NAIST-1S-DT9961204

Doctor’'s Thesis

Security Verification
of Programs with Stack Inspection

Naoya Nitta

February 5, 2002

Department of Information Processing
Graduate School of Information Science
Nara Institute of Science and Technology

Doctor’s Thesis
submitted to Graduate School of Information Science,
Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of
DOCTOR of ENGINEERING

Naoya Nitta

Thesis committee: Hiroyuki Seki, Professor
Katsumasa Watanabe, Professor
Minoru lto, Professor

Security Verification
of Programs with Stack Inspectiornt

Naoya Nitta

Abstract

Recently, with rapidly growth of open network environment, a well-defined ac-
cess control mechanism becomes necessary. Java development kit 1.2 provides a run-
time access control mechanism which inspects a control stack to examine whether the
program has appropriate access permissions. Jensen et al. introduced a verification
problem of deciding for a given prograPwith stack inspection and a given security
propertyy written in a temporal logic formula, whether every reachable stalResait-
isfiesy. They showed that the problem is decidable for the class of programs which do
not contain mutual recursion. In this thesis, we show that the set of state sequences of
a program is always an indexed language and consequently the verification problem is
decidable. Our result is stronger than Jensen’s in that a security property can be speci-
fied by a regular language, whose expressive power is stronger than temporal logic, and
in that a program can contain mutual recursion. We also investigated the computational
complexity of the problem. Since the result implies the problem is computationally in-
tractable in general, we introduce a practically important subclass of programs which
exactly model programs containing stack inspection of Java development kit 1.2. We
present an algorithm which can solve the problem for this subclass in linear time in the
size of a program. Furthermore, we implemented a verification system based on the
proposed algorithm. Experimental results suggest that the proposed algorithm can be
efficiently executed for real-world programs.

Keywords:

access control, security verification, stack inspection, Java, indexed language

*Doctor’s Thesis, Department of Information Processing, Graduate School of Information Science,
Nara Institute of Science and Technology, NAIST-1S-DT9961204, February 5, 2002.

oooooobboobooooooboodon
Jooooooor

g og

gogoo

gbuobuoggboobooggouobobobob,ooooobbod
O0000,00000000000000. Javadevelopmentkitl2,0 000
gbobobobbboboobooboboobboouoobooooboooboboan
O0O.Jdensen U, 00 000000000000 0O0O0ODODOOPOODOOOO
gboobooobooobooboobybooboobo,POOOO0DLOODOOO
pyoobogoooooboooobooboobbuobodoooobooo,bbbbooad
gobotobooooobbooobbooooobooooobooog.

gboboob,ggbboogboobbbuogbbobbbuooooobobbd
googob.oog,booubobogbbdobbbbdoobbbbobogogn
goog,bboboboboboboubbbbouooooboboobbodabo
goboboooboboooooad.

gbhboodbooobbobbuogbboobob,0booobbbobobooba
gobboboouoooboboooobobood.

gboobbogbobobuodoogogbo,bobodbooboobobod.
O000,Javadevelopmentkit 12000 00000000000000O00O00O0
goodooobboboo, oo bbobuodooobobobbobooo
gbobobobbogbooobobbbogobbodob.boo,bobbbogon
gbobooboouoggbobbobbooog,bbobbboouoooobn
gooooboood.

goood

gobogbo,oobbogoboo,bgboob,Javapbgogonod

‘0000000000000 0000C0DDOOOO000OD0 0000, NAIST-IS-DT9961204,
20020 20 50.

List of Publications

1 Publications Related to the Thesis
1.1 Journal Papers

(1) N. Nitta, Y. Takata and H. Seki: Decidability of the Security Verification Prob-
lem for Programs with Stack Inspection, IEICE Transactions on Information and
Systems, to appear (in Japanese).

(2) N. Nitta, Y. Takata and H. Seki: An Efficient Security Verification Method for
Programs with Stack Inspection, JSSST Computer Software, to appear.

1.2 International Conferences (Reviewed)

(3) N. Nitta, Y. Takata and H. Seki: Security Verification of Programs with Stack
Inspection, Proceedings of 6th ACM Symp. on Access Control Models and
Technologies (ACM SACMAT 2001), pp.31-40, Chantilly, Virginia, May 2001.

(4) N. Nitta, Y. Takata and H. Seki: An Efficient Security Verification Method for
Programs with Stack Inspection, Proceedings of the 8th ACM Conference on
Computer and Communication Security (ACM CCS-8), pp.68—77, Philadelphia,
Pennsylvania, Nov 2001.

1.3 Workshops

(5) S. lkada, N. Nitta, Y. Takata and H. Seki: A Security Verification Method for
Programs with Stack Inspection, Technical Report of IEICE, ISEC2000-78, Sep
2000 (in Japanese).

(6) N. Nitta, Y. Takata and H. Seki: Complexity of the Security Verification Problem
for Programs with Stack Inspection, 3rd JSSST Workshop on Programming and
Programming Languages (PPL2001), pp.53-60, Mar 2001.

(7) N. Nitta, Y. Takata and H. Seki: An Efficient Security Verification Method for
Programs with Stack Inspection, Technical Report of IEICE, SS2001-7, pp.9—
16, May 2001.

1.4 Technical Report

(8) N. Nitta, S. lkada, Y. Takata and H. Seki: Decidability and Complexity of the
Security Verification Problem for Programs with Stack Inspection, Technical Re-
port NAIST-IS-TR2001003, Nara Institute of Science and Technology, 2001.

2 Other Publications
2.1 Workshops

(9) N. Nitta and H. Seki: Dependence Logic: A Logic for Software Design Modifi-
cation, Technical Report of IEICE, SS99-1, May 1999 (in Japanese).

(10) N. Nitta and H. Seki: Dependence Logic and Its Application to Database Design
Modification, 16th JISSST Conference Proceedings, D1-2, pp.37-40, Sep 1999
(in Japanese).

Acknowledgements

First, and foremost, | would like to thank Professor Hiroyuki Seki for his continuous
support and encouragement of the work. He suggested an idea of this research in early
discussion, and he helped through the research.

| would like to thank to Professor Katumasa Watanabe for providing me with ben-
eficial comments to improve this research.

| am grateful to Professor Minoru Ito for his valuable suggestion in this research.

| would like to express my sincere gratitude to Associate Professor Yuichi Kaji for
his support and advice throughout the research.

| wish to thank Assistant Professor Yoshiaki Takata for his help of the work. Most
of the analyses of the computational complexity are based on his idea.

| sincerely thank Associate Professor Seiji Hamaguchi of Osaka university for the
explanation of the relation between regular languages and temporal logic.

| also thank Assistant Professor Yasunori Ishihara of Osaka university for his valu-
able comments.

Finally, | wish to express my gratitude to all members of Seki Laboratory for dis-
cussions and help.

Contents

Listof Publications., ii
Acknowledgements v
1 Introduction 1
1.1. RelatedWorks e 4
2 Preliminaries 7
2.1. ProgramModel 7
2.2. Operational Semantics 9
221 State e 9
2.2.2 TraCe o o e e e e e e 10
2.2.3 Security Property in CheckNode 11
2.3. The VerificationProblem 12
2.3.1 Definition of the Verification Problem 12
232 AnExample 13
3 Decidability of the Verification Problem 15
3.1, OVerview e e e e 15
3.2. Decidabiliy 17
3.21 IndexedGrammar. 17
3.2.2 SetofUncheckedTraces 18
3.2.3 Set of Sequences Satisfying Local Checks. 19
324 Proofs 20
3.3. AnAlternative Method. 23

Vi

Complexity of the Verification Problem

4.1. Representationsoflnputs.
4.2, UpperBounds
4.3. LowerBounds
4.4. Reversing StackContents

Program Subclasses

5.1. Programs with Trivial Check Nodes

5.2. Programs with JDK1.2 Stack Inspection
5.2.1 PermissionBasedModel.
5.2.2 DomainBasedModel

Evaluation of the Verification Method

6.1. Implementation.
6.2. EXperiments
6.3. DISCUSSION e e

Conclusion
References

vii

24
24
25
27
35

37
37
43
43
52

56
56
57
58

61

List of Figures

2.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
5.3
5.4

6.1
6.2

A Sample Program 14
NFAMx . . o e 27
NFAMpc 28
ProgramPy 29
Progranklk,o] o L 30
The stack oP;[k,0] when the controlisatij 30
ProgranPslk, o, ,K] 31
The extension of the stack mademyk, o] andPs[k,0,9,K] 32
ProgramP 33
ProgramPuyx 33
A DFA equivalent tNO*vv/ Ly, jwPW =yl L, 34
The progranPs- e 43
An equivalent program iRcheckas free « « « « =« 0 e v e e 54
The prograniPgzsar to solve QUANTIFIED 3SAT 55
Edges in the truth assignment-parbegsar. 55
Verification time and number of permissionskatk) 59
Verification time and number of permissions (k) 60

viii

List of Tables

1.1 Representationofaproperty
5.1 Complexity of the verification problem...

6.1 \Verification profiles of example programs.

Chapter 1
Introduction

As a world wide computer network grows rapidly, providing a well-defined access
control mechanism for network application systems becomes more important. For ex-
ample, consider an electronic commerce application. Since a number of anonymous
external mobile processes as well as local ones can be executed in a user’s site, an
appropriate access control is needed to prevent a malicious external process from ac-
cessing secret local resources. JAvaandbox model provides a security protection
mechanism for such a distributed computational environment. However, the sandbox
model lacks flexibility since it imposes too strong restriction on the behavior of an
external process which may access local resources.

For this reason, Java development kit 1.2 (JDK1.2) provides a simple but suffi-
ciently practical access control technologgck inspection [13]. In the JDK1.2 envi-
ronment, stack inspection mechanism can be incorporated into a user’s system by plac-
ing invocations of check methazheckPermission in the system code and by defining
a security policy. In a security policy, every method belongs to one of the protection
domains, and each protection domain is granted seperaiissions. If a methodm
belongs to a protection domaghandd is granted a permissiop, then we simply say
m has permissiom. If checkPermission(p) with a permissiorp as an actual argument
is invoked from a methodh, then JDK1.2 examines not only whether the method
hasp but also whether every ancestor method which directly or indirectly invokes
havep. If all those methods hawe, then the execution continues. Otherwise, the exe-
cution is aborted. As is the case with other programming languages, the Java execution
environment has a runtime control stack (or simply, stack), which consists of frames

for the active method and its ancestor methods. A frame for a methmzhtains the
protection domain whicmbelongs to as well as actual arguments, local variables and
the return address fan. The stack is inspected loheckPermission(p) from the top
(the active method) to the bottom to examine whether the above mentioned condition is
met; if a method which does not hapés encountered, then the execution is aborted. If
the stack bottom or a method with a particular mode (cgitédleged) is encountered,
thencheckPermission(p) terminates successfully and returns to the active method.

Appropriate invocations of check method should be carefully placed in the local
methods which directly or indirectly access secret local resources. Consider the fol-
lowing simple example. Letvrite be a local method which directly updates a cus-
tomer’s bank account armtedit be a method which is called by a customer’s method
and updates the customer’s bank account by calkni¢ge method. Suppose the fol-
lowing situation. Botharite andcredit methods have write permissigiyite and ev-
ery method of a valid customer has permissmixomer. The system manager places
checkPermission(pwrite) at the beginning ofrite method. The system manager makes
credit method privileged, but there is no check statemerdredit method. If a ma-
licious user’s method which does not hapgsomer Calls credit, thencredit succes-
sively callswrite. Sincecredit is privileged,checkPermission(purite) in write method
succeeds and an illegal update may occur. yréte the property that ‘if the control
reachesnrite method, then the control has passed through only methods which have
Pcustomer OF Pwrite, Which the system is expected to satisfy. Let us call such a property
Y as a global security property. The above mentioned execution does not gatisfy
this particular example, itheckPer mission(pcusiomer) iS placed incredit method, then
every execution satisfiag. However, ensuring that a program satisfies such a global
security property by hand becomes difficult when the whole program is large and com-
plicated. Therefore, an automatic verification method is needed which verifies that
every execution oP satisfieq) for a given progran® and a global security property
.

In [18], the pioneering paper in the formal verification of a program with stack
inspection, the verification problem is defined as follows:

e Aprogramis modeled as a directed graph called a flow graph. Since a flow graph
does not have a data part, the contents of a control stack can be represented as a
sequence of nodes, each of which is a program point where a method invocation

has occurred. A trace is a finite sequersgss,, ..., Sk of stacks (also called
states), whergg is the initial state and;; 1(0 <i < k) is a state reachable from
s by a unit step execution.

¢ Alocal security check statement has the fornstmdck() wheregis an LTL (lin-
ear temporal logic) formula [7]. The executionafeck(@) at a states succeeds
if and only if s, interpreted as a Kripke structure, satisiesA global security
propertyy to be verified is also represented by an LTL formula.

e The verification problem for a given program (a flow graphpand a global
security property) is to decide whether every state in every trac®ievery
reachable state ¢f) satisfieg).

Based on this formulation, a verification method is presented in [18] by using model
checking [7] of LTL formulas. In [18], it is also shown that if a given program does
not contain mutual recursion, then the verification problem is decidable.

In this thesis, we define a program model and a verification problem using regular
languages instead of LTL formulas for specifying both a local check statement and a
global security property. Since the class of regular languages is known to properly
include the class of languages represented by LTL formulas [10], this formulation is
an extension of the one in [18]. Furthermore, we show that the verification problem
is decidable in general even if a progralmes contain mutual recursion, which is a
proper improvement of the result of [18]. The outline of the proof of the decidability
is as follows:

(i) For every prograni, the set of traces iR is shown to be an indexed language.
An indexed language is a language which can be generated by an indexed gram-
mar [3], which is an extension of a context-free grammar.

(i) The decidability of the verification problem follows from the fact that the class
of indexed languages is closed under intersection with regular languages and the
emptiness problem for the class of indexed languages is decidable.

We also analyze how the complexity of the verification problem alters when the
representation of regular languages to specify a check statement and a global security
property is changed (deterministic finite automaton, nondeterministic finite automaton

3

and regular expression). Since the complexity results imply that the problem is gener-
ally intractable, we introduce a subclass of programs which model programs containing
checkPermission in JDK1.2. This subclass is callédjpk12. Next, we show that the
verification problem fofl;jpk1 2 is efficiently solvable for the size of a given program.

The rest of the paper is organized as follows. In chapter 2, we define the program
model, its operational semantics and the verification problem with a brief example.
The decidability of the problem is shown in chapter 3, and the computational com-
plexity of the problem is investigated in chapter 4. In chapter 5, time complexity of the
verification problem for the subclaBkpk1 2 is shown to be linear in the program size.
We implemented a verification system for the subclagsk1 2 based on the algorithm
proposed in chapter 5. Implementation issues and experimental results on verifying
some programs are described in chapter 6. Finally, we draw some concluding remarks
in chapter 7.

1.1. Related Works

Our program model and the definition of the verification problem are based on the
model introduced in [18], the pioneering paper which discussed the security verifica-
tion of programs with stack inspection. The difference between the model in [18] and
ours is that linear temporal logic (LTL) formulas [7] is used in [18] to describe both
the property in a check statement and a global security property while we use regu-
lar languages, whose expressive power to represent a set of finite sequences is prop-
erly stronger than that of LTL formulas [10]. Also, the verification algorithm in [18]

is based on model checking [7] and works only for mutual recursion-free programs,
while we showed that the problem is generally decidable even for programs which
contain mutual recursion. Recently, a more general verification method of programs
with stack inspection is proposed in [11]. In their method, not only global security
properties discussed in both this thesis and [18] but also other propertiesveness
property) can be verified. The verification method in [11] also uses an LTL formula to
specify a property of a program. However, what an LTL formula represents is different
between [11] and [18]. In [11], an LTL formula is used to represent a set of traces
(state sequences) of a program. On the other hand, in [18], an LTL formula is used
to represent a set of states (node sequences) of a program. A global security property

in [18] and this thesis can be represented as an LTL formula with regular valuation
in [11]. More precisely, a global security properpyis equivalent to an LTL formula

Gp with regular valuatiorv, wherep is an atomic proposition and(p) is a regular
language determined hy. On the other hand, an arbitrary LTL formula can be used
to represent a property to be verified in [11]. Therefore, their verification method is
more general than ours and Jensen’s [18] (Table 1.1). However, in their paper, the
complexity of the verification problem is not analyzed in detail. Furthermore, a prac-
tical verification method and its implementation are presented in this thesis. In [33], a
more general notion of stack inspection is proposed by using ABLP logic [1], which
is a kind of belief logic, and a sufficient condition for a check statement to succeed is
shown. However, the verification of a global security property is not discussed in [33]
in contrast with [18], [11] and our papers.

Table 1.1. Representation of a property
states (node sequencesjraces(state sequences)
[18] LTL formula
this thesis

[11]

LTL formula Gp

} Regular languagé (arbitrary) LTL formula

TExpressive power: LTL formula Regular language

In [8] and [9], which is the pioneering work of information flow, a static analysis
based on a lattice model of security classes is proposed. Denning’s analysis method
has been formalized and extended in various ways by abstract interpretation [26], type
theory [32, 14] and process algebra [2]. For example, in the type theoretical approach,
a type system is defined so that if a given program is well-typed then the program has
a noninterference property such that it does not cause undesirable information flow.

A structure of security classes modeled as a finite lattice is usually a simple one such
as {topsecret, trusted, untrusfedIn [21], a fine grained model of security classes
called decentralized labels is proposed. Based on this model, Myers [20] proposes a
programming language called JFLOW, for which a static type system for information
flow analysis as well as a simple but flexible mechanism for dynamically controlling
the privileges (declassification) is provided. However, the correctness of their type
system has not been formally verified. All of the above mentioned studies are basically
concerned with information flow analysis to ensure that high level secret information

5

does not flow into an insecret storage. In contrast, [18] and this paper discuss the
problem of deciding whether a program possesses an arbitrarily given global security
property provided that the program passes local security checks.

Security verification in a distributed system has been extensively studied by using a
process algebra called spi calculus and its extensions in [2] and its companion papers.
In [30], it is shown that the type system in [32] is no longer correct in a distributed
environment and presented a new type system for a multi-threaded language.

In the field of data engineering, access control and information flow control issues
have been also extensively studied for a distributed and object-oriented environment
(see [5]). For example, Samarati et al. [28] presents an information flow control algo-
rithm which blocks illegal information flows in object-oriented databases. However,
their algorithm does not perform semantic analysis inside a method. Semantic analysis
of security flows or security verification against inference attacks in object-oriented
databases are discussed in [31, 16].

Chapter 2

Preliminaries

2.1. Program Model

Following [18], we model a program with stack inspection as a directed graph called
a flow graph. Each node of a flow graph corresponds to a location in the program
(program point). A statement which performs runtime check of access permission
such ascheckPermission in JDK1.2 is called a check statement and is incorporated
into the model. A check statement examines whether the current state of the executed
program satisfies the property specified in the statement. If the property is satisfied,
the program continues its execution. Otherwise, the execution is aborted.

A flow graph has two kinds of edges. The first one tsamsfer edge (tg), which
represents a control flow within a method. For example, if there is a tg froto n
(denoted a®, 16 ny), then the control can move t® just after the execution of;.

The second type of edge isall edge (cg), which represents a method invocation. For
example, suppose that there is a cg fropto n, (denoted as ¢ ny). If the control
reaches, then the control can further be passeao

Let e denote the empty sequence. For a finiteset symbols, let* denote the set
of all finite sequences obincludinge. Also letz™ = Z* — {€}. Formally, a program

P is a directed graph represented as a 5-t@pte(NO, 1S IT, TG, CG) such that:

IS : NO— {call,return,check(Ly)}
IT € NO

TG C NOxNO

CG C NOxNO.

NO is a set of nodes representing program poihtsis the entry point of the entire
program called thenitial node. TG andCG are sets of transfer edges and call edges,
respectively.

The set of nodes is divided into the following three subsetsSyetn € NO.

e I1S(n) = call. nis acall node which represents a method call.

e I1S(n) = return. nis areturn node which represents the return from a callee
method.

e IS(n) = check(Ly). nis acheck node which represents a check statement. If the
current state of the program satisfies the property represented by the language
Ly, then the execution is continued. Otherwise, the execution is aborted. The
syntax and semantics of the languaggare defined in section 2.2.3.

Conditionals such a$statements anghile statements substitute for nondetermin-
istic statements. For example, consider the following sequence of statemefjtsif
... thenmp() elsemg(). In a flow graph, there will be two tgs; ™ np andny S ng,
whereng, ny, andns representmy (), mp(), andmg(), respectively. Transformation
methods from an object-oriented program into a flow graph using data flow analysis or
type inference have been studiedy(, [27]).

Note. A flow graph does not always represent the exact behaviors of an original
program. More specifically, if an ordinal imperative progrBsis modeled as a flow
graphP, then every execution sequence (tracelpois also a trace oP, but not vice
versa. The reasons why we do such an “approximation” are as follows:

e Most of decision problems for imperative programs which contain either con-
ditional statements and procedure callswaiile statements are undecidable.
Therefore, static program analyses such as type inference and abstract interpre-
tation use an approximation such as the one described here.

8

o If a flow graphP of an original prograni satisfies a safety property discussed
in this paper, then it is guaranteed tifatalso satisfies the property. (This is not
true for liveness properties.)

2.2. Operational Semantics

2.2.1 State

Each state of an ordinary imperative program can be represented by a tuple of a current
program point (or a continuation), contents of global variables, and a runtime control
stack (shortly, stack).

For each invocation to a methad a framef, is allocated and pushed onto the
stack. A framef, contains actual values of the input argumentspf/alues of local
variables, the return address, and other information on access permissionsiash
In the flow graph model, however, values of variables and arguments are abstracted
away. Hence, a frame degenerates into a return address, i.e, a node. If, in addition, the
current program point is also kept on top of the stack, then each state of a program can
be represented as a stack, that is, a sequence of nodes.

A state of a programP = (NO, IS IT, TG, CG) is a finite sequence of nodes, which
is also called atack. The initial state ofP is the stack which contains only the ini-
tial nodelT. The state immediately after a method call is the state (stack) obtained
by pushing the node of the callee onto the current state. If the top element (current
program point) of the stack is a nodeandn; LS np, then the state just after the exe-
cution ofny can be the state obtained by replacing the top elemeot the stack with
n2. The concatenation of sequenssands, of nodes is represented &s: ;. The
sequence which consists of only one nods denoted byn). We may writen instead
of (n) if no ambiguity occurs. For example, a stage n; : nz indicates that the method
including the program point, has been called fromy, the control has reached, the
method including program poimg has been called fromp, and the current program
point isnz. If n3 is a return statement.€., 1S(n;) = return), thenns is popped from
the stack and the next state becomgsns whereng € {n | n, L n}.

2.2.2 Trace

The semantics of a program is defined biransition relation > on the set of states.
For states; ands,, s;> S means that the transition fros to s, is possible by a unit
execution step of the program.

Definition 2.2.1 (transition relation) Foragiven prograr® = (NO, IS IT, TG, CG),
the relation- is the least relation which satisfies the following three rules, whesa
state € NO*) andn, m, nj, nj are nodesg NO).

CG
IS(n) =call, n=m
s:n>s:n:m

TG
IS(m) = return, nj — n;
S:m:mp s:n;

IS(n) = check(Ly), S: N € Ly, nLG‘nj
s:n>s:n;

O

For a progranP, atrace of P is a finite sequence of states in which the first state
is the initial state and every pair of adjacent states satisfies the transition relation
The concatenation of states is denoted &g slightly abusing the notation. Tiset of
tracesis defined as follows.

Definition 2.2.2 (set of traces) For a given progran? = (NO,ISIT, TG, CG), the
set[[P]| of traces ofP is:

[Pl = {si>-->s[s1=(T),s1,...,5% € NO",
Vi< kas DS-I—].}‘
O
A languagé_ in a nodecheck(Lg) is a regular language ovBIO (thus,Ly, C NO¥).
Recall that every stateis a sequence of nodes, that$s; NO*. As defined in the third

rule of Definition 2.2.1, if the control reaches a natheck(L), then the execution is
continued if and only if the current state belongd {o

10

2.2.3 Security Property in Check Node

The model itself does not assume any particular representaipnregular expres-
sion, finite automaton) to denote a regular langulagealthough we will use regular
expression in this chapter.

Example 2.2.1 (Java stackinspectionin JDK1.2) A method invocatiortheckPermission(p)
succeeds if

(a) every frame of the stack has permissigror

(B) aframe (sayf) is privileged and every later frame (includirigyyin the stack has
p.

Let N (p) be the set of nodes which have permissand letPRV be the set of privi-
leged nodes. We can represehéckPermission(p) as the check nodeheck(JDK(p))
where:

JDK(p) = (NO(PRVAIN (p))u. &) (N (p))". (2.1)
(a) (b) (c) (d)

The concatenation of (c) and (d) represents the set of node sequences which satisfy
the condition). Note that (b) represents the set of hodes which are privileged and
have p as well. Hence, the concatenation of (a), (b) and (d) represents the set of
node sequences which satisfy the conditiBn Remember that for a statgny - - - ny,

the leftmost symboh; represents the node at the bottom of the stack, the rightmost
symbolng represents the node at the top of the stack, and the other ngdesy 1

are arranged from bottom to top. O

Example 2.2.2 Figure 2.1 shows a prograif= (NO, IS IT, TG, CG) which models

a part of an on-line banking system, which serves its clients with a method for with-
drawing money. There are four protection domains caBgsem, Provider, Client

and Unknown. A reliable provider is supplied withead and write methods and is
privileged by the system. All users including clients and unknowns can invdibsit
method, which invokesead andwrite methods. In the figure, a solid arrow represents

a call edge and a dotted arrow represents a transfer edgblQet{n; | 1 <i < 14}.
Permissions granted to each protection domain as well as the protection domain which

11

each node belongs to are also shown in figure 2.1. For example, the set of permissions
granted toSystem is { Pgebit, Pread, Pwrite}- Also, the sefN (p) of nodes which have

permissionpis: N (Pgevit) = {N1,N2,N3,N4,N7,Ng, - -+, N14} andN (Preag) =

N (pwrite) = {n1,N2,n7,Nng,---,N14}. Let PRV = {ng,ng} be the set of nodes which
are privileged. The propertyDK (pgenit) Specified in node; is represented by the
following regular expression:

JDK (paenit) = (NO* (PRV NN (paebit)) U€)(N (Paenit))”

by (2.1) in Example 2.2.1. The properti@®K (pread) in N11 and IDK(purite) N N13
are represented in the same way. Consider the following two sequences:

01 = Nn1>N1N3>N1N3N7>N1N3Ng>NiN3Ngny
> N1N3NgN12> N1N3Ng > N1N3NgN13
>N1N3NgN14>N1N3N10> N1N4,

02 = Nn1>N1N5>N1NsN7>N1N5Ng.

For the state sequenacg, check nodes are executed three times, at the underlined
states. In each case, the state satisfies the property (belongs to the language) specified
in the check node. Therefore; € [[P]]. For the sequencey, ninsn7 ¢ JDK(Paepit)
sincens € N (pgesit), and hencer, & [[P]. O

2.3. The Verification Problem

2.3.1 Definition of the Verification Problem

In this chapter, we define a verification problem, which is a generalization of the one
in [18]. Each program is required to satisfy a certain global security property such as
‘local resourcer never be read out by any (malicious) method which does not have
permissionp.” Intuitively, the verification problem is to verify whether every state

in every trace in[P] of a given progranP satisfies a given global security property.

A global security property is expressed as a regular languggevhich is called a
verification property.

12

Let LsatrdP] = {a | a is a state sequence such that every statebelongs ta_y}.
Lsatd W] can be represented bgsd W] = (Ly>)*Ly. A programP satisfiesa verification
propertyLy if and only if every state in every trace i?] belongs toLy. Formally,
we define theverification problem as follows:

Instance: A programP and a verification propertyy,.

Question: [[P] C LsasdW]?

2.3.2 An Example

Example 2.3.1 Consider Example 2.2.2 again. llef = ((Erw)* U (N (Pdesit))*Erw(Erw)*)
be the verification property whererw = {N11,N12,N13,Ma}. LsatdP] = (Ly>)*Ly
means that if the control reaches either téeml or write method successfully, then the
control has passed through only nodes which hayg:. In this particular example,

[P]] € LsatdW] holds, that is, prograrf satisfiedy. O

13

| 3” cal
no. Cca
' N\

\/
| n4: call

Pr ovi der

{drw}\'

n7: check(JDK(pdebit))

n10Y return

System

{,r, w}\l

v
i nl2: return

v
nll: check(JDK(pread) n13: check(JDK(pwrite)

\ 4
nl4: return

Figure 2.1. A Sample Program

14

d --- pdebit
r ---pread
w --- pwrite

Chapter 3

Decidability of the Verification
Problem

3.1. Overview

In this chapter, we present our approach to the verification problem. We will show
that for each prograr®, the set][P]| of traces ofP can be generated by an indexed
grammar. The generative capacity of indexed grammars (IGs)[3] is stronger than that
of context-free grammars (CFGs) while IGs inherit good mathematical properties from
CFGs. Using these properties, we prove the decidability of the verification problem.

As stated in the following lemma, the set of traces can not always be generated by
a CFG.

Lemma 3.1.1 Thereexistsa program P such that the set [[P]] of tracesis not a context-
free language (CFL).

Proof. LetP = (NO,ISIT,TG,CG) be the program wherdO = {n}, IT = n, there
is no transfer edge iR, and there is only one call edgeC—G> n. The set of traces iR is
as follows.

P] = {n, n>nn, n>nn>nnn,---}.

Let h be the homomorphism defined hyn) = n andh(>) = €. Then we obtain:

h([P]) = {n, nnn, nnnnnn, nnnnnnnnnn, - - -} = {n'+1/2 1§ > 1},

15

It is easy to prove that([[P])) is not a CFL using the pumping lemma for CFL. Since
the class of CFL is closed under homomorphi§R is not a CFL. O

The above lemma implies that a class of grammars of which generative capacity is
stronger than CFG is needed to generate the set of traces. The outline of this chapter is
as follows.

(@)

(b)

A trace in a program is a sequence of stacks, which are sequences of nodes. A
state transition does not alter the nodes other than the top and the next to the top
node in a stack (see section 2.2) at a time. That is;if5 1, then there are
a,B,y € NO* with | B |< 2, | y|< 2 such thas ands' can be written as=a (3

ands = ay, respectively. As explained in section 3.2.1, an indexed grammar
can generate a sequence which is controlled by such a stack-like data structure.

A sequence of states is called an unchecked trace if the sequence becomes atrace
by assuming that every possible local check node succeeds. More precisely, a
sequence of states is amnchecked trace in a programP if a is a trace inP

when the third inference rule in Definition 2.2.1 is replaced with

1S(n) = check(Ly), n's n;
s:n>s:n; '

For a given prograr®, we will define an indexed gramm@kp1 which generates
the set of unchecked tracesRrin section 3.2.2.

An unchecked trace is also a trace ifx satisfies the properties specified in
check nodes . That is, if the property specified in a check statement holds at
the current state, then the execution continues; otherwise, the execution should
be aborted at the state. For this reason, in section 3.2.3, we will also define
the regular languagepc of state sequences in which any pair of states can be
adjacent to each other as long as those states satisfy the property (belong to the
language) specified in check nodes. Finally, we will sfi@®y = L(GpT) NLpc

in chapter 3.2.4.

16

3.2. Decidability

3.2.1 Indexed Grammar

Indexed grammar[3] is an extension of CFG. An index grammar (IG) is a 5-Gipte
(N, T,I,R 'S) where:

(a) N is a finite set ohonterminal symbols,

(b) T is a finite set oterminal symbols,

(c) I is afinite set ofndex symbols,

(d) Se N is thestart symbol, and

(e) Ris a finite set oproductions of one of the following forms:

(Type 1) A— a
(Type 2) A— Bf
(Type 3) Af — q,

whereA,Be N, f €l,anda € (NUT)*.

A nonterminal symbol, a terminal symbol and an index symbol are abbreviated as a
nonterminal, a terminal, and an index, respectively. A derivation in IG is similar to a
derivation in CFG except that IG has operations on index sequences. The derivation
relation? on (NI*UT)* is defined as the least relation which satisfies the following

conditions (1), (2) and (3). In the following, IBtye (NI*UT)*, & € I* andX € NUT.
(1) LetA— X1X2--- X« € Rbe a Type 1 production. Then,
BALY — BX1€1 X282 - - Xi&ky
where ifX; € N then&; = &, and if X; € T thené; = .

(2) LetA— Bf € Rbe a Type 2 production. Then,

BAZy— BBIEy.

17

(3) LetAf — X1Xo--- Xk € Rbe a Type 3 production. Then,
BAFEY — BX1€1Xa€2" - XeEky

where ifX; € N then&; = &, and if X; € T thené; = .

A Type 1 production distributes index sequences associated with the nonterminal
to which the production is applied to all nonterminals on the right-hand side. A Type 2
production adds an indekto the left-end of the index sequences associated with the
left-hand side (and provides the nonterminal on the right-hand side with the resultant
index sequence). A Type 3 production deletes the leftmost index of the index sequence
and distributes the remaining sequence to all nonterminals on the right-hand side. The
reflexive and transitive closure eé% is denoted by%. We will simply write — for
the relation? if G is clear from the context. The language generated by a6 s

(N,T,I,R S) is defined ag.(G) = {we T* | s%w}.

3.2.2 Set of Unchecked Traces

We will omit the concatenation symbol : of node sequences in the following. For a
given programP = (NO,ISIT,TG,CG), the index grammaGpt = (N, T,I,R,S) is
constructed as follows.

(@ N={SW,AB,C}U{N;,N,N/ | nj € NO}.
(b) T =NO u{r}.
() I ={ni| n € NO}U{$}.

(d) LetRDbe the set of productions which consists of:

S - W$ (3.1)
W — An forng=IT (3.2)
A — BsC (3.3)
A - B (3.4)
Bni — Bn; forVnj € NO (3.5)
B$ — ¢ (3.6)

18

Cni — N forvn € NO (3.7)
NJ” — Ang for Vnj, ng suchthan; LIS Nk (3.8)

For each node;, one of the following sets (i), (ii) and (iii) of productions is
added tR according td S(n;).

(i) 1S(nj) = call:
Ni — N (3.9)
N/ — Anj forvn; suchthat; 5 n, (3.10)
(i) 1S(n;) = return:

Nin; — N forVn; € NO 3.11
J j J

(i) 1S(nj) = check(Lg):
Ni — Anj forvn; suchthahiLan (3.12)

It is clear from production (3.12) thatGp7) is the set of unchecked tracesRn

3.2.3 Set of Sequences Satisfying Local Checks

The execution which has resulted in a statntinues if and only i satisfies the
following condition.

If the top element of the staseis nj andIS(n;) = check(Ly), thense Lg
holds.

For a check node;, let the Ianguagd';,(ji’)C consisting of state sequences which
satisfy the above condition for this particular nages represented by the following
regular expression.

L5t = NO*(NO— {n}) Ug ULy,

We can define the languag®c consisting of state sequences which satisfy the

above condition for all check nodes as follows:

Lp7c = (XD)*NO* (3.13)

where{ny,...,n } is the set of check nodes fhandX := LS(); N Lg(); n---n Lé'}:-

19

3.2.4 Proofs

First, we will show that the languad€Gp 1) NLpc coincides with the sdfP] of traces
of P.

Lemma 3.2.1 Every a € L(GpT) can be written asa = s> -+ > s, where s € NO*
(L <i<n)andn> 1, and thereis a derivation of the following form resulting in a.
The number at the right-end of each line is the number of the applied production in
section 3.2.2,and &, € (I — {$})* (L <i < n).

S 5 ANS (1), (2)
— BO1$>Co1$ (3)
5 By1$>A%LS (7) - (10
— B®1$>Bd>Cd$ (3)
X B> B3 15> A0S
— BO1$>--->Bd—1$>BO$ (4)
5 spe-> s (5), (6)

Proof. For an arbitrary derivatio® — s, --- >$,, the only production which can
directly generate a terminal symbol is (3.5). The derivation steps using productions
(3.6) and (3.7) can be moved to the end of the derivation. It is easy to see that the other
steps in this derivation is exactly those stated in the lemma by the definit®@pofC

Leto: NO* — (I — {$})* be the mapping defined lay(nj, ---n;,) := ni, - - - ni; .
Lemma 3.2.2 For each programP, d € (I — {$})* andse T*,

B8$5s ifandonlyif seNO*andd=o(s).

GpT
O
Lemma 3.2.3 For each program P, s> --->s, € [[P] if and only if Sei Bo1$>
PT
---BOn—1$>Ad$ and s> ->S € Lpc, where § = o(s) (1 <i <n).
Proof. Theonly if partis shown by induction om (The proof of thef part is similar.)
(basis) Assumes; € [[P]]. By the definition of a traces; = (IT) = (n1). By pro-

ductions (3.1) and (3.2),
S—W$— A%

20

holds. Also,n; = o(ny) ands; € NO C (X»)*NO* = Lpc.

(inductive step) For an integen(> 1), assume an inductive hypothesisif- - - >
s € [P, thenS—= B3;$5 - - - > B8 1$>AS, & = o(s) (1<i<n),ands;>--->5 €
Lpc. Further assume that>--->sy>shy1 € [[P]. Sinces, # € we can writes, = s'ny
for somes' € NO* andny, € NO. By production (3.3),

One of the following three cases holds accordingS).

(1) 1S(ny) = call. Sinces,>sy11 ands, = s'ny, there is a node; such than, ¢ n;
ands,.1 = snynj. Productions (3.7), (3.9) and (3.10) can be applied in this
order toCdp$ in derivation (3.14), and it follows frol, = o(s,), Sy = Sny and
S+1 = Snyn; that

Cdn$ = Criyo(s)$ — Nyo(s)$ — Nyiva(s)$ — Anjiyo(s)$ = Ad(shi1)$.

Hence S5 B31$> B&$ - - - > BS,$> Adyy1$ andd; = o(s) (1<i < n+1).

Next, we will shows; > > --->S,>S41 € Lpc. From the inductive hypothesis
S1>Sb-->S € Lpc, we can seg € X (1 <i < n)by (3.13). Hence, it suffices
to show that, € X ands,, 1 € NO*. The latter is trivial. It follows froms, = s'n,
andl§(ny) = call thats, € X holds by the definition ofpc.

(2) 1S(ny) = return.
Sincesn>sny 1, We can writes, ass, = snyny for somen; € NO ands € NO* such
thatny LIS nj andsn;1 = snj. Productions (3.7), (3.11) and (3.8) can be applied
in this order toCd,$ in derivation (3.14), and

Cdn$ = Criyriyo(s)$ — Nynyo(s)$
— N{jo()$— Anjo(s)$ = Ao(sn11)$.

Hence S5 B31$> B&$ - - - > BSh$> Adyy1$ andd; = o(s) (1< i < n+1).

It can be shown tha > S>> s> Sh11 € Lpc in a similar way to the case of

21

(3) I1S(ny) = check(Lg,). Sincesy>sni1, there is a nod@; such thatny, 16 nj and
S$h € Lg,- Also, sh1 = snj follows.

Productions (3.7) and (3.12) can be applied in this ordé€2dgh in derivation
(3.14), and

— Nyo(s)$ — Anjo(s)$= Ad(shi1)$.
Hence S5 B31$> B&$ - - - > BSh$> Adyy1$ andd; = o(s) (1< i < n+1).

In a similar way to the other cases, it suffices to slsgw X in order to prove
thats;> s> - > s> Sh1 € Lpe. It follows from s, = sny ands, € Lg, that
S € L,()‘%. Therefores, € X.

Theorem 3.2.4 For each program P, [[P] = L(Gp1) NLpc.

Proof. We will show[[P] C L(GpT) NLpc. Assume thaki>si>-- >, € [P]. By
Lemma 3.2.3Gp7 satisfiesS— B&;1$5 - - - >Bdn_1$> Ad,$, whered = o(s) (1<
n). By applying Production (3.4) tAdy in the above derivation, we obtain

Bd:1$> - >BOn_15> A0S — BO1$> - - - 1> B 15> BOrS.

Sinced; = o(s) (1 <i<n), by applying Lemma 3.2.2 to ea&® $, Bo1 $> - - >B&$
S>> S, holds, from whichs > - > s, € L(Gpr) follows. By Lemma 3.2.3g>- - >
SHE Lp7c holds, and hencg >s>---> s, € L(GRT) N Lp7c. ThUS,[[P]] C L(GP,T) N Lp7c
holds.

L(GpT) NLpc C [[P]] can be shown in a similar way. 0

Lemma 3.2.5[3] The class of indexed languages is closed under intersection with
regular languages. The emptiness problem for indexed languagesis decidable. O

Theorem 3.2.6 For a given program P and a given verification property Ly, the veri-
fication problem [[P]] C Lsasd W] is decidable.

Proof. The theorem follows from the fa¢P]] C LsasdW] < [P] N LsardW] = O (the
empty set), Theorem 3.2.4, and Lemma 3.2.5. O

22

3.3. An Alternative Method

The set[P] of all states which are reachable from the initial state of a prodPam
defined as follows:

[Pl ={se NO* | 3s;>5>--->5 € [[P], s=s}.

Itis easy to see that for a progrdPand a verification propertyy, [P] C Ly if and only

if [P]] € (Ly>)*Ly. Hence, we can solve the verification problem by decidifie Ly
instead of decidingP]] C (Ly>)*Ly. If [P] belongs to a class of languages which is
closed under intersection with regular languages and for which the emptiness problem
is decidable, then we can obtain a decision algorithm for the verification problem since
[PJNLy = 0if and only if [P] C Ly. LetL(G) denote the language generated by a
grammarG and let||G|| denote the size db. It is known that a context-free grammar
(CFG) G’ can be constructed from a CFGsuch that (G') = L(G) N Ly and||G/||

is O(||Gl]), and also the emptiness problem for context-free language is solvable in
linear time in the size of CFG [15]. Hence,[R] is generated by a CFG such that

[|G|| is O(||P||), then the verification problem is solvable in polynomial time|R|.
However, it is open at the current time whetlie} is a context-free language for an
arbitrary progranP. If P contains no check node, th@P| is a regular language and
hence we can decide whethe¥ C Ly, (see section 5.1).

23

Chapter 4

Complexity of the Verification
Problem

4.1. Representations of Inputs

The complexity of the verification problem can depend on the representation of reg-
ular languages specified in check nodes and a verification property. We mainly use
a finite automaton (FA) as the representation of a regular language. A deterministic
FA and a nondeterministic FA are denoted by a DFA and an NFA, respectively. Also,
a regular expression is denoted by an RE. Let DEXP-POLY time denote the class of
decision problems solvable in determinisfi¢cP(™) time for a constant (> 1) and a
polynomialp.

In the following sections, we will show that the verification problem is DEXP-
POLY time-complete if a verification property is specified by a DFA. For afséét
|A| denote the cardinality o&. The number of states of an A is denoted asM. Let
P = (NOQ,ISIT,TG,CG) be a program wher® containscheck(Lqy) (1 <i <) and
eachL, is specified by an FMg. The size ofP is defined ag|P|| = [NO| + [TG| +
|ICG|+ max{#Mg,,...,#Mq }. Foran IGG = (N, T,|,R,S), the size oG is defined as
IG|| = N|+ |T|+ |l +||R|| where||R]| is the description length dR.

24

4.2. Upper Bounds

Lemma 3.2.5 can be refined by analyzing the proofs of Lemma 3.2 and Theorem 4.1
of [3] as follows. LetL (M) denote the language accepted by an\FA

Lemma 4.2.13] (a) For an IG G and an NFA M, an IG G’ can be constructed such
that L(G') = L(G)NL(M) and ||G'|| is O(||G||(#M)3). (b) The emptiness problem for
the language generated by an |G G is solvable in deterministic O(2PUICI)) time for a
polynomial p. a

Lemma4.2.2 Let P = (NO,ISIT,TG,CG) be a program. Assume that P contains
check(Lg) (1 <i < k) where each Lg, is specified by an NFA Mg. Also let Ly be a
verification property specified by a DFA My,. The verification problemfor P and Ly is
solvable in DEXP-POLY time.

Proof. By Theorems 3.2.4 and 3.2.6, the problem is equivalent to deciding whether
L(Gpr) NLpcNLsardW] =0 (4.1)

whereGpr is the indexed grammar constructed in section 3.Ppg is the regular
language defined fromg (1 <i <K) in section 3.2.3 antlsard Y] = (Ly>)*Ly. We
can show the following properties.

() [IGrrllis O(INOJ?).

(i) Let n = max{#Mg,,...,#Mq }. An NFA Mpc can be constructed as follows
such thatpc = L(Mpc) and #Mpc is O(|NO| - ny).
Let ng be the nodeheck(Ly). In section 3.2.3Lpc is defined agXr>)*NO*

where

X = (k](No*(No— {ng})UeULy)
i=1

C~=

(NO*ng NLg)-

1

25

(These equations follow the fact that for any s&is..., Ay, Bs,...,Bk

(AtUB1) NN (AKUBK) = (Arn---NAC 2N A1 N A
AN NAN AN By
ALN---NA2N B NAK

ArN---NA2NBr_1 N Bk

()
()
()
()

CCCCC

(Blm---mBk_zm Bk_1 N By).

Note thatNO*(NO — {ng }) Ug ULy = eUNO*(NO — {ng }) U (NO*ng NLg).
When we letA; = --- = Ac = {€} andBj = NO*(NO — {ng }) U (NO*ng NLg),
the right-hand side equalg} UNX_; Bi. When we letA; = NO*(NO — {ng})
andB; = NO*ng, NLg for 1 <i <k, the right-hand side equafy_; A UUX_; B
sinceA N Bj = Bj andBj N Bj = 0 for any distincti andj.)

Without loss of generality, we assume that edt(1 < i < k) has nce-move.

(If Mgy has are-move, then we can construct an NFA equivalenig which
has the same number of statesvagin O((#Mg)?) time.)

We can construct an NPy such thalX = L(Mx) and #Mx = SK ; (#Mq +1) +

2, as shown in figure 4.1 whehd;, is an NFA such thatt(M,) = NO"ng N L.

M{ﬁ can be constructed froidy, by adding a single new stateand a transition
n, n,

st/ for each state such that there is a transitian— t for a final state of

Mg . The initial state oMy, is the one oMg, and the final state i.

Thus, an NFAMx can be obtained such thdt= L(Mx) and #Mx = #Mff.

Using Mx, we can obtairMpc as figure 4.2 andMpc = #Mx + 1, that is,
O(INO| - ny).

(iii) Let np = #My. A FA Mgz, can be constructed such thagd] = L(Mgg) and
#Mqzr= M2 by defining the set of final states M ;. as the set of non-final states
of MqJ.

Hence, by Lemma 4.2.1 (a), an indexed grami@arcan be constructed such that
L(Gp)= (GpT)ﬂL(Mpc)NL(Safe) GpT NLpcN Lsafe[lIJ] and||Gp|| ISO(lNOl (INO-
ny - n2)3), which is a polynomial order gfP|| andn,. By (4.1), the verification prob-
lem is equivalent to deciding whethe(Gp) = 0. By Lemma 4.2.1 (b) and the above

26

The initial state The final states of ead¥f,,

of eachM, which are not final iM’,,
My n
s N,
Lo Mo
P1
Mo, Ny, @

[’ (p'(
EE S,
.0 £

The initial states oMy is s;. The final states dflx are the ones of arin{ﬂ ands;.

Figure 4.1. NFAMx

facts, (4.1) can be done in determinig®¢2P(IPl+n2)) time for some polynomiap. O

Note. Ifa verification propertyy is specified by an NFA instead of a DFA in Lemma
4.2.2, then the complexity of the problem in this case becomes a double exponential
time.

4.3. Lower Bounds

Theorem 4.3.1LetP= (NO,ISIT,TG, CG) beaprogramand Ly, a verification prop-
erty which satisfies the assumption stated in Lemma 4.2.2 except that the language L,
in each check(Ly,) is specified by a DFA Mg, . The verification problemfor P and Ly is
DEXP-POLY time-complete.

Proof. By Lemma 4.2.2, it suffices to show that the problem is DEXP-POLY time-
hard. It is known that a languadebelongs to DEXP-POLY time if and only if is
accepted by a polynomial space-bounded alternating Turing machine (ATM) [6]. For
any given polynomial space-bounded ATWland any inpuk of M, we can transform

27

The initial state The final states ofiy,
of My > which are not final iM; ¢

The initial state oMpc are the one oMx. The final state oMpc is S3.

Figure 4.2. NFAMpc

M andx into a programPy x and a verification propertl,y within polynomial time
such that

[Pvx]] Z LsatdP] < M accepts.

Therefore the verification problem is DEXP-POLY time-hard.

Below we show that a transformation which satisfies the above condition exists.
Assume that for any input whose length equals, M uses not more thap(n) space
for a polynomialp. Letl" = {yi,...,yjr|} be the set of tape symbols bf andy; be
the blank symbol. Led be the transition function d¥l.

Consider a prograr®; shown in figure 4.3. A node witbheck(NO*) is the one
with no operation since every state satist¥3*. When the control reaches the node
n; for the first time, the state (stack) of the progr&ms a sequence of nodes whose
length equalg(n) + 1. Considering that eadf j corresponds to the tape symbygl
we can regard this state as one of theé?(") possible strings contained by thxn)
tape squares dfl, which we will refer to as an instantaneous description (ID) as usual.
In general, the node; has been visited more than once (by recursive calls), and thus
the state ofP; can be regarded as a sequence of IDs separateg. bfjowever, this
sequence of IDs may not represent a valid computatidvi beécause any two IDs may
be adjacent. To simulate a computation\bf the program should guarantee that the
tape square scanned at the last computation step is rewritten to a specified symbol and
the other tape squares are preserved.

28

chegkl(l\lo*)
- - v ~

~

V's ~a
Yoo cal e | Yirj.1: call
yio: cal Yo: cal Yirj2: call

=

Yipey: Al YopmicaAl - Y call
flo— — CG
n;cdl ——— — > TG

Figure 4.3. Program Py

ForanID a = 0102+ Opn) (Whereoj =yyj with1l<u<|Iand1<i< p(n)),
let
a[o/K =01+ 0k 100k+1+** Opn),

where k corresponds to the position of the tape head of M at the last computation step
and o is the tape symbol which the tape square k is rewritten to. By modifying Py, we
can construct aprogram P [k, o] (figure 4.4) which pushes a[o/k] onto the stack where
o isthetopmost ID of the stack. More precisealy, let s= spang (for s € NO*, a an ID,
and np € NO) be a stack. When Pk, 0] is called with stack s and the control reaches
the node n; at the bottom of figure 4.4, the stack becomes sa[a/k|n; (cf. figure 4.7).
P,[k, 0] is obtained by attaching a check node x; j and a return node to each vy j in
Py Xi.j is check(NO*y; jNOP(W+1) for all j # k, check(NO*) for j = k and i such that
yi = 0, and check(0) otherwise. Figure 4.5 shows the state of P>[k, o] when the control
isat Xi,j. These check nodes obstruct a sequence of 1Ds which does not represent a
valid computation of M.

Let o = 0102---Op(ny) be an 1D with state g and head position k. Assume that
(q,0,A) € 8(qg,0k), that is, apossible move at a isto rewrite k-th tape square from oy
to g, change the state from g to ¢, and change the head position from k to k' = k+ A.
A program Ps[k, 0, ', K] in figure 4.6 with topmost ID a on the stack first pushes the
ID a’ obtained from a by the above move (¢/,0,A) € &(q,0k), and simulates further
moves from o’ recursively (figure 4.7). Ps[k, o, d, K] first executes P, [k, o] to write the

29

chegkl(NO*)

P T——
Vs ~a
X11 X21 XL
| | |
v v~ return v
I’etUI’I’l - — Vl,l yz’]_ e y||—|,1 — > I’etum
X12 X22 o Xiri.2
| | |
v v~ return v
return < — Y12 Y22 - Yiri2 —» return

=

X1p(n) X2pm) o Xrem
: _ereun |
return < — Yip(n Y2,p(n) v Yiripty — » return
n,: check(NO*) — CG
! - TG
v

Xi,j ischeck(L; j) where
NO*y; jNOP(WFL if j £ k,

Lij =< NO* if j=kandy; =0,
0 otherwise.

Figure 4.4. Program P, [k, 0]

the string contained by the tape at the last computation step of M

p(n) 1 1] p(n) 1 -1

Y.p(n) Y1 e Y1 | Yij - Y. p(n) Yo e Y.j1

Xij

Xi; examines whether this node equals y;;.

Figure 4.5. The stack of P, [k,] when the control isat X; j

30

check(NO*)
/// l \\\

-~ RN

P,[k,o]

~u P.[ko. K]
Ehgckl(NQ’Q

—
// \\
// \\
a ~a

check(No*yli,kNo”(”*k'”)

~

v
v; .- call

l \ PS[k'!O-i(l)iqi(l)!ki(l)]
vivzzlcall

\
' PiK, 0,0 K]
return

(a) d isauniversa state

P,[k,0
— k.l P,ko.q K]

= | <~
a7 p(n)—k'+1 T
check(NO*)/,\ «NO)

/ AN
V3 R N
vi,l:lcall vi,z:lcall
PIK.a2a Ky < ¢ PIK.oPa? K]
return return

(b) ' isan existential state

P,[k,a]
|

* ’
return Palko.q k]

(c) q isafind state
In this figure, we assume that

3(df,v) = {<q§”,1c)r-<”,Af”>, (62,02, 82},

| |
KY =K +4", and

2 2
K? =K +n?

Figure 4.6. Program Pslk, 0, d/,K']

31

NN L m
k
o (1 P,Jko] | Pdko,q K]
NN Ll 1ol | L
k k K

al
Figure 4.7. The extension of the stack made by P [k, o] and Ps]k, 0,0, K]

new ID o’ onto the stack. After executing P>k, o], Ps[k, 0, d/, k'] examines whether the
current contents of the tape square k' equalsy; € I by check(NO*y; ;s NOP(N=K+1) ‘and
calsPsK,d’,q",K’] for each (', 0’, &) € &(d,yi) and K" =K + 4", P3[k, 0, , K] cals
al these P3[K, 0, q",K"] sequentialy if d isauniversal state of M. If ¢’ isan existential
state of M, Ps[k, 0, d,K'] calls any one of these P3[K', 0, g, k"] and returns. Otherwise,
that is, if is afina state of M, Ps[k,0,d,K] cals no Ps[k’,0’,q", k"] and simply
returns. Thus Ps[k, 0, d, K] returnsif and only if the configuration of M which consists
of ¢, k' and the contents of the tape (ID) written on the stack is a yes-configuration.

A program P which ssimulatestheinitial configuration of M issimilar to Ps[k, 0, qo, 1]
where qp istheinitial state of M; Py does not execute P,[k, o] and instead it writes the
input string x onto the stack (figure 4.8).

Theoverall program Py x constructed by thetransformation consistsof Py, Ps[k, 0, d, K]
for all k, o, d and K, and two call nodes ns and n; (figure 4.9). Note that the subgraph
Pcand Ps[k,0,d', K] for al k, o, g and k' do not share anode with each other. This Py x
has many y; jsfor each i and j. Define the subexpression y; j appearing in the regular
expressionsin figures 4.4 and 4.6 as the union of all those nodes. An execution of Py x
reaches the node n if and only if M accepts x. We can simply let Ly = (NO— {ny})*.

A verification property Ly = (NO — {nt})* can be represented by a DFA with two
states. On the other hand, for each check nodex; j = check(L; ;) of P>[k, o], we defined
Li.j = NO*y jNOPW+ for all j # k. However, the number of states of a DFA which
accepts L j is more than exponential to n. By replacing the definition of Lj j with

Li.,j = NO*wvi~1y; ;juPW =iyl (4.2)

32

Yy,1: call —>return

Yi,2: Call —=return

|

}

Yi,n: Call —=return

|

Vine1: Call —>return
Yipm: Call —return

check(NO")

// \\
—

— ~
— ~—
a

(the same as the lower part of P;[k,0,00,1])

Let X = Vi, Yx, - - - Yx,- (Y1 iSthe blank symbol.)

Figure 4.8. Program P

—* CG

ng call ——n;: Calb —~ TG

Py

P4 k0,9 K] PyK,0',q" K']

\/

Figure 4.9. Program Py x

33

Thisfigure is for the case that j < p(n). When j = p(n), replace
the transitions from tj (i.e, tj;2 ~ Sj12 and tj 12 — 1) with

tj2 Y s and tjio >t

Figure 4.10. A DFA eguivalent to NO*vv! ~1y; ;uP(N=lyy!

we can show that the verification problem is still DEXP-POLY time-hard even if a
regular language in each check node is specified by a DFA. The proof of this theorem
is aso valid under this definition. In (4.2), v is the set of nodes which consists of ng
and all vj 1 and v; » of each Ps[k, 0, q, K] (or P), andv = NO—v. A symbol separating
two IDs in figure 4.5 is an element v. A DFA which accepts L; j is shown in figure
4.10. The number of states of this DFA is p(n) + j+ 4 (< 2p(n) +4). In asimilar
way, we can also represent a check node in the lower part of each Pslk,0,q,K] by a
polynomially-sized DFA. a

Note. In[18], the complexity of their verification algorithm is not discussed. Below
we briefly analyze their algorithm. The best known upper-bound of the time complex-
ity of the verification problem for aKripke structure Sand an LTL formula f islinear
in the size of Sand exponential inthesizeof f [7]. Let us assume that aprogram P in
the flow graph model of [18] and a verification property specified by an LTL formula
Y isgiven. The size of the Kripke structure induced by P and s in [18] is exponential
in both the size ||P|| of P and the size ||y|| of Y. Hence, the time complexity of the
verification algorithm in [18] is exponential in both ||P|| and ||W||. Also note that al-
though we extend the [18]’s model so that check statements in a program are specified
by regular languages instead of LTL formulas, the PSPACE-hardness of the verifica-

34

tion problem shown by Proposition 5.2.3 holds even for the [18]’s model because the
languages in check nodes of the program Pgssat and the verification property Ly in
the proof of Proposition 5.2.3 can be specified by simple LTL formulas. Also note
that Poasat does not contain mutual recursion, and thus the verification problem is
intractable even if we assume the absence of mutual recursion as is done in the verifi-
cation algorithmin [18].

4.4. Reversing Stack Contents

When we write the contents of a stack as a sequence of nodes, there is no special
reason for arranging nodes in such away that the left-end is the stack bottom. Below
we examine whether the complexity of the verification problem alters if we arrange
nodes in the order reverse to the original one to denote the contents of a stack.

LetMbeanFAM = (%, Q,d,Qo, Qr) where X isaset of input symbols, Qisafinite
set of states, : Q x = — 29 is a state transition function, Qg C Q is the set of initial
states and Qr C Q is the set of final states. Defined 1: Qx = — 22 asd Y(qg,a) =
{d | g€ d(q,a)}. Let us define the reverse of M as MR = (£,Q,571,Qr, Q). For
a sequence W = ajay - - -an, We write Wk = ap---apa; and for a language L, we let
LR = {wR|we L}. Itisclear that for an FA M, L(MR) = (L(M))R. For an FA M, if
MR isaDFA then M iscalled aDFAR.

First, consider the lower-bound of the verification problem. In the proof of Theo-
rem 4.3.1, the most complex check nodes in the transformed program have the form
of check(NO*yNOP(") where y € NO and p(n) is a polynomial in the input size. If
a € NO*yNOP(" | then the number of symbols appearing to the right of yin a should
be p(n) and hence NO*yNOP™ can be accepted by a DFAR with p(n) + 3 states,
Hence, the problem is till DEXP-POLY time-hard if the properties in check nodes
are specified by DFARs instead of DFAs. Also, the verification property (NO — {rn;})*
constructed in the proofs of Theorem 4.3.1 and Proposition 5.2.3 can be accepted by a
DFAR with two states.

Next, consider the upper-bound of the verification problem. Recall the proofs of
Theorem 3.2.6 and Lemma 4.2.2. Let P be a program and Ly be a verification prop-
erty specified by a DFA My. The verification problem is to decide whether [P] C
Leare[W], which is equivalent to deciding (Lyy s =)[[P]] N Lsare[W] = 0. We can construct

35

an indexed grammar G such that L(G) = Lyt and the size of G is a polynomia in
||P|| and §My. Now let us assume that Ly is specified by a DFARMy,. Obviously,
Lur R = [PJRN Lere[Q]R. The verification problem for P and Ly, is equivalent to decid-
ing Ly £ = 0. In asimilar way to the construction of the indexed grammar G described
above, we can construct an indexed grammar G’ suchthat L(G') = Ly ¢ R From thisob-
servation, we can show that the upper-bound of the complexity of the problem remains
the same if a verification property is specified by a DFARinstead of a DFA.

36

Chapter 5

Program Subclasses

5.1. Programs with Trivial Check Nodes

In this section, we consider the subclass of programs which contain only check(NO*)
as a check node. Since NO* is the set of dl states (i.e,, s€ NO* for every state s),
the execution of check(NO*) always succeeds. We will show that time complexity of
the verification problem for this subclass is linear in the size of a program while the
complexity depends on the representation of a verification property. This subclass,
called Meneck-free, Might seem of no practical use since no program in this class can
substantially control any access. However, in section 5.2 we will introduce a broader
subclass M pk 1.2 of programs which exactly model programs with checkPermission in
JDK1.2, and show that the verification problem for N jpk1.2 can be efficiently solved
by transforming a program in N jpk1.2 to aprogram in Mneck-free-

Let Mcneck-free denote the subclass of programs which contain only check(NO*) as
acheck node. Wewill show that for aprogram P in Mcheck-free, [P] iSaregular language
and hence we can efficiently decide whether [P] C Ly (see section 3.3). For any given
program P = (NO, IS IT, TG, CG) in Mcheck-free; We define a predicate CR (can return)
: NO — {True, False} such that CR(n) = True if and only if the control can return
after nisinvoked.

IS(ny) = call, np ¢ ny,
S n3, CR(n2) = CR(n3) = True

CR(n;) = True 1)

37

IS(n) = return

CR(n) = True (52)

IS(n;) = check(NO*), ng LS Nz, CR(nz) = True
CR(n1) = True

(5.3)

Lemma5.1.1Let P= (NO,ISIT,TG,CG) be a program in Mcheck-free- FOr an arbi-
trary node n € NO of P,

CR(n) =True ifandonlyif thereexistanoden’ such
that IS(n’) = return and
a valid state sequence
ne--->n,

where a valid state sequence T is a sequence of states satisfying the following condi-
tion:
T=s0b>-->5 suchthats,...,5x € NO*andVi < k. §>5.1.

Proof. The only if part can be shown by induction on the application number of
inference rules of CR used for deriving CR(n) = True. According to IS(n), one of the
following three cases holds.

e IS(n) = return. The proof istrivial. (' =n.)

e IS(n) = call. Since CR(n) = True is obtained only by inference rule (5.1),
there exists a node mp (n ¢ mp) and a node my (n S mg) such that CR(mp) =
CR(mg) = Trueholds. By theinduction hypothesisfor node mp, there areanode
m' (1IS(m') = return) and a valid state sequence mp>--->m. Similarly, by the
induction hypothesis for node mg, there exist anode n’ (IS(n’) = return) and a
valid state sequence mg>--->1'. Sincen(fmz andn’S mg, thereisavalid state
sequence N> NMp > -+ - >N > Mg > - - - > 1.

e 1S(n) = check(NO*). Since CR(n) = True is obtained only by inference rule
(5.3), there exists a node m, (n L mp) and CR(mp) = True holds. By the in-
duction hypothesis, there exist anode n’ (IS(n’) = return) and a valid sequence
mp--->n'. Sincen '8 mp, we obtain n>mp--->1'.

38

The proof of the if part is asfollows. Suppose that there is avalid state sequence
Ti=s1>--->§ Wheres e NO* (1 <i<I),sy=n,5 =n', and IS') = return. This
part is proved by induction on |. Note that in the case of | = 1, 1S(n) = return.

e IS(n) = return. By inference rule (5.2), CR(n) = True.

e 1S(n) = check(NO*). Thereisanode n, such that n ¢ n, and s, = ny. The state
sequence s> - - - > § satisfies the condition of thislemma and is shorter than T;.
By the induction hypothesis, CR(ny) = True. Hence, CR(n) = True holds by
inference rule (5.3).

e 1S(n) = call. The valid state sequence T; can be written as Ty = n>nmp ns; >
->ng >N >npe--->n', where 5 € NOT (1 <i <k), IS(m') = return, nSCm
andn’S ny. Since valid state sequence mes) - - - >, > obtained by removing
the leftmost node n from every state in subsequence nmsns; &> - - - >ng, >N of
T, satisfies the condition of this lemma and is shorter than Ty, CR(m) = True
holds by the induction hypothesis. Similarly, for subsequence ny>--->n' of Ty,
CR(ny) = True holds. Hence, we obtain CR(n) = True by inference rule (5.1).

O

Using the predicate CR, we can construct a regular grammar Gps = (N, T,R,S)
which generates the set [P] as follows.

(@ N isafinite set of nonterminal symbolsand N = {S} U{N; | n; € NO}.
(b) T isafiniteset of termina symbolsand T = NO.

(c) Sisthe start symbol.

(d) Risthe set of productions which consists of:

S—N; for n=IT (5.4)
Ni — n; for Vn; € NO. (5.5

For each node n;, the following productions are added to R according to IS(n;).

39

(1) 1S(n;) = call:

Ni — niN;j for vnj. n; ¢ n; (5.6)
If 3n;. n, < nj and CR(n;) = True, then the following production is aso
added to R.
N — N¢ for Vne. n ¢ Nk (5.7)
(2) 1S(n;) = check(NO*):
Ni — N;j for vnj. n; e n; (5.8

We can show that the language L(Gps) generated by regular grammar Gp,s coin-
cides with the set [P] of states.

Theorem 5.1.2 For aprogramP = (NO, IS IT, TG, CG) in Meheck-free, L(Gps) = [P).

Proof. It sufficesto show that for every se NO*, Sigpys sifandonlyif IT>--->s€
[P] holds.
Theonly if part is shown by induction on the sum of application numbers of pro-
duction rules (5.6)—(5.8).
(basis) If the derivation SLGRS s is obtained without applying the production rules
(5.6)«5.8), then
S —aps N1 by (5.4)
—Gps M =S by (55)
Clearly, ny = IT € [[P] holds.
(inductive step) We consider the case that the last production among (5.6)—5.8)

applied in the derivation is (5.7). The proof of the other casesis similar. Suppose there
is aderivation of the following form.

S Sgps M-MN;
—>GP-,5 Np---N Nk by (57) (59)

Then, the following derivation also exists.

S LGP,S ny---nN
—Gps ng---NN;. by(55)

40

Since the application number of production rules (5.6)—(5.8) in the above derivation is
less than that of the derivation (5.9), we can use the inductive hypothesis and obtain

ITo--->ng---n € [P]. (5.10)

On the other hand, by the existence of the production (5.7) (Ni — Nk), we can see that
IS(n;) = call, In;j. n; < nj, CR(nj) = Trueand n © nk. Therefore, by Lemma5.1.1,
there isanode n; such that IS(n;) = return and avalid state sequence:

nje-->Nr. (5.11)

From (5.10), (5.11) and the fact that n; C—G>nj, IT>--->Nng---nNi>Ng---NNiNj -+ >
ni---nnine € [P]. Sincen, T e ITo g g € [P

The proof of if part is shown by induction on the length of the trace.
(basis) Clearly, (IT) € [P]and SSg,sm =IT.
(inductive step) Theclaimisproved according to thetype IS(n,) of node n; in trace
IT>--->ng---mnin.>s € [P].

e 1S(n;) = call or check(NO*). The claim can easily be proved in this case.

. CG TG
e IS(n;) =return. Inthiscase, s=ny---nin, 3n;. N = n; and nj — ny. Therefore,
we can write this trace as

ITe--->n---M>NL---NNNG>--->Ng--- NN >Ny - - - NN € [P

and by Lemma 5.1.1, CR(n;j) = True. Therefore, Gps contains the rule (5.7)
N; — Nk. On the other hand, since IT>--->ng---nn; € [P, it follows from the
inductive hypothesis that there exists a derivation of the following form:

%
S—Gps N NN —Gpg M-+ - NN
Hence, the following derivation also exists.

S LGP,S Ny---n N
—Gps M- Ny Ng by (5.7)
—Gps Ng---NNk. by (5.5)

41

Theorem 5.1.3Let P = (NO,ISIT, TG, CG) be a program in Mcheck-free- The verifi-
cation problemfor P and a verification property specified by a DFA My, is solvablein
O((INO| +|TG| + |CG|) - #My) time.

Proof. From Theorem 5.1.2, we can construct a regular grammar Gp such that
L(Gp) = [P]NL(My) and ||Gp|| is O((INO| + |TG| + |CG|) - #My). The emptiness
problem for the language generated by a regular grammar G is solvable in O(||G||)
time. Hence, we can decide whether L(Gp) = 0 in O((|NOJ| + [TG| + |CG]) - #My)
time. Furthermore, al the values of predicate CR can be determined in O(|NO| +
|TG| + |CG|) time by applying the inference rules (in a non-redundant way) until no
value of CR for each node changes. Therefore, the verification problem is solvablein

O((|NO| + | TG| + |CG]) - #My) time. 0

As is the case with Lemma 4.2.2, the proof of the above theorem is not valid if
a verification property Ly is specified by an NFA instead of a DFA. Especially, the
verification problem in this case can be shown to be PSPACE-complete.

Proposition 5.1.4 Let P = (NO, IS IT, TG, CG) be a programin MNcheck-free- The veri-
fication problemfor P and a verification property specified by an NFA My, is PSPACE-
complete.

Proof. Both of the following two problems are known to be PSPACE-complete[12].

FINITE AUTOMATON INEQUIVALENCE
Instance: Two NFA M; and M2 having the same input al phabet Z.
Question: L(M1) # L(M2)?

REGULAR EXPRESSION NON-UNIVERSALITY
Instance: A regular expression E over afinite alphabet .
Question: L(E) # 2*?

Note that for a program P and a verification property Ly, [P] C Ly if and only if
[P] C Lsge[W] (see section 3.3). PSPACE-solvability of the verification problem can

42

c>1: caID
/ \gy,l,: call

a
.
Q
=

N

o5 call

—> CG

Figure 5.1. The program Ps+

be shown by transforming the problem to the FINITE AUTOMATON INEQUIVALENCE
problem. We can construct an NFA Mps such that [P] = L(Mpss) and #Mps = O(|NO|)
[25]. We can also construct an NFA Mps g such that L(Mpsy) = L(Mps) NL(My) and
#Mpsy = #Mps- #My. This construction of Mps and Mpsy completes the transfor-
mation since [P] Z L(My) iff [P] # [P]NL(My) iff L(Mps) # L(Mpsy).
PSPACE-hardness of the verification problem can be shown by transforming REG-
ULAR EXPRESSION NON-UNIVERSALITY to the problem. First we construct the pro-
gram Ps- = (NO,ISIT, TG, CG) in Figure 5.1, where the set NO of nodes is the alpha-
bet 3 and the entry point IT isan arbitrary node a1 € Z. Ps+ issimilar to the complete
graph with |Z| nodes and obviously [Ps+] = 01XZ*. Second we construct an NFA My,
such that L(My) = L(o1 - E) from the regular expression E. This construction of My
can be performed in polynomial time[15]. The construction of Ps: and My completes
the transformation since [Ps:] Z L(My) iff 013* € L(01-E) iff * # L(E). O

5.2. Programs with JDK1.2 Stack Inspection

5.2.1 Permission Based Model

As shown in chapter 4, the verification problem is computationally intractable while
the problem for the subclass Mcheck-free 1S SOIVable in linear time in the program size.
In this section, we introduce another subclass I jpk 1.2 of programs which contain only
check nodes equivalent to checkPermission in JDK1.2. TMjpk12 properly includes

43

Mcheck-free. AlSO we show that the verification problem for class N jpk1.2 is solvable
in linear time in the size of a program by reducing the problem for Mjpk1.2 to the
problem for Mgheck-free-

In JDK 1.2, an access to aresource is controlled by inspecting the current contents
of the stack. This mechanism can be implemented as follows (called eager evaluation
in section 2.4 of [13]).

e Assume that a set of permissions is granted to each method and every node in
amethod has the permissions granted to that method. Also assume that at each
state of a program, the control keeps the set of effective permissions. The set of
effective permissionsis updated as follows when amethod invocation or areturn
OCCurs.

¢ When amethod m, isinvoked from a method m; and the invocation is not priv-
ileged, then the set of effective permissions becomes the intersection of the cur-
rent set and the set of permissions granted to n.

¢ When method ny, is invoked from method m; and the invocation is privileged,
then the set of effective permissions becomes the intersection of the sets of per-
missions granted to my and granted to mp.

e An access is controlled by inspecting the current set of effective permissions
instead of by inspecting the contents of the stack.

From a program Pypk1.2 in Mypk1.2, We can construct an equivalent program P
where each node is a pair of a node of Pppk1.2 and the set of effective permissions at
that node. For every check node of Pypk1.2, using the set of effective permissionsin the
node, we can statically know the result of the execution of the check node. Therefore,
by removing al transfer edges emitted from the check nodes at which the execution is
aborted and by replacing al check nodes with check(NO*), we can obtain an equival ent
program P which belongs to Meheckfree. BY Theorem 5.1.3, the verification problem
can be solved in linear time in the size of P.

For example, from the program shown in figure 2.1, we can construct an equiva-
lent program shown in figure 5.2, where each node is labeled with the set of effective
permissions. Since there are two paths in figure 2.1 from the initial node to the debit
method and the sets of effective permissions at the entry point of the debit method are

44

different according to the selected path, the debit method is duplicated in figure 5.2.
Since the execution of node n“7) does not succeed (pgenit ¢ 0), transfer edge from n“?) to
ng isremoved. The details of this construction are described as follows.

Let PRM be a finite set of access permissions. A program Pypk1.2 in Mypk1.2
is a 7-tuple Ppk12 = (NO,ISIT,TG,CG,P_BY,PRV). The first five components
(NO,ISIT, TG, CG) are the same as those defined in section 2.1. The last two compo-

nents are:
P_BY : NO — 2PRM

PRV C {n|ne NO, IS(n) = call}.

P_BY(n) (possessed by n) is the set of permissions which anode n has. In this model,
we assume that all nodes in a method have the same set of permissions, that is,

nSn = P_BY(n) = P_BY().
Theset N (p) of nodes which have apermission pis
N (p) ={n|pePBY(n)}.

PRV isthe set of privileged nodes. As a check node, only check(JDK(p)) is alowed,
where p € PRM. Recall that JDK(p) is represented as:

JDK(p) = (NO*(PRVNN (p)) ue)(N (p))* (5.12)

We present a transformation from a given program in Mjpk12 t0 @ program in
I_lcheck-free-

Construction 5.2.1

Input: aprogram Pppk1.2 = (NO,ISIT, TG, CG, P_BY,PRV).

e~ A A~

(1) NO=NO x 2°”RM_An element of NO isrepresented asn® (ne NO, P; C PRM).
(2) For arbitrary ne NO and P; C PRM,

(2.1) 1S(n) = call = I§n") = call,
(2.2) 1S(n) = return = IS(n"1) = return,
(2.3) 1S(n) = check(JDK (p)) = IS(nP1) = check(NO').

45

(3) IT=1TP-BYIT),
(4) TG and CG are defined as follows. For an arbitrary P; C PRM,

P, CG

P.
(4.1 n g>5nj =n' = n;’ where

P _ PinP_BY(nj) ni ¢ PRV,
71 PBY(m)NPBY(nj) ni€PRV,

(4.2) n; LS nj and IS(n;) = call = nipi SLA nTi,

43) n 8 nj, 1S(n;) = check(JDK(p)) and p € P; = nipi SN ,Pi.
O

Notethat program P contains only check(NAO*) asacheck node and hence P € M cpeck-free-
In practice, it suffices to construct the nodes reachable from the initial node IT and the
edges connecting them.

We show that the set [[Pipk1.2]] of traces of a program Pipk1.2 in Mjpk1.2 coincides
with the set [[P] of traces of program P (modulo the homomorphism which erases the
effective permissions).

Lemma 5.2.1 For aprogramPppk1.2 =(NO, IS IT, TG, CG, P_BY, PRV), let ﬁ:(l\/lc\),
IS, IT, TG, CG) be the program obtained from Pjpk1.2 by Construction 5.2.1. Let us
define the homomorphismh : (NOU {»})* — (NOU {+})* ash(n?) = nfor n® € NO

and h(>) = . Then, [Ppk12] = h([[P]]). Note that since h is a homomor phism, for
any wordsa,b € (NOU {>})*, h(ab) = h(a)h(b) holds.

Proof. It sufficesto show that ITe--->niny---ng € [Pipk1.2] if and only if To.»
nbinb2...nk € [[P] where Py = P_BY(n) and

) PiiinPBY(n) n_1 ¢ PRV
' { P.BY(n_1)NP.BY(n) ni_1€PRV
foreachl<i<k.
The only if part is shown by induction on the length of atrace of Pppk1.2.
(basig Clearly, (IT) € [Ppk1.2] and

(ITP-BYIT) e [P].
(inductive step There are three cases to consider.

46

Casel: ITo++ by 10N N1k € [Proka2]), 1S(e-1) = call and m_1 = .
By the induction hypothesis, we can see that

To-onft..nt e [P,

where
_ { Pi_1nPBY(n;) ni—1 ¢ PRV,

(1§ig|k71) ~ | P_BY(ni_1)NPBY(n) ni_1€PRV.

By the definition of CG,

ot <8 P
where
B Pkfl N P,BY(nk) Nk 1 ¢ PRV,
~ | PBY(n_1)NPBY(ny) n1€PRV.
Hence,

I/:I- S nEl . nllzi—ll > nEl .. nEE—llnEk c [[P]] .

Case2: ITe- >Ny N 1Mk >Ny - - M1y € [Pipk12]], 1S(nk4-1) = returnand ng LS
.. Theinduction hypothesisimpliesthat ITo- - nf™...nPnf*s! € [[P]. By the
definition of TG, there is a node nl'(Pk such that nEk SLA nl'(P". Hence,

~ Py Pr_1 Pk Pk+1 Py Pr_1 /Py D
IT[>...[>n1 ‘..nkflnk nk+l|>n1 "'nkilnk E[[P]]-

Case3: ITp--->ng-- M1k Ny - M1 € [Pipk12]l, 1S(nk) = check(JDK(p)) and
Nk LS n.. By the induction hypothesis, we can see that T ni’l “e nE" €
[P]. From the condition among Py, ---,Px and n ---ng € JIDK(L[p]), p € Px.
Therefore, by the definition of TG, there s nEk e, n{(P". Hence,

Fon nEl o nEE—llnEk 5 ni’l ... nllziflln{(Pk e [P].

Wewill give aproof for case 3, the most difficult case. By the induction hypothesis on
ITo >N+ M1, We can seethat ITo--->nbL-..ntk € [P] where P; = P_BY(ny)
and

(5.13)

o Pi_1NP_BY(n) ni_1 ¢ PRV,
'] PBY(n_1)NPBY(n) ni_;€PRV

a7

for 1 <1 < k. Hence, it suffices to show that
nbL... nEE‘llnE" >nbt... nEE‘llnf(P". (5.14)
It followsfromny - - - M 1ng> Ny - - - 1Ny and 1S(n) = check(JDK (p)) that

ni---Me1ng € check(JDK(p))

5.15
— (NO"(PRVIN (p)) Ue)(N (p))*. 519
There are two cases.
e Assumethat nj ¢ PRV for 1 <i < k. By (5.13),
Pc= (] P-BY(n). (5.16)

1<i<k

By (5.15), ni € N (p) for 1 <'i <k, which implies p € N;<j<xP-BY(n;) by the
definition of N (p). Hence, p € P by (5.16).

o Assumethat thereexistsanoden; € PRV (1< j <k)andn € PRV for j <i <k.
By (5.13),
P«= () PBY(m). (5.17)
j<i<k
By (5.15), ni € N (p) (j <i < k) and thus p € Nj<i<xP-BY(ni) = Py by the
definition of N (p) and (5.17).

. TG
In either case, p € Py holds and nE" 8, P

5.2.1. Therefore, (5.14) holds.

is constructed by (4.3) of Construction

Theif part can be shown by induction on the length of atrace of P.

(basi§ Theclaim holds since ITP-BY(T) ¢ [[P] and IT € [Pipk1.2].

(inductive step) Again, we will prove the claim for the most difficult case: assume
that

Py

o ITo-mnft... nEE‘11> nbL... nEE‘llnE" e [P], IS(nEE‘ll) = call, nEE‘ll 8, P
From theinduction hypotesis, wecanseelT>--->ng---ng_1 € [Ppk1.2]]. Onthe

other hand, from ni** =S nf and the definition of CG, there must be n_; &5

ng. Hence,
1T >ng---N_1>Ng - - N1k € [Pooka 2.

48

T Pr . Pee1PrPria oPr Per Pe - B Pisay _ P TG
o ITo>---onit---n'n*n rent---n T € [P, 1S(n) =return, n* —

nek. (Inthis case, IS(N¥) = call.)
From theinduction hypothesis, wecan seethat IT>--->np -+ - NNkt 1 € [[Pipk1.2]]-
On the other hand from nE" LR nf(P" and the definition of TG, there must be
N S n,. Hence,

IT>---> N1---Ng_1NKNK4-1>N7 - -~ nk,lnf(€ [[PJDKl.Z]]-

To---mnbL. --nEE‘llnEk > nil---nEf‘llnf(Pk € [P], 1S(n¥) = check(NO') and

nE" LN nl’(pk where Py = P_BY(n;) and (5.13) holds. Note that nE" LN nl’(':>I2

existsonly if Py = Py by (4.3) in Construction 5.2.1. By theinduction hypothesis,

IT>--->ng1---ng € [Ppka12]]. Since the transfer edge nEk LA nl’(F’k

the edge ny 5 n, also exists, 1§(ng) = check(JDK(p)) and p € Py for some
p € PRM. If we can prove (5.15), then ng - - - ng_1ng>nyg - - - g1 and the claim
holds.

exists, and

— Assume that n; ¢ PRV for 1 <i < k. Then (5.13) implies (5.16). Since
p € Pk, we know that p € N;1<j<xP-BY(n;), which impliesnj € N (p) for
1 <i < k. Therefore, (5.15) holds.

— Assumethat there existsanoden; € PRV (1 < j < k) andn; ¢ PRV for j <
i < k. By (5.13), we have (5.17). Since p € Py, (5.17) impliesn; € N (p)
for j <i <k, which together with n; € PRV implies (5.15). By (5.15),
ni € L[p|(j <i< k) and thus p € Nj<j<xPBYn; = Py by the definition of
L[p] and (5.17).

By the condition among P4,- - -, Py, nE" LA nf(P" and the definition of TG, we

can seethat 1S(ny) = check(JDK(L[p])), p € Px and ng LS n,. On the other hand,
from

Py =

7

Pkfl N P,BY(nk) Nk 1 ¢ PRV
PBY(n1)NPBY(n) N1 € PRV

ng---Nk—1nNk € JDK(p). Hence,

IT>--->n1---nk_lnkbnl---nk_lnf(€ [[PJDK]].

49

~

Therefore, [Pipk1.2]] = h([[P]]) holds by the definition of h. O

Theorem 5.2.2 The verification problem for a program Ppk1.2 in Mjpk1.2 and a veri-
fication property specified by a DFA My, is solvable in linear time in the program size
||Pipk1.2|| and the number My, of states of My,.

Proof. Let Ppk12 = (NO,ISIT,TG,CG,P_BY,PRV) be a program in Mjpk1.2 and
let P be the program in Mepeck-free Obtained from Pipk 1.2 by Construction 5.2.1. Solv-
ing the verification problem for Ppk1.2 and L(My) is equivalent to deciding whether
[Piok1.2] € L(My) or not (see section 3.3). By Lemma 5.2.1, this decision is further
equivalent to deciding whether h([P]) C L(My). P belongs to

Mecheck-free @nd the class of regular languages is closed under homomorphism (for
any regular grammar G, a regular grammar G’ can be constructed such that L(G') =
h(L(G)) and ||G|| = O(||G]||)). Hence, by Theorem 5.1.3, the verification problem for
P12 ad L(My) is solvablein polynomial timein ||P|| and £My,. More specificaly,
the problem is solvable in O((|NO| + |TG| + |CG|) - tMy,) time. By Lemma 5.2.1,
solving the verification problem for Pipk12 and Ly = L(My) is equivalent to decid-
ing whether h([[P]]) C Lesge[W]. The latter can be shown to be decidable in O((|NO| +
ITG| +|CG|) - tMy,) time by slightly modifying the algorithm used in the proof of The-
orem 5.1.3 so that the effect of the homomorphism h can be incorporated into the algo-
rithm. Since |NO|, | TG| and |CG| are O(|NO| - 2IPRMI) O(|TG| - 2IPRM1) and O(|CG| -
2IPRMI respectively, the time complexity is O((|NO| 4 [TG| + |CG|) - tMy, - 2IPRM1) O

Proposition 5.2.3 The verification problem for a program Pipk1.2 in Mypk1.2 and a
verification property specified by a DFA My, is PSPACE-hard.

Proof. We transform QUANTIFIED 3-SATISFIABILITY (QUANTIFIED 3SAT) prob-
lem to the verification problem. An instance of QUANTIFIED 3SAT is a Boolean for-
mulaF = (Q1X1)(Q2x2) ... (QnXn)E where E is a conjunction of 3-literal digunctive
clauses involving the variables X1, X2, . .., X, and each Q; iseither “3” or “V.”

The program Pgzsat constructed by the transformation consists of three parts:
header, truth assignment, and satisfaction check (figure 5.3). A header consists of
two nodes ns and ny. A truth assignment consists of x ¢ and xj 7 for 1 <i <n. We

50

consider that “false” is assigned to x; when the control passes through x; ¢ and “true”
is assigned to x; when the control passes through x; t. We put a call edge between
Xi—1v and X for every V,V' € {F, T} if Q; is“3" (figure 5.4). That is, in this case
the program tries assigning one of the truth valuesto x;. If Q; is“V,” we put acall edge
between x_1v and y; F for each V € {F,T} and put a transfer edge fromy; r to y; 7.
We also put a call edge between y; v and x; v for eachV € {F, T}. The program tries
assigning each truth value to x; in this case.

Let PRM = {p1,..., Pn, P1,---,Pn}, ad each method is granted to a subset of per-
missions as figures 5.3 and 5.4.

Suppose E =C1 ACoA - ACyand G = ujp V Uiz V Uiz for 1 <i <m, whereujj isa
literal over {xi,...,X,}. A satisfaction check consists of check(L;j) for 1 <i < mand
1< j <3 where

L= { IDK(Pi) if uij = Xk,
JDK(pk) if Ujj = X
When the control reaches an arbitrary node in a satisfaction check, the contents s of
stack contains either x; £ or x; for al i. If x; r is contained in s, then s € JDK () and
s¢ JDK(pk). If x T iscontained in s, then s € JDK(px) and s ¢ JDK (k). Hence, the
control can reach the return node ry if the current truth assignment satisfies E.

Therefore, an execution of Pgasat reaches the node ny if and only if F istrue. That

is, [[Possat]] € Lsare[P] for Ly = (NO— {n¢})* if and only if F istrue. O

Table 5.1. Complexity of the verification problem

verification property

NFA, RE DFA, DFAR
:ing check NFA, RE, DFAR, DFA i”Ddé’;E,'_epgxfﬂ?::fhgrrge DEXP-POLY time-complete
nl'cl)?;m_z general case PSPACE-hard PSPACE-hard
m “é' F(;F;:\c")g“'gﬁ)'\") PSPACE-complete PTIME
M check-free PSPACE-complete PTIME

51

5.2.2 Domain Based Model

In Construction 5.2.1, we let each node of P be a pair of a node of Pppk1.2 and the set
of effective permissions, and thusthe size of P is O(||Pipk1.2|| - 2PRM)). In this chapter
we show an alternative way of constructing P from Pk 12 Where each node of P is
apair of anode of Pipk12 and a subset of protection domains; then the size of P is
O(||Ppk 12| - 2POMI) where DOM is the set of protection domains. We refer to this
construction algorithm as the domain based construction of P. Practically, the number
of protection domains is often smaller than the number of permissions, in which case
the domain based construction is more efficient than Construction 5.2.1.

Below we describe the domain based construction of P. In JDK 1.2, each method
belongs to exactly one protection domain (or for short, domain) and each domain is
granted a set of permissions. Let Ppk1.2 = (NO,ISIT,TG, CG, P_BY,PRV) be apro-
gram in Mypk1.2 and let DOM afinite set of domains. Assume that the domain which
anode n € NO belongs to is given and is denoted by D_OF(n) (¢ DOM). The set of
domains which is granted a permission p is aso given and is denoted by GRNT(p)
(C DOM). We assume that every node in a method belongs to the same domain, that
is,

n S n = D_OF(n) = D_OF(1).

(Note that P-BY(n) = {p | D_-OF(n) € GRNT(p)} should hold and thus this model
does not conflict with the assumptionsin chapter 5.2.1.) The access control of JDK1.2
can be achieved by inspecting whether the domain of every nodein the stack (precisely,
every node whichisnot aproper ancestor of any privileged node) is granted a specified
M check-free from Pipk 1 2 is the same as Construction 5.2.1, but we let each node of P be
augmented by the set of domains of nodes in the stack instead of the set of effective
permissions. The differences between this construction and Construction 5.2.1 are:

(1) NO = NO x 2PM
(3) IT = ITIP-OFIT,

- CG D
Di €GP \where

(4.1) n; G nj = n; J

_ [Diu{D.OF(n))} if ni ¢ PRV,
"7 {D_.OF(n),D.OF(n))} ifm PRV,

52

D; TG

(4.3) n; 2$ nj, 1S(n;) = check(JDK (p)) and D; € GRNT(p) = nP =5 nD,

j
The equality between P and Pipk12 can be shown in the same way as shown in
Lemmab5.2.1.

Although so far we assumed that DOM, D_OF and GRNT are given, we can derive
them from P_BY as follows: Define DOM as the set of the equivalence classes on NO
defined by the relation ~ such that n ~ n’ & P_BY(n) = P.BY(n'), D_OF(n)={n' |
P_BY(n) = P_BY(n')} and GRNT(p) = {D_OF(n) | p€ P.BY(n)}. DOM,D_OF and
GRNT can be calculated by the following algorithm.

(1) Let GRNT(p) = 0 for each p € PRM and let DOM = 0.
(2) For each n e NO:

(@) If thereexistsd € DOM such that p € P_BY(n) < d € GRNT(p) for every
p € PRM, then let D_OF(n) = d.

(b) Otherwise, add a new element d to DOM, add d to GRNT(p) for each
p € P_-BY(n) and let D_OF(n) =d.

This algorithm runsin O(|NOJ - min(|NOJ, 2P"MI) . |PRM|) time. Note that the cardi-
nality of DOM in this definition is not larger than that of any given set of protection
domains (there exists at most one protection domain which is granted a given subset of
permissions in this definition).

By Theorem 5.2.2, the verification problem for a program Pipk1.2 in Mjpk1.2 and a
verification property specified by a DFA My is solvablein O(||Ppk1.2|| - tMy, - 2IPRMI)
by Construction 5.2.1, and in O(||Ppka1.2|| - tMy, - 2P°MI) by the domain based con-
struction. We can choose one of these algorithms based on whether |PRM| < |DOM|.

The results on the complexity of the verification problem shown in chapters 4 and
5 aresummarized in Table 5.1.

53

main

naidnwd c&
n2t4 W return

\
<

spender clyde
¥
n3¥: call ns® : call
< : \/)
n4{d}v' l n6® : call
debit \ debit’
Al

n7 {%: check(JDK (pdebit)) n7 ¢ check(JDK (pdebit))

ww | S

n10‘@ Yreturn / n10°" return
read \ write /

e vy _
n114 " : check(JDK (pread)) | [n13{*"*: check(JDK (pwrite))

v y
n124 5% return n14(" : return

Figure 5.2. An equivalent program in N check-free

PRM \

. cal ——n; cal header
PRV—{py} /\ _) PRM—{pr}
return < —x, ¢ call Xy 10 call —— return Q=D
PRM
ccal —— y,:call——
PRy T reum @=D)
return < — X, call Xo - call —— return
PRM-{p2}
: : _ truth assignment
PRM-{p.} ¢ >< l PRM-{pn}
return < —x, g call Xy 1- call —— return Q=D

check(Lll?§ check(L,,) _ check(L,3)

N T < o
=< T 35 . .
check(Ly, check(L,) check(Lys) satisfaction check
T T ——7
DL T - ;J
: PRM -~ the set of permissions
N \/\{\/I\/\/\/ //ﬂ granted to the method
Ple Ve T = 7>\<\
check(Lmll checlk(Lm2) /Check(ng)
o~ ~a V 4o - — CG
ry return —> TG

method

Figure 5.3. The program Pgssat t0 solve QUANTIFIED 3SAT

Xi.1F X1
o<

PRM—{p} return<—— X g Xt —— return PRM-{p}
(@ Q=0

Xi1F X1
b PRM

Yig —— Yir ——return

PRM={p} return<—— X¢ Xt —— return PRM-{p}

(b) Q=0

Figure 5.4. Edges in the truth assignment-part of Pozsat

55

Chapter 6

Evaluation of the Verification Method

6.1. Implementation

In the previous chapter, we introduced a subclass I jpk 1.2 of programs and showed that
the verification problem for a program in M jpk1.2 is solvablein linear time in the pro-
gram size. However, the worst case time complexity of the algorithm is exponential to
the number of permissions or the number of protection domains. To estimate the actual
computation time needed to solve the verification problem for a real-world program,
we implemented a verification system based on the proposed algorithm and measured
the computation time in the system. The verification system is implemented in Java.
Aninput to the system is a pair of aprogram Pppkz.2 in Mpk1.2 and aDFA My which
specifies a verification property Ly (i.e., Ly = L(My)). The system mainly consists
of the following classes. FlowGraphJDK1_2, FlowGraphCheckFree, NFA and DFA,
which represent N jpk 1.2, Meheck-free, the class of NFAs and the class of DFAS, respec-
tively. This system performs the verification procedure in the following three steps.

(Step1) Pypki2 isconverted into a program P in Meheck-free by Construction 5.2.1.
(Step 2) An NFA M such that L(Mg) = h([P]) = [Ppk12] is generated from P
according to the method proposed (see Theorem 5.1.3 in this paper) where h is the

homomorphism defined in Lemma5.2.1.

(Step 3) Whether [Pipk1.2] € Ly holds or not is decided by examining whether an

56

equivalent condition L(Ms) NL(My) = 0 holds.

6.2. Experiments

We measured the computation time in the verification system for the following two
programsin M jpk1.2.

Pi(k): The on-line banking program in Example 2.1 has three permissions. We ex-
tend this program to have 3 x k permissions by copying read, write and debit
methods k — 1 times (program Py (k)). Pi(k) models a part of an integrated on-
line banking system supplied by k banks, which is considered as a real-world
program with many permissions.

P>(k): Wealso consider aworst case program Po(k) = (NO, IS IT, TG, CG, P_BY,PRV),
where NO = {ng,ny,---,nk}, 1S(n) = call for each n € NO, IT = ng, TG =
0,n Eni(1<i<k,m S n(L<i,j<ki#j), PBY(no)={po, P},
PBY(n) = {p1, -, Pi-1, Pi+1,* -, P} and PRV = 0. In this program, the set
of effective permissions at the initial node is the set of al permissions. Remark
that the control can traverse the program from each node n; (1 <'i < k) to any
other node nj (1 < j < k) by acall edge. Also note that nj has al permissions
except pj. Hence, when the control isat n; with P asthe current set of effective
permissions, the control can reach n; again with P — {p;} as the current set of
effective permissions for any permission p; € P, by going through the call edge
from nj to nj and then coming back through the call edge from n; to nj. There-
fore, the pair of each node n; (1 <i < k) and each subset of P_BY(n;) is created
by Construction 5.2.1 and hence the size of the constructed program becomes
exponential to k.

In program Py(k), let Ngyge be the set of nodes in method clyde, Nreqq the set
of nodes in method read of the i-th bank, Nurite the set of nodes in method write of
the i-th bank, N (pgepit) = NO — Neiyde and Eryw = Ulgigk(Nreadi U Nwritg)- In the
experiment, we specify a verification property for program Py (k) by a DFA which
accepts N (Pgenit)*N (pdebit)*m*. For program P»(k), the verification property is
given by a DFA which accepts NO*. Note that in Step 3, the algorithm searches a

57

path which simultaneously leads Mg and My to their final states where Mg is a DFA
such that L(Mg) = L(My). If such a path exists, then L(Mg) N L(My) # 0, and vice
versa. Hence, the verification condition being NO* means that there exists no path
which satisfies the above condition and therefore the algorithm searches all the paths
exhaustively. The profiles of the verification for Pi(k) and P>(k) are summarized in
Table 6.1 and the relation between computation time and the number of permissions of
P1(k) (P2(k)) is showed in figure 6.1 (figure 6.2).

Table 6.1. Verification profiles of example programs

Py(K) Po(K)
k=5 k=10 k=20 k=30 | k=3 k=5 k=7
the number of permissions 15 30 60 90 3 5 7
P INO| 46 86 166 246 4 6 8
ITG|+ |CG| | 52 97 187 277 9 25 49
P INO| 51 96 186 276 13 81 449
ITG|+|CG| | 52 97 187 277 27 325 2695
My #My 2 2 2 2 1 1 1
Step 1 62 208.3 1577 5662 | 25.3 419 137700
computation Step 2 17.3 473 297.3 902.3 3.7 40.3 1883
time (m sec) Step 3 878.3 6984 50550 165900 | 15.3 2643 415100
total 957.7 7239 52420 172400 | 44.3 3102 554700
verification result \ True True True True \ True True True

TIVM build J2SDK .v.1.2.2, on DEC Personal Workstation 500au (Alpha21164A (500MHz), 128MB RAM)

6.3. Discussion

Asshown in Table 6.1, the computation time needed to verify program Py (k) iswithin
one minute when k < 20. On the other hand, for program P,(k), the computation time
exceeds nine minutes when k = 7. Theresultsin figure 6.1 and figure 6.2 suggest that
for a real-world program, the size of program constructed in Construction 5.2.1 and
the computation time do not increase as in the worst case program according as the
number of permissions increases. On the other hand, we estimate that the number of
permissions used in an ordinary network application is at most severa tens, because
one permission is usualy related to one security class [8, 32] and users can hardly

58

i o 100
1000 T |

=

MNumber of permissions

L i

=
—

Computation time (sec)

0o =

Figure 6.1. Verification time and number of permissions for Py (k)

manage over thirty security classesin one application. Here, a security class denotes
a set of user resources which have the same level of importance (also see Related
Works). For example, the number of permissions used in the access control system of
Dresdner Bank is under twenty [29]. Hence, we can conclude that for most of real-
world programs, the proposed verification method is feasible.

Similarly, in the domain-based model, the time complexity of the verification is
expected to be less than exponential to the number of domains for typical real-world
programs. The number of domains used in an ordinary network application is also
at most several tens, because one domain is related to one URL of a remote code
and users can hardly manage over thirty URLSs in one application. For example, the
sandbox model of JDK1.0.x provides only two domains (remote code and local code).
Hence, the proposed algorithm based on the domain-based model is also expected to
be feasible for real-world programs.

59

.

100

ion time (sec)

Comp
=
a2

Number of permissions

Figure 6.2. Verification time and number of permissions for P(k)

60

Chapter 7
Conclusion

In thisthesis, we defined the verification problem of deciding whether a given program
which may contain stack inspection satisfies a given security property and showed that
the problem is decidable. The result isan improvement of theresult in [18]. In chapter
2, flow graph based on [18] is defined as a program model. In chapter 4, we analyzed
the computational complexity of the verification problem and showed that the prob-
lem is computationally intractable. For practical purposes, we proposed an efficient
verification algorithm of which target programs are limited to containing only stack
inspection of JDK1.2. In chapter 5, we showed that the time complexity of the veri-
fication algorithm is linear in the size of the program, however, is exponentia to the
number of permissions. To estimate the impact of the number of permissions on the
actual computation time, we built a verification system based on the algorithm and
performed experiments in the system for both a real-world program and one of the
worst case programs (chapter 6). Experimental results suggest that the computation
time needed to verify the real-world program is polynomial to the number of permis-
sions. Therefore, we can conclude that the method is feasible for most of real-world
programs. Closing the gap between the upperbound and the lowerbound of the prob-
lem’s complexity in three casesin Table 5.1 isafuture study. Proposing other efficient
methods for the verification problem is another interesting question.

61

References

[1]

[2]

3]

[4]

[5]

6]

[7]
(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Abadi, M. Burrows, B. Lampson and G. Plotkin: A calculus for access control in
distributed systems, ACM Trans. on Prog. Lang. and Systems, 15(4), 706—734, 1993.
M. Abadi, C. Fournet and G. Gonthier: Secure communications processing for dis-
tributed languages, 1999 |EEE Symp. on Security and Privacy, 74-88.

A. V. Aho: Indexed grammars — An extension of context-free grammars, Journal of the
ACM, 15(4), 647-671, 1968.

J. Banatre, C. Bryce and D. Le Métayer: Compile-time detection of information flow in
sequential programs, 3rd ESORICS, LNCS 875, 55-73, 1994.

E. Bertino and H. Weigand: An approach to authorization modeling in object-oriented
database systems, Data & Knowledge Engineering, 12, 1-29, 1994,

A. K. Chandra, D. C. Kozen and L. J. Stockmeyer: Alternation, Journal of the ACM, 28,
114-133, 1981.

E. M. Clarke, Jr., O. Grumberg and D. A. Peled: Model Checking, The MIT Press, 1999.
D. E. Denning: A lattice model of secure information flow, Comm. of the ACM, 19(5),
236-243, 1976.

D. E. Denning and P. J. Denning: Certification of programs for secure information flow,
Comm. of the ACM, 20(7), 504-513, 1977.

E. A. Emerson: Temporal and Modal Logic, in Handbook of Theoretical Computer Sci-
ence, 1023-1024, Elsevier, 1990.

J. Esparza, A. Kuceraand S. Schwoon: Model-checking LTL with regular valuations for
pushdown systems, TACS 2001, LNCS 2215, 316-339.

M. R. Garey and D. S. Johnson: Computersand Intractability, W. H. Freeman and Com-
pany, 1979.

L. Gong, M. Mueller, H. Prafullchandra and R. Schemers: Going beyond the sandbox:
An overview of the new security architecturein the Java™ development kit 1.2, USENIX
Symp. on Internet Technologies and Systems, 103-112, 1997.

N. Heintze and J. G. Riecke: The SLam calculus: Programming with secrecy and in-
tegrity, 25th ACM Symp. on Principles of Programming Languages, 365-377, 1998.

J. E. Hopcroft and J. D. Ullman: Introduction to Automata Theory, Languages, and Com-
putation, Addison-Wesley, 1979.

Y. Ishihara, T. Morita and M. Ito: The security problem against inference attacks on
object-oriented databases, |FIP TC11 WG11.3 13th Working Conf. on Database Security,
1999, published as Research Advances in Database and Information Systems Security,
303-316, Kluwer Academic Publ.

62

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

S. Ikada, N. Nitta, Y. Takata and H. Seki: A security verification method for programs
with stack inspection, Technical Report of IEICE, | SEC2000-78, 2000 (in Japanese).

T. Jensen, D. Le Métayer and T. Thorn: Verification of control flow based security prop-
erties, 1999 IEEE Symp. on Security and Privacy, 89-103.

X. Leroy and F. Rouaix: Security properties of typed applets, 25th ACM Symp. on Prin-
ciples of Programming Languages, 391403, 1998.

A. C. Myers: JFLOW: Practical mostly-static information flow control, 26th ACM Symp.
on Principles of Programming Languages, 228241, 1999.

A. C. Myers and B. Liskov: Complete, safe information flow with decentralized labels,
1998 |EEE Symp. on Security and Privacy, 186-197.

N. Nitta, S. Ikada, Y. Takata and H. Seki: Decidability and complexity of the security
verification problem for programs with stack inspection, Technical Report NAIST-1S-
TR2001003, Nara Institute of Science and Technology, 2001.

N. Nitta, Y. Takataand H. Seki: Complexity of the security verification problem for pro-
grams with stack inspection, 3rd JSSST Workshop on Programming and Programming
Languages (PPL2001), 53-60, 2001.

N. Nitta, Y. Takataand H. Seki: Security verification of programs with stack inspection,
6th ACM Symp. on Access Control Models and Technologies (SACMAT2001), 3140,
2001.

N. Nitta, Y. Takataand H. Seki: Decidability of the security verification problem for pro-
grams with stack inspection, | EICE Transactions on Information and Systems, to appear
(in Japanese).

P. @rbaek: Can you trust your data?, TAPSOFT ' 95, LNCS 915, 575-589.

J. Palsberg and M. |. Schwartzbach: Object-Oriented Type Systems, John Wiley & Sons,
1994,

P. Samarati, E. Bertino, A. Ciampichetti and S. Jgjodia: Information flow control in
object-oriented systems, IEEE Trans. on Knowledge and Data Engneering, 9(4), 524~
538, 1997.

A. Schaad, J. Moffett and J. Jacob: The role-based access control system of a European
Bank: A case study and discussion, 6th ACM Symp. on Access Control Models and
Technologies, 3-9, 2001.

G. Smith and D. Volpano: Secure information flow in a multi-threaded imperative lan-
guage. 25th ACM Symp. on Principles of Programming Languages, 355-364, 1998.

K. Tgima: Static detection of security flaws in object-oriented databases, 1996 ACM
SIGMOD Intl. Conf. on Management of Data, 341-352.

D. Volpano and G. Smith: A type-based approach to program security, TAPSOFT ' 97,

63

LNCS 1214, 607-621.
[33] D.S. Wallach and E. W. Felten: Understanding Java stack inspection, 1998 IEEE Symp.
on Security and Privacy, 52—-63.

