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Security Verification

of Programs with Stack Inspection�

Naoya Nitta

Abstract

Recently, with rapidly growth of open network environment, a well-defined ac-

cess control mechanism becomes necessary. Java development kit 1.2 provides a run-

time access control mechanism which inspects a control stack to examine whether the

program has appropriate access permissions. Jensen et al. introduced a verification

problem of deciding for a given programP with stack inspection and a given security

propertyψ written in a temporal logic formula, whether every reachable state ofP sat-

isfiesψ. They showed that the problem is decidable for the class of programs which do

not contain mutual recursion. In this thesis, we show that the set of state sequences of

a program is always an indexed language and consequently the verification problem is

decidable. Our result is stronger than Jensen’s in that a security property can be speci-

fied by a regular language, whose expressive power is stronger than temporal logic, and

in that a program can contain mutual recursion. We also investigated the computational

complexity of the problem. Since the result implies the problem is computationally in-

tractable in general, we introduce a practically important subclass of programs which

exactly model programs containing stack inspection of Java development kit 1.2. We

present an algorithm which can solve the problem for this subclass in linear time in the

size of a program. Furthermore, we implemented a verification system based on the

proposed algorithm. Experimental results suggest that the proposed algorithm can be

efficiently executed for real-world programs.
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スタック検査機能を持つプログラムに対する

セキュリティ検証�

新田直也

内容梗概

近年コンピュータネットワーク環境の急速な発展に伴い,適切なアクセス制御
法の確立が,ますます必要となってきている. Java development kit 1.2は,プログラ
ム実行時に制御スタックを検査することでアクセス制御を行うプログラム環境で
ある. Jensenらは,このようなスタック検査機能を持つプログラムPおよび時相論
理式を用いて記述された検証条件ψを与えたときに, Pの到達可能な状態全てが
ψを満たすかどうかを決定する問題として検証問題を定義し,相互再帰を含まな
いプログラムのクラスに対して検証問題が決定可能となることを示した.

本論文では,時相論理式よりも真に表現能力の大きい正規言語を用いて検証問
題を定義する.そして,プログラムの実行系列の集合がインデックス言語となるこ
とを示し,その系としてプログラムが相互再帰を含む場合も含めて検証問題が一
般に決定可能となることを示す.

また検証問題の計算複雑さについて解析を行ない,一般に検証問題が計算量的
に手におえない問題のクラスに属することを示す.

現実的な計算時間で検証問題を解くには,問題のクラスを制限する必要がある.

そこで, Java development kit 1.2のスタック検査機構をモデル化したプログラムか
らなる部分クラスを考え,そのクラスに対して検証問題をプログラムサイズの線
形時間で解く効率のよい検証アルゴリズムを提案する.さらに,同アルゴリズムを
実装した検証システムについて実験を行ない,その結果を基に本検証法の実用性
について議論する.
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Chapter 1

Introduction

As a world wide computer network grows rapidly, providing a well-defined access

control mechanism for network application systems becomes more important. For ex-

ample, consider an electronic commerce application. Since a number of anonymous

external mobile processes as well as local ones can be executed in a user’s site, an

appropriate access control is needed to prevent a malicious external process from ac-

cessing secret local resources. JavaTM sandbox model provides a security protection

mechanism for such a distributed computational environment. However, the sandbox

model lacks flexibility since it imposes too strong restriction on the behavior of an

external process which may access local resources.

For this reason, Java development kit 1.2 (JDK1.2) provides a simple but suffi-

ciently practical access control technology,stack inspection [13]. In the JDK1.2 envi-

ronment, stack inspection mechanism can be incorporated into a user’s system by plac-

ing invocations of check methodcheckPermission in the system code and by defining

a security policy. In a security policy, every method belongs to one of the protection

domains, and each protection domain is granted severalpermissions. If a methodm

belongs to a protection domaind andd is granted a permissionp, then we simply say

m has permissionp. If checkPermission(p) with a permissionp as an actual argument

is invoked from a methodm, then JDK1.2 examines not only whether the methodm

hasp but also whether every ancestor method which directly or indirectly invokesm

havep. If all those methods havep, then the execution continues. Otherwise, the exe-

cution is aborted. As is the case with other programming languages, the Java execution

environment has a runtime control stack (or simply, stack), which consists of frames
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for the active method and its ancestor methods. A frame for a methodm contains the

protection domain whichm belongs to as well as actual arguments, local variables and

the return address form. The stack is inspected bycheckPermission(p) from the top

(the active method) to the bottom to examine whether the above mentioned condition is

met; if a method which does not havep is encountered, then the execution is aborted. If

the stack bottom or a method with a particular mode (calledprivileged) is encountered,

thencheckPermission(p) terminates successfully and returns to the active method.

Appropriate invocations of check method should be carefully placed in the local

methods which directly or indirectly access secret local resources. Consider the fol-

lowing simple example. Letwrite be a local method which directly updates a cus-

tomer’s bank account andcredit be a method which is called by a customer’s method

and updates the customer’s bank account by callingwrite method. Suppose the fol-

lowing situation. Bothwrite andcredit methods have write permissionpwrite and ev-

ery method of a valid customer has permissionpcustomer. The system manager places

checkPermission(pwrite) at the beginning ofwrite method. The system manager makes

credit method privileged, but there is no check statement incredit method. If a ma-

licious user’s method which does not havepcustomer calls credit, thencredit succes-

sively callswrite. Sincecredit is privileged,checkPermission(pwrite) in write method

succeeds and an illegal update may occur. Letψ be the property that ‘if the control

reacheswrite method, then the control has passed through only methods which have

pcustomer or pwrite,’ which the system is expected to satisfy. Let us call such a property

ψ as a global security property. The above mentioned execution does not satisfyψ. In

this particular example, ifcheckPermission(pcustomer) is placed incredit method, then

every execution satisfiesψ. However, ensuring that a program satisfies such a global

security property by hand becomes difficult when the whole program is large and com-

plicated. Therefore, an automatic verification method is needed which verifies that

every execution ofP satisfiesψ for a given programP and a global security property

ψ.

In [18], the pioneering paper in the formal verification of a program with stack

inspection, the verification problem is defined as follows:

� A program is modeled as a directed graph called a flow graph. Since a flow graph

does not have a data part, the contents of a control stack can be represented as a

sequence of nodes, each of which is a program point where a method invocation

2



has occurred. A trace is a finite sequences0;s1; : : : ;sk of stacks (also called

states), wheres0 is the initial state andsi+1(0� i < k) is a state reachable from

si by a unit step execution.

� A local security check statement has the form ofcheck(φ) whereφ is an LTL (lin-

ear temporal logic) formula [7]. The execution ofcheck(φ) at a states succeeds

if and only if s, interpreted as a Kripke structure, satisfiesφ. A global security

propertyψ to be verified is also represented by an LTL formula.

� The verification problem for a given program (a flow graph)P and a global

security propertyψ is to decide whether every state in every trace inP (every

reachable state ofP) satisfiesψ.

Based on this formulation, a verification method is presented in [18] by using model

checking [7] of LTL formulas. In [18], it is also shown that if a given program does

not contain mutual recursion, then the verification problem is decidable.

In this thesis, we define a program model and a verification problem using regular

languages instead of LTL formulas for specifying both a local check statement and a

global security property. Since the class of regular languages is known to properly

include the class of languages represented by LTL formulas [10], this formulation is

an extension of the one in [18]. Furthermore, we show that the verification problem

is decidable in general even if a programdoes contain mutual recursion, which is a

proper improvement of the result of [18]. The outline of the proof of the decidability

is as follows:

(i) For every programP, the set of traces inP is shown to be an indexed language.

An indexed language is a language which can be generated by an indexed gram-

mar [3], which is an extension of a context-free grammar.

(ii) The decidability of the verification problem follows from the fact that the class

of indexed languages is closed under intersection with regular languages and the

emptiness problem for the class of indexed languages is decidable.

We also analyze how the complexity of the verification problem alters when the

representation of regular languages to specify a check statement and a global security

property is changed (deterministic finite automaton, nondeterministic finite automaton
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and regular expression). Since the complexity results imply that the problem is gener-

ally intractable, we introduce a subclass of programs which model programs containing

checkPermission in JDK1.2. This subclass is calledΠJDK1:2. Next, we show that the

verification problem forΠJDK1:2 is efficiently solvable for the size of a given program.

The rest of the paper is organized as follows. In chapter 2, we define the program

model, its operational semantics and the verification problem with a brief example.

The decidability of the problem is shown in chapter 3, and the computational com-

plexity of the problem is investigated in chapter 4. In chapter 5, time complexity of the

verification problem for the subclassΠJDK1:2 is shown to be linear in the program size.

We implemented a verification system for the subclassΠJDK1:2 based on the algorithm

proposed in chapter 5. Implementation issues and experimental results on verifying

some programs are described in chapter 6. Finally, we draw some concluding remarks

in chapter 7.

1.1. Related Works

Our program model and the definition of the verification problem are based on the

model introduced in [18], the pioneering paper which discussed the security verifica-

tion of programs with stack inspection. The difference between the model in [18] and

ours is that linear temporal logic (LTL) formulas [7] is used in [18] to describe both

the property in a check statement and a global security property while we use regu-

lar languages, whose expressive power to represent a set of finite sequences is prop-

erly stronger than that of LTL formulas [10]. Also, the verification algorithm in [18]

is based on model checking [7] and works only for mutual recursion-free programs,

while we showed that the problem is generally decidable even for programs which

contain mutual recursion. Recently, a more general verification method of programs

with stack inspection is proposed in [11]. In their method, not only global security

properties discussed in both this thesis and [18] but also other properties (e.g., liveness

property) can be verified. The verification method in [11] also uses an LTL formula to

specify a property of a program. However, what an LTL formula represents is different

between [11] and [18]. In [11], an LTL formula is used to represent a set of traces

(state sequences) of a program. On the other hand, in [18], an LTL formula is used

to represent a set of states (node sequences) of a program. A global security property
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in [18] and this thesis can be represented as an LTL formula with regular valuation

in [11]. More precisely, a global security propertyψ is equivalent to an LTL formula

Gp with regular valuationν, wherep is an atomic proposition andν(p) is a regular

language determined byψ. On the other hand, an arbitrary LTL formula can be used

to represent a property to be verified in [11]. Therefore, their verification method is

more general than ours and Jensen’s [18] (Table 1.1). However, in their paper, the

complexity of the verification problem is not analyzed in detail. Furthermore, a prac-

tical verification method and its implementation are presented in this thesis. In [33], a

more general notion of stack inspection is proposed by using ABLP logic [1], which

is a kind of belief logic, and a sufficient condition for a check statement to succeed is

shown. However, the verification of a global security property is not discussed in [33]

in contrast with [18], [11] and our papers.

Table 1.1. Representation of a property
states (node sequences)traces(state sequences)

[18]
this thesis

[11]

LTL formula�
Regular language†

�
LTL formula Gp

(arbitrary) LTL formula

†Expressive power: LTL formula� Regular language

In [8] and [9], which is the pioneering work of information flow, a static analysis

based on a lattice model of security classes is proposed. Denning’s analysis method

has been formalized and extended in various ways by abstract interpretation [26], type

theory [32, 14] and process algebra [2]. For example, in the type theoretical approach,

a type system is defined so that if a given program is well-typed then the program has

a noninterference property such that it does not cause undesirable information flow.

A structure of security classes modeled as a finite lattice is usually a simple one such

asftopsecret, trusted, untrustedg. In [21], a fine grained model of security classes

called decentralized labels is proposed. Based on this model, Myers [20] proposes a

programming language called JFLOW, for which a static type system for information

flow analysis as well as a simple but flexible mechanism for dynamically controlling

the privileges (declassification) is provided. However, the correctness of their type

system has not been formally verified. All of the above mentioned studies are basically

concerned with information flow analysis to ensure that high level secret information

5



does not flow into an insecret storage. In contrast, [18] and this paper discuss the

problem of deciding whether a program possesses an arbitrarily given global security

property provided that the program passes local security checks.

Security verification in a distributed system has been extensively studied by using a

process algebra called spi calculus and its extensions in [2] and its companion papers.

In [30], it is shown that the type system in [32] is no longer correct in a distributed

environment and presented a new type system for a multi-threaded language.

In the field of data engineering, access control and information flow control issues

have been also extensively studied for a distributed and object-oriented environment

(see [5]). For example, Samarati et al. [28] presents an information flow control algo-

rithm which blocks illegal information flows in object-oriented databases. However,

their algorithm does not perform semantic analysis inside a method. Semantic analysis

of security flows or security verification against inference attacks in object-oriented

databases are discussed in [31, 16].

6



Chapter 2

Preliminaries

2.1. Program Model

Following [18], we model a program with stack inspection as a directed graph called

a flow graph. Each node of a flow graph corresponds to a location in the program

(program point). A statement which performs runtime check of access permission

such ascheckPermission in JDK1.2 is called a check statement and is incorporated

into the model. A check statement examines whether the current state of the executed

program satisfies the property specified in the statement. If the property is satisfied,

the program continues its execution. Otherwise, the execution is aborted.

A flow graph has two kinds of edges. The first one is atransfer edge (tg), which

represents a control flow within a method. For example, if there is a tg fromn1 to n2

(denoted asn1
TG
! n2), then the control can move ton2 just after the execution ofn1.

The second type of edge is acall edge (cg), which represents a method invocation. For

example, suppose that there is a cg fromn1 to n2 (denoted asn1
CG
! n2). If the control

reachesn1, then the control can further be passed ton2.

Let ε denote the empty sequence. For a finite setΣ of symbols, letΣ� denote the set

of all finite sequences onΣ includingε. Also letΣ+ = Σ�
�fεg. Formally, a program

7



P is a directed graph represented as a 5-tupleP = (NO; IS; IT;TG;CG) such that:

IS : NO!fcall;return;check(Lφ)g

IT 2 NO

TG � NO�NO

CG � NO�NO:

NO is a set of nodes representing program points.IT is the entry point of the entire

program called theinitial node. TG andCG are sets of transfer edges and call edges,

respectively.

The set of nodes is divided into the following three subsets byIS. Let n 2 NO.

� IS(n) = call. n is acall node which represents a method call.

� IS(n) = return. n is a return node which represents the return from a callee

method.

� IS(n) = check(Lφ). n is acheck node which represents a check statement. If the

current state of the program satisfies the property represented by the language

Lφ, then the execution is continued. Otherwise, the execution is aborted. The

syntax and semantics of the languageLφ are defined in section 2.2.3.

Conditionals such asif statements andwhile statements substitute for nondetermin-

istic statements. For example, consider the following sequence of statements:m1(); if

: : : thenm2() elsem3(). In a flow graph, there will be two tgsn1
TG
! n2 andn1

TG
! n3,

wheren1, n2, andn3 representm1(), m2(), andm3(), respectively. Transformation

methods from an object-oriented program into a flow graph using data flow analysis or

type inference have been studied (e.g., [27]).

Note. A flow graph does not always represent the exact behaviors of an original

program. More specifically, if an ordinal imperative programP0 is modeled as a flow

graphP, then every execution sequence (trace) ofP0 is also a trace ofP, but not vice

versa. The reasons why we do such an “approximation” are as follows:

� Most of decision problems for imperative programs which contain either con-

ditional statements and procedure calls orwhile statements are undecidable.

Therefore, static program analyses such as type inference and abstract interpre-

tation use an approximation such as the one described here.

8



� If a flow graphP of an original programP0 satisfies a safety property discussed

in this paper, then it is guaranteed thatP0 also satisfies the property. (This is not

true for liveness properties.)

2.2. Operational Semantics

2.2.1 State

Each state of an ordinary imperative program can be represented by a tuple of a current

program point (or a continuation), contents of global variables, and a runtime control

stack (shortly, stack).

For each invocation to a methodm, a frame fm is allocated and pushed onto the

stack. A framefm contains actual values of the input arguments ofm, values of local

variables, the return address, and other information on access permissions whichm has.

In the flow graph model, however, values of variables and arguments are abstracted

away. Hence, a frame degenerates into a return address, i.e, a node. If, in addition, the

current program point is also kept on top of the stack, then each state of a program can

be represented as a stack, that is, a sequence of nodes.

A state of a programP = (NO; IS; IT;TG;CG) is a finite sequence of nodes, which

is also called astack. The initial state ofP is the stack which contains only the ini-

tial nodeIT. The state immediately after a method call is the state (stack) obtained

by pushing the node of the callee onto the current state. If the top element (current

program point) of the stack is a noden1 andn1
TG
! n2, then the state just after the exe-

cution ofn1 can be the state obtained by replacing the top elementn1 of the stack with

n2. The concatenation of sequencess1 ands2 of nodes is represented ass1 : s2. The

sequence which consists of only one noden is denoted byhni. We may writen instead

of hni if no ambiguity occurs. For example, a staten1 : n2 : n3 indicates that the method

including the program pointn2 has been called fromn1, the control has reachedn2, the

method including program pointn3 has been called fromn2, and the current program

point isn3. If n3 is a return statement (i.e., IS(n1) = return), thenn3 is popped from

the stack and the next state becomesn1 : n4 wheren4 2 fn j n2
TG
! ng.

9



2.2.2 Trace

The semantics of a program is defined by atransition relation . on the set of states.

For statess1 ands2, s1. s2 means that the transition froms1 to s2 is possible by a unit

execution step of the program.

Definition 2.2.1 (transition relation) For a given programP=(NO; IS; IT;TG;CG),

the relation. is the least relation which satisfies the following three rules, wheres is a

state (2 NO�) andn, m, ni, n j are nodes (2 NO).

IS(n) = call; n
CG
! m

s : n . s : n : m

IS(m) = return; ni
TG
! nj

s : ni : m . s : n j

IS(n) = check(Lφ); s : n 2 Lφ; n
TG
! n j

s : n . s : n j

2

For a programP, a trace of P is a finite sequence of states in which the first state

is the initial state and every pair of adjacent states satisfies the transition relation..

The concatenation of states is denoted as. by slightly abusing the notation. Theset of

traces is defined as follows.

Definition 2.2.2 (set of traces) For a given programP = (NO; IS; IT;TG;CG), the

set[[P]] of traces ofP is:

[[P]] = fs1. � � �. sk j s1 = hITi;s1; : : : ;sk 2 NO�
;

8i < k;si . si+1g:

2

A languageLφ in a nodecheck(Lφ) is a regular language overNO (thus,Lφ�NO�).

Recall that every states is a sequence of nodes, that is,s2NO�. As defined in the third

rule of Definition 2.2.1, if the control reaches a nodecheck(Lφ), then the execution is

continued if and only if the current state belongs toLφ.
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2.2.3 Security Property in Check Node

The model itself does not assume any particular representation (e.g., regular expres-

sion, finite automaton) to denote a regular languageLφ although we will use regular

expression in this chapter.

Example 2.2.1 (Java stack inspection in JDK1.2) A method invocationcheckPermission(p)

succeeds if

(α) every frame of the stack has permissionp, or

(β) a frame (sayf ) is privileged and every later frame (includingf ) in the stack has

p.

Let N (p) be the set of nodes which have permissionp and letPRV be the set of privi-

leged nodes. We can representcheckPermission(p) as the check nodecheck(JDK(p))

where:

JDK(p) = (NO�|{z}
(a)

(PRV \N (p))| {z }
(b)

[ ε|{z}
(c)

)(N (p))�| {z }
(d)

: (2.1)

The concatenation of (c) and (d) represents the set of node sequences which satisfy

the condition (α). Note that (b) represents the set of nodes which are privileged and

have p as well. Hence, the concatenation of (a), (b) and (d) represents the set of

node sequences which satisfy the condition (β). Remember that for a staten1n2 � � �nk,

the leftmost symboln1 represents the node at the bottom of the stack, the rightmost

symbolnk represents the node at the top of the stack, and the other nodesn2 � � �nk�1

are arranged from bottom to top. 2

Example 2.2.2 Figure 2.1 shows a programP= (NO; IS; IT;TG;CG) which models

a part of an on-line banking system, which serves its clients with a method for with-

drawing money. There are four protection domains calledSystem, Provider, Client

and Unknown. A reliable provider is supplied withread and write methods and is

privileged by the system. All users including clients and unknowns can invoke adebit

method, which invokesread andwrite methods. In the figure, a solid arrow represents

a call edge and a dotted arrow represents a transfer edge. LetNO = fni j 1� i� 14g.

Permissions granted to each protection domain as well as the protection domain which
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each node belongs to are also shown in figure 2.1. For example, the set of permissions

granted toSystem is fpdebit; pread; pwriteg. Also, the setN (p) of nodes which have

permissionp is: N (pdebit) = fn1;n2;n3;n4;n7;n8; � � � ;n14g andN (pread) =

N (pwrite) = fn1;n2;n7;n8; � � � ;n14g. Let PRV = fn8;n9g be the set of nodes which

are privileged. The propertyJDK(pdebit) specified in noden7 is represented by the

following regular expression:

JDK(pdebit) = (NO� (PRV \N (pdebit))[ ε)(N (pdebit))
�

by (2.1) in Example 2.2.1. The propertiesJDK(pread) in n11 andJDK(pwrite) in n13

are represented in the same way. Consider the following two sequences:

α1 = n1.n1n3.n1n3n7.n1n3n8.n1n3n8n11

.n1n3n8n12.n1n3n9.n1n3n9n13

.n1n3n9n14.n1n3n10.n1n4;

α2 = n1.n1n5.n1n5n7.n1n5n8:

For the state sequenceα1, check nodes are executed three times, at the underlined

states. In each case, the state satisfies the property (belongs to the language) specified

in the check node. Therefore,α1 2 [[P]]. For the sequenceα2, n1n5n7 62 JDK(pdebit)

sincen5 62N (pdebit), and henceα2 62 [[P]]. 2

2.3. The Verification Problem

2.3.1 Definition of the Verification Problem

In this chapter, we define a verification problem, which is a generalization of the one

in [18]. Each program is required to satisfy a certain global security property such as

‘local resourcer never be read out by any (malicious) method which does not have

permissionp.’ Intuitively, the verification problem is to verify whether every state

in every trace in[[P]] of a given programP satisfies a given global security property.

A global security property is expressed as a regular languageLψ, which is called a

verification property.
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Let Lsafe[ψ] = fα j α is a state sequence such that every state inα belongs toLψg.

Lsafe[ψ] can be represented asLsafe[ψ] = (Lψ.)
�Lψ. A programP satisfies a verification

propertyLψ if and only if every state in every trace in[[P]] belongs toLψ. Formally,

we define theverification problem as follows:

Instance: A programP and a verification propertyLψ.

Question: [[P]]� Lsafe[ψ]?

2.3.2 An Example

Example 2.3.1 Consider Example 2.2.2 again. LetLψ =((ERW)�[(N (pdebit))
�ERW(ERW)�)

be the verification property whereERW = fn11;n12;n13;n14g. Lsafe[ψ] = (Lψ.)
�Lψ

means that if the control reaches either theread or write method successfully, then the

control has passed through only nodes which havepdebit. In this particular example,

[[P]]� Lsafe[ψ] holds, that is, programP satisfiesLψ. 2
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main

n1:   call

n2:  return

spender

n3:   call

n4:   call

clyde

n5:   call

n6:   call

debit

n7: check(JDK(pdebit))

n8:   call

n9:   call

n10: return

read

n11:  check(JDK(pread))

n12: return

write

n13:  check(JDK(pwrite))

n14: return

System

Client Unknown

Provider

System

{d, r, w}

{d}

{d, r, w}

{d, r, w}

φ

--- pdebit
--- pread

 --- pwrite

d 
r 
w 

Figure 2.1. A Sample Program
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Chapter 3

Decidability of the Verification

Problem

3.1. Overview

In this chapter, we present our approach to the verification problem. We will show

that for each programP, the set[[P]] of traces ofP can be generated by an indexed

grammar. The generative capacity of indexed grammars (IGs)[3] is stronger than that

of context-free grammars (CFGs) while IGs inherit good mathematical properties from

CFGs. Using these properties, we prove the decidability of the verification problem.

As stated in the following lemma, the set of traces can not always be generated by

a CFG.

Lemma 3.1.1 There exists a program P such that the set [[P]] of traces is not a context-

free language (CFL).

Proof. Let P = (NO; IS; IT;TG;CG) be the program whereNO = fng, IT = n, there

is no transfer edge inP, and there is only one call edgen
CG
! n. The set of traces inP is

as follows.

[[P]] = fn; n.nn; n.nn.nnn; � � �g:

Let h be the homomorphism defined byh(n) = n andh(.) = ε. Then we obtain:

h([[P]]) = fn; nnn; nnnnnn; nnnnnnnnnn; � � �g= fni(i+1)=2
j i� 1g:
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It is easy to prove thath([[P]]) is not a CFL using the pumping lemma for CFL. Since

the class of CFL is closed under homomorphism,[[P]] is not a CFL. 2

The above lemma implies that a class of grammars of which generative capacity is

stronger than CFG is needed to generate the set of traces. The outline of this chapter is

as follows.

(a) A trace in a program is a sequence of stacks, which are sequences of nodes. A

state transition does not alter the nodes other than the top and the next to the top

node in a stack (see section 2.2) at a time. That is, ifsi . si+1, then there are

α;β;γ2 NO� with j β j� 2, j γ j� 2 such thats ands0 can be written ass = α β
ands0 = α γ, respectively. As explained in section 3.2.1, an indexed grammar

can generate a sequence which is controlled by such a stack-like data structure.

A sequence of states is called an unchecked trace if the sequence becomes a trace

by assuming that every possible local check node succeeds. More precisely, a

sequenceα of states is anunchecked trace in a programP if α is a trace inP

when the third inference rule in Definition 2.2.1 is replaced with

IS(n) = check(Lφ); n
TG
! n j

s : n . s : n j
:

For a given programP, we will define an indexed grammarGP;T which generates

the set of unchecked traces inP in section 3.2.2.

(b) An unchecked traceα is also a trace ifα satisfies the properties specified in

check nodes inα. That is, if the property specified in a check statement holds at

the current state, then the execution continues; otherwise, the execution should

be aborted at the state. For this reason, in section 3.2.3, we will also define

the regular languageLP;C of state sequences in which any pair of states can be

adjacent to each other as long as those states satisfy the property (belong to the

language) specified in check nodes. Finally, we will show[[P]] = L(GP;T)\LP;C

in chapter 3.2.4.
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3.2. Decidability

3.2.1 Indexed Grammar

Indexed grammar[3] is an extension of CFG. An index grammar (IG) is a 5-tupleG =

(N;T; I;R;S) where:

(a) N is a finite set ofnonterminal symbols,

(b) T is a finite set ofterminal symbols,

(c) I is a finite set ofindex symbols,

(d) S 2 N is thestart symbol, and

(e) R is a finite set ofproductions of one of the following forms:

(Type 1) A! α

(Type 2) A! B f

(Type 3) A f ! α,

whereA, B 2 N, f 2 I, andα 2 (N [T )�.

A nonterminal symbol, a terminal symbol and an index symbol are abbreviated as a

nonterminal, a terminal, and an index, respectively. A derivation in IG is similar to a

derivation in CFG except that IG has operations on index sequences. The derivation

relation!
G

on (NI�[T )� is defined as the least relation which satisfies the following

conditions (1), (2) and (3). In the following, letβ, γ2 (NI�[T )�, ξ 2 I� andXi 2N[T .

(1) Let A! X1X2 � � �Xk 2 R be a Type 1 production. Then,

βAξγ!
G

βX1ξ1X2ξ2 � � �Xkξkγ

where ifXi 2 N thenξi = ξ, and ifXi 2 T thenξi = ε.

(2) Let A! B f 2 R be a Type 2 production. Then,

βAξγ!
G

βB f ξγ:
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(3) Let A f ! X1X2 � � �Xk 2 R be a Type 3 production. Then,

βA f ξγ!
G

βX1ξ1X2ξ2 � � �Xkξkγ

where ifXi 2 N thenξi = ξ, and ifXi 2 T thenξi = ε.

A Type 1 production distributes index sequences associated with the nonterminal

to which the production is applied to all nonterminals on the right-hand side. A Type 2

production adds an indexf to the left-end of the index sequences associated with the

left-hand side (and provides the nonterminal on the right-hand side with the resultant

index sequence). A Type 3 production deletes the leftmost index of the index sequence

and distributes the remaining sequence to all nonterminals on the right-hand side. The

reflexive and transitive closure of!
G

is denoted by
�
!
G

. We will simply write! for

the relation!
G

if G is clear from the context. The language generated by an IGG =

(N;T; I;R;S) is defined asL(G) = fw 2 T �
j S

�
!
G

wg.

3.2.2 Set of Unchecked Traces

We will omit the concatenation symbol : of node sequences in the following. For a

given programP = (NO; IS; IT;TG;CG), the index grammarGP;T = (N;T; I;R;S) is

constructed as follows.

(a) N = fS;W;A;B;Cg[fNi;N0
i ;N

00
i j ni 2 NOg.

(b) T = NO [f.g.

(c) I = fṅi j ni 2 NOg[f$g.

(d) Let R be the set of productions which consists of:

S ! W$ (3.1)

W ! Aṅ1 for n1 = IT (3.2)

A ! B.C (3.3)

A ! B (3.4)

Bṅi ! Bni for 8ni 2 NO (3.5)

B$ ! ε (3.6)
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Cṅi ! Ni for 8ni 2 NO (3.7)

N 00
j ! Aṅk for 8n j;nk suchthatn j

TG
! nk (3.8)

For each nodeni, one of the following sets (i), (ii) and (iii) of productions is

added toR according toIS(ni).

(i) IS(ni) = call:

Ni ! N 0
i ṅi (3.9)

N 0
i ! Aṅ j for 8n j suchthatni

CG
! n j (3.10)

(ii) IS(ni) = return:

Niṅ j ! N00
j for 8n j 2 NO (3.11)

(iii) IS(ni) = check(Lφ):

Ni ! Aṅ j for 8n j suchthatni
TG
! nj (3.12)

It is clear from production (3.12) thatL(GP;T) is the set of unchecked traces inP.

3.2.3 Set of Sequences Satisfying Local Checks

The execution which has resulted in a states continues if and only ifs satisfies the

following condition.

If the top element of the states is ni andIS(ni) = check(Lφi), thens 2 Lφi

holds.

For a check nodeni, let the languageL(i)P;C consisting of state sequences which

satisfy the above condition for this particular nodeni is represented by the following

regular expression.

L(i)P;C = NO�(NO�fnig)[ε[Lφi :

We can define the languageLP;C consisting of state sequences which satisfy the

above condition for all check nodes as follows:

LP;C = (X.)�NO� (3.13)

wherefn1; : : : ;nlg is the set of check nodes inP andX := L(1)P;C\L(2)P;C\�� �\L(l)P;C.
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3.2.4 Proofs

First, we will show that the languageL(GP;T)\LP;C coincides with the set[[P]] of traces

of P.

Lemma 3.2.1 Every α 2 L(GP;T) can be written as α = s1 . � � � . sn where si 2 NO�

(1� i � n) and n � 1, and there is a derivation of the following form resulting in α.

The number at the right-end of each line is the number of the applied production in

section 3.2.2, and δn 2 (I�f$g)+ (1� i� n).

S
�
! Aδ1$ (1); (2)

! Bδ1$.Cδ1$ (3)
�
! Bδ1$.Aδ2$ (7)� (10)

! Bδ1$.Bδ2.Cδ2$ (3)
�
! Bδ1$. � � �.Bδn�1$.Aδn$

! Bδ1$. � � �.Bδn�1$.Bδn$ (4)
�
! s1. � � �. sn: (5); (6)

Proof. For an arbitrary derivationS
�
! s1 . � � � . sn, the only production which can

directly generate a terminal symbol is (3.5). The derivation steps using productions

(3.6) and (3.7) can be moved to the end of the derivation. It is easy to see that the other

steps in this derivation is exactly those stated in the lemma by the definition ofGP;T. 2

Let σ : NO�
! (I�f$g)� be the mapping defined byσ(ni1 � � �nin) := ṅin � � � ṅi1.

Lemma 3.2.2 For each program P, δ2 (I�f$g)� and s 2 T �,

Bδ$
�
!
GP;T

s if and only if s 2 NO� and δ= σ(s):

2

Lemma 3.2.3 For each program P, s1 . � � � . sn 2 [[P]] if and only if S
�
!
GP;T

Bδ1$ .

� � �Bδn�1$.Aδn$ and s1. � � �. sn 2 LP;C, where δi = σ(si) (1� i� n).

Proof. Theonly if part is shown by induction onn. (The proof of theif part is similar.)

(basis) Assumes1 2 [[P]]. By the definition of a trace,s1 = hIT i = hn1i. By pro-

ductions (3.1) and (3.2),

S !W$! Aṅ1$
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holds. Also, ˙n1 = σ(n1) ands1 2 NO� (X.)�NO� = LP;C.

(inductive step) For an integern(� 1), assume an inductive hypothesis ifs1. � � �.

sn 2 [[P]], thenS
�
! Bδ1$. � � �.Bδn�1$.Aδn$, δi = σ(si) (1� i� n), ands1. � � �. sn 2

LP;C. Further assume thats1. � � �. sn . sn+1 2 [[P]]. Sincesn 6= ε we can writesn = s0nv

for somes0 2 NO� andnv 2 NO. By production (3.3),

Aδn$! Bδn$.Cδn$: (3.14)

One of the following three cases holds according toIS(nv).

(1) IS(nv) = call. Sincesn . sn+1 andsn = s0nv, there is a noden j such thatnv
CG
! n j

and sn+1 = s0nvn j. Productions (3.7), (3.9) and (3.10) can be applied in this

order toCδn$ in derivation (3.14), and it follows fromδn = σ(sn), sn = s0nv and

sn+1 = s0nvn j that

Cδn$=Cṅvσ(s0)$! Nvσ(s0)$! N 0
vṅvσ(s0)$! Aṅ jṅvσ(s0)$= Aσ(sn+1)$:

Hence,S
�
! Bδ1$.Bδ2$. � � �.Bδn$.Aδn+1$ andδi = σ(si) (1� i� n+1).

Next, we will shows1. s2. � � �. sn . sn+1 2 LP;C. From the inductive hypothesis

s1. s2. � � �. sn 2 LP;C, we can seesi 2 X (1� i < n) by (3.13). Hence, it suffices

to show thatsn 2X andsn+12NO�. The latter is trivial. It follows fromsn = s0nv

andIS(nv) = call thatsn 2 X holds by the definition ofLP;C.

(2) IS(nv) = return.

Sincesn.sn+1, we can writesn assn = snunv for somen j 2NO ands2NO� such

thatnu
TG
! n j andsn+1 = sn j. Productions (3.7), (3.11) and (3.8) can be applied

in this order toCδn$ in derivation (3.14), and

Cδn$=Cṅvṅuσ(s)$! Nvṅuσ(s)$

! N00
u σ(s)$! Aṅ jσ(s)$= Aσ(sn+1)$:

Hence,S
�
! Bδ1$.Bδ2$. � � �.Bδn$.Aδn+1$ andδi = σ(si) (1� i� n+1).

It can be shown thats1. s2. � � � . sn . sn+1 2 LP;C in a similar way to the case of

IS(nv) = call.
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(3) IS(nv) = check(Lφv). Sincesn . sn+1, there is a noden j such thatnv
TG
! n j and

sn 2 Lφv. Also, sn+1 = s0n j follows.

Productions (3.7) and (3.12) can be applied in this order toCδn$ in derivation

(3.14), and

Cδn$=Cṅvσ(s0)$

! Nvσ(s0)$! Aṅ jσ(s0)$= Aσ(sn+1)$:

Hence,S
�
! Bδ1$.Bδ2$. � � �.Bδn$.Aδn+1$ andδi = σ(si) (1� i� n+1).

In a similar way to the other cases, it suffices to showsn 2 X in order to prove

that s1 . s2 . � � � . sn . sn+1 2 LP;C. It follows from sn = s0nv and sn 2 Lφv that

sn 2 L(v)P;C. Therefore,sn 2 X .

2

Theorem 3.2.4 For each program P, [[P]] = L(GP;T)\LP;C.

Proof. We will show [[P]] � L(GP;T)\LP;C. Assume thats1 . s2 . � � � . sn 2 [[P]]. By

Lemma 3.2.3,GP;T satisfiesS
�
! Bδ1$. � � �.Bδn�1$.Aδn$, whereδi = σ(si) (1� i�

n). By applying Production (3.4) toAδn in the above derivation, we obtain

Bδ1$. � � �.Bδn�1$.Aδn$! Bδ1$. � � �.Bδn�1$.Bδn$:

Sinceδi =σ(si) (1� i� n), by applying Lemma 3.2.2 to eachBδi$,Bδ1$. � � �.Bδn$
�
!

s1. � � �. sn holds, from whichs1. � � �. sn 2 L(GP;T) follows. By Lemma 3.2.3,s1. � � �.

sn 2 LP;C holds, and hences1.s2. � � �. sn 2 L(GP;T)\LP;C. Thus,[[P]]� L(GP;T)\LP;C

holds.

L(GP;T)\LP;C � [[P]] can be shown in a similar way. 2

Lemma 3.2.5 [3] The class of indexed languages is closed under intersection with

regular languages. The emptiness problem for indexed languages is decidable. 2

Theorem 3.2.6 For a given program P and a given verification property Lψ, the veri-

fication problem [[P]]� Lsafe[ψ] is decidable.

Proof. The theorem follows from the fact[[P]] � Lsafe[ψ], [[P]]\ Lsafe[ψ] = /0 (the

empty set), Theorem 3.2.4, and Lemma 3.2.5. 2
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3.3. An Alternative Method

The set[P] of all states which are reachable from the initial state of a programP is

defined as follows:

[P] = fs 2 NO�
j 9s1. s2. � � �. si 2 [[P]]; s = sig:

It is easy to see that for a programP and a verification propertyLψ, [P]� Lψ if and only

if [[P]]� (Lψ.)
�Lψ. Hence, we can solve the verification problem by deciding[P]� Lψ

instead of deciding[[P]] � (Lψ.)
�Lψ. If [P] belongs to a class of languages which is

closed under intersection with regular languages and for which the emptiness problem

is decidable, then we can obtain a decision algorithm for the verification problem since

[P]\ Lψ = /0 if and only if [P] � Lψ. Let L(G) denote the language generated by a

grammarG and letjjGjj denote the size ofG. It is known that a context-free grammar

(CFG) G0 can be constructed from a CFGG such thatL(G0) = L(G)\ Lψ and jjG0
jj

is O(jjGjj), and also the emptiness problem for context-free language is solvable in

linear time in the size of CFG [15]. Hence, if[P] is generated by a CFGG such that

jjGjj is O(jjPjj), then the verification problem is solvable in polynomial time injjPjj.

However, it is open at the current time whether[P] is a context-free language for an

arbitrary programP. If P contains no check node, then[P] is a regular language and

hence we can decide whether[P]� Lψ (see section 5.1).
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Chapter 4

Complexity of the Verification

Problem

4.1. Representations of Inputs

The complexity of the verification problem can depend on the representation of reg-

ular languages specified in check nodes and a verification property. We mainly use

a finite automaton (FA) as the representation of a regular language. A deterministic

FA and a nondeterministic FA are denoted by a DFA and an NFA, respectively. Also,

a regular expression is denoted by an RE. Let DEXP-POLY time denote the class of

decision problems solvable in deterministicO(cp(n)) time for a constantc (> 1) and a

polynomialp.

In the following sections, we will show that the verification problem is DEXP-

POLY time-complete if a verification property is specified by a DFA. For a setA, let

jAj denote the cardinality ofA. The number of states of an FAM is denoted as #M. Let

P = (NO; IS; IT;TG;CG) be a program whereP containscheck(Lφi) (1� i � l) and

eachLφi is specified by an FAMφi . The size ofP is defined askPk = jNOj+ jTGj+

jCGj+maxf#Mφ1; : : : ;#Mφlg. For an IGG = (N;T; I;R;S), the size ofG is defined as

kGk= jNj+ jT j+ jIj+kRk wherekRk is the description length ofR.
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4.2. Upper Bounds

Lemma 3.2.5 can be refined by analyzing the proofs of Lemma 3.2 and Theorem 4.1

of [3] as follows. LetL(M) denote the language accepted by an FAM.

Lemma 4.2.1[3] (a) For an IG G and an NFA M, an IG G0 can be constructed such

that L(G0) = L(G)\L(M) and kG0
k is O(kGk(#M)3). (b) The emptiness problem for

the language generated by an IG G is solvable in deterministic O(2p(kGk)) time for a

polynomial p. 2

Lemma 4.2.2 Let P = (NO; IS; IT;TG;CG) be a program. Assume that P contains

check(Lφi) (1� i � k) where each Lφi is specified by an NFA Mφi . Also let Lψ be a

verification property specified by a DFA Mψ. The verification problem for P and Lψ is

solvable in DEXP-POLY time.

Proof. By Theorems 3.2.4 and 3.2.6, the problem is equivalent to deciding whether

L(GP;T)\LP;C\Lsafe[ψ] = /0 (4.1)

whereGP;T is the indexed grammar constructed in section 3.2.2,LP;C is the regular

language defined fromLφi (1� i � k) in section 3.2.3 andLsafe[ψ] = (Lψ�)
�Lψ. We

can show the following properties.

(i) kGP;Tk is O(jNOj2).

(ii) Let n1 = maxf#Mφ1; : : : ;#Mφkg. An NFA MP;C can be constructed as follows

such thatLP;C = L(MP;C) and #MP;C is O(jNOj �n1).

Let nφi be the nodecheck(Lφi). In section 3.2.3,LP;C is defined as(X�)�NO�

where

X =
k\

i=1

(NO�(NO�fnφig)[ε[Lφi)

= ε[NO�(NO�fnφ1; : : : ;nφkg)[
k[

i=1

(NO�nφi \Lφi):
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(These equations follow the fact that for any setsA1; : : : ;Ak, B1; : : : ;Bk,

(A1[B1)\�� �\ (Ak[Bk) = (A1\�� �\Ak�2\Ak�1\Ak)

[ (A1\�� �\Ak�2\Ak�1\Bk)

[ (A1\�� �\Ak�2\Bk�1\Ak)

[ (A1\�� �\Ak�2\Bk�1\Bk)

[ �� �

[ (B1\�� �\Bk�2\Bk�1\Bk):

Note thatNO�(NO�fnφig)[ ε[Lφi = ε[NO�(NO�fnφig)[ (NO�nφi \Lφi).

When we letA1 = � � �= Ak = fεg andBi = NO�(NO�fnφig)[ (NO�nφi \Lφi),

the right-hand side equalsfεg[
Tk

i=1 Bi. When we letAi = NO�(NO�fnφig)

andBi = NO�nφi \Lφi for 1� i� k, the right-hand side equals
Tk

i=1Ai[
Sk

i=1Bi

sinceAi\Bj = B j andBi\Bj = /0 for any distincti and j.)

Without loss of generality, we assume that eachMφi(1� i � k) has noε-move.

(If Mφi has anε-move, then we can construct an NFA equivalent toMφi which

has the same number of states asMφi in O((#Mφi)
2) time.)

We can construct an NFAMX such thatX = L(MX) and #MX =∑k
i=1(#Mφi +1)+

2, as shown in figure 4.1 whereM0
φi

is an NFA such thatL(M0
φi
) = NO�nφi \Lφi .

M0
φi

can be constructed fromMφi by adding a single new statet 0 and a transition

s
nφi
! t 0 for each states such that there is a transitions

nφi
! t for a final statet of

Mφi. The initial state ofM0
φi

is the one ofMφi , and the final state ist 0.

Thus, an NFAMX can be obtained such thatX = L(MX) and #MX = #MR
X .

Using MX , we can obtainMP;C as figure 4.2 and #MP;C = #MX + 1, that is,

O(jNOj �n1).

(iii) Let n2 = #Mψ. A FA Msafecan be constructed such thatLsafe[ψ] = L(Msafe) and

#Msafe= n2 by defining the set of final states ofMsafeas the set of non-final states

of Mψ.

Hence, by Lemma 4.2.1 (a), an indexed grammarGP can be constructed such that

L(GP)= L(GP;T)\L(MP;C)\L(Msafe)= L(GP;T)\LP;C\Lsafe[ψ] andkGPk is O(jNOj2(jNOj�

n1 � n2)
3), which is a polynomial order ofkPk andn2. By (4.1), the verification prob-

lem is equivalent to deciding whetherL(GP) = /0. By Lemma 4.2.1 (b) and the above
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M′φ1

NOs1

s2

NO−{ nφ1
,…,nφk

}

nφ1Mφ1

M′φk

Mφk nφk

…

ε

The initial state
of each Mφi

The final states of each Mφi,
which are not final in M′φi

nφk

εε

nφ1

nφ1

nφ1

The initial states ofMX is s1. The final states ofMX are the ones of anyM0

φi
ands1.

Figure 4.1. NFAMX

facts, (4.1) can be done in deterministicO(2p(kPk+n2)) time for some polynomialp. 2

Note. If a verification propertyLψ is specified by an NFA instead of a DFA in Lemma

4.2.2, then the complexity of the problem in this case becomes a double exponential

time.

4.3. Lower Bounds

Theorem 4.3.1 Let P= (NO; IS; IT;TG;CG) be a program and Lψ a verification prop-

erty which satisfies the assumption stated in Lemma 4.2.2 except that the language Lφi

in each check(Lφi) is specified by a DFA Mφi . The verification problem for P and Lψ is

DEXP-POLY time-complete.

Proof. By Lemma 4.2.2, it suffices to show that the problem is DEXP-POLY time-

hard. It is known that a languageL belongs to DEXP-POLY time if and only ifL is

accepted by a polynomial space-bounded alternating Turing machine (ATM) [6]. For

any given polynomial space-bounded ATMM and any inputx of M, we can transform
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MX

NO

The initial state
of MX

The final states of MX,
which are not final in MP,C

s3

…

ε

The initial state ofMP;C are the one ofMX . The final state ofMP;C is s3.

Figure 4.2. NFAMP;C

M andx into a programPM;x and a verification propertyLψ within polynomial time

such that

[[PM;x]] 6� Lsafe[ψ] , M acceptsx:

Therefore the verification problem is DEXP-POLY time-hard.

Below we show that a transformation which satisfies the above condition exists.

Assume that for any inputx whose length equalsn, M uses not more thanp(n) space

for a polynomialp. Let Γ = fγ1; : : : ;γjΓjg be the set of tape symbols ofM andγ1 be

the blank symbol. Letδ be the transition function ofM.

Consider a programP1 shown in figure 4.3. A node withcheck(NO�) is the one

with no operation since every state satisfiesNO�. When the control reaches the node

n1 for the first time, the state (stack) of the programP1 is a sequence of nodes whose

length equalsp(n)+1. Considering that eachγi; j corresponds to the tape symbolγi,

we can regard this state as one of thejΓjp(n) possible strings contained by thep(n)

tape squares ofM, which we will refer to as an instantaneous description (ID) as usual.

In general, the noden1 has been visited more than once (by recursive calls), and thus

the state ofP1 can be regarded as a sequence of IDs separated byn1. However, this

sequence of IDs may not represent a valid computation ofM because any two IDs may

be adjacent. To simulate a computation ofM, the program should guarantee that the

tape square scanned at the last computation step is rewritten to a specified symbol and

the other tape squares are preserved.
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check(NO*)

γ1,1: call γ2,1: call

γ1,2: call γ2,2: call

γ1,p(n): call γ2,p(n): call

n1: call

CG
TG

γ|Γ|,2: call

γ|Γ|,p(n): call

γ|Γ|,1: call

… … …

…

…

…

Figure 4.3. Program P1

For an ID α = σ1σ2 � � �σp(n) (where σi = γu;i with 1 � u � jΓj and 1 � i � p(n)),

let

α[σ=k] = σ1 � � �σk�1σσk+1 � � �σp(n);

where k corresponds to the position of the tape head of M at the last computation step

and σ is the tape symbol which the tape square k is rewritten to. By modifying P1, we

can construct a program P2[k;σ] (figure 4.4) which pushes α[σ=k] onto the stack where

α is the topmost ID of the stack. More precisely, let s = s0αn0 (for s0 2 NO�, α an ID,

and n0 2 NO) be a stack. When P2[k;σ] is called with stack s and the control reaches

the node n1 at the bottom of figure 4.4, the stack becomes sα[σ=k]n1 (cf. figure 4.7).

P2[k;σ] is obtained by attaching a check node χi; j and a return node to each γi; j in

P1. χi; j is check(NO�γi; jNOp(n)+1) for all j 6= k, check(NO�) for j = k and i such that

γi = σ, and check( /0) otherwise. Figure 4.5 shows the state of P2[k;σ] when the control

is at χi; j. These check nodes obstruct a sequence of IDs which does not represent a

valid computation of M.

Let α = σ1σ2 � � �σp(n) be an ID with state q and head position k. Assume that

(q0;σ;∆) 2 δ(q;σk), that is, a possible move at α is to rewrite k-th tape square from σk

to σ, change the state from q to q0, and change the head position from k to k0 = k+∆.

A program P3[k;σ;q0;k0] in figure 4.6 with topmost ID α on the stack first pushes the

ID α0 obtained from α by the above move (q0;σ;∆) 2 δ(q;σk), and simulates further

moves from α0 recursively (figure 4.7). P3[k;σ;q0;k0] first executes P2[k;σ] to write the
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χ2,1

γ1,1 γ2,1

γ1,2 γ2,2

γ1,p(n) γ2,p(n)

n1: check(NO*) CG
TG

γ|Γ|,2

γ|Γ|,p(n)

…

γ|Γ|,1
…

…

…

check(NO*)

χ1,1 χ|Γ|,1

return

return

returnreturn

return

…

χ2,2χ1,2 χ|Γ|,2
…

χ2,p(n)χ1,p(n) χ|Γ|,p(n)
…

return

return

return

return

……

χi; j is check(Li; j) where

Li; j =

8<
:

NO�γi; jNOp(n)+1 if j 6= k;
NO� if j = k and γi = σ;
/0 otherwise:

Figure 4.4. Program P2[k;σ]

the string contained by the tape at the last computation step of M

1 j-1 j

… …

p(n)p(n)

…

1

…

j-1 j

χi,j examines whether this node equals γi,j.

χi,jγi,jγ·,j-1γ·,1γ·,p(n) γ·,p(n) γ·,j-1γ·,1

Figure 4.5. The stack of P2[k;σ] when the control is at χi; j
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check(NO*)

check(NO*)

P2[k,σ]

νi,1: call

return

νi,2: call

(a) q′ is a universal state

check(NO*γi,k′NO
p(n)−k′+1)

νi,2: call

return

νi,1: call

return

(b) q′ is an existential state

(c) q′ is a final state

P2[k,σ]

… …

P2[k,σ]

return

P3[k′,σ(1)
i ,q(1)

i ,k(1)
i ]

P3[k′,σ(1)
i ,q(1)

i ,k(1)
i ] P3[k′,σ(2)

i ,q(2)
i ,k(2)

i ]

check(NO*γi,k′NO
p(n)−k′+1)… …

P3[k′,σ(2)
i ,q(2)

i ,k(2)
i ]

P3[k,σ,q′,k′]

P3[k,σ,q′,k′]

P3[k,σ,q′,k′]

In this figure, we assume that

δ(q0
;γi) = f(q(1)i ;σ(1)

i ;∆(1)
i );(q(2)i ;σ(2)

i ;∆(2)
i )g;

k(1)i = k0+∆(1)
i ; and

k(2)i = k0+∆(2)
i :

Figure 4.6. Program P3[k;σ;q0;k0]
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σ
k k′

q′

k

α
k

q

P2[k,σ]

…

P3[k,σ,q′,k′]

α′

Figure 4.7. The extension of the stack made by P2[k;σ] and P3[k;σ;q;k0]

new ID α0 onto the stack. After executing P2[k;σ], P3[k;σ;q0;k0] examines whether the

current contents of the tape square k0 equals γi 2 Γ by check(NO�γi;k0NOp(n)�k0+1), and

calls P3[k0;σ0
;q00;k00] for each (q00;σ0

;∆0)2 δ(q0;γi) and k00 = k0+∆0. P3[k;σ;q0;k0] calls

all these P3[k0;σ0
;q00;k00] sequentially if q0 is a universal state of M. If q0 is an existential

state of M, P3[k;σ;q0;k0] calls any one of these P3[k0;σ0
;q00;k00] and returns. Otherwise,

that is, if q0 is a final state of M, P3[k;σ;q0;k0] calls no P3[k0;σ0
;q00;k00] and simply

returns. Thus P3[k;σ;q0;k0] returns if and only if the configuration of M which consists

of q0, k0 and the contents of the tape (ID) written on the stack is a yes-configuration.

A program Px which simulates the initial configuration of M is similar to P3[k;σ;q0;1]

where q0 is the initial state of M; Px does not execute P2[k;σ] and instead it writes the

input string x onto the stack (figure 4.8).

The overall program PM;x constructed by the transformation consists of Px, P3[k;σ;q0;k0]
for all k, σ, q0 and k0, and two call nodes ns and nt (figure 4.9). Note that the subgraph

Px and P3[k;σ;q0;k0] for all k, σ, q0 and k0 do not share a node with each other. This PM;x

has many γi; js for each i and j. Define the subexpression γi; j appearing in the regular

expressions in figures 4.4 and 4.6 as the union of all those nodes. An execution of PM;x

reaches the node nt if and only if M accepts x. We can simply let Lψ = (NO�fntg)
�.

A verification property Lψ = (NO�fntg)
� can be represented by a DFA with two

states. On the other hand, for each check node χi; j = check(Li; j) of P2[k;σ], we defined

Li; j = NO�γi; jNOp(n)+1 for all j 6= k. However, the number of states of a DFA which

accepts Li; j is more than exponential to n. By replacing the definition of Li; j with

Li; j = NO�νν j�1γi; jνp(n)� jνν j
; (4.2)
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γx1,1: call

γx2,2: call return

γxn,n: call

(the same as the lower part of P3[k,σ,q0,1])

return

return

…

γ1,n+1: call return

…

γ1,p(n): call return

check(NO*)

Let x = γx1γx2 : : :γxn . (γ1 is the blank symbol.)

Figure 4.8. Program Px

CG
TG

ns: call nt: call

Px

P3[k,σ,q′,k′]… P3[k′,σ′,q′′ ,k′′ ] …

Figure 4.9. Program PM;x
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ν

ν−γi,j

ν

tj+1 tj tj−1 t2 t1

sp(n)+1sp(n)sj+2sj+1sjsj−1s2s1s0

ν νν ν νν ν

ν ν ν ν…

……
γi,j

ν

ν ν
ν ν ν ν ν ν

ν ννν ν

γi,j

tj+2

ν

ν

ν

ν−γi,j ν

This figure is for the case that j < p(n). When j = p(n), replace

the transitions from t j+2 (i.e., t j+2
ν
! s j+2 and t j+2

ν
! s1) with

t j+2
ν
! s0 and t j+2

ν
! t1.

Figure 4.10. A DFA equivalent to NO�νν j�1γi; jνp(n)� jνν j

we can show that the verification problem is still DEXP-POLY time-hard even if a

regular language in each check node is specified by a DFA. The proof of this theorem

is also valid under this definition. In (4.2), ν is the set of nodes which consists of ns

and all νi;1 and νi;2 of each P3[k;σ;q0;k0] (or Px), and ν = NO�ν. A symbol separating

two IDs in figure 4.5 is an element ν. A DFA which accepts Li; j is shown in figure

4.10. The number of states of this DFA is p(n)+ j + 4 (� 2p(n)+ 4). In a similar

way, we can also represent a check node in the lower part of each P3[k;σ;q0;k0] by a

polynomially-sized DFA. 2

Note. In [18], the complexity of their verification algorithm is not discussed. Below

we briefly analyze their algorithm. The best known upper-bound of the time complex-

ity of the verification problem for a Kripke structure S and an LTL formula f is linear

in the size of S and exponential in the size of f [7]. Let us assume that a program P in

the flow graph model of [18] and a verification property specified by an LTL formula

ψ is given. The size of the Kripke structure induced by P and ψ in [18] is exponential

in both the size kPk of P and the size kψk of ψ. Hence, the time complexity of the

verification algorithm in [18] is exponential in both kPk and kψk. Also note that al-

though we extend the [18]’s model so that check statements in a program are specified

by regular languages instead of LTL formulas, the PSPACE-hardness of the verifica-
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tion problem shown by Proposition 5.2.3 holds even for the [18]’s model because the

languages in check nodes of the program PQ3SAT and the verification property Lψ in

the proof of Proposition 5.2.3 can be specified by simple LTL formulas. Also note

that PQ3SAT does not contain mutual recursion, and thus the verification problem is

intractable even if we assume the absence of mutual recursion as is done in the verifi-

cation algorithm in [18].

4.4. Reversing Stack Contents

When we write the contents of a stack as a sequence of nodes, there is no special

reason for arranging nodes in such a way that the left-end is the stack bottom. Below

we examine whether the complexity of the verification problem alters if we arrange

nodes in the order reverse to the original one to denote the contents of a stack.

Let M be an FA M =(Σ;Q;δ;Q0;QF) where Σ is a set of input symbols, Q is a finite

set of states, δ : Q�Σ! 2Q is a state transition function, Q0 � Q is the set of initial

states and QF � Q is the set of final states. Define δ�1 : Q�Σ! 2Q as δ�1(q;a) =

fq0 j q 2 δ(q0;a)g. Let us define the reverse of M as MR = (Σ;Q;δ�1
;QF ;Q0). For

a sequence w = a1a2 � � �an, we write wR = an � � �a2a1 and for a language L, we let

LR = fwR
j w 2 Lg. It is clear that for an FA M, L(MR) = (L(M))R. For an FA M, if

MR is a DFA then M is called a DFAR.

First, consider the lower-bound of the verification problem. In the proof of Theo-

rem 4.3.1, the most complex check nodes in the transformed program have the form

of check(NO�γNOp(n)) where γ2 NO and p(n) is a polynomial in the input size. If

α 2 NO�γNOp(n), then the number of symbols appearing to the right of γ in α should

be p(n) and hence NO�γNOp(n) can be accepted by a DFAR with p(n) + 3 states.

Hence, the problem is still DEXP-POLY time-hard if the properties in check nodes

are specified by DFARs instead of DFAs. Also, the verification property (NO�fntg)
�

constructed in the proofs of Theorem 4.3.1 and Proposition 5.2.3 can be accepted by a

DFAR with two states.

Next, consider the upper-bound of the verification problem. Recall the proofs of

Theorem 3.2.6 and Lemma 4.2.2. Let P be a program and Lψ be a verification prop-

erty specified by a DFA Mψ. The verification problem is to decide whether [[P]] �

Lsafe[ψ], which is equivalent to deciding (Lvr f =)[[P]]\Lsafe[ψ] = /0. We can construct
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an indexed grammar G such that L(G) = Lvr f and the size of G is a polynomial in

jjPjj and ]Mψ. Now let us assume that Lψ is specified by a DFARMψ. Obviously,

Lvr f
R = [[P]]R\Lsafe[ψ]R. The verification problem for P and Lψ is equivalent to decid-

ing Lvr f
R = /0. In a similar way to the construction of the indexed grammar G described

above, we can construct an indexed grammar G0 such that L(G0) = Lvr f
R. From this ob-

servation, we can show that the upper-bound of the complexity of the problem remains

the same if a verification property is specified by a DFARinstead of a DFA.
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Chapter 5

Program Subclasses

5.1. Programs with Trivial Check Nodes

In this section, we consider the subclass of programs which contain only check(NO�)

as a check node. Since NO� is the set of all states (i.e., s 2 NO� for every state s),

the execution of check(NO�) always succeeds. We will show that time complexity of

the verification problem for this subclass is linear in the size of a program while the

complexity depends on the representation of a verification property. This subclass,

called Πcheck-free, might seem of no practical use since no program in this class can

substantially control any access. However, in section 5.2 we will introduce a broader

subclass ΠJDK1:2 of programs which exactly model programs with checkPermission in

JDK1.2, and show that the verification problem for ΠJDK1:2 can be efficiently solved

by transforming a program in ΠJDK1:2 to a program in Πcheck-free.

Let Πcheck-free denote the subclass of programs which contain only check(NO�) as

a check node. We will show that for a program P in Πcheck-free, [P] is a regular language

and hence we can efficiently decide whether [P]� Lψ (see section 3.3). For any given

program P = (NO; IS; IT;TG;CG) in Πcheck-free, we define a predicate CR (can return)

: NO ! fTrue; Falseg such that CR(n) = True if and only if the control can return

after n is invoked.
IS(n1) = call; n1

CG
! n2;

n1
TG
! n3; CR(n2) = CR(n3) = True

CR(n1) = True
(5.1)
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IS(n) = return
CR(n) = True

(5.2)

IS(n1) = check(NO�); n1
TG
! n2; CR(n2) = True

CR(n1) = True
(5.3)

Lemma 5.1.1 Let P = (NO; IS; IT;TG;CG) be a program in Πcheck-free. For an arbi-

trary node n 2 NO of P,

CR(n) = True if and only if there exist a node n0 such

that IS(n0) = return and

a valid state sequence

n. � � �.n0;

where a valid state sequence T is a sequence of states satisfying the following condi-

tion:

T = s1 . � � �. sk such that s1; : : : ;sk 2 NO� and 8i < k: si . si+1:

Proof. The only if part can be shown by induction on the application number of

inference rules of CR used for deriving CR(n) = True. According to IS(n), one of the

following three cases holds.

� IS(n) = return. The proof is trivial. (n0 = n:)

� IS(n) = call. Since CR(n) = True is obtained only by inference rule (5.1),

there exists a node m2 (n
CG
! m2) and a node m3 (n

TG
! m3) such that CR(m2) =

CR(m3) = True holds. By the induction hypothesis for node m2, there are a node

m0 (IS(m0) = return) and a valid state sequence m2 . � � � .m0. Similarly, by the

induction hypothesis for node m3, there exist a node n0 (IS(n0) = return) and a

valid state sequence m3 . � � �.n0. Since n
CG
! m2 and n

TG
!m3, there is a valid state

sequence n.nm2 . � � �.nm0
.m3 . � � �.n0:

� IS(n) = check(NO�). Since CR(n) = True is obtained only by inference rule

(5.3), there exists a node m2 (n
TG
! m2) and CR(m2) = True holds. By the in-

duction hypothesis, there exist a node n0 (IS(n0) = return) and a valid sequence

m2 . � � �.n0. Since n
TG
! m2, we obtain n.m2 . � � �.n0.
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The proof of the if part is as follows. Suppose that there is a valid state sequence

T1 = s1 . � � � . sl where si 2 NO� (1 � i � l), s1 = n, sl = n0, and IS(n0) = return. This

part is proved by induction on l. Note that in the case of l = 1, IS(n) = return.

� IS(n) = return. By inference rule (5.2), CR(n) = True.

� IS(n) = check(NO�). There is a node n2 such that n
TG
! n2 and s2 = n2. The state

sequence s2 . � � �. sl satisfies the condition of this lemma and is shorter than T1.

By the induction hypothesis, CR(n2) = True. Hence, CR(n) = True holds by

inference rule (5.3).

� IS(n) = call. The valid state sequence T1 can be written as T1 = n . nm . ns01 .

� � �.ns0k .nm0
.n2 . � � �.n0, where s0i 2 NO+ (1� i� k), IS(m0) = return, n

CG
! m

and n
TG
! n2. Since valid state sequence m. s01 . � � �. s0k .m0 obtained by removing

the leftmost node n from every state in subsequence nm . ns01 . � � � . ns0k . nm0 of

T1 satisfies the condition of this lemma and is shorter than T1, CR(m) = True

holds by the induction hypothesis. Similarly, for subsequence n2 . � � � .n0 of T1,

CR(n2) = True holds. Hence, we obtain CR(n) = True by inference rule (5.1).

2

Using the predicate CR, we can construct a regular grammar GP;S = (N;T;R;S)

which generates the set [P] as follows.

(a) N is a finite set of nonterminal symbols and N = fSg[fNi j ni 2 NOg.

(b) T is a finite set of terminal symbols and T = NO.

(c) S is the start symbol.

(d) R is the set of productions which consists of:

S ! N1 for n1 = IT (5.4)

Ni ! ni for 8ni 2 NO: (5.5)

For each node ni, the following productions are added to R according to IS(ni).
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(1) IS(ni) = call:

Ni ! niNj for 8n j: ni
CG
! nj (5.6)

If 9n j: ni
CG
! nj and CR(n j) = True, then the following production is also

added to R.

Ni ! Nk for 8nk: ni
TG
! nk (5.7)

(2) IS(ni) = check(NO�):

Ni ! Nj for 8n j: ni
TG
! n j (5.8)

We can show that the language L(GP;S) generated by regular grammar GP;S coin-

cides with the set [P] of states.

Theorem 5.1.2 For a program P = (NO; IS; IT;TG;CG) in Πcheck-free, L(GP;S) = [P].

Proof. It suffices to show that for every s 2 NO�, S
�
!GP;S s if and only if IT . � � �. s 2

[[P]] holds.

The only if part is shown by induction on the sum of application numbers of pro-

duction rules (5.6)–(5.8).

(basis) If the derivation S
�
!GP;S s is obtained without applying the production rules

(5.6)–(5.8), then
S !GP;S N1 by (5:4)

!GP;S n1 = s: by (5:5)

Clearly, n1 = IT 2 [[P]] holds.

(inductive step) We consider the case that the last production among (5.6)–(5.8)

applied in the derivation is (5.7). The proof of the other cases is similar. Suppose there

is a derivation of the following form.

S
�
!GP;S n1 � � �nlNi

!GP;S n1 � � �nlNk by (5:7)

!GP;S n1 � � �nlnk: by (5:5)

(5.9)

Then, the following derivation also exists.

S
�
!GP;S n1 � � �nlNi

!GP;S n1 � � �nlni: by (5:5)

40



Since the application number of production rules (5.6)–(5.8) in the above derivation is

less than that of the derivation (5.9), we can use the inductive hypothesis and obtain

IT . � � �.n1 � � �nlni 2 [[P]]: (5.10)

On the other hand, by the existence of the production (5.7) (Ni ! Nk), we can see that

IS(ni) = call, 9n j: ni
CG
! nj, CR(n j) = True and ni

TG
! nk. Therefore, by Lemma 5.1.1,

there is a node nr such that IS(nr) = return and a valid state sequence:

n j . � � �.nr: (5.11)

From (5.10), (5.11) and the fact that ni
CG
! nj, IT . � � � . n1 � � �nlni . n1 � � �nlnin j . � � � .

n1 � � �nlninr 2 [[P]]. Since ni
TG
! nk, IT . � � �.n1 � � �nlnk 2 [[P]].

The proof of if part is shown by induction on the length of the trace.

(basis) Clearly, hITi 2 [[P]] and S
�
!GP;S n1 = IT.

(inductive step) The claim is proved according to the type IS(nr) of node nr in trace

IT . � � �.n1 � � �nlninr . s 2 [[P]].

� IS(nr) = call or check(NO�). The claim can easily be proved in this case.

� IS(nr)= return. In this case, s= n1 � � �nlnk, 9n j: ni
CG
! nj and ni

TG
! nk. Therefore,

we can write this trace as

IT . � � �.n1 � � �nlni .n1 � � �nlnin j . � � �.n1 � � �nlninr .n1 � � �nlnk 2 [[P]]

and by Lemma 5.1.1, CR(nj) = True. Therefore, GP;S contains the rule (5.7)

Ni ! Nk. On the other hand, since IT . � � �.n1 � � �nlni 2 [[P]], it follows from the

inductive hypothesis that there exists a derivation of the following form:

S
�
!GP;S n1 � � �nlNi !GP;S n1 � � �nlni:

Hence, the following derivation also exists.

S
�
!GP;S n1 � � �nlNi

!GP;S n1 � � �nlNk by (5:7)

!GP;S n1 � � �nlnk: by (5:5)
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2

Theorem 5.1.3 Let P = (NO; IS; IT;TG;CG) be a program in Πcheck-free. The verifi-

cation problem for P and a verification property specified by a DFA Mψ is solvable in

O((jNOj+ jTGj+ jCGj) �#Mψ) time.

Proof. From Theorem 5.1.2, we can construct a regular grammar GP such that

L(GP) = [P]\ L(Mψ) and kGPk is O((jNOj+ jTGj+ jCGj) � #Mψ). The emptiness

problem for the language generated by a regular grammar G is solvable in O(kGk)

time. Hence, we can decide whether L(GP) = /0 in O((jNOj+ jTGj+ jCGj) � #Mψ)

time. Furthermore, all the values of predicate CR can be determined in O(jNOj+

jTGj+ jCGj) time by applying the inference rules (in a non-redundant way) until no

value of CR for each node changes. Therefore, the verification problem is solvable in

O((jNOj+ jTGj+ jCGj) �#Mψ) time. 2

As is the case with Lemma 4.2.2, the proof of the above theorem is not valid if

a verification property Lψ is specified by an NFA instead of a DFA. Especially, the

verification problem in this case can be shown to be PSPACE-complete.

Proposition 5.1.4 Let P = (NO; IS; IT;TG;CG) be a program in Πcheck-free. The veri-

fication problem for P and a verification property specified by an NFA Mψ is PSPACE-

complete.

Proof. Both of the following two problems are known to be PSPACE-complete[12].

FINITE AUTOMATON INEQUIVALENCE

Instance: Two NFA M1 and M2 having the same input alphabet Σ.

Question: L(M1) 6= L(M2)?

REGULAR EXPRESSION NON-UNIVERSALITY

Instance: A regular expression E over a finite alphabet Σ.

Question: L(E) 6= Σ�?

Note that for a program P and a verification property Lψ, [P] � Lψ if and only if

[[P]] � Lsafe[ψ] (see section 3.3). PSPACE-solvability of the verification problem can
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CG

σ1: call

σ|Σ|: callσ2: call

σ3: call

Figure 5.1. The program PΣ�

be shown by transforming the problem to the FINITE AUTOMATON INEQUIVALENCE

problem. We can construct an NFA MP;S such that [P] = L(MP;S) and #MP;S = O(jNOj)

[25]. We can also construct an NFA MP;S;ψ such that L(MP;S;ψ) = L(MP;S)\L(Mψ) and

#MP;S;ψ = #MP;S � #Mψ. This construction of MP;S and MP;S;ψ completes the transfor-

mation since [P] 6� L(Mψ) iff [P] 6= [P]\L(Mψ) iff L(MP;S) 6= L(MP;S;ψ).

PSPACE-hardness of the verification problem can be shown by transforming REG-

ULAR EXPRESSION NON-UNIVERSALITY to the problem. First we construct the pro-

gram PΣ� = (NO; IS; IT;TG;CG) in Figure 5.1, where the set NO of nodes is the alpha-

bet Σ and the entry point IT is an arbitrary node σ1 2 Σ. PΣ� is similar to the complete

graph with jΣj nodes and obviously [PΣ� ] = σ1Σ�. Second we construct an NFA Mψ

such that L(Mψ) = L(σ1 �E) from the regular expression E. This construction of Mψ

can be performed in polynomial time[15]. The construction of PΣ� and Mψ completes

the transformation since [PΣ� ] 6� L(Mψ) iff σ1Σ�
6� L(σ1 �E) iff Σ�

6= L(E). 2

5.2. Programs with JDK1.2 Stack Inspection

5.2.1 Permission Based Model

As shown in chapter 4, the verification problem is computationally intractable while

the problem for the subclass Πcheck-free is solvable in linear time in the program size.

In this section, we introduce another subclass ΠJDK1:2 of programs which contain only

check nodes equivalent to checkPermission in JDK1.2. ΠJDK1:2 properly includes
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Πcheck-free. Also we show that the verification problem for class ΠJDK1:2 is solvable

in linear time in the size of a program by reducing the problem for ΠJDK1:2 to the

problem for Πcheck-free.

In JDK1.2, an access to a resource is controlled by inspecting the current contents

of the stack. This mechanism can be implemented as follows (called eager evaluation

in section 2.4 of [13]).

� Assume that a set of permissions is granted to each method and every node in

a method has the permissions granted to that method. Also assume that at each

state of a program, the control keeps the set of effective permissions. The set of

effective permissions is updated as follows when a method invocation or a return

occurs.

� When a method m2 is invoked from a method m1 and the invocation is not priv-

ileged, then the set of effective permissions becomes the intersection of the cur-

rent set and the set of permissions granted to m2.

� When method m2 is invoked from method m1 and the invocation is privileged,

then the set of effective permissions becomes the intersection of the sets of per-

missions granted to m1 and granted to m2.

� An access is controlled by inspecting the current set of effective permissions

instead of by inspecting the contents of the stack.

From a program PJDK1:2 in ΠJDK1:2, we can construct an equivalent program bP
where each node is a pair of a node of PJDK1:2 and the set of effective permissions at

that node. For every check node of PJDK1:2, using the set of effective permissions in the

node, we can statically know the result of the execution of the check node. Therefore,

by removing all transfer edges emitted from the check nodes at which the execution is

aborted and by replacing all check nodes with check(NO�), we can obtain an equivalent

program bP which belongs to Πcheck-free. By Theorem 5.1.3, the verification problem

can be solved in linear time in the size of bP.

For example, from the program shown in figure 2.1, we can construct an equiva-

lent program shown in figure 5.2, where each node is labeled with the set of effective

permissions. Since there are two paths in figure 2.1 from the initial node to the debit

method and the sets of effective permissions at the entry point of the debit method are
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different according to the selected path, the debit method is duplicated in figure 5.2.

Since the execution of node n /0
7 does not succeed (pdebit =2 /0), transfer edge from n /0

7 to

n /0
8 is removed. The details of this construction are described as follows.

Let PRM be a finite set of access permissions. A program PJDK1:2 in ΠJDK1:2

is a 7-tuple PJDK1:2 = (NO; IS; IT;TG;CG;P BY;PRV). The first five components

(NO; IS; IT;TG;CG) are the same as those defined in section 2.1. The last two compo-

nents are:
P BY : NO! 2PRM

PRV � fn j n 2 NO; IS(n) = callg:

P BY(n) (possessed by n) is the set of permissions which a node n has. In this model,

we assume that all nodes in a method have the same set of permissions, that is,

n
TG
! n0 ) P BY(n) = P BY(n0):

The set N (p) of nodes which have a permission p is

N (p) = fn j p 2 P BY(n)g:

PRV is the set of privileged nodes. As a check node, only check(JDK(p)) is allowed,

where p 2 PRM. Recall that JDK(p) is represented as:

JDK(p) = (NO�(PRV \N (p))[ ε)(N (p))�: (5.12)

We present a transformation from a given program in ΠJDK1:2 to a program in

Πcheck-free.

Construction 5.2.1

Input : a program PJDK1:2 = (NO; IS; IT;TG;CG;P BY;PRV).

Output : the program bP = (cNO;
bIS; bIT;cTG;

cCG) in Πcheck-free where:

(1) cNO = NO�2PRM. An element of cNO is represented as nPi (n2NO; Pi � PRM).

(2) For arbitrary n 2 NO and Pi � PRM,

(2.1) IS(n) = call) bIS(nPi) = call,

(2.2) IS(n) = return) bIS(nPi) = return,

(2.3) IS(n) = check(JDK(p))) bIS(nPi) = check(cNO
�
).
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(3) bIT = ITP BY(IT).

(4) cTG and cCG are defined as follows. For an arbitrary Pi � PRM,

(4.1) ni
CG
! n j ) nPi

i

cCG
�! n

P j
j where

P j =

(
Pi\P BY(n j) ni 62 PRV;

P BY(ni)\P BY(n j) ni 2 PRV;

(4.2) ni
TG
! n j and IS(ni) = call) nPi

i

cTG
�! nPi

j ,

(4.3) ni
TG
! n j, IS(ni) = check(JDK(p)) and p 2 Pi ) nPi

i

cTG
�! nPi

j .

2

Note that program bP contains only check(cNO
�
) as a check node and hence bP2Πcheck-free.

In practice, it suffices to construct the nodes reachable from the initial node bIT and the

edges connecting them.

We show that the set [[PJDK1:2]] of traces of a program PJDK1:2 in ΠJDK1:2 coincides

with the set [[bP]] of traces of program bP (modulo the homomorphism which erases the

effective permissions).

Lemma 5.2.1 For a program PJDK1:2 =(NO, IS, IT, TG, CG, P BY, PRV), let bP =(cNO,bIS, bIT, cTG, cCG) be the program obtained from PJDK1:2 by Construction 5.2.1. Let us

define the homomorphism h : (cNO[f.g)� ! (NO[f.g)� as h(nP ) = n for nP
2 cNO

and h(.) = .. Then, [[PJDK1:2]] = h([[bP]]). Note that since h is a homomorphism, for

any words a;b 2 (cNO[f.g)�, h(ab) = h(a)h(b) holds.

Proof. It suffices to show that IT . � � �. n1n2 � � �nk 2 [[PJDK1:2]] if and only if bIT . � � � .

nP1
1 nP2

2 � � �nPk
k 2 [[bP]] where P1 = P BY(n1) and

Pi =

(
Pi�1\P BY(ni) ni�1 62 PRV

P BY(ni�1)\P BY(ni) ni�1 2 PRV

for each 1 < i� k.

The only if part is shown by induction on the length of a trace of PJDK1:2.

(basis) Clearly, hITi 2 [[PJDK1:2]] and

hITP BY(IT)
i 2 [[bP]].

(inductive step) There are three cases to consider.
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Case 1: IT . � � � . n1 � � �nk�1 . n1 � � �nk�1nk 2 [[PJDK1:2]], IS(nk�1) = call and nk�1
CG
! nk.

By the induction hypothesis, we can see that

bIT . � � �.nP1
1 � � �nPk�1

k�1 2 [[bP]];
where

Pi
(1�i�k�1)

=

(
Pi�1\P BY(ni) ni�1 62 PRV;

P BY(ni�1)\P BY(ni) ni�1 2 PRV:

By the definition of cCG,

nPk�1
k�1

cCG
�! nPk

k ;

where

Pk =

(
Pk�1\P BY(nk) nk�1 62 PRV;

P BY(nk�1)\P BY(nk) nk�1 2 PRV:

Hence, bIT . � � �.nP1
1 � � �nPk�1

k�1 .nP1
1 � � �nPk�1

k�1 nPk
k 2 [[bP]]:

Case 2: IT . � � �.n1 � � �nk�1nknk+1.n1 � � �nk�1n0k 2 [[PJDK1:2]], IS(nk+1)= return and nk
TG
!

n0k. The induction hypothesis implies that bIT . � � �.nP1
1 � � �nPk

k nPk+1
k+1 2 [[bP]]. By the

definition of cTG, there is a node n0Pk
k such that nPk

k

cTG
�! n0Pk

k . Hence,

bIT . � � �.nP1
1 � � �nPk�1

k�1 nPk
k nPk+1

k+1 .nP1
1 � � �nPk�1

k�1 n0Pk
k 2 [[bP]]:

Case 3: IT . � � � . n1 � � �nk�1nk . n1 � � �nk�1n0k 2 [[PJDK1:2]], IS(nk) = check(JDK(p)) and

nk
TG
! n0k. By the induction hypothesis, we can see that bIT . � � � . nP1

1 � � �nPk
k 2

[[bP]]. From the condition among P1; � � � ;Pk and n1 � � �nk 2 JDK(L[p]), p 2 Pk.

Therefore, by the definition of cTG, there is nPk
k

cTG
�! n0Pk

k . Hence,

bIT . � � �.nP1
1 � � �nPk�1

k�1 nPk
k .nP1

1 � � �nPk�1
k�1 n0Pk

k 2 [[bP]]:
We will give a proof for case 3, the most difficult case. By the induction hypothesis on

IT . � � �.n1 � � �nk�1nk, we can see that bIT . � � �.nP1
1 � � �nPk

k 2 [[bP]] where P1 = P BY(n1)

and

Pi =

(
Pi�1\P BY(ni) ni�1 62 PRV;

P BY(ni�1)\P BY(ni) ni�1 2 PRV
(5.13)
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for 1 < i� k. Hence, it suffices to show that

nP1
1 � � �nPk�1

k�1 nPk
k .nP1

1 � � �nPk�1
k�1 n0k

Pk
: (5.14)

It follows from n1 � � �nk�1nk .n1 � � �nk�1n0k and IS(nk) = check(JDK(p)) that

n1 � � �nk�1nk 2 check(JDK(p))

= (NO�(PRV \N (p))[ ε)(N (p))�:
(5.15)

There are two cases.

� Assume that ni 62 PRV for 1 � i < k. By (5.13),

Pk =
\

1�i�k

P BY(ni): (5.16)

By (5.15), ni 2 N (p) for 1 � i � k, which implies p 2
T

1�i�k P BY(ni) by the

definition of N (p). Hence, p 2 Pk by (5.16).

� Assume that there exists a node n j 2PRV (1� j < k) and ni 62 PRV for j < i < k.

By (5.13),

Pk =
\

j�i�k

P BY(ni): (5.17)

By (5.15), ni 2 N (p) ( j � i � k) and thus p 2
T

j�i�k P BY(ni) = Pk by the

definition of N (p) and (5.17).

In either case, p 2 Pk holds and nPk
k

cTG
�! n0k

Pk is constructed by (4.3) of Construction

5.2.1. Therefore, (5.14) holds.

The if part can be shown by induction on the length of a trace of bP.

(basis) The claim holds since ITP BY(IT )
2 [[bP]] and IT 2 [[PJDK1:2]].

(inductive step) Again, we will prove the claim for the most difficult case: assume

that

� bIT . � � �.nP1
1 � � �nPk�1

k�1 .nP1
1 � � �nPk�1

k�1 nPk
k 2 [[bP]], IS(nPk�1

k�1 ) = call, nPk�1
k�1

cCG
�! nPk

k .

From the induction hypotesis, we can see IT . � � �.n1 � � �nk�1 2 [[PJDK1:2]]. On the

other hand, from nPk�1
k�1

cCG
�! nPk

k and the definition of cCG, there must be nk�1
CG
!

nk. Hence,

IT . � � �.n1 � � �nk�1 .n1 � � �nk�1nk 2 [[PJDK1:2]]:
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� bIT .� � �.nP1
1 � � �nPk�1

k�1 nPk
k nPk+1

k+1 .nP1
1 � � �nPk�1

k�1 n0Pk
k 2 [[bP]], IS(nPk+1

k+1 )= return, nPk
k

cTG
�!

n0Pk
k . (In this case, IS(nPk

k ) = call.)

From the induction hypothesis, we can see that IT . � � �.n1 � � �nknk+1 2 [[PJDK1:2]].

On the other hand from nPk
k

cTG
�! n0Pk

k and the definition of cTG, there must be

nk
TG
! n0k. Hence,

IT . � � �.n1 � � �nk�1nknk+1 .n1 � � �nk�1n0k 2 [[PJDK1:2]]:

� bIT . � � � . nP1
1 � � �nPk�1

k�1 nPk
k . nP1

1 � � �nPk�1
k�1 n0k

Pk 2 [[bP]], IS(nPk
k ) = check(cNO

�
) and

nPk
k

cTG
�! n0k

Pk where P1 = P BY(n1) and (5.13) holds. Note that nPk
k

cTG
�! n0k

P 0

k

exists only if Pk =P 0
k by (4.3) in Construction 5.2.1. By the induction hypothesis,

IT . � � � . n1 � � �nk 2 [[PJDK1:2]]. Since the transfer edge nPk
k

cTG
�! n0k

Pk exists, and

the edge nk
TG
! n0k also exists, IS(nk) = check(JDK(p)) and p 2 Pk for some

p 2 PRM. If we can prove (5.15), then n1 � � �nk�1nk .n1 � � �nk�1n0k and the claim

holds.

– Assume that ni 62 PRV for 1 � i < k. Then (5.13) implies (5.16). Since

p 2 Pk, we know that p 2
T

1�i�k P BY(ni), which implies ni 2 N (p) for

1� i � k. Therefore, (5.15) holds.

– Assume that there exists a node n j 2 PRV (1� j < k) and ni 62 PRV for j <

i < k. By (5.13), we have (5.17). Since p 2 Pk, (5.17) implies ni 2 N (p)

for j � i � k, which together with n j 2 PRV implies (5.15). By (5.15),

ni 2 L[p]( j � i � k) and thus p 2
T

j�i�k PBYni = Pk by the definition of

L[p] and (5.17).

By the condition among P1; � � � ;Pk, nPk
k

cTG
�! n0Pk

k and the definition of cTG, we

can see that IS(nk) = check(JDK(L[p])), p2 Pk and nk
TG
! n0k. On the other hand,

from

Pk =

(
Pk�1\P BY(nk) nk�1 62 PRV

P BY(nk�1)\P BY(nk) nk�1 2 PRV
;

n1 � � �nk�1nk 2 JDK(p). Hence,

IT . � � �.n1 � � �nk�1nk .n1 � � �nk�1n0k 2 [[PJDK]]:
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Therefore, [[PJDK1:2]] = h([[bP]]) holds by the definition of h. 2

Theorem 5.2.2 The verification problem for a program PJDK1:2 in ΠJDK1:2 and a veri-

fication property specified by a DFA Mψ is solvable in linear time in the program size

jjPJDK1:2jj and the number ]Mψ of states of Mψ.

Proof. Let PJDK1:2 = (NO; IS; IT;TG;CG;P BY;PRV) be a program in ΠJDK1:2 and

let bP be the program in Πcheck-free obtained from PJDK1:2 by Construction 5.2.1. Solv-

ing the verification problem for PJDK1:2 and L(Mψ) is equivalent to deciding whether

[PJDK1:2] � L(Mψ) or not (see section 3.3). By Lemma 5.2.1, this decision is further

equivalent to deciding whether h([bP])� L(Mψ). bP belongs to

Πcheck-free and the class of regular languages is closed under homomorphism (for

any regular grammar G, a regular grammar G0 can be constructed such that L(G0) =

h(L(G)) and jjGjj= O(jjGjj)). Hence, by Theorem 5.1.3, the verification problem for

PJDK1:2 and L(Mψ) is solvable in polynomial time in jjbPjj and ]Mψ. More specifically,

the problem is solvable in O((jcNOj+ jcTGj+ jcCGj) � ]Mψ) time. By Lemma 5.2.1,

solving the verification problem for PJDK1:2 and Lψ = L(Mψ) is equivalent to decid-

ing whether h([[bP]])� Lsafe[ψ]. The latter can be shown to be decidable in O((jcNOj+

jcTGj+ jcCGj) �]Mψ) time by slightly modifying the algorithm used in the proof of The-

orem 5.1.3 so that the effect of the homomorphism h can be incorporated into the algo-

rithm. Since jcNOj, jcTGj and jcCGj are O(jNOj � 2jPRMj), O(jTGj � 2jPRMj) and O(jCGj �

2jPRMj) respectively, the time complexity is O((jNOj+ jTGj+ jCGj) � ]Mψ �2jPRMj). 2

Proposition 5.2.3 The verification problem for a program PJDK1:2 in ΠJDK1:2 and a

verification property specified by a DFA Mψ is PSPACE-hard.

Proof. We transform QUANTIFIED 3-SATISFIABILITY (QUANTIFIED 3SAT) prob-

lem to the verification problem. An instance of QUANTIFIED 3SAT is a Boolean for-

mula F = (Q1x1)(Q2x2) : : :(Qnxn)E where E is a conjunction of 3-literal disjunctive

clauses involving the variables x1;x2; : : : ;xn and each Qi is either “9” or “8.”

The program PQ3SAT constructed by the transformation consists of three parts:

header, truth assignment, and satisfaction check (figure 5.3). A header consists of

two nodes ns and nt. A truth assignment consists of xi;F and xi;T for 1 � i � n. We
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consider that “ false” is assigned to xi when the control passes through xi;F and “ true”

is assigned to xi when the control passes through xi;T. We put a call edge between

xi�1;V and xi;V 0 for every V;V 0
2 fF;Tg if Qi is “9” (figure 5.4). That is, in this case

the program tries assigning one of the truth values to xi. If Qi is “8,” we put a call edge

between xi�1;V and yi;F for each V 2 fF;Tg and put a transfer edge from yi;F to yi;T.

We also put a call edge between yi;V and xi;V for each V 2 fF;Tg. The program tries

assigning each truth value to xi in this case.

Let PRM = fp1; : : : ; pn; p1; : : : ; png, and each method is granted to a subset of per-

missions as figures 5.3 and 5.4.

Suppose E =C1^C2^�� �^Cm and Ci = ui1_ui2_ui3 for 1� i�m, where ui j is a

literal over fx1; : : : ;xng. A satisfaction check consists of check(Li j) for 1 � i � m and

1� j � 3, where

Li j =

(
JDK(pk) if ui j = xk;

JDK(pk) if ui j = xk:

When the control reaches an arbitrary node in a satisfaction check, the contents s of

stack contains either xi;F or xi;T for all i. If xi;F is contained in s, then s 2 JDK(pk) and

s =2 JDK(pk). If xi;T is contained in s, then s 2 JDK(pk) and s =2 JDK(pk). Hence, the

control can reach the return node rt if the current truth assignment satisfies E.

Therefore, an execution of PQ3SAT reaches the node nt if and only if F is true. That

is, [[PQ3SAT]] 6� Lsafe[ψ] for Lψ = (NO�fntg)
� if and only if F is true. 2

Table 5.1. Complexity of the verification problem
verification property

NFA, RE DFA, DFAR

language
in a check
node

NFA, RE, DFAR, DFA
in double exponential time

DEXP-POLY time-hard
DEXP-POLY time-complete

ΠJDK1:2 general case PSPACE-hard PSPACE-hard
min(jPRMj; jDOMj)

� O(log jjPjj)
PSPACE-complete PTIME

Πcheck-free PSPACE-complete PTIME
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5.2.2 Domain Based Model

In Construction 5.2.1, we let each node of bP be a pair of a node of PJDK1:2 and the set

of effective permissions, and thus the size of bP is O(kPJDK1:2k �2jPRMj). In this chapter

we show an alternative way of constructing bP from PJDK1:2 where each node of bP is

a pair of a node of PJDK1:2 and a subset of protection domains; then the size of bP is

O(kPJDK1:2k � 2jDOMj) where DOM is the set of protection domains. We refer to this

construction algorithm as the domain based construction of bP. Practically, the number

of protection domains is often smaller than the number of permissions, in which case

the domain based construction is more efficient than Construction 5.2.1.

Below we describe the domain based construction of bP. In JDK1.2, each method

belongs to exactly one protection domain (or for short, domain) and each domain is

granted a set of permissions. Let PJDK1:2 = (NO; IS; IT;TG;CG;P BY;PRV) be a pro-

gram in ΠJDK1:2 and let DOM a finite set of domains. Assume that the domain which

a node n 2 NO belongs to is given and is denoted by D OF(n) (2 DOM). The set of

domains which is granted a permission p is also given and is denoted by GRNT(p)

(� DOM). We assume that every node in a method belongs to the same domain, that

is,

n
TG
! n0 ) D OF(n) = D OF(n0):

(Note that P BY(n) = fp j D OF(n) 2 GRNT(p)g should hold and thus this model

does not conflict with the assumptions in chapter 5.2.1.) The access control of JDK1.2

can be achieved by inspecting whether the domain of every node in the stack (precisely,

every node which is not a proper ancestor of any privileged node) is granted a specified

permission. The domain based construction of a program bP = (cNO;
bIS; bIT;cTG;

cCG) in

Πcheck-free from PJDK1:2 is the same as Construction 5.2.1, but we let each node of bP be

augmented by the set of domains of nodes in the stack instead of the set of effective

permissions. The differences between this construction and Construction 5.2.1 are:

(1) cNO = NO�2DOM,

(3) bIT = ITfD OF(IT)g,

(4.1) ni
CG
! nj ) nDi

i

cCG
�! n

D j
j where

D j =

(
Di[fD OF(n j)g if ni =2 PRV,

fD OF(ni);D OF(n j)g if ni 2 PRV,
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(4.3) ni
TG
! nj, IS(ni) = check(JDK(p)) and Di � GRNT(p)) nDi

i

cTG
�! nDi

j .

The equality between bP and PJDK1:2 can be shown in the same way as shown in

Lemma 5.2.1.

Although so far we assumed that DOM;D OF and GRNT are given, we can derive

them from P BY as follows: Define DOM as the set of the equivalence classes on NO

defined by the relation � such that n � n0 , P BY(n) = P BY(n0), D OF(n) = fn0 j

P BY(n) = P BY(n0)g and GRNT(p) = fD OF(n) j p 2 P BY(n)g. DOM;D OF and

GRNT can be calculated by the following algorithm.

(1) Let GRNT(p) = /0 for each p 2 PRM and let DOM = /0.

(2) For each n 2 NO:

(a) If there exists d 2 DOM such that p 2 P BY(n), d 2 GRNT(p) for every

p 2 PRM, then let D OF(n) = d.

(b) Otherwise, add a new element d to DOM, add d to GRNT(p) for each

p 2 P BY(n) and let D OF(n) = d.

This algorithm runs in O(jNOj �min(jNOj;2jPRMj) � jPRMj) time. Note that the cardi-

nality of DOM in this definition is not larger than that of any given set of protection

domains (there exists at most one protection domain which is granted a given subset of

permissions in this definition).

By Theorem 5.2.2, the verification problem for a program PJDK1:2 in ΠJDK1:2 and a

verification property specified by a DFA Mψ is solvable in O(kPJDK1:2k � ]Mψ �2jPRMj)

by Construction 5.2.1, and in O(kPJDK1:2k � ]Mψ � 2jDOMj) by the domain based con-

struction. We can choose one of these algorithms based on whether jPRMj< jDOMj.

The results on the complexity of the verification problem shown in chapters 4 and

5 are summarized in Table 5.1.
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main

n1         :  call

n2         :  return

spender

n3    :   call

n4    :   call

clyde

n5   :   call

n6   :   call

debit

n7    : check(JDK(pdebit))

n8    :   call

n9    :   call

n10    : return

read

n11         :  check(JDK(pread))

n12        : return

write

n13         :  check(JDK(pwrite))

n14         : return

{d, r, w}

{d}

{d, r, w}

{d}

{d}

debit’

n7   : check(JDK(pdebit))

n8   :   call

n9   :   call

n10   : return

{d}

{d}

{d}

{d, r, w}

{d, r, w}

{d, r, w}

{d, r, w}

φ

φ

φ

φ

φ

φ

Figure 5.2. An equivalent program in Πcheck-free
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check(L11) check(L12) check(L13)

check(L21) check(L22) check(L23)

check(Lm1) check(Lm2) check(Lm3)

rt: return

truth assignment

satisfaction check

header

CG
TG

… … …

……

(Q1=∃ )

(Q2=∀ )

(Qn=∃ )

return return

y2,T: call return

return return

y2,F: call

x1,T: callx1,F: call

ns: call nt: call

xn,T: callxn,F: call

PRM−{p1}

x2,F: call x2,T: call returnreturn

PRM−{p2}

PRM−{pn} PRM−{pn}

PRM−{p2}

PRM−{p1}

PRM

PRM

PRM

method

the set of permissions
granted to the method

Figure 5.3. The program PQ3SAT to solve QUANTIFIED 3SAT

xi-1,F xi-1,T

yi,F yi,T

xi,F xi,T

return

returnreturn

(a) Qi=∃

xi-1,F xi-1,T

PRM−{pi}

PRM

xi,F xi,T return

(b) Qi=∀

returnPRM−{pi}

PRM−{pi}PRM−{pi}

Figure 5.4. Edges in the truth assignment-part of PQ3SAT
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Chapter 6

Evaluation of the Verification Method

6.1. Implementation

In the previous chapter, we introduced a subclass ΠJDK1:2 of programs and showed that

the verification problem for a program in ΠJDK1:2 is solvable in linear time in the pro-

gram size. However, the worst case time complexity of the algorithm is exponential to

the number of permissions or the number of protection domains. To estimate the actual

computation time needed to solve the verification problem for a real-world program,

we implemented a verification system based on the proposed algorithm and measured

the computation time in the system. The verification system is implemented in Java.

An input to the system is a pair of a program PJDK1:2 in ΠJDK1:2 and a DFA Mψ which

specifies a verification property Lψ (i.e., Lψ = L(Mψ)). The system mainly consists

of the following classes: FlowGraphJDK1 2, FlowGraphCheckFree, NFA and DFA,

which represent ΠJDK1:2, Πcheck-free, the class of NFAs and the class of DFAs, respec-

tively. This system performs the verification procedure in the following three steps.

(Step 1) PJDK1:2 is converted into a program bP in Πcheck-free by Construction 5.2.1.

(Step 2) An NFA M
bP such that L(M

bP) = h([bP]) = [PJDK1:2] is generated from bP
according to the method proposed (see Theorem 5.1.3 in this paper) where h is the

homomorphism defined in Lemma 5.2.1.

(Step 3) Whether [PJDK1:2] � Lψ holds or not is decided by examining whether an
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equivalent condition L(M
bP)\L(Mψ) = /0 holds.

6.2. Experiments

We measured the computation time in the verification system for the following two

programs in ΠJDK1:2.

P1(k): The on-line banking program in Example 2.1 has three permissions. We ex-

tend this program to have 3� k permissions by copying read, write and debit

methods k� 1 times (program P1(k)). P1(k) models a part of an integrated on-

line banking system supplied by k banks, which is considered as a real-world

program with many permissions.

P2(k): We also consider a worst case program P2(k)= (NO; IS; IT;TG;CG;P BY;PRV),

where NO = fn0;n1; � � � ;nkg, IS(n) = call for each n 2 NO, IT = n0, TG =

/0, n0
CG
! ni (1 � i � k);ni

CG
! nj (1 � i; j � k; i 6= j), P BY(n0) = fp0; � � � ; pkg,

P BY(ni) = fp1; � � � ; pi�1; pi+1; � � � ; pkg and PRV = /0. In this program, the set

of effective permissions at the initial node is the set of all permissions. Remark

that the control can traverse the program from each node ni (1 � i � k) to any

other node n j (1 � j � k) by a call edge. Also note that n j has all permissions

except p j. Hence, when the control is at ni with P as the current set of effective

permissions, the control can reach ni again with P �fp jg as the current set of

effective permissions for any permission p j 2 P , by going through the call edge

from ni to n j and then coming back through the call edge from n j to ni. There-

fore, the pair of each node ni (1� i � k) and each subset of P BY(ni) is created

by Construction 5.2.1 and hence the size of the constructed program becomes

exponential to k.

In program P1(k), let Nclyde be the set of nodes in method clyde, Nreadi the set

of nodes in method read of the i-th bank, Nwritei the set of nodes in method write of

the i-th bank, N (pdebit) = NO�Nclyde and ERW =
S

1�i�k(Nreadi [Nwritei). In the

experiment, we specify a verification property for program P1(k) by a DFA which

accepts N (pdebit)
�N (pdebit)

�
ERW

�
. For program P2(k), the verification property is

given by a DFA which accepts NO�. Note that in Step 3, the algorithm searches a
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path which simultaneously leads M
bP and Mψ to their final states where Mψ is a DFA

such that L(Mψ) = L(Mψ). If such a path exists, then L(M
bP)\L(Mψ) 6= /0, and vice

versa. Hence, the verification condition being NO� means that there exists no path

which satisfies the above condition and therefore the algorithm searches all the paths

exhaustively. The profiles of the verification for P1(k) and P2(k) are summarized in

Table 6.1 and the relation between computation time and the number of permissions of

P1(k) (P2(k)) is showed in figure 6.1 (figure 6.2).

Table 6.1. Verification profiles of example programs
P1(k) P2(k)

k = 5 k = 10 k = 20 k = 30 k = 3 k = 5 k = 7
the number of permissions 15 30 60 90 3 5 7

P jNOj 46 86 166 246 4 6 8
jTGj+ jCGj 52 97 187 277 9 25 49bP jcNOj 51 96 186 276 13 81 449
jcTGj+ jcCGj 52 97 187 277 27 325 2695

Mψ #Mψ 2 2 2 2 1 1 1

computation
time (m sec) †

Step 1 62 208:3 1577 5662 25:3 419 137700
Step 2 17:3 47:3 297:3 902:3 3:7 40:3 1883
Step 3 878:3 6984 50550 165900 15:3 2643 415100
total 957:7 7239 52420 172400 44:3 3102 554700

verification result True True True True True True True

†JVM build J2SDK.v.1.2.2, on DEC PersonalWorkstation 500au (Alpha21164A(500MHz), 128MB RAM)

6.3. Discussion

As shown in Table 6.1, the computation time needed to verify program P1(k) is within

one minute when k � 20. On the other hand, for program P2(k), the computation time

exceeds nine minutes when k = 7. The results in figure 6.1 and figure 6.2 suggest that

for a real-world program, the size of program constructed in Construction 5.2.1 and

the computation time do not increase as in the worst case program according as the

number of permissions increases. On the other hand, we estimate that the number of

permissions used in an ordinary network application is at most several tens, because

one permission is usually related to one security class [8, 32] and users can hardly
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Figure 6.1. Verification time and number of permissions for P1(k)

manage over thirty security classes in one application. Here, a security class denotes

a set of user resources which have the same level of importance (also see Related

Works). For example, the number of permissions used in the access control system of

Dresdner Bank is under twenty [29]. Hence, we can conclude that for most of real-

world programs, the proposed verification method is feasible.

Similarly, in the domain-based model, the time complexity of the verification is

expected to be less than exponential to the number of domains for typical real-world

programs. The number of domains used in an ordinary network application is also

at most several tens, because one domain is related to one URL of a remote code

and users can hardly manage over thirty URLs in one application. For example, the

sandbox model of JDK1.0.x provides only two domains (remote code and local code).

Hence, the proposed algorithm based on the domain-based model is also expected to

be feasible for real-world programs.
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Figure 6.2. Verification time and number of permissions for P2(k)
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Chapter 7

Conclusion

In this thesis, we defined the verification problem of deciding whether a given program

which may contain stack inspection satisfies a given security property and showed that

the problem is decidable. The result is an improvement of the result in [18]. In chapter

2, flow graph based on [18] is defined as a program model. In chapter 4, we analyzed

the computational complexity of the verification problem and showed that the prob-

lem is computationally intractable. For practical purposes, we proposed an efficient

verification algorithm of which target programs are limited to containing only stack

inspection of JDK1.2. In chapter 5, we showed that the time complexity of the veri-

fication algorithm is linear in the size of the program, however, is exponential to the

number of permissions. To estimate the impact of the number of permissions on the

actual computation time, we built a verification system based on the algorithm and

performed experiments in the system for both a real-world program and one of the

worst case programs (chapter 6). Experimental results suggest that the computation

time needed to verify the real-world program is polynomial to the number of permis-

sions. Therefore, we can conclude that the method is feasible for most of real-world

programs. Closing the gap between the upperbound and the lowerbound of the prob-

lem’s complexity in three cases in Table 5.1 is a future study. Proposing other efficient

methods for the verification problem is another interesting question.
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