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Extracting Translation Knowledge

from Parallel Corpora�

Kaoru Yamamoto

Abstract

This thesis deals with extracting translation knowledge from parallel corpora.

The aim is to acquire meaningful translation knowledge which can be used to

build translation knowledge base, aiding translators or language learners. We

present three works on this topic.

The �rst work uses statistically probable dependency relations obtained from

parsers to acquire word and phrasal correspondences. The result showed that

statistically probable dependency relations are e�ective in translation knowledge

acquisition even for language pairs with di�erent word ordering.

The second work compares three models of translation units each of which

uses di�erent linguistic information: word segmentation, chunk boundary, and

word dependency. We found that chunk boundaries are useful linguistic clues in

extracting compound noun phases which will be e�ective for extracting bilingual

lexicons in the new domain. Furthermore, word dependency are also useful for

longer translation pairs such as idiomatic expressions.

The �nal work proposes a data mining approach to extracting bilingual lexi-

con from parallel corpora. The task is viewed as sequential pattern mining and

the Pre�xSpan algorithm is applied for counting co-occurrence and independent

frequencies eÆciently. This method uniformly extracts rigid compounds as well

as non-contiguous collocations and o�ers useful resources for translation aids.

We demonstrate e�ective application of natural language processing and data

mining techniques to extracting translation knowledge from parallel corpora of

di�erent language family.

�Doctor's Thesis, Department of Information Processing, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DT9961030, February 5, 2002.
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Chapter 1

Introduction

As an application of natural language processing (NLP), machine translation

(MT) can claim to be one of the oldest �elds of study. Even with such a long

tradition, MT has not yet met users' full expectations and still has much room

for improvement. The diÆculty in MT lies in the fact that it has to deal with

almost every aspect of computational linguistics, in at least two languages.

Recent advances in NLP owe greatly to corpus-based or statistical approaches.

In the 1990s, large-scale machine-readable linguistic resources became available

and computational power increased. These factors allowed us to process a vo-

luminous amount of linguistic data using computationally expensive statistical

methods that could not have been employed before. We are now in the 21st

century, corpus-based NLP can be seen in every aspect of NLP, including POS

tagging and parsing.

MT is no exception to the above trend; data-driven approaches exempli�ed

by Example-based MT (EBMT) and Statistical MT (SMT) gain focus of atten-

tion. The important assumption in these paradigms is that lexicons and rules for

translation are somehow acquired from corpora which can then compiled into an

MT engine. As the MT gets complicated, manual preparation of translation lexi-

cons and rules become cumbersome. With the availability of parallel corpora and

increased computational power, automatic acquisition of translation knowledge

is desired, and this is precisely the topic of this thesis.
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1.1 Goals and Objectives

This thesis deals with extracting translation knowledge from linguistic corpora us-

ing NLP techniques. The goal is to demonstrate automatic methods of translation

knowledge extraction which will be useful for constructing translation knowledge

base. Such a knowledge base can aid translators or language learners. Transla-

tion knowledge can take many forms: paragraphs, sentences, phrases, and words.

However, we restrict our attention to translation knowledge expressed in phrase-

equivalent units, since methods to identify phrase-equivalent units have not been

addressed properly in previous works.

Figure 1.1 illustrates the overview of our work in context of translation aids.

Translation
Knowledge Base

Translation Pair
Extractor

Parallel Corpora

TKB Query GUI

Example 
Browser/Corrector

Dictionary 
Builder

mining

viewing

Figure 1.1. Translation Aid Framework

Our work will concentrate mainly on the mining phase of translation knowl-

edge base management. We propose three approaches for acquiring translation

knowledge from parallel corpora.

The translation pair extraction takes bilingual parallel corpora as input where

each sentence pair are translations of each other. The output is translation knowl-

edge expressed in word- or phrase-equivalent units.

Most previous works, for example Gale [17], addressed primarily on transla-

tional correspondences at word-level. However, a word-for-word translation model

2



cannot handle idiomatic expressions. In order to deal with such situations, we

need a phrase-level unit of correspondences.

Our research goal is to propose methods to extract translational correspon-

dences not only of word-level but also of phrase-level. The task of translation

knowledge extraction comprises of two subtasks:

1. generation and counting of tentative candidates

2. design of extraction algorithm with a suitable similarity measure

In this thesis, we exclusively focus on (1). First, we investigate how far linguistic

clues obtained from NLP tools such as chunk boundary and word dependency

are e�ective in generation of tentative candidates. Second, we focus on eÆcient

methods to count tentative candidates by adopting data mining approach.

1.2 The Outline of the Thesis

The thesis is organised as follows.

Chapter 2 is devoted to the background of extracting bilingual lexicons. A

typical problem setting of translation knowledge extraction and basic preliminar-

ies are also given.

The next three chapters describe our original work on translation knowledge

extraction.

In Chapter 3, we apply statistically probable dependency relations to acquire

word and phrasal correspondences. The approach is based on the observation

that phrase dependencies are preserved across language pairs even if they have

di�erent word ordering constraints. We use corpus-based dependency parsers

to obtain statistically probable dependency relations. The objective is to show

e�ectiveness of dependency relations in translation knowledge acquisition even

for languages with di�erent word ordering constraints.

Chapter 4 is a follow-up on Chapter 3. This study compares three models

of translation units, each of which uses di�erent linguistic information, namely,

one with only word segmentation, one with chunk boundary, and one with word

dependency. The aim is to investigate relationship between the linguistic clues

applied and the translation knowledge extracted.

3



In Chapter 5, we propose a data mining approach to extracting bilingual lex-

icon from parallel corpora. The task is viewed as sequential pattern mining from

transactions of paired bilingual sentences and apply the Pre�xSpan algorithm

to �nd frequently appearing sequential patterns in parallel corpora. We have

achieved an eÆcient generation and counting of bilingual multiword expressions

by adopting the Pre�xSpan algorithm.

Chapter 6 concludes our work and present future directions.

4



Chapter 2

Background

This chapter gives a basic background of data-driven MT, which has been the

main driving force for extracting bilingual lexicons. Then, we describe a typical

problem setting and some preliminaries in the translation knowledge extraction.

2.1 Data-Driven MT

The recent availability of large-scale machine-readable linguistic resources and

the rapid advances in computational power lead us to the era of corpus-based

approaches in NLP.

MT is no exception to the above trend; data-driven approaches such as Sta-

tistical MT (SMT) and Example-based MT (EBMT) gain focus of attention. In

these paradigm, lexicons and rules for translation are somehow acquired from

corpora which can then compiled into MT engine.

Figure 2.1 illustrates the general framework of data-driven MT.

As the MT gets complicated, manual preparation of translation lexicons

and rules are cumbersome and automatic acquisition of translation knowledge

is strongly desired.

Before we describe translation knowledge acquisition, which is the main theme

of the thesis, we briey look at data-driven MT approaches which are another

major motivation for translation knowledge acquisition.

5



source1
source2

sourceN

target1
target2

targetN

Translation Pair
 Extraction

Parallel Corpora

翻訳
部

Translation Engine

Source Language
Dictionary
Grammar

Target Language
Dictionary
Grammar

Translation Knowledge

Source Sentence

 

Target Sentence

Figure 2.1. Data-driven MT

2.1.1 Statistical MT

The SMT framework has been proposed by Brown et al. in late 1980s where the

translation probabilities between English and French are estimated using the EM

algorithm [7][6]. The model is based on Shannon's noisy channel model which is

illustrated in Figure 2.2. It receives an English sentence e, transforms it into a

French sentence f , and sends the French sentence f to a decoder. The decoder

then determines the English sentence ê that f is most likely to have arisen from.

Language 
Model

Translation 
Model

Decoder

P(e) P(f|e) e^ = argmax_e P(e|f)

e f e^

Figure 2.2. Noisy Channel Model in Statistical MT

There are three components for translation from French to English: a language

model, a translation model and a decoder. Since the parameters of the model,

called the translation probabilities is closely related to lexical acquisition, we

will look at it in detail. Below, a translation model based on word alignment is

described.
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We use the same notations in Brown et al.: e is the English sentence; l is the

length of e in words; f is the French sentence; m is the length of f ; fj is the word

j in f ; aj is the position in e that fj is aligned with; eaj is the word in e that fj is

aligned with; P (wf jwe) is the translation probability, the probability that we will

seen word wf in the French sentence given that we see word we in the English

sentence; Z is a normalization constant.

We compute P (f je) by summing the probabilities of all alignments. For each

alignment, we make two simplifying assumptions. Each French word is generated

by exactly one or no English word, and the generation of each French word is

independent of the generation of all other French words in the sentence.

The EM algorithm is used to estimate the translation probability starting

with a random initialization. In the estimation step, we compute the expected

number of times we will �nd wf in the French sentence given that we have we in

the English sentence.

Zwf ;we
=

X
(e;f)s:t:we2e;wf2f

P (wf jwe)

where the summation ranges over all pairs of aligned sentences such that the

English sentence contains we and the French sentence contains wf . The maxi-

mization step re-estimates the translation probabilities from the following expec-

tations.

P (wf jwe) =
Zwf ;weP
v
Zwf ;v

where the summation ranges over all English words v.

Various extensions to penalize implausible alignments have been proposed.

For example, the alignment probability a(ijj;m; l) is the probability that the jth

word in a French sentence of length m is the translation of the ith word in an

English sentence of length l. This is to implement the heuristic that distortion

in the positions of the two aligned words will decrease the probability of the

alignment. Similarly, a notion of fertility is introduced for each English word

which tells us how many French words it usually generates.

The model had a tremendous impact in the MT research community in the

early 1990s. However, Brown pointed a problem that the lack of linguistic knowl-

7



edge encoded in the system causes many translation failures. In particular, the

model has no notion of phrase and non-local dependencies that are diÆcult to

capture.

Despite such problems, research in SMT has revived notably by the USC

ISI Group and the RWTH Aachen Group [4]. The focus of their attention is to

incorporate linguistic knowledge into the model, while retaining robustness where

statistical MT is superior.

SMT is less popular in English-Japanese MT, only Yamada and Knight [45]

have applied. A primary reason is due to the syntactic di�erence between the

two languages which one cannot ignore when modelling translation equivalence.

2.1.2 Example-based MT

The original idea for the EBMT framework dates back to Nagao's 1984 paper

[33]. The essence of EBMT is captured by his much quoted statement:

Man does not translate a simple sentence by doing deep linguistic

analysis, rather, Man does translation, �rst, by properly decompos-

ing an input sentence into certain fragmental phrases [...], then by

translating these phrases into other language phrases, and �nally by

properly composing these fragmental translations into one long sen-

tence. The translation of each fragmental phrase will be done by the

analogy translation principle with proper examples as its reference.

As he stated, there are three main components of EBMT: matching fragments

against a database of real examples, identifying the corresponding translation

fragments, and then recombining these to give the target text.

As an example, we illustrate how an English sentence \He took a cup of milk"

is translated into a Japanese sentence \彼は一杯のミルクを飲んだ". We parse

the English sentence into a suitable (tree) representation and match against real

examples in the database. Suppose there is an example h He took a cup of co�ee,

彼は一杯のコーヒーを飲んだ i in the database, a thesaurus stating the similar

relation between \co�ee" and \milk", a dictionary which con�rms a bilingual

correspondence between \milk" and \ミルク". By applying such resources, we will

8



obtain a suitable (tree) representation of the translation. This will be generated

into a translated surface string \彼は一杯のミルクを飲んだ"

Unlike the SMT framework, there is no �rm de�nition and theory for EBMT,

and this has led to some confusion with the Translation Memory. However, there

have been many works that claimed to be EBMT, including Sato and Sumita

[39], [43].

We leave details to the recent review by Somers [42]. A notable point is that

EBMT has compensated a rule-based MT paradigm, especially in the domain

where a powerful but complex grammar cannot be prepared easily.

2.2 Translation Pair Acquisition

Previous work in acquiring bilingual correspondences used parallel corpora as

well as from non-parallel corpora. The former parallel corpora contain paired

sentences of the original and its translation. On the other hand, non-parallel cor-

pora are a pair of monolingual corpora in the same or similar �eld. By de�nition,

sentences in non-parallel corpora are not aligned.

Our works assume parallel corpora. Hence, we primarily pay our attention to

acquiring bilingual correspondences from parallel corpora in this section.

There are two distinct approaches in acquiring bilingual correspondence from

sentence-aligned parallel corpora. One is alignment and the other is extraction.

Both aim to �nd correspondences of smaller components in the sentences that

may take form of word, noun phrase, collocation or constituents.

Alignment is the process by which correspondences of subcomponents within

the paired sentence are found. The goal is to �nd correspondence for all subcom-

ponents in the sentence. Extraction, as its name stands, focuses on extracting

subcomponents that correspond by processing the entire parallel corpora. The

goal is to �nd correspondences for some substructures in the parallel corpus.

It is vital to distinguish between often confused approaches. Alignment con-

centrates on completeness (or coverage) by aligning all corresponding subcompo-

nents, however, suitability (or precision) of the resulted alignments as an entry

for bilingual lexicon is sacri�ced. Extraction acquires meaningful correspondences

with high precision, but fails to �nd all such correspondences in the entire parallel

9



translation units preprocessing

Word tokenization, POS tagging

Base NP tokenization, POS tagging, chunking

Collocations tokenization, POS tagging, chunking

Dependency Structure tokenization, POS tagging, chunking, dependency analysis

Table 2.1. Relationship between Translation Units and Preprocessing

corpora.

Below, we provide preliminaries in translation pair acquisition with respect to

unit of translation, corpora, similarity measure, type of algorithm, and evaluation.

Then, we review previous approaches taken in alignment and in extraction from

parallel corpora.

2.2.1 Preliminaries

Translation Units

Various level of translation units can be de�ned given a raw bilingual text. Exam-

ples are words, noun phrase (NP) compounds1, collocations, phrase/dependency

structure. The more complex a desired translation unit is, the deeper a degree of

language processing it will require. Table 2.1 summarises require NLP tools for

the extraction of four types of translation units.

The preprocessing required in each stage can be obtained using rule-based

systems based on regular expressions or �nite state automaton. Recent works

use corpus-based tools that are trained directly from annotated corpus using sta-

tistical methods such as Hidden Markov Model or machine learning techniques

such as Decision Tree, Maximum Entropy, Support Vector Machines. It is im-

portant to point out that such a preprocessing will contain errors and unresolved

ambiguities irrespective of whether they are rule-based or corpus-based.

Early works sought word-for-word correspondences. However, there are a

number of attempts to extend correspondences to NP phrases or collocations typ-

ically found in technical documents. Kupiec extracted English-French NP corre-

1They are mostly base NP, in other words, NP which do not embed NP inside.
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spondences [26]. The method used HMM-based part-of-speech (POS) taggers and

�nite-state NP recognizers to extract NP in each language and applied an EM-like

algorithm to �nd NP correspondences. Smadja et al. extracted English-French

collocations with Champollion system [40] which is based on Smadja's Xtract

system [41]. Smadja and colleagues reported that 73% of the French translations

of valid English collocations were judged to be correct by three evaluators.

Corpora

We compare two kinds of corpora used for translation pair acquisition: Parallel

and Non-parallel.

Parallel corpora are bilingual texts where each sentence in one language has

a correspondent translated sentence in the other language. The main assump-

tions are that the majority of essential information has not been lost through

translation and that the order of the sentences is retained. As such, the bilingual

correspondence can be estimated by co-occurrence frequency and the position of

the translation units in the parallel corpora. Earlier works used the Canadian

Hansard [1] for English-French translation pairs [7].

Non-parallel corpora2 is a pair of monolingual corpora in the same or similar

�eld. The assumptions used in parallel corpus no longer hold, in other words,

neither frequency nor position of occurrence are comparable. Instead, bilingual

lexicon extraction from non-parallel corpora uses the following characteristics: a)

semantically similar terms appear in similar contexts and b) words in the same

domain and the same time period have comparable usage patterns. Fung and

Rapp have independently investigated this task in English-Chinese, and English-

German respectively [15][35].

Parallel corpora are an expensive resources, but various levels of translation

correspondences from simple ones (e.g. words) to complex ones (e.g. phrases)

can be extracted. In contrast, a vast amount of non-parallel corpora can be

obtained at much cheaper cost with the explosive boom of the Internet. However,

the extracted translation pairs are mostly limited to word correspondence. This

is because contextual similarity is calculated based on the bag-of-word distance

model such as Euclidean distance where sequential or dependency relations among

2Non-parallel corpora are sometimes referred as comparable corpus or noisy parallel corpus

11



y : y total

x freq(x,y) = a freq(x,:y) = b freq(x)

: x freq(:x,y) = c freq(:x,:y) = d freq(:x)

total freq(y) freq(:y)

Table 2.2. Contingency Table

words are completely lost.

Similarity

Similarity measures are de�ned in order to correlate translation units from dif-

ferent language. Several similarity measures have been proposed, and a detailed

discussion can be found in [30].

Most methods for estimating translation pairs from parallel corpora start with

the following intuition: Words that are translations of each other are more likely

to appear in corresponding sentences (i.e. to co-occur) than pairs of unrelated

words. Co-occurrence based similarity measures can be de�ned in terms of a

contingency table.

The formulae below are de�ned in terms of the contingency table in Table 2.2

and N = a + b+ c+ d.

� Mutual Information

log2
aN

(a + b)(a+ c)

� Weighted Mutual Information[16]

(
a

N
) log2

aN

(a+ b)(a + c)

� Dice CoeÆcient[37]

2a

2a+ b+ c

12



� Weighted Dice CoeÆcient[23]

(log2 a)
2a

2a+ b + c

� �
2 statistics[17]

(ad� bc)2

(a+ b)(a + c)(b+ d)(c+ d)

� Log-likelihood[13]

a log a+ b log b+ c log c+ d log d�

(a + b) log (a + b)� (a+ c) log (a+ c)�

(b + d) log (b + d)� (c+ d) log (c+ d) +

(a+ b+ c + d) log (a + b+ c + d)

For non-parallel corpora, the contextual similarity is used for measuring the

similarity between terminology. Fung de�ned a two-dimensional matrix for con-

textual similarity, one dimension for a seed bilingual lexicon and the other for

unknown words [16]. For each unknown word, word relation vectors are calcu-

lated by weighted mutual information. This is an operation on a monolingual

half of non-parallel corpora. The bilingual correspondence between two mono-

lingual word relation vectors was calculated with Euclidean distance and Cosine

measure.

Algorithm

Two types of algorithms have been used in the previous literature: greedy de-

termination, and iterative estimation. The former ranks the translation pairs

according to their association score using a similarity measure. Then, an algo-

rithm extracts pairs that are more than a given threshold and the remaining pairs

undergo the next iteration with a lower threshold. Once pairs are extracted, they

are never re-examined.

The iterative estimation uses the Estimation Maximization algorithm (EM

algorithm). The initial translation probability (translation model parameters)
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is estimated using frequency and an algorithm re�nes the translation model pa-

rameters using the expectation maximization algorithm. Unlike in greedy deter-

mination, the likelihood of correspondences are considered for all pairs at each

iteration, and the last iteration determines the �nal correspondence.

A number of heuristics are employed to reduce the number of combinations to

be considered. Examples include the use of MRD (machine readable dictionary),

cognates, parts-of-speech and position (alignment) of the word in the sentence.

Melamed compared di�erent �lters and demonstrated that such linguistic knowl-

edge sources are e�ective in augmenting the induction of translation probabilities

in statistical MT [31].

Evaluation

Extracted translation pairs are normally evaluated in terms of precision and recall.

Precision is de�ned as the ratio of \correct" pairs to the extracted. De�nition

of correctness depends on a parallel corpus and usually relies on human judges.

Recall is the ratio of extracted pairs to what is supposed to be extracted in

the original parallel corpus. Generally, recall is diÆcult to calculate, since what

should have been extracted beforehand is not well-de�ned.

Melamed proposed an automatic evaluation of word-based translation lexicon

called BiBLE (Bitext-Based Lexicon Evaluation)[31]. BiBLE uses \precision"

and \percent correct" and takes F-measure of the two. The intuition behind it is

that a better lexicon will �nd more correspondences in a parallel corpus.

BiBLE works well with a large parallel corpus (e.g. 100,000 paired sentences

in the Canadian Hansard), but infrequent but correct translation pairs do not

obtain much credit. Moreover, it is not easy to extend his method to evaluate

bilingual lexicons that are more than just word correspondences. Based on these

reasons, BiBLE is not much used despite its automatic features, and subjective

human judgment is still a popular evaluation method.

2.2.2 Alignment

The goal of alignment is to �nd correspondence for all subcomponents in the

sentence. Alignment has been investigated in word level as well as structure
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levels.

Historically, word alignment was seen as a natural extension from sentence

alignment. Such view was shared by Dagan and Church who employed a dy-

namic programming formulation similar to that of sentence alignment with �ner

granularity and with di�erent slope constraints [12] [9]. Dagan et al. [12] reported

that for 160,000-word excerpt of the Canadian Hansards produced an alignment

in which about 55% of the words were correctly aligned, 73% were within one

word of the correct position, and 84% words were within three words of the correct

position.

A structural alignment produces an alignment between constituents (or sen-

tence substructures) within the sentence pairs of parallel corpora. The task is

usually conducted in a parse-parse-match manner, in that each half of paired sen-

tences is parsed independently in advance and then the algorithm �nds matching

of constituents by measuring similarities. Many works have been reported in this

line, including Kaji et al. [21], Matsumoto et al. [29], Grishman et al. [18],

Kitamura et al. [22], Meyer et al. [32]. These methods not only acquire richer

alignment but also resolve ambiguity arisen from monolingual parsing.

Although research results show promising results, there are some problems

associated with alignment. First of all, word alignment is robust but exploits the

positional heuristics which does not provide good approximates to languages with

relaxed word ordering constraints such as Japanese. On the other hand, structural

alignment �nds meaningful correspondences that can be used for translation rules

in EBMT. However, these methods are often hampered by the performance of

parsers used in both languages. Most methods used rule-based parsers which

often failed to handle complex sentences that include subordinate clauses and

conjunctions, thereby sacri�cing robustness.

2.2.3 Extraction

The goal of extraction is to �nd correspondences for some substructures in the

parallel corpus.

Early works sought for word correspondences such Gale [17] and Melamed [31].

However, as texts are not translated literally, there is an obvious shortcoming in

the word-for-word model. These methods failed to account for compounding
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nouns, collocations or idiomatic expressions typically found in technical docu-

ments. In order to overcome this, some research has been conducted to extract

longer correspondences than words.

Kupeic extracted English-French noun phrase (NP) correspondences [26]. The

method used an HMM-based POS tagger and a �nite-state NP recognizer to

extract NPs in each language and apply an EM-like algorithm to �nd corre-

spondences. Kumano et al. also �nd NP correspondences between English and

Japanese.

Smadja et al. extracted English-French collocations with Champollion system

[40] which is based on Smadja's Xtract system [41]. The system uses a statistical

method to �nd rigid collocation as well as exible collocations are successfully

extracted. First, it identi�es English collocations and then gradually expands

French translation words that statistically co-occur with the English collocations.

The method has been reported that 73% of the French translations of valid En-

glish collocations were judged to be good by three evaluators. The problem with

this approach is that French collocations are not found exhaustively.

Kitamura et al. extracted rigid collocations of unrestricted length from

English-Japanese parallel corpora [23]. Translation units are strings of content

words (e.g. nouns, adjectives, verbs, adverbs) in both languages. The method

is experimented with three di�erent domains, achieving over 90% precision. The

problem with this approach is that exible collocations are not addressed.

Despite higher precision and robustness compared with alignment, translation

knowledge by extraction does not exploit linguistic information, in particular

structural dependency embedded in sentences.

2.3 Summary

This chapter reviewed a basic background in translation knowledge acquisition.

We gave an overview of a data-driven MT paradigm and preliminaries, and ex-

plained the di�erence between alignment and extraction in the task of translation

knowledge acquisition.
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Chapter 3

Using Dependency Structures to

Extract Phrase Correspondence

3.1 Introduction

In this chapter and the next chapter, we aim to demonstrate robust extractions of

translation knowledge from parallel corpora by e�ective use of linguistic clues of-

fered by the state-of-the-art statistical NLP tools. According to the classi�cation

presented in Chapter 2, our work is on extraction, but pays special attention

to linguistic clues obtainable from statistical NLP tools. Our goal is to achieve

robustness that extraction has and to incorporate richer linguistic notions that

structural alignment use.

Figure 3.1 shows the framework of our approach to translation knowledge

extraction. It consists of a monolingual step and a bilingual step. In the mono-

lingual step, we generate possible translation units using linguistic clue for each

half of paired sentence. These translation units are collected into candidate sets

at the end of monolingual step. A pair extraction module takes two candidate

sets from each language and �nds correspondences based on co-occurrences in the

parallel corpora.

This chapter describes a method to acquire phrase correspondence from

sentence-aligned parallel corpora using statistically probable dependency rela-

tions, in other words, modi�er-modi�ee relations in a sentence. The distinct

characteristics of our approach is that by the use of the statistical NLP for pre-

17



source1
source2

sourceN

target1
target2

targetN

Translation Pair 
Extraction

Parallel Corpora

Translation Knowledge

Translation Unit
Generation

Translation Unit
Candidate Sets

Translation Unit
Candidate Sets

Pair Extraction

Translation Unit
Generation

Figure 3.1. Overview of Translation Knowledge Extraction

processing parallel corpora to obtain linguistic clues, we maintain a high level of

robustness that statistical NLP approaches enjoy.

The organisation of this chapter is as follows. In Section 3.2, we argue why

dependency structures obtained from statistical parsers are suitable linguistic

clues for language pairs that do not share the similar alphabets nor word ordering.

In Section 3.3, we present translation unit generation using dependency relations.

Then, the pair extraction algorithm is described in Section 3.4. Finally, we discuss

the e�ectiveness of dependency relations for bilingual correspondence extraction

in Section 3.6.

3.2 Statistically Probable Dependency Rela-

tions

We use statistical dependency parsers which are trained from syntactically anno-

tated corpora to obtain statistical probable dependency relations. They are used

as our linguistic information for translation unit generation.
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There are two factors favouring the use of statistical probable dependency re-

lations for phrasal translation pairs. One is a linguistic requirement: dependency

relations seem an appropriate level of abstraction for languages pairs that do not

belong to the same language families. The other is a technical advancement:

the performance of statistical parsing has progressed rapidly and is now reaching

nearly 90 % precision. The high perfomance opens up an opportunity to be used

to tackle other NLP problems such as the translation pair acquisition.

3.2.1 Linguistic Requirement

Dependency relations can be obtained from dependency analysis based on de-

pendency grammar which focuses on individual dependencies between words and

phrases [20]. In this framework, every phrase is regarded as consisting of a gov-

ernor and dependants, where dependants may be optionally classi�ed further.

The syntactically dominating word is selected as the governor, with modi�ers

and complements acting as dependants. Dependency structures are depicted as

a directed acyclic graph, where arrows direct from dependants to governors.

As we saw in Chapter 2, most approaches are limited to word correspondences

using primitive linguistic information obtainable from tokenization and POS tag-

ging. The exception is Melamed's work where he conducted a comprehensive

experiment on use of word position, alignment, cognates as linguistic heuristics

[31]. However, in the case of English-Japanese pairs, some heuristics such as

cognate and alignment are not applicable. Even for word position heuristics, the

e�ectiveness is limited to compounding nouns as in \Natural/自然 Language/言
語 Processing/処理".

Matsumoto and colleagues argued that dependency structures are preferable

to phrase structures, as they abstract word ordering away [29]. Japanese language

accomodates relatively free word ordering. For example, two sentences \会議
が 2日 奈良で 開催される" and \2日 奈良で会議が 開催される" convey the

identical meaning. The surface word orders are di�erent, but they share the

same dependency relations as illustrated in Figure 3.2.

Our justi�cation of employing dependency relations as linguistic clues stems

from the observation that the word ordering and positions may not necessarily

coincide between the two languages, but the dependency structure between words
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奈良で
in Nara

開催される
be held

２日
on 2nd

会議が
conference

開催される
be held

２日
on 2nd

奈良で
in Nara

会議が
conference

Figure 3.2. Di�erent Word Orders, but Same Dependency Relations

will be preserved. We believe that dependency relations o�er structural linguistic

clues (syntactic information) and are e�ective for language pairs with di�erent

word ordering constraints.

3.2.2 Technical Advancement

Recently many statistical parsing models have been proposed for English [11],

[36], [8] and for Japanese [14], [24]. Statistical parsing has an advantage over

its rule-based counterpart owing to its wider coverage and reduced workload for

grammar maintenance. But more importantly, it produces an output with some

probabilistic con�dence even for long or complex sentences.

Although statistical techniques cannot always provide a complete and correct

parse for a sentence, they nevertheless produce many valid partial parsing results

which are useful for acquiring phrase correspondences. With the use of statistical

dependency parsers, we can handle sentences that are rejected by rule-based

parsers, and use partial dependency trees of those sentences to acquire phrase

correspondences.

3.3 Translation Unit Generation Using Depen-

dency Relations

The process of generating translation units in each language is shown in Figure

3.3. A monolingual half of sentence in parallel corpora are fed into the mor-

pological analysis to tokenize into words each annotated with the corresponding

part-of-speech tag. The word-segmented sentence proceeds to the chunking. Ei-
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ther a set of rules or a statistical model is used to determine whether or not a

group of words are chunked into a segment. The chunked sentence is passed on

to dependency analysis to construct a dependency tree of the sentence. Finally,

the subtree generation produces a set of subtrees of the dependency tree each

corresponding to a dependency-preserving translation unit. The process is rea-

peated for every sentence, and all the generated subtrees form a translation unit

candidate set of the language.

Sentence

Subtree Generation

Dependency Analysis

Translation Unit
Candidate Set

Morphological Analysis

Chunking

Word-Segmented Sentence

Chunked Sentence

Dependency Tree

Translation Unit Generation

Figure 3.3. Translation Unit Generation

The originality of our work is the use of dependency analysis in the translation

unit generation. We use the maximum likelihood model proposed in [14] for a

statistical dependency parser. The model calculates the dependency probability

between segments based on their co-occurrence and distance.

As the parser works for dependency relations between segments, we treat the

following as a segment unit in chunking:

� English

{ a base NP: none of its child constituents are NP
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{ a preposition or conjunction with the succeeding base NP

{ main verbs with preceeding auxiliary verbs

� Japanese

{ a bunsetsu: one or more content words optionally followed by function

words

The goal of subtree generation is to generate meaningful translation units

from a dependency tree. However, dependency analysis faces with the problem

of ambiguity in that the correct dependency relation for every segment may not

be determined. Even with the state-of-the-art statistical parses, the sentence

precision is only 50%.

However, in our problem setting, we do not require completely correct parses

for all paired sentences unlike structural alignment. Rather, we desire to generate

as many correct partial subtrees as possible from parallel corpora. Hence, we

deliberately supply multiple parses for ambiguous dependency relations. This

will hopefully increase the number of partially correct subtrees in the translation

unit candidate sets.

We generate translation units using the three models described below. The

purpose is to apply statistically probable dependency relations to translation

unit generation and to examine to what extent statistically probable relations

are useful.

3.3.1 Model A: Best-one

The best-one model uses only the most likely (i.e. statistically best) dependency

relations obtained from the statistical dependency parser. At most one depen-

dency is allowed for each segment.

Figure 3.4 shows translation units generated by the best-one model. The

translation units generated by the best-one model correspond to substrees of

sentences. We build the translation units from a single segment (i.e. nodes of

dependency tree) to a subtree composed of at most 3 segments. For translation

units comprised of 3 segments, there are two di�erent subtree types and \<T>"

and \<L>" are annotated to distinguish the di�erence.
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 [ I ] [ saw ]  [ a girl ] [ (with) a telescope ]

size 1) {I,  saw,  girl,  telescope}

{I_saw,  girl_saw,  with-telescope_saw}

{I_girl_saw<T>, 
  I_with-telescope_saw<T>,
  girl_with-telescope_saw<T>}

size 3)

size 2)

Figure 3.4. Best-one Model

We retain functional words in the translation unit if the segment is not

the governor of the dependency relation. In the example, the segment with

a telescope is a daughtor to the segment saw, and thus the translation unit

contains the functional word with. This is based on the linguistic intuition that

the di�erence is notable in saw sb/sth with a telescope and saw sb/sth at

the station, but not so in at the station of Shinkansen line and in the

station of Shinkansen line.

The translation unit are expressed as a daughtor-governor relation. Hence, the

word ordering in the original sentences are not necessarily followed like girl saw

in the example.

3.3.2 Model B: Ambiguous

The ambiguous model uses dependency relations above the con�dence score of

2. Figure 3.5 shows translation units generated by the ambiguous model. In this

example, dependency relations for with a telescope are ambiguous and both

probable parses are considered in translation unit generation.

The (k + 1)th dependency relation for k � 1 is also included if

prob(kth ranked dependency)

prob((k + 1)th ranked dependency)
� 2

Multiple dependencies may be considered for each segment. The translation

units generated by the ambiguous model also correspond to substrees of sentences.

In fact, the ambiguous model is a superset of the best-one model.

23



 [ I ] [ saw ]  [ a girl ] [ (with) a telescope ]

size 1) {I,  saw,  girl,  telescope}

{I_saw,  girl_saw,  with-telescope_saw,
  with-telescope_girl}

{I_girl_saw<T>, 
  I_with-telescope_saw<T>,
  girl_with-telescope_saw<T>,
  with-telescope_girl_saw<L>}

size 3)

size 2)

Figure 3.5. Ambiguous Model

In this model, more likely dependency relations will appear more frequently

given a large corpus, which, in turn, has an e�ect of boosting the correlation

score in translation pair extraction. The purpose of this model is to examine if

ambiguity in dependency analysis will be resolved in pair extraction by supplying

alternative parses.

3.3.3 Model C: Adjacency

The adjacency model uses only adjacency relations between segments. Thus,

for any segment, its only dependency is the immediately preceeding segment as

illustrated in Figure 3.6.

 [ I ] [ saw ]  [ a girl ] [ (with) a telescope ]

size 1) {I,  saw,  girl,  telescope}

{saw_I,  girl_saw,  with-telescope_girl }

{girl_saw_I<L>, 
  with-telescope_girl_saw<L>}

size 3)

size 2)

Figure 3.6. Adjacency Model

Unlike the best-one model and the ambiguous model, the translation units
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generated by the adjacency model correspond to substrings of sentences. In the

adjacency model, structural clues are ignored and word ordering constraints is the

dominant inuencing factor. This model is included for comparative purposes.

The ranslation unit candidate sets thus generated become the inputs for pair

matching described in the next subsection.

3.4 Translation Pair Extraction

Our strategy is to allow aggressive overlaps in translation unit candidate sets

where ambiguity exists which is balanced by conservative correspondence discov-

ery in the pair extraction algorithm.

The pair extraction algorithm is based on Kitamura and Matsumoto [23].

Pair matching of translation units in candidate sets is a combinatorial problem.

The algorithm is controlled by a threshold. It �rst collects translation units from

candidate sets that occur more than the threshold times. Then, it calculates the

correlation between all possible pairs from the two candidate sets and extracts

pairs starting with the higher score. When no more pairs are found, the threshold

is lowered gradually to expand translation units under consideration. The same

extraction process is repeated until the minimum threshold.

The threshold in the pair extraction algorithm has two roles. One is a thresh-

old for the co-occurrence frequency. By setting the minimum threshold, the

algorithm does not �nd translation pairs either of which independent frequency

is less than the pre-de�ned minimum threshold. The other role is a threshold for

the correlation score. By lowering the threshold in a stepwise manner, translation

pairs are extracted from most correlated ones to least correlated ones.

The correlation of two words can be estimated by the positional distribution

of the translation units in the parallel corpora (cf. Chapter 2). We choose the

weighted Dice coeÆcient proposed by Kitamura and Matsumoto [23] which is

de�ned as:

sim(pe; pj) = (log2 a)
2a

(a+ b) + (a+ c)

where (a+b) and (a+c) are the number of occurrences in Japanese and English

corpora respectively and a is the number of co-occurrences. It is calculated by
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the number of times that appeared independently in the corpus and the number

of times that co-occur in the parallel corpus.

Matsumoto give a detailed analysis on several correlation measures used in

translation pair acquisition from parallel corpora [30]. Our choice of the weighted

Dice coeÆcient as a similarity measure is based on the results reported in the

literature.

According to the literature, Church and colleagues used mutual information

and reported that it was a good estimate for relatively frequent events but su�ered

from overestimation for infrequent events [10]. Smadja et al. also pointed out

the problem and used an alternative similarity measure namely, a Dice coeÆcient

which ranges betwenn 0 and 1 [40]. Kitamura and Matsumoto note that the same

correlation score will be given regardless of the co-occured frequency of the pair

in the parallel corpora. For example, the score 0.6667 will be calculated for a

frequent pair (a = 200, b = 100, c = 100, d = 199; 600) and an infrequent pair

(a = 2, b = 1, c = 1, d = 199; 996). In order to discriminate frequent pairs from

infrequent ones, they add the promoting weights for frequent pairs, giving the

correlation score 5.0959 for the frequent pair while 0.6667 for the infrequent pair.

We now describe the pair extraction algorithm below.

1. For each English translation unit pe in the English candidate set, store

sentence positions in which pe is found1. Delete any English translation

unit pe from the English candidate set that appears less than the prede�ned

minimum threshold fmin.

2. Apply the above operation for each Japanese translation unit pj in the

Japanese candidate set.

3. Repeat the following until the current threshold fcurr reaches the prede�ned

minimum threshold fmin.

(a) For each pair of an English translation unit pe and a Japanese transla-

tion unit pj appearing at least fcurr times independently, identify the

most likely correspondences according to the correlation scores.

1These sentence positions are used to calculate co-occurrence and independent occurrence

between the English translation unit pe and the Japanese translation unit pj .
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� For an English translation unit pe, obtain the plausible candidate

subset PJ = f pj1, pj2, ..., pjn g such that sim(pe,pjk) > log2 fcurr

for all k. Similarly, obtain the plausible candidate subset PE for

a Japanese translation unit pj.

� Register (pe,pj) as a translation pair if

pj = argmax

pjk2PJ

sim(pe; pjk)

pe = argmax

pek2PE

sim(pj; pek)

The correlation score of (pe,pj) is the highest among PJ for pe and

PE for pj.

(b) Filter out the co-occurred sentence positions for pe, pj, and their over-

lapped translation units.

(c) Lower fcurr if no more pairs are found.

Several tactics are incorporated to overcome the combinatorial explosion.

First, it is a greedy algorithm which means that a translation pair determined in

the early stage of the algorithm will never be considered again. With a stepwise

lowering of the threshold, the algorithm extracts translation pairs with higher

score to lower ones.

Secondly, a �ltering process is incorporated. Figure 3.7 illustrates �ltering for

a sentence pair (I saw a girl in the park, 私は公園の少女を見た). A set of

candidates derived from English is depicted on the left, while that from Japanese

is depicted on the right. Once two candidates (e.g. I girl saw(T) and /私 少女
を 見た (T)) are designated as a translation pair, the the subcomponents of one

translation unit (e.g. I, I saw) are not be paired up with the subcomponents of

the translation unit in the other language (e.g. 私,私 見た); See Figure 3.7, where

discarded subcomponents are marked with a dotted line. The operation e�ectively

discards the matched pairs and causes the recalculation of the correlation scores

in the proceeding iterations.
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私 公園 少女 見た

私は 見た 公園の 少女を 少女を 見た

私は 見た 公園の 少女を 見た少女を T L

I saw girl park

I   saw girl   saw in-park   saw

I  girl  saw   T I  in-park  saw  T

Figure 3.7. Filtering: (I,私),(saw,見た),(girl,少女),(park,公園)

3.5 Experiment and Results

We used 9268 sentences from English{Japanese business letter samples which

were already aligned. The NLP tools used to obtain candidates are summarised

in Table 3.1.

Task Tool Reported precision

POS(E) ChaSen2.0 96%

POS(J) ChaSen2.0 97%

chunking(E) SNPlex1.0 rule-based

chunking(J) Unit rule-based

dependency(E) edep trial system

dependency(J) jdep 85{87 %

Table 3.1. NLP tools used in this experiment

Parameter setting were as follows: The threshold of occurrence is adjusted

according to the equations below. The threshold fcurr is initially set to 100 and

is gradually lowered down until it reaches the minimum threshold fmin 2. All

parameters were empirically chosen.

fcurr =

8><
>:

fcurr=2 (fcurr > 20)

10 (20 � fcurr > 10)

fcurr � 1 (10 � fcurr � 2)
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Results are evaluated in terms of precision. The correctness of acquired phrase

correspondence was judged by a speaker of English and Japanese (Japanese na-

tive). Precision for each model is summarised in Tables 3.2, 3.3 and 3.4. fcurr

stands for the threshold. e is the number of extracted phrase correspondences

found at fcurr. c is the number of correct correspondences found at fcurr. acc is

the ratio of correct ones to extracted ones at fcurr. The accumulated results for

e, c, and acc are indicated by '.

To examine the characteristics of each model, we relax constraints to include

equality for the plausible candidate sets PJ such that sim(pe,pjk) � log2 2 for all

k, and PE such that sim(pek,pj) � log2 2 for all k are also considered. This means

that tentative translation pairs with the correlation score of 1 (i.e. log2 2) is also

taken into account . The results of this relaxation are marked by asterisks \*" in

the tables.

fcurr e c acc e' c' acc'

25 6 6 100.00 6 6 100.00

12 7 7 100.00 13 13 95.00

10 7 6 85.71 20 19 95.83

9 4 4 100.00 24 23 92.30

8 13 13 100.00 37 36 97.29

7 13 10 76.92 50 46 92.00

6 20 19 95.00 70 65 92.85

5 29 29 100.00 99 94 94.94

4 72 67 93.05 171 161 94.15

3 164 150 91.46 335 311 92.83

2 461 414 89.80 796 725 91.08

( *2 474 264 55.69 1270 989 77.93)

Table 3.2. Precision: Best{one model

Random samples of correct and near{correct translation pairs are shown in Ta-

ble 3.5, Table 3.6 respectively. Extracted translation pairs were matched against

the original corpora to restore their word ordering. This restoration is done

manually this time, but can be automated with a small modi�cation in our al-

gorithm. In the tables, \+" indicates a segment-separator and \ " indicates a
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fcurr e c acc e' c' acc'

25 6 6 100.00 6 6 100.00

12 7 7 100.00 13 13 100.00

10 7 6 85.71 20 19 95.00

9 4 4 100.00 24 23 95.83

8 13 13 100.00 37 36 97.29

7 13 11 84.61 50 47 94.00

6 19 18 94.73 69 65 94.20

5 29 29 100.00 98 94 95.91

4 73 68 93.15 171 162 94.73

3 126 118 93.65 297 280 94.27

2 468 432 91.50 765 712 93.07

( *2 759 256 33.72 1524 968 63.51)

Table 3.3. Precision: Ambiguous model

fcurr e c acc e' c' acc'

25 6 6 100.00 6 6 100.00

12 7 7 100.00 13 13 100.00

10 7 6 85.71 20 19 95.00

9 4 4 100.00 24 23 95.83

8 13 13 100.00 37 36 97.29

7 13 10 84.61 50 46 92.00

6 19 18 94.73 69 64 92.75

5 29 29 100.00 98 93 94.89

4 73 68 93.15 171 161 94.15

3 126 114 93.65 297 275 92.59

2 484 419 86.57 781 694 88.86

(*2 496 280 56.45 1277 974 76.27)

Table 3.4. Precision: Adjacency model
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English Japanese score

thank+you ありがとう 4.7037

consultations+include 協議 に は+含める 2.3219

apply+for the position 職 に+応募 いたす 2.2157

thank+you+in advance 前もって+お願い+申し上げる 1.6000

not+hesitate+to contact 遠慮なく+ご連絡 1.6000

be+enclosed+a copy 1 部 同封 いたす 1.0566

be writing+to let+know 書状 をもって+お知らせ いたす 1.0566

applications+include 用途 に は+ある 1.0000

upcoming borard+of director s� meeting 次回 の+取締役 会 1.0000

will have+to cancel 中止 せざる を+得 なく+なる 1.0000

have+high hope 大いに+期待 する 1.0000

business+is expanded 商売 は+発展 する 1.0000

we+have learned+from your fax 貴 ファックス で+知る 1.0000

leaving+in+about ten days 約 1 0 日 後+出発 1.0000

get+you+in close business relationship 緊密 な+取引 関係 を+築く 1.0000

we+are inquiring+regarding に関し+お尋ね いたす 1.0000

pay+special attention 特別 の+注意 を+払う 1.0000

Table 3.5. Random samples of correct translation pairs in the best{one model.

morpheme-separator. Moreover, segments to be deleted in order to become a cor-

rect translation pair are written in italic, while segments to be added in order

to become a correct translation pair are written in bold.

3.6 Discussion

The Tables 3.2, 3.3 and 3.4 show that both the best-one model (91.08%) and the

ambiguous model (93.07 %) achieve better performance than the baseline adjacent

model (88.86 %). Although the di�erence is marginal, the result implies that
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English Japanese

have been pleased+to serve+as thier main banker 主力 銀行 と+なる
be held+at hotel new ohtani ホテル ニューオータニ で+開催 する
assets position+in good shape 資産 状態
have been placed+into our �le 私ども の+ファイル
put+one month limit 1 ヶ月 の+期限
passed+on past tuesday 火曜日 に+亡くなら れる

Table 3.6. Randam samples of near{correct translation pairs where score is 1.000.

applying statistically probable dependency relations to translation unit (subtree)

generation is e�ective in translation pair extraction.

The di�erence between the dependency models (i.e. best-one and ambiguous)

and the adjacency model increases when the threshold fcurr reaches 3. Translation

pairs which are not found in the adjacency models are extracted in the dependency

models, which we conjecture that dependency relations do not come to e�ect until

relatively low thresholds.

Many partially variant sentences such as \遠慮なく+ご連絡 (not hesitate + to

contact)", \遠慮なく+私に+ご連絡 (not hesitate + us + to contact)" and \遠慮な
く+折り返し+当方に+ご連絡 (not hesitate + immediately + us + to contact)"

are concentrated at relatively low thresholds. In the adjacent model, transla-

tion units preserve surface word ordering. Hence, translation units generated

from such variant sentences are collected as distinct entities. On the other hand,

dependency models generate dependency-preserving translation units. Thus, de-

pendency models have advantageous for variant sentences which di�er in surface

word ordering but the same in linguistic dependency structure. In the above

case, the common subtree \遠慮なく+ご連絡 (not hesitate + to contact)" will

be counted three times.

Based on the above observation, the dependency models have a boosting e�ect

in collecting statistics of translation units, which in turn increases the similarity

score and chances to be extracted as translation pairs.

However, the e�ect of supplying alternative parses in translation unit genera-

tion is questionable. Experimental results (Tables 3.2 and 3.3) did not ful�l our

initial expectation that ambiguity in dependency analysis will be resolved in pair
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extraction by supplying alternative parses. Although the precision of the ambi-

guity model slightly improved over the best-one model, the number of extracted

translation pairs decreased even though candidate sets in the ambiguous model

is a superset of the best-one model.

Our general strategy is to allow aggressive overlaps in translation unit can-

didate sets where ambiguity exists. This is hopefully balanced by conservative

correspondence discovery in the pair extraction algorithm. The expected scenario

in the ambiguous model is that more partially correct subtrees are generated in

candidate sets which will boost the correlation score in pair extraction algorithm.

In reality, however, supplying alternative parses leads to a rapid increase in the

number of translation units. For example, the number of English translation units

jumped from 10892 in the best-one model to 26333 in the ambiguous model, of

which, 72% of translation units appear only twice in the parallel corpora. The

statistically redundant parsing causes an increase of new translation units com-

prised of ambiguous dependency relations. The net result is that the size of

candidate sets drastically increases at low thresholds, �nding correspondences

becomes more diÆcult, and the number of extracted translation pairs reduced.

Two issues are related to the structural ambiguity resolution stemmed from

dependency analysis. The �rst issue is the accuracy of dependency parsing. The

better accuracy a statistical parser achieves, the number of partially correct sub-

trees will increase in the best-one model. The relative merit of supplying alter-

native parses will be reduced. The performance of dependency parser used for

the experiment achieved 85-7% (see Table 3.1), but the state-of-the-art statistical

parsers at the time of writing is over 90 % [8]. The performance improvement

of 5% may provide a di�erent outlook on the e�ect of redundant parsing: the

structural ambiguity may or may not be an issue to be taken up. The other issue

is how far we should allow redundancy in dependency analysis. In the experi-

ment, we picked a parameter of the statistical dependency parser arbitrarily for

redundant parsing. Although the ambiguous model is a superset of the best-one

model, it is not the optimal ambiguous model where only the real ambiguous

dependency relations are allowed. The remaining research issue is a tuning the

parameter of redundant parsing in order to see the full e�ect of alternative parses

to tackle the structural ambiguity resolution.
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3.7 Summary

In this chapter, we applied statistically probable dependency relations to extract

word and phrasal correspondences. We achieved nearly 90 % precision with exper-

iments of 9268 paired sentences. The experiments show that although statistical

parsers are prone to some error, dependency relations serve as e�ective linguistic

clues in translation knowledge extraction even for language pairs with di�erent

word ordering constraints. The unaccomplished goal is structural disambiguation

arisen from dependency analysis. We allow aggressive overlaps in translation unit

candidate sets where ambiguity exists. However, this was not suÆciently balanced

by conservative correspondence discovery in the pair extraction algorithm. The

problem of ambiguity still remains our research agenda.
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Chapter 4

A Comparative Study on

Candidate Generation

4.1 Introduction

Parallel corpora do not have any other linguistic information other than sen-

tences being aligned. We used NLP tools to annotate linguistic clues from which

translation units can be generated.

This chapter compares three models of translation units each of which uses

di�erent linguistic information: one with only word segmentation, one with chunk

boundary, and one with word dependency. We use NLP tools to annotate such

linguistic information. Table 4.1 shows robust NLP tools publicly available, most

of which uses statistical techniques that are trained directly from annotated cor-

pus. Although the state-of-the-art NLP tools do not o�er 100% precision, there

are many partially correct answers.

The purpose of this study is to examine e�ectiveness of linguistic clues ob-

tainable from NLP tools, and to investigate the relationship between linguistic

clues applied and translation knowledge extracted.

The organization of this chapter is as follows: in Section 4.2, we describe

three models used to generate translation units. In Section 4.4, we present our

experimental results. Finally, Section 4.5 analyzes characteristics of each model.
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tool usage language technique performance

TnT POS tagging English HMM 97 %

MXPOST POS tagging English ME 96 %

ChaSen POS tagging Japanese HMM 98 %

YamCha chunker English SVM 94 %

YamCha chunker Japanese SVM 96 %

Collins parser English probabilistic 86 %

Charniak parser English ME-like 90 %

Jdep parser Japanese probabilistic 86 %

CaboCha parser Japanese SVM 90 %

Table 4.1. Preprocessing Tools

4.2 Linguistic Heuristics for Translation Units

In this work, we focus on three kinds of linguistic clues obtainable from NLP

tools. They are word segmentation (spaces), chunk boundary (squared brackets),

and word dependency (arrows) shown in Figure 4.1.

NLP tools have reached to a practical level, but they never guarantee 100%

precision. Moreover, they propagate ambiguities or errors to translation unit

generation. For example, a morphological analyzer may produce an inconsistent

word segmentation or a dependency parser may give unintended parses. In the

next section, we propose three generative models of translation units that attempt

to allow overlaps arisen from real ambiguity but to eliminate impossible overlaps.

4.3 Models of Translation Units

Three N-gram models of generating translation units, namely Plain N-gram,

Chunk-bound N-gram, and Dependency-linked N-gram are compared. In Plain

N-gram and Chunk-bound N-gram, translation units are built using only con-

tent (open-class) words. This is because functional (closed-class) words such as

prepositions are insigni�cant in contiguous counponding words.

A word is classi�ed as a functional word if it matches one of the following
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 Pierre Vinken  ,  61 years   old  ,  will join   the board   
 as   a nonexecutive director   Nov. 29  .

[Pierre Vinken] , [61 years] [old] , [will join] [the board] 
[as] [a nonexecutive director] [Nov. 29] .

Pierre

Vinken

,

61

years

old

will

join

board Nov.

29 .

,

the

nonexecutive

as

director

a

Figure 4.1. Linguistic Clues: Word Segmentation (top), Chunk Boundary (mid-

dle) and Word Dependency (bottom)

conditions. (The Penn Treebank (1991) part-of-speech tag set is used for English,

whereas the ChaSen (2001) part-of-speech tag set is used for Japanese.)

part-of-speech(J) \名詞-代名詞" (noun-pronoun), \名詞-数" (noun-number),

\名詞-非自立"(noun-dependent), \名詞-特殊" (noun-speci�c), \名詞-接
尾-助動詞語幹"(noun-suÆx-postparticle), \名詞-接尾-副詞可能" (noun-

suÆx-adverbial), \名詞-接尾-助動詞"(noun-suÆx-model), \接頭詞" (pre-

�x), \動詞-接尾"(verb-suÆx), \動詞-非自立" (verb-dependent), \助
詞"(postposition), \助動詞"(postparticle), \形容詞-非自立" (adjective-

dependent), \形容詞-接尾"(adjective-suÆx), \記号" (symbol)

part-of-speech(E) \CC", \CD", \DT", \EX", \FW", \IN", \LS", \MD",

\PDT", \PR", \PRS", \TO", \WDT", \WD", \WP"

stemmed-form(E) \be"

symbols punctuations and brackets

In Dependency-linked N-gram, translation units are built not only with con-

tent words but also with functional words. This is because inclusion of function
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words seems natural when considering word dependency. However, invalid trans-

lation units such as ones consisting solely of functional words are eliminated in

advance.

4.3.1 Model 1: Plain N-gram

Plain N-gram was �rst proposed in Kitamura et al. [22]. The translation units

generated in this model are word sequences from uni-gram to a given N-gram.

Linguistic information used in this model is kept to a minimum, and is used as

the baseline model in our work. The upper bound for N is �xed to 5 in our

experiment.

4.3.2 Model 2: Chunk-bound N-gram

Chunk-bound N-gram is an extended version of plain N-gram which assumes

prior knowledge of chunk boundaries. The de�nition of \chunk" has rooms for

discussion. In our experiment, the de�nition for English chunk task complies with

the CoNLL-2000 text chunking tasks [2] and the de�nition for Japanese chunk is

based on \bunsetsu" in the Kyoto University Corpus [27].

Unlike Plain N-gram, Chunk-bound N-gram will not extend beyond the chunk

boundaries. N varies depending on the number of words in a chunk1.

4.3.3 Model 3: Dependency-linked N-gram

In Dependency-linked N-gram, a sentence is parsed into a word dependency tree.

Since there was only a marginal advantage of the ambigious model over the best-

one model (See Chapter 3), we only use the statistically best parse in Dependency-

linked N-gram. We treat each branch of the word dependency tree as word

sequences, and generate translation units from uni-gram to N-gram where N is the

number of words in each branch of the word dependency tree. In our experiment,

we used the probabilistically best parse result generated from the parser.

1The average number of words in English and Japanese chunks are 2.1 and 3.4 respectively

for our parallel corpus.
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Dependency-linked N-gram is distinct from the previous work. The granular-

ity of translation units in Dependency-linked N-gram is �ner, since it is based

on word dependency instead of phrase dependency. We conjecture that the data

sparseness problem will be resolved by focusing on word dependency.

Furthermore, Dependency-linked N-gram can generate 'non-contiguous' N-

gram which cannot be generated from Plain N-gram with any N. Figure 4.2

shows a set of N-grams generated from a branch of a dependency tree in Figure

4.1. Bolded N-grams are ones that cannot be generated by Plain N-gram.

will

join

nonexecutive

as

director

nonexecutive
nonexecutive-director
nonexecutive-director-as
nonexecutive-director-as-join
nonexecutive-director-as-join-will
director
director-as
director-as-join
director-as-join-will
as-join
as-join-will
join
join-will

Figure 4.2. Dependency-linked N-gram

4.4 Experimental Results

We apply the same pair extraction algorithm described in the previous chapter

with the same threshold lowering schedule, since our aim was to examine the

e�ectiveness of each model in extraction.

Data for our experiment is 5000 sentence-aligned corpus from English-

Japanese business expressions. 4000 sentences pairs are used for training and

the remaining 1000 sentences are used for evaluation.

NLP tools used in this experiment are ChaSen, YamCha, CaboCha for

Japanese text processing and TnT, YamCha, Collins parsers for English text

processing. The choice of NLP tools was made based on performance (greater
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than 85% accuracy) as well as ease of use.

Translation units that appear at least twice are considered to be in the can-

didate sets for the translation pair extraction algorithm. Table 4.2 shows the

number of translation units found by each model. Note that translation units are

counted not by token but by type.

model English Japanese

Plain 4286 5817

Chunk-bound 2942 3526

Dependency-linked 15888 10229

Table 4.2. Number of Translation Units

The result is evaluated in terms of accuracy and coverage. Accuracy is the

number of correct translation pairs over the extracted translation pairs in the

algorithm. This is calculated by type. Coverage measures applicability of the

correct translation pairs for unseen test data. It is the number of tokens matched

by the correct translation pairs over the number of tokens in the unseen test

data. Accuracy and coverage roughly correspond to precision and percent correct

respectively in Melamed (1995) [31]. Accuracy is calculated on the training data

(4000 sentences) manually, whereas coverage is calculated on the test data (1000

sentences) automatically.

Stepwise accuracy for each model is listed in Tables 4.3, 4.4 and 4.5. fcurr

indicates the threshold, i.e. stages in the algorithm. e is the number of translation

pairs found at stage fcurr, and c is the number of correct ones found at stage

fcurr. The correctness is judged by an English-Japanese bilingual speaker. acc

lists accuracy, the fraction of correct ones over extracted ones by type. The

accumulated results for e, c and acc are indicated by '.

Stepwise coverage for each model is listed in Tables 4.6 4.7 and 4.8. As before,

fcurr indicates the threshold. The brackets indicate language: E for English and

J for Japanese. found is the number of content tokens matched with correct

translation pairs. ideal is the upper bound of content tokens that may be found

by the algorithm; it is the total number of content tokens in the translation

units whose co-occurrence frequency is at least fcurr times in the original parallel
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fcurr e c acc e' c' acc'

100.0 0 0 n/a 0 0 n/a

50.0 0 0 n/a 0 0 n/a

25.0 1 1 1.000 1 1 1.000

12.0 2 2 1.000 3 3 1.000

10.0 5 5 1.000 8 8 1.000

9.0 4 4 1.000 12 12 1.000

8.0 3 3 1.000 15 15 1.000

7.0 6 6 1.000 21 21 1.000

6.0 9 9 1.000 30 30 1.000

5.0 17 16 0.941 47 46 0.979

4.0 31 31 1.000 78 77 0.988

3.0 64 64 1.000 142 141 0.993

2.0 349 256 0.733 491 397 0.809

Table 4.3. Precision: Plain N-gram

fcurr e c acc e' c' acc'

100.0 2 2 1.000 2 2 1.000

50.0 2 2 1.000 4 4 1.000

25.0 10 10 1.000 14 14 1.000

12.0 32 32 1.000 46 46 1.000

10.0 9 9 1.000 55 55 1.000

9.0 14 14 1.000 69 69 1.000

8.0 21 21 1.000 90 90 1.000

7.0 17 16 0.941 107 106 0.991

6.0 18 16 0.888 125 122 0.976

5.0 38 35 0.921 163 157 0.963

4.0 93 91 0.978 256 248 0.969

3.0 138 134 0.971 394 382 0.967

2.0 547 518 0.946 941 900 0.956

Table 4.4. Precision: Chunk-bound N-gram
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fcurr e c acc e' c' acc'

100.0 1 1 1.000 1 1 1.000

50.0 5 5 1.000 6 6 1.000

25.0 11 10 0.909 17 16 0.941

12.0 27 26 0.962 44 42 0.955

10.0 17 15 0.882 61 57 0.934

9.0 12 12 0.882 73 69 0.945

8.0 25 25 1.000 98 94 0.959

7.0 35 34 0.971 133 128 0.962

6.0 32 31 0.968 165 159 0.964

5.0 49 48 0.979 214 207 0.967

4.0 96 92 0.958 310 299 0.965

3.0 189 184 0.973 499 483 0.968

2.0 1003 818 0.815 1502 1301 0.866

Table 4.5. Precision: Dependency-linked N-gram

corpora2. cover lists coverage. The pre�x i is the fraction of found tokens

over ideal tokens and the pre�x t is the fraction of found tokens over the total

number of both content and functional tokens in the data. For 1000 test parallel

sentences, there are 14422 tokens in the English half and 18998 tokens in the

Japanese half. ideal increases as the threshold is lowered, while total remains

consistent.

4.5 Discussion

Chunk-bound N-gram and Dependency-linked N-gram obtained better results

than the baseline Plain N-gram. The result indicates that chunk boundaries and

word dependencies are useful linguistic clues in the task of translation knowledge

extraction.

2Plain N-gram and Chunk-bound N-gram have content words only, while Dependency-linked

N-gram also include function words. The reason for calculating \ideal" is that it is unfair to

evaluate coverage of content-words-only models where function words are counted.
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fcurr found(E) ideal(E) i cover(E) t cover(E) found(J) ideal(J) i cover(J) t cover(J)

100.0 0 445 0 0 0 486 0 0

50.0 0 1182 0 0 0 1274 0 0

25.0 46 2562 0.018 0.0015 46 2564 0.018 0.0011

12.0 156 4275 0.036 0.0051 146 4407 0.033 0.0037

10.0 344 4743 0.073 0.0113 334 4935 0.068 0.0086

9.0 465 4952 0.094 0.0153 455 5247 0.087 0.0117

8.0 511 5242 0.097 0.0168 501 5593 0.090 0.0129

7.0 577 5590 0.103 0.0190 567 5991 0.095 0.0146

6.0 744 5944 0.125 0.0245 734 6398 0.115 0.0189

5.0 899 6350 0.142 0.0297 891 6894 0.129 0.0229

4.0 1193 6865 0.174 0.0394 1195 7477 0.160 0.0307

3.0 1547 7418 0.209 0.0511 1549 8257 0.188 0.0398

2.0 2594 8128 0.319 0.0857 2617 9249 0.283 0.0674

Table 4.6. Coverage: Plain N-gram

fcurr found(E) ideal(E) i cover(E) t cover(E) found(J) ideal(J) i cover(J) t cover(J)

100.0 92 253 0.364 0.0072 92 328 0.280 0.0092

50.0 122 764 0.160 0.0095 122 746 0.164 0.0122

25.0 243 1510 0.161 0.0191 236 1423 0.166 0.0236

12.0 439 2590 0.169 0.0345 432 2515 0.172 0.0432

10.0 483 2829 0.171 0.0379 472 2739 0.172 0.0472

9.0 540 3009 0.179 0.0424 526 2911 0.181 0.0526

8.0 629 3168 0.199 0.0494 623 3086 0.202 0.0623

7.0 687 3348 0.205 0.0540 681 3256 0.209 0.0681

6.0 760 3539 0.213 0.0597 754 3464 0.218 0.0754

5.0 871 3803 0.229 0.0685 864 3748 0.231 0.0864

4.0 1076 4091 0.263 0.0846 1070 4059 0.264 0.1070

3.0 1402 4409 0.318 0.1102 1391 4423 0.314 0.1391

2.0 2007 4803 0.418 0.1578 2004 4865 0.412 0.2004

Table 4.7. Coverage: Chunk-bound N-gram
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fcurr found(E) ideal(E) i cover(E) t cover(E) found(J) ideal(J) i cover(J) t cover(J)

100.0 78 1454 0.054 0.0061 78 1957 0.040 0.0078

50.0 170 2495 0.068 0.0133 170 2715 0.063 0.0170

25.0 264 3787 0.070 0.0207 278 3606 0.077 0.0278

12.0 394 5470 0.072 0.0309 408 4465 0.091 0.0408

10.0 503 5947 0.085 0.0395 515 4709 0.109 0.0515

9.0 558 6192 0.090 0.0438 570 4837 0.118 0.0570

8.0 665 6456 0.103 0.0523 680 4967 0.137 0.0680

7.0 801 6788 0.118 0.0629 814 5123 0.159 0.0814

6.0 900 7110 0.127 0.0707 911 5274 0.173 0.0911

5.0 1043 7520 0.139 0.0820 1065 5449 0.195 0.1065

4.0 1249 8055 0.155 0.0982 1274 5674 0.225 0.1274

3.0 1690 8690 0.194 0.1329 1686 5992 0.281 0.1686

2.0 2665 9664 0.276 0.2095 2703 6531 0.414 0.2703

Table 4.8. Coverage: Dependency-linked N-gram

Translation pairs extracted from Chunk-bound N-grams and those extracted

from Dependency-linked N-grams seem to be in complementary relation. Chunk-

bound N-grams extract locally contiguous translation pairs (rigid compounding

words) with high precision, while Dependency-linked N-grams extract longer,

sometimes non-contiguous, translation pairs where functional words are included.

Figure 4.3 shows the Venn diagram of translation pairs extracted by each

model.
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Figure 4.3. Distribution of Extracted Translation Pairs
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model English Japanese

Plain U.S.-Japan 日米
Plain look forward (to) visiting 訪問 (-を-)楽しみ
Plain give information 資料提供
Chunk Hong Kong 香港
Chunk San Diego サンディエゴ
Dependency apply for position 職-に-応募-する
Dependency be at your service 用命-に-従い-ます
Dependency checking into matter 件-を-調査
Dependency tell about matter 件-について-お知らせ
Dependency free of charge 無料
Dependency out of question 問題-外
Dependency out of print 絶版

Table 4.9. Correct translation pairs

An interesting observation can be made in the distribution of Plain N-gram.

84% of Plain N-gram can be extracted by Chunk-bound N-gram. If we ignore the

intersection of all three models, 34% of Plain N-gram are shared by Chunk-bound

N-grams. In contrast, only 1% of Plain N-gram are in common with Dependency-

linked N-gram exempting the intersection of all three models. Translation pairs

extracted only by Plain N-gram is just 14 %. From these, we could conclude that

translation pairs extracted by Plain N-gram can nearly be found by Chunk-bound

N-gram.

Table 4.9 lists samples of correct translation pairs that are unique to each

model.

Plain N-gram seems to extract longer translation pairs that are coincidently

co-occurred. For example, there are many instances that 'look forward to visiting'

and '訪問を楽しみ' co-occur. Plain N-gram generates word sequences of content

words 'look forward visit' and '訪問 楽しみ' and all instances are counted for

calculating similarity. As for Chunk-bound N-gram, the translation pair will not

be extracted due to functional words 'to' and 'を'. In Dependency-linked N-

gram, 'look forward/楽しみ' and 'visit/ 訪問' were extracted separately. A close
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examination of parsed results reveals that, in some sentences, 'look forward' and

'to' were not dependency-linked.

Chunk-bound N-gram mostly extracts compounding NP (including named

entity) that are of one-to-one correspondence. The result complies with our intu-

ition, as translation units are enclosed by chunked boundaries. A reason why the

other two models failed to extract those shown in the table is due to unnecessary

generation of overlapped candidates. The �ltering process in the extraction algo-

rithm may not work e�ectively if too many overlapping candidates are generated.

Dependency-linked N-gram managed to extract translation pairs useful for

tranlsation variation (e.g. 'checking into matter/件-を-調査' and 'tell about

matter/件-について-お知らせ') Such extraction become possible mainly because

function words are included in translation units of Dependency-linked N-gram.

From the above discussion, we see that chunk boundaries are useful linguistic

clues especially in extracting compound NPs. This will be e�ective in preparing

bilingual lexicon for a new domain. However, if we aim for longer translation

pairs such as idiomatic expressions, word dependency plays an important role.

4.6 Summary

This chapter compares three models of translation units each of which uses dif-

ferent linguistic information: one with word segmentation only, one with chunk

boundary, and one with word dependency. We use NLP tools to annotate such

linguistic information which never guarantee 100% precision. Instead, we apply

partially correct results that NLP tools give to generate meaningful translation

units. Translation units with chunk boundary or with word dependency outper-

formed the previous baseline model, one with word segmentation only. Further

analysis reveals that chunk boundaries are useful linguistic clues especially in ex-

tracting compound NPs. This will be e�ective in preparing bilingual lexicon for

a new domain. However, longer translation pairs such as idiomatic expressions

are better handled with by word dependency.
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Chapter 5

A Data Mining Approach to

Bilingual Lexicon Extraction

5.1 Introduction

In the last two chapters, we investigate how linguistic clues obtainable from sta-

tistical NLP tools such as chunk boundary and word dependency are e�ective in

bilingual lexicon extractions.

In this chapter, we propose a data mining approach to extracting bilingual

lexicon from parallel corpora. Like previous chapters, we aim to extract single

word correspondences as well as bilingual collocations. The kind of bilingual

collocations we consider are multiword expressions that appear frequently in a

given domain, including light verb (e.g. have a question), proper names (e.g.

New York), and terminological expressions.

Smadja et al. classi�ed the types of bilingual collocations into rigid compound-

ing collocations and exible collocations [40] . The former rigid compounding

collocations refer to consecutive word sequences. Proper names and some ter-

minological expressions fall into this category. Haruno et al. argued that rigid

compounding collocations may appear trivial, but more than half of useful col-

locations belong to this class [19]. The other category, exible collocations, refer

to multiword expressions with some intervening words. By nature, they are more

diÆcult to extract from parallel corpora.

There are number of attempts to extract bilingual multiword expressions from
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parallel corpus in the past. Early works such as [26] and [25] restricted their target

to noun phrase correspondences. Later, the research community has extended its

target to accommodate a more general notion of bilingual multiword expressions

[40], [22] and [19]. Our work also aims to cover bilingual collocations more than

just noun phrase correspondences.

Our goal is two-fold: �rst to extract single word correspondences and rigid

compounding collocations with high accuracy, second to extract exible colloca-

tions in a scalable manner. We adopt a data mining approach to achieve eÆcient

generation and counting of bilingual multiword expressions in parallel corpora.

Having generated bilingual candidates exhaustively, we extract single word cor-

respondences, rigid compounding collocations and exible collocations in greedy

manner.

5.2 Related Works

In this section, we review these works from which our method is motivated.

Smadja et al. proposed a method to �nd both rigid compounding collocations

as well as exible collocations from the English-French Hansard corpus [40]. The

method �rst identi�ed English noun-noun, verb-noun, and adjective-noun collo-

cations using their collocation extractor called Xtract [41]. Then it searches for

correlated words in French by ranking the Dice similarity between an English col-

location and a French word. They tested with three years of the Hansard corpus,

and reported 73 % accuracy on average.

Kitamura et al. extracted English-Japanese word sequences of arbitrary

length [22]. The method �rst generates from uni-gram to 10-gram of content

words in each half of parallel corpora, and gradually �nds correspondences by

setting a threshold on a weighted Dice similarity. Experiment results with three

distinct domains, each with approximately 10000 parallel sentences, showed that

80-90 % correctness.

Haruno et al. presented learning both rigid compounding collocations and

exible collocations from English-Japanese parallel corpora of stock market bul-

letin [19]. The method identi�es useful rigid compounding collocations in each

half of parallel corpora. This is achieved by �rst generation of monolingual chunks
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through word-level sorting and then combining monolingual chunks that result

a high (pointwise) mutual information score. Monolingual rigid compounding

collocations thus found are used to construct bilingual rigid compounding and

exible collocations, again using mutual information. They experimented with

20000 parallel sentences and reported 70 % of rigid compounding collocations and

35 % of exible collocations are considered to be correct.

Kitamura et al. achieved high performance but excluded exible collocations.

Smadja et al. selected English collocations of mid-range frequency �rst then

determine corresponding French collocations. Haruno et al. also followed a two-

steged extraction, �rst �nding monolingual collocations then forming bilingual

collocations. The primary reason for limiting a set of tentative exible colloca-

tions in the monolingual stage is to avoid combinatorial explosion in generating

and counting candidates for bilingual collocations.

In general, it is unrealistic to count non-contiguous n-gram (corresponding

to exible collocations in our task) independently in each half of parallel cor-

pora and �nd correspondences between them. To illustrate this point, we count

all contiguous n-grams (corresponding to rigid compounding collocations) and

all non-contiguous n-grams, appearing at least twice in the corpora using the

Pre�xSpan algorithm [34] (See Section 5.3). Data is from our English-Japanese

parallel corpora, containing 144743 English words and 186470 Japanese words.

Table 5.1 shows English and Japanese results. freq stands for the frequency

of n-grams in the parallel corpora. For example, the �rst row stands for the

number of n-grams that appear 10 times in the monolingual corpus. contiguous

only means the number of contiguous n-grams whose frequency is freq and non-

contiguous included means the number of contiguous and non-contiguous n-grams

whose frequency is freq. As we see from the table, by including non-contiguous

n-gram, the number of possible bilingual combination increases (15040 � 12913!

167100 � 74403), leading to a combinatorial explosion easily.

In this chapter, we adopt a data mining approach to achieve an eÆcient gener-

ation and counting for bilingual lexicon extraction. We view bilingual lexicon ex-

traction from parallel corpora as sequential pattern mining from a large database,

and apply the Pre�xSpan algorithm to �nd a complete set of sequential patterns.
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freq contiguous non-contiguous contiguous non-contiguous

only (en) included (en) only (ja) included (ja)

10 139 234 131 309

9 155 282 165 382

8 190 370 244 503

7 246 563 292 757

6 351 807 422 1067

5 569 1401 579 1747

4 912 2624 912 3198

3 1871 6809 1972 7776

2 9193 152239 6805 56640

total 15040 167100 12913 74403

Table 5.1. Contiguous and Non-contiguous N-grams

5.3 Pre�xSpan: Sequential Pattern Mining

In this section, we describe our analogy between bilingual lexicon extraction and

sequential pattern mining. First we describe what we need to count in bilin-

gual lexicon extraction. Then, we formally de�ne the sequential pattern mining

problem [3] and introduce the Pre�xSpan algorithm [34] which we apply in this

chapter.

5.3.1 Co-occurrence based Similarity

Most methods for estimating bilingual correspondences from parallel corpora start

with the following intuition: words that are translations of each other are more

likely to appear in corresponding sentences (i.e. to co-occur) than other pairs of

unrelated words. This co-occurrence based similarity can be calculated by co-

occurrence and independent frequencies of linguistically meaningful expressions

in parallel corpora.

The relationship between co-occurrence and independent frequencies can be

seen in a contingency table shown in Table 5.2. In the table, C(x; y) means the

number of times that x and y both appears in the parallel corpora. The table

shows the co-occurrence frequency a and independent frequencies a+b and a+c of
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two expressions e and j. The total number of sentence N is given by a+b+c+d.

j :j

e C(e; j) = a C(e;:j) = b

:e C(:e; j) = c C(:e;:j) = d

Table 5.2. Contingency table

In the task of bilingual lexicon extraction, we need to count these values

e�ectively. In order to accompolish this, we formulate the task as sequential

pattern mining and apply the Pre�xSpan algorithm for eÆcient generation and

counting of bilingual lexicon candidates.

5.3.2 Sequential Pattern Mining

The sequential pattern mining problem was �rst introduced in [3] and is stated

as follows.

Let I = i1; i2; :::; in be a set of all items. An element is a subset of items,

denoted as (x1x2:::xm), where xk is an item. If an element has only one item, then

the brackets are omitted, hence, (x) is written as x. A sequence s is denoted

by hs1; s2; :::; sni, where sj is an element. An item can occur at most once in an

element of a sequence, but can occur multiple times in di�erent elements of a

sequence.

The number of instances of items in a sequence is called the length of the

sequence. A sequence � = ha1; a2; :::; ani is called a subsequence of another

sequence � = hb1; b2; :::bmi and � is a super sequence of �, denoted as � v �,

if there exist integers 1 � j1 < j2 ... < jn � m such that a1 � bj1 , a2 � bj2 , ...,

an � bjn.

A sequence database S is a set of tuples hsid; si, where sid is a sequence id

and s is a sequence. A tuple hsid; si is said to contain a sequence �, if �

is a subsequence of s, i.e., � v s. The support of a sequence � in a se-

quence database S is the number of tuples in the database containing �, i.e.

supportS(�) =
��fhsid; sij(hsid; si 2 S) ^ (a v s)g

��. Given a positive integer � as

the support threshold, a sequence � is called a �-frequent sequential pattern
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in a sequential database S if the sequence is contained by at least � tuples in the

database, i.e. supportS(�) � �.

Given a sequence database and a support threshold �, the problem of se-

quential pattern mining is to �nd the complete set of sequential patterns in

the database that appear at least � times.

The task of bilingual lexicon extraction (BLE) from sentence-aligned parallel

corpora can be mapped straightforwardly to sequential pattern mining (SPM).

Table 5.3 summarises our analogy between the two problems. We concatinate a

English string and a Japanese string to form a bilingual sequence representing

a parallel sentence in parallel corpora. Then, extracting bilingual lexicons is to

mine sequential patterns from bilingual sequences.

SPM BLE

sequential pattern bilingual lexicon

sequence database parallel corpora

sequence bilingual sequence of words

element words

item features of words

Table 5.3. Analogy between SPM and BLE

There are some variations as to what is to be regarded as an element. For

example, an element may have a lexical entry only. This implies a sequence

will be of form hl1l2:::lni where li is a lexical entry of a word. Alternatively,

we can have an element containing morphological features of the word such as

part-of-speech and stemmed form. A resulting sequence will be of the form

h(l1p1s1)(l2p2s2):::(lnpnsn)i where li, pi, and si are the lexical entry, the part-

of-speech and the stemmed form of the word respectively.

We note a vital di�erence of patterns through the sequential pattern mining

from contiguous N-gram generation. Although N-grams are simple to generate

and count, they are at best local substrings in a sentence and fail to account for

non-contiguous patterns that may not be consecutive but co-occur more than a

chance. Furthermore, we need to prede�ne the value for N so that the majority

of linguistically interesting patterns are included. The sequential pattern mining
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overcomes the limitation, since it can cope with any number of intervening items

in a sequence. It works by a simple frequency heuristic and no need to set the

value for N. This is somewhat desirable for tentative bilingual lexicon generation,

since the algorithm can cover rigid compounding collocations as well as exible

collocations without any restriction on the length of a sequence.

5.3.3 Pre�xSpan

The Pre�xSpan algorithm [34] employs a divide-and-conquire approach which is

based on the observation that the frequent sequences are grown from frequent

pre�x subsequences. It uses frequent pre�xes to partition the database into a

set of smaller and disjoint databases each sharing the pre�x and recursively grow

subsequence fragment in each divided database. Fitst, we quote de�nitions of

pre�x, projection, post�x, and projected database ciritical to understand-

ing of the Pre�xSpan algorithm. In the discussion below, we assume that all

items in an element are sorted alphabetically.

De�nition (Pre�x)Given a sequence � = he1e2:::eni, a sequence � = he
0
1e

0
2:::e

0
mi

(m � n) is caled a pre�x of � if (1) e0i = ei for i � m� 1; (2) e0m � em; and (3)

all the items in (em � e
0
m) are alphabetically after those in em'.

De�nition (Projection) Suppose � is a subsequence of � (� v �). A subse-

quence �
0 of sequence � (�0

v �) is called a projection of � with respect to

pre�x � if (1) �0 has a pre�x � and (2) there exists no proper supersequence �
00

if �0 such that �00 is a subsequence of � and also has pre�x �.

De�nition (Post�x) Let �0 = he1e2:::eni be the projection of � with respect to

pre�x � = he1e2:::em�1; e
0
mi (m � n) . A sequence  = he

00
mem+1:::en is called the

post�x of � with respect to pre�x �, denoted as  = �=�, where e00m = (em�e
0
m).

We also denote � = � �  or �

De�nition (Projected database) Let � be a sequential pattern in sequence

database S. The �-projected database, denoted as Sj�, is the collection of

post�xes of sequences in S with respect to pre�x �.

We now introduce the lemma on the projected database in the original paper.
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Lemma (Projected database) Let �, � and  be sequential patterns in

sequence database S and b and c are items such that � = �b and  = �c.

1. Sj� = (Sj�)jb

2. supportS() = supportSj�(c)

3. The size of �-projected database cannot exceed that of S.

Now, the Pre�xSpan algorithm takes input of a sequence database S and the

minimum support threshold � and outputs a complete set of �-frequent sequential

pattens. It calls Pre�xSpan([], S) where Pre�xSpan is stated as follows:

Function Pre�xSpan(�, Sj�)

� Parameters:

a pre�x �, and �-projected database Sj�

� Method:

1. Find a set of item B whose element b is such that supportSj�(b) � �

(a) Append b to � to form an extended sequential pattern �b and

output it

(b) Construct the �b-projected database (Sj�)jb for each �b and call

Pre�xSpan(�b, (Sj�)jb)

Figure 5.1 illustrates the relationship between sequential patterns (pre�xes)

and their projected databases. Suppose the algorithm has found hai as a sequen-

tial pattern and its projected database is drawn as a subregion under the node hai

(shaded area). By scanning the hai-projected database, we �nd frequent items

b0, b1, ..., bn. So, we adjoin bi to hai to form a longer sequential pattern (pre�x)

and recursively mine smaller habii-projected database.

We apply the Pre�xSpan algorithm to count these co-occurrence frequency a

and independent frequencies a+ b, and a+ c eÆciently. The relationship between

the Pre�xSpan and contengency table is illustrated in Figure 5.2. The count

from a branch he0j0i representing a bilingual pattern adds up to co-occurrence

frequency a. The count from a branch he0i representing an English pattern adds
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Figure 5.1. Pre�x and Projected Database
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j_0

a + b

a + c

a

Figure 5.2. Contingency Table and Pre�xSpan
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up to independent frequency a + b, and similary, the count from a branch hj0i

representing a Japanese pattern adds up to independent frequency a+ c.

When the minimum support is k, the Pre�xSpan algorithm mines all sequen-

tial patterns that appear at least k times. The logic of the Pre�xSpan leads to

the fact that if a bilingual sequential pattern he0j0i is found with the minimum

support k, then the constituent monolingual sequential patterns he0i and hj0i

should also be found, with their frequencies being at least k.

In e�ect, formulating the bilingual collocation extraction as above, the Pre-

�xSpan algorithm o�ers a direct method of counting co-occurrence frequency (a)

and independent frequencies (a + b and a + c) simultaneously. Therefore, we

can achieve a scalable and exhaustive counting of tentative bilingual collocations,

rigid and exible, that appear at least a prede�ned threshold.

5.4 Bilingual Lexicon Extraction

In this section, we describe our procedure of extracting bilingual lexicons using

the Pre�xSpan algorithm. Our method is illustrated in Figure 5.3 and comprises

of three steps: (1) prepare bilingual sequences for sequential pattern mining, (2)

generate tentative candidate sequential patterns and count their co-occurrence

and independent frequencies by the Pre�xSpan algorithm, and (3) greedy extrac-

tion of bilingual lexicons based on a weighted Dice coeÆcient measure. Unlike the

previous pair extraction algorithm used in Chapters 3 and 4, bilingual tentative

translation units are generated through sequential pattern mining.

5.4.1 Bilingual Sequences

Figure 5.4 illustrates preparation of a bilingual sequence from a parallel sentence.

First, a morphological analyzer or a POS tagger are applied to each sentence in

parallel corpora. Then, we use part-of-speech information to �lter out functional

words, primarily to reduce the number of elements in a sequence yet retaining

the majority of translated information.

In our preliminary experiments, we focus on bilingual collocations of content

words only, though arguably, interesting collocations such as phrasal verbs include
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Figure 5.3. Proposed Method(Left), Kitamura et al.(Right)

I wish your company continued success

PRP VBP PRP$ NNP JJ NN

wish company continued success

.

POS Tagging

Content or Functional

.

kisya no masumasu no go inori

N Post ADVB Post Post

.

Morpological Analysis

Content or Functional

.

hanei wo masu

Pre N Post V

kisya masumasu hanei inori

Figure 5.4. Bilingual Sequence
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functional words (e.g. prepositions). Since it intends to be a preliminary experi-

ment, the objective is to examine whether our proposed method is applicable or

not.

We experimentally removed functional words to obtain the following practical

e�ects. We observe that the likelihood of mining bilingual patterns consisting

only of functional words is far greater than the chances of �nding idiomatic ex-

presions or phrasal verbs, and the length of bilingual sequences become much

shorted. Even we pay the price for removing functional words, we still can obtain

collocations of light verb, proper names and some domain-speci�c terminology,

the goals we set initially.

We preprocess bilingual sequences, however, this operation can be handled

with by the extended Pre�xSpan described below.

5.4.2 Linguistic Extensions to Pre�xSpan

The Pre�xSpan algorithm eÆciently generates and counts tentative bilingual col-

locations, but it tends to overgenerate sequential patterns most of which are not

linguistically meaningful. In order to account for high frequency as well as lin-

guistically meaningfulness in tentative candidate generation, we have a simple

linguistic extension to the Pre�xSpan algorithm.

We introduce a linguistic predicate P (�; b) to determine if b should be included

in a set of items B in the step (1) of the algorithm (See Section 5.3.3). It now

becomes:

1. Find a set of item B whose element b is such that supportSj�(b) � � and

P (�; b) is true.

Here are some possible extensions for P (�; b):

� contiguous n-gram: true if � and b forms a consecutive sequence

� content word pattern: true if b is a considered to be a content word

� length bounded pattern: true if length of � is less than a prede�ned length

� clause bounded pattern: true if no clause boundary (e.g. semicolons) be-

tween � and b in a sequence
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We used contigious n-gram for Table 5.1, and the same bilingual patterns

in the previous subsection 5.4.1 can be generated using content word pattern

extension.

5.4.3 Greedy Extraction

Our procedure to extract bilingual lexicons in a greedy mannar is as follows. By

lowering a threshold gradually, bilingual lexicons with higher ranked similarity

can be extracted �rst.

1. Generate and count tentative bilingual lexicons using the Pre�xSpan algo-

rithm whose occurrence is at least k

2. For each bilingual pattern he0j0i, calculate a weighted Dice coeÆcient [22]

de�ned as:

sim = log2 a
2a

(a+ b) + (a+ c)

where a is the co-occurence frequency of he0j0i, (a + b) is the independent

frequency of he0i and (a+ c) is the independent frequency of hj0i. Exclude

a bilingual pattern he0j0i that satisfy either of conditions below:

� b = 0 and c = 0

� sim < 1:5

3. Initialise a bilingual dictionary dic

4. Initialise a high threshold th and repeat below

(a) Open a �le from step 2

(b) For each bilingual pattern he0j0i,

i. Ignore if both English pattern he0i and Japanese pattern hj0i have

stronger correspondences in dic

ii. Insert he0; j0i to dic

(c) Close the �le
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(d) Terminate if th = k, else adjust th to a lower value and repeat the

process

5. Output a bilingual dictionary dic

Reasons for excluding some tentative bilingual correspondences are as follows.

First, the bilingual pattern he0j0i whose b and c are zero means that all the

parallel sentence in which he0j0i exists must have both he0i and hj0i and the

other parallel sentences will have neither he0i nor hj0i. In such a case, many

combinations of subsequences from the parallel sentences satisfying the minimum

support k will be generated all having the identical similarity score. A longest

match heuristic could be used, but an internal experiment shows that it degrades

the output accuracy. The second condition is empirically imposed. An internal

experiment shows that a high proportion of incorrect bilingual collocations he0j0i

has similarity scores lower than 1.5.

5.5 Experimental Results

Our experiment data is 9268 parallel sentences in business domain [44]. For

preparing bilingual sequences, we used TnT for English POS tagging and ChaSen

for Japanese morphological analysis. The average length of bilingual sequences

are 14.4 after removing functional words. The Pre�xSpan is implemented in C++,

executed on Linux (Pentium III 1GHz) and took 52 mins to �nd all frequent se-

quences with the minimum support 2. They extracted 167100 English patterns,

74403 Japanese patterns and 69034794 bilingual patterns. The similarity calcu-

lation took 111 mins, and resulted 7,888 bilingual patterns remained. Finally, a

greedy algorithm terminated in 10 mins, extracting 2,511 bilingual collocations

in total.

Table 5.4 shows the performance of data mining approach. e, c, and acc stand

for the number of extracted pairs, the number of correct pairs, and the accuracy

respectively. 0 are accumulated results for the extracted, the correct and the

accuracy. We found that there are 274 pairs that are extracted at similarity

between 1.5 and 2.0, of which only 83 are correct. By not extracting pairs with

similarity below 2.0, the performance will boost to 66 %.
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fcurr e c acc e0 c0 acc0

100 6 6 100.0 6 6 1.000

50 13 13 100.0 19 19 1.000

10 167 146 87.42 279 253 0.9068

9 27 22 81.48 306 275 0.8986

8 56 40 71.42 362 315 0.8701

7 57 52 91.22 419 367 0.8758

6 94 87 92.55 513 454 0.8849

5 102 89 87.25 615 543 0.8829

4 206 164 79.61 821 707 0.8611

3 428 258 60.28 1249 965 0.7726

2 1248 593 47.51 2497 1558 0.6239

Table 5.4. Accuracy: Data Mining Approach

fcurr e c acc e0 c0 acc0

100 0 0 n/a 0 0 n/a

50 0 0 n/a 0 0 n/a

10 9 9 1.0000 20 19 0.9500

9 7 7 1.0000 27 26 0.9629

8 10 10 1.0000 37 36 0.9729

7 12 11 0.9166 49 47 0.9591

6 25 25 1.0000 74 72 0.9729

5 29 28 0.9655 103 100 0.9708

4 70 68 0.9714 173 168 0.9710

3 114 109 0.9561 287 277 0.9651

2 646 490 0.7585 933 767 0.8220

Table 5.5. Accuracy of Kitamura et al.
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1 2 3 4 5 6

1 896/961 200/289 6/ 25 0/ 2 0/0 0/0

2 94/157 242/532 47/181 6/49 0/7 0/1

3 6/ 15 24/102 24/ 86 4/30 0/6 0/0

4 0/ 0 2/ 21 4/ 21 1/ 1 1/1 0/0

5 0/ 0 0/ 3 1/ 6 0/ 0 0/0 0/0

6 0/ 0 0/ 0 0/ 1 0/ 0 0/0 0/0

Table 5.6. Length of Correct/Extracted Patterns (data mining approach)

1 2 3 4 5 6

1 636/662 55/75 2/4 0/0 0/0 0/0

2 25/42 35/76 5/23 0/3 0/0 0/0

3 1/ 5 5/19 1/ 7 0/3 0/0 0/0

4 0/ 1 1/ 8 0/ 1 0/2 0/0 0/0

5 0/ 0 0/ 2 0/ 0 0/0 0/0 0/0

6 0/ 0 0/ 0 0/ 0 0/0 0/0 0/0

Table 5.7. Length of Correct/Extracted Patterns (Kitamura et al.)

As a comparative purpose, we have conducted the experiment on Plain N-gram

model (in this chapter, referred to as Kitamura et al.) on the same data. Table 5.5

shows the results. Although our data mining approach results in a lower accuracy

than Kitamura et al., the number of extracted and correct bilingual extraction

is far greater: at a threshold 3, our proposed method extracted 1249 with 77

% accuracy, while there are only 287 extracted though with 96 % accuracy in

Kitamura et al.

Table 5.7 shows the distribution of translation pairs according to its length.

The X direction corresponds to the number of words in English half of a transla-

tion pair, while the Y direction corresponds to the number of words in Japanese

half of a translation pair. c=e means that the there are c correct out of e ex-

tracted. Kitamura's method extracted 636 single word correspondences with the

accuracy of 96 % as well as 130 bilingual collocations with the accuracy of 48 %.
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type English Japanese similarity

rigid look forward 楽しみ 33.6329

rigid Los Angeles ロサンゼルス 22.3214

rigid foreign exchange 外国 為替 16.6154

rigid enclosed envelope 同封 封筒 7.71429

rigid annual report 年次 報告 7.11111

rigid earliest convenience 都合 つき 次第 4.26667

exible wish ... success 成功 お祈り 13.6226

exible let ... know お知らせ 40.209

exible thank ... letter 手紙 ... ありがとう 11.5714

Table 5.8. Sample Bilingual Collocations

On the other hand, our method extracted for 896 single word correspondences

with the accuracy of 93 % as well as 662 bilingual collocations with the accuracy

of 43 %.

Comparing results between the data mining approach and Kitamura et al., it

is one win, one lose. The advantage of the data mining approach is the increased

coverage, in that the the number of extracted and correct translation pairs and

the proportion of multiword expressions are greater. On the other hand, the

drawback is a degrade in accuracy. This is due to a simple greedy method we

employ. The extraction still gets possible combinations of subsequences with the

same score, even though translation pairs with zero independent frequencies are

empirically excluded. In order to discriminate such cases, a heuristic, other than

the longest match heuristic, may be incorporated.

Finally, Table 5.8 lists some samples of extracted collocations. Even dropping

functional words, our method managed to extract rigid collocations as well as

exible collocations from parallel corpora.

5.6 Disccussion

Table 5.9 summarizes the results of the data mining approach against three trans-

lation units in Chapter 4 with the same 9268 parallel sentences. acc means the
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Data Mining Plain Chunk-bound Dependency-linked

acc (fcurr = 3) 965/1249 (77%) 277/287 (96%) 860/898 (96%) 854/905 (94%)

acc (fcurr = 2) 1558/2497 (62%) 767/933 (82%) 1711/1873 (91%) 1844/2009 (92%)

single word 896/961 (93%) 636/662 (96%) 1494/1587 (94%) 1455/1526 (95%)

multiple word 662/1536 (43%) 130/271 (48%) 217/286 (76%) 389/483 (81%)

rigid 584 130 217 366

exible 78 { { 23

Table 5.9. Performance Comparison

overall accuracy, the same result presented in the previous section. single word

is accuracy for single word correspondence only, while multiple word is accuracy

for multi word expressions only. Out of correct multi word, the number of rigid

compounding collocations and exible collocations are listed. Plain N-gram (or

Kitamura et al.), Chunk-bound N-gram and Dependency-linked N-gram uses the

pair extraction algorithm described in Chapter 3, which is di�erent from the

extraction algorithm described in this chapter. Moreover, Dependency-linked N-

gram does not include functional words (cf. Chapter 4) in order to set the same

condition.

The trend is similar in the last section, low in accuracy but better in the

quantity of extracted translation pairs. It should be noted that both Chunk-

bound N-gram and Dependency-linked N-gram also have high proportion in single

word correspondences: 87.3% and 78.9% respectively. Moreover, the proportion

of exible collocations in correct multiple word is greater in the data mining

approach (78=662 = 11:8%) than Dependency-linked N-gram (23=389 = 5:9%).

A possible explanation for better results in multi word expression is that data

mining approach exhaustively generates co-occurred rigid and exible multi word

expressions and thus is robust against preprocessing (parsing) errors. However,

this characteristic also leads to poor accuracy, in that it picks up too many 'near-

miss' translation pairs. A careful design to incorporate linguistic constraints

will be required so as to improve accuracy as well as retaining simplicity and

exhaustiveness of the approaches.

Table 5.10 shows the time taken to generate tentative translation units. All
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Data Mining Plain Chunk-bound Dependency-linked

Morphlogical Analysis (J) 7s 7s 7s 7s

POS Tagging (E) 9s 9s 9s 9s

Bunsetsu Identi�cation(J) { 2h46m

Chunking (E) { 2h21m

Dependency Analysis (J) { { 2h46m

Parsing (E) { { 6h16m

Pre�xSpan 52m { { {

Extraction(Chapter 4) { 3h32m 2h13m 3h56m

Extraction(Chapter 5) 2h1m {

Table 5.10. Preprocessing Time

preprocessing is executed on Linux (Pentium III 1GHz). As we see from the

table, the data mining approach is more scalable to the other methods proposed

in Chapter 4.

We conclude our discussion by describing possible usages of the approach. The

approach is useful where manual check can be assumed. The method achieves

a wider coverage for translation pairs, including near-miss ones which human

can correct. It reduces the workload in identifying correspondences in parallel

corpora.

5.7 Summary

In this chapter, we have adopted a data mining approach to bilingual lexicon

extraction. We aim to extract single word correspondences as well as bilingual

collocations. As for single word correspondences, we obtained a high performance

of 93 % accuracy (896/961). Furthermore, our method has extracted a number of

interesting bilingual collocations that co-occur frequently in the parallel corpora.

The main point in this work is that by formulating the problem as a sequential

pattern mining, we have achieved an eÆcient generation and counting of tentative

bilingual lexicon which could not have been done before due to a combinatorial

explosion.
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Chapter 6

Conclusion

6.1 Summary

This thesis focuses on extracting translation knowledge from parallel corpora using

NLP techniques. We demonstrate automatic methods of translation knowledge

extraction which can aid translators or language learners. We present three works

on this topic.

The �rst work uses statistically probable dependency relations obtained from

parsers to acquire word and phrasal correspondences. The result showed that

statistically probable dependency relations are e�ective in translation knowledge

acquisition even for language pairs with di�erent word ordering.

The second work compares three models of translation units each of which

uses di�erent linguistic information: word segmentation, chunk boundary, and

word dependency. We found that chunk boundaries are useful linguistic clues in

extracting compound noun phases which will be e�ective for extracting bilingual

lexicons in the new domain. Furthermore, word dependency are also useful for

longer translation pairs such as idiomatic expressions.

The �nal work proposes a data mining approach to extracting bilingual lexi-

cons from parallel corpora. The task is viewed as sequential pattern mining and

the Pre�xSpan algorithm is applied for counting co-occurrence and independent

frequencies eÆciently. We demonstrated that a data mining approach can be

applicable to our problem, especially suitable for extracting bilingual collocations

that are often reported as diÆcult in previous work.
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The contribution of our work to the research community using parallel cor-

pora, and in general data-driven MT, can be summarized by comparing with the

other related works.

First, our work is the �rst of its kind to apply the state-of-the-art statistical

parsers publicly available in the NLP community to acquire translation knowl-

edge from parallel corpora. The use of statistical parsers gives robustness to

the approach. It is also applicable to the structural alignment where parse fail-

ures stemmed from rule-based parsers pose the major problem. Furthermore,

we believe that our work is an interesting application for statistical parsing, and

a better interface with statistical parsing in the treatment of syntactic ambigu-

ity and possibility of redundant parsing may lead to an improvement on overall

performance of translation knowledge acquisition.

Second, we propose practical methods for acquiring single- and multi- word

correspondences. Early work sought mainly for single word correspondences [31].

However, for a non-segmented language such as Japanese and Chinese, word

segmentation itself has ambiguity. Our methods, as with Kitamura et al. [23]

addressed the word segmentation ambiguity by allowing aggressive overlaps in

generation of tentative candidates which is then balanced by conservative corre-

spondence extraction.

Finally, our work is unique in many respects from the other works which also

addressed the problem of acquiring multiword correspondences from parallel cor-

pora. Di�erent from Kupeic [26], we do not limit our target to noun phrases. Our

work does not depend on the word ordering and surface word distances, di�erent

from Smadja et al. [40]. This is important for English-Japanese pairs that do not

share the same word ordering. Di�erent from Haruno et al [19], our work per-

forms an exhautive generation of tentative candidates in both languages but still

avoids a combinatorial explosion with the greedy extraction of correspondences.

6.2 Future Directions

We conclude this thesis with the list of possible future research directions.

� Construct a translation aid system
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As mentioned in introduction, we have concentrated on the acquisition part

of translation knowledge base, and did not investigate the usefulness of such

acquired translation knowledge in the real translation aid system. In order

to examine the usefulness of our work in the real application setting, we

need to construct a translation aid system.

� Construct an MT system that works by applying the translation pairs ac-

quired from parallel corpora

Similar to the previous point, our extracted translation pairs can be used

for data-driven MT. Kitamura et al. [22] proposed a prototypical model,

but they cried out for a better acquisition of translation lexicon and rules

from parallel corpora. Since we improved the acquisition part a great deal

in quantity and some in quality, it would be interesting to incorporate the

improved translation pairs to examine its e�ect.

� Another view on resolving structural disambiguation

Our work in Chapter 3 did not succeed in resolving structural disambigua-

tion. No satisfactory answer can be given at this stage. If this still remains

an issue to tackle in MT even with an improvement on parsing, then just

supplying alternative parses is not suÆcient and the other mechanism to

allow essential parses only will be required.

� A fuller examination on bilingual collocation extraction using the Pre�xS-

pan algorithm

Chapter 5 presented a promising direction for bilingual collocation extrac-

tion using the Pre�xSpan algorithm. However, there are a number of points

to consider before we can claim its usefulness. The apparent shortcoming

in our preliminary experiment is dropping functional words in generation

of bilingual sequences. Interesting bilingual collocations, especially exible

collocations, do include functional words. We need to tackle this prob-

lem more so as to account for frequent as well as linguistically meaningful

bilingual collocations.

� A further investigation into data mining approaches to translation knowl-

edge extraction
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In Chapter 5, we have adopted a data mining approach to bilingual lexi-

con extraction. Although the extracted translation patterns are limited to

sequential patterns, we have demonstrated a good coupling between trans-

lation knowledge extraction and data mining. Recently, there are a number

of attempts to mine structured patterns such as trees or graphs from a

large semi-structured data [5]. Since richer translation rules are often rep-

resented in a tree or a graph, we would like to apply those techniques to

directly extract translation rules from parallel corpora.
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Appendix

A Nikkei Business Letter Corpus

The parallel corpus used is a collection of business letter specimens and has

already been aligned at sentence level[44]. There are 9268 paired sentences in

total1. The sample translation of \balance" are selected below:

In the selection of these two gentlemen, I am con�dent we have created

a strong and well-balanced top management team.

両氏の任命により、当社は強力でバランスのとれた最高経営陣を作り
あげたものと確信しています。

They carry accounts with our Nihonbashi Branch, keeping a deposit

balance of substantial size.

当該先は当行の日本橋支店に複数口座を持ち、かなりの額の預金残高
があります。

As we see from the samples, the same word is used in multiple senses; the

word \balance" is used in the business sense (e.g. \deposite balance/預金残高")

as well as in the ordinary sense (e.g. \well-balanced/バランスのとれた")2

I treat tokens segmented by tokenizer (for English) and morphological analyzer

(for Japanese) are words. Table 6.1 shows the average sentence length and a

histogram of sentence length.

The number of words counted by token and by type, the distribution of part-

of-speech is summarized in Table 6.2. English and Japanese POS tag annotation

schemes are based on the Penn Treebank and IPADIC respectively[38][28].

1The original corpus contains 13577 paired sentences and 1610 paired terms. I have removed

paired sentences which are not one-to-one correspondence.
2There are 28 sentences where the word \balance" appeared. Of which, only 2 sentences use

it in the ordinary sense, and the remaining 26 sentences use it in the business sense.
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length English Japanese

average 15.62 20.12

0-9 1182 455

10-19 5940 4286

20-29 2009 3490

30-39 132 939

40- 5 98

Table 6.1. Sentence Length

English Japanese

token 144743 186470

content tokens 67801 84984

function tokens 76942 101486

type 8715 8462

Table 6.2. Number of Words
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