
Doctor's Thesis

A Decidable Subclass of Term Rewriting

Systems Which E�ectively Preserve

Recognizability

Toshinori Takai

February 5, 2002

Department of Information Processing

Graduate School of Information Science

Nara Institute of Science and Technology

Doctor's Thesis

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial ful�llment of the requirements for the degree of

DOCTOR of ENGINEERING

Toshinori Takai

Thesis committee: Hiroyuki Seki, Professor

Minoru Ito, Professor

Michiko Inoue, Associate Professor

Yuichi Kaji, Associate Professor

A Decidable Subclass of Term Rewriting

Systems Which E�ectively Preserve

Recognizability�

Toshinori Takai

Abstract

Term Rewriting system (TRS) is a well-known computational model which

operates on terms (or trees). Recently much attention has been paid to TRSs

which e�ectively preserve recognizability (EPR-TRSs). A set L of terms (or a

tree language) is recognizable if and only if there exists a tree automaton which

accepts L. A TRS R e�ectively preserves recognizability if and only if for every

recognizable set L, we can construct a tree automaton which exactly accepts

those terms rewritable from terms in L by R. It is known that some important

properties such as local conuence and joinability are decidable for EPR-TRSs.

It is undecidable whether a given TRS e�ectively preserves recognizability or

not, and hence decidable subclasses of EPR-TRSs have been proposed. However,

there exist EPR-TRSs which do not belong to any of those subclasses.

This thesis proposes a decidable subclass of TRSs, which is called �nitely

path overlapping TRSs (FPO-TRSs), and shows that every right-linear FPO-TRS

e�ectively preserves recognizability. Also, right-linear FPO-TRSs are shown to

properly include other well-known decidable subclasses of EPR-TRSs.

Strongly normalizing (or termination) property is one of the most fundamental

properties in the theory of TRSs. However, the property is undecidable, and

some subclasses have been proposed for which the property is decidable. Nagaya

and Toyama proposed growing TRSs and showed that for an almost orthogonal

�Doctor's Thesis, Department of Information Processing, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DT9861012, February 5, 2002.

i

growing TRS, strongly normalizing property is decidable by using a tree automata

technique.

In the latter half of this thesis, we consider an inverse FPO-TRS (denoted by

FPO�1-TRS), which is obtained from an FPO-TRS R by interchanging the left-

hand side and the right-hand side of each rewrite rule in R. Following the Nagaya

and Toyama's method, we show that for a given almost orthogonal FPO�1-TRS

R, it is decidable whether R is strongly normalizing or not.

Keywords:

term rewriting system, tree automaton, decidability, recognizability, strongly nor-

malizing property

ii

論 文 内 容の 要 旨
博士論文題目:

A Decidable Subclass of Term Rewriting Systems

Which E�ectively Preserve Recognizability

(構成的正則保存項書換え系の決定可能な部分クラス)

氏 名: 高井 利憲

項書換え系は, 木構造 (項) を扱う代表的な計算モデルである. 近年, 項書換え系
の部分クラスである, 構成的正則保存項書換え系が注目されている. 木言語 (項の
集合) Lが正則であるとは, L を受理する木オートマトンが存在することである.

項書換え系 Rが構成的正則保存であるとは, 任意の正則木言語 Lに対して, Rに
よる書換えより L から得られる項全体の集合を受理する木オートマトンを構成
できることをいう. 構成的正則保存項書換え系に対しては, 項書換え系に関する
いくつかの重要な性質,例えば, 局所合流性や到達可能性などが決定可能になるこ
とが知られている. 与えられた項書換え系が構成的正則保存であるかどうかは決
定不能であるため, 多くの決定可能な部分クラスが提案されてきた. しかし ,それ
らのクラスはいくつかの簡単な構成的正則保存項書換え系を含んでおらず, 十分
広い部分クラスとはいえない.

本論文では, 決定可能な項書換え系の部分クラス, 有界重なり項書換え系を提
案し,任意の右線形有界重なり項書換え系が構成的正則保存であることを示す. ま
た, 右線形有界重なり項書換え系は, 今までに知られている, 他の決定可能な構成
的正則保存の部分クラスを真に含むことも示す.

強正規化性 (停止性)は, 項書換え系の重要な性質の一つである. しかし , 強正
規化性は決定不能であるため, 強正規化性が決定可能になるような部分クラスが
いくつか提案されてきた. 長谷と外山は, 成長的項書換え系を提案し, 木オートマ
トンを用いて, 準直交成長的項書換え系に対しては,強正規化性が決定可能になる
ことを示した.

本論文の後半では, 有界重なり項書換え系の左辺と右辺を入れ換えて得られる
逆有界重なり項書換え系について考察する. 長谷と外山の方法を利用し, 与えら
れた準直交逆有界重なり項書換え系に対して, 強正規化性が決定可能になること
を示す.

キーワード :

項書換え系, 木オートマトン, 決定可能性, 正則性, 強正規化性

iii

Acknowledgements

First of all I wish to express my gratitude to Professor Hiroyuki Seki. Without

his pertinent advice and constant encouragement during the course of the study

I would have never written this thesis. I also thank to Professor Minoru Ito

and Associate Professor Michiko Inoue for their willingness to be members of the

thesis committee for this thesis. I express my thanks to Associate Professor Yuichi

Kaji, who guided me into this study, for his insightful comments and invaluable

support throughout the work.

I would like to acknowledge Dr. Yoshiki Kinoshita of National Institute of

Advanced Industrial Science and Technology for his kind support and encourage-

ment. I am extremely grateful to Dr. Hitoshi Ohsaki of National Institute of Ad-

vanced Industrial Science and Technology for his helpful comments and valuable

information on TRSs. The TRS meetings I have attended gave me suggestions

and comments; I thank all participants.

I am deeply indebted to Professor Tadao Kasami of Hiroshima City University,

Professor Toyoo Takata of Iwate Prefectual University, Dr. Hajime Watanabe of

National Institute of Advanced Industrial Science and Technology for their kind

supports. I would also like to express my thanks to my collaborators Mr. Kouji

Kitaoka and Mr. Takenori Abe for their discussions. I am obligated to entire sta�

of the Kasami and Seki laboratories, to which I have belonged, of Nara Institute of

Science and Technology for their friendliness and interest. I also thank my present

colleagues of National Institute of Advanced Industrial Science and Technology

for their comments and suggestions.

Finally I am especially grateful to my parents and the rest of the family.

iv

List of Publications

Journal Papers

1. Toshinori Takai, Yuichi Kaji and Hiroyuki Seki: \Termination property of

inverse �nite path overlapping term rewriting system is decidable," IEICE

Transactions on Information and Systems (to appear).month

2. Toshinori Takai, Yuichi Kaji and Hiroyuki Seki: \Right-linear �nite-path

overlapping term rewriting systems e�ectively preserve recognizability," Sci-

enticae Mathematicae Japonicae (submitted).

International Conference

1. Toshinori Takai, Yuichi Kaji and Hiroyuki Seki: \Right-linear �nite-path

overlapping term rewriting systems e�ectively preserve recognizability,"

Proceedings of the 11th International Conference on Rewriting Techniques

and Applications, Norwich, U.K., Lecture Notes in Computer Science, vol-

ume 1833, pages 246{260, Springer-Verlag, July 2000.

Workshops

1. Toshinori Takai, Yuichi Kaji, Takehiko Tanaka and Hiroyuki Seki: \A pro-

cedure for solving an order-sorted uni�cation problem | extension for left

nonlinear system," IEICE Technical Report, COMP98-44, October 1998.

2. Kouji Kitaoka, Toshinori Takai, Yuichi Kaji, Takehiko Tanaka and Hi-

royuki Seki: \Finite-overlapping term rewriting systems e�ectively preserve

v

recognizability," IEICE Technical Report, COMP98-45, October 1998 (in

Japanese).

3. Kouji Kitaoka, Toshinori Takai, Yuichi Kaji and Hiroyuki Seki: \Finite-

overlapping term rewriting systems e�ectively preserve recognizability,"

The 14th Term Rewriting Meeting, NAIST, March 1999.

4. Toshinori Takai, Yuichi Kaji and Hiroyuki Seki: \Right-linear �nite path

overlapping term rewriting systems e�ectively preserve recognizability,"

The 17th Term Rewriting Meeting, Osaka LERC, November 2000.

5. Takenori Abe, Toshinori Takai, Yuichi Kaji and Hiroyuki Seki: \Termina-

tion of �nite path overlapping term rewriting system," Naoki Kato, edi-

tor, New Developments of Theory of Computation and Algorithms, Kyoto,

Kokyuroku (research report) of Research Institute for Mathematical Sci-

ences, number 1205, Kyoto University, January 2001 (in Japanese).

6. Toshinori Takai: \Termination of �nite path overlapping term rewriting

systems," The 18th Term Rewriting Meeting, Sakunami, March 2001.

Technical Reports

1. Toshinori Takai, Yuichi Kaji, Takehiko Tanaka and Hiroyuki Seki: \A pro-

cedure for solving an order-sorted uni�cation problem { extension for left-

nonlinear system," NAIST Technical Report, NAIST-IS-TR98011, 1998.

2. Toshinori Takai, Yuichi Kaji and Hiroyuki Seki: \A su�cient condition

for the termination of the procedure for solving an order-sorted uni�cation

problem," NAIST Technical Report, NAIST-IS-TR99010, 1999.

vi

Contents

1 Introduction 1

2 Preliminaries 6

2.1. Term Rewriting System . 6

2.2. Tree Automaton . 12

2.3. TRS which Preserves Recognizability 13

2.4. Finitely Path Overlapping TRS 18

2.4.1 De�nitions . 19

2.4.2 Hierarchical Relation . 22

3 Recognizability Preserving Property 24

3.1. Tree Automata Construction for Descendants 24

3.2. Correctness of the Construction 28

3.2.1 Soundness . 28

3.2.2 Completeness . 42

3.3. Termination of the Construction 45

3.4. Decidable Approximations . 51

4 Strongly Normalizing Property 53

4.1. Nagaya and Toyama's method . 53

4.2. Tree Automata Construction for Inner-Most Ancestors 54

4.3. Correctness of the Construction 58

4.3.1 Soundness . 62

4.3.2 Completeness . 64

4.4. Termination of the Construction 66

vii

5 Conclusions 68

References 71

viii

List of Figures

1.1 Inclusion relation of subclasses of TRSs 4

2.1 Tree representation for term d(x; e(x; y)). 7

2.2 s sticks out of t. 19

2.3 The sticking-out relations of rewrite rules. 20

2.4 The sticking-out graph of R6. 21

3.1 The new rules introduced by ADDTRANS. 27

3.2 The number of layers of a state of Ak in the sequence (3.1). 49

ix

Chapter 1

Introduction

Term Rewriting system is a well-known computational model which operates on

terms (or trees). The following is an example of a term rewriting system:

R0 = f d(x; e(x; y))! y g

where d and e are function symbols and x and y are variables. In general, a

term rewriting system (abbreviated as TRS) is an arbitrary �nite relation on

�rst-order terms and de�nes a rewrite relation on terms. The rewrite relation

of a TRS R is an in�nite relation and written as !�

R
. For example, the term

m1(d(k(Alice); e(k(Alice);m2)) where m1 and k are function symbols and Alice

and m2 are constants can be `rewritten' to a term m by using the TRS R0, i.e.

m1(d(k(Alice); e(k(Alice);m2)) !
�

R0
m1(m2). Intuitively saying, for a TRS R,

the rewrite relation de�ned by R is the minimal relation which contains R and

is closed under contexts and substitutions. An element in a TRS is called a

rewrite rule and for a rewrite rule l ! r, l is called the left-hand side and r is the

right-hand side. The TRS R0 above consists of only one rewrite rule and de�nes

the characteristics of an encryption function (e) and a decryption function (d) in

some cryptographic protocols[13, 25]. The function e encrypts a message y with

a key x and the result is e(x; y). The TRS R0 intuitively means that the function

d can decript the result e(x; y) to y if the same key x is also given as the �rst

argument of d.

As in the example presented above, operations to replace a pattern of trees

with another pattern appear in various areas in computer science. For example,

1

a set of inference rules in the theory of automated theorem proving de�nes such

operations, which is called derivations, for a given formula. Grammars in formal

language theory replace a pattern of the left-hand side of a production rule with

the corresponding right-hand side in derivation trees. Functional programming

lanugages can directly be regarded as TRSs. Dolev and Yao[13] �rstly proposed a

mathematical model of a class of cryptographic protocols by using TRSs. Kaji et

al.[25] presented a method to verify the cryptographic protocol which is speci�ed

by using such a TRS as R0 above. TRSs are investigated as a general frame-

work for treating such replacement operations on tree structured data. More

applications can be found in surveys of TRSs[11].

We can easily see that any type 0 grammar in Chomsky's hierarchy can be

simulated by a TRS according to the de�nition that the left- and right-hand

sides of a rewrite rule can be an arbitrary term. Especially, it it known that any

Turing machine can be simulated by a TRS which consists of one (left-linear)

rewrite rule[8]. Due to its Turing-complete computational power, many important

properties such as reachability, conuence, uni�ability and strongly normalizing

property are undecidable in general. Consequently, �nding an appropriate class

of TRSs which has su�cient computational power as well as favorable properties

has been paid attention to for a long time.

On the other hand, tree automata are also widely investigated as a mathe-

matical model dealing with terms[16]. A tree automaton is a �nite-state machine

which accepts terms and tree automata de�ne the class of tree languages (sets

of terms) as follows: A tree language L is recognizable if there is a tree automa-

ton which accepts L. Tree automata have some of the useful properties as the

traditional �nite-state automata on strings have. For example, the class of re-

conizable tree languages is closed under boolean operations (union, intersection

and complement) and membership and emptiness problems are decidable.

Nevertheless TRSs and tree automata have been studied on rather indepen-

dently since their research histories and motivations are di�erent. Studies on

tree automata have strong relation to traditional string automata and formal

language theory, while the problems of TRSs are mainly motivated by problems

of mathematical logic, universal algebra, automated theorem proving and func-

tional programming. As already mentioned before, tree automata inherit many

2

advantageous properties of �nite-state automata on strings[16].

Recently, many researchers have been interested in the relation between TRSs

and tree automata[5]. The class of TRSs which e�ectively preserve recognizabil-

ity is de�ned by using tree automata as follows: Let L(A) be the tree language

accepted by a tree automaton A. For a TRS R and a tree language L, the descen-

dant of L by R, denoted by (!�

R
)(L), is the image of L by the rewrite relation

de�ned by R. That is, (!�

R
)(L) = ft j 9s 2 L: s !�

R
tg. A TRS e�ectively

preserves recognizability if for any tree automaton A we can construct a tree au-

tomaton which accepts (!�

R
)(L(A)). It is known that for a TRS which e�ectively

preserves recognizability, reachability problem, joinability problem, local conu-

ence are decidable. In fact, these problems can be translated into problems on

tree languages which are decidable according to the properties of tree automata.

In this thesis, decidability of weakly normalizing, uni�cation problem and needed

redexes is also discussed.

Unfortunately, it is undecidable whether a given TRS e�ectively preserves

recognizability or not. Therefore, some decidable subclasses of recognizabil-

ity preserving TRSs have been proposed in many papers. Such classes include

ground TRS[3], right-linear monadic TRS[29], linear semi-monadic TRS[6] and

linear generalized semi-monadic TRS[21]. The class of linear semi-monadic TRS

properly includes ground TRSs. The class of linear generalized semi-monadic

TRSs properly includes linear semi-monadic TRS but does not include right-

linear monadic TRSs. The class of right-linear monadic TRSs does not include

ground TRSs. The inclusion relation of them is shown in Figure 1.1.

In the �rst half part of this thesis, a new class of TRSs, �nitely path overlapping

TRSs (FPO-TRSs) is proposed. A TRS in the class of right-linear FPO-TRSs

(RL-FPO-TRSs) e�ectively preserves recognizability, and the class properly in-

cludes all the above mentioned decidable subclasses of TRSs which e�ectively

preserve recognizability. Gyenizse and V�agv�olgyi[21] presented the open prob-

lem to ask to generalize the class of linear generalized semi-monadic TRSs so

that a TRS in the obtained class still e�ectively preserves recognizability. The

proposed class RL-FPO-TRSs is shown to properly includes linear generalized

semi-monadic TRSs. The following TRS is an example which is included in RL-

FPO-TRS but not in the other decidable subclasses stated above where f and g

3

G-TRS

L-SM-TRS

L-GSM-TRS

RL-M-TRS

RL-FPO-TRS

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

Figure 1.1. Inclusion relation of subclasses of TRSs

are function symbols, a and b are constants and x is a variable:(
g(x)! f(g(x); b);

f (x; a)! f(a; x):

In order to prove a TRS in RL-FPO-TRSs e�ectively preserves recognizability,

this thesis provides a procedure of which input is a TRS R and a tree automa-

ton A and of which output is a tree automaton which accepts (!�

R
)(L(A)), the

descendant of the accepting language of A by R. The procedure is a non-trivial

extension of Kaji et al.'s uni�cation procedure[25]. Dealing with non-linearity by

tree automata is very di�cult due to the limitation of their recognizing power.

While Kaji et al.'s procedure can deal with left-non-linearity with some restric-

tions, the procedure proposed in this thesis can deal with arbitrary left-non-linear

rewrite rules. This thesis proves that for an RL-FPO-TRS and an arbitrary tree

automaton, the procedure is sound and complete and always terminates.

For a TRS R, the inverse ofR is a TRS obtained from R by interchanging the

left-hand side and the right-hand side of each rewrite rule inR. The class of TRSs

whose inverses e�ectively preserve recognizability has been also investigated. A

linear growing TRS[24] has this property, and later, the result was extended to

left-linear growing TRSs by Nagaya and Toyama[28]. The inverse of a (linear,

left-linear) growing TRS is a (linear, right-linear) semi-monadic TRS and vice

versa.

4

A TRS R is strongly normalizing if there is no in�nite chain by the rewrite

relation ofR. Strongly normalizing property is one of the most fundamental prop-

erties in the theory of TRSs. However, it is undecidable whether a given TRS

has the strongly normalizing property or not, and this topic has been extensively

studied. Those studies can be divided into two approaches. One approach is to

give su�cient conditions to guarantee strongly normalizing property. Multiset

ordering[9] is one of the techniques and other well-known (complete) techniques

are dependency pair[1] and semantic labelling[36, 27]. The other approach is

to propose (decidable) subclasses of TRSs for which the strongly normalizing

property is decidable. For ground TRSs[22], right-ground TRSs[10], right-linear

monadic TRSs[30], strongly normalizing property has been shown to be decid-

able. In 1999, Nagaya and Toyama showed that strongly normalizing property

is decidable for almost orthogonal growing TRSs[28] as follows: It is well-known

that for an almost orthogonal TRS, strongly normalizing is equivalent to inner-

most weakly normalizing[20]. Nagaya and Toyama proposed a procedure which

constructs a tree automaton accepting the inverse image of inner-most rewrite

relation for a given left-linear growing TRS R. Once such a tree automaton is

constructed, it is not di�cult to decide whether the TRS R is weakly inner-most

normalizing or not by using properties of tree automata.

The latter half part of this thesis discusses the inverse �nitely path overlapping

TRSs (FPO�1-TRS). It is shown that strongly normalization is decidable for

almost orthogonal FPO�1-TRSs. The proof is along with Toyama and Nagaya's

method[28] mentioned above.

The remainder of this thesis is organized as follows. In Chapter 2, the termi-

nologies and notations used throughout this thesis are introduced. After that, we

de�ne �nitely path overlapping term rewriting systems (FPO-TRSs) and show

that the class properly includes other known decidable subclasses of TRSs which

e�ectively preserve recognizability. In Chapter 3, we prove that right-linear FPO-

TRSs e�ectively preserve recognizability. In Chapter 4, we introduce the inverse

FPO-TRSs (FPO�1-TRSs) and show that strongly normalizing property is de-

cidable for almost-orthogonal FPO�1-TRSs. Chapter 5 concludes this thesis.

5

Chapter 2

Preliminaries

The chapter �rst introduces the terminologies and notations which we will use

throughout this thesis. After that we de�ne a new class of TRSs called �nitely

path overlapping TRSs.

The set of all natural numbers is denoted by N . For a set A, the power set of

A, the cardinality of A and the set consisting of all sequences over A are denoted

by 2A, jAj and A�, respectively. For a sequence A, the length of A is denoted

by jAj. For two mappings � and �0, their composition is denoted by � � �0. The

empty set and the empty sequence are denoted by ; and �, respectively. For

a relation R, transitive clouser and the reexive and transitive clouser of R are

denoted by R+ and R�, respectively.

2.1. Term Rewriting System

A signature is a �nite set in which each element is associated with a natural

number. An element in a signature is called a function symbol and for a function

symbol f the associated natural number of f is called the arity of f and denoted

as a(f). A function symbol f with a(f) = 0 is also called a constant . A set

of variables is an enumerable set V such that V \ F = ;. In the following, we

assume that F is a signature and V is a set of variables.

The set of all terms on F and V is denoted as T (F ;V) and recursively de�ned

as follows:

6

x

d

e

x y

�
��

@
@@

�
�

@
@

Figure 2.1. Tree representation for term d(x; e(x; y)).

1. If x 2 V, then x 2 T (F ;V).

2. If f 2 F and t1; : : : ; ta(f) 2 T (F ;V), then f (t1; : : : ; ta(f)) 2 T (F ;V).

For a term f () with a(f) = 0, we write f . Terms have tree structures. For

example, a term d(x; e(x; y)) can be regarded as the tree in Figure 2.1 where d

and e are function symbols with arity two and x and y are variables. A set of

terms may be called a tree language. For a term s, a position of s is a sequence

of natural numbers which indicates a certain subtree of s if we regard s as a tree.

All positions of a term s is denoted as Pos(s) and recursively de�ned as follows:

1. If t is a variable, then Pos(t) = f�g.

2. If t is of the form t = f (t1; : : : ; ta(f)) where f is a function symbol and

t1; : : : ; ta(f) are terms, then Pos(t) = f�g [
S

1�i�a(f)fi � o j o 2 Pos(ti)g.

A subterm of a term t at a position o 2 Pos(t) is denoted as t=o and de�ned as

follows:

1. t=� = t.

2. If o = i � o0 and t = f (t1; : : : ; ta(f)) with 1 � i � a(f), then t=o = ti=o
0.

For a term t, the set Var(t) consists of all variables appearing in t, i.e. Var(t) =

fx 2 V j t=o = x; 9o 2 Pos(t)g. If Var(t) = ;, then t is called ground . The set of

all ground terms on signature F is denoted by T (F). A term s is linear if, for

all x 2 Var(s), jfo 2 Pos(s) j s=o = xgj = 1 holds.

7

The term obtained by replacing a subterm of t at a position o with a term s

is denoted by t[o s]. A context is a term obtained by replacing a subterm of

some term t with the special constant � 62 F . A term obtained from a context

C by replacing � with a term s is denoted by C[s]. A relation R on terms is

closed under contexts if for two terms s; t, (s; t) 2 R implies (C[s]; C[t]) 2 R

for any context C . A substitution � is a mapping in V ! T (F ;V) satisfying

that fx j �(x) 6= xg is �nite. For a substitution �, fx j �(x) 6= xg is called the

domain of �. If the domain of a substitution � is fx1; : : : ; xng, then we may write

fx1 7! �(x1); : : : ; xn 7! �(xn)g to represent �. A substitution � can be extended

to a mapping �0: T (F ;V)! T (F ;V) in the unique way as follows:

1. If a term t is a variable, then �0(t) = �(t).

2. If a term t is of the form t = f(t1; : : : ; ta(f)) where f 2 F and t1; : : : ; ta(f)

are terms, then �0(t) = f(�0(t1); : : : ; �
0(ta(f))).

For a term s and a substitution �, we may write s� for �(s). For a term s, a

term t is an instance of s if there is a substitution � such that �(s) = t. For two

substitutions � and �0, � � �0 if there is a substitution �00 such that �00 � � = �0.

For two terms s and t, � is a syntactic uni�er of s and t if �(s) = �(t). Two

terms s and t are syntactically uni�able if there is a syntactic uni�er of s and t.

A syntactic uni�er � of s and t are most general if, for any syntactic uni�er �0,

� � �0.

A relation R on terms is closed under substitutions if for two terms s; t, (s; t) 2

R implies (�(s); �(t)) 2 R for any substitution �. A relation on terms which is

closed under both contexts and substitutions is called a rewrite relation.

De�nition 2.1 A term rewriting system (abbreviated to TRS) is a �nite relation

on terms. For a TRSR, the relation!R is the smallest rewrite relation containing

R. �

An element in a TRS is called a rewrite rule. A rewrite rule (l; r) is written as

l ! r. In the following, we sometimes present a TRS as a set of rewrite rules and

we assume that R is a TRS.

In most literatures on TRSs, the variable restriction for a rewrite rule l ! r

is assumed in the de�nition of TRSs, i.e.

8

1. l 62 V and

2. Var(r) � Var(l).

In this thesis, we treat TRSs without the variable restriction unless stated oth-

erwise.

For the inverse relation of R, !R, !
�

R
, we may write R�1, R and �

R
,

respectively. We denote the relation !R [R by $R. It is not di�cult to see

that for two terms s and t, if s !R t, then there is a substitution �, a rewrite

rule l! r 2 R and a position o such that s=o = l� and t = s[o r�].

Example 2.1 [25] Let F = fd; e; k; r;m;Alice;Bob;Chrisg where a(d) = a(e) =

2, a(k) = 1 and r;m;Alice;Bob;Chris are constants. Also let V = fx; y; zg. Let

us consider the following TRS R0 which appeared in Chapter 1.

R0 = f d(x; e(x; y))! y g:

For a ground term

d(d(k(Chris); e(k(Chris); d(k(Alice); e(k(Alice); r)))); e(r;m));

we obtain the following sequence:

d(d(k(Chris); e(k(Chris); d(k(Alice); e(k(Alice); r)))); e(r;m)) !R

d(d(k(Chris); e(k(Chris); r)); e(r;m)) !R

d(r; e(r;m)) !R m:

�

A redex (in R) is an instance of l for some l ! r 2 R. A normal form (in

R) is a term which has no redex as its subterm. Let NFR denote the set of all

ground normal forms in R. For terms t, t0 and a TRS R, if t = t[o l�] !R

t[o r�] = t0 and t=o0 is a normal form for any o0 with o0 2 Pos(t) and o � o0,

then we write t !I;R t0 and the relation is called a one-step innermost rewrite

relation.

De�nition 2.2 For a TRS R and a term s:

9

1. s is strongly normalizing (SN) in R if there exists no in�nite sequence

s0s1s2 � � � such that s0 = s and si !R si+1 for all i � 0.

2. s is weakly normalizing (WN) in R if there exists a normal form t such

that s!�

R
t.

3. s is weakly innermost normalizing (WIN) in R if there exists a normal form

t such that s!�

I;R t.

A TRS R is strongly normalizing (SN) (respectively weakly normalizing (WN),

weakly innermost normalizing (WIN)) if every term is SN (respectively WN,

WIN) in R. �

The property SN is also called termination .

Theorem 2.1 [22] The following problems are undecidable:

1. For a given TRS R and a term s, is s SN (respectively WN, WIN) in R?

2. For a given TRS R, is R SN (respectively WN, WIN)? �

A rewrite rule l ! r is left-linear(respectively right-linear) if l is linear (re-

spectively r is linear). A TRS R is left-linear (respectively right-linear) if every

rule in R is left-linear (respectively right-linear).

For a TRSR, let l1 ! r1 and l2 ! r2 be (possibly the same) rewrite rules inR

whose variables have been renamed to have no shared variables. If a non-variable

subterm of l1 at a position o 2 Pos(l1) and l2 are uni�able with a most general

uni�er �, then the pair r1� and l1�[o r2�] is called a critical pair of R and is

written as hr1�; l1�[o r2�]i. If l1 ! r1 and l2 ! r2 are the same rewrite rule,

then we do not consider the case o = �. A critical pair hr1�; l1�[o r2�]i is an

overlay if o = �. A critical pair ht; t0i is trivial , if t = t0.

De�nition 2.3 [20, 23] A TRS R is:

1. orthogonal if R is left-linear and has no critical pairs.

2. almost-orthogonal (AO) if R is left-linear and every critical pair of R is a

trivial overlay. �

10

The following lemmas concerning with one-step innermost rewrite relations can

be easily understood.

Lemma 2.2 For a term t 2 T (F ;V) and a TRS R, if a rewrite step t[o

l�] !R t[o r�] is innermost at a position o 2 Pos(t) with a rewrite rule

l ! r 2 R and a substitution �, then l� !R r� is innermost. �

Lemma 2.3 Let R be an AO-TRS. For two terms s; t 2 T (F ;V) and a rewrite

rule l ! r 2 R if s=o = l�; t = s[o r�] where o 2 Pos(s), � = fxi 7! ti j 1 �

i � ng, then s!I;R t if and only if ti 2 NFR for 1 � i � n. �

De�nition 2.4 For a TRS R and two terms s and t:

1. s and t are reachable in R if s!�

R
t or t!�

R
s.

2. s and t are joinable in R if there is a term u such that s!�

R
u and t!�

R
u.

3. A (semantic) uni�er of s and t in R is a substitution � such that �(s)$�

R

�(t). s and t are uni�able in R if there is a uni�er of s and t in R. �

A uni�er � of s and t in R is most general if, for any uni�er �0 of s and t in R,

� � �0 holds.

Theorem 2.4 For a given TRS R and two terms s and t, the following problems

are undecidable:

1. Are s and t reachable in R?

2. Are s and t joinable in R?

3. Are s and t uni�able in R? �

De�nition 2.5 For a TRS R:

1. R is conuent if, for terms s; t and t0, s!�

R
t and s!�

R
t0 then t and t0 are

joinable.

2. R is locally conuent if, for terms s; t and t0, s !R t and s !R t0 then t

and t0 are joinable. �

Theorem 2.5 The following problems are undecidable:

1. Is a given TRS R conuent?

2. Is a given TRS R locally conuent? �

11

2.2. Tree Automaton

Tree automata are natural generalization of traditional �nite-state automata on

strings. A tree automaton accepts terms instead of strings and can be de�ned

as a TRS[5]. A state is a special constant not in F . For a �nite set Q of states,

ground terms on F [Q, i.e. terms in T (F [Q), are called Q-terms .

De�nition 2.6 A tree automaton (abbreviated to TA) is given by a 4-tuple

(F ;Q;Q�nal ;�) where F is a signature, Q is a �nite set of states, Q�nal is a

subset of Q and � is a TRS constructed from Q-terms in which each rewrite rule

has the form either:

1. f(q1; : : : ; qa(f))! q or

2. q0 ! q

where f is a function symbol and q1; : : : ; qn; q and q0 are states. �

An element in Q�nal and an element in � are called a �nal state and a transition

rule , respectively. The behaviors of tree automata are de�ned as follows.

De�nition 2.7 Let A = (F ;Q;Q�nal ;�) be a tree automaton. For a ground

term s, s is accepted by A if s !�

� qf for some �nal state qf 2 Q�nal . The

accepting language of A is the set of all ground terms accepted by A. �

For a tree automaton A = (F ;Q;Q�nal ;�) we call the relation !� a move and

we may write `� or `A for !�. The accepting language of a tree automaton A

is denoted as L(A). i.e. L(A) = ft j t `�
A
qf ; 9qf 2 Q�nalg. Also let Lq(A) = ft j

t `�
A
qg for a state q of A.

By using the notion of TAs, we can de�ne a class of sets of terms.

De�nition 2.8 A set L of terms is recognizable if there is a tree automata A

such that L = L(A). �

Example 2.2 Let F and V be the signature and the variables in Example 2.1,

respectively. The TA B1 = (F ;Q0;Q0;�0) accepts T (F), the set of all ground

12

terms, where Q = fqg and �0 consists of the following transition rules:

d(q; q) ! q; e(q; q) ! q

k(q) ! q; r ! q

m ! q; Alice ! q

Bob ! q; Chris ! q:

For a term s1 = d(x; e(y; z)), let L1 be the set of all ground instances of s1, then

L1 is recognizable since the TA B2 = (F ;Q0[Q1; fqfg;�0[�1) accepts L1 where

Q0 and �0 are the same as in B1, Q1 = fq1; qfg and �1 consists of the following

transition rules:

e(q; q) ! q1; d(q; q1) ! qf :

On the other hand, for a term s2 = d(x; e(x; y)), let L2 be the set of all ground

instances of s2, then L2 is not recognizable since there is no tree automaton which

accepts L2. �

Recognizable sets inherit some useful properties of regular (string) languages[16].

Lemma 2.6 The class of recognizable sets is e�ectively closed under union, in-

tersection and complementation. For a recognizable set L, the following problems

are decidable.

1. Does a given ground term s belong to L?

2. Is L empty? �

The following lemmas are easily understood.

Lemma 2.7 The set of all ground instances of a linear term is recognizable. �

Lemma 2.8 [15] For a left-linear TRS R, NFR is recognizable. �

2.3. TRS which Preserves Recognizability

Let L be a set of terms and R be a TRS. The descendant of L by R is denoted

by (!�

R
)(L) and de�ned as (!�

R
)(L) = ft j 9s 2 L; s!�

R
tg. The ancestor of L

by R is denoted by (�

R
)(L) and de�ned as (�

R
)(L) = ft j 9s 2 L; t!�

R
sg.

13

De�nition 2.9 A TRS R e�ectively preserves recognizability if for any tree au-

tomaton A we can e�ectively construct a tree automaton A� such that L(A�) =

(!�

R
)(L(A)). �

Remark that Gyenizse and V�agv�olgyi[21] introduced the notion preserving F-

recognizability and showed that there is a di�erence between the notions preserv-

ing F -recognizability and preserving recognizability. Let F be a signature. A

TRS R e�ectively preserves F-recognizability if for any tree automaton A whose

accepting language is over F we can e�ectively construct a tree automaton A�

such that L(A�) = (!�

R
)(L(A)). For example, let a signature F = ff; g; ag with

a(f) = 1; a(g) = 1; a(a) = 0 and a TRS R = ff(x)! g(f (g(x))); f(a)! a; a!

f(a); g(a) ! a; a ! g(a)g. We can see that the TRS R e�ectively preserves

F -recognizability since descendants by R of any tree language on F is obviously

T (F). On the other hand, let F 0 = F [fcg with a(c) = 0, then the descendant

by R of the tree language ff (c)g is (!�

R
)(ff(c)g) = fgn(f(gn(c))) j n � 0g; this

implies that R does not e�ectively preserve recognizability.

In this thesis, we consider the class of TRSs which e�ectively preserve recog-

nizability and we write the class as EPR-TRSs.

Theorem 2.9 [19, 21, 28] The following problems are decidable:

1. For a given EPR-TRS R and two terms s and t:

(a) Are s and t reachable in R?

(b) Are s and t reachable in R�1?

(c) Are s and t joinable in R?

2. For a given EPR-TRS R, is R locally conuent? �

We show some more properties of EPR-TRSs.

Theorem 2.10 Let R be a left-linear TRS such that R�1 is an EPR-TRS, then

the following problem is decidable:

1. For a term s, is s WN in R?

2. Is R WN?

14

Proof. It is easily understood that T (F) = (�

R
)(NFR) if and only if R is

WN. On the other hand, by Lemma 2.8, the set NFR of normal forms in R is

recognizable since R is left-linear. Since (�

R
)(L) = (!�

R
�1)(L) for any set L of

terms andR�1 is in EPR-TRS, (�

R
)(NFR) is recognizable. For the �rst part, we

can see that s is WN if and only if s 2 (�

R
)(NFR) and the membership problem

is decidable by Lemma 2.6. For the second part, note that T (F) = (�

R
)(NFR)

if and only if (�

R
)(NFR) = ;. Hence, T (F) = (�

R
)(NFR) is decidable by

Lemma 2.6. �

Theorem 2.11 For a conuent R 2 EPR-TRS and linear terms t1 and t2 with

Var(t1) \ Var(t2) = ;, the following problem is decidable: Are t1 and t2 uni�able

in R?

Proof. Since R is conuent, t1 and t2 are uni�able in R if and only if there

exists a substitution � and a term v such that t1� !
�

R
v and t2� !

�

R
v. For a

term t, let I(t) denote the set of ground instances of t, i.e., I(t) = ft� 2 T (F) j

� is a substitutiong. Then t1 and t2 are uni�able in R if and only if

(!�

R
)(I(t1)) \ (!

�

R
)(I(t2)) 6= ; (2.1)

since Var(t1) \ Var(t2) = ;. Moreover, both I(t1) and I(t2) are recognizable

by Lemma 2.8. Thus (!�

R
)(I(t1)) and (!�

R
)(I(t2)) are recognizable since R 2

EPR-TRS. By Lemma 2.6, the condition (2.1) is decidable. �

Theorem 2.12 [7] For a TRS R, the following problem is undecidable: Does R

e�ectively preserve recognizability? �

In the following, we review some classes of TRSs which have been proposed.

De�nition 2.10 A rewrite rule is ground (respectively linear) if both the left-

and right-hand sides are ground (respectively linear). A ground (respectively

linear) TRS consists of ground (respectively linear) rewrite rules. The class of

ground TRSs (respectively linear TRSs) is denoted as G-TRS (respectively L-

TRS). �

15

Example 2.3 Let F = ff; g; h; a; cg be a signature such that a(f) = 2; a(g) =

1; a(h) = 1 and a and c are constants. Also let V = fx; y; zg be a set of variables.

The TRS R1 below is ground but R2 is not ground. Both R1 and R2 are linear.

R1 =

(
g(c)! f (g(c); c);

f(c; a)! f (f(f (a; c); a); g(c));

R2 =

(
g(x)! f (g(x); c);

f(x; g(y))! f(f (x; c); g(y)):

�

For a term s, the depth of s is denoted by depth(s) depth(s) = maxfjoj j o 2

Pos(s)g.

De�nition 2.11 [29] A rewrite rule is monadic if it satis�es the variable restric-

tion, the depth of the left-hand side is at least one and the depth of the right-hand

side is at most one. A TRS is monadic if it consists of monadic rewrite rules. �

The class of monadic TRSs (respectively right-linear monadic TRSs) is denoted

by M-TRS (respectively RL-M-TRS).

Example 2.4 Consider the signature and variables which are the same as in

Example 2.3. The TRS R3 below is an example of an RL-M-TRS.

R3 =

(
g(f(x; y))! g(x);

f(f(f (x; x); y); g(c))! f (x; y):

�

De�nition 2.12 [6] A rewrite rule is semi-monadic if it satis�es the variable

restriction, the depth of the left-hand side is at least one and the depth of the

right-hand side is zero (i.e. it is a variable or a constant) or the right-hand side is

of the form f(t1; : : : ; ta(f)) where ti (1 � i � a(f)) is either a variable or a ground

term. �

The class of semi-monadic TRSs is denoted by SM-TRS and the class of TRSs in

L-TRS \ SM-TRS is denoted by L-SM-TRS.

16

Example 2.5 Consider the signature and variables which are the same as in

Example 2.3. The TRS R4 below is an example of an L-SM-TRS which is not

an M-TRS.

R4 =

(
g(f(x; c))! g(a);

f (f(f (x; y); z); g(c))! f(g(f (a; c)); x):

�

De�nition 2.13 [21] A TRS R is generalized semi-monadic if it satis�es the

variable restriction and, for any pair of rewrite rules l1 ! r1; l2 ! r2 in R, the

following holds: For any positions � 2 Pos(r1) and � 2 Pos(l2) and for any term

l3 2 T (F ;V) satisfying that there is a substitution � such that �(l3) = l2=� and

Var(l3) \ Var(l1) = ;,

1. � = � or � = � and

2. r1=� and l3 are syntactically uni�able with most general uni�er �,

then

(a) l2=� 2 V or

(b) for each 2 Pos(l3), l2=� � 2 V implies (l3=)� 2 V [T (F). �

The class of generalized semi-monadic TRSs is denoted by GSM-TRS and the

class of TRS in L-TRS \ GSM-TRS is denoted by L-GSM-TRS.

Example 2.6 Consider the signature and variables which are the same as in

Example 2.3. The TRS R5 below is an example of an L-GSM-TRS which is not

an SM-TRS.

R5 =

(
g(g(f (x; a)))! g(g(x));

f(x; y)! g(f(x; a)):

�

Theorem 2.13 [3, 6, 21, 29] RL-M-TRS � EPR-TRS, and G-TRS � L-SM-

TRS � L-GSM-TRS � EPR-TRS. �

17

Remark that Salomaa[29] proved that any right-linear monadic TRS which con-

sists of possibly in�nitely many rewrite rules e�ectively preserves recognizability.

There is another stream of studies which relate TRSs and recognizability[24,

14, 28].

De�nition 2.14 [24] A TRSR is growing if all variables in Var(l)\Var(r) occur

at depth 0 or 1 in l for every rewrite rule l ! r in R. �

Jacquemard[24] showed that, for any linear growing TRS R, R�1 e�ectively pre-

serves recognizability and this result was extended by Nagaya and Toyama[28] as

follows.

Theorem 2.14 [28] For any left-linear growing TRS (LL-GR-TRS) R, R�1 ef-

fectively preserves recognizability. �

Note that in De�nition 2.14, the variable restriction is not assumed. It is easy to

see the following holds from De�nitions 2.12 and 2.14.

Lemma 2.15 If a TRS R satis�es the variable restriction then R is (linear,

right-linear) semi-monadic if and only if R�1 is (linear, left-linear) growing and

the left-hand side of every rewrite rule in R is not a constant. �

As a result, RL-GR�1-TRS (i.e. the class of the inverses of LL-GR-TRSs) properly

includes both of RL-M-TRS and L-SM-TRS, and it is incomparable with L-

GSM-TRS. By Theorem 2.14 and Lemma 2.15, the following corollary is directly

obtained.

Corollary 2.16 RL-SM-TRS � RL-GR�1-TRS � EPR-TRS. �

2.4. Finitely Path Overlapping TRS

A new class of TRS named �nitely path overlapping TRS (FPO-TRS) is proposed

in this section. As we will show later, the class of RL-FPO-TRS properly includes

the class of RL-GSM-TRS and RL-GR�1-TRS. It will also be shown in the next

chapter that an RL-FPO-TRS (without the variable restriction) is an EPR-TRS.

To the author's knowledge, the proposed class is the largest decidable subclass of

EPR-TRS.

18

t
x

s

y

Figure 2.2. s sticks out of t.

2.4.1 De�nitions

To de�ne the class, some additional de�nitions are necessary.

De�nition 2.15 For two terms s and t, s sticks out of t if t is not a variable and

there is a variable position (6= �) of t such that

1. for any position o with � � o � , we have o 2 Pos(s) and the function

symbol of s at o and the function symbol of t at o are the same, and

2. 2 Pos(s) and s= is not a ground term.

If s sticks out of t at and s= is not a variable (i.e. s= is a non-ground and

non-variable term), then s is said to properly stick out of t �

When the position is of interest, we say that s sticks out of t at . The

sticking out relation is illustrated in Figure 2.2.

Example 2.7 A term f(g(x); a) sticks out of f(g(y); b) at the position 1 � 1, and

f(g(g(x)); a) properly sticks out of f (g(y); b) at the position 1 � 1. �

Using the notion of sticking out relatoin, we de�ne a sticking-out graph for a TRS.

De�nition 2.16 The sticking-out graph of a TRS R is a directed graph G =

(V;E) where V = R (i.e. the vertices are the rewrite rules in R) and E is

19

r2

l1

l1

r2

l1

r2

r2

l1

21 3 4

Figure 2.3. The sticking-out relations of rewrite rules.

de�ned as follows. Let v1 and v2 be (possibly identical) vertices which correspond

to rewrite rules l1 ! r1 and l2 ! r2, respectively. Replace each variable in

Var(ri) n Var(li) with a fresh constant, say �, for i = 1; 2.

1. If r2 properly sticks out of a subterm of l1, then E contains an edge from

v2 to v1 with weight one.

2. If a subterm of r2 properly sticks out of l1, then E contains an edge from

v2 to v1 with weight one.

3. If a subterm of l1 sticks out of r2, then E contains an edge from v2 to v1

with weight zero.

4. If l1 sticks out of a subterm of r2, then E contains an edge from v2 to v1

with weight zero. �

The four cases are illustrated in Fig. 2.3.

De�nition 2.17 A �nitely path overlapping term rewriting system (FPO-TRS)

is a TRS R such that the sticking-out graph of R does not have a cycle of weight

one or more. �

An RL-TRS (right-linear TRS) being FPO is written as RL-FPO-TRS.

Example 2.8 Let R6 be a TRS consisting of the following rewrite rules p1 and

p2:

p1: f(x; a) ! f(h(y); x);

p2: g(y) ! f(g(y); b):

Figure 2.4 shows the sticking-out graph of R6. The right-hand side of p2 properly

sticks out of the left-hand side of p1 at the position 1, and hence there is an edge

20

��
��
p1 ��

��
p2
	

-1

0

Figure 2.4. The sticking-out graph of R6.

of weight one from p2 to p1. The sticking-out graph also has a self-looping edge

of weight zero at p2 since the left-hand side g(y) of p2 sticks out of f(g(y); b)=1 =

g(y). Since the variable y in p1 is replaced with a constant �, the right-hand

side of p1 does not stick out of its left-hand side. There is no other edge since

there is no other sticking-out relation between subterms of these rewrite rules.

The sticking-out graph has a cycle of weight zero, but does not have a cycle of

weight one or more, and henceR6 is �nitely path overlapping. LetR7 = ff (x)!

g(f (g(x)))g. The subterm f(g(x)) of the right-hand side of the (unique) rewrite

rule properly sticks out of its left-hand side, as in Condition 2 of the de�nition

of sticking-out graph. The sticking-out graph of R7 consists of one vertex and

one cycle with weight one. Therefore, R7 is not �nitely path overlapping. Note

that R7 62 EPR-TRS since (!�

R7
)(ff(a)g) = fgn(f(gn(a))) j n � 0g is not

recognizable. �

Remark that the sticking-out graph is e�ectively constructible for a given TRS

R, and hence it is decidable whether a given TRS R is �nitely path overlapping

or not (in O(m2n2) time where m is the maximum size of a term in R and n is

the number of rules in R).

In the following, it is shown that any generalized semi-monadic TRS is an

FPO-TRS, which implies that the class of FPO-TRS include the class of gener-

alized semi-monadic TRS. A simple example shows that the inclusion relation is

proper.

In the next chapter, it is shown that if a TRS is a right-linear FPO-TRS, then

it e�ectively preserves recognizability. Summarizing these results, the class of

right-linear FPO-TRS is a decidable subclass of EPR-TRS and properly contains

the class of linear generalized semi-monadic TRS and right-linear monadic TRS.

21

2.4.2 Hierarchical Relation

Although a generalized semi-monadic TRS (GSM-TRS) was originally de�ned in

[21] with the variable restriction as in De�nition 2.13, we give another de�nition

of GSM-TRS without the variable restriction in the following lemma to treat

growing TRS, GSM-TRS and FPO-TRS in a uniform way.

Lemma 2.17 A TRS R is in GSM-TRS if and only if the sticking-out graph of

R has no edge with weight one. If a TRS R is generalized semi-monadic, then

R is �nitely path overlapping.

Proof. We show the only if part by contradiction. If part can be shown in

a similar way. Assume that R is a GSM-TRS and contains rules l1 ! r1 and

l2 ! r2 (each variable in Var(ri)nVar(li) has been replaced with a constant � for

i = 1; 2) which satisfy condition 1 of the de�nition of sticking-out graph. In this

case, there is a position � 2 Pos(l1) such that r2 properly sticks out of l1=�. Let

 be the variable position of l1=� at which r2 properly sticks out of l1=�, then

l1=� � is a variable and r2= is a non-ground and non-variable term. Let l3 be

the term which satis�es the following conditions:

1. For a position o with � � o � , l3 and l1=� have the same symbol at o,

2. a variable, say xo, occurs at a position o which is disjoint to and is written

as o0 � i with o0 � and

3. a variable x occurs at .

It is easily understood that l1=� is an instance of l3 and that l3 and r2 are

syntactically uni�able by an mgu � which in particular replaces x by r2=.

Now we have (l3=)� = r2=, which is neither a variable nor a ground term by

assumption. This concludes that R is not a GSM-TRS. In a similar way, we can

show that if any pair of rules in R satisfy the condition 2 of the de�nition of

sticking-out graph, then R is not a GSM-TRS. �

Theorem 2.18 RL-GR�1-TRS � RL-GSM-TRS � RL-FPO-TRS.

22

Proof. The �rst part is directly obtained from the de�nitions.

The class of RL-FPO-TRS includes the class of RL-GSM-TRS by Lemma 2.17.

TRS R6 in Example 2.8 is RL-FPO but not GSM. If we take l1 = f (x; a),

r2 = f(g(y); b), � = � = � and l3 = f(x; z), then r2 and l3 are uni�able by an

mgu � = fx 7! g(y); z 7! bg. Let = 1, then l1=� � = l1=1 is a variable x while

(l3=)� = g(y) is neither a variable nor a ground term. Therefore R6 is not a

GSM-TRS. �

The hierarchical relation among the class of TRSs mentioned in this chapter

is illustrated in Figure 1.1 in Chapter 1.

23

Chapter 3

Recognizability Preserving

Property

In this chapter, it is shown that any RL-FPO-TRS e�ectively preserves recogniz-

ability.

3.1. Tree Automata Construction for Descen-

dants

In this section, we will show that every RL-FPO-TRS R belongs to EPR-TRS

by constructing a TA A� such that L(A�) = (!�

R
)(L(A)) for a given TA A.

To deal with non-left-linear TRS, we need to construct a kind of product

automata whose states are Cartesian products of sets of terms. To represent such

a Cartesian product and a usual �rst-order term in a uniform way, we introduce

a packed state. Intuitively, a packed state is an extension of a �rst-order term

such that a �nite set of terms, rather than a single term, occurs at a subterm

position.

De�nition 3.1 For a signature F and a �nite set Q, the set of packed states ,

denoted PF ;Q, is de�ned as follows:

1. If q 2 Q, then fqg 2 PF ;Q.

2. If f 2 F and p1; : : : ; pa(f) 2 PF ;Q, then ff (p1; : : : ; pa(f))g 2 PF ;Q.

24

3. If p1; p2 2 PF ;Q, then p1 [p2 2 PF ;Q. �

For the readability, a packed state ft1; : : : ; tng is written as ht1; : : : ; tni.

Example 3.1 Let F the signature in Example 2.3 in Chapter 2 and Q = fq1; q2g.

We can easily verify that hf(hq1i; hq2i); g(hg(hq1i); hq2ii)i belongs to PF ;Q. �

Procedure 3.1 (Tree automata Construction)

Input: a TA A = (F ;Q;Q�nal ;�) and an RL-TRS R

Output: a TA A� such that L(A�) = (!�

R)(L(A))

Step 1. Add a new state qany to Q and add a transition rule f (qany ; : : : ; qany) !

qany to � for each f in F . Obviously, t `�
A
qany for any t 2 T (F). Let

A0 = (F ;Q0;Q
0
�nal ;�0) be a \packed" version of A where Q0 = fhqi j q 2

Qg � PF ;Q, Q
0
�nal = fhqi j q 2 Q�nalg, and �0 = ff (hq1i; : : : ; hqni) !

hqi j f(q1; : : : ; qn)! q 2 �g [fhq0i ! hqi j q0 ! q 2 �g.

Step 2. Let k = 0. This k is used as a loop counter.

Step 3. Let Qk+1 = Qk and �k+1 = �k.

Step 4. The set of transition rules is modi�ed in this step. Let l ! r be a rewrite

rule in R. Assume l has m variables x1; : : : ; xm and xi (1 � i � m) occurs

for i times at positions oij (1 � j � i) in l. Also assume xi occurs at oi in

r for xi 2 Var(r). If there are states pij; p 2 Qk with 1 � i � m; 1 � j � i,

l[oij pij j 1 � i � m; 1 � j � i] `
�

k p (3.1)

and

Lpi1(Ak) \ � � � \ Lpii(Ak) 6= ; (3.2)

for 1 � i � m, then add

pi =
[

1�j�i

pij (1 � i � m) (3.3)

to Qk+1 as new states and let � = fxi 7! pi j 1 � i � mg [fx 7! hqanyi j

x 2 Var(r) n Var(l)g. If r is a variable, then let tr� = r�. Otherwise, let

tr� = hr�i. Do the following (a) through (c).

25

(a) Add tr� ! p to �k+1.

(b) Let p = ht1; : : : ; tni. Add tr� ! htii to �k+1 for 1 � i � n. A transition

rule de�ned in (a) or (b) is called a rewriting transition rule of degree

k +1 and if a move of the TA is caused by such a rule, then the move

is called a proper rewriting move of degree k + 1.

(c) Execute ADDTRANS(tr�). In ADDTRANS(tr�), new states and

transition rules are de�ned so that r� `�k+1 tr�.

Simultaneously execute this Step 4 for every rewrite rule and every tuple of

states that satisfy conditions (3.1) and (3.2).

Step 5. Continue the loop until �k+1 = �k. If �k+1 6= �k, then k = k + 1 and

go to Step 3.

Step 6. Output Ak as A�. �

Procedure 3.2 [ADDTRANS] This procedure takes a packed state p as an

input. If p has already been de�ned as a state, then the procedure performs

nothing. Otherwise, the procedure �rst de�nes p as a new state of Qk+1 and also

de�nes transition rules as follows. It is required that if p = ht1; : : : ; tni (n � 2),

then each htii has been de�ned as a state.

Case 1. If p = hci with c a constant, then de�ne c! hci as a transition rule.

Case 2. If p = hf(p1; : : : ; pa(f))i with f 2 F , then de�ne f(p01; : : : ; p
0

a(f)) ! p

as a transition rule where p0i = pi if pi is a state, otherwise p0i = hpii for

1 � i � a(f) and execute ADDTRANS(p0i) for 1 � i � a(f).

Case 3. If p = ht1; : : : ; tni (n � 2), then do the following (i) through (iii).

(i) De�ne new "-rules p! htii for 1 � i � n.

(ii) For each transition rule of the form p0 ! p0 (p0; p0 2 Qk; p0 � p),

de�ne a new "-rule p00 ! p and execute ADDTRANS(p00) where p00

is the state de�ned as p00 = (p n p0) [p0 (see Figure 3.1(a)). In this

case, if p0 ! p0 is a rewriting transition rule of degree k0, then we call

the new rule a non-proper rewriting transition rule of degree k0. If a

26

new rule
(b) a new rule defined in (iii)(a) a new rule defined in (ii)

new rule

1p’’=<t , ... , p’

1=<t , ... , p0p

f(p
21

, ... , p
2a(f)

) p2

f(p
11

, ... , p
1a(f)

) p1

f(p
n1

, ... , p
na(f)

) pn

f(p
1

, ... , p
a(f)

) p

n, ... ,t >

n, ... ,t >

’ ’

Figure 3.1. The new rules introduced by ADDTRANS.

move of the TA is caused by this new rule, then the move is also called

a non-proper rewriting move of degree k0.

(iii) If there are states p1; : : : ; pn and a function symbol f such that p =S
1�i�n pi and f(pi1; : : : ; pia(f)) ! pi 2 �k for 1 � i � n, then de�ne

new rules f(p01; : : : ; p
0

a(f)
)! p and f (p01; : : : ; p

0

a(f)
)! htii for 1 � i � n

and execute ADDTRANS(p0j) where p0j =
S

1�i�n pij for 1 � j �

a(f) (see Figure 3.1(b)). �

Example 3.2 Let F be the signature in Example 2.3 and B3 = (F ;Q;Q�nal ;�)

be a TA where Q = f q0; q1; q
0

0; q
0

1; q
0

2; qfg, Q�nal = fqfg and � consists of the

following transition rules:

c! q0; h(q0)! q1; h(q1)! q0;

c! q00; h(q00)! q01; h(q01)! q02; h(q02)! q00;

f(q0; q
0

0)! qf :

It can be easily veri�ed that L(B3) = ff(h
2m(c); h3n(c)) j m;n � 0g. Let R8 =

ff(x; x) ! g(x); g(x) ! xg. R is an RL-FPO-TRS. We apply Procedure 3.1 to

B3 and R8. Consider the rewrite rule f (x; x) ! g(x) in Step 4 for A0(k = 0).

Since a move f (hq0i; hq
0

0i) `0 hqfi is possible, new transition rules

hg(hq0; q
0

0i)i ! hqfi (3.4)

g(hq0; q
0

0i) ! hg(hq0; q
0

0i)i (3.5)

c ! hq0; q
0

0i (3.6)

27

h(hq1; q
0

2i) ! hq0; q
0

0i

h(hq0; q
0

1i) ! hq1; q
0

2i

h(hq1; q
0

0i) ! hq0; q
0

1i

h(hq0; q
0

2i) ! hq1; q
0

0i

h(hq1; q
0

1i) ! hq0; q
0

2i

h(hq0; q
0

0i) ! hq1; q
0

1i

are added to �1 where ADDTRANS is recursively executed for the underlined

subterms. The transition rule (3.4) is de�ned in Step 4 and (3.5) is added in Case 2

of ADDTRANS. When ADDTRANS(hq0; q
0

0i) is executed, the Case 3(iii) is

applied to the input and the rule (3.6) is added by using the rules c ! q0 and

c ! q00. The others are also added in Case 3(iii) of ADDTRANS(hq0; q
0

0i) and

in its recursive execution. Next, consider the rewrite rule g(x)! x in Step 4 for

A1 (k = 1). Since

g(hq0; q
0

0i) `1 hg(hq0; q
0

0i)i `1 hqfi;

hq0; q
0

0i ! hqfi is added to �2. Thus we obtain

h(h(h(h(h(h(c)))))) `�2 hq0; q
0

0i `2 hqfi

and hence h(h(h(h(h(h(c)))))) 2 L(A2). We can verify that A3 = A2 (= A�)

and L(A�) = (!�

R8
)(L(B)) = fg(h6n(c)) j n � 0g [fh6n(c) j n � 0g [L(B). �

3.2. Correctness of the Construction

3.2.1 Soundness

Lemma 3.1 For any k � 0 and a state q 2 Q�nal , Lq(Ak) � (!�

R
)(Lq(A0)). �

In this subsection, we prove of the soundness lemma, Lemma 3.1, of Procedure 3.1.

The procedure can accept some left-non-linear TRSs as an input. Dealing with

non-linear terms is beyond the capability of TAs in general. Here we introduce a

conditional linearization of a non-left-linear TRS in order to deal with non-left-

linear TRSs by TAs. The notion of the conditional linearization �rstly introduced

by De Vrijer[12] and by De Vrijer and Klop[26] to simplify the proof of Chew's

28

theorem. Toyama and Oyamaguchi[35] gave a su�cient condition to guarantee

conuence property by using the technique of conditional linearization. The

de�nition of conditional linearization introduced in this thesis is based on Toyma

and Oyamaguchi's one[35].

For an RL-TRS R, let nR be the smallest integer such that, for every rewrite

rule l ! r 2 R, no variable occurs more than nR times in l. Let ^R = f^i j 2 �

i � nRg be the set of new function symbols where the arity of ^i is i. Note that

if nR � 1, then ^R = ; by de�nition. If the subscript i of the function symbol ^i

is clear from the context, then we may write ^ instead of ^i. Also we may write

^ instead of ^R. A term in T (F [^) is called a ^-term.

De�nition 3.2 For an RL-TRS R, � is a TRS which is de�ned as: � = f^n(x;

: : : ; x) ! x j ^n 2 ^R; n � 2g: �

Example 3.3 Let R9 be ff(x; x) ! g(x)g, then � = f^2(x; x) ! xg. For a

term s = f(^(^(a; a); a)), s!�

� f (a). �

De�nition 3.3 For an RL-TRS R, a rewrite step !R�
is the smallest relation

on ^-terms containing the rewrite relation !R on F -terms and closed under

contexts on ^-terms. �

De�nition 3.4 For a right-linear rewrite rule l ! r, the conditional linearization

of l ! r is a conditional rewrite rule de�ned as follows and written as ^L(l ! r):

1. Let Var(l) = fx1; : : : ; xng. Assume xi occurs at oij (1 � j � j) in l and if

xi occurs in r then it occurs at oi.

2. Introduce new variables xij and yi for 1 � i � n and 1 � j � j.

3. De�ne ^L(l ! r) = l[oij xij j 1 � i � n; 1 � j � j] ! r[oi

^(xi1; : : : ; xii) j for i such that xi occurs in r] with the condition (xij = yi

(1 � i � n; 1 � j � i)).

For an RL-TRS R, de�ne ^(R) = f^L(l ! r) j l ! r 2 Rg. �

De�nition 3.5 For an RL-TRS R, a rewrite step !^(R) is de�ned as follows:

1. !^(R) = f(s; t) j (s; t) 2 !^(R);i for some ig.

29

2. !^(R);0 = ;.

3. !^(R);i+1 = f(C[l�]; C[r�]) j C is a context, l ! r(x1 = y1; : : : ; xn = yn) is

a conditional rewrite rule in ^(R), � is a substitution such that yi� 2 T (F)

for 1 � i � n and xi� (!^(R);i [!�)
� yi� g. �

We say s!^(R);i t is a rewrite step of degree i.

De�nition 3.6 For two ^-terms s; t and an RL-TRS R:

1. s!�;^(R) t if s!
�

� � !^(R) � !
�

� t.

2. s!�;R�
t if s!�

� � !R�
� !

�

� t. �

In De�nition 3.5, the reason why the domain of yi� for 1 � i � n is restricted

to T (F) is that if this condition is not assumed, then it may occur that, for two

F -terms s and t, s 6!�

R
t but s!�

^(R) t. For example, letR = ff(x1; x1; x2; x2)!

g(x1; x2); g(x; x)! c00g[R0 whereR0 = fa! c; a! c0; b! c; d! c0; e! c0; e!

cg and consider two F -terms f(a; b; d; e) and c00. The conditional linearization of

R is ^(R) = ff(x11; x12; x21; x22) ! g(^(x11; x12);^(x21; x22)) (x11 = y1; x12 =

y1; x21 = y2; x22 = y2); g(x1; x2) ! c00 (x1 = y; x2 = y)g [R0. If we ignore the

condition that the domain of yi� is restricted to T (F), then f(a; b; d; e) !^(R)

g(^(a; b);^(d; e)) !�

^(R) g(^(c
0; c);^(c0; c)) !^(R) c

00 holds. On the other hand,

we can see that f (a; b; d; e) 6!�

R
c00.

De�nition 3.7 For an RL-TRS R, !�;R[^(R) = !�;R�
[!�;^(R). �

For two terms s; t, if s !1 � � � !n t holds where !i is either !� or !R�
or

!^(R);di, then s !�;R[^(R) t and we say that maxfdi j for i such that !i =

!^(R);di g is the maximum degree of the sequence s!1 � � � !n t.

Example 3.4 Let R10 = ff(x) ! g(x); h(x; x) ! h0(x)g, then we obtain

^(R10) = ff(x) ! g(x); h(x1; x2) ! h0(^(x1; x2)) (x1 = y; x2 = y)g. For

a ground term h(f(a); g(a)), h(f(a); g(a)) !�;^(R10) h
0(^(f(a); g(a))) !�

�;^(R10)

h0(g(a)). �

Lemma 3.2 For a ^-term s, an F-term t and an RL-TRS R, s !�

�;R[^(R) t

implies s!�

�;R t.

30

Proof. The proof is shown by induction on the number of maximum degree of

the rewrite sequence s !�

�;R[^(R) t. For the basis, the lemma holds obviously.

Assume the lemma holds for every sequence whose maximum degree of rewrite

steps is n� 1 or less and consider the case when the maximum degree is n. The

inductive part is shown by another induction on the number of rewrite steps of

degree n by !^(R). Assume the lemma holds for every sequence whose rewrite

steps of degree n by!^(R) is n
0�1 or less and consider the case for n0. A sequence

which has n0 rewrite steps of degree n by !^(R) can be written as:

s !�

�;R[^(R) s0

= s0[o l�]

!^(R) s0[o r�]

= t0

!�

�;R[^(R) t (3.7)

where s0; t0 are ^-terms, s0[o l�] !^(R) s
0[o r�] is the �rst rewrite step of

degree n by !^(R), l ! r is a rewrite rule in ^(R), � is a substitution and o is a

position in s0. Remark that the sequence s0[o r�] !�

�;R[^(R) t contains n
0 � 1

rewrite steps of degree n by !^(R). We assume the following:

1. ^L(l
0
! r0) = l ! r where l0 ! r0 2 R.

2. l0 has m variables x1; : : : xm.

3. For 1 � i � m, xi occurs at positions oij (1 � i � i) in l0 and if xi occurs

in r0 then it occurs at oi.

4. For 1 � i � m and 1 � i � i, l=oij = xij, which is a new variable for

de�ning l ! r from l0 ! r0 in De�nition 3.4.

5. � = fxij 7! tij j 1 � i � m; 1 � j � ig.

In the following, we de�ne an F -term tk for each xk (1 � k � m).

If xk does not occur in r0, then from the de�nition of !^(R) there exists an

F -term tk such that tkj !
�

�;^(R) tk for 1 � j � k where the degree of each rewrite

31

step !^(R) is less than or equal to n � 1. By the inductive hypothesis for n, we

obtain

tkj !
�

�;R tk (1 � j � k): (3.8)

If xk occurs in r0, then r�=ok = ^(tk1; : : : ; tkk). Consider how the subterm

^(tk1; : : : ; tkk) of t = s0[o r�] is rewritten in the rewrite sequence (3.7). Since

t0 is rewritten to a term t in T (F) (i.e., all the ^ symbols disappear during the

rewriting), there are two cases.

1. The subterms tk1; : : : ; tkk of ^(tk1; : : : ; tkk) are rewritten to an identical

term tk in T (F), i.e. tkj !
�

�;R[^(R) tk for 1 � j � k. By applying the

inductive hypothesis for n0 (when n0 � 2) or the inductive hypothesis for n

(when n0 = 1) to these rewrite sequences, we obtain the relations

tkj !
�

�;R tk (1 � j � k): (3.9)

2. The term ^(tk1; : : : ; tkk) is rewritten to ^(t0k1; : : : ; t
0

kk
) and disappear in

the subsequent rewrite steps, i.e.,

t0 = s0[o r�[ok ^(tk1; : : : ; tkk)]]

!�

�;R[^(R) t00

= t00[o0 l00�00]

= t00[o0 l00�00[o01 ^(t
0

k1; : : : ; t
0

kk
)]] (3.10)

!�;R[^(R) t00[o0 r00�00] (3.11)

!�

�;R[^(R) t

where t00 is a ^-term, o0 is a position in t00, l00 ! r00 2 ^(R), �00 is a

substitution, o01 is a position in l00�00 and there is a variable position o001 in l00

such that o001 � o01 and the variable l00=o001 does not occur in r00. The rewrite

rule l00 ! r00 must be in ^(R) since the co-domain of �00 contains function

symbols in ^. The position of the subterm ^(tk1; : : : ; tkk) in t0 is o � ok.

By the rewrite step (3.11) and the de�nition of !^(R), there is an F -term

tk 2 T (F) such that t0kj !
�

�;^(R) tk which has only rewrite steps by !^(R)

of degree n � 1 or less for 1 � j � k by De�nition 3.5. By the inductive

hypothesis for n, we obtain

t0kj !
�

�;R tk: (3.12)

32

Also from the sequence (3.10), it follows that

tkj !
�

�;R[^(R) t0kj (1 � j � k): (3.13)

From (3.12) and (3.13), we obtain the sequences

tkj !
�

�;R[^(R) tk (1 � j � k) (3.14)

where the numbers of rewrite steps of degree n by !^(R) are less than or

equal to n0 � 1. By the inductive hypothesis,

tkj !
�

�;R tk (1 � j � k): (3.15)

It follows from (3.8), (3.9) and (3.15) that

s0 = s0[o l�]

= s0[o l[oij tij j 1 � i � m; 1 � j � i]]

!�

�;R s0[o l0�0] (3.16)

where �0 = fxi 7! ti j 1 � i � mg. Since l0 ! r0 2 R and ti 2 T (F) (1 � i � m),

we obtain

s0[o l0�0]!R�
s0[o r0�0] (3.17)

by De�nition 3.3. Since s0[o r�] !�

�;R[^(R) t and there is no function symbol

^ in the left-hand side of any rewrite rule in R[^(R),

s0[o r0�0]!�

�;R[^(R) t; (3.18)

which contains n0� 1 or less rewrite steps of degree n by!^(R). By the relations

(3.16),(3.17) and (3.18), we obtain s !�

�;R[^(R) t where the number of rewrite

steps of degree n by !^(R) is less than or equal to n0 � 1. By the inductive

hypothesis, we obtain s!�

�;R t and the lemma holds. �

Before proving the soundness of Procedure 3.1, we need some notions con-

cerning with the TA constructed in the procedure.

A state q in Qk is singleton if jqj = 1. A transition rule in �k is singleton if its

right-hand side is a singleton state. A move caused by a singleton transition rule is

called a singleton move . For a TA Ak and a state q 2 Qk, let Ak�(q) (respectively

33

Ak�(q)) be the TA obtained from Ak(q) by removing every rewriting transition

rules (respectively non-singleton transition rules). For an F -term s and a state

q 2 Qk, if s `
�

k q without any rewriting moves (respectively non-singleton moves),

then we write s `�
k�

q (respectively s `�k� q). Remark that if s `�k� q, then the

move does not contain any non-proper rewriting moves since every non-proper

rewriting transition rule is non-sigleton (see Case 3(ii) of ADDTRANS).

For a set ^ and a TA A = (F ;Q;Q�nal ;�), the extended TA ^(A) for T (F [

^) is de�ned as ^(A) = (F [^;Q;Q�nal ;�[�^) where �^ = f^n(q1; : : : ; qn)!

q;^n(q1; : : : ; qn) ! hti j ^n 2 ^; q1; : : : ; qn 2 Q; q1 [� � � [qn = q 2 Q; t 2 qg.

A move caused by a transition rule in �^ is called a ^-move. For a TA Ak in

the procedure, we write `^;k instead of `^(Ak). The TAs A^;k� , A^;k� and the

relations `^;k� ;`^;k� are similarly de�ned and we will use their combinations, e.g.

`^;k�;�.

Lemma 3.3 Let r 2 T (F ;V) be a linear term with m variables x1; : : : ; xm at

o1; : : : ; om, respectively, s be a ^-term and � be a substitution fxi 7! qi j 1 � i �

mg where qi 2 Qk (1 � i � m). If r is a variable, then let tr� = r�. Otherwise,

let tr� = hr�i. If tr� 2 Qk and s `�
^;k� tr�, then the sequence can be written as

s `�
^;k�

s[oi qi j 1 � i � m] `�
^;k�

tr�. �

The next lemma states that if a ^-term s is accepted by a state q then there is a

^-term s0 such that s0 is accepted by q only with singleton moves and s0 can be

rewritten to s by rewrite rule ^i(x; : : : ; x)! x (i � 2).

Lemma 3.4 For a ^-term s and a state q 2 Qk, if s `
�

^;k q, then there is a

^-term s0 such that s0 `�
^;k� q and s0 !�

� s.

Proof. The proof is shown by induction on the number of non-singleton rewriting

moves in the sequence �: s `�
^;k q. For the base case, the lemma holds obviously.

Assume the lemma holds for every sequence which has at most n�1 non-singleton

rewriting moves and consider the case for n. In this case, � can be written as

s `�
^;k� s[o t] `k s[o p] `�

^;k q (3.19)

where o is in Pos(s), t ! p is a non-singleton transition rule and the move

s[o t] `k s[o p] is the �rst non-singleton rewriting move in �. Assume

34

p = ht1; : : : ; tmi (m � 2). There are three cases (1),(2) and (3) for the transition

rule t! p:

(1) If t is of the form f(p1; : : : ; pa(f)) where f 2 F and pi 2 Qk for 1 � i � a(f),

transition rules t ! htii for 1 � i � m are also de�ned in Case 3(iii) of

ADDTRANS.

(2) If t ! p is a proper rewriting transition rule, then t ! htii for 1 � i � m

are also de�ned in Step 4(b) of Procedure 3.1.

Let s00 = s[o ^m(s=o; : : : ; s=o)], then in both cases (1) and (2), we have

s00 `�
^;k� s[o ^m(t; : : : ; t)]

`�k� s[o ^m(ht1i; : : : ; htmi)]

`^ s[o
[

1�i�m

htii]

= s[o p]

`�
^;k q: (3.20)

(3) If t 2 Qk and the transition rule t ! p is de�ned in Case 3(ii) of AD-

DTRANS, there are two cases: Assume that the transition rule t ! p is

de�ned from a transition rule p0 ! p0 such that t = (p n p0) [p
0.

(3a) If p0 ! p0 is a singleton transition rule, i.e. jp0j = 1, or p0 ! p0 is not

a rewriting transition rule, then it is easy to see that there is a singleton

transition rule q0 ! q0 such that t = (p n q0) [q
0. (Especially, q0 = p0 and

q0 = p0 in the former case.) Assume q
0 = ht01; : : : ; t

0

m0
i and q0 = ht1i without

loss of generality. Let s00 = s[o ^m(^m0(s=o; : : : ; s=o); s=o; : : : ; s=o)], then

we have

s00 `�
^;k� s[o ^m(^m0(t; : : : ; t); t; : : : ; t)]

`�
^;k� s[o ^m(^m0(ht01i; : : : ; ht

0

m0i); ht2i; : : : ; htmi)]

(by Case 3(i) of ADDTRANS)

`^ s[o ^m(
[

1�i�m0

ht0ii; ht2i; : : : ; htmi)]

= s[o ^m(q
0; ht2i; : : : ; htmi)]

35

`^;k� s[o ^m(q0; ht2i; : : : ; htmi)]

= s[o ^m(ht1i; ht2i; : : : ; htmi)]

`^ s[o
[

1�i�m

htii]

= s[o p]

`
�

^;k q: (3.21)

Since there are at most n� 1 non-singleton rewriting moves in both (3.20)

and (3.21), by the inductive hypothesis, there is a term s0 such that s0 `�
^;k� q

and s0 !�

� s00. Obviously, s00 !�

� s and the lemma holds.

(3b) If p0 ! p0 is a rewriting transition rule and jp0j � 2, then there are two cases:

Assume p0 = ht01; : : : ; t
0

m0
i and p n p0 = htj1; : : : ; tjm00 i where m

00 = jpj � jp0j.

(i) If jp0j = 1 (i.e., p0 = ht01i), then for s000 = s[o ^m00+1(s=o; : : : ; s=o)]

we have

s000 `�
^;k� s[o ^m00+1(ht

0

1i; htj1i : : : ; htjm00 i)]

`k s[o ^m00+1(p0; htj1i : : : ; htjm00 i)]

`^ s[o
[

1�i�m00

htjii [p0]

= s[o p]

`�
^;k q: (3.22)

(ii) If jp0j > 1, then let

s000 = s[o ^m00+1(^m0(s=o; : : : ; s=o); s=o; : : : ; s=o)]:

We have

s000 `�
^;k� s[o ^m00+1(^m0(ht01i; : : : ; ht

0

m0i); htj1i; : : : ; htjm00 i)]

`^ s[o ^m00+1(
[

1�i�m0

ht0ii; htj1i; : : : ; htjm00 i)]

= s[o ^m00+1(p
0; htj1i; : : : ; htjm00 i)]

`k s[o ^m00+1(p0; htj1i; : : : ; htjm00 i)]

`^ s[o
[

1�i�m00

htjii [p0]

36

= s[o p]

`
�

^;k q: (3.23)

In both cases (i) and (ii) of (3b), s000 !�

� s holds. If p0 ! p0 is a proper rewriting

transition rule, then both sequences of moves (3.22) and (3.23) are of the form in

case (2) in this proof. Otherwise, repeating the same discussion of this case (3),

we can �nally obtain a proper rewriting transition rule and a sequence of of the

form in case (2). Therefore, we can show that there is a term s00 for s000 in the

moves such that s00 `�
^;k q which has at most n� 1 non-singleton rewriting moves

and s00 !�

� s000. Thus the lemma holds by the inductive hypothesis. �

De�nition 3.8 For a ^-term s and an RL-TRS R, E�;^(R)(s) is true if and only

if there is an F -term s0 such that s!�

�;^(R) s
0. �

Example 3.5 Consider the TRS R10 in Example 3.4. Assume

s = h0(^(f(a); g(a)));

then E�;^(R10)(s) is true. On the other hand, let s0 = h0(^(f(a); g(c))), then

E�;^(R10)(s
0) is false. �

Lemma 3.5 For ^-terms s; s0 and an RL-TRS R such that E�;^(R)(s) is true, if

s0 is a subterm of s or s!�

� s0, then E�;^(R)(s
0). �

Lemma 3.6 For a ^-term s and an RL-TRS R such that E�;^(R)(s) is true, and

for a state q 2 Qk, if s `
�

^;k q, then there exists a ^-term u0 such that E�;^(R)(u
0)

is true, u0 !�

�;^(R) s and u0 `�
^;k�;� q.

Proof. By Lemma 3.4, there is a ^-term s� such that s� !
�

� s and

s� `
�

^;k� q: (3.24)

The proof is shown by induction on the maximum degree of rewriting moves in

the sequence (3.24). For the basis, let u0 = s� and the lemma holds. Assume the

lemma holds for every sequence where the maximum degree of rewriting moves

is k� 1 or less and consider the case for k (� 1). The inductive part is shown by

37

another induction on the number of rewriting moves of degree k in the sequence

(3.24). Assume the lemma holds for every sequences which has n � 1 rewriting

moves of degree k and consider the case for n. The sequence (3.24) which has n

rewriting moves of degree k can be written as

s� `
�

^;k� s�[o q0] `k� s�[o q00] `�
^;k� q

where o is a position in s and the move s�[o q0] `k� s�[o q00] is the �rst

rewriting move of degree k. Remark that the transition rule used in this move is

a proper rewriting move since every singleton rewriting transition rule is proper.

Also note that s�[o q00] `�
^;k� q contains only n � 1 rewriting moves of degree

k. By the de�nition of TAs, s�=o `
�

^;k� q
0
`k� q

00: There is no rewriting move of

degree k in s�=o `
�

^;k� q0. By the inductive hypothesis on k, there is a term v

such that E�;^(R)(v) is true, v !
�

�;^(R) s�=o and v `�
^;k�;� q

0.

For the sequence �: v `�
^;k�;� q

0 `k� q
00, without loss of generality, assume that

1. q0 ! q00 used in the last move in � is de�ned for a rewrite rule l ! r 2 R,

2. l has m variables x1; : : : ; xm,

3. the variable xi has i positions in l at oij 2 Pos(l) (1 � j � i), and

4. if the variable xi occurs in r, then it occurs at oi 2 Pos(r).

Let l0 ! r0 be ^L(l ! r). Since the last move q0 `k� q00 is a rewriting move of

degree k, and since it is de�ned for the rule l ! r at Step 4 of Procedure 3.1,

there are states pij (1 � i � m; 1 � j � i) and q000 in Qk�1 such that

l[oij pij j 1 � i � m; 1 � j � i] `
�

k�1 q
00

0 ; (3.25)

Lpi1(Ak�1) \ � � � \ Lpii (Ak�1) 6= ; (3.26)

where q00 = q000 or q00 = hti for some t 2 q000 . Furthermore, for the substitution

� = fxi 7! pi j for i such that xi occurs in r g where pi =
S

1�j�i
pij , if r 2 V

then q0 = r� else q0 = hr�i. By Lemma 3.3, we can write the sequence v `�
^;k�;�

q0

as

v `�
^;k�;� v[oi pi j for i such that xi occurs in r] `�

^;k�;� q
0: (3.27)

38

De�ne substitutions � and �0 as � = fxi 7! ui j 1 � i � mg and �0 = fxij 7!

uij j 1 � i � m; 1 � j � ig where ui and uij with 1 � i � m and 1 � j � i are

de�ned as follows:

1. If xi occurs in r, then let ui = v=oi. By (3.27) we have ui `
�

^;k�;� pi. If

i > 1, then the sequence can be written as ui `
�

^;k�;�
^(pi1; : : : ; pii) `^ pi.

In this case, let uij = ui=j for 1 � i � m; 1 � j � i. If i = 1, then let

ui1 = ui. Remark that r� = r0�0. Also, uij `
�

^;k�;� pij holds for 1 � j � i

since ui `
�

^;k�;�
pi. By the fact that E�;^(R)(v) is true and by Lemma 3.5,

E�;^(R)(ui) is true: (3.28)

2. If xi does not occur in r, then ui is chosen to satisfy ui 2 Lpi1(Ak�1)\ � � � \

Lpii
(Ak�1), that is ui `

�

k�1 pij (1 � j � i). Such ui exists by (3.26) and

can be found e�ectively. By the inductive hypothesis on k, there are terms

uij for 1 � j � i such that uij !
�

�;^(R) ui and

uij `
�

^;k�;� pij: (3.29)

In either case 1 or 2, we have

uij `
�

^;k�;� pij (1 � j � i): (3.30)

Let v0 = l0�0, then by (3.25) and (3.30), we have

v0 = l0�0

`�
^;k�;�

l0[oij pij j 1 � i � m; 1 � j � i]

`�k�1 q000 :

In either case q00 = q000 or q00 = hti for some t 2 q000 , we have v
0 `�

^;k�1 q
00. On the

other hand, by (3.28), (3.29) and the fact that (!^(R);i [!�)
� � !�

�;^(R) for

any i,

v0 = l0�0 !^(R) r
0�0 = r� = v: (3.31)

That is, v0 !^(R) v. By the de�nition of TAs and the discussions above, we

obtain

s�[o v0]!�;^(R) s�[o v]!�

�;^(R) s�[o s�=o] = s� (3.32)

39

and s�[o v0] `�
^;k�1 s�[o q00] `�

^;k� q where s[o q00] `�
^;k� q contains

n� 1 rewriting moves of degree k. By the inductive hypothesis on the number of

rewriting moves of degree k (when n > 1) or on the maximum degree of rewriting

moves (when n = 1), there is a ^-term u0 such that E�;^(R)(u
0) is true,

u0 !�

�;^(R) s�[o v0]; (3.33)

and

u0 `�
^;k�;� q: (3.34)

By (3.32), (3.33) and the fact that s� !
�

� s, we obtain

u0 !�

�;^(R) s: (3.35)

By (3.34) and (3.35), the lemma holds. �

Lemma 3.7 For an F-term s, an RL-TRS R and a state q 2 Qk, if s `
�

k q, then

there exists an F-term u such that u!�

R
s and u `�k� q.

Proof. Suppose s `�k q for an F -term s 2 T (F) and q 2 Qk with jqj = 1. By

Lemma 3.6 and the fact that E�;^(R)(s), there is a ^-term u0 such that E�;^(R)(u
0)

is true, u0 !�

�;^(R) s and u0 `�
^;k�;� q. By Lemma 3.2 and the fact s 2 T (F), we

obtain u0 !�

�;R s. In the following, we construct from u0 an F -term u such that

u!�

R
s and u `�

k�
q by replacing every subterm of the form ^m(t1; : : : ; tm) where

ti 2 T (F) (1 � i � m) with some term in fti j 1 � i � mg from the leaves to

the root. Assume u0=o = ^m(t1; : : : ; tm) and ti 2 T (F) for 1 � i � m. Since

ti 2 T (F) for 1 � i � m and all moves in the sequence u0 `�
^;k�;�

q are singleton,

we have

u0 `�k�;� u0[o ^m(ht
0

1i; : : : ; ht
0

mi)]

`^ u0[o ht01; : : : ; t
0

mi]

`�
^;k�;� q (3.36)

where ht0ii 2 Qk. Let t! ht
0i 2 �k be the transition rule which is used to consume

the state ht01; : : : ; t
0

mi in v in the subsequence of (3.36) from u0[o ht01; : : : ; t
0

mi]

to q. There are two cases for t: (1) t = ht01; : : : ; t
0

mi and t0 2 t and (2) t is

40

of the form f (p1; : : : ; pa(f)) where f 2 F , pi 2 Qk with 1 � i � a(f) and

ht01; : : : ; t
0

mi = p1 without loss of generality. For case (1), the subsequence of

(3.36) from u0[o ht01; : : : ; t
0

mi] to q can be written as:

u0[o ht01; : : : ; t
0

mi] `k�;�

u0[o ht0ni] `
�

^;k�;� q (3.37)

for some n (1 � n � m). Let u00 = u0[o tn], then we have u00 `�
k�;�

u0[o

ht0ni] `
�

^;k�;� q by (3.36) and (3.37). For case (2), the subsequence of (3.36) from

u0[o ht01; : : : ; t
0

mi] to q can be written as:

u0[o ht01; : : : ; t
0

mi] `�
k�;�

u0[o0 f (ht01; : : : ; t
0

mi; : : : ; pa(f))]

= u0[o0 f (p1; : : : ; pa(f))]

`^;k�;� u0[o0 ht0i]

`�
^;k�;� q (3.38)

where o = o0�1. From Step 3(iii) ofADDTRANS, there is a transition rule of the

form f (ht001i; : : : ; ht
00

a(f)i)! ht
0i where t00i 2 pi for 1 � i � a(f). Let n0 (1 � n0 � m)

be an integer such that t001 = t0n0 and assume that u0 = u0[o0 f(to
0

1 ; : : : ; t
o0

a(f))].

Then, by the transition rules de�ned in Step 3(i) of ADDTRANS and (3.38),

we have

to
0

i `
�

k�;� pi `k�;� ht
00

i i (2 � i � a(f)): (3.39)

Let u00 = u0[o tn0]. By (3.36) and (3.39), we have

u00 = u0[o0 f (tn0 ; : : : ; t
o0

a(f))]

`�
k�;�

u0[o0 f (ht0n0i; : : : ; ht
00

a(f)i)]

= u0[o0 f (ht001i; : : : ; ht
00

a(f)i)]

`k�;� u0[o0 ht0i]

`�
k�;�

q:

On the other hand, consider the rewrite sequence u0 !�

�;R s. From the fact

that no left-hand side has function symbols in ^ and s; ti 2 T (F) with 1 � i � m,

and from the de�nition of !�;R, there is an F -term t0 such that u0 !�

R
u0[o

^m(t0; : : : ; t0)] !� u0[o t0] !
�

�;R s where t0 2 T (F). From this rewrite

41

sequence, for both cases (1) and (2), we obtain u00 !�

R
u0[o t0] !

�

�;R s.

Repeating the discussions above for every subterm with a function symbol in ^,

we can obtain an F -term u such that u!�

R
s and u `�

k�
q. �

To show Lemma 3.1, it is su�cient to show that for a term s 2 T (F) and a

state q 2 Q0, if s `
�

k q, then there exists a term u 2 T (F) such that u!�

R
s and

u `�
k�

q. The claim holds from Lemma 3.7.

3.2.2 Completeness

First we prove two technical lemmas concerning packed states.

Lemma 3.8 For a positive integer n and states pi, htii (1 � i � n) in Qk, if there

is a state ht1; : : : ; tni in Qk and pi `
�

k htii for 1 � i � n, then p `�k ht1; : : : ; tni

where p =
S

1�i�n pi.

Proof. If n = 1, then the lemma holds obviously. Consider the case n � 2.

Assume that for each 1 � i � n, pi = pi0 `k pi1 `k � � � `k pili = htii for

some li � 0 and ht1; : : : ; tni 2 Qk. If li = 0 for every 1 � i � n, the lemma

holds obviously. Assume that li � 1 for a particular i. Then pili�1
! htii 2

�k. Since ht1; : : : ; tni 2 Qk, ADDTRANS(ht1; : : : ; tni) has been executed in

Procedure 3.1 and a new "-rule p0 ! ht1; : : : ; tni is de�ned in Case 3(ii) where

p0 = (ht1; : : : ; tninhtii)[pili�1
= ht1; : : : ; ti�1; ti+1; : : : ; tni[pili�1

. Hence, the move

ht1; : : : ; ti�1; ti+1; : : : ; tni [pili�1
` ht1; : : : ; tni is possible and ADDTRANS(ht1;

: : : ; ti�1; ti+1; : : : ; tni [pili�1
) is recursively executed. Repeating the above

argument, we have p(=
S

1�i�n pi) `
� ht1; : : : ; tni. �

Lemma 3.9 For an F-term s, and states htii 2 Qk with 1 � i � n, if s `�k htii

for 1 � i � n and ht1; : : : ; tni 2 Qk, then s `�k ht1; : : : ; tni.

Proof. The lemma is shown by induction on the depth of the term s. If s = c

with a(c) = 0, then the sequence s `�k htii can be written as

c `k pi `
�

k htii (1 � i � n) (3.40)

42

for some pi 2 Qk. Since pi `
�

k htii for 1 � i � n, we obtain p `�k ht1; : : : ; tni

where p =
S

1�i�n pi by Lemma 3.8. Since c ! pi 2 �k and p 2 Qk, the

transition rule c ! p is de�ned by Case 3(iii) of ADDTRANS(p). Therefore

c `k p `
�

k ht1; : : : ; tni.

Assume that the lemma holds for every term with depth l � 1 or less, and

consider a term s = f(s1; : : : ; sa(f)) with depth l. The sequence s `�k htii can be

written as

s `�k f(pi1; : : : ; pia(f)) `k pi `
�

k htii (1 � i � n) (3.41)

where pij (1 � j � a(f)) and pi are states. This implies sj `
�

k pij for 1 � i � n

and 1 � j � a(f), and therefore sj `
�

k

S
1�i�n pij for 1 � j � a(f) by the

induction hypothesis. Hence, the sequence

s `�k f(
[

1�i�n

pi1; : : : ;
[

1�i�n

pia(f)) (3.42)

is possible. On the other hand, since all the moves in the sequence pi `
�

k htii for

1 � i � n of (3.41) are "-moves, transition rules are de�ned so that the sequence

p `�k ht1; : : : ; tni (3.43)

where p =
S

1�i�n pi is possible by means of Lemma 3.8. Furthermore, by the

move f (pi1; : : : ; pia(f)) `k pi with 1 � i � n of (3.41) and by Case 3(iii) of

ADDTRANS(p), the transition rule

f (
[

1�i�n

pi1; : : : ;
[

1�i�n

pia(f))! p (3.44)

is de�ned. Summarizing (3.42),(3.43) and (3.44), we obtain s `�k ht1; : : : ; tni. �

The next lemma establishes the completeness of Procedure 3.1.

Lemma 3.10 For a term s 2 (!�

R
)(L(A)), there is an integer k such that s 2

L(Ak).

Proof. It su�ces to show that for a state p 2 Q0, if s
0 !�

R
s and s0 2 Lp(A0),

then there is an integer k such that s 2 Lp(Ak), or equivalently, s `
�

k p. The

claim is shown by induction on the length of the derivation s0 !�

R
s. For the basis

s0 = s, the claim holds obviously. If s0 !+
R
s, then there is a term u such that

43

s0 !�

R
u!R s. By induction hypothesis applied to s0 !�

R
u, we have an integer

k0 such that u `�k0 p. Moreover, since u!R s there is a rewrite rule l ! r 2 R, a

substitution �, and a position o 2 Pos(u) such that u=o = l� and s = u[o r�].

Hence, there is a state p0 2 Qk0 such that u = u[o l�] `�k0 u[o p0] `�k0 p and

we have

l� `�k0 p
0: (3.45)

Now, let us show that r� `�k0+1 p
0. Assume that l has m variables x1; : : : ; xm and

the variable xi has i occurrences in l at oij 2 Pos(l). By (3.45) there are states

pij for 1 � i � m and 1 � j � i such that

xi� `
�

k0 pij (3.46)

and

l[oij pij j 1 � i � m; 1 � j � i] `
�

k0 p
0: (3.47)

The sequence (3.46) means that xi� 2 Lpi1(Ak0) \ � � � \ Lpii (Ak0) and we have

Lpi1(Ak0) \ � � � \ Lpii (Ak0) 6= ; (3.48)

for 1 � i � m. By (3.47) and (3.48), a substitution � = fxi 7! pi j 1 � i �

mg[fx 7! hqanyi j x 2 Var(r) n Var(l)g is de�ned in Step 4 of Procedure 3.1. By

Lemma 3.9, each pi in the co-domain of � satis�es

Lpi1(Ak0+1) \ � � � \ Lpii (Ak0+1) � Lpi(Ak0+1) (3.49)

for 1 � i � m and transition rules are de�ned by ADDTRANS to satisfy that

r� `�k0+1 p
0: (3.50)

By (3.46) and (3.49), we have

xi� `
�

k0+1 pi (1 � i � m): (3.51)

Summarizing (3.50) and (3.51), we have r� `�k0+1 p
0, and the lemma holds since

s = u[o r�] `�k0+1 u[o p0] `�k0 p. �

By Lemma 3.1 and Lemma 3.10, we obtain the following theorem, which

states the partial correctness of Procedure 3.1.

Theorem 3.11 For an RL-TRS R, if Procedure 3.1 halts then L(A�) = (!�

R

)(L(A)). �

44

3.3. Termination of the Construction

We show that if an RL-FPO-TRS is given to Procedure 3.1, then there is an

upper-bound limit on the number of states which are newly de�ned. Once the

set of states saturates, then the set of transition rules also saturates and the

procedure halts. First, as a measure of the size of a state, we introduce the

concept of the layer of a packed state. Intuitively, the number of layers of a

packed state is the number of right-hand sides of rewrite rules which are used for

de�ning the state.

De�nition 3.9 For a packed state p 2 Qk, de�ne the number of layers of p,

denoted layer(p), as follows:

(1) if p 2 Q0 or p = hti with t a ground subterm of a rewrite rule in R, then

layer(p) = 0,

(2) if p = p1 [p2, then layer(p) = maxflayer(p1); layer(p2)g, and

(3) if p = hr�=oi with l ! r 2 R, o 2 Pos(r), r=o is not a variable, Var(r=o) =

fx1; : : : ; xng and � = fxi 7! pi j 1 � i � ng, then layer(p) = 1 +

maxflayer(pi) j 1 � i � ng. �

Remark that layer(p) is not de�ned for all packed states, but all packed states

introduced in Procedure 3.1 are of the form (1), (2) or (3). Also remark that

layer(p) is not always uniquely determined by this de�nition. If di�erent values

are de�ned as layer(p), then we choose the minimum among the values as layer(p).

We note that in (3) above if xi 2 Var(r) nVar(l), then pi = hqanyi and layer(pi) =

0. This means that variables which occurs only in the right-hand side are ignored

for de�ning the number of layers.

Example 3.6 Consider the states of the TAs in Example 3.2. Let l ! r =

f(x; x) ! g(x) 2 R8, o = � and � = fx 7! hq0; q
0

0ig in the above de�ni-

tion (3). Then, p = hr�=oi = hg(hq0; q
0

0i)i and layer(p) = layer(hq0; q
0

0i) + 1 =

maxflayer(hq0i); layer(hq
0

0i)g + 1 = 1. �

Lemma 3.12 For any non-negative integer j, the number of packed states which

have j or less layers is �nite.

45

Proof. The lemma will be shown by induction on j. For the base case, the

number of the states that have 0 layer is �nite, since the number of the states

of Q0 and the number of the states that are made from ground subterms of the

right-hand sides of a given TRS are �nite.

Assume that the number of states that have n � 1 or less layers is �nite and

show it is also true for the case that j = n. In Procedure 3.1, there are four cases

when a new state which has n layers is added.

1. In Step 4 of Procedure 3.1, a state which is de�ned as pi =
S

1�j�i
pij in

(3.3) is added.

2. In Step 4(c) of Procedure 3.1, a new state tr� is added.

3. In Case 2 of Procedure 3.2, a new state p0i is added.

4. In Case 3(ii) of Procedure 3.2, a new state p00 = (p0 n p0) [p
0 is added.

5. In Case 3(iii) of Procedure 3.2, a new state p0j =
S

1�i�n pij is added.

From the inductive hypothesis and the de�nition (3) of the number of layers,

there exists a number k0 such that case 2 does not take place at any loop counter

k00 for k00 � k0 in Procedure 3.1. Let eQk0 = ft j t 2 p; p 2 Qk0g. (Note that a

packed state itself is a set.) A new state which is added in case 1, 3, 4, or 5 is

a subset of eQk0 . Since Qk0 is �nite, the number of subsets of eQk0 is also �nite.

Hence the lemma holds. �

In the following, it is shown that if R is an RL-FPO-TRS, then layer(p) � jRj

for any state p de�ned by Procedure 3.1 where jRj is the number of rewrite rules

in R. An outline of the proof is as follows. First we associate each rule in R

with a non-negative integer called a rank. If R is �nite path overlapping, then

the rank is well-de�ned and is less than jRj. Next, it is shown that if a rewrite

rule with rank j is used in Step 4 of Procedure 3.1, then layer(p) � j +1 for any

state p de�ned in the same step. The rank of a rule in R is de�ned based on the

sticking-out graph G = (V;E) of R. Let v be the vertex of G which corresponds

to a rewrite rule l ! r in R. The rank of l ! r is the maximum weight of a

path to v from any vertex in V . If R is �nite path overlapping, then the rank of

46

any rewrite rule is a non-negative integer less than jRj. For R6 in Example 2.8,

the ranks of p1 and p2 are one and zero, respectively, since there is an edge with

weight one from p2 to p1.

Lemma 3.13 Let l ! r be a rewrite rule and � = fxi 7! pi j 1 � i � mg [

fx 7! hqanyi j x 2 Var(r) n Var(l)g be a substitution which are used in Step 4

of Procedure 3.1. If the rank of l ! r is j or less, then layer(pi) � j for each

1 � i � m. �

Before presenting a proof of the lemma, we �rst see how the number of layers of

the state changes by a move of the TA. A transition rule of the TA is either an

"-rule or a non-"-rule. An "-rule is either an "-rule of the original TA A0 or a

rule de�ned in Step 4(a) or (b) of Procedure 3.1, or a rule de�ned in Case 3(i) or

(ii) of ADDTRANS procedure. If an "-rule of the original automaton is used at

a move, then the number of layer does not change at the move. A non-"-rule is

either a non-"-rule ofA0, or a rule de�ned in Cases 1, 2 or 3(iii) ofADDTRANS.

In all cases, the maximum number of layers in a state is increased by one or not

changed by a move (Lemma 3.14). Hence, if the number of layers decreases at a

move, then the rule is an "-rule de�ned in Step 4(a) or (b) of Procedure 3.1 or in

Case 3(ii) of ADDTRANS.

Lemma 3.14 For a non-" rule f(p1; : : : ; pa(f)) ! p 2 �k (a(f) � 1), let m =

maxf layer(pj) j 1 � j � a(f)g. Then, m � layer(p) � m+ 1.

Proof. By induction on k. A non-" rule is introduced either Step 1 of Proce-

dure 3.1, or Case 1, Case 2, or Case 3(iii) ofADDTRANS. If f(p1; : : : ; pa(f))! p

is introduced in Step 1, then maxflayer(pi) j 1 � i � a(f)g = 0 and layer(p) = 0.

Thus the lemma holds. If c ! hci is introduced in Case 1 of ADDTRANS,

then the lemma holds vacuously. Assume that f (p1; : : : ; pa(f))! p = hf(p1; : : : ;

pa(f))i is introduced in Case 2. Then there exists a rewrite rule l ! r and a Qk-

substitution � which satis�es (3.1) and (3.2) such that (r=o)� = f(p1; : : : ; pa(f))

for some o 2 Pos(r). Let m = maxflayer(pj) j 1 � j � a(f)g. By de�nition

of layer(�), layer(p) = m. Assume that f (p1; : : : ; pa(f)) ! p is introduced in

Case 3(iii). Let

m = maxflayer(pj) j 1 � j � a(f)g

= maxflayer(pij) j 1 � i � n; 1 � j � a(f)g:

47

There are two cases for each 1 � i � n. If layer(pij) = m for some j (1 � j �

a(f)), thenm � layer(htii) � m+1 by the inductive hypothesis. If layer(pij) < m

for each j (1 � j � a(f)), then layer(htii) � m by the inductive hypothesis.

Hence, m � layer(p) = maxflayer(htii) j 1 � i � ng � m + 1. �

Proof of Lemma 3.13 The proof is by induction on the loop variable k of

Procedure 3.1. When k = 0, every state belongs to Q0 and layer(pi) = 0 for 1 �

i � n, and the lemma holds for any j. Assume that the lemma holds for k � n�1,

and consider the case with k = n. The inductive part is shown by contradiction.

Without loss of generality, let p1 be a state such that layer(p1) � j + 1. Since

p1 =
S

1�l�1
p1l, layer(p1) = maxflayer(p1l) j 1 � l � 1g by the de�nition of

layer(�). We can assume p11 is the state such that layer(p11) � j +1 without loss

of generality. Let us consider the sequence (3.1) in Step 4 of Procedure 3.1 and

observe how the number of layers of the state changes as the head of Ak moves

from o11 to the root in the sequence (3.1) of moves. There are four di�erent cases:

1. A rewriting move is caused at a certain position. Let o be the innermost

position among such positions. There are two di�erent subcases:

(a) The number of layers does not increase at any o0 with o � o0 � o11.

(b) There is a position o0 with o � o0 � o11 such that the number of layers

increases at o0.

2. There are no rewriting moves in the sequence. There are two subcases:

(a) The number of layers does not increase at any o0 with � � o0 � o11.

(b) There is a position o0 with � � o0 � o11 such that the number of layers

increases at o0.

These four cases are illustrated in Fig. 3.2.

Assume that the number of layers changes as in case 1(a) above. In this case we

can derive a contradiction as follows. First we assume a rewriting move at position

o is proper and let l0 ! r0 be the rewrite rule used for de�ning this transition rule

in Step 4 of Procedure 3.1. Then, the state just before this rewriting move occurs

at o can be written as hr0�0i. Remark that layer(hr0�0i) = layer(p11) � j+1 since

48

o11 o11 o11 o11

j+1 j+1 j+1 j+1

number of layers

o o0 o � o0 �
1(a) 1(b) 2(a) 2(b)

6 6 6 6

Figure 3.2. The number of layers of a state of Ak in the sequence (3.1).

the number of layers does not change at any o0 (o � o0 � o11). This implies that

the Qk-substitution �0 replaces a variable in r0 with a state which has j or more

layers (see the de�nition (3) of the number of layers). Therefore, by using the

inductive hypothesis, the rule l0 ! r0 must have rank j or more. On the other

hand, the fact that the number of layers does not increase at o0 with o � o0 � o11

implies that r0 properly sticks out of l=o as follows.

Consider the moves of the TA from the position o11 to o. Since o is the

inner most position among the positions where rewriting moves are caused, all

moves at o0 (o � o0 � o11) are de�ned by ADDTRANS. By the construction

of transition rules in ADDTRANS, it follows that the function symbol of l at

the position o � o00 is the same as the function symbol of r0 at o for every o such

that o � o00 � o11. Furthermore, it can be easily shown that when the head visits

the position o � o00(o � o00 � o11) of l, the state hr
0�0=o00i is attached to that head.

Thereby, at the variable position o11, hr
0�0=o00i was attached where o00 is such that

o � o00 = o11, and this is the state p11. Intuitively saying, the head goes up l along

the path from o11 to o by changing the state from p11 to hf (: : : ; p11; : : :)i where f

is the scanned symbol. This implies that r0 properly sticks out of l=o by Case 1

of the de�nition of the sticking-out graph (De�nition 2.16). We have observed

that the rank of l0 ! r0 is j or more, and thus the rank of l ! r must be de�ned

to be j + 1 or more, a contradiction.

Next consider the case that the �rst rewriting transition rule used at o is

de�ned in Case 3(ii) of ADDTRANS and let the rule be p00 ! p such that

p00 = (p n p0) [p0 and p0 � p for some rewriting transition rule p0 ! p0. The

rewriting transition rule p0 ! p0 is either proper or non-proper. Assume p
0 ! p0

49

is proper, then p0 can be written as hr0�0i for some rewrite rule l0 ! r0 and some

Qk-substitution �0. From the fact that there is no rewriting move from o11 to o we

can see that for every position o00 with o�o00 � o11 when the head visits the position

o �o00 in l, a packed state which has r0�0=o00 as an element is attached to that head.

Moreover from the construction of a non-" rule whose right-hand side has more

than one element (Case 3(iii) of ADDTRANS), the function symbol at o � o00

(o � o00 � o11) in l coincides with the one in r0 at o00. This implies that r0 properly

sticks out of l=o by Case 1 of the de�nition of sticking-out graph (De�nition 2.16).

By using this fact, we can derive a contradiction in the same way as in the case

when the rule used at o is proper. Even if p0 ! p0 is non-proper, it is easy to see

that there is a proper rewriting transition rule whose left-hand side is included

in p00 and again a contradiction can be derived.

For other Cases 1(b), 2(a) and 2(b), we can derive a contradiction in a similar

way (See the appendix). Thereby, it cannot happen that layer(p1) � j + 1 and

the induction completes. �

For an RL-FPO-TRS R, the rank of every rule is less than jRj and hence

the number of layers of any packed state is jRj or less by Lemma 3.13. By

Lemma 3.12, the number of packed states is �nite and the following theorem

holds.

Theorem 3.15 Procedure 3.1 halts for an RL-FPO-TRS. �

In general, the running time of Procedure 3.1 is exponential to both of the size

of a TRS R and the size of a TA A.

Corollary 3.16 RL-GR�1-TRS � RL-GSM-TRS � RL-FPO-TRS � EPR-TRS.

Proof. RL-GR�1-TRS � RL-GSM-TRS and RL-GSM-TRS � RL-FPO-TRS

are shown by Theorem 2.18. RL-FPO-TRS � EPR-TRS is by Theorems 3.11

and 3.15. �

Corollary 3.16 answeres that the open problem presented by Gyenizse and

V�agv�olgyi[21] positively, which asks to generalize the class of linear generalized

semi-monadic TRSs so that a TRS in the obtained class still e�ectively preserves

recognizability.

50

3.4. Decidable Approximations

In this section, we investigate decidable approximations of TRS along the lines

of [14, 24, 28].

De�nition 3.10 For a TRS R, a TRS R0 is an approximation of a R if !�

R
�

!
�

R
0 and NFR = NFR

0 . An approximation mapping � is a mapping from TRSs

to TRSs such that �(R) is an approximation of R for any TRS R. For a class

C of TRSs, a C approximation mapping is an approximation mapping such that

�(R) 2 C for every TRS R. �

In 1996, Jacquemard[24] introduced a linear growing approximation mapping.

Later Nagaya and Toyama[28] introduced a better approximation called a left-

linear growing approximation mapping and presented decidable results on them.

De�nition 3.11 An LL-FPO�1-TRS approximation mapping � is such that for

a TRS R, � replaces some variables in the right-hand side r2 of a rewrite rule

l2 ! r2 in R�1 with a new variable which is not in Var(l2), so that r2 cannot

contribute to an edge in the sticking-out graph of �(R�1). �

For example, replacing variable x with x0 in the right-hand side of the rule in R7

of Example 2.8 yields an LL-FPO�1-TRS approximation of R�1
7 . The following

results are a generalization of Nagaya and Toyama's results[28].

De�nition 3.12 [14] Let � be an approximation mapping and
 be a fresh

constant. A redex at a position o in t 2 T (F) is �-needed if there exists no

s 2 NFR such that t[o
]!�

�(R) s and s contains no
. �

If R is orthogonal, then every �-needed redex is a needed redex in the sense of

Huet and L�evy [23]. Let CBN-NF� = fR j every term t 62 NFR has an �-needed

redex g. By Theorems 15 and 29 in the reference[14] and Lemma 2.6 of this

thesis, the following theorem holds.

Theorem 3.17 Let R be a left-linear TRS and � be an EPR�1-TRS approxima-

tion mapping. Then the following problems are decidable:

1. Is a given redex in a given term �-needed?

51

2. Is R in CBN-NF�? �

Corollary 3.18 Let R be an orthogonal TRS in EPR�1-TRS which satis�es the

variable restriction such that l is not a variable and Var(r) � Var(l) for every

l ! r 2 R.

1. Every term t 62 NFR has a needed redex.

2. It is decidable whether or not a given redex in a given term is needed. �

To conclude this section, we provide an orthogonal TRS R in FPO�1-TRS such

that there exists no left-linear growing approximation mapping � which satis�es

R 2 CBN-NF�.

Example 3.7 Let R11 = fg(h(x)) ! f (x; x; x)g [R0 be an orthogonal TRS

where R0 consists of the following �ve rewrite rules:

f(a; b; x)! a; f(b; x; a)! a; f(x; a; b)! a;

f(a; a; a)! a; f(b; b; b)! b:

It can be easily veri�ed that R11 is in FPO�1-TRS. Every term t 62 NFR11
has a

needed redex in R11 by Corollary 3.16 and Corollary 3.18-1. On the other hand,

a left-linear growing approximation mapping � should be �(R11) = fg(h(y)) !

f(x; x; x)g [R0 for some variable y 6= x. Consider a term t = f (g(h(a)); g(h(a));

g(h(a))). Obviously, g(h(a)) !�

�(R11)
a and g(h(a)) !�

�(R11)
b. Hence, t has no

�-needed redex. Thus, R11 62 CBN-NF�. �

52

Chapter 4

Strongly Normalizing Property

In this chapter, we show that for almost-orthogonal inverse FPO-TRSs, strongly

normalizing property is decidable.

4.1. Nagaya and Toyama's method

Nagaya and Toyama[28] showed that SN is decidable for the class AO-GR-TRSs

(almost orthogonal growing TRSs) in the following way.

Theorem 4.1 [20] Let R be an AO-TRS (almost-orthogonal TRS, see De�ni-

tion 2.3).

1. R is SN if and only if R is WIN.

2. A term s is SN in R if and only if s is WIN in R. �

De�nition 4.1 For a TRS R and a set L of terms, the innermost R-ancestor of

L is de�ned as (�

I;R)(L) = ft j 9s 2 L; t!�

I;R sg. �

By using the notion of the innermost R-ancestor, the property WIN can be

represented as follows.

Lemma 4.2 For a TRS R:

1. R is WIN if and only if (�

I;R)(NFR) = T (F).

53

2. A term s is WIN in R if and only if s 2 (�

I;R)(NFR).

Proof. We only prove the �rst part as follows.

R is WIN , 8t 2 T (F): 9t0 2 NFR: t!
�

I;R t0

, T (F) � ft j 9t0 2 NFR: t!
�

I;R t0g = (!�

I;R)(NFR)

, T (F) = (!�

I;R)(NFR):

�

By Lemmas 2.6 and 4.2 and Theorem 4.1 we obtain the following lemma.

Lemma 4.3 For an AO-TRS R, if we can e�ectively construct a TA A� such

that L(A�) = (�

I;R)(NFR), then the following problems are decidable:

1. Is R SN?

2. For a given term s, is s SN in R? �

Nagaya and Toyama showed that for a left-linear growing TRS (LL-GR-TRS)

R (see De�nition 2.14), the set (�

I;R)(NFR) is always recognizable and thus

whether R is WIN or not is decidable. If R is also an AO-TRS, then we can

decide whether R is SN or not by Lemma 4.3.

Theorem 4.4 [28] For an AO-GR-TRS R, SN is decidable. �

In the next section, we show if R is an AO-FPO�1-TRS, then a TA accepting

(�

I;R)(NFR) can be e�ectively constructed.

4.2. Tree Automata Construction for Inner-

Most Ancestors

For an LL-TRS R, Comon showed a complete and deterministic TA, denoted by

ANF
R

, which accepts the set of all ground normal forms, i.e. L(ANF
R

) = NFR

in [4]. We start with this TA ANF
R

.

54

Procedure 4.1 This procedure takes an AO-TRS R as an input and outputs a

TA A� such that L(A�) = (�

I;R)(NFR). The algorithm does not always halt

in general. We will show later that if R is an FPO�1-TRS, then the procedure

always halts. Let ANF
R

= (F ;Q;Q�nal ;�) be the complete and deterministic TA

with L(ANF
R

) = NFR[4]. We will construct TAs whose states are represented

by terms in T (F [Q) where elements in Q are regarded as constants. A term in

T (F [Q) is called a Q-term, and, to avoid confusion, a Q-term t 2 T (F [Q) is

written as hti when it is used to represent a state of TAs.

Step 1. Let A0 = (F ;Q0;Q
0
�nal ;�0) where Q0 = fhpi j p 2 Qg, Q

0
�nal = fhpi j

p 2 Q�nalg, and �0 = ff(hp1i; : : : ; hpa(f)i) ! hpi j f (p1; : : : ; pa(f)) ! p 2 �g.

In Steps 3 to 5, Ak+1 = (F ;Qk+1;Q
0
�nal ;�k+1) (k � 0) is constructed from

Ak = (F ;Qk;Q
0
�nal ;�k) by adding states and transition rules to Qk and �k,

respectively. We abbreviate `Ak
and `�

Ak
as `k and `

�

k, respectively.

Step 2. Let k = 0.

Step 3. Let Qk+1 = Qk and �k+1 = �k.

Step 4. New states and transition rules are introduced in this step. Let l ! r

be a rewrite rule in R and let Y = Var(l) n Var(r). It is assumed that r has

m(� 0) variables xi(1 � i � m) and xi occurs at positions oij in r(1 � i �

m; 1 � j � i). Assume there are states q; qij 2 Qk(1 � i � m; 1 � j � i) and

qi0 2 Q
0
�nal(1 � i � m) such that

r[oij qij j 1 � i � m; 1 � j � i] `
�

k q (4.1)

andNO 6= LUB(fqij j 0 � j � ig). The function LUB, which is de�ned later,

constructs a state which accepts terms accepted by every qij (0 � j � i). Then

for any substitution �0:Y ! Q�nal , let � = fxi 7! ti j 1 � i � mg [�0 where

ti = LUB(fqij j 0 � j � ig), and do the following 1 and 2.

1. Add hl�i ! q to �k+1. If hl�i ! q 2 �k+1 n�k, then the rule is called a

rewriting transition rule of degree k+ 1 and if a move of the TA is caused

by this rule, then the move is called a rewriting move of degree k + 1.

2. Execute ADDTRANS(hl�i). In ADDTRANS(hl�i), new transition

rules are de�ned so that l� `�k+1 hl�i.

55

Simultaneously execute this Step 4 for every rewrite rule and every tuple of

states that satisfy the condition (4.1) and every substitution �0:Y ! Q0
�nal .

Step 5. If �k+1 = �k then output Ak as A� and halt. Otherwise, let k = k + 1

and go to Step 3. �

Procedure 4.2 [ADDTRANS] This procedure takes a state hti as an input.

If hti already exists in Qk, then the procedure performs nothing. Otherwise, the

procedure adds hti to Qk and de�nes new transition rules as follows.

Case 1. If t = c with c a constant, then de�ne c! hci as a transition rule.

Case 2. If t = f(t1; : : : ; ta(f)) with f 2 F , then de�ne f(ht1i; : : : ; hta(f)i) ! hti

as a transition rule and execute ADDTRANS(htii) for 1 � i � a(f). �

In the following, we will use t; t0; t1; t2; : : : to denote Q-terms in T (F [Q),

s; s0; u; u0; u1; u2; : : : to denote ground terms in T (F), f; g; : : : to denote func-

tion symbols. Also q; q1; q2; : : : are states in Qk for some k � 0 and p; p1; p2 : : :

are states in Q. If we write f(t1; : : : ; ta(f)), then we implicitly include the case

when a(f) = 0.

In order to de�ne the function LUB, we introduce a partial order on T (F[Q).

For a Q-term t, let thi denote the term obtained from t by replacing every p 2 Q

in t with hpi. For example, if t = f(g(p1); p2) where p1; p2 2 Q, then thi =

f(g(hp1i); hp2i). Note that if s 2 T (F) then shi = s. The relation � on T (F[Q)

is de�ned as follows:

(1) For p 2 Q and t0 2 T (F [Q), if t0hi `�0 hpi, then p � t0.

(2) For f (t1; : : : ; ta(f)); f(t
0

1; : : : ; t
0

a(f)) 2 T (F [Q), if ti � t0i (1 � i � a(f))

then f(t1; : : : ; ta(f)) � f(t01; : : : ; t
0

a(f)
).

Note that if p 2 Q, then p � p by (1). If p; p0 2 Q and p 6= p0 then

phi = hpi 6`�0 hp
0i (since A0 is deterministic) and hence p 6� p0 by (1).

56

For two Q-terms t and t0 if there is the least upper bound of t and t0 on �,

then it is denoted by tt t0. It is easily shown that tt t0 is represented as follows:

t t t0 =

t if t = t0 2 Q

t if t 2 T (F [Q) n Q; t0 2 Q; thi `�0 ht
0
i

t0 if t 2 Q; t0 2 T (F [Q) n Q; t0hi `�0 hti

f(t1 t t
0

1; : : : ; ta(f) t t
0

a(f))

if t = f(t1; : : : ; ta(f)) 2 T (F [Q) n Q;

t0 = f (t01; : : : ; t
0

a(f)
) 2 T (F [Q) n Q;

ti t t
0

i de�ned (1 � i � a(f))

unde�ned otherwise.

(4.2)

For k � 0, let Ak� be the TA obtained from Ak by removing every rewriting

transition rule.

Function 4.1 [LUB] This function takes a set of states fht1i; : : : ; htnig as an

input and returns a Q-term t = t1 t � � � t tn if it is de�ned. Also the function

adds new transition rules and states so that Lht1i(Ak�) \ � � � \ Lhtni(Ak�) =

Lhti(A(k+1)�).

Step 1. Decide whether t1 t � � � t tn is de�ned by using (4.2). If de�ned then let

t = t1 t � � � t tn and go to Step 2. Otherwise, return NO.

Step 2. Execute ADDTRANS(hti) and return t. �

Example 4.1 We apply Procedure 4.1 to the AO-FPO�1-TRS R1 in Exam-

ple 2.8. First, we construct the deterministic and complete TAA0 accepting NFR1

as A0 = (F ;Q0;Q
0
�nal ;�0) where Q0 = fhpri; hp0i; hp1ig, Q

0
�nal = fhp0i; hp1ig and

�0 = f

a ! hp0i; g(hp0i) ! hp1i

g(hp1i) ! hp1i; g(hpri) ! hpri

h(hp0i) ! hp0i; h(hp1i) ! hpri

h(hpri) ! hpri; f(hpri; hpri) ! hpri

f (hp0i; hpri) ! hpri; f (hp1i; hpri) ! hpri

f (hpri; hp0i) ! hpri; f (hpri; hp1i) ! hpri

f (hp1i; hp0i) ! hpri; f (hp1i; hp1i) ! hpri

f (hp0i; hp0i) ! hp0i; f (hp0i; hp1i) ! hp0i g:

57

Consider the rewrite rule h(g(x)) ! f(x; x) in Step 4 for A0 (k = 0). Since a

move f (hp0i; hp0i) `0 hp0i is possible and LUB(fhp0i; hp0ig) = p0, the substitu-

tion � in Step 4 is � = fx 7! p0g and new transition rules hh(g(p0))i ! hp0i,

h(hg(p0)i) ! hh(g(p0))i, g(hp0i) ! hg(p0)i are added to �1. The last two

rules are added in ADDTRANS(hh(g(p0))i). Next, consider the rewrite rule

f(g(x); y) ! h(f(a; y)) in Step 4 for A0. In this case, we need to consider

two substitutions fx 7! p0g and fx 7! p1g as �0. Since h(f(a; hp0i)) `
�

0 hp0i

is possible, hf(g(p0); p0)i ! hp0i, hf(g(p1); p0)i ! hp0i are added to �1 and

ADDTRANS(hf(g(p0); p0)i) and ADDTRANS(hf (g(p1); p0)i) are executed.

We also have h(f (a; hp1i)) `
�

0 hp0i and hence we de�ne hf (g(p0); p1)i ! hp0i,

hf(g(p1); p1)i ! hp0i as new transition rules in �1 and both ADDTRANS

(hf(g(p0); p1)i) and ADDTRANS (hf(g(p1); p1)i) are executed. Again consider

the rewrite rule h(g(x))! f(x; x) in Step 4 for A1. Since a move f(hg(p0)i; hp1i)

`�1 hp0i is possible and g(p0) t p1 = g(p0), a new transition rule hh(g(g(p0)))i !

hp0i is added to �2 and ADDTRANS(hh(g(g(p0)))i) is executed. We can easily

verify that A2 accepts T (F). �

4.3. Correctness of the Construction

Lemma 4.5 For a state q 2 Qk (k � 0), Lq(Ak�) = Lq(Ak0�) for any k0 � k.

(Especially, for a state q 2 Q0, Lq(A0) = Lq(Ak�) for any k � 0.)

Proof. Lq(Ak�) � Lq(Ak0�) is obvious since the sets of states and rules are

enlarged monotonically. Assume 9t 2 Lq(Ak0�) n Lq(Ak�). Then there exists an

outermost position 9o 2 Pos(t) where a rule f(q01; : : : ; q
0

a(f)) ! q0 in �k0 n �k

is used. Since o is an outermost among such positions, q0 2 Qk. However, to

de�ne a new transition rule whose right-hand side is q0, ADDTRANS(q0) must

be executed. Since q0 has been already included in Qk, ADDTRANS does not

introduce any rules, a contradiction. �

Lemma 4.6 Assume hf(t1; : : : ; ta(f))i 2 Qk.

1. For u 2 T (F), if u `�k� hf(t1; : : : ; ta(f))i, then u = f (u1; : : : ; ua(f)) `
�

k�

f (ht1i; : : : ; hta(f)i) `k� hf (t1; : : : ; ta(f))i for some ui 2 T (F) (1 � i � a(f)).

58

2. Lhf(t1;:::;ta(f))i(Ak�) = ff(u1; : : : ; ua(f)) j ui 2 Lhtii(Ak�); 1 � i � a(f)g.

(Especially, Lhci(Ak�) = fcg.)

Proof. The non-rewriting transition rule de�ned in Procedures 4.1 and 4.2

whose right-hand side is hf(t1; : : : ; ta(f))i must be f(ht1i; : : : ; hta(f)i) ! hf (t1;

: : : ; ta(f))i. Those transition rules are de�ned in ADDTRANS. �

Lemma 4.7 For a state hti 2 Qk, t � u for any term u in Lhti(Ak�).

Proof. For a state hti 2 Q0, the lemma holds obviously since u = uhi `�0 hti

by Lemma 4.5 and hence t � u by (1) in the de�nition of �. For a state hti 2

Qk n Q0, ADDTRANS(hti) must have been executed. We show the lemma

holds for hti by structural induction on the term t. For t = f(t1; : : : ; ta(f)),

Lhti(Ak�) = ff(u1; : : : ; ua(f)) j ui 2 Lhtii(Ak�); 1 � i � a(f)g by Lemma 4.6(2).

By the inductive hypothesis, for any ui 2 Lhtii(Ak�) ti � ui holds. Thus, for any

term u 2 Lhti(Ak�), t � u holds by (2) in the de�nition of �. �

Lemma 4.8 For a term u 2 T (F) and a state hl�i where l is a linear term in

T (F ;V) and � is a substitution � = fxi 7! ti j 1 � i � n; ti 2 T (F [Q)g, if

u `�k� hl�i, then there is a substitution �:Var(l) ! T (F) such that u = l� and

the sequence u `�
k�
hl�i can be written as u `�

k�
l�0 `�

k�
hl�i where �0 = fxi 7!

htii j 1 � i � ng.

Proof. We need to show that (1) there is � with u = l�, (2) u `�
k�

l�0 and

(3) l�0 `�
k�
hl�i. For (1), assume that xi occurs at oi in l for 1 � i � n. Using

Lemma 4.7, u `�k� hl�i implies l� � u, and therefore oi 2 Pos(u). De�ne � =

fxi 7! u=oi j 1 � i � ng, then u = l�. (3) is rather obvious from the construction

of transition rules in ADDTRANS, and hence (2) is shown hereafter. For the

proof, it su�ces to show that u=o `�k� hl�=oi for all o 2 Pos(l), since this will

imply u=oi `
�

k�
hl�=oii = htii and therefore u `�

k�
l�0. The proof is by induction

on the length of o. The claim holds for the case joj = 0 by the assumption

u `�
k�
hl�i. Assume that l�=o = f(t1; : : : ; ta(f)) and

u=o `�k� hl�=oi (4.3)

59

as an inductive hypothesis. By Lemma 4.6(1), (4.3) can be written as

u=o `�k� f(ht1i; : : : ; hta(f)i) `k� hl�=oi:

Hence, u=o � i `�
k�
htii = hl�=o � ii for 1 � i � a(f). �

For example, assume that u = f (g(c); h(a)), l = f (x; h(y)), � = fx 7!

g(p1); y 7! p2g and u `�
k�
hf(g(p1); h(p2))i(= hl�i). Lemma 4.8 states that

u = f(g(c); h(a))

`
�

k� f(hg(p1)i; h(hp2i)) `
�

k� hf (g(p1); h(p2))i:

Lemma 4.8 implies the following corollary as a special case.

Corollary 4.9 For a ground term u 2 T (F) and hti 2 Qk, if u `
�

k�
hti then

u `�k� thi `�k� hti. �

The following two lemmas show the correctness of the function LUB.

Lemma 4.10 For states ht1i; : : : ; htni in Qk, if Lht1i(Ak�)\� � �\Lhtni(Ak�) 6= ;,

then t1 t � � � t tn is de�ned.

Proof. For simplicity, we prove the lemma only for n = 2. (An inductive

argument can apply to the case when n � 3.) Assume

Lhti(Ak�) \ Lht0i(Ak�) 6= ;: (4.4)

We prove the lemma by the structural induction on t. There are four cases to

consider.

� If t; t0 2 Q then t = t0 by (4.4), Lemma 4.5 and the fact that A0 is deter-

ministic. Hence, t t t0 is de�ned as t by (4.2).

� Assume t 2 T (F [Q) n Q and t0 2 Q. By (4.4), there exists a term

u 2 Lhti(Ak�)\Lht0i(Ak�). Thus u `
�

k�
hti and u `�

k�
ht0i. By Corollary 4.9,

u `�k� thi `�k� hti: (4.5)

Since A0 is complete, there exists a state hpi 2 Q0 such that thi `�0 hpi,

which implies u `�
k�
hpi by (4.5). Since u `�

k�
ht0i and u `�

k�
hpi, we see

that u `�0 ht
0i and u `�0 hpi by Lemma 4.5, which implies t0 = p by the

determinicity of A0. Hence, thi `
�

0 ht
0i and t t t0 is de�ned as t by (4.2).

60

� For the case when t 2 Q and t0 2 T (F [Q) n Q, the claim can be proved

in a similar way.

� Assume that t = f (t1; : : : ; ta(f)) and t0 = f (t01; : : : ; t
0

a(f)). It follows from

Lemma 4.6(2) that (4.4) implies Lhtii(Ak�)\Lht0ii(Ak�) 6= ; (1 � i � a(f)).

By the inductive hypothesis, ti t t
0

i is de�ned for 1 � i � a(f). Hence, tt t0

is de�ned by (4.2).

�

Although Lemma 4.10 and the following lemma have duality, we divide them

because of some technical reasons.

Lemma 4.11 For states ht1i; : : : ; htni in Qk, if t = t1 t � � � t tn is de�ned and

hti 2 Qk, then Lhti(Ak�) = Lht1i(Ak�) \ � � � \ Lhtni(Ak�).

Proof. Again, we prove the lemma only for n = 2 by the structural induction.

Assume t t t0 is de�ned. We perform case analysis according to (4.2).

� If t = t0 2 Q, then clearly the lemma holds.

� If t 2 T (F [Q) n Q, t0 2 Q, then t t t0 must be t and thi `�0 ht
0i. For any

term u 2 Lhti(Ak�) (i.e. u `
�

k� hti), u `
�

k� thi `�k� hti by Corollary 4.9 and

thus u `�k� ht
0
i by the assumption. Hence, Lhti(Ak�) � Lht0i(Ak�) and the

lemma holds.

� The case when t 2 Q, t 2 T (F [Q) n Q and t0hi `�0 hti is similar.

� Assume t = f(t1; : : : ; ta(f)); t
0 = f(t01; : : : ; t

0

a(f)) and ti t t0i are de�ned for

1 � i � a(f). Then, t t t0 = f (t1 t t01; : : : ; ta(f) t t0a(f)). By the inductive

hypothesis,

Lhtitt0ii
(Ak�) = Lhtii(Ak�) \ Lht0ii(Ak�): (4.6)

61

for 1 � i � a(f). Thus,

Lhttt0i(Ak�)

= Lhf (t1tt01;:::;ta(f)tt
0

a(f)
)i(Ak�)

= ff(u1; : : : ; ua(f)) j ui 2 Lhtitt0ii(Ak�)g (by Lemma 4:6(2))

= ff(u1; : : : ; ua(f)) j

ui 2 Lhtii(Ak�) \ Lht0ii(Ak�)g (by (4:6))

= ff(u1; : : : ; ua(f)) j ui 2 Lhtii(Ak�)g

\ff(u1; : : : ; ua(f)) j ui 2 Lhtii(Ak�)g

= Lhf (t1;:::;ta(f))i(Ak�)

\Lhf(t01;:::;t
0

a(f)
)i(Ak�) (by Lemma 4:6(2)):

�

4.3.1 Soundness

Lemma 4.12 For a term s 2 T (F) and states q; q0 2 Qk, if s `
�

k� q `k q0 where

the move q `k q0 is a rewriting move, then there is a term s0 2 T (F) such that

s!I;R s0 and s0 `�k�1 q0.

Proof. Assume that the move q `k q0 is caused by the rewriting transition

rule q ! q0 of degree d (� k) and q ! q0 is de�ned for a rewrite rule l ! r

in Step 4 of Procedure 4.1. Therefore q can be written as q = hl�i 2 Qd where

� = fxi 7! ti j 1 � i � ng. Also assume that r has m variables x1; : : : ; xm and the

variable xi occurs at oij in r (1 � i � m; 1 � j � i) and at oi in l (1 � i � n).

By applying Lemmas 4.5 and 4.8 to s `�
k�
hl�i, there is a substitution � such that

s = l� and

xi� `
�

d� htii (1 � i � n): (4.7)

By Step 4 of Procedure 4.1, there are states qij 2 Qd�1 and qi0 2 Q
0
�nal such that

r[oij qij j 1 � i � m; 1 � j � i] `
�

d�1 q0; (4.8)

and ti = LUB(fqij j 0 � j � ig). By (4.7) and Lemmas 4.5, 4.11, the following

moves are possible:

xi� `
�

(d�1)�
qij (1 � i � m; 0 � j � i): (4.9)

62

Since qi0 2 Q
0
�nal and also xi� `

�

0 qi0 by Lemma 4.5 and (4.9),

xi� 2 NFR (4.10)

for 1 � i � n (For the case xi 2 Var(l) n Var(r), (4.10) trivially holds since

htii 2 Q
0
�nal by the de�nition of � in Step 4 of Procedure 4.1). Let s0 = r�, then

s !I;R s0 from (4.10) and Lemma 2.3. On the other hand, by (4.8), (4.9) and

Lemma 4.5, r� `�k�1 q0 and the lemma holds. �

The next lemma shows the soundness of Procedure 4.1.

Lemma 4.13 For a term s and a state q 2 Qk, if s `
�

k q, then there is a term s0

such that s!�

I;R s0 and s0 `�
k�

q.

Proof. The proof is shown by induction on the highest degree d of rewriting

moves in s `�k q. For the base case (d = 0, which means s `�k� q), let s0 = s

and the lemma holds. Assume the lemma holds for the highest degree less than

d and consider the case with d. The inductive part is shown by induction on

the number m (� 1) of rewriting moves of degree d. The sequence that has m

rewriting moves of degree d can be written as

s `�k s[o q0] `k s[o q0] `
�

k q (4.11)

where o 2 Pos(s), q0; q 2 Qk and the move s[o q0] `k s[o q0] is the �rst

rewriting move of degree d in the sequence (that is, o is one of the innermost

position of the rewriting move of degree d). From the de�nition of TAs, we have

s=o `�k q
0
`k q0 (4.12)

and by the inductive hypothesis for d, there is a term u such that

s=o!�

I;R u (4.13)

and

u `�k� q0: (4.14)

From (4.12) and (4.14), we have

u `�k� q0 `k q0: (4.15)

63

Applying Lemma 4.12 to (4.15), we can see that there is a term v such that

u!I;R v (4.16)

and

v `�k�1 q0: (4.17)

From (4.11) and (4.17), we obtain s[o v] `�k�1 s[o q0] `
�

k q which have

only m � 1 rewriting moves of degree d. By the inductive hypothesis for m (if

m� 1 � 1) or by the inductive hypothesis for d (if m� 1 = 0), there is a term s0

such that

s[o v]!�

I;R s0 (4.18)

and s0 `�
k�

q. From (4.13),(4.16) and (4.18), we have s[o s=o] = s!�

I;R s[o

u]!I;R s[o v]!�

I;R s0 and the lemma holds. �

4.3.2 Completeness

Lemma 4.14 For a rewrite rule l ! r 2 R, a substitution � and a state q 2 Qk,

if l� !I;R r� and r� `�k q, then l� `�k+1 q holds.

Proof. Assume l has variables x1; : : : ; xn and each xi occurs at oij in r for

1 � i � m and 1 � i � i. From the assumption l� !I;R r�,

xi� 2 NFR (1 � i � n): (4.19)

The sequence r� `�k q can be written as

r� `�k r[oij qij j 1 � i � m; 1 � j � i]

`
�

k q: (4.20)

From (4.20), we obtain

xi� `
�

k qij: (4.21)

By applying Lemma 4.13 to (4.21), we can see that there are terms uij with

1 � i � m and 1 � j � i such that uij `
�

k�
qij and xi� !

�

I;R uij. Since xi� is in

normal form, xi� = uij and hence

xi� `
�

k� qij : (4.22)

64

By (4.19), there are states qi0 2 Q
0
�nal such that

xi� `
�

0 qi0 (1 � i � n): (4.23)

By (4.22), (4.23) and Lemma 4.5, Lqi1(Ak�) \ � � � \ Lqii(Ak�) \ Lqi0(Ak�) 6= ;

(1 � i � m) holds and hence ti = LUB(fqij j 0 � j � ig) for some ti 2 T (F[Q)

by Lemma 4.10. Thus, in Step 4 in Procedure 4.1, substitution � is de�ned as

� = fxi 7! ti j 1 � i � mg [fxi 7! ti j xi 2 Var(l) n Var(r); htii 2 Q
0
�nalg.

Moreover, in ADDTRANS new states and transition rules are de�ned so that

l�0 `�
(k+1)�

hl�i `k+1 q (4.24)

where �0 = fxi 7! htii j 1 � i � ng. On the other hand, by Lemmas 4.5, 4.11 and

(4.22), we have

xi� `
�

(k+1)�
htii: (4.25)

Summarizing (4.24) and (4.25), we obtain l� `�
(k+1)�

l�0 `�k+1 q and the lemma

holds. �

The next lemma shows the completeness of Procedure 4.1.

Lemma 4.15 For two terms s; s0 2 T (F) and a state q 2 Q0, if s
0
`
�

0 q and

s!�

I;R s0, then there is an integer k such that s `�k q.

Proof. The proof is shown by induction on the number n of rewriting steps in

s !�

I;R s0. For the base case (s = s0), let k = 0, then the lemma holds. Assume

the lemma holds for n�1 and consider the case with n(� 1). The rewrite sequence

of length n can be written as

s[o l�] = s!I;R s[o r�]!�

I;R s0 (4.26)

where o 2 Pos(t), � is a substitution and l ! r 2 R. By the inductive hypothesis,

there is an integer k such that s[o r�] `�k q and hence there is a state q0 such

that

r� `�k q
0 (4.27)

and

s[o q0] `�k q: (4.28)

65

From (4.26) and Lemma 2.2, we have

l� !I;R r�: (4.29)

By applying Lemma 4.14 to (4.27) and (4.29), it is possible that

l� `�k+1 q
0: (4.30)

Summarizing (4.28) and (4.30), we have s = s[o l�] `�k+1 s[o q0] `�k q and

the lemma holds. �

Summarizing the lemmas in Section 4.3.1 and 4.3.2, the following theorem

holds.

Theorem 4.16 For an AO-TRS R, if Procedure 4.1 halts with an output A�,

then L(A�) = (�

I;R)(NFR). �

Example 4.2 Consider the FPO�1-TRS R1 in Example 2.8 again. R1 is an

AO-TRS as well. Since L(A�) � L(A2) = T (F) by Example 4.1, we know R1 is

SN by Theorem 4.1, Fact 4.2 and Theorem 4.16. �

4.4. Termination of the Construction

Procedure 4.1 and Procedure 4.1 are essentially the same where Procedure 4.1

adds new states and transition rules for only inner-most rewrite relation whereas

Procedure 4.1 does for any rewrte relation. Hence the following lemma can easily

be seen.

Lemma 4.17 For a right-linear TRS R, if Procedure 3.1 always halts for R,

then Procedure 4.1 always halts for R�1. �

By Theorem 3.11 and Lemma 4.17 the following lemma holds.

Lemma 4.18 Procedure 4.1 halts if the input is an AO-FPO�1-TRS. �

In general, the running time of Procedure 4.1 is exponential to both of the size

of the given TRS R and the size of the given TA A.

Lemma 4.19 For an AO-FPO�1-TRS R, we can e�ectively construct a TA A�

such that L(A�) = (�

I;R)(NFR).

66

Proof. By Theorem 4.16 and Lemma 4.18. �

By using this lemma, we can show the following main theorem of this chapter.

Theorem 4.20 For an AO-FPO�1-TRS R the following problems are decidable:

1. Is R SN?

2. For a term s, is s SN in R?

Proof. By Lemmas 4.3 and 4.19. �

67

Chapter 5

Conclusions

Properties of �nitely path overlapping TRSs (FPO-TRSs) are discussed in this

thesis.

In Chapter 2, FPO-TRS is de�ned (De�nition 2.17) and the class of right-

linear FPO-TRS is shown to properly include the other known decidable classes

of TRSs which e�ectively preserve recognizability (Theorem 2.18). We also prove

some properties of TRSs which e�ectively preserve recognizability in Chapter 2

(Theorems 2.10 and 2.11).

In Chapter 3, it is shown that any right-linear FPO-TRS (RL-FPO-TRS) ef-

fectively preserves recognizability (Theorem 3.11). The result provides a positive

answer for an open problem proposed by Gyenizse and V�agv�olgyi[21] which asks

to generalize the class of linear generalized semi-monadic TRSs so that a TRS in

the obtained class still e�ectively preserves recognizability. Also a new decidable

approximation is investigated in order to decide whether or not a given term has

needed redex (De�nition 3.11 and Corollary 3.18).

In Chapter 4, a new subclass AO-FPO�1-TRS of TRSs is proposed and it is

shown that SN property of the class is decidable (Theorem 4.20). In the proof,

we adopted tree automata technique similar to the one in [28]. The class of

AO-FPO�1-TRSs properly includes AO-GR-TRSs(Theorem 2.18).

The followings are directions to which the study will be developed for the

future work.

The one is to restrict tree automata in the de�nition of recognizability preser-

vation to obtain a wider class of TRSs which still have some appropriate prop-

68

erties. As already mentioned in Chapter 2, Gyenizse and V�agv�olgyi[21] intro-

duced the notion preserving F -recognizability and showed that there is a dif-

ference between the notions preserving F -recognizability and preserving rec-

ognizability. If we consider the property of preserving F -recognizability, we

might obtain a wider class of TRSs. R�ety[31] proposed a decidable subclass of

TRSs which e�ectively preserve recognizability for recognizable languages each of

which consists of ground instances of a linear term. For example, consider R =

ff(g(x)) ! g(f(x))g and the tree automaton A = (ff; g; cg; fq1; qfg; fqfg;�)

where � = fc ! qf ; g(qf) ! q1; f(q1) ! qfg. It is easy to see that (!�

R

)(L(A)) \ NFR = fgn(fn(c)) j n � 0g. Since R is left-linear, NFR is recog-

nizable by Lemma 2.8. This implies that (!�

R
)(L(A)) is not recognizable and

hence R is not in EPR-TRS. However R�ety[31] showed that if a TA is restricted

to accept only instances of a linear term, then the TRS R e�ectively preserves

recognizability. R�ety also showed that for a TRS in the class reachability problem

is decidable.

Another one is to use extensions of tree automata to obtain a wider class

of TRSs which still have some appropriate properties. Main properties of tree

automata which are used to show properties of EPR-TRS are that (1) the class of

recognizable languages is closed under intersection and (2) the emptiness problem

is decidable. Several extensions of tree automata which still have the properties

(1) and (2) above are proposed and some of those extensions can be found in

the survey of TAs[5]. For example, Bogaert and Tison[2] introduced automata

with equality and disequality constraints (abbreviated to AWEDC), in which a

transition rule consists of a kind of conditional rewrite rules. The class AWEDC

can deal with some restricted class of tree languages of instances of non-linear

terms. By using AWEDC, we may de�ne a subclass of right-non-linear TRSs

which have some useful properties.

Kaji et al.[25] presented a method to verify cryptographic protocols by com-

puting descendants by a TRS of some recognizable languages. On the other

hand, Genet and Klay[17] showed that for verifying the safety property of some

cryptographic protocols, sometimes it is enough to compute approximations of

descendants by a TRS and presented a procedure to compute approximations of

descendants for any left-linear TRSs. We may be able to extend Procedure 3.1

69

in this thesis to compute approximations for wider classes of TRSs.

70

References

[1] Thomas Arts and J�urgen Giesl: \Termination of term rewriting using de-

pendency pairs," Theoretical Computer Science, volume 236, numbers 1{2,

pages 133{178, April 2000.

[2] Bruno Bogaert and Sophie Tison: \Equality and disequality constraints on

direct subterms in tree automata," Proceedings of the 9th Annual Symposion

on Theoretical Aspects of Computer Science, Cachan, France, Lecture Notes

in Computer Science, volume 577, pages 161{172, Springer-Verlag, February

1992.

[3] Walter S. Brainerd: \Tree generating regular systems," Information and

Control, volume 14, number 5, pages 217{231, Febuary 1969.

[4] Hubert Comon: \Sequentiality, second order monadic logic and tree au-

tomata," Proceedings of the 10th Annual IEEE Symposium on Logic in

Computer Science, San Diego, California, pages 508{517, IEEE Computer

Society Press, June 1995.

[5] Hubert Comon, Max Dauchet, R�emi Gilleron, Florent Jacque-

mard, Denis Lugiez, Sophie Tison and Marc Tommasi: Tree Au-

tomata Techniques and Applications, Draft, 1997. Available from

http://l3ux02.univ-lille3.fr/tata/

[6] Jean-Luc Coquid�e, Max Dauchet, R�emi Gilleron and S�andor V�agv�olgyi:

\Bottom-up tree pushdown automata: classi�cation and connection with

rewrite systems," Theoretical Computer Science, volume 127, number 1,

pages 69{98, May 1994.

71

[7] Jean-Luc Coquid�e, Max Dauchet and Sophie Tison: \About connections

between syntactical and computational complexity," Proceedings of the In-

ternational Conference on Fundamentals of Computation Theory, Lecture

Notes in Computer Science, volume 380, pages 105{115, Springer-Verlag,

August 1989.

[8] Max Dauchet: \Simulation of a Turing machine by a left-linear rewrite rule,"

Proceedings of the 3rd International Conference on Rewriting Techniques

and Applications, Chapel Hill, North Carolina, Lecture Notes in Computer

Science, volume 355, pages 109{120, Springer-Verlag, April 1989.

[9] Nachum Dershowitz and Zohar Manna: \Proving termination with multiset

orderings," Communications of the ACM, volume 22, number 8, pages 465{

476, August 1979.

[10] Nachum Dershowitz: \Termination of linear rewriting systems (preliminary

version)," Proceedings of the 8th International Colloquium on Automata,

Languages and Programming, Acre (Akko), Israel, Lecture Notes in Com-

puter Science, volume 115, pages 448{458, Springer-Verlag, July 1981.

[11] Nachum Dershowitz and Jean-Pierre Jouannaud: \Rewrite Systems," Jan

van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B,

Formal Models and Semantics, chapter 6, pages 243{320, Elsevier Science

Publishers, North-Holland, 1990.

[12] Roel C. de Vrijer: \Unique normal forms for combinatory logic with parallel

conditional, a case study in conditional rewriting," Technical Report, Free

University, 1990.

[13] Danny Dolev and Andrew C. Yao: \On the security of public key protocols,"

IEEE Transactions on Information Theory, volume IT-29, number 2, pages

198{208, March 1983.

[14] Ir�ene Durand and Aart Middeldorp: \Decidable call by need computations

in term rewriting (extended abstract)," Proceedings of the 14th International

Conference on Automated Deduction, North Queensland, Australia, Lecture

72

Notes in Arti�cial Intelligence, volume 1249, pages 4{18, Springer-Verlag,

July 1997.

[15] Jean H. Gallier and Ronald V. Book: \Reductions in tree replacement sys-

tems," Theoretical Computer Science, volume 37, number 2, pages 123{150,

November 1985.

[16] Ferenc G�ecseq and Magnus Steinby: Tree Automata, Acad�emiai Kiad�o, Bu-

dapest, 1984.

[17] Thomas Genet and Francis Klay: \Rewriting for cryptographic protocol ver-

i�cation," Proceedings of the 17th International Conference on Automated

Deduction, Pittsburgh, Pennsylvania, Lecture Notes in Arti�cial Intelligence,

volume 1831, Springer-Verlag, June 2000.

[18] R�emi Gilleron: \Decision problems for term rewriting systems and recogniz-

able tree languages," Proceedings of the 8th Annual Symposium on Theo-

retical Aspects of Computer Science, Hamburg, Germany, Lecture Notes in

Computer Science, volume 480, pages 148{159, Springer-Verlag, February

1991.

[19] R�emi Gilleron and Sophie Tison: \Regular tree languages and rewrite sys-

tems," Fundamenta Informaticae, volume 24, pages 157{175, 1995.

[20] Bernhard Gramlich: \Abstract relations between restricted termination and

conuence properties of rewrite system," Fundamenta Informaticae, volume

24, pages 2{23, 1995.

[21] P�al Gyenizse and S�andor V�agv�olgyi: \Linear generalized semi-monadic

rewrite systems e�ectively preserve recognizability," Theoretical Computer

Science, volume 194, numbers 1{2, pages 87{122, March 1998.

[22] G�erard Huet and Dalllas S. Lankford: \On the uniform halting problem for

term rewriting systems," INRIA Technical Report 283, 1978.

[23] G�erard Huet and Jean-Jacques L�evy: \Computations in orthogonal rewriting

systems, I and II," Jean-Loius Lassez and Gordon Plotkin, editors, Computa-

73

tional Logic: Essays in Honor of Alan Robinson, pages 396{443, MIT Press,

1991.

[24] Florent Jacquemard: \Decidable approximations of term rewriting systems,"

Proceedings of the 7th International Conference on Rewriting Techniques

and Applications, New Brunswick, New Jersey, Lecture Notes in Computer

Science, volume 1103, pages 362{376, Springer-Verlag, July 1996.

[25] Yuichi Kaji, Toru Fujiwara and Tadao Kasami: \Solving a uni�cation prob-

lem under constrained substitutions using tree automata," Journal of Sym-

bolic Computation, volume 23, number 1, pages 79{117, 1997.

[26] Jan Willem Klop and Roel C. de Vrijer: \Unique normal forms for lambda

calculus with surjective pairing," Information and Computation, volume 80,

number 2, pages 97{113, February 1989.

[27] Aart Middeldorp, Hitoshi Ohsaki and Hans Zantema: \Transforming ter-

mination by self-labelling", Proceedings of the 13th International Confer-

ence on Automated Deduction, New Brunwick, New Jersey, Lecture Notes

in Arti�cial Intelligence, volume 1104, pages 373{387, Springer-Verlag, July

30{August 3 1996.

[28] Takashi Nagaya and Yoshihito Toyama: \Decidability for left-linear growing

term rewriting systems," Proccedings of the 10th International Conference

on Rewriting Techniques and Applications, Trento, Italy, Lecture Notes in

Computer Science, volume 1631, pages 256{270, Springer-Verlag, July 1999.

[29] Kai Salomaa: \Deterministic tree pushdown automata and monadic tree

rewriting systems," Journal of Computer System Science, volume 37, pages

367{394, December 1988.

[30] Kai Salomaa: \Decidability of conuence and termination of monadic term

rewriting systems," Proceedings of the 4th International Conference on

Rewriting Techniques and Applications, Como, Italy, Lecture Notes in Com-

puter Science, volume 488, pages 275{286, Springer-Verlag, April 1991.

74

[31] Pierre R�ety: \Regular sets of descendants for constructor-based rewrite sys-

tems," Proceedings of the 6th International Conference on Logic for Pro-

gramming and Automated Reasoning, Lecture Notes in Arti�cial Intelli-

gence, volume 1705, pages 148{160, Springer-Verlag, September 1999.

[32] Toshinori Takai, Yuichi Kaji, Takehiko Tanaka and Hiroyuki Seki: \A pro-

cedure for solving an order-sorted uni�cation problem { extension for left-

nonlinear system," Technical Report of NAIST, NAIST-IS-TR98011, 1998.

Available from http://www.aist-nara.ac.jp/

[33] Toshinori Takai, Yuichi Kaji and Hiroyuki Seki: \A su�cient condition for

the termination of the procedure for solving an order-sorted uni�cation prob-

lem," Technical Report of NAIST, NAIST-IS-TR99010, 1999. Available from

http://www.aist-nara.ac.jp/

[34] Toshinori Takai, Yuichi Kaji and Hiroyuki Seki: \Right-linear �nite-path

overlapping term rewriting systems e�ectively preserve recognizability,"

Proceedings of the 11th International Conference on Rewriting Techniques

and Applications, Norwich, U.K., Lecture Notes in Computer Science, vol-

ume 1833, pages 246{260, Springer-Verlag, July 2000.

[35] Yoshihito Toyama and Michio Oyamaguchi: \Church-Rosser property and

unique normal form property of non-duplicating term rewriting systems,"

Proccedings of the 4th International Workshop on Conditional Term Rewrit-

ing Systems, Jerusalem, Israel, Lecture Notes in Computer Science, volume

968, pages 316{331, Springer-Verlag, July 1994.

[36] Hans Zantema: \Termination of term rewriting by semantic labelling," Fun-

damenta Informaticae, volume 24, numbers 1{2, pages 89{105, 1995.

75

