Doctor’s Thesis

A Decidable Subclass of Term Rewriting
Systems Which Effectively Preserve
Recognizability

Toshinori Takai

February 5, 2002

Department of Information Processing
Graduate School of Information Science

Nara Institute of Science and Technology

Doctor’s Thesis
submitted to Graduate School of Information Science,
Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

DOCTOR of ENGINEERING

Toshinori Takai

Thesis committee: Hiroyuki Seki, Professor
Minoru Ito, Professor
Michiko Inoue, Associate Professor

Yuichi Kaji, Associate Professor

A Decidable Subclass of Term Rewriting
Systems Which Effectively Preserve
Recognizability*

Toshinor: Takai

Abstract

Term Rewriting system (TRS) is a well-known computational model which
operates on terms (or trees). Recently much attention has been paid to TRSs
which effectively preserve recognizability (EPR-TRSs). A set L of terms (or a
tree language) is recognizable if and only if there exists a tree automaton which
accepts L. A TRS R effectively preserves recognizability if and only if for every
recognizable set L, we can construct a tree automaton which exactly accepts
those terms rewritable from terms in L by R. It is known that some important
properties such as local confluence and joinability are decidable for EPR-TRSs.
It is undecidable whether a given TRS effectively preserves recognizability or
not, and hence decidable subclasses of EPR-TRSs have been proposed. However,
there exist EPR-TRSs which do not belong to any of those subclasses.

This thesis proposes a decidable subclass of TRSs, which is called finitely
path overlapping TRSs (FPO-TRSs), and shows that every right-linear FPO-TRS
effectively preserves recognizability. Also, right-linear FPO-TRSs are shown to
properly include other well-known decidable subclasses of EPR-TRSs.

Strongly normalizing (or termination) property is one of the most fundamental
properties in the theory of TRSs. However, the property is undecidable, and
some subclasses have been proposed for which the property is decidable. Nagaya

and Toyama proposed growing TRSs and showed that for an almost orthogonal

*Doctor’s Thesis, Department of Information Processing, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DT9861012, February 5, 2002.

growing TRS, strongly normalizing property is decidable by using a tree automata
technique.

In the latter half of this thesis, we consider an inverse FPO-TRS (denoted by
FPO~'-TRS), which is obtained from an FPO-TRS R by interchanging the left-
hand side and the right-hand side of each rewrite rule in R. Following the Nagaya
and Toyama’s method, we show that for a given almost orthogonal FPO~!-TRS

R, it is decidable whether R is strongly normalizing or not.

Keywords:

term rewriting system, tree automaton, decidability, recognizability, strongly nor-

malizing property

11

Ooooooan
0ooooo:

A Decidable Subclass of Term Rewriting Systems
Which Effectively Preserve Recognizability
(00ODoOO00oo0ooooOooooOoooooOon)

0 g: 00 gd

0o0ooo00,000 (0)oOooooOoooooooooOo. 0oo0,00000
000000000, 00000000o0ooooOoUoUoO0. 00O (OO
00)LOO0O0O0O0OO0O0,LO00000000O0000O00O0DOO00O0O00.
ooodod ROOODODOOOODOOOL,000DODOO LOODDO,RO
OO0O00OO0bO0 LOooooobobooboboobooobooboboooDo
googoobo. bbobbobbobbuoooobboobg,bbbuoogggo
gbooobbodbbo,bgua,bugbabbboobbobbooobbbodad
gbogoboododu. gbbouoggbboboooobbooobbbooo
gbobodgboda,bbuogogbooobaoobobobboa.obbo,gn
googoobbodbogoobbbboooobboboooobboboa,od
gboboooobobooon.
gobod,0obbbododboooooboobo,obbooooobobaa
gOo,b0bdobobbobooobooboooboobbooobooooboobo. b
g,gobgoboboobdobbo,goooooboob,0oboobobod
gboobboooobobboobbbooooon.

ooooOo (boo)o,000000000oO0oo0ooooOO0.0D0O,00
gboooboggbbobobo,guooooobbogooboboboogogo
gobooooooob.bbooba,gbbbbobooodoo,obbbo
ggodbog,bbobboobobboooob,bogobobbooooon
gooodgo.

gobogbobob,doduguoobbbogbooobobobooogoo
gbooobuoboogoooobbbbob. bboboooooooog, bbb
gobbooboboboobuobboooo,oboobbobooboobd
goo.

ooooo:
00000,0000000,00000,000,00000

il

Acknowledgements

First of all I wish to express my gratitude to Professor Hiroyuki Seki. Without
his pertinent advice and constant encouragement during the course of the study
I would have never written this thesis. I also thank to Professor Minoru Ito
and Associate Professor Michiko Inoue for their willingness to be members of the
thesis committee for this thesis. I express my thanks to Associate Professor Yuichi
Kaji, who guided me into this study, for his insightful comments and invaluable
support throughout the work.

I would like to acknowledge Dr. Yoshiki Kinoshita of National Institute of
Advanced Industrial Science and Technology for his kind support and encourage-
ment. I am extremely grateful to Dr. Hitoshi Ohsaki of National Institute of Ad-
vanced Industrial Science and Technology for his helpful comments and valuable
information on TRSs. The TRS meetings I have attended gave me suggestions
and comments; I thank all participants.

I am deeply indebted to Professor Tadao Kasami of Hiroshima City University,
Professor Toyoo Takata of Iwate Prefectual University, Dr. Hajime Watanabe of
National Institute of Advanced Industrial Science and Technology for their kind
supports. I would also like to express my thanks to my collaborators Mr. Kouji
Kitaoka and Mr. Takenori Abe for their discussions. I am obligated to entire staff
of the Kasami and Seki laboratories, to which I have belonged, of Nara Institute of
Science and Technology for their friendliness and interest. I also thank my present
colleagues of National Institute of Advanced Industrial Science and Technology
for their comments and suggestions.

Finally I am especially grateful to my parents and the rest of the family.

v

List of Publications

Journal Papers

1. Toshinori Takai, Yuichi Kaji and Hiroyuki Seki: “Termination property of
inverse finite path overlapping term rewriting system is decidable,” TEICE

Transactions on Information and Systems (to appear).month

2. Toshinori Takai, Yuichi Kaji and Hiroyuki Seki: “Right-linear finite-path
overlapping term rewriting systems effectively preserve recognizability,” Sci-

enticae Mathematicae Japonicae (submitted).

International Conference

1. Toshinori Takai, Yuichi Kaji and Hiroyuki Seki: “Right-linear finite-path
overlapping term rewriting systems effectively preserve recognizability,”
Proceedings of the 11th International Conference on Rewriting Techniques

and Applications, Norwich, U.K., Lecture Notes in Computer Science, vol-
ume 1833, pages 246-260, Springer-Verlag, July 2000.

Workshops

1. Toshinori Takai, Yuichi Kaji, Takehiko Tanaka and Hiroyuki Seki: “A pro-
cedure for solving an order-sorted unification problem — extension for left

nonlinear system,” IEICE Technical Report, COMP98-44, October 1998.

2. Kouji Kitaoka, Toshinori Takai, Yuichi Kaji, Takehiko Tanaka and Hi-

royuki Seki: “Finite-overlapping term rewriting systems effectively preserve

recognizability,” IEICE Technical Report, COMP98-45, October 1998 (in

Japanese).

3. Kouji Kitaoka, Toshinori Takai, Yuichi Kaji and Hiroyuki Seki: “Finite-
overlapping term rewriting systems effectively preserve recognizability,”

The 14th Term Rewriting Meeting, NAIST, March 1999.

4. Toshinori Takai, Yuichi Kaji and Hiroyuki Seki: “Right-linear finite path
overlapping term rewriting systems effectively preserve recognizability,”
The 17th Term Rewriting Meeting, Osaka LERC, November 2000.

5. Takenori Abe, Toshinori Takai, Yuichi Kaji and Hiroyuki Seki: “Termina-
tion of finite path overlapping term rewriting system,” Naoki Kato, edi-
tor, New Developments of Theory of Computation and Algorithms, Kyoto,
Kokyuroku (research report) of Research Institute for Mathematical Sci-
ences, number 1205, Kyoto University, January 2001 (in Japanese).

6. Toshinori Takai: “Termination of finite path overlapping term rewriting
systems,” The 18th Term Rewriting Meeting, Sakunami, March 2001.

Technical Reports

1. Toshinori Takai, Yuichi Kaji, Takehiko Tanaka and Hiroyuki Seki: “A pro-
cedure for solving an order-sorted unification problem — extension for left-
nonlinear system,” NAIST Technical Report, NAIST-IS-TR98011, 1998.

2. Toshinori Takai, Yuichi Kaji and Hiroyuki Seki: “A sufficient condition
for the termination of the procedure for solving an order-sorted unification

problem,” NAIST Technical Report, NAIST-IS-TR99010, 1999.

vi

Contents

1 Introduction
2 Preliminaries
2.1. Term Rewriting System
2.2. Tree Automaton.
2.3. TRS which Preserves Recognizability
2.4. Finitely Path Overlapping TRS
2.4.1 Definitions e
2.4.2 Hierarchical Relation
3 Recognizability Preserving Property
3.1. Tree Automata Construction for Descendants
3.2. Correctness of the Construction
3.2.1 Soundness
3.2.2 Completeness
3.3. Termination of the Construction
3.4. Decidable Approximations L.,
4 Strongly Normalizing Property
4.1. Nagaya and Toyama’s method
4.2. Tree Automata Construction for Inner-Most Ancestors
4.3. Correctness of the Construction
4.3.1 Soundness
4.3.2 Completenesso
4.4. Termination of the Construction

vil

12
13
18
19
22

24
24
28
28
42
45
51

5 Conclusions

References

Vviil

68

71

List of Figures

1.1

2.1
2.2
2.3
2.4

3.1
3.2

Inclusion relation of subclassesof TRSs

Tree representation for term d(z,e(z,y)).
ssticksoutofo
The sticking-out relations of rewrite rules.

The sticking-out graph of Rg.

The new rules introduced by ADDTRANS.
The number of layers of a state of A, in the sequence (3.1).. . . .

ix

19
20
21

27
49

Chapter 1

Introduction

Term Rewriting system is a well-known computational model which operates on

terms (or trees). The following is an example of a term rewriting system:

Ro={d(z,e(z,y)) -y }

where d and e are function symbols and x and y are variables. In general, a
term rewriting system (abbreviated as TRS) is an arbitrary finite relation on
first-order terms and defines a rewrite relation on terms. The rewrite relation
of a TRS R is an infinite relation and written as —%. For example, the term
my(d(k(Alice), e(k(Alice), my)) where my and k are function symbols and Alice
and m, are constants can be ‘rewritten’ to a term m by using the TRS Ry, i.e.
my(d(k(Alice),e(k(Alice),mz)) —%, mi(mz). Intuitively saying, for a TRS R,
the rewrite relation defined by R is the minimal relation which contains R and
is closed under contexts and substitutions. An element in a TRS is called a
rewrite rule and for a rewrite rule [— r, [is called the left-hand side and r is the
right-hand side. The TRS R, above consists of only one rewrite rule and defines
the characteristics of an encryption function (e) and a decryption function (d) in
some cryptographic protocols[13, 25]. The function e encrypts a message y with
a key z and the result is e(z, y). The TRS R, intuitively means that the function
d can decript the result e(z,y) to y if the same key is also given as the first
argument of d.

As in the example presented above, operations to replace a pattern of trees

with another pattern appear in various areas in computer science. For example,

a set of inference rules in the theory of automated theorem proving defines such
operations, which is called derivations, for a given formula. Grammars in formal
language theory replace a pattern of the left-hand side of a production rule with
the corresponding right-hand side in derivation trees. Functional programming
lanugages can directly be regarded as TRSs. Dolev and Yao[13] firstly proposed a
mathematical model of a class of cryptographic protocols by using TRSs. Kaji et
al.[25] presented a method to verify the cryptographic protocol which is specified
by using such a TRS as R, above. TRSs are investigated as a general frame-
work for treating such replacement operations on tree structured data. More
applications can be found in surveys of TRSs[11].

We can easily see that any type 0 grammar in Chomsky’s hierarchy can be
simulated by a TRS according to the definition that the left- and right-hand
sides of a rewrite rule can be an arbitrary term. Especially, it it known that any
Turing machine can be simulated by a TRS which consists of one (left-linear)
rewrite rule[8]. Due to its Turing-complete computational power, many important
properties such as reachability, confluence, unifiability and strongly normalizing
property are undecidable in general. Consequently, finding an appropriate class
of TRSs which has sufficient computational power as well as favorable properties
has been paid attention to for a long time.

On the other hand, tree automata are also widely investigated as a mathe-
matical model dealing with terms[16]. A tree automaton is a finite-state machine
which accepts terms and tree automata define the class of tree languages (sets
of terms) as follows: A tree language L is recognizable if there is a tree automa-
ton which accepts L. Tree automata have some of the useful properties as the
traditional finite-state automata on strings have. For example, the class of re-
conizable tree languages is closed under boolean operations (union, intersection

and complement) and membership and emptiness problems are decidable.

Nevertheless TRSs and tree automata have been studied on rather indepen-
dently since their research histories and motivations are different. Studies on
tree automata have strong relation to traditional string automata and formal
language theory, while the problems of TRSs are mainly motivated by problems
of mathematical logic, universal algebra, automated theorem proving and func-

tional programming. As already mentioned before, tree automata inherit many

advantageous properties of finite-state automata on strings[16].

Recently, many researchers have been interested in the relation between TRSs
and tree automata[5]. The class of TRSs which effectively preserve recognizabil-
ity is defined by using tree automata as follows: Let £(.A) be the tree language
accepted by a tree automaton 4. For a TRS R and a tree language L, the descen-
dant of L by R, denoted by (—%)(L), is the image of L by the rewrite relation
defined by R. That is, (—%)(L) = {t | 3s € L:s —% t}. A TRS effectively
preserves recognizability if for any tree automaton .4 we can construct a tree au-
tomaton which accepts (—%)(L(A)). It is known that for a TRS which effectively
preserves recognizability, reachability problem, joinability problem, local conflu-
ence are decidable. In fact, these problems can be translated into problems on
tree languages which are decidable according to the properties of tree automata.
In this thesis, decidability of weakly normalizing, unification problem and needed
redexes is also discussed.

Unfortunately, it is undecidable whether a given TRS effectively preserves
recognizability or not. Therefore, some decidable subclasses of recognizabil-
ity preserving TRSs have been proposed in many papers. Such classes include
ground TRS[3], right-linear monadic TRS[29], linear semi-monadic TRS[6] and
linear generalized semi-monadic TRS[21]. The class of linear semi-monadic TRS
properly includes ground TRSs. The class of linear generalized semi-monadic
TRSs properly includes linear semi-monadic TRS but does not include right-
linear monadic TRSs. The class of right-linear monadic TRSs does not include

ground TRSs. The inclusion relation of them is shown in Figure 1.1.

In the first half part of this thesis, a new class of TRSs, finitely path overlapping
TRSs (FPO-TRSs) is proposed. A TRS in the class of right-linear FPO-TRSs
(RL-FPO-TRSs) effectively preserves recognizability, and the class properly in-
cludes all the above mentioned decidable subclasses of TRSs which effectively
preserve recognizability. Gyenizse and Vagvolgyi[21] presented the open prob-
lem to ask to generalize the class of linear generalized semi-monadic TRSs so
that a TRS in the obtained class still effectively preserves recognizability. The
proposed class RL-FPO-TRSs is shown to properly includes linear generalized
semi-monadic TRSs. The following TRS is an example which is included in RL-
FPO-TRS but not in the other decidable subclasses stated above where f and g

: RL-FPO-TRS N
/" RLM-TRS

N Y

L-SM-TRS

L-GSM-TRS
. /

Figure 1.1. Inclusion relation of subclasses of TRSs

are function symbols, a and b are constants and x is a variable:

{ g(z) — f(g(2),b),
f(z,a) = f(a,a).

In order to prove a TRS in RL-FPO-TRSs effectively preserves recognizability,
this thesis provides a procedure of which input is a TRS R and a tree automa-
ton A and of which output is a tree automaton which accepts (—7%)(L(.A)), the
descendant of the accepting language of A by R. The procedure is a non-trivial
extension of Kaji et al.’s unification procedure[25]. Dealing with non-linearity by
tree automata is very difficult due to the limitation of their recognizing power.
While Kaji et al’s procedure can deal with left-non-linearity with some restric-
tions, the procedure proposed in this thesis can deal with arbitrary left-non-linear
rewrite rules. This thesis proves that for an RL-FPO-TRS and an arbitrary tree

automaton, the procedure is sound and complete and always terminates.

For a TRS R, the inverse of R is a TRS obtained from R by interchanging the
left-hand side and the right-hand side of each rewrite rule in R. The class of TRSs
whose inverses effectively preserve recognizability has been also investigated. A
linear growing TRS[24] has this property, and later, the result was extended to
left-linear growing TRSs by Nagaya and Toyama[28]. The inverse of a (linear,
left-linear) growing TRS is a (linear, right-linear) semi-monadic TRS and vice

Versa.

A TRS R is strongly normalizing if there is no infinite chain by the rewrite
relation of R. Strongly normalizing property is one of the most fundamental prop-
erties in the theory of TRSs. However, it is undecidable whether a given TRS
has the strongly normalizing property or not, and this topic has been extensively
studied. Those studies can be divided into two approaches. One approach is to
give sufficient conditions to guarantee strongly normalizing property. Multiset
ordering[9] is one of the techniques and other well-known (complete) techniques
are dependency pair[l] and semantic labelling[36, 27]. The other approach is
to propose (decidable) subclasses of TRSs for which the strongly normalizing
property is decidable. For ground TRSs[22], right-ground TRSs[10], right-linear
monadic TRSs[30], strongly normalizing property has been shown to be decid-
able. In 1999, Nagaya and Toyama showed that strongly normalizing property
is decidable for almost orthogonal growing TRSs[28| as follows: It is well-known
that for an almost orthogonal TRS, strongly normalizing is equivalent to inner-
most weakly normalizing[20]. Nagaya and Toyama proposed a procedure which
constructs a tree automaton accepting the inverse image of inner-most rewrite
relation for a given left-linear growing TRS R. Once such a tree automaton is
constructed, it is not difficult to decide whether the TRS R is weakly inner-most

normalizing or not by using properties of tree automata.

The latter half part of this thesis discusses the inverse finitely path overlapping
TRSs (FPO™'-TRS). It is shown that strongly normalization is decidable for
almost orthogonal FPO~!-TRSs. The proof is along with Toyama and Nagaya’s

method[28] mentioned above.

The remainder of this thesis is organized as follows. In Chapter 2, the termi-
nologies and notations used throughout this thesis are introduced. After that, we
define finitely path overlapping term rewriting systems (FPO-TRSs) and show
that the class properly includes other known decidable subclasses of TRSs which
effectively preserve recognizability. In Chapter 3, we prove that right-linear FPO-
TRSs effectively preserve recognizability. In Chapter 4, we introduce the inverse
FPO-TRSs (FPO!-TRSs) and show that strongly normalizing property is de-
cidable for almost-orthogonal FPO~'-TRSs. Chapter 5 concludes this thesis.

Chapter 2

Preliminaries

The chapter first introduces the terminologies and notations which we will use
throughout this thesis. After that we define a new class of TRSs called finitely
path overlapping TRSs.

The set of all natural numbers is denoted by A. For a set A, the power set of
A, the cardinality of A and the set consisting of all sequences over A are denoted
by 24, |A| and A*, respectively. For a sequence A, the length of A is denoted
by |A|. For two mappings o and o', their composition is denoted by o o ¢'. The
empty set and the empty sequence are denoted by () and), respectively. For
a relation R, transitive clouser and the reflexive and transitive clouser of R are
denoted by R* and R*, respectively.

2.1. Term Rewriting System

A signature is a finite set in which each element is associated with a natural
number. An element in a signature is called a function symbol and for a function
symbol f the associated natural number of f is called the arity of f and denoted
as a(f). A function symbol f with a(f) = 0 is also called a constant. A set
of variables is an enumerable set V such that YV N F = (. In the following, we
assume that F is a signature and V is a set of variables.

The set of all terms on F and V is denoted as 7 (F, V) and recursively defined

as follows:

iE/d\e
N\

Figure 2.1. Tree representation for term d(z,e(z,y)).

1. fz €V, then z € T(F,V).
2. If feFandty,..., tyy) € T(F,V), then f(t1,...,tuyp) € T(F,V).

For a term f() with a(f) = 0, we write f. Terms have tree structures. For
example, a term d(z,e(z,y)) can be regarded as the tree in Figure 2.1 where d
and e are function symbols with arity two and x and y are variables. A set of
terms may be called a tree language. For a term s, a position of s is a sequence
of natural numbers which indicates a certain subtree of s if we regard s as a tree.

All positions of a term s is denoted as Pos(s) and recursively defined as follows:
1. If t is a variable, then Pos(t) = {A}.

2. If t is of the form t = f(t1,...,t,)) where f is a function symbol and
t1,. .., ta(s) are terms, then Pos(t) = {A} U U;c;cqp{i- 0] 0 € Pos(ti)}.

A subterm of a term t at a position o € Pos(t) is denoted as t/o and defined as

follows:
1. t/]A=t
2. Ifo=i-0 and t = f(t1,...,t,) with 1 <i < a(f), then t/o=1t;/0.

For a term ¢, the set Var(t) consists of all variables appearing in ¢, i.e. Var(t) =
{z €V |t/o=z,30 € Pos(t)}. If Var(t) = 0, then ¢ is called ground. The set of
all ground terms on signature F is denoted by 7(F). A term s is linear if, for
all ¢ € Var(s), |[{o € Pos(s) | s/o=z}| =1 holds.

7

The term obtained by replacing a subterm of ¢ at a position o with a term s
is denoted by t[o « s]. A context is a term obtained by replacing a subterm of
some term ¢ with the special constant O ¢ F. A term obtained from a context
C by replacing O with a term s is denoted by C[s]. A relation R on terms is
closed under contezxts if for two terms s,t, (s,t) € R implies (C[s],C[t]) € R
for any context C. A substitution o is a mapping in V — 7T (F,V) satisfying
that {z | o(x) # «} is finite. For a substitution o, {z | o(x) # x} is called the
domain of 0. If the domain of a substitution ¢ is {1, ..., z,}, then we may write
{z1— o(z1),...,2, — o(z,)} to represent 0. A substitution o can be extended

to a mapping ¢': 7 (F,V) — T(F,V) in the unique way as follows:
1. If a term ¢ is a variable, then o'(t) = o (t).

2. If a term t is of the form t = f(t1,...,t,s)) Where f € F and t1,...,tyy)
are terms, then o'(t) = f(o'(t1),..., 0 (ta(ys)))-

For a term s and a substitution o, we may write so for o(s). For a term s, a
term ¢ is an instance of s if there is a substitution ¢ such that o(s) = ¢. For two
substitutions ¢ and ¢', 0 < ¢' if there is a substitution ¢” such that ¢" oo = o'.
For two terms s and ¢, o is a syntactic unifier of s and t if o(s) = o(t). Two
terms s and t are syntactically unifiable if there is a syntactic unifier of s and ¢.
A syntactic unifier o of s and ¢ are most general if, for any syntactic unifier o',
o<o'.

A relation R on terms is closed under substitutions if for two terms s, ¢, (s,t) €
R implies (0(s),0(t)) € R for any substitution o. A relation on terms which is

closed under both contexts and substitutions is called a rewrite relation.

Definition 2.1 A term rewriting system (abbreviated to TRS) is a finite relation

on terms. For a TRS R, the relation — 5 is the smallest rewrite relation containing

R. i

An element in a TRS is called a rewrite rule. A rewrite rule (I,r) is written as
I — 7. In the following, we sometimes present a TRS as a set of rewrite rules and
we assume that R is a TRS.

In most literatures on TRSs, the variable restriction for a rewrite rule [— r

is assumed in the definition of TRSs, i.e.

8

1. 1¢V and
2. Var(r) C Var(l).

In this thesis, we treat TRSs without the variable restriction unless stated oth-
erwise.

For the inverse relation of R, —x, —%, we may write R™!, «x and %,
respectively. We denote the relation —x U «—x by <. It is not difficult to see
that for two terms s and t, if s —% ¢, then there is a substitution o, a rewrite

rule I — r € R and a position o such that s/o = lo and ¢t = s[o « ro].

Example 2.1 [25] Let F = {d, e, k,r,m, Alice, Bob, Chris} where a(d) = a(e) =
2, a(k) =1 and r,m, Alice, Bob, Chris are constants. Also let V = {z,y, z}. Let
us consider the following TRS R, which appeared in Chapter 1.

Ro = { d(z,e(z,y)) =y }.
For a ground term
d(d(k(Chris), e(k(Chris), d(k(Alice), e(k(Alice),r)))), e(r,m)),
we obtain the following sequence:

d(d(k(Chris), e(k(Chris),d(k(Alice), e(k(Alice),r)))
d(d(k(Chris), e(k(Chris),r)

O

A redez (in R) is an instance of [for some [— r € R. A normal form (in
R) is a term which has no redex as its subterm. Let NFx denote the set of all
ground normal forms in R. For terms ¢, t' and a TRS R, if t = t[o « lo] —r
tlo « ro] = t' and t/o' is a normal form for any o' with o' € Pos(t) and o < o,
then we write t —; t' and the relation is called a one-step innermost rewrite

relation.

Definition 2.2 For a TRS R and a term s:

1. s is strongly normalizing (SN) in R if there exists no infinite sequence

S9S18g - - - such that sg = s and s; — s;,; for all ¢ > 0.

2. s is weakly normalizing (WN) in R if there exists a normal form ¢ such
that s —7% t.

3. s1is weakly innermost normalizing (WIN) in R if there exists a normal form

t such that s —7 ¢ t.

A TRS R is strongly normalizing (SN) (respectively weakly normalizing (WN),
weakly innermost normalizing (WIN)) if every term is SN (respectively WN,
WIN) in R. O

The property SN is also called termination.

Theorem 2.1 [22] The following problems are undecidable:
1. For a given TRS R and a term s, is s SN (respectively WN, WIN) in R?
2. For a given TRS R, is R SN (respectively WN, WIN)? O

A rewrite rule | — 7 is left-linear(respectively right-linear) if I is linear (re-
spectively 7 is linear). A TRS R is left-linear (respectively right-linear) if every
rule in R is left-linear (respectively right-linear).

Fora TRS R, let I; — 71 and l; — 73 be (possibly the same) rewrite rulesin R
whose variables have been renamed to have no shared variables. If a non-variable
subterm of ; at a position o € Pos(l;) and [, are unifiable with a most general
unifier o, then the pair 10 and ly0[0 « ry0] is called a critical pair of R and is
written as (ri0,li0]o0 « ro0]). If l; — 71 and Iy — 7, are the same rewrite rule,
then we do not consider the case o = A. A critical pair (r10,l;0[0 < 730]) is an

overlay if o = A. A critical pair (¢,t') is trivial, if t = t'.
Definition 2.3 [20, 23] A TRS R is:
1. orthogonal if R is left-linear and has no critical pairs.
2. almost-orthogonal (AQ) if R is left-linear and every critical pair of R is a

trivial overlay. d

10

The following lemmas concerning with one-step innermost rewrite relations can

be easily understood.

Lemma 2.2 For a term t € T(F,V) and a TRS R, if a rewrite step to «—
lo] —»g tlo « ro| is innermost at a position o € Pos(t) with a rewrite rule

l - r€R and a substitution o, then lo —x ro is innermost. O

Lemma 2.3 Let R be an AO-TRS. For two terms s,t € T(F,V) and a rewrite
rulel — r € R if s/fo =lo,t = s[o « ro| where o € Pos(s), o ={x; — t; |1 <
i <n}, then s -y t if and only if t; € NFg for 1 <i < n. O

Definition 2.4 For a TRS R and two terms s and ¢:

1. s and t are reachable in R if s -5 t ort —% s.
2. s and t are joinable in R if there is a term u such that s —»% v and t —% w.

3. A (semantic) unifier of s and t in R is a substitution ¢ such that o(s) <%
o(t). s and t are unifiable in R if there is a unifier of s and ¢ in R. O

A unifier ¢ of s and ¢t in R is most general if, for any unifier ¢’ of s and ¢t in R,
o < ¢’ holds.

Theorem 2.4 For a given TRS R and two terms s and t, the following problems

are undecidable:

1. Are s and t reachable in R?
2. Are s and t joinable in R?

3. Are s and t unifiable in R? d
Definition 2.5 For a TRS R:

1. R is confluent if, for terms s,t and t, s —»% ¢t and s —% t' then t and t' are

joinable.

2. R is locally confluent if, for terms s,t and ¢, s —x t and s —x t' then ¢

and t' are joinable. O

Theorem 2.5 The following problems are undecidable:

1. Is a given TRS R confluent?

2. Is a gwwen TRS R locally confluent? O

11

2.2. Tree Automaton

Tree automata are natural generalization of traditional finite-state automata on
strings. A tree automaton accepts terms instead of strings and can be defined
as a TRS[5]. A state is a special constant not in F. For a finite set Q of states,
ground terms on F U Q, i.e. terms in 7 (F U Q), are called Q-terms.

Definition 2.6 A tree automaton (abbreviated to TA) is given by a 4-tuple
(F, Q, Qfinat, A) where F is a signature, Q is a finite set of states, Qpnq is a
subset of @ and A is a TRS constructed from Q-terms in which each rewrite rule

has the form either:

1. f(qla' . ')qa(f)) — q or
2.¢ —¢q
where f is a function symbol and q,...,g,,q and ¢ are states. O

An element in Qg and an element in A are called a final state and a transition

rule, respectively. The behaviors of tree automata are defined as follows.

Definition 2.7 Let A = (F, Q, Qfinai, A) be a tree automaton. For a ground
term s, s is accepted by A if s —) ¢y for some final state ¢ € Qpna. The
accepting language of A is the set of all ground terms accepted by .A. a

For a tree automaton A = (F, Q, Qfina, A) we call the relation —, a move and
we may write Fa or 4 for —a. The accepting language of a tree automaton A
is denoted as L(A). i.e. L(A) = {t |t qr,3q7 € Qfinar}- Also let L (A) ={t |
t % g} for a state g of A.

By using the notion of TAs, we can define a class of sets of terms.

Definition 2.8 A set L of terms is recognizable if there is a tree automata A
such that L = L(A). O

Example 2.2 Let F and V be the signature and the variables in Example 2.1,
respectively. The TA B; = (F, Qo, Qo, Ay) accepts 7 (F), the set of all ground

12

terms, where @ = {q} and A, consists of the following transition rules:

dg,q9) — a, ele9) — 4
k@) — g 7 - q
m — q, Alice — ¢
Bob — gq, Chris — q.

For a term s; = d(z,e(y, 2)), let L, be the set of all ground instances of s, then
L, is recognizable since the TA By, = (F, QoUQ1,{qs}, AgUA;) accepts L; where
Qo and A, are the same as in B, @1 = {q1, ¢y} and A; consists of the following

transition rules:
e(e,9) — q, dlga) — s
On the other hand, for a term s, = d(z, e(,y)), let Ly be the set of all ground

instances of s, then L, is not recognizable since there is no tree automaton which

accepts L. O

Recognizable sets inherit some useful properties of regular (string) languages[16].

Lemma 2.6 The class of recognizable sets is effectively closed under union, in-
tersection and complementation. For a recognizable set L, the following problems

are decidable.

1. Does a given ground term s belong to L?

2. Is L empty? d
The following lemmas are easily understood.

Lemma 2.7 The set of all ground instances of a linear term is recognizable. [

Lemma 2.8 [15] For a left-linear TRS R, NFx is recognizable. O

2.3. TRS which Preserves Recognizability

Let L be a set of terms and R be a TRS. The descendant of L by R is denoted
by (—%)(L) and defined as (—%)(L) ={t | 3s € L,s —% t}. The ancestor of L
by R is denoted by («—%)(L) and defined as («—5)(L) = {t | ds € L,t =% s}.

13

Definition 2.9 A TRS R effectively preserves recognizability if for any tree au-

tomaton A we can effectively construct a tree automaton A, such that E(A*) =

(=R)L(A))- B

Remark that Gyenizse and Vagvolgyi[21] introduced the notion preserving F-
recognizability and showed that there is a difference between the notions preserv-
ing F-recognizability and preserving recognizability. Let F be a signature. A
TRS R effectively preserves F-recognizability if for any tree automaton A whose
accepting language is over F we can effectively construct a tree automaton A.

such that £(A.) = (—%)(L(A)). For example, let a signature F = {f, g,a} with
a(f) = 1,alg) = 1,a(a) = 0 and a TRS R = {f(x) — g(F(g(2))), (&) — a,a —
f(a),g(a) — a,a — g(a)}. We can see that the TRS R effectively preserves
F-recognizability since descendants by R of any tree language on F is obviously

7 (F). On the other hand, let 7' = F U {c} with a(c) = 0, then the descendant
by R of the tree language {(c)} is (=R)({£(0)}) = {g"(F(g"(c))) | n > O}; this
implies that R does not effectively preserve recognizability.

In this thesis, we consider the class of TRSs which effectively preserve recog-
nizability and we write the class as EPR-TRSs.

Theorem 2.9 [19, 21, 28] The following problems are decidable:
1. For a given EPR-TRS R and two terms s and t:

(a) Are s and t reachable in R?
(b) Are s and t reachable in R™'?
(c) Are s and t joinable in R ?

2. For a given EPR-TRS R, is R locally confluent? O
We show some more properties of EPR-TRSs.

Theorem 2.10 Let R be a left-linear TRS such that R™" is an EPR-TRS, then
the following problem is decidable:

1. Foraterms,iss WNinR?

2. IsR WN?

14

Proof. It is easily understood that 7(F) = («%)(NFg) if and only if R is
WN. On the other hand, by Lemma 2.8, the set NFx of normal forms in R is
recognizable since R is left-linear. Since («%)(L) = (—7%-.)(L) for any set L of
terms and R ' is in EPR-TRS, («%)(NF) is recognizable. For the first part, we
can see that s is WN if and only if s € («%)(NFx) and the membership problem
is decidable by Lemma 2.6. For the second part, note that 7 (F) = («%)(NFr)
if and only if («%)(NFg) = 0. Hence, T(F) = («%)(NFg) is decidable by
Lemma 2.6. O

Theorem 2.11 For a confluent R € EPR-TRS and linear terms t; and t, with
Var(t;) N Var(ty) = 0, the following problem is decidable: Are t; and ty unifiable
m R?

Proof. Since R is confluent, ¢; and ¢, are unifiable in R if and only if there
exists a substitution ¢ and a term v such that ¢t;0 —% v and te0 —% v. For a
term ¢, let I(t) denote the set of ground instances of ¢, i.e., I(t) = {toc € T(F) |

o is a substitution}. Then ¢; and ¢, are unifiable in R if and only if

(=) (1)) N (=R)((t2) # 0 (2.1)

since Var(t;) N Var(ty) = 0. Moreover, both I(¢;) and I(¢;) are recognizable
by Lemma 2.8. Thus (—%)(I(¢1)) and (—%)(I(tz)) are recognizable since R €
EPR-TRS. By Lemma 2.6, the condition (2.1) is decidable. O

Theorem 2.12 [7] For a TRS R, the following problem is undecidable: Does R

effectively preserve recognizability? O
In the following, we review some classes of TRSs which have been proposed.

Definition 2.10 A rewrite rule is ground (respectively linear) if both the left-
and right-hand sides are ground (respectively linear). A ground (respectively
linear) TRS consists of ground (respectively linear) rewrite rules. The class of
ground TRSs (respectively linear TRSs) is denoted as G-TRS (respectively L-
TRS). d

15

Example 2.3 Let F = {f, g,h,a,c} be a signature such that a(f) = 2,a(g) =
1,a(h) =1 and a and c are constants. Also let V = {z,y, z} be a set of variables.
The TRS R; below is ground but R, is not ground. Both R; and R, are linear.

{ 90) = F(gle),),
Rl_{f(c a) = F(F(F(@,¢), a), 9(c)),

O

For a term s, the depth of s is denoted by depth(s) depth(s) = max{|o| | o €
Pos(s)}.

Definition 2.11 [29] A rewrite rule is monadic if it satisfies the variable restric-
tion, the depth of the left-hand side is at least one and the depth of the right-hand

side is at most one. A TRS is monadic if it consists of monadic rewrite rules. [

The class of monadic TRSs (respectively right-linear monadic TRSs) is denoted
by M-TRS (respectively RL-M-TRS).

Example 2.4 Consider the signature and variables which are the same as in
Example 2.3. The TRS R; below is an example of an RL-M-TRS.

R { 9(f(2,9)) = 9(=),
F(F(F(w,2),), 9(e)) — F(,y)

d

Definition 2.12 [6] A rewrite rule is semi-monadic if it satisfies the variable
restriction, the depth of the left-hand side is at least one and the depth of the
right-hand side is zero (i.e. it is a variable or a constant) or the right-hand side is
of the form f(t,...,t,s)) where t; (1 < i < a(f)) is either a variable or a ground

term. O

The class of semi-monadic TRSs is denoted by SM-TRS and the class of TRSs in
L-TRS N SM-TRS is denoted by L-SM-TRS.

16

Example 2.5 Consider the signature and variables which are the same as in
Example 2.3. The TRS R, below is an example of an L-SM-TRS which is not
an M-TRS.

Ro = { 9(f(,0)) — g(a),
FF(F(29),2),9(0) = Fo(f(0:)),)

O

Definition 2.13 [21] A TRS R is generalized semi-monadic if it satisfies the
variable restriction and, for any pair of rewrite rules I; — ry,l; — 7y in R, the
following holds: For any positions o € Pos(r1) and 8 € Pos(l,) and for any term
l; € T(F,V) satisfying that there is a substitution 6 such that 6(l3) = I/ and
Var(l3) N Var(ly) = 0,

1. a=Aor 3= \and
2. r1/a and I3 are syntactically unifiable with most general unifier o,
then
(a) I,/B €V or
(b) for each vy € Pos(ls), I/ -y € V implies (I3/y)o € VUT(F). a

The class of generalized semi-monadic TRSs is denoted by GSM-TRS and the
class of TRS in L-TRS N GSM-TRS is denoted by L-GSM-TRS.

Example 2.6 Consider the signature and variables which are the same as in
Example 2.3. The TRS R5 below is an example of an L-GSM-TRS which is not

an SM-TRS.
R { 9(9(f(z,0))) = 9(g(x)),

O

Theorem 2.13 /3, 6, 21, 29] RL-M-TRS C EPR-TRS, and G-TRS C L-SM-
TRS C L-GSM-TRS C EPR-TRS. O

17

Remark that Salomaa|29] proved that any right-linear monadic TRS which con-
sists of possibly infinitely many rewrite rules effectively preserves recognizability.
There is another stream of studies which relate TRSs and recognizability[24,

14, 28].

Definition 2.14 [24] A TRS R is growing if all variables in Var(l)NVar(r) occur

at depth 0 or 1 in [for every rewrite rule [— r in R. g

Jacquemard[24] showed that, for any linear growing TRS R, R ! effectively pre-
serves recognizability and this result was extended by Nagaya and Toyama[28]| as

follows.

Theorem 2.14 [28] For any left-linear growing TRS (LL-GR-TRS) R, R™! ef-

fectively preserves recognizability. d

Note that in Definition 2.14, the variable restriction is not assumed. It is easy to

see the following holds from Definitions 2.12 and 2.14.

Lemma 2.15 If a TRS R satisfies the variable restriction then R is (linear,
right-linear) semi-monadic if and only if R~ is (linear, left-linear) growing and

the left-hand side of every rewrite rule in R is not a constant. (]

As aresult, RL-GR!-TRS (i.e. the class of the inverses of LL-GR-TRSs) properly
includes both of RL-M-TRS and L-SM-TRS, and it is incomparable with L-
GSM-TRS. By Theorem 2.14 and Lemma 2.15, the following corollary is directly

obtained.

Corollary 2.16 RL-SM-TRS C RL-GR™'-TRS C EPR-TRS. O

2.4. Finitely Path Overlapping TRS

A new class of TRS named finitely path overlapping TRS (FPO-TRS) is proposed
in this section. As we will show later, the class of RL-FPO-TRS properly includes
the class of RL-GSM-TRS and RL-GR™!-TRS. It will also be shown in the next
chapter that an RL-FPO-TRS (without the variable restriction) is an EPR-TRS.
To the author’s knowledge, the proposed class is the largest decidable subclass of
EPR-TRS.

18

A ;

Y

Figure 2.2. s sticks out of t.

2.4.1 Definitions

To define the class, some additional definitions are necessary.

Definition 2.15 For two terms s and ¢, s sticks out of t if ¢ is not a variable and
there is a variable position v (# A) of ¢ such that

1. for any position o with A < 0 < ~, we have o € Pos(s) and the function

symbol of s at o and the function symbol of ¢ at o are the same, and
2. v € Pos(s) and s/v is not a ground term.

If s sticks out of t at v and s/v is not a variable (i.e. s/v is a non-ground and

non-variable term), then s is said to properly stick out of t a

When the position « is of interest, we say that s sticks out of ¢ at . The

sticking out relation is illustrated in Figure 2.2.

Example 2.7 A term f(g(x),a) sticks out of f(g(y),b) at the position 1-1, and
f(g9(g(z)), a) properly sticks out of f(g(y),b) at the position 1- 1. O

Using the notion of sticking out relatoin, we define a sticking-out graph for a TRS.

Definition 2.16 The sticking-out graph of a TRS R is a directed graph G =
(V,E) where V' = R (i.e. the vertices are the rewrite rules in R) and E is

19

IAYAVANAN

Figure 2.3. The sticking-out relations of rewrite rules.

defined as follows. Let v; and v, be (possibly identical) vertices which correspond
to rewrite rules I; — r; and I, — 7y, respectively. Replace each variable in
Var(r;) \ Var(l;) with a fresh constant, say ¢, for i =1, 2.

1. If », properly sticks out of a subterm of /;, then E contains an edge from

vy to vy with weight one.

2. If a subterm of 7, properly sticks out of /;, then E contains an edge from

vy to v; with weight one.

3. If a subterm of l; sticks out of ry, then E contains an edge from v, to v,

with weight zero.

4. If I, sticks out of a subterm of ry, then F contains an edge from v, to v,

with weight zero. d
The four cases are illustrated in Fig. 2.3.

Definition 2.17 A finitely path overlapping term rewriting system (FPO-TRS)
is a TRS R such that the sticking-out graph of R does not have a cycle of weight

one or more. O
An RL-TRS (right-linear TRS) being FPO is written as RL-FPO-TRS.

Example 2.8 Let R¢ be a TRS consisting of the following rewrite rules p; and
P2

p: f(z,a) — f(h(y), =),

p g(y) — fl9(y),b).
Figure 2.4 shows the sticking-out graph of Rg. The right-hand side of p, properly
sticks out of the left-hand side of p; at the position 1, and hence there is an edge

20

Figure 2.4. The sticking-out graph of Rg.

of weight one from p, to p;. The sticking-out graph also has a self-looping edge
of weight zero at p, since the left-hand side g(y) of p, sticks out of f(g(y),b)/1 =
g(y). Since the variable y in p; is replaced with a constant ¢, the right-hand
side of p; does not stick out of its left-hand side. There is no other edge since
there is no other sticking-out relation between subterms of these rewrite rules.
The sticking-out graph has a cycle of weight zero, but does not have a cycle of
weight one or more, and hence Ry is finitely path overlapping. Let R; = {f(z) —
9(f(g(x)))}. The subterm f(g(z)) of the right-hand side of the (unique) rewrite
rule properly sticks out of its left-hand side, as in Condition 2 of the definition
of sticking-out graph. The sticking-out graph of R; consists of one vertex and
one cycle with weight one. Therefore, R; is not finitely path overlapping. Note
that Ry ¢ EPR-TRS since (=%,)({f(a)}) = {g"(f(g™(a))) | » > 0} is not

recognizable. d

Remark that the sticking-out graph is effectively constructible for a given TRS
R, and hence it is decidable whether a given TRS R is finitely path overlapping
or not (in O(m?n?) time where m is the maximum size of a term in R and n is
the number of rules in R).

In the following, it is shown that any generalized semi-monadic TRS is an
FPO-TRS, which implies that the class of FPO-TRS include the class of gener-
alized semi-monadic TRS. A simple example shows that the inclusion relation is
proper.

In the next chapter, it is shown that if a TRS is a right-linear FPO-TRS, then
it effectively preserves recognizability. Summarizing these results, the class of
right-linear FPO-TRS is a decidable subclass of EPR-TRS and properly contains

the class of linear generalized semi-monadic TRS and right-linear monadic TRS.

21

2.4.2 Hierarchical Relation

Although a generalized semi-monadic TRS (GSM-TRS) was originally defined in
[21] with the variable restriction as in Definition 2.13, we give another definition
of GSM-TRS without the variable restriction in the following lemma to treat
growing TRS, GSM-TRS and FPO-TRS in a uniform way.

Lemma 2.17 A TRS R s in GSM-TRS if and only if the sticking-out graph of
R has no edge with weight one. If a TRS R is generalized semi-monadic, then
R s finitely path overlapping.

Proof. We show the only if part by contradiction. If part can be shown in
a similar way. Assume that R is a GSM-TRS and contains rules [; — r; and
l, — 73 (each variable in Var(r;) \ Var(l;) has been replaced with a constant ¢ for
i = 1,2) which satisfy condition 1 of the definition of sticking-out graph. In this
case, there is a position o € Pos(l;) such that ry properly sticks out of [; /a. Let
v be the variable position of /;/a at which 7, properly sticks out of /;/c, then
li/a -~ is a variable and 73/7 is a non-ground and non-variable term. Let I3 be

the term which satisfies the following conditions:
1. For a position o with A < 0 < v, I3 and [; /a have the same symbol at o,

2. avariable, say x,, occurs at a position o which is disjoint to v and is written

as o' -1 with o' < v and
3. a variable z., occurs at 7.

It is easily understood that [/« is an instance of I3 and that I3 and ry are
syntactically unifiable by an mgu ¢ which in particular replaces x., by ry/7.
Now we have (I3/y)o = ra/v, which is neither a variable nor a ground term by
assumption. This concludes that R is not a GSM-TRS. In a similar way, we can
show that if any pair of rules in R satisfy the condition 2 of the definition of
sticking-out graph, then R is not a GSM-TRS. O

Theorem 2.18 RL-GR'-TRS C RL-GSM-TRS C RL-FPO-TRS.

22

Proof. The first part is directly obtained from the definitions.

The class of RL-FPO-TRS includes the class of RL-GSM-TRS by Lemma 2.17.
TRS R¢ in Example 2.8 is RL-FPO but not GSM. If we take I, = f(z,a),
ry = f(g(y),b), « = = X and I3 = f(z,z), then 7, and [; are unifiable by an
mgu o = { — g(y),z — b}. Let vy =1, then l;/ac-y =1;/1 is a variable « while
(I3/7)o = g(y) is neither a variable nor a ground term. Therefore R is not a

GSM-TRS. O

The hierarchical relation among the class of TRSs mentioned in this chapter

is illustrated in Figure 1.1 in Chapter 1.

23

Chapter 3

Recognizability Preserving

Property

In this chapter, it is shown that any RL-FPO-TRS effectively preserves recogniz-
ability.

3.1. Tree Automata Construction for Descen-

dants

In this section, we will show that every RL-FPO-TRS R belongs to EPR-TRS
by constructing a TA A, such that £(A,) = (—%)(L(A)) for a given TA A.

To deal with non-left-linear TRS, we need to construct a kind of product
automata whose states are Cartesian products of sets of terms. To represent such
a Cartesian product and a usual first-order term in a uniform way, we introduce
a packed state. Intuitively, a packed state is an extension of a first-order term
such that a finite set of terms, rather than a single term, occurs at a subterm

position.

Definition 3.1 For a signature F and a finite set Q, the set of packed states,
denoted Pr g, is defined as follows:

1. If g € Q, then {q} € Pro.
2. If f € F and py,...,pags) € Pro, then {f(p1,...,pas))} € Pr,o-

24

3. If p1,p2 € Prg, then py Upy € Pro. O
For the readability, a packed state {¢1,...,%,} is written as (¢1,...,,).

Example 3.1 Let F the signature in Example 2.3 in Chapter 2 and Q = {q¢1, ¢2}-
We can easily verify that (f({q1), (g2)), 9({g({q1)), (g2)))) belongs to Pz o. O

Procedure 3.1 (Tree automata Construction)
Input: a TA A= (F, Q, Qfinat, A) and an RL-TRS R
Output: a TA A, such that £L(A,) = (—%)(L(A))

Step 1. Add a new state g,,, to Q and add a transition rule f(qany,---;any) —
Qany to A for each f in F. Obviously, t % g, for any t € T(F). Let
Ao = (F, Qo, Qpinar» Do) be a “packed” version of A where Qp = {{g) | ¢ €
Q} C Pro, Qna = {(2) | ¢ € Qpna}, and Ay = {f({a1),---,(gn)) —
(@ f(q,- - qn) =€ AFU{{d) = (@) | — g€ A}

Step 2. Let k = 0. This k is used as a loop counter.
Step 3. Let Qp1 = O and Ay = Ay.

Step 4. The set of transition rules is modified in this step. Let [— r be a rewrite
rule in R. Assume [has m variables z1,..., &, and z; (1 < ¢ < m) occurs
for 7; times at positions 0;; (1 < j < ;) in l. Also assume z; occurs at o; in
r for #; € Var(r). If there are states p;j,p € Qr with1 <i<m,1<j<w,

log —pij |1<i<m,1<j<ylFip (3.1)
and
ﬁpn ('Ak) n-.-N ‘Cpm,- (Ak) 7'é 0 (3'2)
for 1 < i < m, then add
pi=|J py (1<i<m) (3.3)
1<j<:

to Qi1 as new states and let p={z; —» p; | 1 <i < m} U {z — (qany) |
x € Var(r) \ Var(l)}. If r is a variable, then let ¢,, = rp. Otherwise, let
t,, = (rp). Do the following (a) through (c).

25

(a) Add t,, — p to Apiq.
(b) Letp = (t1,...,t,). Add t,, — (t;) to Apy for 1 <i < n. A transition

rule defined in (a) or (b) is called a rewriting transition rule of degree
k +1 and if a move of the TA is caused by such a rule, then the move

is called a proper rewriting move of degree k + 1.

(c) Execute ADDTRANS(¢,,). In ADDTRANS(t,,), new states and

transition rules are defined so that rp 7 t,,.

Simultaneously execute this Step 4 for every rewrite rule and every tuple of
states that satisfy conditions (3.1) and (3.2).

Step 5. Continue the loop until Ay ; = Ag. If Apyy # Ay, then k = k41 and
go to Step 3.

Step 6. Output A, as A.. O

Procedure 3.2 [ADDTRANS] This procedure takes a packed state p as an
input. If p has already been defined as a state, then the procedure performs
nothing. Otherwise, the procedure first defines p as a new state of Q;,; and also
defines transition rules as follows. It is required that if p = (¢1,...,t,) (n > 2),
then each (¢;) has been defined as a state.

Case 1. If p = (c) with ¢ a constant, then define ¢ — (c) as a transition rule.

Case 2. If p = (f(p1,...,pa(p))) With f € F, then define f(p'l,...,p;(f)) —p
as a transition rule where p, = p; if p; is a state, otherwise p. = (p;) for

1 < i< a(f) and execute ADDTRANS(p!) for 1 <i < a(f).
Case 3. If p = (t1,...,t,) (n > 2), then do the following (i) through (iii).

(1) Define new e-rules p — (t;) for 1 <i < n.

(ii) For each transition rule of the form p' — py (p',po € Qk,p0 C P),
define a new ¢-rule p" — p and execute ADDTRANS(p") where p”
is the state defined as p" = (p \ po) Up' (see Figure 3.1(a)). In this
case, if p' — py is a rewriting transition rule of degree &', then we call

the new rule a non-proper rewriting transition rule of degree k'. If a

26

f(pll 1y pla(f)) '''''' > pl
p =< . f(le T p2a(f)) """" > 92
lnew rule f(lp_|, o Py) = b,
p=<t,. @ : :
f([:; & —
L0 aw rule
(a) anew ruledefined in (ii) (b) anew rule defined in (iii)

Figure 3.1. The new rules introduced by ADDTRANS.

move of the TA is caused by this new rule, then the move is also called

a non-proper rewriting move of degree k'.

(iii) If there are states pi,...,p, and a function symbol f such that p =
UicicnPi and f(pir, - - -, Pia()) — Pi € Ay, for 1 < i < n, then define
new rules f(p’l,...,p;(f)) — pand f(p’l,...,p:l(f)) - (t;)forl <i<mn
and execute ADDTRANS(p}) where p; = (U, ;c,pij for 1 < j <
a(f) (see Figure 3.1(b)). a

Example 3.2 Let F be the signature in Example 2.3 and B; = (F, Q, Qfinai, A)
be a TA where Q = { qo, ¢1, 95, €1, 5> 97} Lfinat = {g7} and A consists of the

following transition rules:

¢ — qo, h(Qo) — 41, h(fh) — qo,
¢ — qq, k(o) = @1, Rla) — a5 h(e) — a0,
f(q0,q) — gy

It can be easily verified that £(B;) = {f(h*™(c), h*"(c)) | m,n > 0}. Let Ry =
{f(z,z) — g(x),g9(x) = z}. R is an RL-FPO-TRS. We apply Procedure 3.1 to
B; and Rg. Consider the rewrite rule f(z,z) — g(x) in Step 4 for Ay(k = 0).

Since a move f({qo), (g)) o (gs) is possible, new transition rules

(9({20, %)) — (ar) (3-4)
9({90,9%)) — (9({g0,%))) (3-5)
¢ — (40, %) (3.6)

[\]
~J

h({g, @) — (20, %)
(g, q1) — (a1,%)
(g, @) — (20, @1)
h({20, %) — (201:%)
h({gnq1) — (20 @)
h({90: %) — (a1q)

are added to A; where ADDTRANS is recursively executed for the underlined
subterms. The transition rule (3.4) is defined in Step 4 and (3.5) is added in Case 2
of ADDTRANS. When ADDTRANS((qgo, qp)) is executed, the Case 3(iii) is
applied to the input and the rule (3.6) is added by using the rules ¢ — ¢ and
¢ — qy. The others are also added in Case 3(iii) of ADDTRANS((qgo, q)) and
in its recursive execution. Next, consider the rewrite rule g(2) — z in Step 4 for
A; (k=1). Since
9({g0, %)) F1 {9((90, %)) F1 {g5),

(90,90) — (gy) is added to A,. Thus we obtain

h(h(h(h(h(R(c)))) F3 (20, %) 2 {ar)

and hence h(h(h(h(h(h(c)))))) € L(
and L(A.) = (—%,)(L(B)) = {g(h°

N—r

Aj). We can verify that A; = A, (= A.)
"e)) [n > 03U H5Me) | m > 0} U £(B). O

3.2. Correctness of the Construction

3.2.1 Soundness

Lemma 3.1 For any k > 0 and a state ¢ € Qpinat, Ly(Ar) C (—1)(Ly(Ao)). O

In this subsection, we prove of the soundness lemma, Lemma 3.1, of Procedure 3.1.
The procedure can accept some left-non-linear TRSs as an input. Dealing with
non-linear terms is beyond the capability of TAs in general. Here we introduce a
conditional linearization of a non-left-linear TRS in order to deal with non-left-
linear TRSs by TAs. The notion of the conditional linearization firstly introduced
by De Vrijer[12] and by De Vrijer and Klop[26] to simplify the proof of Chew’s

28

theorem. Toyama and Oyamaguchi[35] gave a sufficient condition to guarantee
confluence property by using the technique of conditional linearization. The
definition of conditional linearization introduced in this thesis is based on Toyma
and Oyamaguchi’s one[35].

For an RL-TRS R, let ni be the smallest integer such that, for every rewrite
rule I — r € R, no variable occurs more than ng times in [. Let Ag = {A; | 2 <
i < ng} be the set of new function symbols where the arity of A; is i. Note that
if ng <1, then Arx = 0 by definition. If the subscript 7 of the function symbol A;
is clear from the context, then we may write A instead of A;. Also we may write
A instead of Ag. A term in 7 (F U A) is called a A-term.

Definition 3.2 For an RL-TRS R, « is a TRS which is defined as: o = {A,(z,
Ly x) > x| Ay € Ag,n > 2} O

Example 3.3 Let Ry be {f(z,2) — g(x)}, then o = {As(z,2) — z}. For a
term s = F(A(A(a,a),a)), 5 % £(a). =

Definition 3.3 For an RL-TRS R, a rewrite step —x,_ is the smallest relation
on A-terms containing the rewrite relation —% on F-terms and closed under

contexts on A-terms. O

Definition 3.4 For a right-linear rewrite rule [— r, the conditional linearization

of | — r is a conditional rewrite rule defined as follows and written as A (I — 7):

1. Let Var(l) = {21,...,2,}. Assume z; occurs at 0;; (1 < j < ;) in ! and if

x; occurs in r then it occurs at o;.
2. Introduce new variables z;; and y; for 1 <i<nand1<j <7;.

3. Define Ag(l — r) = los; «— x;; |1 < i < n1 < j<] — rlog —
A(@i1, ..., ¢;y,) | for ¢ such that @; occurs in r| with the condition (z;; = v;
(1<i<nl1<j<n).

For an RL-TRS R, define A(R) ={A(l = 7)|l -7 €R}. O
Definition 3.5 For an RL-TRS R, a rewrite step — ,(g) is defined as follows:
1. —am) = {(s,t) | (5,t) € =am),; for some 7}.

29

2' _>/\(R)70 = m'

3. =am),it1 = {(C[lo],Clro]) | Cis a context, | — r(x1 =y1,..., %, = Yp) i8
a conditional rewrite rule in A(R), o is a substitution such that y;0 € 7(F)
for 1 <i <mand z;0 (—amr): U —a)" 30 } O

We say s —,(r),i t is a rewrite step of degree 1.
Definition 3.6 For two A-terms s,t and an RL-TRS R:
1. s =) tif s =% 0 =) 0 =5 T
2. s o4r, tifs =, 0o, 0=t O

In Definition 3.5, the reason why the domain of y;c for 1 < ¢ < n is restricted
to 7 (F') is that if this condition is not assumed, then it may occur that, for two
F-terms sand t, s ok t but s =7) t. For example, let R = {f(z1, 21,22, 22) —
g(z1,23), g(z,2) = "}UR where R' = {a - c,a > ,b > c,d > e > e —
¢} and consider two F-terms f(a,b,d,e) and ¢". The conditional linearization of
R is A(R) = {f(®11, %12, T21, T22) — g(A(T11, Z12), AN(®21, %22)) (211 = Y1, T12 =
Y1, T = Y2, Tag = Y2),9(x1,22) — " (21 = y, 2y = y)} UR'. If we ignore the
condition that the domain of y;o is restricted to 7(F), then f(a,b,d,e) —a(r)
g(A(a,b),\(d,e)) —AR) g(A(d,e), A(c,¢)) —nr) ¢ holds. On the other hand,
we can see that f(a,b,d,e) /% .

Definition 3.7 For an RL-TRS R, o, RUA(R) = o,Ra U a,A(R)"]

For two terms s,t, if s —1 -+ —, t holds where —; is either —, or —5_ or
—A(R)d;> then s —4ruamr) t and we say that max{d; | for i such that —; =

—A(R),d; } i the mazimum degree of the sequence s —; -+ —, t.

Example 3.4 Let Ryy = {f(z) — g(z),h(z,2) — h'(z)}, then we obtain
ANRio) = {f(z) — g(z),h(z1,22) — B(A(z1,72)) (z1 = y,z3 = y)}. For
a ground term h(f(a),g(a)), h(f(a), 9(a)) —anri) 1'(A(f(a),9(a))) =% nmio)
h'(g(a))- O

Lemma 3.2 For a A-term s, an F-term t and an RL-TRS R, s —, RUA(R) t

implies s —7, t.

30

Proof. The proof is shown by induction on the number of maximum degree of
the rewrite sequence s —7 A(R) T For the basis, the lemma holds obviously.
Assume the lemma holds for every sequence whose maximum degree of rewrite
steps is n — 1 or less and consider the case when the maximum degree is n. The
inductive part is shown by another induction on the number of rewrite steps of
degree n by —,(z). Assume the lemma holds for every sequence whose rewrite
steps of degree n by —(x) is n' —1 or less and consider the case for n'. A sequence

which has n' rewrite steps of degree n by —, () can be written as:

s o, RUA(R) s
= s'lo — lo]
—A(R) s'[o « ro]
= t
_):,RU/\(R) t (3.7)

where s',t' are A-terms, s'[o « lo] —(r) §'[0 < 70] is the first rewrite step of

degree n by —(r), | — 7 is a rewrite rule in A(R), o is a substitution and o is a

*
o, RUA(R)

rewrite steps of degree n by — (). We assume the following:

position in s'. Remark that the sequence s'[o — ro] — t contains n' — 1

1. Ag(l' 5 ¢')=1— r where I' > 7' € R.
2. I' has m variables z,...z,,.

3. For 1 < i < m, &; occurs at positions 0;; (1 <7< ;) in I’ and if #; occurs

in 7’ then it occurs at o;.

4. For1 <i<mand 1< i<, l/o; = x;, which is a new variable for

defining [— r from I’ — »' in Definition 3.4.
5. 0 ={x;j—t; |1<i<m,1<j< v}

In the following, we define an F-term t; for each z; (1 <k < m).
If x5, does not occur in 7', then from the definition of —,(z) there exists an

F-term t;, such that #;; —>Z,/\(R) tr for 1 < j <~ where the degree of each rewrite

31

step —a(r) is less than or equal to n — 1. By the inductive hypothesis for n, we

obtain
tii —arte (1< <) (3.8)
If) occurs in ', then 70 /o = A(ts1,...,tk,). Consider how the subterm
A(tgt, - -, thy,) of t = s'[0 « 7o) is rewritten in the rewrite sequence (3.7). Since

t' is rewritten to a term ¢ in 7 (F) (i.e., all the A symbols disappear during the

rewriting), there are two cases.

1. The subterms t41,..., ¢k, Of A(tr1,...,tk,,) are rewritten to an identical
term ¢, in 7T (F), i.e. ty; —nrun®) te for 1 < j < . By applying the
inductive hypothesis for n' (when n' > 2) or the inductive hypothesis for n

(when n' = 1) to these rewrite sequences, we obtain the relations
thi —ar e (1<73<m) (3.9)

2. The term A(ti,-..,thy,) is rewritten to A(t},,...,t,,) and disappear in

the subsequent rewrite steps, i.e.,

t = s'lo —rofor — A(trry- -5 thy)]]
t”

%
7 aRUA(R)

— tl! [OI - lllo_ll]

= t'[o" — U"o"[0] — A(thys- - - Ik"r’k)] (3.10)
—arun®) b0 —r'"c" (3.11)
t

HZ,’RU/\(’R)
where t" is a A-term, o is a position in ', I" — 7" € A(R), 0" is a
substitution, o} is a position in ["¢" and there is a variable position of in I”
such that of < o} and the variable I" /o] does not occur in 7". The rewrite
rule [" — " must be in A(R) since the co-domain of ¢” contains function
symbols in A. The position of the subterm A(tp,..., ¢,) in t' is o - 0.
By the rewrite step (3.11) and the definition of —,(z), there is an F-term
tr € T(F) such that ¢ =0 Ar) th which has only rewrite steps by —a(x)
of degree n — 1 or less for 1 < 5 < 44 by Definition 3.5. By the inductive

hypothesis for n, we obtain

32

Also from the sequence (3.10), it follows that

tk;j _>;,RU/\(’R) tlkj (1 <7 <) (3.13)

From (3.12) and (3.13), we obtain the sequences

tr; _’Z,RUA(R) tr (1 <j< 'Vk) (3'14)

where the numbers of rewrite steps of degree n by —,(x) are less than or

equal to n' — 1. By the inductive hypothesis,

It follows from (3.8), (3.9) and (3.15) that

s = §folo]

= sfoloj; —t; |1 <i<m, 1< j <]

—>Z’R s'lo '] (3.16)

where o/ = {@; — t; |1 <i<m}. Sincel' > r' € Rand t; € T(F) (1 <i<m),
we obtain
s'lo«—l'o'] -g, s'[o— r'd’| (3.17)

*
o,RUA(R)

A in the left-hand side of any rewrite rule in R U A(R),

by Definition 3.3. Since s'[o « ro| — t and there is no function symbol

s'[o r'd] _’Z,RU/\(R) t, (3.18)

which contains n' — 1 or less rewrite steps of degree n by — ,(g). By the relations

(3.16),(3.17) and (3.18), we obtain s —*

o, RUA(
steps of degree n by —,(g) is less than or equal to n' — 1. By the inductive

R) t where the number of rewrite

hypothesis, we obtain s —7 » t and the lemma holds. O
Before proving the soundness of Procedure 3.1, we need some notions con-
cerning with the TA constructed in the procedure.
A state g in Qy, is singleton if |g| = 1. A transition rule in Ay is singleton if its
right-hand side is a singleton state. A move caused by a singleton transition rule is

called a singleton move. For a TA Aj and a state ¢ € Oy, let Aj-(q) (respectively

33

Aje(q)) be the TA obtained from A,(g) by removing every rewriting transition
rules (respectively non-singleton transition rules). For an F-term s and a state
q € Qy, if s F} ¢ without any rewriting moves (respectively non-singleton moves),
then we write s }_ g (respectively s . ¢). Remark that if s I}, ¢, then the
move does not contain any non-proper rewriting moves since every non-proper
rewriting transition rule is non-sigleton (see Case 3(ii) of ADDTRANS).

For a set A and a TA A = (F, Q, Qfinat, A), the extended TA A(A) for 7(FU
A) is defined as A(A) = (FUA, Q, Qfinat, AUAL) where Ay = {A,(q1,--.,¢:) —
G An(qrs -5 @n) = () | An € Aqryeey@n € QouU---Ug, = q € Q,t € g}
A move caused by a transition rule in A, is called a A-move. For a TA A; in
the procedure, we write I, j instead of F,(4,). The TAs A, -, A\ e and the
relations =, -, ge are similarly defined and we will use their combinations, e.g.

l_/\,k_Y' .

Lemma 3.3 Let r € T(F,V) be a linear term with m variables xq,...,x, at
01y« -y Om, respectively, s be a A-term and p be a substitution {x; — ¢; |1 <i <
m} where ¢; € Q (1 < i < m). Ifr is a variable, then let t,, = rp. Otherwise,
let t,, = (rp). Ift,, € Q) and s l_t\,k* t,,, then the sequence can be written as
sk, _sloi—¢q |1<i<m]F O

*
Nk~ Nk~ trp'

The next lemma states that if a A-term s is accepted by a state g then there is a
A-term s' such that s' is accepted by ¢ only with singleton moves and s’ can be

rewritten to s by rewrite rule A;(z,...,z) — z (i > 2).

Lemma 3.4 For a A-term s and a state ¢ € Qx, if s g, then there is a

A-term s' such that s' =7 1. q and s' =7, s.

Proof. The proofis shown by induction on the number of non-singleton rewriting
moves in the sequence (8:s -7 ; g. For the base case, the lemma holds obviously.
Assume the lemma holds for every sequence which has at most n— 1 non-singleton

rewriting moves and consider the case for n. In this case, # can be written as
s g slo =t by sfo—pl L, g (3.19)

where o is in Pos(s), t — p is a non-singleton transition rule and the move

slo « t] kp s[o « p| is the first non-singleton rewriting move in 8. Assume

34

p = (t1,...,tm) (m > 2). There are three cases (1),(2) and (3) for the transition

rule t — p:

(1) Iftis of the form f(p1,...,Pq(s)) where f € F and p; € Qi for 1 < i < a(f),
transition rules ¢ — (¢;) for 1 < ¢ < m are also defined in Case 3(iii) of
ADDTRANS.

(2) If t — pis a proper rewriting transition rule, then ¢ — (¢;) for 1 < i < m
are also defined in Step 4(b) of Procedure 3.1.

Let s" = s[o < An(s/o,...,s/0)], then in both cases (1) and (2), we have

s Fige slo— Aml(t,... 1)]
|_Z° 5[0<_ /\m(<t1)7"'7<tm>)]
Faooslo— [(8)]

1<i<m

= slop]

Fae 4 (3.20)

(3) If t € Q) and the transition rule ¢ — p is defined in Case 3(ii) of AD-
DTRANS, there are two cases: Assume that the transition rule ¢ — p is
defined from a transition rule p’ — py such that t = (p \ po) Up'.

(3a) If p' — po is a singleton transition rule, i.e. |pg| = 1, or p' — pg is not
a rewriting transition rule, then it is easy to see that there is a singleton
transition rule ¢’ — go such that ¢t = (p\ ¢o) U ¢'. (Especially, ¢ = p' and
¢o = po in the former case.) Assume ¢' = (¢},...,t) and gy = (¢1) without
loss of generality. Let s” = s[o «— A,,(Au(s/o,...,s/0),s/o0,...,s/0)], then

we have
s Fhge 8[o = Ap(Am(t, ... 1), 8, ...)]
Fage 80— Am(Am ((t'1> o (o)), (B2)s s (Em))]
(by Case 3(i) of ADDTRANS)
Fa slo=An(| (8 (2, (tm))]

= slo« /\m(ql_, <_t2>7"'7<tm>)]

35

l_/\,k' 3[0 — /\m(%a <t2>7) (tM>)]
= S[O<—/\m(<t1>7<t2>7"'7<tm>)]

Fr slo— | ()]

1<i<m
= slo—p]

Fae ¢ (3.21)
Since there are at most n — 1 non-singleton rewriting moves in both (3.20)

and (3.21), by the inductive hypothesis, there is a term s’ such that s' - ;. ¢

and s' -7 s”. Obviously, s" —7 s and the lemma holds.

(3b) Ifp' — py is a rewriting transition rule and |pg| > 2, then there are two cases:

Assume p' = (t1,...,t,,) and p \ po = (tj;,...,t; ,) where m" = |p| — |po|.

(1) If |p| =1 (i-e., p' = (t})), then for "' = s[o — Anii(s/o, ..., s/0)]
we have

s Fhge slo e Amraa((81), (8) -+ (E,0))]
F 5[0 — N4 (Po, <t]'1> LR <tjm“>)]
S A

1<i<m"
= s[o«p]

e 4 (3.22)

(i) If [p'| > 1, then let

n

s" = slo — Apry1(Ami(s/o,...,8/0),8/0,...,5/0)].

We have

$" ke 810 = At (A (1), -5 (Erd)s (B s 5 (E0)]

Fa s[o = Amrga(() (i) - -5 ()]
<i<m!

= slo— A (P, (1) -+, (E,0)]
|_k 5[0 — Amiy1 (pO’ <t]'1>’ R <tjm”))]
Fa o sfo— U <tji> U po

1<i<m"

—_

36

= slo—p]

o (3.23)

In both cases (i) and (ii) of (3b), s" —% s holds. If p' — py is a proper rewriting
transition rule, then both sequences of moves (3.22) and (3.23) are of the form in
case (2) in this proof. Otherwise, repeating the same discussion of this case (3),
we can finally obtain a proper rewriting transition rule and a sequence of of the
form in case (2). Therefore, we can show that there is a term s” for s" in the
moves such that s” |7 ; ¢ which has at most n — 1 non-singleton rewriting moves

and s" —7 §". Thus the lemma holds by the inductive hypothesis. O

Definition 3.8 For a A-term s and an RL-TRS R, €, a(r)($) is true if and only

if there is an F-term s’ such that s —>Z,/\(R) s’ O

Example 3.5 Consider the TRS Ry in Example 3.4. Assume

s = '(A(f(a), 9(a))),

then €, a(r.)(s) is true. On the other hand, let s’ = A'(A(f(a), g(c))), then
Ea,n(R10)(8') is false. a

Lemma 3.5 For A-terms s,s' and an RL-TRS R such that £, nr)(s) is true, if

s' is a subterm of s or s —7, ', then E, \r)($). O

Lemma 3.6 For a A-term s and an RL-TRS R such that £, \r)(s) is true, and
for a state g € Qu, if s ; g, then there exists a A-term u' such that Eanmw)(u')

is true, u' —7 A(r) 5 and (7 A
Proof. By Lemma 3.4, there is a A-term s, such that s, —} s and
Soa P pe € (3.24)

The proof is shown by induction on the maximum degree of rewriting moves in
the sequence (3.24). For the basis, let v’ = s, and the lemma holds. Assume the
lemma holds for every sequence where the maximum degree of rewriting moves

is k — 1 or less and consider the case for k (> 1). The inductive part is shown by

37

another induction on the number of rewriting moves of degree k in the sequence
(3.24). Assume the lemma holds for every sequences which has n — 1 rewriting
moves of degree k and consider the case for n. The sequence (3.24) which has n

rewriting moves of degree k can be written as
S l—f\’k. Salo — ¢'] Fre sofo — ¢"] I—f\’k. q

where o is a position in s and the move s,[0 — ¢'| e soo — ¢"] is the first
rewriting move of degree k. Remark that the transition rule used in this move is
a proper rewriting move since every singleton rewriting transition rule is proper.
Also note that s,[o «— ¢"] FAke g contains only n — 1 rewriting moves of degree
k. By the definition of TAs, s,/0) . ¢' Fre ¢". There is no rewriting move of
degree k in s, /o Fake ¢ By the inductive hypothesis on k, there is a term v

*®

such that £, A(r)(v) is true, v —7

R) sqfoand v 5, . ¢

For the sequence S:v k-7 ;. q Fre ¢', without loss of generality, assume that
1. ¢ — ¢" used in the last move in 3 is defined for a rewrite rule I — r € R,
2. | has m variables x1,..., 2,

3. the variable z; has ~; positions in [at 0;; € Pos(l) (1 < j < ;), and

4. if the variable ; occurs in 7, then it occurs at o; € Pos(r).

" is a rewriting move of

Let I' — »' be AL(l — 7). Since the last move ¢’ Fp. ¢
degree k, and since it is defined for the rule [— 7 at Step 4 of Procedure 3.1,

there are states p;; (1 <i<m,1<j <) and g in Qi_; such that

o —pi; |1<i<m,1<j <yl a, (3.25)
‘Cpil ('Akfl) ARERNN ﬂpm ('Akfl) 7A 0 (3'26)
where ¢" = ¢y or ¢" = (t) for some t € gj. Furthermore, for the substitution

p = {z; — p; | for i such that z; occurs in r } where p; = U1<j<'}’i pij, if r €V
then ¢’ = rp else ¢’ = (rp). By Lemma 3.3, we can write the sequence v PR q
as

v F} - v[0; — p; | for i such that @; occurs in 7] 7 ,—.. ¢'. (3.27)

38

Define substitutions ¢ and ¢’ as 0 = {2; — w; | 1 <7 < m} and ¢’ = {z;; —
w;; |1 <i<m,1<j <~} where u; and u;; with 1 <7 <mand 1< j < are

defined as follows:

1. If ®; occurs in 7, then let u; = v/o;. By (3.27) we have u; F5 ,_. p;. If
7; > 1, then the sequence can be written as u; F5 , .« A(Pit, -, Piy) Fa Pi-
In this case, let u;; = u;/j for 1 < i < m,1 < j <+#;. If 5, =1, then let
u; = u;. Remark that ro = 7'o’. Also, u;; Ff\,k,,. pij holds for 1 < j < v,
since u; 7 . p;. By the fact that &, x(r) (v) is true and by Lemma 3.5,

Eanr)(u;) s true. (3.28)

2. If ; does not occur in 7, then u; is chosen to satisfy u; € £, (Ag_1)N---N
Ly, (Ap_1), that is u; F;_; pi; (1 <5 < ;). Such u; exists by (3.26) and
can be found effectively. By the inductive hypothesis on k, there are terms

u;; for 1 < j < «y; such that u;; —>Z’A(R) u; and
Ui 0 k- Pije (3.29)
In either case 1 or 2, we have
(U H‘\,k—,- Dij (1 <Jj< ’Yi)~ (3~30)

Let v' = I'0’, then by (3.25) and (3.30), we have

v = lo'
AP Vo —pij |1 <i<m,1<j <7
Fro1 qg~

In either case ¢" = g or ¢" = (t) for some t € g, we have v' Frik 1 ¢~ On the
other hand, by (3.28), (3.29) and the fact that (—ar)i U —a)" C =7 .5, for
any 1,

v =10 s ry ' =ro=w. (3.31)

That is, v' —,®) v. By the definition of TAs and the discussions above, we
obtain

*

Salo = '] Sanm) salo — 0] Shnm Salo = safll =50 (3.32)

39

and syfo « '] F3,) safo « ¢"] B} .. g where sfo < ¢"] I} ;. ¢ contains
n — 1 rewriting moves of degree k. By the inductive hypothesis on the number of
rewriting moves of degree k (when n > 1) or on the maximum degree of rewriting

moves (when n = 1), there is a A-term ' such that £, r(r)(%') is true,
u =5 AR Salo < V], (3.33)

and

u' B . g (3.34)
By (3.32), (3.33) and the fact that s, —} s, we obtain

U’ —):c,/\('R) S. (335)

By (3.34) and (3.35), the lemma holds. O

Lemma 3.7 For an F-term s, an RL-TRS R and a state ¢ € Qy, if s I}, q, then

there exists an F-term u such that u —% s and ut-5_ q.

Proof. Suppose s b} ¢ for an F-term s € 7(F) and ¢ € Q. with |¢| = 1. By
Lemma 3.6 and the fact that £, (z)(s), there is a A-term u' such that £, rr)(u')
is true, v’ —7 gy s and u' 3 ;. g. By Lemma 3.2 and the fact s € 7(F), we
obtain u' —} » s. In the following, we construct from ' an F-term u such that
u —% s and u F_ ¢ by replacing every subterm of the form A, (t,...,%,,) where
t; € T(F) (1 < i < m) with some term in {¢; | 1 < ¢ < m} from the leaves to
the root. Assume u'/o = A,,(t1,...,t,) and ¢; € T(F) for 1 < ¢ < m. Since

t; € T(F) for 1 < ¢ < m and all moves in the sequence u' t-*

" - G are singleton,

we have

o i o = An((t), s ()]
Fa o= (8.)]

’'m

Fag—e 4 (3.36)

where (t;) € Q. Lett — (t') € Ay be the transition rule which is used to consume
the state (¢,...,t,,) in v in the subsequence of (3.36) from u'[o « (t],...,t.,)]

‘Y ¥m

to g. There are two cases for t: (1) t = (t],...,t,,) and ' € t and (2) ¢ is

40

of the form f(p1,...,pa(y)) where f € F, p; € Qi with 1 < 4 < a(f) and
(ty,...,t,) = p1 without loss of generality. For case (1), the subsequence of

(3.36) from w'[o « (t|,...,t,)] to ¢ can be written as:

o — (ty, ..., t)] Fr-w
wo — (t,)] Flin 4 (3.37)

for some n (1 < n < m). Let v’ = u'[o « t,], then we have " F;_, u'[o «
(ta)] F2 g-e @ by (3.36) and (3.37). For case (2), the subsequence of (3.36) from

u'o — (t),...,t,)] to g can be written as:

wo—(ty,...,tn)] b w0 — f({t-- tn), - Pan))]
= o « f(Pla---’pa(f))]
Fag—e [0 — (8]
Fr ke 4 (3.38)

where 0 = o'-1. From Step 3(iii) of ADDTRANS, there is a transition rule of the
form f((t{), ..., (th)) — (t') wheret] € p;for1 <i < a(f). Let n’ (11 <n gl m)
be an integer such that ¢] = ¢/, and assume that u' = «'[o' — f(t],..., t;m)].
Then, by the transition rules defined in Step 3(i) of ADDTRANS and (3.38),
we have

t Frw pibae () (2 < <a(f)). (3.39)

)

Let u" = u'[o « t,y]. By (3.36) and (3.39), we have

W' = W f(tw, e, to)]
e o = F((t, > . (a(f)>)]
= w0 — F({t),..., (tap))]
Fr—e [0 — (t')]

Fice Q.

On the other hand, consider the rewrite sequence u' —7, s. From the fact
that no left-hand side has function symbolsin A and s,t; € 7(F) with 1 < i < m,
and from the definition of —, %, there is an F-term ¢, such that u' —} u'[o
Am(to, ... t0)] —a Ulo — to] —ar S Where tg € 7(F). From this rewrite

41

sequence, for both cases (1) and (2), we obtain u" —% u'[o «] —%z s.
Repeating the discussions above for every subterm with a function symbol in A,

we can obtain an JF-term u such that u —% s and u -;_ q. O

To show Lemma 3.1, it is sufficient to show that for a term s € 7(F) and a
state ¢ € Qy, if s I} g, then there exists a term u € 7 (F) such that u -5 s and
u 3~ q. The claim holds from Lemma 3.7.

3.2.2 Completeness

First we prove two technical lemmas concerning packed states.

Lemma 3.8 For a positive integer n and states p;, (t;) (1 < i < n)in Qy, if there
is a state (t1,...,t,) in Qp and p; F; (t;) for 1 < i < n, then p b} (t1,...,t,)
where p = Ulgignpi-

Proof. If n = 1, then the lemma holds obviously. Consider the case n > 2.
Assume that for each 1 < ¢ < n, p; = pio Fr P Frx -+ b pu, = (&) for
some l; > 0 and (t1,...,t,) € Qi Ifl; = 0 for every 1 < ¢ < n, the lemma
holds obviously. Assume that [; > 1 for a particular . Then p;, , — (t;) €
Ay. Since (tq,...,t,) € Qr, ADDTRANS((ty,...,t,)) has been executed in
Procedure 3.1 and a new e-rule p' — (t1,...,%,) is defined in Case 3(ii) where
P = ({t, -ty \{t:))Upu,_, = (t1,-- -, ti-1,tit1,- - -, tn) Upa,_,. Hence, the move
(t1ye ey tictytizty vy tn) Upi, , F (t1,...,¢,) is possible and ADDTRANS({¢,
coyticty tig1, oooy tn) U pu,_,) is recursively executed. Repeating the above

argument, we have p(={J,;.,p:) F* (t1,...,tn). O

Lemma 3.9 For an F-term s, and states (t;) € Qp with 1 <7 < mn, if s b (t;)
for1<i<mnand (t1,...,t,) € Qg, then sk} (t1,...,t,).

Proof. The lemma is shown by induction on the depth of the term s. If s = ¢

with a(c) = 0, then the sequence s -} (¢;) can be written as

chrpi by () (1<i<n) (3.40)

42

for some p; € Q. Since p; Fi (t;) for 1 < i < n, we obtain p F} (t1,...,t,)
where p = |J,<;c,p; by Lemma 3.8. Since ¢ — p; € A, and p € Qy, the
transition rule ¢ — p is defined by Case 3(iii) of ADDTRANS(p). Therefore
chrp by (1, .., t0).

Assume that the lemma holds for every term with depth [— 1 or less, and
consider a term s = f(s1,...,8q(s)) With depth I. The sequence s 5 (t;) can be
written as

str f(pins-- s Pian) Fepi Fi (t) (1 <i<n) (3.41)

where p;; (1 < j < a(f)) and p; are states. This implies s; F} p;; for 1 <i < n
and 1 < j < a(f), and therefore s; F J;c;c, pij for 1 < j < a(f) by the

induction hypothesis. Hence, the sequence

s Fr f(U Pits- s U Dia(f)) (3.42)
1<i<n 1<i<n
is possible. On the other hand, since all the moves in the sequence p; 5 (¢;) for

1 <i < nof(3.41) are e-moves, transition rules are defined so that the sequence

where p = Ulgign p; is possible by means of Lemma 3.8. Furthermore, by the
move f(pi1,...,Pia(s)) T pi With 1 < i < n of (3.41) and by Case 3(iii) of
ADDTRANS(p), the transition rule

f(U Pity- -y U pia(f)) — P (344)
1<i<n 1<i<n
is defined. Summarizing (3.42),(3.43) and (3.44), we obtain s -} (¢,...,¢,). O

The next lemma establishes the completeness of Procedure 3.1.

Lemma 3.10 For a term s € (—%)(L(A)), there is an integer k such that s €
L(Ay).

Proof. It suffices to show that for a state p € Qq, if s' =% s and s’ € £,(Ay),
then there is an integer k such that s € £,(Az), or equivalently, s F; p. The
claim is shown by induction on the length of the derivation s’ —% s. For the basis

s' = s, the claim holds obviously. If s' —% s, then there is a term u such that

43

s’ =% u —x s. By induction hypothesis applied to s' —} u, we have an integer
k' such that u -}, p. Moreover, since © —g s there is a rewriterule l - r € R, a
substitution ¢, and a position o € Pos(u) such that v/o = lo and s = ufo « ro].
Hence, there is a state p’ € Qs such that u = ufo — lo] F}, ulo — p'] F} p and
we have

lobFup. (3.45)

Now, let us show that ro 5, ; p'. Assume that [has m variables z,,...,z, and
the variable z; has ; occurrences in [at 0;; € Pos(l). By (3.45) there are states
pij for 1 <4 <mand 1 < j < v such that

;0 }_Z, Dij (346)

and

The sequence (3.46) means that z;0 € L, (Ay) N ---N Ly, (Aw) and we have
Ly (Aw) 0N Ly, (Aw) 7 0 (3.48)

for 1 < i < m. By (3.47) and (3.48), a substitution p = {z; — p; | 1 < i <
m}U{z — (gany) | ® € Var(r)\ Var(l)} is defined in Step 4 of Procedure 3.1. By

Lemma 3.9, each p; in the co-domain of p satisfies
Loy (Apsr) 00 Ly (Argr) © Ly (Awria) (3.49)
for 1 <4 < m and transition rules are defined by ADDTRANS to satisfy that
rpbFu, P (3.50)
By (3.46) and (3.49), we have
x;0 gy P (1<i<m). (3.51)

Summarizing (3.50) and (3.51), we have ro -, p', and the lemma holds since
s =ulo — ro| Fuyq ujo — P p. O
By Lemma 3.1 and Lemma 3.10, we obtain the following theorem, which

states the partial correctness of Procedure 3.1.

Theorem 3.11 For an RL-TRS R, if Procedure 3.1 halts then L(A,) = (—5
NL(A))- O

44

3.3. Termination of the Construction

We show that if an RL-FPO-TRS is given to Procedure 3.1, then there is an
upper-bound limit on the number of states which are newly defined. Once the
set of states saturates, then the set of transition rules also saturates and the
procedure halts. First, as a measure of the size of a state, we introduce the
concept of the layer of a packed state. Intuitively, the number of layers of a
packed state is the number of right-hand sides of rewrite rules which are used for

defining the state.

Definition 3.9 For a packed state p € Qj, define the number of layers of p,
denoted layer(p), as follows:

(1) if p € Qp or p = (t) with ¢ a ground subterm of a rewrite rule in R, then
layer(p) =0,

(2) if p = p1 U ps, then layer(p) = max{layer(p;),layer(p.)}, and

(3) if p=(ro/o) withl — r € R, o € Pos(r), r/o is not a variable, Var(r/o) =
{z1,...,2,} and ¢ = {&; — p; | 1 < i < n}, then layer(p) = 1 +
max{layer(p;) | 1 <i < n}. O

Remark that layer(p) is not defined for all packed states, but all packed states
introduced in Procedure 3.1 are of the form (1), (2) or (3). Also remark that
layer(p) is not always uniquely determined by this definition. If different values
are defined as layer(p), then we choose the minimum among the values as layer(p).
We note that in (3) above if 2; € Var(r)\ Var(l), then p; = (qany) and layer(p;) =
0. This means that variables which occurs only in the right-hand side are ignored

for defining the number of layers.

Example 3.6 Consider the states of the TAs in Example 3.2. Let I — r =
f(z,2) — g(z) € Rs, o = X and 0 = {& — (qo,q;)} in the above defini-
tion (3). Then, p = (ro/o) = (9((¢0,%))) and layer(p) = layer((gqo, q)) + 1 =
max{layer({qo)),layer({q;))} +1=1. O

Lemma 3.12 For any non-negative integer j, the number of packed states which

have j or less layers is finite.

45

Proof. The lemma will be shown by induction on j. For the base case, the
number of the states that have 0 layer is finite, since the number of the states
of Q¢ and the number of the states that are made from ground subterms of the
right-hand sides of a given TRS are finite.

Assume that the number of states that have n — 1 or less layers is finite and
show it is also true for the case that j = n. In Procedure 3.1, there are four cases

when a new state which has n layers is added.

1. In Step 4 of Procedure 3.1, a state which is defined as p; = Uléjﬁw pij in
(3.3) is added.

2. In Step 4(c) of Procedure 3.1, a new state ¢,, is added.

3. In Case 2 of Procedure 3.2, a new state p/ is added.

4. In Case 3(ii) of Procedure 3.2, a new state p" = (p' \ po) Up' is added.
5. In Case 3(iii) of Procedure 3.2, a new state p; = U, ., pi; is added.

From the inductive hypothesis and the definition (3) of the number of layers,
there exists a number k' such that case 2 does not take place at any loop counter
k" for k" > k' in Procedure 3.1. Let Qy = {t|teppe Qu} (Note that a
packed state itself is a set.) A new state which is added in case 1, 3, 4, or 5 is
a subset of ék:. Since Qs is finite, the number of subsets of ék: i1s also finite.
Hence the lemma holds. O

In the following, it is shown that if R is an RL-FPO-TRS, then layer(p) < |R|
for any state p defined by Procedure 3.1 where |R| is the number of rewrite rules
in R. An outline of the proof is as follows. First we associate each rule in R
with a non-negative integer called a rank. If R is finite path overlapping, then
the rank is well-defined and is less than |R|. Next, it is shown that if a rewrite
rule with rank j is used in Step 4 of Procedure 3.1, then layer(p) < j + 1 for any
state p defined in the same step. The rank of a rule in R is defined based on the
sticking-out graph G = (V, E) of R. Let v be the vertex of G which corresponds
to a rewrite rule [— r in R. The rank of [— r is the maximum weight of a

path to v from any vertex in V. If R is finite path overlapping, then the rank of

46

any rewrite rule is a non-negative integer less than |R|. For R¢ in Example 2.8,
the ranks of p; and p, are one and zero, respectively, since there is an edge with

weight one from p; to p;.

Lemma 3.13 Let | — 7 be a rewrite rule and p = {z; — p; | 1 < i < m} U
{z = (qany) | ® € Var(r) \ Var(l)} be a substitution which are used in Step 4
of Procedure 3.1. If the rank of I — v is j or less, then layer(p;) < j for each
1<i<m. O

Before presenting a proof of the lemma, we first see how the number of layers of
the state changes by a move of the TA. A transition rule of the TA is either an
e-rule or a non-e-rule. An e-rule is either an e-rule of the original TA A, or a
rule defined in Step 4(a) or (b) of Procedure 3.1, or a rule defined in Case 3(i) or
(ii) of ADDTRANS procedure. If an e-rule of the original automaton is used at
a move, then the number of layer does not change at the move. A non-e-rule is
either a non-e-rule of Ay, or a rule defined in Cases 1, 2 or 3(iii) of ADDTRANS.
In all cases, the maximum number of layers in a state is increased by one or not
changed by a move (Lemma 3.14). Hence, if the number of layers decreases at a

move, then the rule is an e-rule defined in Step 4(a) or (b) of Procedure 3.1 or in
Case 3(ii) of ADDTRANS.

Lemma 3.14 For a non-e rule f(p1,...,pas)) = P € Ap (a(f) > 1), let m =
max{ layer(p;) | 1 < j < a(f)}. Then, m <layer(p) < m+1.

Proof. By induction on k. A non-¢ rule is introduced either Step 1 of Proce-
dure 3.1, or Case 1, Case 2, or Case 3(iii) of ADDTRANS.If f(py,...,pa(s)) = P
is introduced in Step 1, then max{layer(p;) | 1 <7 < a(f)} = 0 and layer(p) = 0.
Thus the lemma holds. If ¢ — (c) is introduced in Case 1 of ADDTRANS,
then the lemma holds vacuously. Assume that f(pi,...,pa5) = P2 = (f(P1, -+,
Pa(f))) is introduced in Case 2. Then there exists a rewrite rule [— r and a Q-
substitution p which satisfies (3.1) and (3.2) such that (r/o)p = f(p1,...,Pa(s))
for some o € Pos(r). Let m = max{layer(p;) | 1 < j < a(f)}. By definition
of layer(-), layer(p) = m. Assume that f(pi,...,pey)) — p is introduced in
Case 3(iii). Let

m = max{layer(p;) | 1 <j < a(f)}
= max{layer(p;;) |1 <i<n,1<j<a(f)}

47

There are two cases for each 1 < ¢ < n. If layer(p;;) = m for some j (1 < j <
a(f)), then m < layer((t;)) < m+1 by the inductive hypothesis. If layer(p;;) < m
for each j (1 < j < a(f)), then layer((t;)) < m by the inductive hypothesis.
Hence, m < layer(p) = max{layer({¢;)) | 1 <i<n} <m+1. a

Proof of Lemma 3.13 The proof is by induction on the loop variable k& of
Procedure 3.1. When k = 0, every state belongs to Qg and layer(p;) = 0 for 1 <
t < n, and the lemma holds for any 7. Assume that the lemma holds for k < n—1,
and consider the case with £k = n. The inductive part is shown by contradiction.
Without loss of generality, let p; be a state such that layer(p;) > j + 1. Since
1 = Ui<i<y, P11y layer(p;) = max{layer(py) | 1 <1 < 71} by the definition of
layer(-). We can assume pj; is the state such that layer(p;;) > j + 1 without loss
of generality. Let us consider the sequence (3.1) in Step 4 of Procedure 3.1 and
observe how the number of layers of the state changes as the head of A; moves

from o077 to the root in the sequence (3.1) of moves. There are four different cases:

1. A rewriting move is caused at a certain position. Let o be the innermost

position among such positions. There are two different subcases:
(a) The number of layers does not increase at any o' with o < o' < 0.
(b) There is a position o' with o < o' < 017 such that the number of layers
increases at o'.

2. There are no rewriting moves in the sequence. There are two subcases:

(a) The number of layers does not increase at any o’ with A < o' < oy3.

(b) There is a position o with A < o' < 011 such that the number of layers

increases at o'.

These four cases are illustrated in Fig. 3.2.

Assume that the number of layers changes as in case 1(a) above. In this case we
can derive a contradiction as follows. First we assume a rewriting move at position
o is proper and let I' — 7' be the rewrite rule used for defining this transition rule
in Step 4 of Procedure 3.1. Then, the state just before this rewriting move occurs

at o can be written as (r'p'). Remark that layer((r'p')) = layer(p1;) > j +1 since

48

number of layers

j+1 j+1 j+1 J+1

Figure 3.2. The number of layers of a state of Ay in the sequence (3.1).

the number of layers does not change at any o' (0 < o' < o017). This implies that
the Qp-substitution p' replaces a variable in 7' with a state which has j or more
layers (see the definition (3) of the number of layers). Therefore, by using the
inductive hypothesis, the rule I’ — 7' must have rank j or more. On the other
hand, the fact that the number of layers does not increase at o’ with o < o' < oy
implies that »' properly sticks out of I/o as follows.

Consider the moves of the TA from the position o0;; to o. Since o is the
inner most position among the positions where rewriting moves are caused, all
moves at o' (o < o' < o011) are defined by ADDTRANS. By the construction
of transition rules in ADDTRANS, it follows that the function symbol of [at
the position o - 0" is the same as the function symbol of 7’ at o for every o such
that o - 0" < 01;. Furthermore, it can be easily shown that when the head visits
the position o - 0"(0 - 0" < 011) of [, the state (r'p'/0") is attached to that head.
Thereby, at the variable position 011, (r'p'/0") was attached where 0" is such that
0-0" = 0q1, and this is the state p;;. Intuitively saying, the head goes up [/ along
the path from o;; to o by changing the state from pq; to (f(...,p11,...)) where f
is the scanned symbol. This implies that »' properly sticks out of I/o by Case 1
of the definition of the sticking-out graph (Definition 2.16). We have observed
that the rank of I' — 7' is j or more, and thus the rank of [— » must be defined
to be 7 + 1 or more, a contradiction.

Next consider the case that the first rewriting transition rule used at o is
defined in Case 3(ii) of ADDTRANS and let the rule be p” — p such that
11

P = (p\po) Up and py C p for some rewriting transition rule p’ — po. The

rewriting transition rule p’ — py is either proper or non-proper. Assume p' — p,

49

is proper, then p' can be written as (r'p’) for some rewrite rule I’ — ' and some
Q-substitution p’. From the fact that there is no rewriting move from o;; to o we
can see that for every position o with 0-0" < 0;; when the head visits the position
0-0" in I, a packed state which has 7'p' /0" as an element is attached to that head.
Moreover from the construction of a non-¢ rule whose right-hand side has more
than one element (Case 3(iii) of ADDTRANS), the function symbol at o - 0"
(0-0" < 011) in I coincides with the one in ' at o”. This implies that ' properly
sticks out of /o by Case 1 of the definition of sticking-out graph (Definition 2.16).
By using this fact, we can derive a contradiction in the same way as in the case
when the rule used at o is proper. Even if p' — p, is non-proper, it is easy to see
that there is a proper rewriting transition rule whose left-hand side is included
in p" and again a contradiction can be derived.

For other Cases 1(b), 2(a) and 2(b), we can derive a contradiction in a similar
way (See the appendix). Thereby, it cannot happen that layer(p;) > j + 1 and

the induction completes. d

For an RL-FPO-TRS R, the rank of every rule is less than |R| and hence
the number of layers of any packed state is |R| or less by Lemma 3.13. By

Lemma 3.12, the number of packed states is finite and the following theorem

holds.
Theorem 3.15 Procedure 3.1 halts for an RL-FPO-TRS. g

In general, the running time of Procedure 3.1 is exponential to both of the size

of a TRS R and the size of a TA A.
Corollary 3.16 RL-GR '-TRS C RL-GSM-TRS C RL-FPO-TRS C EPR-TRS.

Proof. RL-GR™-TRS C RL-GSM-TRS and RL-GSM-TRS C RL-FPO-TRS
are shown by Theorem 2.18. RL-FPO-TRS C EPR-TRS is by Theorems 3.11
and 3.15. d

Corollary 3.16 answeres that the open problem presented by Gyenizse and
Vagvolgyi[21] positively, which asks to generalize the class of linear generalized
semi-monadic TRSs so that a TRS in the obtained class still effectively preserves

recognizability.

50

3.4. Decidable Approximations

In this section, we investigate decidable approximations of TRS along the lines
of [14, 24, 28|.

Definition 3.10 For a TRS R, a TRS R’ is an approzimation of a R if —% C
—% and NFgr = NFg:. An approrimation mapping o is a mapping from TRSs
to TRSs such that a(R) is an approximation of R for any TRS R. For a class

C of TRSs, a C approzimation mapping is an approximation mapping such that

a(R) € C for every TRS R. a

In 1996, Jacquemard[24] introduced a linear growing approximation mapping.
Later Nagaya and Toyama|28| introduced a better approximation called a left-

linear growing approximation mapping and presented decidable results on them.

Definition 3.11 An LL-FPO '-TRS approzimation mapping « is such that for
a TRS R, a replaces some variables in the right-hand side r, of a rewrite rule
ly — ry in R! with a new variable which is not in Var(ly), so that r, cannot

contribute to an edge in the sticking-out graph of a(R™1). O

For example, replacing variable # with z' in the right-hand side of the rule in R
of Example 2.8 yields an LL-FPO~!-TRS approximation of R,*. The following

results are a generalization of Nagaya and Toyama’s results[28].

Definition 3.12 [14] Let « be an approximation mapping and 2 be a fresh
constant. A redex at a position o in t € T (F) is a-needed if there exists no

s € NFg such that tfo — Q] —) s and s contains no . O

If R is orthogonal, then every a-needed redex is a needed redex in the sense of
Huet and Lévy [23]. Let CBN-NF, = {R | every term ¢ ¢ NF has an a-needed
redex }. By Theorems 15 and 29 in the reference[14] and Lemma 2.6 of this
thesis, the following theorem holds.

Theorem 3.17 Let R be a left-linear TRS and o be an EPR™*-TRS approzima-
tion mapping. Then the following problems are decidable:

1. Is a given redex in a given term a-needed?

51

2. Is R in CBN-NF,? O

Corollary 3.18 Let R be an orthogonal TRS in EPR™'-TRS which satisfies the

variable restriction such that | is not a variable and Var(r) C Var(l) for every

l—-reR.
1. Every term t ¢ NF has a needed redez.

2. It is decidable whether or not a given redex in a given term is needed. [

To conclude this section, we provide an orthogonal TRS R in FPO !-TRS such
that there exists no left-linear growing approximation mapping 3 which satisfies

R € CBN-NF,.

Example 3.7 Let Ry = {g(h(z)) — f(z,z,2)} UR' be an orthogonal TRS

where R' consists of the following five rewrite rules:

f(a,b,2) = a, f(b,z,a) — a, f(z,a,b) — a,
f(a,a,a) — a, f(b,b,b) — b.

It can be easily verified that Ry; is in FPO™!-TRS. Every term ¢t ¢ NF,, has a
needed redex in R;; by Corollary 3.16 and Corollary 3.18-1. On the other hand,
a left-linear growing approximation mapping 3 should be 5(R11) = {g(h(y)) —
f(z,z,2)} UR' for some variable y # z. Consider a term ¢t = f(g(h(a)), g(h(a)),
g(h(a))). Obviously, g(h(a)) —%x,,) o and g(h(a)) —jz,,) b- Hence, ¢ has no
B-needed redex. Thus, Ry; ¢ CBN-NFy. d

92

Chapter 4
Strongly Normalizing Property

In this chapter, we show that for almost-orthogonal inverse FPO-TRSs, strongly

normalizing property is decidable.

4.1. Nagaya and Toyama’s method

Nagaya and Toyama[28] showed that SN is decidable for the class AO-GR-TRSs
(almost orthogonal growing TRSs) in the following way.

Theorem 4.1 [20] Let R be an AO-TRS (almost-orthogonal TRS, see Defini-
tion 2.3).

1. R is SN if and only if R s WIN.

2. A term s 1s SN in R if and only if s s WIN in R. O

Definition 4.1 For a TRS R and a set L of terms, the innermost R-ancestor of
L is defined as (<7)(L) = {t|3s € L,t =7 s}. O

By using the notion of the innermost R-ancestor, the property WIN can be

represented as follows.
Lemma 4.2 For a TRS R:

1. R is WIN if and only if (<1)(NFr) = T(F).

93

2. A term s is WIN in R if and only if s € (<7)(NFz).

Proof. We ounly prove the first part as follows.

R is WIN & VteT(F). It' € NFg. t—Ir t
& T(F)C{t|3t' € NFg.t —IR t'} = (—>;R)(NFR)
& T(F)=(—1r)(NFr).

O

By Lemmas 2.6 and 4.2 and Theorem 4.1 we obtain the following lemma.

Lemma 4.3 For an AO-TRS R, if we can effectively construct a TA A, such
that L(A.) = («1z)(NFr), then the following problems are decidable:

1. IsR SN?
2. For a given term s, is s SN in R? d

Nagaya and Toyama showed that for a left-linear growing TRS (LL-GR-TRS)
R (see Definition 2.14), the set («7)(NFr) is always recognizable and thus
whether R is WIN or not is decidable. If R is also an AO-TRS, then we can
decide whether R is SN or not by Lemma 4.3.

Theorem 4.4 [28] For an AO-GR-TRS R, SN is decidable. O

In the next section, we show if R is an AO-FPO™'-TRS, then a TA accepting

(«7r)(NFR) can be effectively constructed.

4.2. Tree Automata Construction for Inner-

Most Ancestors

For an LL-TRS R, Comon showed a complete and deterministic TA, denoted by
App,, which accepts the set of all ground normal forms, i.e. L(Ayp,) = NFg
in [4]. We start with this TA Ayp.

o4

Procedure 4.1 This procedure takes an AO-TRS R as an input and outputs a
TA A. such that £(A,) = (‘_;,R)(NFR)- The algorithm does not always halt
in general. We will show later that if R is an FPO~!-TRS, then the procedure
always halts. Let Ayp, = (F, Q, Qfinai, A) be the complete and deterministic TA
with £(Ayrp,) = NFr[4]. We will construct TAs whose states are represented
by terms in 7 (F U Q) where elements in Q are regarded as constants. A term in
T(FUQ)is called a Q-term, and, to avoid confusion, a Q-term ¢t € 7(F U Q) is

written as (¢) when it is used to represent a state of TAs.

Step 1. Let ./4[) = (f7 QO) Q%nabAO) where QO = {(p> |p € Q}7 Q;‘)inal = {<p> |

P E Qﬁnal}7 and A0 = {f(<p1>7) <pa(f)>) - <p> | f(pb v 7pa(f)) —pc A}
In Steps 3 to 5, Agr1 = (F, Qit1, Q][‘)inal7Ak+1) (k > 0) is constructed from

A, = (F, Ok, Q;’ina,,Ak) by adding states and transition rules to Qj and Ay,
respectively. We abbreviate -4, and), as b and b, respectively.

Step 2. Let & = 0.
Step 3. Let Qp 1 = Qp and Ay = Ay.

Step 4. New states and transition rules are introduced in this step. Let [— r
be a rewrite rule in R and let Y = Var(l) \ Var(r). It is assumed that = has
m(> 0) variables z;(1 < i < m) and z; occurs at positions o;; in r(1 < i <
m,1 < j <7;). Assume there are states ¢,¢;; € Qr(1 <i<m,1 < j<~)and
Gio € Q%na,(l < i < 'm) such that

rlog «—qij |1 <i<m,1<j<7v]Frq (4.1)

and NO # LUB({g;; | 0 < j < 7;}). The function LUB, which is defined later,
constructs a state which accepts terms accepted by every ¢;; (0 < j < ;). Then
for any substitution p:Y — Qgua, let p = {z; — t; |1 < i < m} U p' where
t; = LUB({g;; | 0 < j <;}), and do the following 1 and 2.

1. Add (Ip) — q to Apiq. If (Ip) = g € Api1 \ Ag, then the rule is called a
rewriting transition rule of degree k + 1 and if a move of the TA is caused

by this rule, then the move is called a rewriting move of degree k + 1.

2. Execute ADDTRANS((Ip)). In ADDTRANS((lp)), new transition
rules are defined so that Ip ., (Ip).

35

Simultaneously execute this Step 4 for every rewrite rule and every tuple of

states that satisfy the condition (4.1) and every substitution p":Y — Q%nal.

Step 5. If Api1 = Ay then output Ay as A, and halt. Otherwise, let k =k + 1
and go to Step 3. O

Procedure 4.2 [ADDTRANS] This procedure takes a state (¢) as an input.
If (t) already exists in Qp, then the procedure performs nothing. Otherwise, the

procedure adds (t) to Qj and defines new transition rules as follows.

Case 1. If t = ¢ with c a constant, then define ¢ — (c) as a transition rule.

Case 2. If t = f(t1,...,tas) with f € F, then define f({t1),..., (tap)) — (t)
as a transition rule and execute ADDTRANS((t;)) for 1 < i < a(f). O

In the following, we will use ¢, t;,%s,... to denote Q-terms in 7(F U Q),
s, s’ u,w' uq, uy, ... to denote ground terms in 7(F), f,g,... to denote func-
tion symbols. Also q,q,qs,... are states in Qp for some k£ > 0 and p,py,ps...
are states in Q. If we write f(t1,...,t(s)), then we implicitly include the case
when a(f) = 0.

In order to define the function LUB, we introduce a partial order on 7 (FUQ).
For a Q-term ¢, let ¢() denote the term obtained from ¢ by replacing every p € Q
in t with (p). For example, if t = f(g(p1),p2) where p1,p» € Q, then t() =
F(g({p1)), (p2))- Note that if s € 7 (F) then s() = s. The relation < on 7 (FUQ)

is defined as follows:
(1) Forpe Qand t' € T(FU Q),if t/() k5 (p), then p < ¢'.

(2) For f(t1, - tain)s F(th-- s thp) € T(FUQ), if t; < £ (1 < i < aff))
then f(tl,. . ,ta(f)) S f(t'l,. . "t:z(f))'

Note that if p € Q, then p < p by (1). If p,p' € Q and p # p' then
() = (p) /s (') (since Ay is deterministic) and hence p £ p’ by (1).

96

For two Q-terms t and t' if there is the least upper bound of ¢ and ¢ on <,
then it is denoted by ¢ LI#'. It is easily shown that ¢ LI ¢ is represented as follows:
tut =
t if t=t€Q
t if teT(FUQ)\Q,t' e Q,t() F; (')
t if te @t eT(FUQ)\ Q,t() ks (t)

f(tl L t’17"' t a(f)U t (f)) (42)
if t=f(t1,..., a(f)) T(U)\Q
t,_f(t,I’ .) T(U)\Q’

t; Ut deﬁned (

undefined otherwise.

< i< a(f))

For k > 0, let A;- be the TA obtained from .4, by removing every rewriting

transition rule.

Function 4.1 [LUB] This function takes a set of states {(t1),...,(t»)} as an
input and returns a Q-term t = ¢, U --- U ¢, if it is defined. Also the function
adds new transition rules and states so that Ly (Ar-) N -+ N Ly (Ar-) =

E('f)('A(k—H)‘)'
Step 1. Decide whether ¢; Ll -- - U¢, is defined by using (4.2). If defined then let
t=t U---Ut, and go to Step 2. Otherwise, return NO.

Step 2. Execute ADDTRANS((t)) and return ¢. O

Example 4.1 We apply Procedure 4.1 to the AO-FPO~'-TRS R; in Exam-
ple 2.8. First, we construct the deterministic and complete TA A, accepting NFg,

as A = (F, Qo) Qinat» Do) where Qo = {(p,), (po); (P1)}; Qe = {{Po), (P1)} and

=1

a — (po), g((pe)) — (p1)

g((p1)) — (1), g((p+)) — (pr)

h((po)) — (po)s h((p1)) — (pr)

h((p:)) — (p:), F((pr), () — (pr)

f({po)s (pr)) — (pr)y fUp1),(pr) — (p)

f({pe), o)) — (pe), fUpr), (1)) — (pr)

f({p1), (po)) — (pr)y f((p1),(p1)) — (p)
f((po), (po)) — (po), Fl{po),(m)) — (po) }.

Consider the rewrite rule h(g(z)) — f(z,) in Step 4 for Ay (kK = 0). Since a
move f((po), (po)) Fo (o) is possible and LUB({(py), (po)}) = po, the substitu-
tion p in Step 4 is p = {z +— po} and new transition rules (h(g(po))) — (Po),
h({g(po))) — (h(g(po))), g({po)) — (g(po)) are added to A;. The last two
rules are added in ADDTRANS((h(g(po)))). Next, consider the rewrite rule
f(9(z),y) — h(f(a,y)) in Step 4 for A,. In this case, we need to consider
two substitutions {& — po} and {& — p;} as p'. Since h(f(a, (po))) F5 (Po)
is possible, (f(g(po);po)) — (po), (f(9(p1),p0)) — (po) are added to A; and
ADDTRANS({(f(g(po),po))) and ADDTRANS({f(g(p1),po))) are executed.
We also have h(f(a,(p1))) 5 (po) and hence we define (f(g(po),p1)) — (o),
(f(g(p1),p1)) — (po) as new transition rules in A; and both ADDTRANS
((f(g9(po),p1))) and ADDTRANS ({(f(g(p1),p1))) are executed. Again consider
the rewrite rule h(g(z)) — f(«,«) in Step 4 for A;. Since a move f((g9(po)), (p1))
F1 (po) is possible and g(po) U p1 = g(po), a new transition rule (h(g(g(po)))) —
(po) is added to Ay and ADDTRANS((h(g(g9(po))))) is executed. We can easily
verify that A, accepts 7T (F). O

4.3. Correctness of the Construction

Lemma 4.5 For a state ¢ € Q; (k > 0), L,(A-) = L,(Ap-) for any k' > k.
(Especially, for a state ¢ € Qy, L(A¢) = Ly(Ag-) for any k > 0.)

Proof. L,(A;-) C L,(A-) is obvious since the sets of states and rules are
enlarged monotonically. Assume 3t € L (Ap-) \ L4(Ax-). Then there exists an
outermost position Jo € Pos(t) where a rule f(q’l,...,q;(f)) — ¢ in Ap \ Ay
is used. Since o is an outermost among such positions, ¢' € Q). However, to
define a new transition rule whose right-hand side is ¢, ADDTRANS(g') must
be executed. Since ¢' has been already included in Q;, ADDTRANS does not

introduce any rules, a contradiction. O

Lemma 4.6 Assume (f(t1,...,ts)) € Q-

1. Forw € T(F), if u - (f(t1,...,tap))), then u = f(u,...,u5)) Fi-
F((t), . s (tap)) Fr- (f(t1, ... ta(p))) for someu; € T(F) (1<t <a(f)).

98

2. £<f(t1a~--,ta(f))>("4‘k7) = {f(ula"'7ua(f)) | u; € £<tz>('/4k7)71 < i < a(f)}
(Especially, Ly(Ap-) = {c}.)

Proof. The non-rewriting transition rule defined in Procedures 4.1 and 4.2
whose right-hand side is (f(t1,...,tqy))) must be f({(t1),..., (tas)) — (f(t1,
.5 ta(s)))- Those transition rules are defined in ADDTRANS. O

Lemma 4.7 For a state (t) € Qp, t < u for any term w in Lyy(Ag-).

Proof. For a state (t) € Q, the lemma holds obviously since u = u() F; ()
by Lemma 4.5 and hence ¢ < u by (1) in the definition of <. For a state (t) €
Qr \ Qo, ADDTRANS((t)) must have been executed. We show the lemma
holds for (t) by structural induction on the term t. For ¢t = f(t1,...,tap),
Liy(Ar-) = {f(ur,...,uq05) | ui € Lygjy(Ar-),1 < i < a(f)} by Lemma 4.6(2).
By the inductive hypothesis, for any u; € L) (Ar-) t; < u; holds. Thus, for any
term u € Ly (Ag-), t < u holds by (2) in the definition of <. O

Lemma 4.8 For a term u € T (F) and a state (lp) where l is a linear term in
T(F,V) and p is a substitution p = {z; — t; | 1 < i < n,t; € T(FUQ)}, if
u F5- (lp), then there is a substitution o:Var(l) — T (F) such that v = lo and
the sequence u =5_ (lp) can be written as u =5_ lp' Fi_ (Ip) where p' = {z; —
(t:) |1 <i<n}.

Proof. We need to show that (1) there is ¢ with v = lo, (2) u F}_ Iy and
(3) I F;_ (lp). For (1), assume that x; occurs at o; in l for 1 < i < n. Using
Lemma 4.7, u F;_ (lp) implies Ip < u, and therefore o; € Pos(u). Define o =
{z; > ufo; |1 <i< n}, then u =lo. (3) is rather obvious from the construction
of transition rules in ADDTRANS, and hence (2) is shown hereafter. For the
proof, it suffices to show that u/o F;_ (Ip/o) for all o € Pos(l), since this will
imply u/o; F;- (lp/o;) = (t;) and therefore u F;_ lp'. The proof is by induction
on the length of 0. The claim holds for the case |o] = 0 by the assumption
u ;- (Ip). Assume that Ip/o = f(ti1,...,tay)) and

ufo - (lp/o) (4.3)

99

as an inductive hypothesis. By Lemma 4.6(1), (4.3) can be written as

u/o - F({t)s- -, (ta()) Fa- (lo/0)-
Hence, u/o-iF;_ (t;) = (Ip/o- i) for 1 <i < a(f). a

For example, assume that v = f(g(c),h(a)), I = f(z,h(y)), p = {& —
g(p1),y — p2} and w5 (f(g(p1), h(p2)))(= (lp)). Lemma 4.8 states that

u = f(g(c),h(a))
Fi- F{g(@1), h((p2))) Fi- (£(9(p1), h(p2)))-

Lemma 4.8 implies the following corollary as a special case.

Corollary 4.9 For a ground term w € T(F) and (t) € Qy, if u F5_ (t) then
w b t() Fio (2). O

The following two lemmas show the correctness of the function LUB.

Lemma 4.10 For states (t1), ..., (t,) i Q, if Ly (Ap-)N- - N Ly (Ap-) # 0,
then t; U ... Ut, is defined.

Proof. For simplicity, we prove the lemma only for n = 2. (An inductive

argument can apply to the case when n > 3.) Assume
Ly (Ar-) 0 Loy (Ar-) # 0. (4.4)

We prove the lemma by the structural induction on ¢. There are four cases to

consider.

o Ift,t € Q then t = ¢ by (4.4), Lemma 4.5 and the fact that A, is deter-
ministic. Hence, ¢t U t' is defined as ¢ by (4.2).

e Assume t € T(FUQ)\ Q and ¢ € Q. By (4.4), there exists a term
w € Loy (Ar-)NLyy(Ap-). Thus w5 (t) and w 5 (t'). By Corollary 4.9,

u b t() Fr- (). (4.5)
Since Ay is complete, there exists a state (p) € Qp such that ¢{) Fj (p),
which implies u F;_ (p) by (4.5). Since u F;_ (') and u F;_ (p), we see
that u Fj (¢') and v F; (p) by Lemma 4.5, which implies ' = p by the
determinicity of Ay. Hence, () I (¢') and ¢t U ¢’ is defined as ¢ by (4.2).

60

e For the case when ¢t € Q and ¢ € 7(F U Q) \ Q, the claim can be proved

in a similar way.

o Assume that t = f(t1,...,tuy) and t' =]‘(t’l,...,t;uc). It follows from
Lemma 4.6(2) that (4.4) implies Ly (Ag-) N Ly (Ar-) £ 0 (1 <4 < a(f))-
By the inductive hypothesis, ¢; L ¢! is defined for 1 < i < a(f). Hence, t Lt
is defined by (4.2).

O
Although Lemma 4.10 and the following lemma have duality, we divide them

because of some technical reasons.

Lemma 4.11 For states (t1),...,(t,) in Qp, if t =t; U---Ut, is defined and
() € Qu, then Loy (Ar-) = Loy (Ar-) N - - N Lz (As-)-

Proof. Again, we prove the lemma only for n = 2 by the structural induction.

Assume t LI t' is defined. We perform case analysis according to (4.2).
o If t =t € Q, then clearly the lemma holds.

e IftcT(FUQ)\ Q,t € Q, then t Ut must be ¢t and ¢() 5 (¢'). For any
term u € Ly (Ap-) (Le. w5 (t)), u ;- t() F;- (t) by Corollary 4.9 and
thus « =;_ (') by the assumption. Hence, Ly (Ar-) C Liyy(Ar-) and the

lemma holds.
e The case whent € Q,t € T(FU Q) \ Q and () I (t) is similar.

o Assume t = f(t1,...,t,p) t = f(t’l,...,t;(f)) and t; U t; are defined for
1 <i < a(f). Then, t Ut = f(t1 Uty,... tas) Ut,;). By the inductive
hypothesis,

Loy (Ar-) = Ligy (Ar-) 0 Leary (Ai-).- (4.6)

61

for 1 <i < a(f). Thus,

Louey (Ae-)
E(f(tlut’l,...,ta(f)ut;(f)))(Ak—)
{f(ur, ..y uep)) | wi € Loy (A=)} (by Lemma 4.6(2))
= {Ff(us, s uap) |
i € Ligy (A=) 0 Ly (Ar-)} - (by (4.6))
= {f(w, - uap) [wi € Loy (Ar-)}
O{f (w1, Ua(p)) | % € Ligy(Ar-)}
= E(f(tlv"'vta(f)»(Ak_)
NL g t;(f)»(Akf) (by Lemma 4.6(2)).

13000y

4.3.1 Soundness

Lemma 4.12 For a term s € T(F) and states q,q0 € Qr, if s Fi— q Fr o where
the move g -y, qo is a rewriting move, then there is a term s' € T(F) such that

s —rr s and s' 5 qo.

Proof. Assume that the move g F; go is caused by the rewriting transition
rule ¢ — go of degree d (< k) and ¢ — ¢ is defined for a rewrite rule I — r
in Step 4 of Procedure 4.1. Therefore ¢ can be written as ¢ = (lp) € Q; where
p={z;—t;|1 <i<n}. Also assume that » has m variables z4,...,,, and the
variable 2; occurs at o;;in 7 (1 <i<m,1 < j<y)andato;inl (1 <i<n).
By applying Lemmas 4.5 and 4.8 to s F;_ (Ip), there is a substitution ¢ such that
s =lo and
zioF- (t) (1<i<n). (4.7)
By Step 4 of Procedure 4.1, there are states ¢;; € Q41 and g; € Q%na, such that
rloj; —qi; |1 <i<m,1 <5 <%l Fiy g, (4.8)

and t; = LUB({g;; | 0 < j < ~;}). By (4.7) and Lemmas 4.5, 4.11, the following

moves are possible:

z;0 7 (1<i<m,0<j <) (4.9)

(a-1) i

62

Since g; € Q%na, and also #;0 § gip by Lemma 4.5 and (4.9),

for 1 < i < n (For the case z; € Var(l) \ Var(r), (4.10) trivially holds since
(ti) € Qpna by the definition of p in Step 4 of Procedure 4.1). Let s' = 7o, then
s —rr s from (4.10) and Lemma 2.3. On the other hand, by (4.8), (4.9) and
Lemma 4.5, 7o F;_; go and the lemma holds. O

The next lemma shows the soundness of Procedure 4.1.

Lemma 4.13 For a term s and a state g € Qy, if s b, q, then there is a term s'

such that s -7 s’ and s'H}_q.

Proof. The proof is shown by induction on the highest degree d of rewriting
moves in s ; g. For the base case (d = 0, which means s F_ ¢), let s' = s
and the lemma holds. Assume the lemma holds for the highest degree less than
d and consider the case with d. The inductive part is shown by induction on
the number m (> 1) of rewriting moves of degree d. The sequence that has m

rewriting moves of degree d can be written as
st slo— ¢k slo— q] g (4.11)

where o € Pos(s), ¢',q € Qy and the move s[fo — ¢'| Fr s[o — qo] is the first
rewriting move of degree d in the sequence (that is, o is one of the innermost

position of the rewriting move of degree d). From the definition of TAs, we have
/ot d Fi g (4.12)

and by the inductive hypothesis for d, there is a term « such that

sfo =g u (4.13)
and
whi- ¢ (4.14)
From (4.12) and (4.14), we have
ubi- 4 Fr g (4.15)

63

Applying Lemma 4.12 to (4.15), we can see that there is a term v such that
U —RY (416)

and

v Q- (4.17)
From (4.11) and (4.17), we obtain s[o « v| F;_; s[o « qo] F; ¢ which have

only m — 1 rewriting moves of degree d. By the inductive hypothesis for m (if
m — 1 > 1) or by the inductive hypothesis for d (if m — 1 = 0), there is a term s’
such that

slo—v] =1 § (4.18)
and s' -} g. From (4.13),(4.16) and (4.18), we have s[o « s/0] = s =] s[o «

u] —yr 8[0 & v] =] s' and the lemma holds. O

4.3.2 Completeness

Lemma 4.14 For a rewrite rule | — r € R, a substitution 0 and a state q € Qy,

iflo =y ro and ro 5 q, then lo =}, q holds.

Proof. Assume [has variables zi,...,z, and each z; occurs at o;; in 7 for

1<i<mand1 <i< ;. From the assumption lo —; % 70,
;0 € NFr (1<i<n). (4.19)
The sequence ro g can be written as
ro i orloi =g |1 <i<m,1 <5<y
F. g (4.20)
From (4.20), we obtain
;0 }_Z qij- (421)

By applying Lemma 4.13 to (4.21), we can see that there are terms u;; with
1 <7 <mand1<j<~;such that u;; F;_ ¢;; and z;0 —>}"R u;;. Since z;0 is in

.- and hence

normal form, z;0 = u;;

;0 l_z_ qij- (422)

64

By (4.19), there are states gio € Q,,, such that
zo by g (1<i<n). (4.23)

By (4.22), (4.23) and Lemma 4.5, L, (Ar-) N+ N Ly, (Ar-) N Ly (Ar-) # 0
(1 <i < m)holds and hence t; = LUB({g;; | 0 < j < ;}) for some t; € T(FUQ)
by Lemma 4.10. Thus, in Step 4 in Procedure 4.1, substitution p is defined as
p={{z;i—t; |1 <i<m}U{z; —t; |z € Var(l) \ Var(r),(t;) € Q%na,}.
Moreover, in ADDTRANS new states and transition rules are defined so that

1P oy {10) Fien g (4.24)

where p' = {&; — (t;) | 1 <7 < n}. On the other hand, by Lemmas 4.5, 4.11 and
(4.22), we have

xr;o l_?k'i‘l)_ <t1> (425)
Summarizing (4.24) and (4.25), we obtain lo l_?k+1)‘ lp' Fii1 q and the lemma
holds. O

The next lemma shows the completeness of Procedure 4.1.

Lemma 4.15 For two terms s,s' € T(F) and a state ¢ € Qq, if s' Fj q and

s =7 g S, then there is an integer k such that s -3 q.

Proof. The proof is shown by induction on the number n of rewriting steps in
s —7r 8. For the base case (s = s'), let k = 0, then the lemma holds. Assume
the lemma holds for n—1 and consider the case with n(> 1). The rewrite sequence

of length n can be written as
slo —lo] = s —=1r slo—ro] =15 s (4.26)

where o € Pos(t), o is a substitution and I — r» € R. By the inductive hypothesis,
there is an integer k such that s[o < ro] I} ¢ and hence there is a state ¢’ such
that

ro b5 4 (4.27)

and
slo — q'| F; q. (4.28)

65

From (4.26) and Lemma 2.2, we have

lo -1 ro. (4.29)
By applying Lemma 4.14 to (4.27) and (4.29), it is possible that

lo Fiy d. (4.30)

Summarizing (4.28) and (4.30), we have s = sjo « lo] F}_; s[o — ¢'] I} ¢ and
the lemma holds. O
Summarizing the lemmas in Section 4.3.1 and 4.3.2, the following theorem

holds.

Theorem 4.16 For an AO-TRS R, if Procedure 4.1 halts with an output A,,
then L(A.) = («1=)(NFr). O

Example 4.2 Consider the FPO™!-TRS R, in Example 2.8 again. R, is an
AO-TRS as well. Since £L(A,) D L(A;) = 7(F) by Example 4.1, we know R; is
SN by Theorem 4.1, Fact 4.2 and Theorem 4.16. (]

4.4. Termination of the Construction

Procedure 4.1 and Procedure 4.1 are essentially the same where Procedure 4.1
adds new states and transition rules for only inner-most rewrite relation whereas
Procedure 4.1 does for any rewrte relation. Hence the following lemma can easily

be seen.

Lemma 4.17 For a right-linear TRS R, if Procedure 3.1 always halts for R,
then Procedure 4.1 always halts for R7L. (]

By Theorem 3.11 and Lemma 4.17 the following lemma holds.
Lemma 4.18 Procedure /.1 halts if the input is an AO-FPO™'-TRS. g

In general, the running time of Procedure 4.1 is exponential to both of the size

of the given TRS R and the size of the given TA A.

Lemma 4.19 For an AO-FPO '-TRS R, we can effectively construct a TA A,
such that L(A.) = (<1 x)(NFRr).

66

Proof. By Theorem 4.16 and Lemma 4.18. (|

By using this lemma, we can show the following main theorem of this chapter.
Theorem 4.20 For an AO-FPO '-TRS R the following problems are decidable:

1. IsR SN?

2. For aterm s, iss SN inR?

Proof. By Lemmas 4.3 and 4.19. (]

67

Chapter 5
Conclusions

Properties of finitely path overlapping TRSs (FPO-TRSs) are discussed in this
thesis.

In Chapter 2, FPO-TRS is defined (Definition 2.17) and the class of right-
linear FPO-TRS is shown to properly include the other known decidable classes
of TRSs which effectively preserve recognizability (Theorem 2.18). We also prove
some properties of TRSs which effectively preserve recognizability in Chapter 2
(Theorems 2.10 and 2.11).

In Chapter 3, it is shown that any right-linear FPO-TRS (RL-FPO-TRS) ef-
fectively preserves recognizability (Theorem 3.11). The result provides a positive
answer for an open problem proposed by Gyenizse and Vagvolgyi[21] which asks
to generalize the class of linear generalized semi-monadic TRSs so that a TRS in
the obtained class still effectively preserves recognizability. Also a new decidable
approximation is investigated in order to decide whether or not a given term has
needed redex (Definition 3.11 and Corollary 3.18).

In Chapter 4, a new subclass AO-FPO™!-TRS of TRSs is proposed and it is
shown that SN property of the class is decidable (Theorem 4.20). In the proof,
we adopted tree automata technique similar to the one in [28]. The class of
AO-FPO~'-TRSs properly includes AO-GR-TRSs(Theorem 2.18).

The followings are directions to which the study will be developed for the
future work.

The one is to restrict tree automata in the definition of recognizability preser-

vation to obtain a wider class of TRSs which still have some appropriate prop-

68

erties. As already mentioned in Chapter 2, Gyenizse and Vagvolgyi[21] intro-
duced the notion preserving F-recognizability and showed that there is a dif-
ference between the notions preserving JF-recognizability and preserving rec-
ognizability. If we consider the property of preserving F-recognizability, we
might obtain a wider class of TRSs. Réty[31] proposed a decidable subclass of
TRSs which effectively preserve recognizability for recognizable languages each of
which consists of ground instances of a linear term. For example, consider R =
[#(9(2)) — g(f(x))} and the tree automaton A = ({f, g,c}, {as,ar} {ar}, A)
where A = {¢ — q1,9(qf) — @1, f(q1) — gqz}. It is easy to see that (—%
JL(A)) N NFr = {g"(f*(c)) | » > 0}. Since R is left-linear, NF% is recog-
nizable by Lemma 2.8. This implies that (—%)(£(.A)) is not recognizable and
hence R is not in EPR-TRS. However Réty[31] showed that if a TA is restricted
to accept only instances of a linear term, then the TRS R effectively preserves
recognizability. Réty also showed that for a TRS in the class reachability problem
is decidable.

Another one is to use extensions of tree automata to obtain a wider class
of TRSs which still have some appropriate properties. Main properties of tree
automata which are used to show properties of EPR-TRS are that (1) the class of
recognizable languages is closed under intersection and (2) the emptiness problem
is decidable. Several extensions of tree automata which still have the properties
(1) and (2) above are proposed and some of those extensions can be found in
the survey of TAs[5]. For example, Bogaert and Tison[2]| introduced automata
with equality and disequality constraints (abbreviated to AWEDC), in which a
transition rule consists of a kind of conditional rewrite rules. The class AWEDC
can deal with some restricted class of tree languages of instances of non-linear
terms. By using AWEDC, we may define a subclass of right-non-linear TRSs
which have some useful properties.

Kaji et al.[25] presented a method to verify cryptographic protocols by com-
puting descendants by a TRS of some recognizable languages. On the other
hand, Genet and Klay[17] showed that for verifying the safety property of some
cryptographic protocols, sometimes it is enough to compute approximations of
descendants by a TRS and presented a procedure to compute approximations of

descendants for any left-linear TRSs. We may be able to extend Procedure 3.1

69

in this thesis to compute approximations for wider classes of TRSs.

70

References

1]

2]

3]

[4]

[5]

[6]

Thomas Arts and Jirgen Giesl: “Termination of term rewriting using de-
pendency pairs,” Theoretical Computer Science, volume 236, numbers 1-2,

pages 133-178, April 2000.

Bruno Bogaert and Sophie Tison: “Equality and disequality constraints on
direct subterms in tree automata,” Proceedings of the 9th Annual Symposion
on Theoretical Aspects of Computer Science, Cachan, France, Lecture Notes
in Computer Science, volume 577, pages 161-172, Springer-Verlag, February
1992.

Walter S. Brainerd: “Tree generating regular systems,” Information and
Control, volume 14, number 5, pages 217-231, Febuary 1969.

Hubert Comon: “Sequentiality, second order monadic logic and tree au-
tomata,” Proceedings of the 10th Annual IEEE Symposium on Logic in
Computer Science, San Diego, California, pages 508-517, IEEE Computer
Society Press, June 1995.

Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacque-
mard, Denis Lugiez, Sophie Tison and Marc Tommasi: Tree Au-
tomata Techniques and Applications, Draft, 1997. Available from
http://13ux02.univ-1ille3.fr/tata/

Jean-Luc Coquidé, Max Dauchet, Rémi Gilleron and Sandor Vagvolgyi:
“Bottom-up tree pushdown automata: classification and connection with
rewrite systems,” Theoretical Computer Science, volume 127, number 1,

pages 69-98, May 1994.

71

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

Jean-Luc Coquidé, Max Dauchet and Sophie Tison: “About connections
between syntactical and computational complexity,” Proceedings of the In-
ternational Conference on Fundamentals of Computation Theory, Lecture
Notes in Computer Science, volume 380, pages 105-115, Springer-Verlag,
August 1989.

Max Dauchet: “Simulation of a Turing machine by a left-linear rewrite rule,”
Proceedings of the 3rd International Conference on Rewriting Techniques
and Applications, Chapel Hill, North Carolina, Lecture Notes in Computer
Science, volume 355, pages 109-120, Springer-Verlag, April 1989.

Nachum Dershowitz and Zohar Manna: “Proving termination with multiset
orderings,” Communications of the ACM, volume 22, number 8, pages 465
476, August 1979.

Nachum Dershowitz: “Termination of linear rewriting systems (preliminary
version),” Proceedings of the 8th International Colloquium on Automata,
Languages and Programming, Acre (Akko), Israel, Lecture Notes in Com-

puter Science, volume 115, pages 448-458, Springer-Verlag, July 1981.

Nachum Dershowitz and Jean-Pierre Jouannaud: “Rewrite Systems,” Jan
van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B,
Formal Models and Semantics, chapter 6, pages 243-320, Elsevier Science
Publishers, North-Holland, 1990.

Roel C. de Vrijer: “Unique normal forms for combinatory logic with parallel
conditional, a case study in conditional rewriting,” Technical Report, Free
University, 1990.

Danny Dolev and Andrew C. Yao: “On the security of public key protocols,”
IEEE Transactions on Information Theory, volume IT-29, number 2, pages

198-208, March 1983.

Iréne Durand and Aart Middeldorp: “Decidable call by need computations
in term rewriting (extended abstract),” Proceedings of the 14th International

Conference on Automated Deduction, North Queensland, Australia, Lecture

72

[15]

[16]

[17]

18]

[19]

20]

[21]

22]

23]

Notes in Artificial Intelligence, volume 1249, pages 4-18, Springer-Verlag,
July 1997.

Jean H. Gallier and Ronald V. Book: “Reductions in tree replacement sys-

tems,” Theoretical Computer Science, volume 37, number 2, pages 123-150,

November 1985.

Ferenc Gécseq and Magnus Steinby: Tree Automata, Académiai Kiado, Bu-
dapest, 1984.

Thomas Genet and Francis Klay: “Rewriting for cryptographic protocol ver-
ification,” Proceedings of the 17th International Conference on Automated
Deduction, Pittsburgh, Pennsylvania, Lecture Notes in Artificial Intelligence,

volume 1831, Springer-Verlag, June 2000.

Rémi Gilleron: “Decision problems for term rewriting systems and recogniz-
able tree languages,” Proceedings of the 8th Annual Symposium on Theo-
retical Aspects of Computer Science, Hamburg, Germany, Lecture Notes in
Computer Science, volume 480, pages 148-159, Springer-Verlag, February
1991.

Rémi Gilleron and Sophie Tison: “Regular tree languages and rewrite sys-

tems,” Fundamenta Informaticae, volume 24, pages 157-175, 1995.

Bernhard Gramlich: “Abstract relations between restricted termination and

confluence properties of rewrite system,” Fundamenta Informaticae, volume
24, pages 2-23, 1995.

Pal Gyenizse and Sandor Vagvolgyi: “Linear generalized semi-monadic
rewrite systems effectively preserve recognizability,” Theoretical Computer
Science, volume 194, numbers 1-2, pages 87-122, March 1998.

Gérard Huet and Dalllas S. Lankford: “On the uniform halting problem for
term rewriting systems,” INRIA Technical Report 283, 1978.

Gérard Huet and Jean-Jacques Lévy: “Computations in orthogonal rewriting

systems, I and II,” Jean-Loius Lassez and Gordon Plotkin, editors, Computa-

73

[24]

[25]

[26]

[27]

28]

[29]

[30]

tional Logic: Essays in Honor of Alan Robinson, pages 396-443, MIT Press,
1991.

Florent Jacquemard: “Decidable approximations of term rewriting systems,”
Proceedings of the 7th International Conference on Rewriting Techniques
and Applications, New Brunswick, New Jersey, Lecture Notes in Computer

Science, volume 1103, pages 362—-376, Springer-Verlag, July 1996.

Yuichi Kaji, Toru Fujiwara and Tadao Kasami: “Solving a unification prob-
lem under constrained substitutions using tree automata,” Journal of Sym-

bolic Computation, volume 23, number 1, pages 79-117, 1997.

Jan Willem Klop and Roel C. de Vrijer: “Unique normal forms for lambda
calculus with surjective pairing,” Information and Computation, volume 80,
number 2, pages 97-113, February 1989.

Aart Middeldorp, Hitoshi Ohsaki and Hans Zantema: “Transforming ter-
mination by self-labelling”, Proceedings of the 13th International Confer-
ence on Automated Deduction, New Brunwick, New Jersey, Lecture Notes
in Artificial Intelligence, volume 1104, pages 373-387, Springer-Verlag, July
30-August 3 1996.

Takashi Nagaya and Yoshihito Toyama: “Decidability for left-linear growing
term rewriting systems,” Proccedings of the 10th International Conference
on Rewriting Techniques and Applications, Trento, Italy, Lecture Notes in

Computer Science, volume 1631, pages 256270, Springer-Verlag, July 1999.

Kai Salomaa: “Deterministic tree pushdown automata and monadic tree

rewriting systems,” Journal of Computer System Science, volume 37, pages

367-394, December 1988.

Kai Salomaa: “Decidability of confluence and termination of monadic term
rewriting systems,” Proceedings of the 4th International Conference on
Rewriting Techniques and Applications, Como, Italy, Lecture Notes in Com-
puter Science, volume 488, pages 275286, Springer-Verlag, April 1991.

74

[31]

[32]

33]

[34]

[35]

[36]

Pierre Réty: “Regular sets of descendants for constructor-based rewrite sys-
tems,” Proceedings of the 6th International Conference on Logic for Pro-
gramming and Automated Reasoning, Lecture Notes in Artificial Intelli-

gence, volume 1705, pages 148-160, Springer-Verlag, September 1999.

Toshinori Takai, Yuichi Kaji, Takehiko Tanaka and Hiroyuki Seki: “A pro-
cedure for solving an order-sorted unification problem — extension for left-
nonlinear system,” Technical Report of NAIST, NAIST-IS-TR98011, 1998.
Available from http://www.aist-nara.ac.jp/

Toshinori Takai, Yuichi Kaji and Hiroyuki Seki: “A sufficient condition for
the termination of the procedure for solving an order-sorted unification prob-

lem,” Technical Report of NAIST, NAIST-IS-TR99010, 1999. Available from
http://www.aist-nara.ac.jp/

Toshinori Takai, Yuichi Kaji and Hiroyuki Seki: “Right-linear finite-path
overlapping term rewriting systems effectively preserve recognizability,”
Proceedings of the 11th International Conference on Rewriting Techniques

and Applications, Norwich, U.K., Lecture Notes in Computer Science, vol-
ume 1833, pages 246-260, Springer-Verlag, July 2000.

Yoshihito Toyama and Michio Oyamaguchi: “Church-Rosser property and
unique normal form property of non-duplicating term rewriting systems,”
Proccedings of the 4th International Workshop on Conditional Term Rewrit-
ing Systems, Jerusalem, Israel, Lecture Notes in Computer Science, volume
968, pages 316-331, Springer-Verlag, July 1994.

Hans Zantema: “Termination of term rewriting by semantic labelling,” Fun-

damenta Informaticae, volume 24, numbers 1-2, pages 89-105, 1995.

75

