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Partial Language Analysis

using Support Vector Learning ∗

HIROYASU YAMADA

Abstract

The difficulty of analyzing full language often hampers the problem to develop

practical natural language processing (NLP) systems. In this thesis, we focus on two

fundamentalpartial language analysis, 1) Japanese named entity extraction and 2)

Partial parsing in English. Named entity extraction is the task for extracting informa-

tion such as proper nouns and numerical expressions from a document and classifying

these expressions into some categories such as person, location, organization, and date.

Partial parsing takes a sentence as an input and interprets it as a parsed sub-tree which

does not include ambiguities. Both techniques are useful for not only a wide range of

applications such as machine translation and information retrieval field but also pre-

processing of full language analysis. We present corpus-based method for named en-

tity extraction and partial parsing using a machine learning technique, Support Vector

Machines(SVMs) and especially show how SVMs can work well in partial language

analysis.
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Chapter 1

Introduction

With the explosive growth of the Internet, a large number of electronic documents have

been available. The keyword-match based information retrieval provides fast access to

the relevant documents. For retrieving the more relevant information, it is necessary to

analyze the documents by using natural language processing.

However, there exists many forms of ambiguity in natural language, thus it is dif-

ficult to analyze completely the documents. Partial language analysis is one of the

most important techniques for solving this problem and is to analyze partial syntactic

structure of a sentence such as noun phrase and verb phrase. In many natural language

processing applications, partial analysis of language is often utilized rather than full

language processing. For instance, in information retrieval, it needs to retrieve docu-

ments or texts with information content that is relevant to users’ requirement at high

speed. Partial language analysis such as noun phrase analysis is helpful to such a re-

trieval. Furthermore, partial language analysis is useful for not only these applications

but also a preprocessing module for full language analysis.

In this thesis, we define “partial language analysis” as follows :

• Text Chunking:

Text chunking is to divide text into syntactically related non-overlapping groups

of words. Noun phrase chunking and named entity extraction are well known

techniques of text chunking. Part-of-speech tagging is also regarded as text

chunking.

• Bracketing:
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Bracketing represents the result of text chunking as nested brackets which shows

syntactic structure. Noun phrase bracketing, partial and full parsing techniques

are categorized into the bracketing.

In this thesis, we focus on two problems of partial language analysis :Japanse

named entity extractionandpartial parsing in English .

Named entity extraction is a kind of the proper noun phrase analysis and is the task

for extracting proper nouns, numerical expressions, etc. from a document and classify-

ing these expressions into some categories such as person, location, organization and

date. Named entity extraction is an ‘intermediate task’, i.e., it is not an end in itself,

but rather is necessary at one level or another to accomplish most natural language

processing tasks and is expected to improve the quality of information retrieval(IR).

Especially, in question answering systems, named entity extraction techniques are nec-

essary to answer users’ queries such as ’when’, ’where’, and ’who’ [1, 34].

Partial parsing is one of the fundamental techniques in natural language process-

ing, and takes a sentence as an input and interprets it as a parse sub-tree which does

not include ambiguities. This technique is useful for not only a wide range of appli-

cations information retrieval field and machine translation but also a preprocessing of

full language parsing.

Over the last few years, a number of large scale machine-readable text corpora in-

cluding strategies for evaluation have become available. Therefore, partial language

analysis including named entity extraction and partial parsing has been studied based

on statistics or stochastic models of language. The statistical approach acquires auto-

matically rules for language analysis using statistic information from a large number

of documents. It has overcome the problems of conventional rule-based approaches

which rely on linguistic and domain specific knowledge. Statistical models are now

widely used as robust mechanisms. However, the approach still has a problem: it is

not clear how to handle rare usages.

Recent approaches to machine learning, especially the results of supervised learn-

ing approaches, show the effectiveness of their techniques and other tasks in natural

language processing with high accuracy [33, 43, 27, 2, 44, 32, 15].

In this thesis, we focus on a supervised learning algorithmSupport Vector Ma-

chines(SVMs) which are developed by Vapnik et al [41, 42]. SVMs have been found

to have a good performance for many natural language processing tasks such as chunk-
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ing [36, 37], part-of-speech tagging [38], dependency structure analysis[19], word

sense disambiguation[12] and natural language processing applications such as text

categorization [39, 40, 45, 10, 11].

In this thesis, we propose a method for two partial language analysis: Japanese

named entity extraction and partial parsing in English using support vector learning,

and show the effectiveness of our method throughout the experiments based on a large

corpus.

The rest of this thesis is organized as follows. Firstly, in Chapter 2, we report on

some studies related to the named entity extraction and parsing with some statistics

and machine learning approaches. In Chapter 3, we explain an overview of the SVMs

and its theoretical advantage for partial language analysis. In Chapter 4, we propose a

method for Japanese named entity extraction using SVMs. In Chapter 5, we propose a

partial parser which constructs a parse binary tree with deterministic bottom-up algo-

rithm Our parser regards each parsing process as a classification task which classifies

the context into the action for constructing a parse tree. We apply SVMs to the task.

Finally, Chapter 6 summarizes the thesis and ends with conclusions and future

work.
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Chapter 2

Related Work

2.1 Named Entity Extraction

Named entity extraction is one of the noun phrase chunking. The task is to extract

a phrase like proper nouns and classify some category such as “PERSON”, “LOCA-

TION” and “DATE”. Most of the previous studies of named entity extraction have

applied chunking techniques to the task. We first explain some named entity represen-

tation models.

2.1.1 Representation of Named Entity

Ramshow et al. proposed a representation of chunk called ’Inside/Out’ for text chunking[21].

Tjong Kim Sang et al. proposed four models for representation of a chunk, i.e., IOB1,

IOB2, IOE1, and IOE2 [6]. The IOB2 models in his study is equal to ’Inside/Out’

model in Ramshow’s study. In this thesis, we call the Inside/Out model as the IOB2

model. Sekine[35] and Uchimoto[18] used Start/End model as the representation of

named entity, especially for Japanese. Furthermore, Uchimoto et al. add three tags

to the Start/End model: PRE, POST and MID. These 6 models are summarized as

follows:

• IOB1: If the first word inside a named entity ’X’ immediately follows another

named entity, the word is assigned to ’B-X’ tag, otherwise to ’I-X’ tag.

• IOB2: The first word inside a named entity ’X’ is always assigned to ’B-X’ tag.
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• IOE1: If the final word inside a named entity ’X’ immediately precedes another

named entity, the word is assigned to ’E-X’ tag, otherwise to ’I-X’ tag.

• IOE2: The final word inside a named entity ’X’ is always assigned to ’E-X’ tag.

• S/E(Start/End): If a word itself is a named entity ’X’ then the word is assigned

to ’S-X’ tag. The first or final word inside a named entity ’X’ is always assigned

to ’B-X’, ’E-X’ tag respectively. Neither a first nor final word inside a named

entity ’X’ is assigned to ’I-X’ tag .

• S/E+(Uchimoto’s model): this model is equal to the S/E model except for non-

NE tag. If the non-NE word precedes named entity ’X’, the word is assigned to

’PRE-X’ tag. If the non-NE word is just one word between different named enti-

ties, the word is assigned to ’MID-X’ (X is the former named entity category). If

the non-NE word follows named entity ’X’, the word is assigned to ’POST-X’.

In all of 6 models, if a word is not named entity, then the word is assigned to ’O’ tag.

We call each tagNE-tag in this thesis.

Figure 2.1 illustrates the representation of named entity using 6 models(IOB1,

IOB2, IOE1, IOE2, S/E and S/E+) for a sample sentence “エリツィン大統領は四
日,日米両国 ”.

PERSON DATE
エリツィン 大統領 は 四 日 ,

IOB1 I-PERSON O O I-DATE I-DATE O

IOB2 B-PERSON O O B-DATE I-DATE O

IOE1 I-PERSON O O I-DATE I-DATE O

IOE2 E-PERSON O O I-DATE E-DATE O

S/E S-PERSON O O B-DATE E-DATE O

S/E+ S-PERSON POST-PERSON PRE-DATE B-DATE E-DATE MID-DATE

LOCATION LOCATION · · ·
日 米 両国 · · ·

I-LOCATION B-LOCATION O

B-LOCATION B-LOCATION O

I-LOCATION E-LOCATION O

E-LOCATION E-LOCATION O

S-LOCATION S-LOCATION O

S-LOCATION S-LOCATION POST-LOCATION

Figure 2.1. Representation of named entity for 6 models
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2.1.2 Named Entity Extraction using Machine Learning

Decision Tree

Sekine et al.[35] proposed a method for Japanese named entity recognition using deci-

sion tree learning. Their method recognizes a named entity in a sentence by classifying

each word in the sentence into a NE-tag with Start/End model. They constructed a de-

cision tree classifier using following three types of features.

• Part-of-speech tagged by JUMAN [20]

They define the set of categories based on the major and minor part-of-speech

tags.

• Character type of words

Character type of words, such asKanji, Hiragana, Katakana, Alphabet, number,

or Symbol, etc. and some combinations of these character types.

• Special Dictionaries

They use a dictionary which a word belongs to some types of named entity.

The dictionary created is based on dictionary entries of JUMAN, found on Web

documents or, from human knowledge.

They reported their experiments using a small set of data from two different do-

main: One is the Accident Report Domain which consists of a training set of 103

articles and a test set of 11 articles containing 2,368 named entities in all. The results

for the data set was 85 at F-value. The another one is the Executive Succession Domain

for demonstrating the portability of their method. The results is 84 at F-value for the

data set.

Nobata proposed a method for Japanese named entity extracion using decision tree

learing[47]. Their method is similar to Sekine’s study, and the result attained 70.3 of

F-value for GNENRAL domain test data in IREX workshop[14].

Isozaki

Isozaki proposed a method using a simple rule generator and decision tree learning for

Japanese Named entity extraction [9]. His method is summarized as follows:
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1. Generatingrecognition rules

In his method, each named entity for training data is converted to a recognition

rule via morphological analyser. Arecognition rulesare written as

pattern1, pattern2, · · · , patternn → X,c1,c2

wheren is the number of words inside the named entity categoryX. Patterni can

be represented as a word: character-type: a part-of-speech ofi-th word.c1 refers

to the restriction of proper nouns by a suffix dictionary, andc2 is that it does not

restrict numbers by a suffix dictionary. Everyci has either of two values, 0(no

restriction) and 1(restriction).

For example, in the pattern “大阪銀行”, which consists of two words: “大
阪” and “銀行”, two patterns, i.e.,大阪: all-kanji:location-name, and銀行:all-

kanji:common-noun are generated from the following rules.

*:*:location-name,

:*:common-noun

→ ORGANIZATION, 0, 0

In the above rule, ’*’ shows that it matches any sequence of words.

2. Refinement of recognition rules by using decision tree learning, and generating

named entity candidates

By applying each recognition rule to the untagged training data, named entity

candidates for the rule are obtained. By comparing the candidates with the given

answer for the training data, these candidates are classified into two types, i.e.,

positive and negative examples for the recognition rule. Finally, decision tree

learning is applied to classify these examples correctly.

3. Arbitration of these named entity candidates

Once the refined rules are generated, they are applied to a new document and

a large number of named entity candidates are obtained. They use a kind of

left-to-right longest match methodto rank candidates. The method operates as

7



follows: First, compared with each starting point of named entity candidates,

then selected the earliest ones. If two or more candidates start at the same point,

their ending points are compared and the longest candidate is selected. The

procedure is repeated until the candidate set becomes empty.

They evaluated their method by comparing it with maximum entropy system(ME).

They use the standard IREX[14] training data and the formal run test data. For to-

kenization, they use ChaSen 2.2.1 [46]. which has about 90 part-of-speech tags and

large proper noun dictionaries, i.e., 32,167 person names, 16,610 organization names,

67,296 location names, and 26,106 other proper nouns. The result of ME attained at

82.8 of F-value when length of left and right context is one word respectively. When

left and right context length are two words respectively, ME attained at 82.7 of F-value.

The success rate of their method, on the other hand, was 84.1 when left context is one

word and as right context is two words.

2.1.3 Maximum Entropy Model

Uchimoto et al. proposed a method based on a maximum entropy (ME) model and

transformation rules for Japanese named entity extraction [18]. The maximum en-

tropy model has recently been successfully introduced to a variety of natural language

application, such as part-of-speech tagging [30], parsing [31, 8] and so on.

The method estimates a probabilityP(NE-tag|w) by using ME model, wherew

is a word in a sentence, then extracts named entity to search for the optimal NE-tag

sequences for whole the sentence by using Viterbi algorithm.

Further, in Japaneses named entity extraction, named entity boundary is often dif-

ferent from a word segments by morphological analyser. In this case, the system can

not extract named entity correctly. To cope with the problem, they used a transforma-

tion based method similar to Brill’s one in the part-of-speech tagging [3]. Transfor-

mation rules are automatically acquired from the training data using the difference be-

tween word segmentation by morphological analyser and correct named entity bound-

ary. Let word “在日” be the categories which is illustrated the follows.
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word part-of-speech part-of-speech NE-tag

(major tags) (minor tags)

‘在日’ ‘名詞’ ‘サ変名詞’ O

if “日” in “在日” is the named entity of “LOCATION”, then ‘在日’ is translated into

two words. These two words are assigned to new part-of-speech and correct NE tags

as follows.

word part-of-speech part-of-speech NE-tag

(major tags) (minor tags)

‘在’ ‘名詞’ ‘普通名詞’ PRE-LOCATION

‘日’ ‘名詞’ ‘普通名詞’ ‘S-LOCATION’

They use lexical items and part-of-speech features, and 40 NE-tags. They used the

CRL named entity data, the IREX-NE dry-run training data, and the formal-run data,

which consist of about 12,000 sentences in their experiment. They also sued F-measure

as an evaluation measure. They reported that the method achieved at 85.75 of F-value

for the test set of restricted domain, and 80.17 at F-value for general domain in IREX

competition[14]. Although their results have shown satisfactory performance, they

used a simple feature selection in the training data, i.e. they only use words in the data

with more than two. This means that it deteriorate the performance of the training data

itself.

Sassano

Sassano et al. proposedvariable length modelfor Japanese named entity extraction

[23, 22]. The idea behind the method is that it overcomes the disadvantage of the fixed

context length model(especially, 3 context length model like Sekine and Nobata’s stud-

ies) and it incorporates richer contextual information as well as patterns of constituent

morphemes within a named entity. In principle, as part of the training phase this model

considers which of the preceding/subsequent words constitute one named entity to-

gether with the word at the current position in a sentence.

It also considers several words in the left/right contexts of the NE. Their method

restricts the model to explicitly considering the cases of NEs of the length up to three

9



words and only implicitly considering those longer than three words. It also restricts

the model by considering two words in both left and right contexts of the named entity.

As the learning model, they used decision list and maximum entropy model. and

use a IOB2 and Start/End models in figure 2.1. They use three kinds of features :(i) a

pair of word and part-of-speech tag, (ii) a pair of character types and part-of-speech,

and (iii) part-of-speech. The character type consists of 6 elements:Hiragana, Kanji,

Katakana, Numeric,Alphabet, Symbol, and their combination.

They evaluated their method using the IREX workshop’s training and test data.

They compared the results of the combinations of the two NE representation models:

the IOB2 and Start/End models, two approaches to contextual feature design: the 3,

5 context length and the variable length models, and two learning algorithm: decision

tree and Maximum entropy model. Among these combinations, the variable length

model, Start/End models and ME learning outperforms other combinations and the

accuracy rate of 82.8 of F-value.

2.2 Parsing in English

Jensen

Jensen et al. proposed a partial parsing ‘fitted parse’ [16]. The significant feature of

the parsing is to produce a reasonable approximate parse that can serve as input to the

remaining stages of processing, if the rules of a more conventional syntactic grammar

are unable to produce a parse for an input sentence.

The fitting procedure begins after thecore grammarhas been applied in a bottom-

up, parallel fashion, but has failed to produce an complete parse tree of the sentence.

At this point, as a by-product of bottom-up parsing, records are available for inspection

that describe the various segments of the sentence from many perspectives, according

to the rules that have been applied.

The algorithm of fitting proceeds in two main stages: first, a head constituent is

chosen; next, remaining constituents are fitted in. In the first stage, candidates for the

head are tested preferentially as follows, from most to least desirable:

(a)Verb phrases with tense and subject;

(b)Verb phrases with tense but no subject;

(c)Segments other than verb phrase;
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(d)Untensed verb phrases;

If more than one candidate is found in any category. The one preferred is the widest. If

there is a tie for widest, the leftmost of those is preferred. If there is a tie for leftmost,

the one with the best value for the parse metric is chosen. If there is still a tie, an

arbitrary choice is made. If the head constituent covers the input sentence, the fitting

process is complete, otherwise to go to the next stage.

In the next stage, the remaining constituents are added on either sided, with the

following order of preference:

(i) segments other than verb phrases

(ii) untensed verb phrases ;

(iii) tensed verb phrases;

As with the choice of the head, the widest candidate is preferred at each step. The fit

moves outward from the head. Both leftward to the beginning of the strnig, and right-

ward to the end until the entire input sentence has been fitted into the best approximate

parse tree. The overall effect of the fitting process is to select the largest chunk of

sentence like material within a text string and consider it to be central, with left-over

chunks of text attached in some resonable manner.

2.2.1 Statistical Parsing

In this section, we report on some statistical parsing using standard data set “Penn tree-

bank Wall Street Journal” corpus. We first describe the standard data set and evaluation

measure in this corpus. Then we report on four studies using this corpus.

Penn Treebank Wall Street Journal Corpus

The Wall Street Journal portion of the Penn Treebank corpus developed by Marcus

et al. for wide range of research fields in natural language processing [28, 29]. The

corpus consists of over 4.5 million words in 24 sections of American English and is

annotated for part-of-speech information and syntactic bracketing.

The standard data set consists of two parts: training and test set. The training

set contains 39,832 sentences from section 2 to section 21 and test set consists of
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2,416 sentences of section 23 in the corpus. The standard evaluation measure based on

PARSEVAL [5] is follows:

Labeled Recall (LR) =
number of correctly detected constituents

number of constituents annotated by human

Labeled Precision=
number of correctly detected constituents

number of constituents annotated by the parser

Cross Brackets (CB)=
number of constituents crossing a annotated constituent

number of sentences

0 Cross Brackets (0CB)= percentage of sentences which have 0 crossing brackets.

2 or less Cross Brackets(2CB)= percentage of sentences which have less than 2 crossing brackets.

Magerman

Magerman presented a statistical parser called SPATTER which is based on decision-

tree learning techniques constructing a complete parse tree for every sentence [4]. A

parse tree for a sentence is constructed by starting with the sentence’s words as leaves

of a tree structure, and labeling and extending these nodes until a single-rooted, labeled

tree is constructed. This pattern recognition process is driven by the decision-tree

learning.

In his method, representation of constituent consists of four elements: words, tags,

labels, and extensions.

Figure 2.2 shows the representation of constituent in the method. the word features

are string of the word itself(e.g, a, brown, and cow in figure 2.2). The tag feature can

take on any value in the part-of-speech tag set, like ‘DT’, and the label feature can take

on any value in the non-terminal set, like ‘right’. The extension can take on any of the

following five values.

• right: ‘Right’ is a node which is the first child of a constituent.

• left: ‘Left’ is a node which is the last child of a constituent.

12



upright left

a brown cow

DT JJ NN

left

NP

NN
caw

Figure 2.2. Representation of constituent and labeling of extensions in SPATTER for

sample noun phrase “a brown caw”.

• up: ‘Up’ is a node except for the first and last child of a constituent.

• unary: ‘Unary’ is a node which is a child of an unary constituent.

• root: the node is the root of the tree.

SPATTER consists of three main decision tree models: a part-of-speech tagging

model, a node-extension model, and a node-labeling model. These decision tree mod-

els are grown using following question with traversing the parsed sentence in training

data.

• What is the X at the current node?

• What is the X at the node to the Y?

• What is the X at the node two nodes to the Y

• What is the X at the current node’s first child from the Y ?

• What is the X at the current node’s second child from the Y ?

where X is one of the word, tag, label or extension, and Y is either left or right.

The training is proceeded as follows. The training corpus is divided into two set,

one is tree growing, approximately 90% and another is tree smoothing, 10%. For
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each parse sentence in the tree growing corpus, the correct state sequence is traversed.

Each state transition fromsi to si+1 is used as a training example for the decision-tree

growing process for the appropriate tree. After the decision tree are grown, they are

smoothed by the tree smoothing corpus. By searching the highest probability of a

parse tree, the parsing is proceeded. The probability of a parse is just the product of

the probability of each of the actions made in constructing the parse, according to the

decision-tree models, the parsing procedure.

They evaluated SPATTER using the Penn Treebank Wall Street Journal corpus.

The result attained both 84.6% precision and recall for sentences of 40 words or less.

Collins

Collins proposed generative lexicalized models for statistical natural language pars-

ing [26]. The his model is based on probabilistic context-free grammar. The model

searches the best parse treeTbest that maximizes conditional probabilityP(T|S) as fol-

lows, whereS is the input Sentence andT is the parse tree. The

Tbest = argmaxTP(T|S)

= arg maxTP(T,S)P(S)

= arg maxTP(T,S)

To maximize conditional probabilityP(T|S) is equal to maximize the joint prob-

ability P(T,S). A joint probabilty P(T,S) is then defined by attaching probabili-

ties to a top-down derivation to tree using probabilistic context-free grammars rules

LHS→ RHS, whereLHSandRHSstand for “left hand side” and “rigt handside” re-

spectively. Thus a conditional probabilityP(T,S) can be written byn applications of

context-free rulesLHSi → RHSi (1≤ i ≤ n) as follow:

P(T,S) = ∏
i

P(RHSi|LHSi)

Furthermore, each probabilityP(RHSi|LHSi) can be wriiten as lexicalized con-

stituent ofRHSi and using head word of theLHSi
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P(RHSi|LHSi) = P(Ln+1(ln+1) · · ·L1(l1)H(h)R1(r1) · · ·Rm+1rm+1|Par(h))

= Ph(H|Par(h))×
∏

i=1···n+1
Pl(Li(l i)|L1(l1) · · ·Li−1,Par(h),H)×

∏
i=1···m+1

Pr(Rj(r j)|L1(l1) · · ·Ln+1(ln+1),R1(r1) · · ·Rj−1(r j−1),Par(h),H)

whereH is the head-child of the phrase, which inherits the head-wordh from its

parentPar. L1 · · ·Ln andR1 . . .Rm are left and tight modifiers ofH. Eithern or m may

be zero, andn = m = 0 for unary rules. By the two assumptions: the modifiers are

generated independently of each other and distance can be incorporated into the model

by increasing the amount of dependence between the modifires. The probaility can be

written as follows:

Pl(Li(l i)|L1(l1) · · ·Li−1,Par(h),H) = Pl(Li(l i)|Dl(i −1),Par(h),H)

Pr(Rj(r j)|L1(l1) · · ·Ln+1(ln+1),R1(r1) · · ·Rj−1(r j−1),Par(h),H) =

Pr(Rj(r j)|Dr(i −1),Par(h),H)

whereDl (i −1) andDr(i −1) are functions of the surface string below the previous

modifiers. The distance measure is a vector with the following two elements: (1) is the

string of zero length? ; (2) does the string contain a verb ?

Finaly, the model is extended to make the complement/adjunct distinction and to

have parameters corresponding directly to probability distributions over subcategoriza-

tion frames for head-words. The model, as a preprocessing, adds the “-C” suffix to all

non-terminals in Penn treebank training data that satisfy the following conditions:

1. The non-terminal must be:(1) an NP, SBAR, or S whose parent is an S; (2)an NP,

SBAR, S, or VP whose parent is a VP; or (3) an S whose parent is an SBAR

2. the non-terminal must not have one of the followin semantics tags: ADV, VOC,

BNF, DIR, EXT, LOC, MNR, TMP, CRL or PRP.
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In addition, the first child following the head of a prepositional phrase is marked as a

complement. The generative process is extended to include a probabilistic choice of

left and right subcategorization frames as follows:

1. Choose a headH with probabilityPH(H|Par(h))
2. Choose left and right subcat frames,LC andRC, with probabilitiesPlc(LC|Par(h),H)
andPrc(RC|Par(h),H). Each subcat frame is a multiset specifying the complements

that the head requires in its left or right modifiers.

3. Generate the left and right modifiers with probabilitiesPl(Li(l i)|Dl(i−1),Par(h),H,LC)
andPr(Rj(r j)|Dr(i−1),Par(h),H,RC) respectively. Thus the subcat requirements are

added to the conditioning context. As complements are generated they are removed

from the appropriate subcat multiset.

In his experiment, the accuracy of this model is over 88.1% recall and precision for

the standard data set of Penn Treebank Wall Street Journal corpus.

Ratnaparkhi

Ratnaparkhi proposed a machine learning method to parse sentences with maximum

entropy model [31]. His parser constructs labeled syntactic parse trees with actions

similar to those of a standardshift-reduceparser. The actions of the parser are produced

by some procedures(passes). The first pass takes an input sentence, and uses TAG to

assign each word a part-of-speech tag. The second pass takes the output of the first

pass and uses CHUNK to determine the ‘flat’ phrase chunks of the sentence, where

a phrase is ‘flat’ if and only if it is a constituent whose children are not constituents.

Starting from the left, CHUNK assigns each pair a ‘chunk’ tag, either Start X, Join

X, or Other, where X is a constituent label. The chunk tags are then used for chunk

detection, in which any consecutive sequence of wordswm, · · ·, wn (m≥ n) are grouped

into a ‘flag’ chunk X if wm has been assigned Start X andwm+1, · · ·, wm have all

been assigned Join X. The third pass always alternates between the use of BUILD and

CHECK, and completes any remaining constituent structure. BUILD decides whether

a tree will start a new constituent or join the incomplete constituent immediately to

its left. BUILD always processes the leftmost tree without any Start X or Join X

annotation. After, BUILD, control passes to CHECK, which finds the most recently
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proposed constituent, and decides if it is complete. If CHECK decides yes, then the

proposed constituent takes its place in the forest as an actual constituent, on which

BUILD does its work. Otherwise, the constituent is not finished and BUILD processes

the next tree in the forest,tn+1.

He evaluated his method using the same data as Collins[24, 25] and Charniak[7]:

Penn Treebank of the Wall Street Journal developed at the University of Pennsylvania.

The maximum entropy parser was trained on sections 2 through 21 of the Wall Street

Journal corpus, and tested on section 23. Table 2.1 describes the number of training

events extracted from the Wall Street Journal corpus.

Table 2.1. Sizes of Training Events, Actions, and Features
Procedure # of training events # of actions # of features

TAG 935,655 43 119,910

CHUNK 935,655 41 230,473

CHECK 1,097,584 2 182,474

BUILD 1,097,584 52 532,814

The result of his experiments is over 86.3% recall and precision for the standard data

set of Penn Treebank Wall Street Journal corpus.

Charniak

Charniak proposes a new parser for parsing down to Penn tree-bank style parse trees

[8]. The characteristic of his approach is to use a ‘maximum-entropy-inspired’ model

for conditioning and smoothing.

The parser is based upon a probabilistic generative model. For all sentencess, and

all parsesπ, the parser assigns a probabilityp(s,π) = p(π), the equality holding when

we restrict consideration toπ whose yield iss. Then for anys the parser returns the

parseπ that maximizes this probability. That is, the parser implements the function:

argmaxπp(π|s) = argmaxπp(π)

They estimate the above probabilityp(π) by usingmaximum-entropy-inspiredmodel.

A conditional probabilityp(a | H) with a set of featuresf1, · · ·, f j that connecta to the

historyH. is computed as follows:
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p(a | H) =
1

Z(H)
eλ1(a,H) f1(a,H)+···λm(a,H) fm(a,H) (2.1)

Here theλ i are weights between negative and positive infinity that indicate the relative

importance of a feature.Z(H) is the normalizing factor.

Maximum-entropy models have two benefits for a parser builder. First, the prob-

ability model should be easily changeable, i.e., it is enough just to change the set of

features use. Second, the features used in these models need have no particular inde-

pendence condition of one another. Further, they used smoothing method which can

write as follows:

p(a | b1,n) = λ (b1,n)p̂(a | b1,n)+(1−λ (b1,n))p(a | b1,n−1) (2.2)

λ (b1,n) is the interpolation factor, whereb1,n = b1, · · ·bn.

They created a parser based upon the maximum-entropy-inspired model, smoothed

using standard deleted interpolation. They used the chart parser as a first pass to gen-

erate candidate possible parses to be evaluated in the second pass by his probabilistic

model. For runs with the generative model based upon Markov grammar statistics, the

first pass uses the same statistics, but conditioned only on standard PCFG information.

The result achieves 90.1% average precision/recall for sentences of length≤ 40,

and 89.5% for sentences of length≤ 100, when they used ‘standard’ sections of the

Wall Street Journal Treebank.
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Chapter 3

Support Vector Machines

Support Vector Machines (SVMs) were developed by V. Vapnik et al. based on struc-

tural risk maximization from statistical learning theory [41, 42]. We first explain the

binary classification problem and an overview of SVMs. Then, we show the theoretical

advantage of SVMs for partial language analysis. Section3.3 will introduce the kernel

method for dealing with non-linear classification problem. The last section shows two

conventional methods for multi-class classification with SVMs.

3.1 Overview of Support Vector Machines

Binary classification problem

Suppose we are given a training setSof l examples, such as

S= {(x1,y1),(x2,y3), · · · ,(xi,yi), · · · ,(xl ,yl )}
wherexi ∈ Rn, yi ∈ +1,−1. If yi = 0 represents positive example, and otherwise to

negative example.

Binary classification is frequently performed by using a real-valued functionf :

X ⊆ Rn �→ R from given training examples. Letx′ ∈ Rn be a test example, thex′ is

assigned to positive class, iff (x′) ≤ 0, and otherwise to the negative example.

SVMs is a kind of the binary classifier with a linear functionf (x) = w ·x+b in the

feature spaceX. We explain a case in which all training examples are linear separable.

Figure 3.1 shows an overview of SVMs in linear separable case. SVMs optimize

parametersw and ’b’ based on maximummargin strategy. The margin is defined as
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the distance between two separate hyperplanes which is equal distance from and a

parallel with the optimal hyperplane. The advantage of the maximum margin strategy

is not fitting for any training examples. Like hyperplane in Figure 3.1. The strategy

theoretically guarantees low generalization error for unknown example even in a high

dimensional feature space.

positive example

negative example

margin

Optimal Hyperplane

hyperplane with small margin

Figure 3.1. Overview of Support Vector Machines

The margin can be written as norm of2‖w‖ . Thus, we can find an optimal hyperplane

maximizing margin by solving the following problem:

Primal Problem

minimizes 1
2‖w‖2

sub jectto. yi(xi ·w+b≥ 1), i = 1, ..., l

The primal problem can transform into the following dual problem by introducing

Lagrange multiplierα i . The primal Lagrangian is the following formula:
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L(w,b,α ) =
1
2
‖w‖2−

l

∑
i=1

α i

(
yi(w ·xi +b)−1

)
(3.1)

The corresponding dual is found by differentiating with respect tow and b,

∂L(w,b,α )
∂w

= w−
l

∑
i=1

α iyixi = 0 (3.2)

∂L(w,b,α )
∂b

=
l

∑
i=1

α iyi = 0 (3.3)

w =
l

∑
i=1

α iyixi (3.4)

Eq.(3.4) shows that the optimalw can be written as a linear combination of train-

ing examples. And substitute Eq.(3.4) for Eq.(3.1), we can obtain the following dual

problem:

Dual Problem

l

∑
i=1

α i − 1
2

l

∑
i, j

yiyjα iα jxi ·x j (3.5)

l

∑
i=1

yiα i = 0, α i ≥ 0 (3.6)

The dual problem is the well known quadratic problem, it is possible to solve opti-

malα i . Finally, the optimal hyperplane can be expressed the following function:

f (x) = sgn

(
l

∑
i=1

α iyixi ·x+b

)
(3.7)

Notice that there is a Lagrange multiplierα i for every training examples. In the

solution, these examples for whichα i > 0 are calledsupport vector, and lie on one

of the separate hyperplanes in Figure 3.1. All other training examples haveα i = 0,

and line on outside a pair of separate hyperplanes. The support vectors are the critical

elements of the training set.

The next section explains why the maximum margin strategy guarantees for low

generalized error bound even in a high dimensional feature space.
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3.2 Low Generalization Error in High Dimensional Fea-

ture Space

The following theorem proof by Vapnik et al [42].

Theorem 1 Let H be a hypothesis space having VC dimension d. for any probability

distribution D on X×{−1,1}, with probability1−δ over l random examples S, any

hypothesis h∈H that makes Erremperrors on the training set S has error no more than

Err ≤ Erremp+

√
h(ln(2l/h)+1)− ln(δ/4)

l

provided d≤ l

Decreasing the generalization error of hypothesisf depend on only the VC di-

mensionh, if the Erroremp and l are fixed. And VC dimension of SVMs bounds the

following equation,

h ≤ min(D2/ρ2,n)+1 (3.8)

whereD is the radius of hypersphere covering all training examples,ρ is the mar-

gin, andn is the dimension of the feature space. Eq.(3.8) denote that VC dimension of

SVMs depend on only the margin if the number of dimension of the feature space is

sufficiently large. Thus maximum margin strategy can decrease the low generalization

error even in high dimensional feature space.

In many NLP tasks including partial language analysis, it is often use a lot of fea-

tures such as word, part-of-speech tags, character type of the word, and so on. There-

fore, we need to deal with high dimensional feature space. However, most previous

learning alorithms were inevitable to over-fitting when they applied to the high dimen-

sional feature space.

However, maximum margin strategy of SVMs make it possible to avoiding the

over-fitting even in a high dimensional feature space.

The next section explains the kernel method for dealing with a case in which clas-

sification problem is potentially not linear separable.
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3.3 Learning with Combination of Features by Kernel

Method

Limitation of the linear learning machine is that it can not deal with non-linear sep-

arable problem like well-known XOR problem. Kernel function can deal with the

non-linear classification by using implicitly mapping the original feature space into

high dimensional space. Especially the polynomial kernel function make it possible to

deal with combination of any features.

We illustrates the advantage of kernel function using a simple example. Consider

the case of two dimensional feature space and polynomial kernel functionK(a,b) =
(a · b + 1)2. Let a,b be two dimensional vectors(a1,a2) and (b1,b2) respectively.

Suppose that a mapping functionΦ : R2 �→ R6 is in Eq.(3.11).

K(a,b) = (a ·b+1)2 (3.9)

= (a1b1 +a2b2+1)2

= a2
1b2

1+2a1a2b1b2+2a1b1

+2a2b2+a2
2b2

2+1

= Φ(a) ·Φ(b) (3.10)

Φ(x) = (x2
1,
√

2x1x2,
√

2x1,
√

2x2,x
2
2,1), (3.11)

x = (x1,x2)

Eq.(3.9) can be written as Eq.(3.10), this is equal to the inner product in the map-

ping spaceR6. Note that the space mapped by the functionΦ have some elements

which represent a combination of two elements like
√

2x1x2 in the original space.

Thus the value of inner productΦ(a) ·Φ(b) in the mapping space can be obtain by

calculating value of functionK(a,b) = (a ·b+1)2.

Applying kernel method to SVMs can only replacexi · x j with K(xi · x j) for opti-

mization problem described previous section. Thus we can obtain the followingdual

problem:
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Dual Problem with Kernel Function
l

∑
i=1

α i − 1
2

l

∑
i, j

yiyjα iα jK(xi ·x j) (3.12)

l

∑
i=1

yiα i = 0, α i ≥ 0 (3.13)

And the decision functionf (x) can be written as the following:

f (x) = sgn

(
l

∑
i=1

α iyiK(xi ·x)+b

)
(3.14)

This is equal to linear classification problem in the high dimensional feature space

mapped by functionΦ.

The advantage of kernel method in NLP including partial language analysis is that

it can handle any combination of features. For instance, collocations as an association

among lexical items, where the probability of itemx co-occurring with itemsy, z,

... is very important features to solve many NL ambiguity problems. Kernel method

makes it possible to treat these collocations by mapping the original space to a higher

dimensional space.

Conventionally, these features were selected by some heuristics based on the hu-

man institution, or using statistical information such as mutual information between

words. This is because that to use a large number of features causes the problem of

computational cost and over-fitting to data with increasing dimensions of feature space.

The approaches based on feature selection, however, often deteriorate the overall per-

formance of the learning, because it is difficult select all the information needed.

3.4 Multi-Class Classification

SVMs is basically introduced for solving binary classification, while most of the NLP

tasks are a multi-class classification problem. In this section, we introduce two tradi-

tional methods for extension binary classifier to multi-class classifier:

• one versus rest method:

In this method,k different classifiers are constructed, one classfier for each class.

In the classification phase the classifier with the maximal output defines the es-

timated class label of the current input vector.
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• pairwise method:

For each possible pair of classes a binary classifier is constructed( i.e.k(k−2)
2 ).

Each classifier is trained on a subset of the training data containing only train-

ing examples of the two involved classes. In the classification phase, allk(k−2)
2

binary classifiers are combined through a majority voting scheme to estimate

the final classification. In use of SVMs as binary classifier, the class with the

maximal number of votes among allk(k−2)
2 classifieres is the estimation.

Computational Cost

It has not well formulated the difference of the performance between one versus rest

method and pairwise method when we use SVMs as a binary classifier. However,

from computational cost point-of-view, these approaches are quite different from each

other. A time complexity of SVMs is known asO(l2) ∼ O(l3), wherel is the number

of training data.

Supposek categories classification ofl training data, average of size of training

data per one categories isl
k. And the time of training for all of categories represents

ask′ ·T(l ′), whereT(l ′) represents the time for learning one binary classifier usingl ′

training data. Andk′ is the number of binary classifier. We assume thatT(l ′) of one

SVMs is roughlyT(l ′) =C· l ′3 whereC is a constant. One versus rest method, learning

is done in timeCkl3 and pairwise method isCk(k−1)
2 (2l

k )3 = C4l3(k−1)
k2 .

In practical, it strongly depends on the task or a given data for which techniques,

i.e. one v.s. rest or pairwise method is better. Therefore, we use either of these methods

depending on computational time or accuracy of the task.

3.5 Summary

This chapter describes an overview of the SVMs, especially we mentioned that why

SVMs is effective for partial language analysis. The generalization performance of

SVMs does not depend on the size of dimensions of the feature space, even in a high

dimensional feature space. Furthermore, SVMs can induce an optimal classifier which

considers the combination of any features by virtue of polynomial kernel functions. In

the next two chapters, we present two methods which apply SVMs to partial language

analysis: Named Entity extraction and partial parsing.
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Chapter 4

Japanese Named Entity Extraction

using Support Vector Machines

In this chapter, we describe a method of Japanese named entity extraction by using

SVMs[13]. The first section shows the definition of Japanese named entity extraction.

Next, we explain the method for learning and extracting named entity. In section 4.3,

we will report the experiments of applying our method to the CRL named entity data,

then we will discuss the results and limitation of our method.

4.1 Japanese Named Entity Extraction in IREX

Information Retrieval and Extraction Exercise (IREX) was held in 1999 [14], and fif-

teen systems participated in the formal run of the Japanese NE exercise. Table 4.1

shows the definition of 8 categories of named entity and their examples provided by

IREX.

We employ the definitions of named entity and use the data providing by IREX for

comparing our method with some previous studies.
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Table 4.1. The definition of Japanese named entity in IREX and their examples.

Type of Named Entity Example

ARTIFACT ノーベル文学賞
DATE 五月五日

LOCATION 日本,韓国
MONEY ２０００万ドル

ORGANIZATION 社会党
PERCENT 二〇％,三割
PERSON 村山富市

TIME 午前五時

4.2 Learning and Extracting Named Entity

4.2.1 Features

Whether a word is inside a named entity or not, it depends on the context of the word

as well as the word itself. For example, “野村証券”, which consists of two words; “

野村” and “証券”, is classified into ORGANIZATION. However, the context in which

the word “野村” occurs alone, it is assigned to PERSON. “証券” which follows “野
村” in “野村証券” is a keyto classify “野村証券” into ORGANIZATION. Therefore,

like much of the previous research, we use such contextual information as features.

Contextual informationc can be written as a set of triplets, a triplet defines as

(p, t,v), wherep represents the position from current positioni, t presents the type of

a feature, andv is a value of the featuret. If p = 0, it shows that the position equals

to the current positioni. If p < 0, it is a precedingp-th position from current position.

If p > 0, it is a secedingp-th position fromi. A context length can be defined by the

minimum value ofp and the maximum value ofp. In our experiments, the context

length is fixed as 5 words i.e., from -2 to 2 ofp similar to Uchimoto’s study.

Table 4.2 summarizes types of features and their values.

The feature of “part-of-speech” gives important clues for named entity extraction,

since named entity is a kind of noun phrase. The values of the feature part-of-speech

are those produced by a morphological analyser.

The “character type” is one of the important clues for discriminating whether a

27



type of feature value

part-of-speech Noun, Verb, Adverb etc.

character type Kanji, Hiragana, Katakana, Numeric, Symbol

word surface form of the word itself

previous NE-tag B-ARTIFACT,I-ARTIFACT,..., I-MONEY, O

Table 4.2. Summary of features and their value

i

p -2 -1 0 +1 +2

words 大統領 は 五 日 午前
part-of-speech Noun Particle Noun Noun Noun

character types Kanji Hiragana Kanji,Numeric Kanji Kanji

previous NE tags O O B-DATE I-DATE B-TIME

Figure 4.1. An example of contextual information.

word is named entity or not in Japanese. The values of the feature are classified into

five categories in table 4.2. And we use all types of characters in a word as features.

The “word” is surface form of the word in the sentence, and the value is a string of

the word itself.

Some named entities consist of several words, for example “和歌山県高野山” as

LOCATION which cosists of three word: “和歌山”, “県” and “高野山”. We can

estimate “和歌山県高野山” as LOCATION, if we know that both “和歌山”and “県”

are words which show LOCATION. Therefore, we use previous NE-tags as features .

Figure 4.1 shows an example of contextual information for thei-th words “五” in a

sentence “· · ·大統領は五日午前 · · ·”. In this example, thei-th contextual infomation

is the following set of triplets:{(-2, word,大統領), (-1, word,は), (-0, word,五),

(+1, word,日), (+2, word,午前), (-2, pos, Noun), (-1, pos, Particle), (-0, pos, Noun),

(+1, pos, Noun), (+2, pos, Noun), (-2, char.type, Kanji), (-1, char.type, Hiragana),

(0, char.type, Kanji), (0, char.type, Numeric), (+1, char.type, Kanji), (+2, char.type,

Kanji), (-2, NE-tag, O), (-1, NE-tag, O)}.
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Suppose thatn kinds of tripletsck(k < n) for all of the training data in a context

length. Consider the feature spaceX in which each axis corresponds to a tripletck, The

feature vector corresponding toi-th word can be written as follow:

xi = (b(c0),b(c1), · · · ,b(ck), · · · ,b(cn))
whereb(ck) = 1 if i-th context includes the contextual informationck, otherwise it is 0.

Suppose further thatyi is the NE-tag of wordwi . An example corresponding towi can

be represented as a pair :(xi,yi). Thus we can learn the classification rules for each

named entity category using SVMs with the pairwise method for multi-class problems.

4.2.2 Extracting Named Entities

Named entity extraction is to estimate NE-tag for each word in a sentence by using a

learned classifier. Thus, we first divide each sentence into some words and put part-of-

speech tags by using morphological analyser. In this process, every contextual infor-

mation of a word is assigned in advance except for NE-tags. However in our algorithm,

features of NE-tags are assigned to words in a deterministic manner, i.e., they are es-

timated in the process of extraction. Such information is dynamically usable through

the NE-tagging process.

In this chapter,forward extraction is to assign NE-tags from the beginning of a

sentence,backward extraction is to assign NE-tags from the end of a sentence. Note

that preceding NE-tags using forward extraction are different from those of using back-

ward extraction, since “preceding” in forward extraction is the side of the beginning of

the sentence, and that in backward extraction is the side of the end of the sentence.

4.3 Experiments

4.3.1 Data and Setting

The CRL (Communications Research Lab.) named entity data is a large-scale anno-

tated corpus from Mainichi Simbun news articles . The data contains about 11,000

sentences in 1,174 articles, and the total number of named entities is 19,262. Table 4.3

illustrates the frequency distribution of each named entity categories and the ratio of

the NEs in the data.
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Table 4.3. The frequency distribution of named entity in the CRL data.

Type of NE frequency (%)

ARTIFACT 747 (3.88)

DATE 3,567 (18.52)

LOCATION 5,463 (28.36)

MONEY 390 (2.02)

OPTIONAL 585 (3.04)

ORGANIZATION 3,676 (19.08)

PERCENT 492 (2.55)

PERSON 3,840 (19.94)

TIME 502 (2.61)

Total 19,262

“OPTIONAL” tag was assigned to a case in which a human annotator cannot decide

uniquely the category for a named entity. When only the beginning and the end of NEs

are estimated correctly, it is judged to be correct. Therefore, we also use this evaluation

measure.

Parameters of SVMs

We have to decide two parameters for running SVMs,

• type of kernel function and its coefficients

– polynomial function:(Axi ·x+ j +B)d

– RBF function:

– Sigmoid function

• Soft margin parameter

In our experiments, we used-th degree of polynomial function(xi ·x j +1)d as the

kernel function, and soft margin parameter C is to fixed 0.1 for faster learning time.
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Evaluation measure

We use the standard evaluation measures which are widely used in IR research fields,

i.e., Precision, Recall and F-measure:

• precision= the number of correctly extracted NEs
the number of extracted NEs by the system

• recall = the number of correctly extracted NEs
the number of NEs annotated by a human

• F −measure= 2Precision×Recall
Precision+Recall

We evaluate our method by using 5-fold cross validation for the CRL named entity

data set. We do not use the formal run test data, since only the participants of the IREX

workshop allows to use the formal run test data.

4.3.2 Results

We first show the extraction accuracy of the following 4 kinds of feature spaces and

investigate which features contribute the extraction accuracy for each named entity

category.

(1) word and major categories of part-of-speech

(2) word, major and minor categories of part-of-speech

(3) word, major categories of part-of-speech, and character types

(4) word, major and minor categories of part-of-speech, and character types

In this experiment, we fixed the setting as the following: representation of named

entity is the IOB2 model, the direction of extraction is forward, the kernel function is

polynomial function(xi ·x j +1)2. Table 4.4 summarizes the results.

Table 4.4 shows that the best results is 82.0 of F-value in feature space (4), even the

number of dimensions of the feature space become to be about 94,400. Part-of-speech

minor categories contribute the accuracy for PERSON, ORGANIZATION and LOCA-

TION categories, since some minor tags include directory clues like Noun-Pronoun-

Person(名詞-固有名詞-人名).

This demonstrates that the performance of NE, especially to extract ORGANIZA-

TION, PERSON and LOCATION categories depends on dictionaries(proper-nouns)

prepared in morphological analysis systems.
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Table 4.4. The extraction accuracy for each feature set.

Fβ=1 value

feature type (1) (2) (3) (4)

ARTIFACT 46.5 45.8 47.0 46.8

DATE 89.4 91.1 90.7 91.9

LOCATION 76.3 81.6 78.1 82.3

MONEY 90.5 91.3 91.5 91.0

ORGANIZATION 64.2 75.8 67.8 75.7

PERCENT 91.2 91.3 91.3 91.1

PERSON 69.6 83.7 72.9 85.0

TIME 89.0 88.9 89.3 88.7

Total 74.8 81.5 76.8 82.3

There are no significant improvements for DATE and PERCENT by including part-

of-speech minor tags as features. On the other hand, the accuracy of ARTIFACT,

MONEY and TIME decreased. These results shows that it is necessary to select opti-

mal feature space for each named entity category.

Named entity representation and direction of extraction

We investigate the extraction accuracy for each NE-representation models and each

direction of extraction.

Table 4.5 shows that the best result is the IOB2 model and backward extraction

and it attained 83.2 of F-value. For most of NE-representation models, the results of

backward extraction is better than those of forward extraction, except for the IOB1

model.

Effectivness of Learning with Combination of Features

Table 4.6 illustrates the extraction accuracy using different number of degree of poly-

nomial kernel function.

The best result is ind = 2, i.e., learning with combination of any two features. All

of the results ind ≥ 2 are superior to any one ofd = 1. This means that learning with
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Table 4.5. Extraction accuracy and combination of NE-representation models and di-

rection of extraction

Fβ=1 value

Chunk-tag IOB1 IOB2 IOE1 IOE2 SE

extraction direction for. back. for. back. for. back. for. back. for. back

ARTIFACT 47.1 44.5 46.8 47.1 47.2 48.3 44.8 46.3 44.1 47.1

DATE 92.0 91.9 91.9 92.2 91.9 92.6 91.3 92.4 91.0 91.8

LOCATION 82.6 82.3 82.3 82.5 82.5 82.8 82.1 81.9 81.7 81.8

MONEY 90.7 93.9 91.0 94.3 90.7 93.9 90.6 94.1 90.9 94.0

ORGANI. 76.1 78.0 75.7 79.0 76.3 76.7 75.2 75.7 74.7 77.9

PERCENT 89.2 94.8 91.1 94.2 89.1 92.5 88.6 91.8 91.4 93.7

PERSON 85.0 85.5 85.0 86.3 85.1 85.5 84.9 85.2 84.8 85.7

TIME 87.1 89.0 88.7 89.2 87.1 86.5 84.3 86.3 88.7 88.7

Total 82.4 82.1 82.3 83.2 82.4 82.9 81.2 81.7 81.2 82.4

combination of features is an important factor for named entity extraction.

Determistic extraction

Our method has somewhat incremental nature, i.e., it estimates deterministically NE-

tag and use the results to analyse later sequence of a sentence. Therefore, it is important

to ensure how we can estimate earlier NE-tag without false.

We extract approximately the optimal NE-tag sequence for the whole sentence by

using beam search algorithm. A degree of priority for each named entity category

defines as the number of vote using pairwise method. Then we compare with our

deterministic extraction method.

Table 4.7 illustrates the results, herew represents the beam width, and processing

time shows the ratio for the deterministic method.

The results show that searching an optimal NE-tag sequence using beam search

does not improve extraction performance. This demonstrates that it is difficult to define

the degree of priority by using outputs of SVMs. SVMs is a binary classifier, not a
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Table 4.6. The number of degree of polynomial kernel function and the extraction

accuracy.

Fβ=1 measure

d 1 2 3 4

ARTIFACT 28.7 47.1 46.3 44.3

DATE 89.1 92.2 91.2 90.2

LOCATION 78.4 82.5 81.9 81.5

MONEY 94.1 94.3 93.7 93.5

ORGANIZATION 71.5 79.0 77.5 76.7

PERCENT 92.8 94.2 93.1 92.8

PERSON 82.0 86.3 85.6 85.2

TIME 86.5 89.2 87.4 86.9

Total 78.5 83.2 82.3 81.7

probability estimator. Therefore the number of votes in the pairwise method dose not

represent preciously the degree of priority which a word is classified into an NE-tag.

4.3.3 Discussion

Failure Analysis

One of the causes of the error is that named entity boundary is often different from

the word segmentation of the output by morphological analyser. For example, “高山
町長” is segmented into two words: “高山” and “町長” by the morphological analyser

‘ChaSen’. However “高山町” is a LOCATION defined in IREX. We cannot extract this

named entity in that case, because our method assigns NE-tag to a word segmented by

the morphological analyser.

We investigate the effect of this problem by using the following two kinds of pre-

processing, then compare those with our method.

• preprocessing (A): In the training data, if the word segmentation of the morpho-

logical analyser is different from the boundary of NE, the word in the test data
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Table 4.7. The beam width and the extraction accuracy.

F-measure

w 1 3 5 10

ARTIFACT 47.1 47.3 46.3 46.6

DATE 92.2 92.3 92.3 92.3

LOCATION 82.5 82.6 82.6 82.7

MONEY 94.3 94.3 94.3 94.3

ORGANIZATION 79.0 78.8 78.8 78.7

PERCENT 94.2 94.2 94.3 94.5

PERSON 86.3 86.0 86.0 85.9

TIME 89.2 89.1 88.8 89.0

Total 83.2 83.2 83.1 83.2

Ratio of Time 1 3.42 5.52 10.73

is subdivided into two parts. For example, a word such as ‘町長’ is subdivided

into ‘町’ and ‘長’.

• preprocess (B): For all of NEs in the test data, word segmentation is performed

beforehand according to the annotated information.

Table 4.8 shows that the accuracy of preprocessing (A) is lower than those of non-

preporcessing methods. One possible reason behind this is that the segmentation of

preprocessing (A). We recall that in the preprocessing (A), a word such as ‘町長’ is

subdivided into ‘町’ and ‘長’ if the result of morphological analyser is different from

the result of NE. As a result, ‘町長’ which should be a meaningful word itself are

subdivided into ‘町’ and ‘長’. This yields a high recall rate, but low precision rate.

For further improvement, it is necessary to tag part-of-speech correctly and to seg-

ment words correctly. The results of the (B) can be view as the upper bound accuracy

of our method in which the morphological analyser produces the complete word seg-

mentation and the part-of-speech tags.
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Table 4.8. Effects of word segmentation by morphological analyser.

F-measure

our method (A) (B)

ARTIFACT 47.1 48.3 48.2

DATE 92.2 92.7 92.8

LOCATION 82.5 82.6 87.8

MONEY 94.3 94.3 94.5

ORGANIZATION 79.0 77.3 81.4

PERCENT 94.2 91.4 97.1

PERSON 86.3 85.7 86.4

TIME 89.2 85.2 90.1

Total 83.2 83.0 85.9

Precision (%) 86.4 85.1 88.1

Recall (%) 80.3 81.0 83.9

Comparison with Related Work

We compare our method with two related work for demonstrating the effectiveness

of our method, although it is impossible to compare our method with their methods.

This is because the IREX test data set is no more available. The two related works are

Uchimoto’s [17] and Sassano’s [22] studies. Uchimoto’s study is the best results using

machine learning techniques of the participants in the IREX workshop [14]. Table 4.9

illustrates the summary of these results.

Table 4.10 shows that the extraction accuracy for each set of 5-fold cross-validation

in our method, since we can not use IREX test data set. As we introduced in Chap-

ter 2, Uchimoto’s method uses a maximum entropy model and transformation rules

for Japanese named entity extraction. Transformation rules are automatically acquired

from the training data using the difference between word segmentation by morpholog-

ical analyser and correct named entity boundary. Table4.9 shows that the results of

their method attained 80.17 at F-value for GENERAL data in the IREX.

Sassano et al. usesvariable length modelfor Japanese named entity extraction.

Their method restricts the model to explicitly considering the cases of NEs of the length
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Table 4.9. Comparison with related work

Uchimoto Sassano our method

features word, part-of-speech, character types

morphological

analyser

JUMAN BREAKFAST ChaSen

length of the con-

text (num. of

word)

±2 variable length ±2

Chunk represen-

tation

Start/End Start/End IOB2

word segmenta-

tion

transformation

rule

nothing nothing

training data CRL NE data CRL NE data CRL NE data

dry-run data

size(sentence) about 12,000 about 11,000 about 8,800

Learning Algo-

rithm

Maximum En-

tropy

Maximum En-

tropy

SVMs

F-value 80.17 82.8 83.2

Table 4.10. The accuracy for each data set in 5-fold cross-validation.

Total 1 2 3 4 5

83.2 82.8 83.3 84.8 81.6 83.6
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up to three words and only implicitly considering those longer than three morphemes.

It also restricts the model by considering two words in both left and right contexts of the

NE. They use Start/End and IOB2 schemes for NE-representation. Like Uchimoto’s

method, they use three kinds of features: (i) a pair of word and part-of-speech tag, (ii) a

pair of character types and part-of-speech, and (iii) part-of-speech tags. The character

type consists of 6 elements:Hiragana, Kanji, Katakana, Numeric, Alphabet, Symbol,

and their combination. The results show that the success rate of 82.8 of F-value.

Table 4.10 shows that the performance of our method is at least 81.6 which is

similar to Uchimoto’s result. The result of Sassano’s method outperforms our method

in some conditions. One possible reason is that they usedvariable length modelwhich

implicitly considering the length of named entity longer than three morphemes. For

future work, it is necessary to incorporate this technique into our method.

Uchimoto and Sassano’s method use a simple feature selection in the training data.

For example, Uchimoto’s method only uses words in the data with more than two

occurrences. This means that it may deteriorate the performance on the training data

itself. Actually, Uchimoto’s study reports on the accuracy of about 85.0 at F-value for

GENERAL domain training data in IREX. On the other hand, our method does not

select features using any heuristics. The accuracy for the training data of our method

is 99.7 despite the fact that our method dose not select features using any heuristics.

From this point-of-view, our method is more effective than their method.

SVMs can learn with exhaustive combination of any features by virtue of poly-

nomial kernel functions without explosively increasing computational costs. Further-

more, maximum margin strategy of SVMs makes it possible to avoid over-fitting even

in a high dimensional feature space mapped implicitly by a polynomial kernel function.

4.4 Summary

In this chapter, we reported an experimental study for Japanese named entity extraction

using Support Vector Machines. We also showed how SVMs can be used effectively

to extract named entity using the CRL named entity data with the IREX named entity

task.

We first described the definitions of named entity in IREX and then presented a

method to extract them using SVMs. We reported the results of experiments. The re-
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sults of cross validation showed that our method attained more than 83 of F-value. The

results also show that in Japanese named entity extraction, backward extraction method

is more effective than one of forward extraction. Further, throughout the experiments,

we have found that a learning model concerning combination of features is necessary

for extracting, especially combination of any two features is the best performance.
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Chapter 5

Partial Parsing in English

In this chapter, we propose a method for partial parsing using SVMs. We first described

our motivation: why partial parsing is needed for language analysis by comparing it

with a parser which constructs a complete parse tree, and define some notation. Next,

we explain our parsing algorithm and how to apply SVMs to learn for partial parsing.

Finally, we report on our evaluations using Penn TreeBank.

5.1 Why Partial Parsing is needed for Document Pro-

cessing?

Natural language parsing for language processing is to take a sentence as an input

and returns syntactic representation as the output. In this process, we encounter a

number of syntactic ambiguities, such as noun phrase ambiguities, prepositional phrase

ambiguities and the scope of coordinate conjunction ambiguities and so on. Therefore,

it is not easy to produce the correct parse result automatically. Sentence (1) shows one

of the typical ambiguities in English sentences: PP attachment.

(1) I saw a girl with a small telescope.

Difficulties in resolving PP attachment ambiguity arise because of the Polyphemus

usage of prepositions. In (1), there are at least two interpretations, and the results

using conventional parsing techniques are illustrated in Figure 5.1 and 5.2.

In Figures 5.1 and 5.2, boxes at the bottom denote words with part-of-speech infor-

mation which forms a sentence. Figure 5.1 shows that a phase ‘with a small tele-
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I saw agirl witha small telescope

VP

S

DT DT

NP

NN NNIN

PP

PRP

NP

JJVB

NP

NP

{telescope}

{with}

{girl}

{saw}

{I}

{girl}

{saw}

Figure 5.1. A parse tree for ’I saw a girl with a small telescope’.

I saw agirl witha small telescope

VP

S

DT DT

NP

NN NNIN

PP

PRP

NP

JJVB

NP

{telescope}

{with}

{girl}

{saw}

{I}

{saw}

VP

{saw}

Figure 5.2. Other parse tree for ’I saw a girl with a small telescope’.
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scope’ modifies the noun word ‘girl’, whereas Figure 5.3 shows another interpreta-

tion: a phrase ‘with a small telescope’ modifies the main verb ‘saw’. Syntactically,

a prepositional phrase attaches to a noun phrase(‘a girl’) slightly more often than to

a verb(‘saw’). However, the difference is small and the real interpretation is decided

using thecontextin which a preposition is used.

I saw agirl witha small telescope

DT DT

NP

NN NNIN

PP

PRP

NP

JJVB

NP

{telescope}

{with}

{girl}{I}

Figure 5.3. Partial parse tree for ’I saw a girl with a small telescope’.

One significant feature of partial parsing technique is to give an interpretation par-

tially in the form of parse sub-tree which is not contain ambiguities. For instance, the

result of (1) using partial parsing is illustrated in Figure 5.3, instead of Figures 5.1 and

5.2.

In this chapter, aconstituentcorresponding to a node in a tree, is represented as a

pair of a phrase label and a head word:
label: label denotes a category of a constituent such

as NP, VP and so on. In particular, the label

constituent at a terminal node, i.e. a leaf, refers

to a part-of-speech tag.
head : head refers to the head word of the constituent.

The notation of a constituent is ’label-{head}’, especially, a terminal node can be writ-

ten as ’I/PRP’. A sub-tree(or tree) can be written in a bracketed form. For example, a

noun phrase ’a girl’ in figure 5.1 can be written as follows:

( NP-{girl} ( a /DT girl /NN ))
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5.2 Parsing Algorithm

Our parser employs a deterministic bottom-up algorithm, that constructs labeled syn-

tactic binary trees using three kinds ofparsing actions: shift, unary:X , andbinary:X,H .

Here, X represents a label, H denotes the head of the tree (i.e. left or right).

These parsing actions constitute amodelwhich is learned by SVMs, and a sentence

is parsed by repeatedly executing the action for the current constituent. Letci be the

i-th constituent in a sentence. Three actions,shift, unary:X , and binary:X,H are

described as follows.

• unary:X

unary:X means to construct a new constituent labeled X from the current con-

stituentci , and the new constituent X is inserted into a current constituent. Figure

5.4 shows the action unary:X.

unary:X

A

{a}

A

{a}

X

{a}

C iC i-1 C i+1

C i-1 C i+1new Ci

Figure 5.4. An example of the action ’unary:X’

Figure 5.4illustrates the action unary:X, i.e. unary:X is inserted into a current

constituent, ‘a’, where ‘a’ refers to the head word of the current constituent.

• binary:X,H

binary:X,H is to construct a new constituent labeled X from the current and

succeeding constituents, and ‘X’ is inserted into the current constituent in two

ways.
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If H is to ‘Left’, then the head of the new constituent isci , otherwise it isci+1.

The left hand side of Figure 5.5 illustratebinary:X,Left action, and the right

hand side shows thebinary:X,Right action.

binary:X,H

A B

{a} {b}

A B

{a} {b}

X

{a}

C i C i+1

A B

{a} {b}

X

{b}

H=L H=R

C i-1 C i+2

C i-1 C i-1new Ci new CiC i+2 C i+2

Figure 5.5. An example of the action ’binary:X,H’

• shift

shift is to move the current positioni to the nexti +1 position, i.e. no construc-

tion of a new constituent.

Next, we describe an overview of a parsing mechanism step by step, especially the

procedure to construct a parse tree in a bottom-up style using these actions. Initially,

the input sentenceS is given to the parser a part-of-speech tag is assigned to each of

the words as shown in Figure 5.7. In Figure 5.7, down arrow↓ indicates the current

position, i.e, ‘I/PRP’, in this case.

As shown in Figure 5.8, for the constituent of current position, i.e., ‘I/PRP’, if the

model outputs the action ’unary:NP’, the parser executes the action, creating a new

constituent which is labeled by ’X’, and constructs a unary tree by inserting the new

box, ‘NP-{I}’, into the current constituent, ‘I/PRP’. As the head word of the new

constituent is ‘{I}’, the constituent at the current position is replaced by the created

new constituent ’NP-{I}’.
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A B

{a} {b}

C i C i+1C i-1 C i+2

B

{b}

C i+1C i-1C i-2

Next

C i

A

{a}

Figure 5.6. An example of the action ’shift’

I saw agirl witha small telescope

DT DTNN NNINPRP JJVB

Model
current  position

Figure 5.7. Initial state

{I} saw agirl witha small telescope

DT DTNN NNIN JJVB

Model unary:NP

I

PRP

NP

Figure 5.8. After execution of ’unary:NP’
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The next step is that the parser recursively inquires to the model which action

should take at the same position (Figure 5.9). If the model answers the action ‘shift’,

the parser moves the current positioni to the nexti +1 position. Figure 5.14 illustrates

the action.

{I} saw agirl witha small telescope

DT DTNN NNIN JJVB

Model

I

PRP

NP

shift

Figure 5.9. The model answers to the action ’shift’

{I} saw agirl witha small telescope

DT DTNN NNIN JJVB

Model

I

PRP

NP

shift

Figure 5.10. Execution of ’shift’

In a similar way shown in Figure 5.11, the model answers the action ‘shift’ for the

constituent, ‘saw’, and the parser moves the current position to the next position.

The next step is that the parser executes the action ‘binary:NP,R’ according to an-

swer from the model. The actionbinary:X,H constructs a new constituent labeled

X using the current and next constituents, and ‘X’ is inserted into the current con-

stituent in two steps according to the value of ‘H’. In this case, the parser creates a new

constituent of label ‘NP’, and inserts this between a current position ‘a/DT’, and the
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{I} saw agirl witha small telescope

DT DTNN NNIN JJVB

Model

I

PRP

NP

shift

Figure 5.11. Execution of the action ’shift’

next position ‘girl/NN’. ‘girl’ is selected as the head, since ‘H’, in this case, equals to

‘Right’. The current position becomes the new constituent, ‘NP-{girl}’. Figure 5.12

summarizes these steps.

{I} saw awith small telescope

DT NNIN JJVB

Model

I

PRP

NP

binary:NP,R

girla

DT NN

NP

{girl}

Figure 5.12. Execution of action ’binary:NP,R’

As shown in Figures 5.13 and 5.14, the procedure is repeated until the current

position moves on the last constituent of the sentence. Then the procedure is repeated

from the beginning of the sentence until any new reduction action is applicable.
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{I} saw awith small telescope

DT NNIN JJVB

Model

I

PRP

NP

girla

DT NN

NP

{girl}

shift

Figure 5.13. The model answers to the action ’shift’

{I} saw awith small telescope

DT NNIN JJVB

Model

I

PRP

NP

girla

DT NN

NP

{girl}

shift

Figure 5.14. Execution of the action ’shift’
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5.3 Applying SVMs to General Parsing

5.3.1 Converting N-ary tree into binary tree using head rules

The parsing algorithm in the preceding section constructs a binary tree for the input

sentence in a bottom-up manner.

The trees used for learning, therefore, should be binary. However, most of previ-

ous researches are based on the Penn Treebank, which uses N-ary tree representation.

Thus, the first step to apply SVMs to parsing is to convert N-ary trees into binary trees.

We use Penn treebank parse trees and convert them into binary using head rules.

Table 5.1 shows a sample of NP head rule. Other rules are shown in Appendix B.

The first column is the label of the mother, and the second shows the starting position

in searching for the head. Starting position has either of two values, ‘left’ and ‘right’.

‘Left’ indicates that the search should go from the first child of the children, and ’right’

shows that the search should go from the last. Third column shows the priority order.

Table 5.1. NP head rule
label starting position priority

NP right (POS, NN, NNP, NNPS, NNS), NX, JJR, CD,

JJ, JJS, RB, QP, NP

Figure 5.15 shows an example of converting an N-ary tree to a binary tree using the

head rule. ‘H’ in Figure 5.15 is the head constituent of the N-ary tree ‘X’.

Conversion starts from the left of the head constituent ‘H’, and each node is trans-

lated into binary tree. Each node of a binary tree is called ‘intermediate node’, and its

label ‘X’ represents the intermediate node of ‘X’. The head of the intermediate node,

e.g., ‘X’ is obtained by applying head rules. This process is also used to convert binary

tree into N-ary tree.

Figure 5.16 illustrates the binary tree that is obtained by converting the N-ary tree

of Figure 5.1. In the next section, we present a method to learn syntactic rules by

applying SVMs.
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B

{b}

A

{a}

D

{d}

E

{e}

X

{h}

H

{h}

A

{a}

B

{b}

H

{h}

D

{d}

E

{e}

X’

{h}

X’

{h}

X’

{h}

X

{h}

Figure 5.15. An example of converting N-ary tree to binary tree.

I saw agirl witha small telescope

VP

S

DT DT

NP

NN NNIN

PP

PRP

NP

JJVB

NP

NP’

{telescope}

NP

{telescope}

{with}

{girl}

{saw}

{I}

{girl}

{saw}

head

non-head

Figure 5.16. An example of the binary tree for the sentence (1): “I saw a girl with a

small telescope.”
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5.3.2 Learning Parsing Actions

As we described in the previous sections, our parser constructs labeled syntactic binary

trees using three kinds of parsing actions, instead of using a paticular grammar rules.

Therefore, the model needs to answer the appropriate action in the context. Thus the

learning for the parsing is to to learn which ‘actions’ should be taken in a particular

context. Each training example corresponds to each action in parsing process, and is

obtained by parsing training sentences itself with regarding the model as parsed tree

corresponding the sentences. This is one of the classification task that classifies an

arbitrary constituent or two adjacent constituent into the parsing action. We can apply

SVMs to the task.

For learning rules for classifying into parsing action, we use contextual information

as features. Contextual informationc can be written as a set of triplets similar to that

in Chapter 4. A triplet can be written as(p, t,v), wherep represents the position from

current positioni, t presents the type of a feature as follows, andv is a value of the

featuret.

• Default feature

– constituent-label: the label of the constituent at the context. For example,

if the constituent NP-{girl}, the value of ’constituent-label’ feature is NP.

In this chapter, the feature is written as ’const-label’ for short.

– head-word: the head word of constituent. If the constituent NP-{girl}, the

’girl’ is the value ofhead-wordfeature.

– head-pos: this refers the part-of-speech tag of the head. If ’NP-{girl}’, NN

is the value ofhead-posfeature.

• Special feature for PP and CC

– PP non-head information :

Suppose a sentence, ‘I buy a car with money’. This sentence an example

of PP attachment, thus, a parsing algorithm constructs two syntactic trees

like Figures 5.17 and 5.18. As we mentioned in the previous section, syn-

tactically, prepositional phrases attach to noun phrases slightly more often

than to verb, and the tree shown in Figure 5.18 is regarded to be a correct
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parse tree. This judgment is made by a noun ‘money’ followed by ‘with’.

However, default feature which uses only a head word information can not

assigned correctly, since its feature is{with}. We therefore, useconst-label

head-word, andhead-posof non-head in prepositional phrase as features.

These three special features for PP are distinguished from those of default

features.

I with

NP

NN NNINPRP

NP

VB

{I}

buy cars money

VP

PP

S

{cars} {with}

{buy}

{buy}

NP

{cars}

Figure 5.17. An unlikely parse tree for the sample sentence “I buy cars with money ”.

– CC : CC is one of most important clue whether a action ’binary X,H’ should

take or not.

In head rules, CC which followed by NP is not head word. Therefore, it

is necessary to distinct whether or not NP accompanies with CC. We use

intermediate nodes which accompanies with CC as features.

Figure 5.19 illustrates an example of CC. ‘NP’ has ‘and/CC’. Arrow in Fig-

ure 5.19 shows that the intermediate node ‘NP’-{girl} accompanies with

‘and/CC’.

‘and/CC’ use as a feature until the sub-tree of NP are completely parsed.
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I with

NP

NN NNINPRP

NP

VB

{I}

buy cars money

VP

PP

S

{cars} {with}

{buy}

{buy}

Figure 5.18. A likely parse tree for the sample sentence “I buy cars with money ”.

CC

and

NP’NP

NP

NP’

{girl}

{girl}

{girl}

<and>

Figure 5.19. Special feature for CC
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Suppose thatck(k < n) is a triplet as contextual information, wheren is the number

of different triplets for all of the training sentence. Consider the feature spaceX in

which each axis corresponds to a tripletck, the feature vectorx can be written as

x = (b(c0),b(c1), · · · ,b(ck), · · · ,b(cn)), whereb(ck) = 1 if a context in the parsing step

includes the contextual informationck, otherwise it is 0. Suppose further thaty is the

parsing action in the context. An example can be represented as a pair :(y,x). Thus we

can apply SVMs with one-versus-rest method in Chapter 3 to learn rules classifying a

context into the parsing action.

{I} saw

a

with

{telescope}

DT

IN

VB

Model

I

PRP

NP

binary:NP,L

girla

DT NN

NP

{girl}

small telescope

NNJJ

NP’

{telescope}

NP

{with}

PP

context

default features

special features

classification category

binary:NP,L

(-1,const-label,VB) (0,const-label,NP) (+1,const-label,PP)

(-1,head-pos,VB) (0,head-pos,NN) (+1,head-pos,IN)

(-1,head-word,saw) (0,head-word,girl) (+1,head-word,with)

(+1,spec.PP-const-label,NP)

(+1,spec.PP-head-pos,NN)

(+1,spec.PP-head-word,telescope)

Figure 5.20. A sample of a training example.

Figure 5.20 shows a sample of a training example in a parsing process when each

length of left and right context is 1. In the Figure 5.20, contextual information is the
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following set of triplets:{(-1, const-label, VB), (-1, head-word, saw), (-1,head-pos,

VB), (0, const-label, NP), (0,head-word, girl), (0, head-pos, NN), (1,const-label, PP),

(1, head-word, with), (1, head-pos, IN), (1, spec. PP const-label, NP), (1,spec. PP

head-word, telescope), (1,spec. PP head-pos, NN)}.

5.3.3 Variable context length model

In the fixed 2 context length, our parser cannot parse some phrase which include the

punctuation of ’,’ or ’:’. Figure 5.21 and 5.22 illustrate an example of this problem.

predicted that the Cupertino ,

,VBN IN DT NNP

NP

{Cupertino}

context

Figure 5.21. The Problem of fixed context length

predicted that the Cupertino Calif. company will report,

,

,

,VBN IN DT NNP NNP NN MD VB

NAC’

{company}

NP’

NAC

{Calif.}

NAC’

{Calif.}

{Calif.}

{company}

NP

Figure 5.22. The Problem of fixed context length

55



Figure 5.21 shows the result when we use current position as ‘the/DT’, and the

length of context is 5 (i.e., left and right context length is±2 constituents). In this

context,it can be interpreted that ‘the/DT’ and ‘Cupetino/NNP’ make ‘NP-{Cupetino}.

The correct interpretation of Figure 5.21 is illustrated in Figure 5.22. We can see that

the action which is shown in Figure 5.21 is not correctly interpreted.

To solve the problem, we extend our method, i.e. 1) variable length of context

which use right context length so as to be longer than that of left context length, 2)

when CC :, ”, and “ are included in the right context, variable length of context is

applied to these features. This model is ’variable context length model’.

5.3.4 Dividing training examples into some parts

As mentioned in the preceding section, a training example corresponds to a pair of

parsing action and feature vector as its contextual information.

However, the number of training examples corresponds to the number of parsing

actions and become to be a large size when the number of training sentences increases.

As a result, it is difficult to use all of the training data because of a large amount of

computational cost (actually, when we use 5 context length as features, the number

of training example is more than 3,000,000 for about 40,000 sentence of the standard

training set in Penn treebank corpus).

For solving this problem, we divide a set of training example into some subsets

according to theconst-labelfeatures. LetSbe a set of all of the training examples and

L be a set of constituent label i.e.,L = {NP,VP,PP, · · · lk}. We define a set of example

Slp
as follows:

Slp
= {(x,y)|(0,const− label, l p) ∈ x}

Furthermore, some sets ofSl ′p
are subdivided intoSl ′p,lq

defined as follows:

Slp,lq
= {(x,y)|(0,const− label, l p) ∈ x,(1,const− label, lq) ∈ x}

Using a simple heuristic, we determine whether S is subdivided or not, i.e.,|Slp,lq
| ≤

30,000. Thus multi-class SVMs using the one versus rest method in Chapter 3 is

applied to each different set of example independently. Then each classifierfl p(x) and
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fl p,lq(x) is constructed by learning from each set ofSlp
andSlp,lq

.

A test examplex’ including triplet(0,const− label, l ′p) and(1,const− label, l ′q) is

classified into a parsing action by using the SVMs learned from the example setSl ′p,l ′q
.

If there is no SVMs learned from the exampleSl ′p,l ′q
(that means, a setSl ′p

did not

subdivide),x’ is classified into a parsing action by using the SVMs learned fromSl ′p
.

For instance,SNP is the set of examples containing the triplet (0,const-label, NP).

The |SNP| is more than 500,000 in the standard training set of Penn Treebank Wall

Street Journal corpus, and|SNP,IN|, |SNP,,|, |SNP,VP|, |SNP,.|, |SNP,PP|, |SNP,VBD| are more

than 30,000 in the corpus. we divide theSNP into some subsets :SNP,IN, SNP,,, SNP,VP,

SNP,., SNP,PP, SNP,VBD and each resulting set whichSNP is removed from each set:

SNP,IN, SNP,,, SNP,VP, SNP,., SNP,PP, SNP,VBD.

5.4 Experiments

5.4.1 Data and Setting

The data we use in the experiment is from section 2 to 21 and 23 of the Penn Treebank

Wall Street Journal corpus. This is a gold standard data set. We use 2-21 for training,

and 23 for test data, i.e., we use the same data in our evaluations to make our results

comparable with the results by others in the Penn Treebank benchmark evaluations

described in Chapter 2.

Most of previous studies use the perfect post-edited output of part-of-speech tag-

ging, or perfect annotation by human intervention. We also use the perfect analysis.

Further, previous studies evaluate their method by using two types of data: one is a

set of sentences consisting of less than 40 words, and another is a set consisting of all

sentences in the target section.

5.4.2 Results

Fixed versus variable context length

We investigate parsing results to compare fixed length with variable length model.

Table 5.2 illustrates the parsing results of fixed and variable length model. In Table

5.2, L and R in (L,R) shows that the length of left context and that of right context,
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respectively. The result of the variable length model by far outperforms the fixed lenght

model.

Table 5.2. Comparison fixed length with variable length model. (size of training =

39,832 sentences)

(2,2)

all sentences fixed variable

LR(%) 84.2 87.0

LP(%) 85.1 87.9

CB 1.51 1.18

0CB(%) 54.6 61.3

2CB(%) 77.5 82.7

length≤ 40

LR(%) 85.0 87.8

LP(%) 85.8 88.6

CB 1.30 1.00

0CB(%) 58.0 64.5

2CB(%) 80.3 85.3

Table 5.3 illustrates how the length of left and right context influences parsing

accuracy.

Table 5.3 shows that the best result is when we use the model (2,3) (i.e., 2 left and 3

right context), and the labeled precision and recall attained 88.1% and 88.9%, respec-

tively. The accuracy of model (1,3), (2,3) and (2,4) were superior to those of the model

(1,2) and (2,2). This demonstrates that the parsing accuracy depends on the context

length, and the longer the right context contributes the performance. The result of

(2,4) was worse than that of (2,3). One reason behind this lies that features which

are not effective for parsing are included in the context (2,4). Therefore we need to

investigate the optimal context length for improving the accuracy of our parser.
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Table 5.3. Context length and parsing acurracy. (size of training = 39,832 sentences)

all sentences (1,2) (1,3) (2,2) (2,3) (2,4)

LR(%) 86.7 87.3 87.0 88.1 87.6

LP(%) 87.6 88.3 87.9 88.9 88.5

CB 1.16 1.05 1.18 1.02 1.05

0CB(%) 60.9 62.5 61.3 63.5 62.9

2CB(%) 83.1 84.4 82.7 85.1 84.6

length≤ 40

LR(%) 87.5 88.2 87.8 88.8 88.4

LP(%) 88.3 88.9 88.6 89.5 89.0

CB 0.98 0.90 1.00 0.87 0.90

0CB(%) 64.2 65.5 64.5 66.3 65.8

2CB(%) 85.7 86.6 85.3 87.3 86.7

5.5 Comparison with Related Work

We compared the variable context length method (i.e., left context is 2, right context is

3, respectively ) with three related work: Ratnaparkhi [31], Collins [26], and Charniak

method [8]. Table 5.4 summarizes our evaluation.

Table 5.4 shows that the result of our method outperforms Ratnaparkhi’s and Collin’s

one, since the accuracy of our method attained 88.1%/88.9% labeled recall/precision,

while Ratnaparkhi’s method attained 86.3%/87,5% and Collins’s parser attained 88.1%/88.3%

for all of the test sentences.

Charniak method is superior to our method, this is because his method empolys

two path approch: (i)first path is to generate candidate possible parse tree, (ii) then

the second is to evaluate these candidates using probablistic generative model based

on top down derivation using treebank grammar extracting from Penn Treebank copus.

However, the effect of the treebank grammar in the second path strongly depends on

the Penn treebank corpus, because the grammar are extracted from the parsed sentence

of training data using statistics of context-free rules and some heuristics. Therefore, it

is not clear if his approach is effective for different corpora.

Our approach, on the other hand, does not depend on the specific grammar rules or
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Table 5.4. Comparison with related work (size of training = 39,832 sentences).

all sentences our method Ratna99 Coll00 Char00

LR(%) 88.1 86.3 88.1 89.6

LP(%) 88.9 87.5 88.3 89.5

CB 1.02 – 1.06 0.88

0CB(%) 63.5 – 64.0 67.6

2CB(%) 85.1 – 85.1 87.7

length≤ 40

LR(%) 88.8 – 88.5 90.1

LP(%) 89.5 – 88.7 90.1

CB 0.87 – 0.92 0.74

0CB(%) 66.3 – 66.7 70.1

2CB(%) 87.3 – 87.1 89.6

corpora, since it requires only head rules and a given syntactic trees for learning. This

yields the best results among the previous one path approaches, although our parser

employs a deterministic bottom-up algorithm with one path mechanism.

5.6 Summary

In this chapter, we reported an experimental study for partial parser using SVMs. We

first described our motivation: why partial parsing is needed for language analysis

by comparing it with a parser which constructs a complete parse tree. We then ex-

plained our parser which constructs a binary parse tree with a deterministic bottom-up

algorithm. We regarded each parsing process as a classification task that classifies

the context into the action for constructing parse tree, and applied SVMs to learn the

classification rules. The result using Penn Tree bank corpus shows that our method

outperforms Collins’s one: the accuracy of our method attained 88.1%/88.9% labeled

precision/recall without a paticular grammar and some semantic information.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we focused on partial language analysis: Japanese named entity extrac-

tion and partial parsing in English, and proposed a new method using Support Vector

Machines for effective analysis.

Firstly, in Chapter 2, we reported on some studies related to the named entity ex-

traction and parsing with a machine learning approach which are similar to our own. In

Chapter 3, we briefly introduce an overview of the SVMs and its theoretical advantage

for partial language analysis.

In Chapter 4, we described a method for Japanese named entity extraction using

SVMs. The results of cross validation using the IREX data showed that our method

attained more than 83 of F-value. Throughout the experiments, we found that (i) in

Japanese named entity extraction, backward extraction method is more effective than

one of forward extraction, and (ii) a learning model concerning combination of fea-

tures is necessary for extracting, especially combination of any two features is the best

performance.

In Chapter 5, we presented partial parser which constructs a pased binary tree with

a bottom-up deterministic algorithm. We regard each parsing process as a classification

task which classifies a context into the parsing actions, and learn the classification rules

by uisng SVMs. Then we applied our parser to Penn Treebank Wall Street Journal

corpus. Our parser attained over 88.1% labeled precision and recall without a particular

grammar and some semantic information.
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6.2 Future Work

We plan to continue our research in two directions. The first is to investigate for im-

provement of accuracy in two partial language analysis. In Japaneses named entity

extraction, we will incorporate variable context length model into our method. In par-

tial parsing in English, we will extend our parser to two path approach like Charniak’s

parser.

The seconds is to apply our method to other information retrieval tasks such as text

categorization and information extraction system, and to show both effectiveness and

robustness of our method.
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Appendix

A Abbreviations for phrasal categories in the Penn Tree-

bank.

S Simple clause (sentence)

SBAR S’ clause with complementizer

SBARQ Wh-question S’ clause

SQ Inverted YES/NO question S’ clause

SINV Declarative inverted S’ clause

ADJP Adjective Phrase

ADVP Adverbial Phrase

NP Noun Phrase

PP Prepositional Phrase

QP Quantifier Phrase (inside NP)

VP Verb Phrase

WHNP Wh-Noun phrase

WHPP WH-Prepositional Phrase

CONJP Multiword conjunction phrases

FRAG Fragment

INTJ Interjection

LST List marker

NAC Not A Constituent grouping

NX Nominal constituent inside NP

PRN Parenthetical

PRT Particle

RRC Reduced Relative Clause

UCP Unlike Coordinated Phrase

X Unknown or uncertain

WHADJP Wh-Adjective Phrase

WHADVP Wh-Adverb Phrase
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B Head Rules

label search position priority

NP right (POS, NN, NNP, NNPS, NNS), NX, JJR, CD, JJ, JJS, RB,

QP, NP

ADJP right NNS, QP, NN, $, ADVP, JJ, VBN, VBG, ADJP, JJR, NP,

JJS, DT, FW, RBR, RBS, SBAR, RB

ADVP left RB, RBR, RBS, FW, ADVP, TO, CD, JJR, JJ, IN, NP, JJS,

NN

CONJP left CC, RB, IN

FRAG left .

INTJ right .

LST left LS :

NAC right (NN,NNS,NNP,NNPS), NP, NAC, EX, $, CD, QP, PRP,

VBG, JJ, JJS, JJR, ADJP, FW

PP left IN, TO, VBG, VBN, RP, FW

PRN right .

PRT left RP

QP right $, IN, NNS, NN, JJ, RB, DT, CD, NCD, QP, JJR, JJS

RRC left VP, NP, ADVP, ADJP, PP

S right TO, IN, VP, S, SBAR, ADJP, UCP, NP

SBAR right WHNP, WHPP, WHADVP, WHADJP, IN, DT, S, SQ,

SINV, SBAR, FRAG

SBARQ right SQ, S, SINV, SBARQ, FRAG

SINV right VBZ, VBD, VBP, VB, MD, VP, S, SINV, ADJP, NP

SQ right VBZ, VBD, VBP, VB, MD, VP, SQ

UCP left .

VP left VBD, VBN, MD, VBZ, VB, VBG, VBP, VP, ADJP, NN,

NNS, NP

WHADJP right CC, WRB, JJ, ADJP

WHADVP left CC, WRB

WHNP right WDT, WP, WP$, WHADJP, WHPP, WHNP

WHPP left IN, TO, FW
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