to create new partial hypotheses which are inserted

into other stacks. When all stacks except the last (result stack) are empty, the result

stack will contain the �rst-best hypothesis, the N-best hypotheses or the respective

lattices depending on the search mode.

Although in the context of decoders the storage container for partial hypotheses is

historically called stack, which should be a Last-In-First-Out bu�er (LIFO) given its

name, it is in practice rather often a simple list or a tree of hypotheses ordered by some

kind of total score. The total score the hypotheses on the stack(s) are ordered by can

be a) the partial hypothesis' log-likelihood, b) an estimate of the log-likelihood of the

complete utterance (A? criterion) (Soong and Huang, 1991), or c) some other score

that expresses the belief in the partial hypothesis' correctness (Gopalakrishnan, 1995),

(Renals and Hochberg, 1996).

There are at least two di�erent types of implementations for stack decoders: a) with

only one stack that contains all partial hypotheses which might have di�erent end-times

(Paul, 1991; Paul, 1992) or b) with one stack for each time point, where each stack

contains only hypotheses ending at that time (Renals and Hochberg, 1996). If there

are many stacks, the stack expansion can either be time-synchronous (expand stack t

before expanding stack t+ 1, which has been termed start-synchronous in (Renals and

Hochberg, 1996) or time-asynchronous (any stack can be expanded next, completely

or partially, depending on some algorithm to pick a stack that will probably lead to

the �rst-best hypothesis (Gopalakrishnan, 1995)). Even when the stack expansion is

time-synchronous, stack decoders are often said to search time-asynchronously, because

the global state progression through the utterance is in general not time-synchronous

like for transition network decoders.

All stack decoders operate at least on two levels of search: a) the outer level, which

loops over the stacks (word-level search), and b) the inner level, which loops over time

and states (or states and time (Robinson and Christie, 1998)) to search for complete

words, starting from the end-time of the hypothesis to expand, which is called state-

level search or word-within search. Every time a potential word-end is found during the

time-synchronous word-within search, its language model score is looked up using the

found word plus its history using the hypotheses which are to be expanded. Because

the dynamic LM score lookup can take any word history into account, stack decoders

can easily make use of any kind of N-th order Markov language model and also of

non-Markov language models like link grammars etc. Especially N-gram models of any

order are simple to implement (section 4.2.5), which is one of the major advantages of

stack decoders over the transition network decoders.

The decoupling of the language model from the Viterbi search in the state space has

several other advantages. Because the hypotheses generation is completely independent
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of the word-within search, the word-within search can be realized memory-e�ciently

without the need for token passing or backtrace pointer storage (section 4.2.1.b). Word

lattices can be created easily in the �rst pass at little computational overhead (section

4.2.3.a). Using a similar procedure N-best lists can be created, optionally with all dif-

ferent alignments and pronunciation variants in a lattice within each N-best hypothesis,

again in the �rst pass (section 4.2.3.b). LM lookahead procedures depending on the

scores of the word history to expand are easily integrated as a separate module (section

4.2.6).

In stack decoders there are several ways to implement cross-word context-dependent

acoustic models, which are necessary for good recognition results. A procedure shown

to be computationally e�cient for cross-word models of any context order is discussed

in section 4.2.7. This procedure leads naturally to a possible use of fast-match models

to generate acoustically likely word candidates quickly. In this chapter a novel version

of using a fast-match in a stack decoder is discussed (section 4.2.8), which avoids some

disadvantages of earlier implementations.

Historically stack decoders have often been used for lattice rescoring to integrate

higher order LMs and to optimize search parameters, often in combination with A
?

procedures (Soong and Huang, 1991). This type and other types of often needed lattice

rescoring procedures are discussed in section 4.2.10, which all can be implemented as

additions to the regular decoder.

The usage of word-graphs constraining the search using stack decoders is closely re-

lated to the usage of word-pair grammars and the generation of forced word-alignments

(section 4.2.9). Detailed phone- and state-alignments, which are not available when, as

mentioned above, no state-based backtrace pointers are stored, will have to be created

on demand. This turned out to be particularly easy for the implementation described

in this chapter (section 4.2.11).

One disadvantage of stack decoders is the fact that they usually evaluate the state

space time-asynchronously within a certain range, which makes real online decoding

impossible { there will be a time lag being equal to the range of the state evaluation.

Although in practice this time lag is short (less than a second) compared to other time

limiting factors during a real search and can also be avoided during silences, it might

pose a problem in systems that must have a human-like response time.

A second principal disadvantage is that it is not possible to merge logical state

theories within words, because the word-level search is separate from the word-within

search, which is discussed in more detail in section 4.2.1.b.

4.2 A MEMORY-EFFICIENT ONE-PASS STACK DE-

CODER

This section describes the details of a memory-e�cient one-pass stack decoder, that

is based on a multi-stack implementation with one stack per time frame, which is

equivalent to a one-stack implementation with the stack entries ordered primarily by
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time and then by score.

4.2.1 Basic algorithm

As discussed above, a stack decoder works on two levels of search, the word-level search

looping over stacks and the state-level search looping over time and logical states.

4.2.1.a Word-level search

Looping over stacks for the word-level search can be done time-synchronously (start-

synchronously) or time-asynchronously depending on the stack expansion mode. In-

dependent of this mode, which is a function of the stacklist (collection of all stacks),

the basic word-level search, as shown at the end of this section, works as follows: First

an initial temporary stack stack containing only an initial empty root hypothesis is

generated. Then all partial hypotheses on the temporary stack stack are extended by

one word using the state-level search that knows about the stacklist, such that the new

partial hypotheses can be inserted into the correct stacks. When the current temporary

stack is �nished, a new temporary stack is popped from the stacklist. This can be any

of the currently held stacks in stacklist, which will be the earliest one in time in case

of a synchronous stack expansion, and any one of the available ones in case of a asyn-

chronous stack expansion depending on the selection criterion. The temporary stack

doesn't necessarily have to contain all partial hypotheses of the stack in stacklist it

was generated from. Again, depending on the selection criterion, these could be only a

subset of that stack. When there are no more stacks to be popped, the method �nishes

with returning the result (�rst-best, N-best, lattice, etc.). An example implementation

using pseudo C++ code would be:

Word-level search:

{

stack = stacklist.GET_INITIAL( hyp.ROOT() );

do

{

statelevel_search.EXTEND( stack );

stack.FORGET();

}

while( (stack = stacklist.POP()) );

return( stacklist.RESULT() );

}



84 Chapter 4. Memory-e�cient LVCSR search using a one-pass stack decoder

4.2.1.b State-level (word-within) search

The search on the state level extends all hypotheses of the passed temporary stack by

one word using the pronunciation dictionary and inserts all generated new hypotheses

in the corresponding stacks provided they are within the beam. The search is based

on the pronunciation dictionary dict which is organized in a tree structure such that

equivalent beginnings of pronunciations are shared to save redundant computations

(Figure 4.1). This tree lexicon consists of lexical nodes, with each node pointing to its

Figure 4.1: Example for a tree-lexicon

BE
BEE

HE

HIM

HIS

q q q1 2 3

q q q1 4 5

BEER

b iy

r

iy

ih

z

m

hh

Example for a tree-lexicon, as used for the search explained here, made out of only six words.
Lexical nodes point on associated HMM models, here monophones, but possibly higher order
models. Note that words don't have to end at leaf-nodes of the tree and there can be homonyms
(words with the same pronunciation but a di�erent meaning, here 'be' and 'bee') as well as
multiple pronunciations for words, here 'he' as 'hh iy' or 'hh ih'.

associated HMM and all possible recognition units ending at it. The lexicon has a single

root-node that does not have an HMM associated with it and de�nes the beginnings of

all words. A node is called active if any of its logical HMM states is within the current

beam. If a node is active, it carries its current time t and the log-likelihoods of all its
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states in a dynamically allocated chunk of memory. This memory is released to be used

by other nodes if a node is deactivated.

During the state-level search, as shown at the end of this section, it is necessary to

keep a list of all active nodes for the current and the next time slice (alist, alist next),

which are accessed by PUSH and POP operations. These lists contain only pointers

to the corresponding lexical nodes and have to be ordered by the levels of the tree

lexicon, such that the nodes closest to the root-node are popped �rst. This is necessary

to insure that during actual propagation all states within a node are in the same time

slice.

The state-level search then works as follows: After both active node lists are cleared,

the non-emitting root-node of the tree lexicon is activated with the score of the best

hypothesis of the stack to expand. It is then pushed on the current active node list

(alist). The start time for the word-within search is the end-time of the stack to expand

plus one.

The active nodes are propagated time-synchronously through the tree lexicon until

the end of the utterance T (or some maximum word length) is reached or all nodes fell

out of the beam and have been deactivated. The active nodes are popped from the list

and are forward-propagated one time step assuming they have been in t�1 (FORWARD()).
Forward propagation involves one Viterbi step within the currently worked on node.

Since the node cannot be left during that step, it is su�cient to calculate only the

new scores for every node-internal state without using any back-pointers. Although

not containing much source code, method (FORWARD()) will take the largest part of

the actual search time because the time consuming observation likelihood calculation

functions for the physical states are called from it. Care should be taken in the loop

ordering within FORWARD(), such that the expensive likelihood calculation functions are

only called when actually needed. Also, already calculated likelihoods should be cached

because in time-asynchronous stack decoders they will be used several times even when

there are no shared physical states.

After the forward propagation the upper bound of the score at the current time is

updated using UPDATE UPPERBOUND(), if the pruning procedure is based on the beam

around the best score at any time. It is not necessary when the hypotheses on the stacks

are not popped depending on their partial log-likelihood as used in (Gopalakrishnan,

1995) or (Renals and Hochberg, 1996).

If any state of the current node is in the beam, it is a possible candidate for causing

a stack expansion, otherwise it is deactivated. If a node in beam has its non-emitting

exit-state activated and the node corresponds to a word end, the hypotheses on the

temporary stack are expanded by one word (stack.EXTEND()), which involves looping

over all hypotheses and all recognition units ending at this node, looking up the LM

score for P (rec unitjhyp history), generating the extension if the new partial hypoth-

esis is within the current beam, and pushing it on the corresponding stack. Then,

only if the exit-state is active, all successor nodes in the tree lexicon are activated

(ACTIVATE SUCCESSORS()), which involves copying the exit-state score of the current

node into the init-state of the successor node, and pushing the node on the active node
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list for the next time slice (alist next). Also, any nodes that are in the beam regardless

their exit-states have to be pushed on this list.

Note that because of the LM lookahead procedure explained in section 4.2.6, which

leads to an overestimate of scores within words, it is possible to use a lower (tighter)

beam at word-ends compared to the beam within words.

Finally, when all nodes of the current time slice are �nished, the two active node

lists are swapped and the time is incremented to be ready for the next time slice.

A possible state-level search implementation, that was found to be e�cient, is:

State-level search:

{

alist.CLEAR();

alist_next.CLEAR();

dict.ROOTNODE.ACTIVATE( stack.TOPHYP.SCORE() );

alist.PUSH( dict.ROOTNODE() );

t = stack.TOPHYP.TIME() + 1;

while( t < T && alist.NOT_EMPTY() )

{

while( (node = alist.POP() )

{

FORWARD( node, t );

UPDATE_UPPERBOUND( node, t );

if( node.IN_BEAM(t) )

{

if( node.EXIT_STATE.ACTIVE() )

{

if( node.IS_WORD_END() )

stack.EXTEND( node, t-1 );

ACTIVATE_SUCCESSORS( alist, node, t );

node.EXIT_STATE.DEACTIVATE();

if( node.NO_STATE_ACTIVE() )

node.DEACTIVATE();

}

if( node.ANY_STATE_ACTIVE() )

alist_next.PUSH( node );
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}

else

{

node.DEACTIVATE();

}

alist.SWAP_WITH(alist_next);

t++;

}

}

}

As pointed out in section 4.1.4.b, it is not possible to merge logical states theories

within words from a state-level search that started at a di�erent time carrying a hy-

pothesis in the same LM state, like it is possible for transition network decoders. This

will increase the average number of active states at any given time t. One obvious

technical reason for this is that the status of intermediate states during any time of

the state-level search is not stored, because it would require additional e�ort, time and

memory. Another reason is the explicitly wanted decoupling of the state-level search

from the LM, which prohibits any logical state merging, because the same logical state

given only the dictionary will be a di�erent one depending on its history, if as LM

anything else than a �rst order Markov model (bigram with a linear lexicon or unigram

with a tree lexicon) is used.

4.2.2 Pruning techniques

In the stack decoder described here several e�cient pruning techniques to cut logical

states, physical states, mixture components, lexical nodes, words or partial hypothesis

with a relatively low score can be applied. Here a complete description of all these

techniques is given.

Pruning has in general the e�ect, that the search becomes faster and uses less

memory by increasing the chance of making search errors (section 4.1.3.a). There are

many possible ways to prune and it is usually not hard to come up with new ideas

for heuristic pruning. The disadvantage of using many sophisticated heuristic pruning

techniques is, that in general they depend of each other and their outcome becomes

harder to control. Some of them will inevitably lead to search errors, whose generating

source will be hard to localize.

4.2.2.a Word-within pruning

Word-within pruning refers here to pruning of logical states during the forward propa-

gation of a lexical node. Any of the states in the currently looked at HMM model are

checked for validity. If a score of a state at time t is more than a word-within beam
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width below the best score ever at time t (or short: below the word-within beam),

Score(state; t) < BestScore(t)�WordWithinBeam; (4.6)

then the state is discarded.

4.2.2.b Word-end pruning

Word-end pruning, as also mentioned in section 4.2.1.b, has two di�erent functions in

this stack decoder:

(1) To prune partial hypotheses that have been created during the state-level search,

but whose LM state has a too low score.

(2) To prune partial hypotheses from stacks during their expansion, due to a rise of

the best score of that stack (at time t), that pushed once valid hypotheses out of

the beam.

Both of these mechanisms work analog to the word-within pruning procedure, such

that if

Score(hyp; t) < BestScore(t)�WordEndBeam; (4.7)

the partial hypothesis is discarded. Experiments show that in general a tighter word-end

beam can be used without causing additonal search errors.

4.2.2.c Lexical node pruning

In this decoder the lexical nodes (HMM models), which are held in the active node

list alist and used during the state-level search, are in general pruned only by the

word-within-beam pruning and can hold as many nodes as necessary. Note that word-

within-pruning doesn't require an ordered active node list.

For an additional pruning strategy, it is also possible to prune this list by only

keeping the N best active nodes at any time t. This requires an ordering of the list in

some form, but can provide an e�ective additional speed-up. Also, because the average

number of active nodes at any frame is approximately proportional to the total search

time, it is possible to approximately set the maximum time allowed to search through

an utterance, which can be a great advantage during development, when good beam

settings are still unknown.

4.2.2.d Mixture component pruning

If state-tied continuous-density Gaussian mixture models with diagonal covariances

are used as acoustic models, then it is possible to use an e�ective additional pruning

strategy during the likelihood calculation. In general the likelihood calculation takes a

large amount of the search time, and the routine to look up acoustic likelihoods given a

state number and an observation vector will be fairly optimized. This makes it di�cult



4.2. A MEMORY-EFFICIENT ONE-PASS STACK DECODER 89

to �nd pruning strategies at that level that really do lead to a speed up, because in

general all additional code in this routine makes the likelihood calculation slower.

Here a pruning strategy was used, that did help in many cases. The idea is the

following: For diagonal covariances, the likelihood calculation routine contains a rou-

tine that calculates the distance of the observation vector to the mixtures, with each

component weighted by the inverse variance for diagonal covariances. If this distance

becomes larger than a certain heuristic threshold for a mixture,

Distance(mixture; observation) > Threshold (4.8)

then the likelihood from this mixture component is ignored. This distance threshold

check is done here after each component of the evaluated vector is added.

4.2.2.e Posterior pruning

If neural network acoustic models are used, which in general provide the posterior

probability of a certain state given the observation vector, then a simple and e�ective

pruning strategy mentioned in (Renals and Hochberg, 1995a; Renals and Hochberg,

1995b) can be used. If a certain state has a posterior probability below an heuristic

threshold,

PosteriorProbability(state; observation) < Threshold (4.9)

then this state is completely ignored.

4.2.2.f Pruning with triangular beams

Time-asynchronous stack decoders have the disadvantage that during the generation of

partial hypotheses usually not all information at that time point is available { especially

pruning is based on currently best likelihoods, which might and usually will improve the

closer the stack expansion time point comes. This leads to the generation of many

hypotheses which are later not expanded, in the experiments done here up to 95% not

expanded partial hypotheses. This waste of resources can be avoided partially, when a

more aggressive pruning is used at times when there's not all information available.

The simplest way to achieve more agressive pruning the further away the state-level

search is moving from its start time tstart, is to use triangular beams. The beam at each

time depends on the position of the current state evaluation time relative to the start

time of the state-level search. At t = tstart the beams (word-within beam, word-end

beam) are at their set width (maximum), at t = tstart + wordlengthmax they become

zero (minimum). This type of pruning e�ciently speeds up the search and led in the

experiments done here to very few or no search errors compared to the regular beams.

4.2.3 Stack module

The collection of stacks for each time t are accessed by PUSH() and POP() operations

taking partial hypotheses as arguments. Because they are used frequently and usually
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contain a few to several hundred entries in a typical application, the stacks (or more

precisely lists as discussed above) have to be set up e�ciently. The container types used

in other decoders are often special tree-structured lists, which are ordered by score and

limited in the number of entries (Renals and Hochberg, 1995b). Here a di�erent method

is described which was found to be most e�cient and simple to implement.

Pushing a hypothesis on a stack involves a check whether a hypothesis in the same

LM state is already on that stack. If yes, the scores of the two hypotheses are compared

and the better one is inserted into the stack, the other one discarded. In case of an

N-gram LM the LM state check means to compare the last MAX(N � 1; 1) history

word-IDs. One word has to be compared as a minimum to not violate the at least �rst

order Markov assumption for the complete speech model. Although checking for LM

state equivalence for N-gram LMs can theoretically be done in O(1) using a hash table

with the N � 1 words history as the key, it was found that it is in practice not more

e�cient than a simple non-ordered unlimited list that is searched through linearly up to

an average stack size of a few hundred hypotheses. Pushing a hypothesis on a stack can

also improve the upper bound for the score at this time, which has to be checked for.

Popping a hypothesis from a stack is an O(1) process, since it doesn't matter in what

order the hypotheses in beam are extended for the implementation described here.

The stacks containing mainly pointers to hypotheses can be set up e�ciently in a

ring-bu�er if a maximum word length is de�ned, which is necessary for on-line opera-

tion.

4.2.3.a Lattice generation

Lattices, as de�ned in section 4.1.3.a, are a convenient form of storage for the hypothe-

ses that are considered during the search, and their generation is often necessary for

systems that need to post-process the recognition output such as for translation en-

gines, information retrieval systems, or multi-pass search strategies. Stack decoders can

easily generate lattices with little computational overhead in the �rst pass by slightly

modifying the LM state check procedure. Instead of discarding the hypothesis with the

worse score in case of LM state equivalence it can be linked into the lattice. A pointer

on the best arc back has to be updated to not loose the best hypothesis for the current

LM state and future reference. Compared to the generation of the �rst-best hypothesis

there is only little overall increase in memory for the storage of the additional arcs in

the lattices (section 4.3).

4.2.3.b N-best list generation

The hypotheses in an N-best list di�er by at least one word-ID. This can be directly

checked for by extending the LM state check procedure to the complete history instead

of just the MAX(N � 1; 1) history word-IDs like necessary for obtaining the �rst-best

hypothesis. It can be done either exactly by checking each word, or approximately by

using a hash function for the history. A lattice within the N-best list, referred to as
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N-best lattice, which includes all possible alignments and pronunciation variants for the

same word-ID sequence in the possible paths taken backwards from a lattice node, can

be produced by merging hypotheses instead of replacing them as discussed above for

the �rst-best lattices. Compared to the lattice generation this procedure uses only little

additional memory for the extra nodes of the hypotheses, which are needed because

of the increased LM state space, and only little additional time as shown in section

4.3. Since for the generation of N-best lists only the LM state check procedure was

modi�ed, they can be generated in the �rst pass like lattices.

4.2.4 Hypotheses module

A hypothesis in memory is made of objects called hyp-nodes and arcs, starting at t = 0

from a single root node, and ending in either one end-node (�rst-best or lattice) or

in many end-nodes (N-best list, N-best lattice). An example is shown in Figure 4.2.

Each node contains its time and best total score of the hypothesis up to this point.

The arcs connected to ancestor nodes (parent nodes) are set up as a single linked list

starting from the current node, which also contains a pointer to the arc belonging to

the best hypothesis going back from this node. Every node contains also a counter on

how many kid-nodes it is connected to (how many arcs contain a pointer to the current

node), which is necessary for e�cient memory management of these objects.

Figure 4.2: Hypotheses storage format
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TIME

pointer on first arc
pointer on best arc
total best score
time
number of kid-nodes

pointer on next arc in list
pointer on parent-hyp

pointer on rec-unit
acoustic score, LM score

Example for the memory-e�cient storage format for hypotheses made out of hyp-nodes (black
dots) and arcs (arrows). Shown is a lattice, all arcs but the best are dotted.

An arc de�ning a recognition unit with scores will contain at least a pointer on

the recognition unit in the dictionary, the acoustic score for it, a pointer on its parent

hyp-node, and a pointer to the next arc of the linked lists of arcs (see Figure 4.2).

Memory management of hyp-nodes and arcs is best set up using linked lists, such

that getting or forgetting them can be done using simple pointer copying. The usage

of OS memory management routines can be minimized by allocating blocks of objects
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if none are left in a bu�er made out of linked lists of the needed objects. Forgetting a

pruned hyp-node involves also forgetting all linked arcs. Forgetting an arc means also

forgetting all hyp-nodes they point to, if these hyp-nodes have no kid-nodes. If imple-

mented in this recursive manner, the total memory for the hypotheses used during the

search will be approximately proportional to the active number of hyp-nodes and arcs,

which is generally between 102 (�rst-best mode) and 105 (lattice mode) for an average

LVCSR application. In the implementation described here one hyp-node occupies on

average � 30 bytes, one arc � 20 bytes.

4.2.5 N-gram module

The N -gram module is responsible for generating P (wN jw1; w2; : : : ; wN�1), the prob-

ability of a word given its N � 1 words history, which is in general stored in a lookup

table and might require backing o� to lower order N -grams using the approximation

P (wN jw1; w2; : : : ; wN�1) � Pbackoff (w1; w2; : : : ; wN�1) � P (wN jw2; w3; : : : ; wN�1). The

N -gram of an average LVCSR system usually occupies the most memory and is ac-

cessed on average a few hundred to a few thousand times per frame, so it has to be

stored in a format that is memory-e�cient and allows fast access.

A useful format was found to be the following, which is shown in Figure 4.3: For

a back-o� N -gram LM store all n-grams with n = 1; 2; : : : ; N in a table for each n.

Each entry in a table has a word-ID, its LM probability and back-o� probability, and

a pointer to the beginning of the list of extension word entries in the table holding the

(n + 1)-grams. For the table with the N -grams the pointers are not necessary, since

no higher order (N + 1)-grams are following. Each part of an entry table holding a

particular set of extension words is ordered by its word-IDs to allow fast access using

a binary search. The number of a set of extension words on any level n doesn't have

to be stored because it can be calculated by subtracting the pointer (on level n � 1)

on the current set from the next pointer (also on level n � 1) on the next set. If the

next set on level n doesn't happen to have any extension words, indicated by a NULL

pointer on level n�1, the next non-NULL pointer on level n�1 has to be searched for,

which is usually not more than a few entries away. The last entry on any level n has

to be treated as a special case { the number of extension words has to be calculated

as the pointer di�erence between the entry and the entry at the beginning of the next

level, if levels are stored consecutively in memory.

The memory requirements for this N -gram representation are 8 bytes per entry

for all fn < Ng-grams, and 4 bytes for all N -grams, assuming 4-byte pointers, 2-byte

word-IDs and 1-byte representations for the LM probability and the back-o� probability,

uniformly distributed across their log-scores, which was found to be a su�cient accuracy

not to cause any errors. Access time for this storage format is of O(1) for the unigrams

and of O((n� 1) � log2(K)) for the fn > 1g-grams using a binary search, with K being

the average number of words following any n-gram entry. The average access time

can be slightly improved by caching LM states and their scores in a hash table for

all fn > 1g-grams that have been accessed before. This improves average access time
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Figure 4.3: N-gram storage format
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word ID
LM-score, backoff-score

word ID
LM-score

{N-1}-grams N-gramsunigrams

pointer to {n+1}-gram

Storage format for a fast accessible and memory-e�cient N-gram, which is used in the same
form for its disk-based representation. The shadowed region is an example for N-grams that
would be loaded into memory for the disk-based LM to search for the correct entry.

to O(1) for already used fn > 1g-grams, but requires an additional check whether a

certain LM state is already in the hash table or not.

4.2.5.a A disk-based N-gram

It has been found that for average LVCSR applications most of the entries in an N-gram

are never actually used and a disk-based representation of the N-gram can limit memory

requirements to a few hundred kB for N-grams of any size (Ravishankar, 1996). The

search for the N-gram scores on disk during the search is of course very time-consuming

and has to be minimized using an e�cient caching scheme. An e�cient implementation

was found to be the following: Unigrams are stored in memory and all fn > 1g-grams
are stored on disk in exactly the same format that is used for the representation in

memory from section 4.2.5, such that looking up an n-gram can be done using the

same algorithm. A set of extension words following an n-gram is loaded into temporary

memory to run the binary search for the correct word-ID in memory and not on disk.

Care must be taken in making this temporary bu�er large enough to de�nitely include

all information that is necessary to calculate the number of extension words for any

entry within the set of extension words. The LM states that have been used once

are cached in a memory-based hash table to minimize disk access. An alternative to

caching only the used LM state is to cache all LM states that belong to any set of

extension words loaded during the search for the required LM state.



94 Chapter 4. Memory-e�cient LVCSR search using a one-pass stack decoder

4.2.6 LM lookahead

Most current LVCSR systems use some kind of LM lookahead to approximate the LM

scores of the possible current LM states within words and use the exact LM scores only

at word-ends. When a tree lexicon is used, the exact LM state often cannot be known

until reaching a word-end node. The use of LM lookahead probabilities plookahead,

which belong to every node in a tree lexicon, can speed up the search considerably,

because nodes with a weak LM score can be pruned early. Suppose the LM lookahead

probabilities are already set, they are used during the search through the tree lexicon

as:

� When a node is entered, add plookahead(node) to current total score.

� When a node is left, subtract plookahead(node) from current total score.

4.2.6.a Unigram smearing

Unigram smearing (Steinbiss et al., 1994; Alleva et al., 1996; Ortmanns et al., 1997) is

a commonly used procedure and heuristically sets plookahead for each node in the lexicon

is as follows:

1. Calculate for each word-end node in the lexicon the maximum of all unigram

scores of the words that end at this word-end node (a set of words denoted as

Wword�endnode). Note that several words could end at one word-end node because

of homonyms and multiple pronunciations.

plookahead(word-end node) =MAXfP (w)g with w 2Wword�endnode (4.10)

2. For all non-word-end nodes set plookahead recursively to the maximum of all child-

nodes.

plookahead(non-word-end node) =MAXfplookahead(child-nodes)g (4.11)

Note that unigram smearing is independent of the currently extended word hypothesis

and is therefore a static procedure { it has to be calculated only once which can be

done in advance. An example is shown in Figure 4.4.

4.2.6.b On-demand N-gram smearing

On-demand N-gram smearing is a LM lookahead procedure that incorporates the LM

state constraints of the currently extended hypotheses including their scores (Neukirchen

and Willett, 1997). This results in better estimates of the real LM probabilities, com-

pared to the regular unigram smearing procedure, which leads in turn to more accurate

pruning and therefore can lead to a faster search. The algorithm works as follows:

1. Initialize all plookahead with the unigram smearing procedure shown above before

the search starts.
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Figure 4.4: Uni-gram smearing
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Example for unigram smearing using a tree-lexicon and a trigram LM, which is independent of
the hypotheses to extend. Note that there are words with multiple pronunciations (same word
ends at several leaf-nodes) as well as pronunciations with multiple words (several words ending
at the same leaf-node, called homonyms). Also note, that the information from the bi-grams
and tri-grams is not used.

2. Calculate, for each set of word hypotheses Hi to expand, the maximum N-gram

probability P (wjHi) of all existent N-gram entries (Hi; w) in the language model

excluding the unigrams, because they were already set during the unigram ini-

tialization (step 1). Identify the corresponding word-end nodes belonging to w

(which could be several because of homonyms and multiple pronunciations) and

set plookahead to the maximum of the calculated probability and the unigram

plookahead probability already set.

plookahead(word-end node) = MAXfP (wjHi)g 8 Hi

and

8 w 2 f(Hi; w) existent in N-gramg (4.12)

To use not only the LM states but also the relative scores of the current hypoth-

esis to the best hypothesis in the current set to extend use MAXfP (wjHi)g �
score(Htop) + score(Hi) instead of MAXfP (wjHi)g.

3. For all non-word-end nodes set plookahead to the maximum of all child-nodes.

plookahead(non-word-end node) =MAXfplookahead(child-nodes)g (4.13)

Note that this procedure has to be invoked each time a new set of word hypotheses

is extended and cannot be done in advance like for unigram smearing. In spite of

the additional computation the more accurate LM probabilities lead to more accurate

pruning which can lead to a speed-up of the whole search. An example for this procedure
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is shown in Figure 4.5, which should be compared to Figure 4.4 illustrating the unigram

smearing procedure.

Figure 4.5: On-demand N-gram smearing
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Example of on-demand N-gram smearing using a tree-lexicon and a trigram LM using the
constraints from the hypotheses to extend.

Results from experiments showing the impact of on-demand N-gram smearing com-

pared to unigram smearing are shown in section 4.3.

4.2.7 Cross-word models

Cross-word models are context-dependent acoustic models that span over word bound-

aries. Their use in any decoder is complicated and time consuming. Various imple-

mentations have been described (Bahl et al., 1993; Alleva, 1997), which, in the case of

transition network decoders, are often limited to cross-word triphones. Whether cross-

word modeling is really necessary or not depends heavily on the speaking style and on

the de�nition of a word in the language to be recognized, and is more likely to make a

di�erence when there is no pause at word boundaries. In this chapter it is shown that

cross-word modeling is essential for recognition of read newspaper articles in Japanese

(section 4.3).

A procedure to deal with cross-word models of any order (triphones, quintphones,

etc.) incorporating cross-word e�ects in a delayed manner was found to be very e�cient

in time and memory requirements, and is especially well suited for a stack decoder:

� Run the state-level search for any set of hypotheses to expand with word-internal

context-dependent models only.

� When popping the hypotheses from a stack to expand, realign and rescore the

lastM words using cross-word models at the word boundaries before entering the

state-level search to �nd the extension words.
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� As cross-word e�ects are incorporated with a one-word delay, it is also necessary

to realign the last M words for all hypotheses on the �nal result stack.

This procedure as illustrated in Figure 4.6 incorporates all cross-word e�ects within the

last M words, and is optimal under the assumption that no search errors are made for

cross-word triphones withM = 2 for most cases and possiblyM = 3, if the word before

the last word is a one-phone word. To capture all cross-word e�ects with quintphones

theoretically M = 5 is necessary, if all words in the dictionary would be one-phone

words.

Figure 4.6: Cross-word model incorporation

STACK TO EXPAND

TIME

Visualization of the method to incorporate cross-word models of any context order. Circles
denote hyp-nodes, �lled circles are the word boundaries that are corrected by the procedure
using cross-word models before the stack (box) is expanded. In this example only two words
are realigned, but there could be more as discussed in the text. The same method is used for
the fast-match to rescore acoustically likely word candidates (section 4.2.8).

The realignment for each hypothesis to extend is in detail done as follows: Take

the last M words and �nd the correct (cross-word) HMMs for each phone at the word

boundaries which don't already cover the maximum available context given the acoustic

model set. Use a local Viterbi search to �ndM new acoustic scores and possiblyM �1

new word boundaries. Generate M new arcs and M � 1 new hyp-nodes and replace

the old hypothesis end-hyp-node by the new one.

The correct cross-word HMM model is de�ned as the model which covers the most

context around the current center-phone. This de�nition is also used for �nding the

correct context-dependent HMM within words during construction of the tree lexicon

containing context-dependent models given only a monophone pronunciation dictio-

nary.

Compared to the procedure described in (Bahl et al., 1993), which locally rescores

every word that is found during the state-level search, the method described here

rescores only words that have been found to be considerably likely being part of stacks



98 Chapter 4. Memory-e�cient LVCSR search using a one-pass stack decoder

to expand. The average number of hypotheses to expand per frame is in general be-

tween �ve and one-hundred and cross-word rescoring is only applied to those few. This

requires only very little temporary memory and is fast, because of the low number

of hypotheses and because of the fact that most of the states to be evaluated during

rescoring for their observation likelihood are already in the cache.

A potential drawback of this method is that because cross-word e�ects are incor-

porated delayed, scores might vary more during the lookahead, which might require

larger beams than if this delay wouldn't be used.

4.2.8 Fast-match with delay

The method to handle arbitrary cross-word e�ects from section 4.2.7 is easily extended

to allow an e�cient acoustic fast-match with a one-word delay, which in a similar form

without delay is described in (Bahl et al., 1992; Gopalakrishnan and Bahl, 1996). The

basic idea of a fast-match in a stack decoder is to use simple acoustic models to �nd

possible extension words, and rescore them locally with better, but computationally

more expensive models. This avoids the use of expensive models for the initial state-

level search and can speed up the complete search substantially.

The fast-match procedure described here (see Figure 4.6) keeps the use of the ex-

pensive models at a minimum and is almost identical with the method to incorporate

cross-word models. Instead of using word-within context-dependent (CD) models for

the state-level search, simple monophones with a low number of Gaussians per mixture

or small neural-network based models are used in a context-independent tree-lexicon,

and the words found are inserted in the corresponding stacks. Rescoring of the last

M words including all cross-word e�ects is done later using the accurate, but expen-

sive CD models, but only when a stack is expanded, such that many of the previously

found words will be out of the beam. The di�erence to the cross-word procedure from

section 4.2.7 is, that all phones of the last M words have to be mapped to their correct

CD HMM model, and not only the ones at the word boundaries. As described above,

this can be interpreted as local rescoring with a one-word delay, which limits the num-

ber of necessary rescoring turns per frame to less than ten to one-hundred for most

applications, and requires very little additional memory.

4.2.9 Using word-graphs as language model constraints

For some applications it is necessary to constrain the search by a �nite state grammar,

a word-graph or a word-pair grammar, possibly with transition scores. This can be

done e�ciently in a stack decoder by activating only the pronunciation paths in the

tree lexicon that correspond to possible word extensions of the hypotheses to expand.

This has to be done on demand before entering the state-level search every time a stack

is expanded. The state-level search will only consider the limited number of activated

paths which will speed up the search substantially (section 4.3).

The generation of forced word alignments can be interpreted as a search constrained
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by an extremely simple word-graph consisting of the transcription of word-IDs, which

might have several pronunciation variants.

4.2.10 Lattice rescoring

There are two types of often needed lattice rescoring procedures:

I) Use a given word-graph plus the word alignments and the acoustic scores, and

change only the LM (often a higher order N-gram) or/and change LM parameters

(LM scale and word deletion penalty).

II) Use only a given word-graph ignoring alignments and acoustic scores to constrain

the search { use new acoustic models and a new LM. This has been described in

section 4.2.9.

Type I is often done using A
? procedures in a separate search module, because the

existence of the complete word-graph with scores allows an e�cient estimate of score

of the remainder, which is necessary for any A
? procedure (Nilsson, 1971; Soong and

Huang, 1991). In this case there is usually one stack, which is ordered by the A
?

score. For the stack decoder implementation with many stacks like it is described here,

a simple replacement of the state-level search makes it possible to integrate lattice

rescoring of type I within the stack decoder framework. Instead of the original state-

level search through the tree lexicon the possible extension words and their scores

for every hypothesis to extend are already calculated in the lattice, so they just have

to be located and inserted into the corresponding stacks. Because all other modules

remain the same, implementation is simple and all outputs that have been possible

before for sequences of feature vectors as inputs (�rst-best, N-best, �rst-best lattice,

N-best lattice), are then possible for lattices as inputs. Because the time-consuming

state-level search doesn't have to be done, this type of lattice rescoring is fast also for

large lattices of a few thousand arcs, usually taking between 1/100 and 1/10 realtime.

Memory requirements are the same as for the regular search minus the memory that is

needed for the state-level search.

4.2.11 Generating phone-/state-alignments

Because state-level backpointers are not stored, phone- or state-alignments have to be

created on demand. After a �rst-best word hypothesis is created, every word is state-

aligned using the same routines which are necessary for the cross-word rescoring from

section 4.2.7. For a forced state-alignment the word transcription has to be provided

as additional input as a word-graph (section 4.2.9).

4.3 EXPERIMENTS

All experiments were conducted using the described one-pass stack decoder for the

recognition of read sentences from a Japanese newspaper using a 5000 word pronun-
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ciation dictionary with on average 1.5 pronunciations per word. Larger pronunciation

dictionaries for Japanese are currently not publically available. Dictionary and acous-

tic models are based on a set of 43 phones (Table 4.1). The acoustic models are

Table 4.1: Used phone set for Japanese recognition

Phones Comments

silB, silE beginning, end silence

sp short pause (all pauses within utt.)

q all glottal stops

a, i, u, e, o short vowels

a:, i:, u:, e:, o: long vowels

N, w, y, j, z, m, n voiced consonants

p, t, k, ts, ch, b, d, dy, g, s, sh, h, f, r unvoiced consonants

my, ky, by, gy, ny, hy, ry, py combination sounds

The basic phone set on which the dictionary and acoustic models are based on.

gender-dependent decision tree state-clustered Gaussian mixture models trained on 20k

sentences and about a 100 speakers per gender from the ASJ and JNAS database of

approximately 60 hours of speech. Acoustic preprocessing is standard 12-dimensional

MFCCs plus log energy, with applied cepstrum mean subtraction per sentence and

�rst derivatives every 10 ms. A trigram and fourgram language model were trained

on around 45 million words from the RWC corpus containing four years of newspaper

articles from the Mainichi Shinbun, a regular daily newspaper in Japan. The standard

test data are the �rst ten sentences from the speakers 006, 014, 017, 021, 026, 089, 102,

115, 122 from the JNAS database. The basic phone set, all acoustic models, the initial

language models and the initial pronunciation dictionary have kindly been provided by

the IPA group (Kawahara et al., 1998), which also de�ned the test set.

4.3.1 Recognition of Japanese

Speech recognition of Japanese adds a few problems not occurring in Western languages.

Japanese has no spaces between words, so the de�nition of a word for the dictionary

is in general not obvious, but the databases used here are already subdivided into

words, and word error rate is calculated using these word de�nitions. Unfortunately the

subdivision in words is often ambiguous, which leads to recognition errors (example in

English: 'awhile' recognized as 'a' 'while' and vice versa), that shouldn't be counted as

errors in Japanese since there are no spaces. Because words are de�ned by grammatical

analysis, there are often no pauses between them, which makes it essential to use cross-

word models for Japanese, if this currently common word de�nition is used (section

4.3.5). These errors are here referred to as type I errors.

A second problem is that there are three di�erent alphabets plus the western letters
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in use, which makes it possible to write the same word with exactly the same meanings

and pronunciations using di�erent symbols, a phenomenon that occurs in English only

for numbers and for a very limited number of exceptions. It is correct and common to

mix alphabets in sentences and use di�erent spellings of the same word (example: there

are at least six common ways to spell the Japanese word for 'I', meaning myself, some

of them with the exact same pronunciation). This makes the evaluation of Japanese

using a word error rate, which is based on word-IDs, more di�cult than in Western

languages, because di�erent word-IDs shouldn't be counted as errors if their meanings

and pronunciations are exactly the same. These errors are here referred to as type II

errors. For the experiments of this chapter some of the results were cleaned of type I

and type II errors to show their relevance.

A third problem speci�c to decoding is, that because of the many short words and

the many homonyms the number of found word-ends, which make stack operations

and N-gram accesses necessary, is higher than for example in English. The many short

words resulting in on average more word boundaries increase also the need for cross-

word modeling.

4.3.2 Recognition results for high accuracy

Table 4.2 shows the results, for which the parameter settings in Table 4.3 were opti-

mized to achieve a low word error rate. The acoustic models are monophones with

129 states and triphones with 2000 and 3000 states with 16 mixture components each.

The experiments of this task were run in two modes, a Katakana mode, where all

word-IDs and all transcriptions are written only in the Katakana alphabet, and in a

Kanji mode, where all word-IDs and transcriptions are written in a mixture of the

three alphabets like they occur in a regular newspaper. Best recognition results in

Table 4.2: Recognition results for high accuracy

states x mixtures cross-word MALE FEMALE

models Kat/Kan Kat/Kan

129 x 16 (cleaned) no 88.7/87.5 91.8/90.8

2000 x 16 (cleaned) yes 95.2/93.3 96.9/95.2

3000 x 16 (cleaned) yes 96.4/94.8 95.9/94.5

129 x 16 (not cleaned) no 87.9/86.7 91.0/90.0

2000 x 16 (not cleaned) yes 94.4/92.6 96.1/94.4

3000 x 16 (not cleaned) yes 95.6/94.0 95.0/93.6

The upper part shows results which were cleaned of errors that shouldn't be counted in Japanese,
the lower results weren't cleaned. All results are given for the Katakana (Kat) and the Kanji
(Kan) recognition mode as discussed in the text.

Kanji recognition mode are 5.2% word error rate (WER) for the male speakers using
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3000-state models and 4.8% WER for the female speakers using 2000-state models,

if the results are cleaned from errors that shouldn't be counted as errors in Japanese

as discussed above. The raw outputs from the recognizer are about 15% relative (1%

absolute) worse, showing that these errors, which are speci�c to Japanese, shouldn't

be neglected. The Katakana results, which hide misrecognition of homonyms occurring

in Japanese more frequently than for example in English, overestimate the score of

interest by about 1% absolute on average.

The parameter settings in Table 4.3 show that the word-end-beam can be chosen

lower than the word-within-beam as discussed in section 4.2.1.b. The average number

of competing HMM model nodes at any time determines to a large extent the overall

speed of the search and is a suitable measure to compare di�erent implementations

of stack decoders. Note that because active nodes cannot be merged, this number

generally will be lower in transition network decoders. The stack statistics show that

on average about 75% of the time the language model state of the hypothesis to be

inserted is already on the stack, and only 5-10% of the hypotheses remain in the beam

to get actually expanded. This implies that at least the number of N-gram accesses

could be reduced by a completely time-synchronous scheme, where word- and state-level

search both run time-synchronously, which hasn't been tried here.

The average number of N-gram accesses including all back-o�s compared to the

number of cache accesses within the N-gram module show that many N-grams are used

more than once and a cache will be very useful in cases where the N-gram access is

slow like for a disk-based LM.

Table 4.3: Parameter settings and search statistics for results from Table 4.2

129 x 16 2000 x 16 3000 x 16

word-end-beam 30 50 50

word-within-beam 40 80 80

LM-scale 6 11 12

word-deletion-penalty 0 0 0

realtime factor (RTF) 5.5 24 25

active model nodes/frame 1756 10045 8324

pushed hyps/frame 544 1196 1113

inserted/replaced hyps/frame 92/452 246/950 211/902

extended hyps/frame (average stacksize) 36 25 20

on-demand N-gram smearing no yes yes

triangular beam yes no no

N-gram accesses/frame 20070 21029 18749

cache accesses/frame 19837 20834 18600

These results are based on 25-dimensional feature vectors, all log-likelihoods base 10, the re-
altime factor is for 300 Mhz Pentium II and includes observation likelihood calculation. All
results in this table are averaged over genders.
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4.3.3 Recognition results for high speed and low memory

Table 4.4 and Table 4.5 show results and parameter settings for experiments that were

run to maximize decoding speed at a low (about 1%) search error and to minimize mem-

ory requirements, with (a) a regular memory-based trigram LM and (b) a disk-based

LM. Almost realtime performance including all observation likelihood calculations is

possible with around 90% recognition rate using between 10 and 20 MB of memory. The

disk-based LM slows down the search by about a factor of three for the monophone

models, for the triphone models only by about a factor of 1.5, because the N-gram

access accounts only for a small part of the search time in this case.

Table 4.4: Results for high speed and low memory

states x mixt. disk- cross-word MALE FEMALE MEMORY RTF

LM models Kat/Kan Kat/Kan

129 x 16 no no 87.0/86.0 90.2/89.2 10 MB 1.1

129 x 16 yes no 87.0/86.0 90.2/89.2 4 MB 3.0

2000 x 16 no yes 93.3/91.5 95.0/93.8 20 MB 9

2000 x 16 yes yes 93.3/91.5 95.0/93.8 14 MB 14

Results with parameter settings optimized for high speed and low memory, not cleaned of type
I/II errors. Memory and realtime factor are for a 300 MHz Pentium II.

Table 4.5: Parameter settings and search statistics for results from Table 4.4

129 x 16 2000 x 16

word-end-beam 20 40

word-within-beam 30 70

LM-scale 6 11

word-deletion-penalty 0 0

maximum model node pruning no 150

mixture pruning no 80

triangular beam pruning yes no

active model nodes/frame 685 2993

pushed hyps/frame 149 408

inserted/replaced) hyps/frame 44/105 97/311

extended hyps/frame (average stacksize) 7.9 12.3

on-demand N-gram smearing no yes

N-gram accesses/frame 2927 8196

cache accesses/frame 2882 8114
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The trigram LM has 5k unigrams, 330k bigrams and 720k trigrams, occupying in

total about 6 MB of memory using the techniques of section 4.2.5. An N-gram entry

occupies on average 6 bytes, if the complete LM is held in memory, and about 100 kB

total for the disk-based LM with bigrams and trigrams on disk which are loaded on

demand and cached in a hash table of limited size.

4.3.4 Time and memory requirements for modules

The relative time and memory requirements of the di�erent modules are summarized

in Table 4.6. Most of the time is spent on the likelihood calculation and the state-level

search, which includes all operations for the active node list. The time for the tree

lexicon includes activating and deactivating HMM nodes. The cross-word rescoring

procedure includes the on-demand lookup for the correct cross-word HMM model and

the local Viterbi search as its most time-consuming parts. The LM state comparison

is included in the time listed for the stack operations, which is surprisingly low given

the simple linear list implementation shown in section 4.2.3.

Memory requirements are listed for a 5000 word vocabulary with on average 1.5

pronunciations each, giving about 200 bytes/entry. The acoustic model takes most of

the memory because of its uncompressed 4-byte mean/variance parameters and the

cache for the likelihood calculation. The hypotheses generation itself takes almost no

memory but what is needed to represent the currently active hyp-nodes and arcs, which

are in the case of �rst-best recognition not more than a few hundred. Similar, the stack

module contains mainly pointers to hyp-nodes, which also don't use more than a few

kB.

Table 4.6: Relative time and memory requirements for modules

MODULE RELATIVE TIME MEMORY

stack 2% � 0

hyp 1% � 0

state-level search 33% 0.5 MB

word-level search 3% � 0

tree lexicon 5% 1.4 MB

N-gram 12% 5.1 MB

acoustic model 31% 13.0 MB

cross-word rescoring 11% {

SUM 100% 20 MB

Relative time and memory requirements split up for modules using the 2000 x 16 acoustic model
from Table 4.4.
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4.3.5 Usage of cross-word models

Given the word de�nition for Japanese, which was used here, the use of cross-word

models is essential for the recognition of read newspaper sentences, as Table 4.7 shows.

The additional search time for the local rescoring using cross-word models doesn't e�ect

the overall search time at all for this experiment, possibly because of more accurate

partial hypotheses at any time during the search.

Table 4.7: E�ect of cross-word e�ects

CROSS-WORD MODELS RTF REC-RATE

yes 24 93.5

no 24 87.0

Recognition of Japanese newspaper articles with and without cross-word 2000x16 models using
the same beam settings, but optimized LM-scales and word-deletion penalties. Results are
averaged over genders in Kanji recognition mode with search parameters of Table 4.3, not
cleaned.

4.3.6 Usage of fast-match models

Table 4.8 shows the e�ect of using fast-match models to �nd acoustically likely word

hypotheses quickly as described in section 4.2.8. In the case tested here their use

required �ne tuning of several search parameters to make a di�erence in recognition

time.

Table 4.8: E�ect of fast-match models

FAST-MATCH MODELS RTF REC-RATE

yes 7 92.5

no 9 92.6

Use of fast-match models to �nd acoustically likely word hypotheses quickly, averaged over
genders in Kanji recognition mode with search parameters of Table 4.5, not cleaned. Fast-
match models were 3-state monophones with four mixture components each.

4.3.7 E�ect of on-demand N-gram smearing

On-demand N-gram smearing (section 4.2.6.b) can e�ciently reduce the number of

active model nodes, as Table 4.9 shows. In the cases tested here the reduction of

active nodes does not necessarily reduce the search time because of the overhead of

the procedure that has to be invoked before each stack is expanded. If the likelihood

calculation of the acoustic models would take longer, this method would have a greater

e�ect on the total recognition time.
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Table 4.9: E�ect of on-demand N-gram smearing

states x mixt. LM active N-gram RTF REC.

lookahead models accesses RATE

129 x 16 unigram 685 2927 1.3 87.6

129 x 16 N-gram 593 2252 1.9 87.5

2000 x 16 unigram 2993 8196 10 92.6

2000 x 16 N-gram 2817 5486 9 92.6

Shows the e�ect of on-demand N-gram smearing versus unigram smearing. Results are averaged
over genders in Kanji recognition mode with search parameters of Table 4.5, not cleaned.

4.3.8 Lattice/N-best list generation and lattice rescoring

The results shown in Table 4.10 compare the time and memory requirements for gen-

erating the �rst-best hypothesis with the time for generating lattices or N-best lists in

the �rst pass. It can be seen that the more complicated LM state check for the N-best

lists creates only little overhead, and is almost independent of the length of the N-best

lists.

Lattice rescoring as discussed in section 4.2.10 was tested for the generated lattices

for both lattice resoring modes. Type I lattice rescoring refers to using only the word-

graph as an LM constraint, but all alignments, acoustic scores including cross-word

e�ects and LM scores are recalculated. For type II lattice rescoring only the LM scores

are recalculated, which usually includes a new LM scale factor and a new word deletion

penalty.

Table 4.10: Relative time and memory for di�erent search modes

SEARCH MODE RTF MEMORY

�rst-best (absolut) 9 20 MB

�rst-best 100% 100%

lattice 107% 106%

N-best list, N = 10 113% 100.4%

N-best list, N = 50 116% 100.4%

N-best list, N = 100 117% 100.5%

lattice rescoring type I 0.1% 77%

lattice rescoring type II 5.6% 93%

Relative time and memory (as measured by the UNIX top command) for several search modes
with beams leading to lattices of about 2500 arcs and 500 hyp-nodes, and an average N-best
list length of 90 hypotheses, for parameter settings as in Table 4.5. All N-best hypotheses di�er
by at least one word as de�ned in section 4.2.3.b.
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4.4 CONCLUSIONS

This chapter presented a detailed description of a memory-e�cient one-pass stack de-

coder applied to recognition of read sentences from a Japanese newspaper. The ar-

chitecture of the time-asynchronous stack decoder made it easily possible to integrate

lattice and N-best list construction as well as arbitrary order N-gram LMs and arbi-

trary order cross-word context-dependent acoustic models in a single decoder. Also,

various forms of lattice rescoring and the generation of forced alignments �ts well into

the framework of the time-asynchronous search technique. Memory requirements at

around 1% search error are between 4 and 20 MB using the presented techniques.

In summary, it can be concluded, that a time-asynchronous stack decoder is a

conceptually attractive framework for integrating many often needed procedures for

speech recognition tasks. Although very e�cient in memory requirements and faster

than the decoder mentioned in (Kawahara et al., 1998) for the same task, it should

be noted that the speed of a time-asynchronous stack decoder like implemented here

is probably not optimal for the speci�c task of generating a �rst-best hypothesis or a

lattice from a feature vector sequence, because the globally time-asynchronous search

over the state space results in the generation of many partial hypotheses that are later

not expanded. This could be avoided by using a time-synchronous stack decoder with

multiple trees, which has not been investigated in this thesis.
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Chapter 5

Conclusions

5.1 SUMMARY

Many problems of engineering interest, like for example speech recognition or online

hand-writing recognition, can be formulated in an abstract sense as supervised learning

from sequential data, where an input sequence X = xT1 = fx1;x2;x3; : : : ;xT�1;xT g
has to be mapped to an output sequence Y = yT1 = fy1;y2;y3; : : : ;yT�1;yTg, that
in general embodies correlations between neighboring vectors xt;xt+1 and yt;yt+1.

This thesis tried to give a uni�ed view of the abstract problem of supervised learning

from sequential data and presented some models and algorithms for improved sequence

recognition and modeling performance, measured on synthetic data and on real speech

data. In particular, it was possible to remove some assumptions about the data which

are necessary using traditional models.

Chapter 2: First the concept of maximizing the posterior probability of the output

sequence given the input sequence, P (yT1 jxT1 ), to achieve an optimal sequence

recognition rate, was discussed. Two approaches to decompose the relevant parts

of P (yT1 jxT1 ) for recognition of the best sequence Y? into smaller independent

expressions were shown, a frequently used approach into a generative and a prior

model part,

Y? = arg max
Y

h TY
t=1

P (xtjx1;x2; : : : ;xt�1;yT1 )
i

| {z }
generative part

h TY
t=1

P (ytjy1;y2; : : : ;yt�1)
i

| {z }
prior part

(5.1)

and an approach which decomposes P (yT1 jxT1 ) directly,

Y? = arg max
Y

TY
t=1

P (ytjyt+1;yt+2; : : : ;yT ;x
T
1 ): (5.2)

Necessary approximations to deal with context-dependency on the input and out-

put side in practical applications were discussed, and (Hidden) Markov Models, an

109
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important group of models speci�cally designed to be used for sequence modeling

and prediction, were reviewed.

Chapter 3: In chapter 3 various ways of supervised learning from sequences using

arti�cial neural networks were discussed. First the necessary basics of neural net-

works, commonly used architectures and their problems with respect to sequence

processing were reviewed. A powerful neural network structure to deal with se-

quential data is the recurrent neural network (RNN), which allows to estimate

P (ytjx1;x2; : : : ;xt), the output probability distribution at time t given all previ-

ous input. This chapter presented various extensions to the basic RNN structure,

which are

a) a bidirectional recurrent neural network (BRNN), which allows to estimate

expressions of the form P (ytjxT1 ), the output at t given all sequential input,

for uni-modal regression and classi�cation problems,

b) an extended BRNN to directly estimate the posterior probability of a sym-

bol sequence, P (yT1 jxT1 ), by modeling P (ytjyt�1;yt�2; : : : ;y1;xT1 ) as found
in (5.2) without explicit assumptions about the shape of the distribution

P (yT1 jxT1 ),
c) a BRNN to model multi-modal input data that can be described by Gaussian

mixture distributions conditioned on an output vector sequence, P (xtjyT1 ),
assuming that neighboring xt;xt+1 are conditionally independent, and

d) an extension to c) which removes the independence assumption by model-

ing P (xtjxt�1;xt�2; : : : ;x1;yT1 ) as found in (5.1) to estimate the likelihood

P (xT1 jyT1 ) of a given output sequence without any explicit approximations

about the use of context.

Chapter 4: Chapter 4 described the details of a fast, memory-e�cient one-pass stack

decoder for e�cient evaluation of the search space for large vocabulary continuous

speech recognition, a challenging sequence modeling problem. After de�ning the

requirements for a modern decoder, it describes the details of an implementation

that is based on a stack decoder framework. It is shown how it is possible to handle

arbitrary order N-gram language models, how to generate N-best lists or lattices

next to the �rst-best hypothesis at little computational overhead, how to handle

e�ciently cross-word context-dependent acoustic models of any context order,

how to e�ciently constrain the search with word-graphs or word-pair grammars,

and how to use a fast-match with delay to speed up the search, all in a single

left-to-right search pass. The details of a disk-based representation of an N-gram

language model are given, which make it possible to use LMs of arbitrary (�le) size

in only a few hundred kB of memory. On-demand N-gram smearing, an e�cient

improvement over the regular unigram smearing used as an approximation to the

LM scores in a tree lexicon, is introduced. It is also shown how lattice rescoring,

the generation of forced alignments and detailed phone-/state-alignments can be
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integrated e�ciently into a single stack decoder. The use of this decoder led to

the best reported recognition results of around 3.5{5% word error rate on the

standard test set of a widely used Japanese newspaper dictation task. With

computationally cheap acoustic models it was possible to achieve around 11%

word error rate in nearly real-time on a 300 Mhz Pentium II. Using a disk-based

LM the memory usage could be optimized to 4 MB in total.

5.2 CONTRIBUTIONS FROM THIS THESIS

This thesis has addressed the problem of sequence modeling and prediction with ap-

plications for speech recognition, and has presented to knowledge of the author several

improvements to models and algorithms for sequence modeling for the �rst time. These

are

1) a bidirectional recurrent neural network (BRNN) structure, which allows to esti-

mate expressions of the form P (ytjxT1 ), the output at t given all sequential input,
for uni-modal regression and classi�cation problems,

2) an extended BRNN to directly estimate the posterior probability of a symbol

sequence, P (yT1 jxT1 ), by modeling P (ytjyt�1;yt�2; : : : ;y1;xT1 ) without explicit

assumptions about the shape of the distribution P (yT1 jxT1 ),
3) a BRNN to model multi-modal input data that can be described by Gaussian mix-

ture distributions conditioned on an output vector sequence, P (xtjyT1 ), assuming
that neighboring xt;xt+1 are conditionally independent, which takes automati-

cally care of all possible context e�ects on the output side,

4) an extension to c) which removes the independence assumption by modeling

P (xtjxt�1;xt�2; : : : ;x1;yT1 ) to estimate the likelihood P (xT1 jyT1 ) of a given output
sequence without any explicit approximations,

5) a simple extension to a �rst order gradient descent algorithm to optimize the

objective function for neural network training, called ARPROP, which allowed

to train the reasonably large networks (� 106 parameters) with reasonably large

amounts of data (� 107 vectors) like used for this thesis in a few days on regular

workstations without di�cult parameter setting,

6) a description of a one-pass stack-decoder for speech recognition, which

{ produces �rst best, N-best, lattices or state-alignments in a single pass,

{ can handle arbitrary order N-gram language models,

{ can handle arbitrary order context-dependent models with full cross-word

expansion, using a time- and memory e�cient local rescoring procedure to

include all cross-word e�ects,
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{ gave the currently best reported results (� 3:5� 5% word error rate) on the

standard test set of a widely used Japanese newspaper dictation task,

{ can run in 4 MB total memory with a 5000 word vocabulary and a back-o�

trigram.

5.3 SUGGESTIONS FOR FUTURE WORK

The models and algorithms presented in this thesis can be extended in various ways

and can be expected to be useful in real applications, which are brie
y summarized

here:

Mixture density BRNNs for speech recognition: In this thesis mixture density

BRNNs, which allow to model speech data with less assumptions than previ-

ously necessary, were shown to give increased likelihood on test speech data, but

they weren't used for actual recognition. Since machines still have a poor per-

formance, compared to a human being, when recognizing spontaneous speech1,

which seems to be largely related to the quality of the acoustic models, mixture

density BRNNs could be an interesting alternative to conventional unconditional

Gaussian mixture models.

Mixture density BRNNs for speech synthesis: A currently popular approach to

speech synthesis is a clever assembly of units of pre-recorded speech from a

database. While within a unit the speech is in general almost as natural as

the recording, the joints between the units usually inhibit discontinuities, which

make the synthesized speech unnatural and sometimes incomprehensible.

Mixture density BRNNs could be used for one part of the speech synthesis prob-

lem by predicting a smooth feature vector sequence, conditioned on a stream of

phonemes with preset durations, to avoid the unnatural discontinuities. When

trained for a single speaker, a mixture density BRNN with a single Gaussian might

be su�cient to get a reasonably accurate model, which in this case would be very

easy to use since the predicted mean of the Gaussian at time t could be used as

the predicted feature vector. The quality of the prediction could be controlled by

changing the number of free parameters of the model during training.

Extension of BRNNs to higher-dimensional structures: This thesis dealt with

sequential data, that is data whose order can be represented as a simple (one-

dimensional) sequence. Many of the presented extensions to the basic recurrent

neural network structure can be generalized to two- or even higher-dimensional

structures, which would for example allow to estimate expressions of the form

P (yijjx1<=i<=Ni;1<=j<=Nj ), an output depending on an area of Ni � Nj inputs.

1the best state-of-the-art system in the 1998 Switchboard/CallHome evaluations for English, which

involves the transcription of telephone conversations over various topics, had 39.5% word error rate



5.3. SUGGESTIONS FOR FUTURE WORK 113

Time-synchronous stack decoder: As brie
y mentioned in chapter 4, a probably

faster, but less memory-e�cient way of �nding the best hypothesis for a speech

recognition task might be to use a completely time-synchronous stack decoder

with multiple trees, which would avoid the need of a heuristic maximum word

length and the heuristic triangular beam pruning procedure.

Finally, the ultimate academic goal of conditional sequence prediction must be to

perform the conditional modeling of the sequence, in categorical as well as in continuous

output spaces, as well as the search for the best sequence with a single model, whose

parameters are all optimized during a single training procedure.

Unfortunately all currently used approaches are still based on two separate proce-

dures, the production of hypothesized sequences and the evaluation of their scores to

select between them, which limits the possibilities of improving the search procedure

automatically during training of a single model using the simple but powerful principle

of learning from data.
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Appendix A

Improved initialization of

Multi-Layer-Perceptrons

When training MLPs, an often used initialization procedure is to use small values

around zero for all weights without using the training data. An improved procedure

that has been used for various experiments in this thesis, which gave in general better

results than the random initialization by converging to better local minima, is described

here.

The general procedure is to use the properties of the input data to initialize the

input layer and supervised methods for the output layer by approximating the original

problem (uni-modal regression, multi-modal regression, classi�cation) by a general least

square problem formulated as the normal equations, which can be solved using the

methods described in (Press et al., 1992).

1. Initialization of input layer (D inputs, J hidden neurons)

(a) Set the D weights to the jth neuron randomly excluding the bias weights.

(b) Forward-propagate all N input vectors through the input layer excluding

the bias weights and calculate the mean �j of the hidden activations.

(c) Set the jth bias weight to the negative mean of the jth activation, such that

the average activation becomes zero.

(d) Forward-propagate all input vectors through the input layer using the bias

weights and calculate the variance �j of the hidden activations.

(e) Divide all D + 1 weights of the jth hidden neuron by
p
�j to set a unit

variance for all activations.

2. Initialization of output layer (J hidden neurons, K outputs)

(a) Forward-propagate all input vectors through the input layer using the bias

weights and store the results in a N � (J +1) design matrix D, with the last

row set to one for the unconditional bias.
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(b) Set up the N � K target matrix T using the K-dimensional targets from

the training data. The matrix will contain exactly the target values in

the case of linear output activation functions. In all other cases the target

matrix entries have to be calculated by approximately inverting the output

activation function as shown in Table A.1. Note that the argument of the

ln() function must not be zero or very close to zero, which was here taken

care of by using a safe logarithm function

IF x > floor THEN lnsafe(x; floor) = ln(x)

ELSE lnsafe(x; floor) = ln(floor)

with 10�3 < floor < 10�6.

Table A.1: Inversion of output activation functions.

Output activation Inversion function

linear y

sigmoid lnsafe(y)� lnsafe(y � 1)

tanh (lnsafe(y + 1)� lnsafe(y � 1))=2

exp lnsafe(y)

softmax lnsafe(y)

Combinations of output activation functions and their inversion functions for improved neural
network initialization.

(c) Solve the normal equations

(DTD)WT =DTT

to get the weight matrix W with the initial weights for the output layer.

The recommended way to avoid round-o� errors and to deal with nearly

singular matrices is singular value decomposition (SVD), but the normal

equations can also be solved with faster but more dangerous methods (LU

decomposition or Cholesky decomposition) (Press et al., 1992) with respect

to their round-o� erros.
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