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Abstract

This thesis deals with the recognition of distant-talking speech, and partic-

ularly with the simultaneous recognition of multiple talkers. The recognition of

distant-talking speech plays an important role in any practical speech recogni-

tion system. Factors that should be considered include noisy and reverberant

environments, the presence of multiple talkers, moving talkers, etc. Most of

the hands-free speech recognition systems are microphone array-based, since the

microphone can take advantage of the spatial and acoustical information of a

sound source. More speci�cally, a microphone array can form multiple beams

and therefore can be electronically steered simultaneously to multiple directions

at the same time. In contrast, the use of a single microphone provides limited

directional sensitivity and cannot be applied for the localization of multiple sound

sources without physical steering. A serious problem that must me solved in the

recognition of distant-talking speech is the talker localization. Some approaches

localize the talker using the power information. However, in highly reverberant

environments and under low SNR conditions, the talker localization appears to be

diÆcult. The 3-D Viterbi search method integrates talker localization and speech

�Doctor Thesis, Department of Information Processing, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DT9861029, February 5, 2002.
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recognition. Although this method performs eÆciently even in the case of a mov-

ing talker, its applications are restricted to the presence of one talker. In order to

deal with multiple sound sources we are proposing the 3-D N-best search method

able to recognize simultaneously multiple sound sources. Our proposed method

is one-pass search algorithm, which performs search in all directions and keeps

N-best hypotheses for each word and direction hypothesis. Although our method

integrates two existing technologies - 3-D Viterbi search and N-best search - into

one complete system, the results obtained in the �rst evaluation were very poor.

Implementing two additional techniques - a clustering and a likelihood normaliza-

tion technique - into the baseline system drastically increased the performance of

our system. The performance of our system was evaluated through experiments

for the recognition of the distant-talking speech of two talkers and using several

microphone array geometries. The obtained results are very promising, and es-

pecially in the case of 32-channels microphone array the achieved Simultaneous

Word Accuracy in Top 1 hypothesis was 72:49 % and in Top 3 hypothesis was

86:25 %.

Keywords:

Speech recognition, distant-talking speech, microphone arrays, multiple sound

sources, real environments
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Chapter 1

Introduction

1.1 Preface

Speech is the most friendly to human beings communication tool. By using

speech we can easily communicate with each other and we can express our think-

ing and feelings in a compact and precise way. People realized the importance

of the speech in very early times. The "civilized" human being tried to study

and understand the process of the speech production and analyze the factors re-

lated to that from the beginning of his existence. As it was expected, the speech

process stimulated the curiosity of the ancient Greek scientists, and �rst of all

tried to analyze and understand the several voices. Moreover, very interesting

and useful works related to speech and language were done. Romans followed the

Greek scientists and o�ered us, also, very interesting studies.

At the end of the 18th century a great number of studies about speech were

done. In the 1789 in the Academy of Science of St. Petersburg in Russia was a

work whose objective was the recognition of �ve vowels, and in the 18th century

the Hungarian scientist Kempelen Farkas built the �rst 'Talking Machine".

The number of the speech related studies was dramatically increased since it

1



had been realized the importance of the speech in the human-machine commu-

nication, too. In this kind of communication the speech o�ers a exible solution

and can replace in a very easy way other communication tools, such as the hands.

The rapidly increased information about speech and the increased expecta-

tions from that made the splitting of its studies into several �elds necessary.

Among others, speech coding, speech recognition, speech synthesis, speech trans-

lation and speech understanding are some of the �elds, which a great number of

researchers work on. In our days a main research topic is the speech recognition,

which is a basic tool in the e�ective and reliable human-machine communication.

1.2 Distant-talking Speech Recognition Problem

The automatic speech recognition plays an important role in the human-machine

communication, and a lot of applications, which can make our life easier and

more comfortable, can be developed based on a speech recognizer. Among other

uses, people with physical problems (blind people, handicapped, etc.) can easily

communicate with a computer, a Automatic Cash Machine or other devices just

by using speech. Moreover, a speech recognition based system can replace a

secretary or an operator and can provide information automatically.

The �rst built speech recognition system recognized speech received by a close-

talking microphone, and in relatively clean environments. However, for practical

use the hands-free speech recognition should be also considered. A hands-free

speech recognition system is not only user-friendly, but avoids also limitations

that are required in a "close and manually" operated system. Most of the hands-

free speech recognition systems are microphone array based. Figure 1.1 shows a

microphone array based hands-free speech recognizer.

Considering a speech recognition system in the real world, the number of the

2
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Figure 1.1. Microphone array-based hands-free speech recognition system

problems that must be solved is signi�cant. The additional factors that should be

considered include talker localization, noise, reverberation, echo, multiple moving

talkers etc. In this thesis we deal with the simultaneous recognition of multiple

sound sources in real environments. Our idea can be implemented in telecon-

ferences with multiple and moving talkers, in Parliament's situation where the

simultaneous talking and interruption is also allowed, in lectures, etc. Moreover,

a system based on our idea can be integrated into a complete speech translation

system able to recognize and translate simultaneously multiple talkers.

1.3 Current Status of Research Field

Although the investigation of distant-talking speech recognition is still at the

beginning, very interesting works have been already reported [17, 18, 19, 20,

44, 21, 22, 16] and a great number of researchers are investigating the distant-

talking speech recognition related �elds. A critical issue in the distant-talking

speech recognition is the choice of the device used for receiving the speech signals.
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Although the use of a single channel was investigated, the microphone arrays

[1, 4, 2] appear to have a signi�cant role in this �eld and be an eÆcient tool in

the distant-talking speech recognition [15, 6, 14, 32]. Several microphone array

geometries exist, such as the linear uniform array, the planar array, etc. The

number of the used channels is also critical issue. By increasing the number

of microphones the performance of the speech recognizer is also increased [5].

However, a trade-o� between the system complexity or cost and the performance

is necessary. In most of the cases 16 to 32 channels are used.

The advantage, which makes the microphone array popular, is the directional

sensitivity. More speci�cally, a microphone array can form a directive pattern

and can acquire signals from the desired direction with high quality. Several

beamforming techniques are used in hands-free speech recognition. The oldest

and simplest one is the delay-and-sum beamforming [7]. The main disadvantage

of the delay-and-sum beamforming is the limited speech enhancement. Therefore,

more eÆcient beamforming techniques are used in some approaches [8], such as

the adaptive beamforming [9, 10, 11].

The speech corpus collection is also important issue in the hands-free speech

recognition. In some works data was collected in real environments, and in other

cases the real data was simulated. However, instead of collecting real data, an

e�ective and simple method is to collect impulse responses in the real environ-

ments using a microphone array [12, 13]. The real data are then obtained by the

convolution of the speech data and the impulse responses.

1.4 Idea and Proposed Method

In the hands-free speech recognition an important factor is the talker localization.

Most of the hands-free speech recognition systems are microphone array based,

4



since the microphone can take advantage of the spatial and temporal acoustic

information. The conventional speech recognizers operate in two stages. First the

talker is localized by using a localization method and then, speech information is

extracted from the hypothesized direction. The extracted speech in parameterized

format is the input to the speech recognizer.

This thesis introduces a new method for recognizing simultaneously speech of

multiple talkers. The main idea of our proposed method is to integrate speech

recognition and talker localization. Our method is based on the 3-D Viterbi

search, extended to the 3-D N-best search. Our method is also microphone array-

based, but for talker localization we use a probabilistic approach based on the

acoustic information. The beauty of our approach is that avoids the problematic

use of the power for the talker localization, and that operates without any a-priori

knowledge of the sound direction. Moreover, our approach can be used for the

recognition of the speech of multiple moving talkers, too. The proposed method

will be described in details in later chapters.

1.5 Thesis Overview

This thesis focuses on the simultaneous distant-talking speech recognition of mul-

tiple talkers in real environments using microphone arrays. Our approach uses

microphone array and it is based on the 3-D N-best search algorithm.

Chapter 2 covers the problem of the hands-free speech recognition of multiple

sound sources and contains an overview of the existing approaches.

In Chapter 3 we address the speech recognition issues and we describe the

several components of a complete speech recognition system.

Chapter 4 discusses the microphone arrays, the beamforming algorithms, and

the sound source localization problem. Some beamforming and sound source

5



localization techniques are described in this chapter.

Chapter 5 contains an overview of the 3-D Viterbi search algorithm, which is

the background of our research. The basic idea, the formulation, its advantages

and disadvantages, and some results obtained in previous works are introduced

in this chapter.

In Chapter 6 we introduce our proposed 3-D N-best Search method able to

recognize speech of multiple talkers. Additional implemented techniques, such

as a clustering technique and a likelihood normalization technique are also intro-

duced.

The evaluation of the 3-D N-best search method based speech recognition

system is covered in the Chapter 7. Experiments on simulated clean data were

carried out for the speech recognition of two talkers located both at �xed position,

and with one �xed and one moving talker. Experiments using simulated clean

data were also carried out for the recognition of three talkers located at �xed

positions. This chapter also describes the evaluation of the proposed 3-D N-

best search based speech recognition system using reverberant data. The image

method was used to simulate the reverberant environment. The real performance

of our system was evaluated through experiments using data recorded in a noisy

and reverberant environment.

Finally, Chapter 8 summarizes our work and discusses the remained problems

and future work.

6



Chapter 2

Speech Recognition of Multiple

Sound Sources

In this chapter, we discuss the speech recognition problem of multiple sound

sources, and particularly the distant-talking speech recognition. First, we describe

the problems that this task faces, and in the following based on the available

literature, we will introduce recent approaches.

2.1 Problems

The recognition of distant-talking speech uttered by multiple talkers is a very

diÆcult task and requires solution to a great number of problems. They should be

considered and solved not only problems related to hands-free speech recognition,

but also additional problems originated from the presence of the multiple talkers

or multiple sound sources. Figure 2.1 illustrates the problem described above.

7
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Figure 2.1. Distant-talking speech recognition problem

� Sound source localization

The accurate hands-free speech recognition requires accurate sound source

localization. The localization errors signi�cantly degrade the speech recog-

nition system performance and therefore, an important requirement in hands-

free speech recognition is a robust sound source localization strategy [23,

24, 25, 26]. Although, eÆcient methods exist for the localization of sound

source located at �xed position, the case of a moving talker's localization

faces serious diÆculties. Most of the sound source localization methods use

short- or long-term power. However, in noisy and reverberant environments

the sound source localization appears to be diÆcult.

8



� Reverberation and Echo

The signal received by the hands-free speech recognizer is distorted by

the echo and by the reverberant environmental conditions. Therefore, ef-

�cient de-reverberation techniques are necessary. Methods, such as de-

reverberation by inverse processing or de-reverberation by composite inver-

sion, provide eÆcient solution to the reverberation problem [27].

� Additive Noise

The high quality input speech to a recognizer is a basic requirement for the

high performance. However, in practice the input distant-talking speech

is a�ected by noise components. A practical hands-free speech recognition

system should consider the presence of several kinds of noise, too. The

e�ect of the noise seriously degrades the performance of the system. A

great number of works deals with the noise reduction problem and speech

enhancement [28, 29, 30, 31, 33].

� Mismatch between training and testing conditions

Most of the speech recognizers are based on acoustic models trained by clean

speech received by a close-talking microphone. However, in the recognition

stage the environmental conditions include reverberation and background

noise. Since it is very diÆcult to collect training data that cover all possible

environmental conditions, most of the hands-free speech recognizers try

to solve this problem by adapting the clean models to the environmental

conditions using an eÆcient adaptation technique.

� Signals Estimation

In the recognition of the speech of multiple talkers the estimation of the

signals from the input mixed signal is required. A problem that those

9



systems face is the correlation between the several talkers. More speci�cally,

between closely located or crossing each other talkers, the correlation is very

high and the signals separation is diÆcult. An e�ective tool to separate the

speech signals originated from multiple talkers is the use of a microphone

array. The microphone array forms the so-called directive pattern or beam,

and can be steered to a speci�c direction. Therefore, a microphone can

acquire signals from a desired direction with high quality and suppress

the noise or other components arriving from other directions. In some

approaches, a microphone array is used to extract speech signal with high

quality by forming a beam to the hypothesized direction. The direction

is estimated by a conventional localization method. In our approach, the

microphone array is steered to all directions simultaneously without any a-

priori information about the signal's direction, and the speech recognition is

based on the signal's acoustic information. Finally, other approaches -such

as the Blind Source Separation approaches- are signal processing oriented

and can be integrated into a recognizer for multiple sound sources speech.

� Voice activity detection

The voice activity detection is critical in the hands-free speech communi-

cation. In contrast with the earliest "push-to-talk" systems, new methods

are reported to solve this problem [34, 35, 36].

2.2 Approaches

Although in the literature few works can be found which speci�cally deal with the

simultaneous recognition of the speech of multiple sound sources, in this section

we try to describe the possible solutions to this task and discuss the problems

10
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Figure 2.2. Conventional talker localization and speech recognition

that each of those approach faces.

� Conventional microphone array-based methods

The conventional microphone array-based systems for hands-free speech

recognition [37, 24, 38, 39, 40, 41, 42] operate in multiple stages. In the

�rst stage, a source localization method - will be described in details in

the next chapters - is used to determine the DOA (Direction Of Arrival)

of the signals. Although most of those methods are applied for one sound

source, we assume that can be also applied for the estimation of the DOA

of multiple propagating signals. In the following, the microphone array is

steered to the hypothesized directions by forming beams, and the signals

from these directions are extracted with higher quality comparing to the

11



signals arriving from the undesired directions. The beamformed signals are

the input to speech recognizer.

The majority of these methods are based on the use of short- or long-

term power. Thus, a main disadvantage of these methods leads on this

fact. However, in highly reverberant or under low SNR (signal-to-noise

ratio) conditions the use of the power cannot be reliable. Moreover, in

the case of a moving talker, his localization using power appears to be

very diÆcult. A serious additional disadvantage of these methods is their

dependency of the accurate talker localization. In such recognition systems,

the talker localization is deterministic and the localization errors seriously

decreases the performance. Figure 2.2 illustrates the operating stages of

these methods.

� Blind source separation-based methods

Blind Source Separation (BSS) methods [60] attempt to estimate the signals

contained in the mixed signal and received by the array sensors without us-

ing any a-priori information about those signals. Independent Component

Analysis (ICA) [60] is a set of techniques developed in the last few years to

solve the BSS problem. The ICA techniques estimate a set of linear �lters

to separate the mixed signals under the assumption that the sources are sta-

tistically independent. Several ICA techniques exist, such as Instantaneous

Mixing ICA, Convolutional Mixing ICA, etc.

Assuming that M microphone signals ym[n]; Y[n] = (y1[n]; y2[n]; :::yM [n])

are obtained by a linear combination of the M unobserved source signals

xm[n], denoted by X[n] = (x1[n]; x2[n]; :::; xM [n]):

Y[n] = VX[n] (2.1)

12
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Figure 2.3. A BSS-based scenario for recognition of multiple sound sources

In the Eq. 2.1 V is the M�M mixing matrix. The blind source separation

problem consists of estimating a separating matrix W = V�1 from the ob-

served signals. The source signals can then be recovered by:

X[n] =WY[n] (2.2)

A BSS method can be a component of an integrated recognizer for the si-

multaneous recognition of multiple sound sources, providing the separated

signals as the input to conventional recognizers operating in parallel. How-

ever, the BSS methods face a seriously problem. Namely, those methods are

highly signal processing oriented and require signi�cant amount of compu-

tation. Moreover, the knowledge in advance of the number of propagating

sources is also a requirement. Figure 2.3 describes the scenario of the

speech recognition of multiple sound sources based on BSS techniques.
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� Integration of talker localization and speech recognition

An additional approach for hands-free simultaneous recognition of the speech

of multiple sound sources uses microphone array and it is based on the in-

tegration of the talker localization and speech recognition. This idea is

originally implemented in the work done by Yamada et al. [43, 44, 8]

for the recognition of one sound source. The authors proposed the 3-D

Viterbi search algorithm, which performs simultaneous talker localization

and speech recognition. In the evaluation system, a microphone is steered to

every direction each time and speech is extracted. The speech extraction is

followed by the matching between the input frames and the trained models.

The advantage of this approach is that does not use any power information,

it uses the speech information, and avoids the deterministic talker local-
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ization. Moreover, it can be applied for the case of a moving talker. Our

proposed algorithm evaluates also this idea, extended to deal with multi-

ple sound sources. Figure 2.4 illustrates the idea of the integrated speech

recognition and talker localization. By steering a beamformer to each direc-

tion, extracting the speech, and performing matching between the extracted

speech and acoustics models, the most likely paths can be obtain. A path

contains information about the uttered speech and the talker localization.

2.3 Summary

This chapter addresses the problems the recognition of distant-talking speech of

multiple sources faces, and briey describes several solutions. Factors that should

be considered include the accurate sound source localization, the reverberation

and the echo, the additive noise, the mismatch between training and target con-

ditions, the signal estimation, and the voice activity detection.

Section 2.2 deals with the existing approaches for the recognition of distant

talking speech of multiple sound sources. The conventional microphone array

based- and the blind source separation-based methods are described. In this

section is also described the integration of the talker localization and speech

recognition which is evaluated in our proposed algorithm, too.
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Chapter 3

Speech Recognition Issues

3.1 The Speech Recognition Task

The speech recognition is a very complex task and requires knowledge of dif-

ferent sciences. Signal processing, statistical analysis, information science and

linguistics are some of the areas that are necessary for the investigation of speech

recognition. The great number of problems that must be solved made the study

of speech recognition more and more specialized and, therefore speech recogni-

tion can be classi�ed into di�erent branches, such as acoustic modeling, language

modeling and decoding. However, the close cooperation of the three components

is necessary in the building of a complete and eÆcient speech recognition system.

The speech recognition process can be separated into two main stages. Namely,

it consists of the training and the decoding stage.

� Training

In the training stage, statistical approaches are used and the parameters of

speci�c models are estimated using the data chosen for the training purpose.

More speci�cally, recent speech recognition systems are based on the Hidden

16



Markov Models (HMM)[45, 46, 47, 48, 49, 50] or on the Neural-networks

[51, 52]. Usually, the training is based on the Maximum Likelihood Esti-

mation (MLE) [53, 54] or on the Maximum Mutual Information Estimation

(MMIE) [55, 56]. In the training stage, the choice of the unit model is

critical. Most of the HMM-based speech recognizers use sub-words as unit

models. Earlier speech recognizers used context-independent monophone

models. Recent speech recognizers consider also the context-dependency

of each phoneme (biphones, triphones). However, the use of the context-

dependent models faces with a serious problem. Namely, due to the large

number of variations, it may happen that some context-dependent models

do not appear in the training data. In order to solve this problem, eÆ-

cient clustering algorithms had been reported [57] with the Decision Tree

Clustering [58] to be an eÆcient solution to this problem. In some other

approaches, parameters are tied for the more robust training.

The accurate estimation of the model parameters requires a large amount

of training data. Moreover, the training should consider a large number of

varieties, such as speakers, gender, etc. Since it is very diÆcult to collect

data, which cover all the possible conditions, standard models are usually

trained using suÆcient amount of data and then the obtained models are

adapted to speci�c conditions.

� Decoding

In the decoding stage, a search strategy is applied which performs the

matching between the trained models and the input unknown speech [59].

The search strategy incorporates acoustic and language knowledge in order

to �nd to most likely word sequence. The search strategy can be Time

Synchronous, or Time Asynchronous. The Viterbi search is a widely used

17



search algorithm.

In a speech recognition system for real use, the decoding speed is an impor-

tant issue. The decoder has to deal with a huge number of candidates in

order to �nd to most likely word sequence. In the literature, the considered

candidates are known as search space. Although the more powerful and

faster computers decrease signi�cantly the time required for the decoding,

most of the developers try to speed-up the speech recognizers by imple-

menting eÆcient algorithms for fast decoding. A widely used approach is

the multi-pass decoding [61, 62]. More speci�cally, in these cases the rec-

ognizer operates in multiple stages. In a �rst stage the so-called fast-match

is performed [63], and resources that not require large amount of computa-

tion are used (monophone acoustic models, bigram language model). The

fast-match eliminates the candidates to a small number, and those are in

the following re-scored by using computationally more expensive resources

(for example triphones, trigram language model).

In both training and decoding stage the speech is represented by speci�c

parameters, with the Mel Frequency Cepstral CoeÆcients (MFCC) param-

eters to be the most popular.

A serious problem that usually the speech recognizers face is the mismatch

between training and decoding conditions. More speci�cally, in most of

the cases the statistical models are trained using clean speech of particular

speakers. However, the input unknown speech that must be recognized is

usually distorted due to the noise or reverberation. An e�ective method that

used in order to solve this problem is the adaptation of the clean models to

the environmental and speaker variations. E�ective adaptation techniques,

such as Maximum Likelihood Linear Regression (MLLR), or Maximum A

18



Posteriori (MAP) [64] were introduced.

Given an input acoustic observation sequence O = o1; o2; :::; on, the mathe-

matical formulation of the speech recognition problem can be given by the

following equation:

Ŵ = argmax

W

Pr(WjO) (3.1)

Thus, the speech recognizer attempts to �nd thatW = w1; w2; :::; wm word

sequence, which maximizes the probability. By using the Bayes' formula

Eq. (3.1) can be written as follows:

Pr(WjO) =
P (OjW)P (W)

P (O)
(3.2)

The acoustic models give the P (OjW) probability and the language model

gives the P (W) . The task of the search strategy is to �nd that word

sequence which maximizes the P (OjW)P (W) . Figure 3.1 shows the

block diagram of a complete speech recognition system.

3.2 Hidden Markov Models(HMM)

A main problem in the speech recognition is that there are many uncertainties.

Stochastic modeling is a exible method for modeling such problems. Hidden

Markov modeling is such a stochastic technique, which permits modeling with

many of the classical probability distributions and is well suited to the incorpo-

ration of temporal information. The Hidden Markov model is a statistical model

that uses a number of states and the associated state transitions to jointly model

the temporal and spectral variations of speech. Since the HMM can character-

ize both the temporal and spectral varying nature of the speech, it has been

used to model fundamental speech units. More speci�cally, in speech recognition
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the HMM model is a �nite automata that changes state once every time frame,

and each time t that a j state entered, a xt speech vector is generated from the

bj(xt) probability density. The transition from the state i to the state j is also

probabilistic and it is given by the transition probability.

Recent HMM-based recognizers use many variants for the sub-word modeling.

However, the most commonly used is a left-to-right without skip HMM. Figure

3.2 shows a HMM model with 3 emitting states. In this model only self and

forward transitions are allowed.

In practice the state sequence is hidden and only the observation sequence X

is known. The required likelihood is computed over all possible state sequences
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S = s(1); s(2); :::; s(T ) according to the following equation:

P (XjM) =
X
s

�s(0)s(1)

TY
t=1

bs(t)(xt)�s(t)s(t+1) (3.3)

where s(0) is the model entry state and s(T + 1) the model exit state. The fol-

lowing equation gives an approximated way to the computation of the likelihood,

when only the most likely state sequence is considered.

P̂ (XjM) = max

S

f�s(0)s(1)

TY
t=1

bs(t)(xt)�s(t)s(t+1)g (3.4)

3.3 The Viterbi Algorithm

The Viterbi algorithm is used for the decoding and it is based on the maxi-

mum likelihood. Namely, the Viterbi search attempts to �nd the most likely

state sequence by searching a trellis space composed of states and input frames.

Figure 3.3 describes the Viterbi algorithm.
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The maximum likelihood can be given by the following recursive equation:

�j(t) = max

i
f�i(t� 1)aijbj(xt)g (3.5)

In the equation (3.5) �j(t) is the maximum likelihood of observing speech vectors

x1 to xt and being in state j at time t.

Considering log likelihoods the Eq.(3.5) can be written as

�j(t) = max

i
f�i(t� 1) + logaijg+ logbj(xt) (3.6)

Equation (3.6) is the so-called Viterbi formula and a modi�ed version will be used

in this thesis.

3.4 Summary

In this section the speech recognition issues are addressed. The speech recognition

task can be classi�ed into the training and the decoding stage. In the training
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stage, a method is chosen for estimating the parameters of statistical models.

Most of the speech recognizers are HMM- or Neural Network-based. The second

stage of the recognition process is the decoding, where matching is performed

between the input unknown speech and the trained acoustic models. Since our

proposed system is HMM-based, in section 3.2 we describe the Hidden Markov

Models and in section 3.3 we describe the Viterbi algorithm.
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Chapter 4

Microphone Arrays

4.1 Beamforming

Sources, which produce propagating signals, can be expressed by the informa-

tion contained in those signals. The signal waveform expresses the source nature

and by using its temporal and spatial characteristics the source location can be

determined. In the real world we should consider not only the one of interest

source, but the presence of several sources, too. Therefore, the signal processing

methods must focuses on selected signals, and moreover signals must be separated

according to their directions and their frequency content, by applying spatiotem-

poral �ltering. A exible approach is the use of array, which acts as spatial �lter

attenuating all signals and saving those, propagated from a certain direction.

Our method is based on this approach and uses microphone array for sepa-

rating the signals of the di�erent speakers. A microphone array is composed of

several microphones located linearly or non-linearly. A signal from a desired di-

rection can be acquired by forming a directive pattern sensitive to the direction.

The directive pattern can be steered electronically to a particular direction and

the microphone array can suppress signals from the other directions saving those
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Figure 4.1. Delay-and-sum beamformer

ones of the interest.

Beamforming is the name given to array signal processing algorithms, which

focuses the array-capture abilities in a particular direction. The oldest and sim-

plest array processing algorithm is called Delay-and-Sum beamforming and still

remains a powerful and widely used method. Figure 4.1 explains the idea the

delay-and-sum beamforming is based on. The output signal of the beamformer is

the summation of the outputs of each microphone after a delay has been applied

to each one.

Let's assume a source that is located in the far-�eld and which is propagating a

plane wave. The propagated signal is received by a microphone array, composed

of M microphones, linearly located in d distance from each other. The signal
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received by the i-th microphone is:

xi(t) = x1(t� (i� 1)�) (4.1)

where � = dcos�=c, � is the direction of the arrival of the speech signal, and c is

the sound propagation speed. The output y(t) signal of the beamforming is given

by the equation:

y(t) =
M�1X
i=0

xi(t + (i� 1)�) (4.2)

By adjusting the � , the array can be steered to a desired direction. In the fre-

quency domain the Eq. (4.2) can be written as follows:

xi(f) = x1(f)e
j2�f(i�1)dcos�=c (4.3)

The spectrum of the signal received by the i-th microphone is represented by the

Eq. (4.3). The spectrum of the output beamformed signal is given by the Eq.

(4.4).

Y (f) =
M�1X
i=1

xm(f)e
j2�f(i�1)dcos�=c (4.4)

Considering a signal propagated from direction �, Eq. (4.5) represents the array

gain in � direction .

H(�; f) =
jsin(M�fd(cos�� cos�)=c)j

jsin(�fd(cos�� cos�)=c)j
(4.5)

The main disadvantage of the delay-and-sum beamformer is the limited enhance-

ment ability. However, a sharp beam requires a great number of microphones

that increases the system complexity. In some other approaches an adaptive

beamformer is used.

Several microphone array geometries are used. In the literature we can meet

with Uniform Linear Arrays (ULA), Linear Random Arrays, Planar Arrays, etc.

[3]. In this thesis, two uniform linear arrays composed of 16 and 32 microphones

are used.
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Figure 4.2. Talker localization using spatiotemporal analysis

4.2 Sound Source Localization

In this section, we briey discuss two conventional localization methods based

on the microphone array. Perhaps, the easiest method is the spatiotemporal

analysis. In this method, the microphone array is steered to each direction and

a spatial power spectrum is calculated. The DOA is found by searching for the
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peaks in the power spectrum. Figure 4.2 shows an example of a spatial power

spectrum. In this experiments two signals are propagating from 10 and 170

degrees directions. In the �gure, the two peaks at the two directions can be seen.

The main disadvantage of this method is the diÆculty to localize moving talker.

Moreover, under low SNR conditions the use of power appears to be problematic.

The second method that we are addressing in this section, is the Cross-power

Spectrum Phase Analysis (CSP) [23]. In this method, the direction of arrival of

the speech signal is obtained by estimating the time delay. Formula 4.6 shows the

so-called CSP function. The maximum of the CSP function gives the estimation

of the DOA.

CSP (k) = DFT�1

"
DFT [x1(n)] DFT [x2(n)]

�

jDFT [x1(n)]j jDFT [x2(n)]j

#
; (4.6)

28



In the CSP function the signals received by two channels are used (x1(n) and x2(n)).

In the Formula 4.6, k and n is time index, DFT[.] is the Discrete Fourier Trans-

form, and � is the complex conjugate. Figure 4.3 shows the CSP function in the

case of two sources located at 30 and 150 degrees, respectively. In this experiment

a linear microphone array composed of 16 channels was used.

Although the CSP is an eÆcient localization method for �xed sound sources,

it faces serious diÆculties in localizing moving talkers. In this thesis, we carried

out experiments to compare the CSP method with our proposed method. The

results show higher performance obtained by our method.

4.3 Summary

The microphone array has an important role in the recognition of distant-talking

speech. The microphone array can form a directive pattern sensitive to the di-

rection, and a signal from a desired direction can be acquired with high qual-

ity. Moreover, the microphone array can be steered electronically to a particular

direction. The simplest and oldest array processing algorithm is the delay-and-

sum beamforming. In this chapter, we also describe two sound source localiza-

tion methods, namely the spatiotemporal analysis and the Cross-power Spectrum

Phase Analysis.
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Chapter 5

Thesis Background - 3-D Viterbi

Search Method

The 3-D Viterbi search method proposed by Yamada et al. [43, 8, 44], imple-

ments the idea of the integration of talker localization and speech recognition.

More speci�cally, instead of the deterministic talker localization, that is followed

by the speech recognition, the 3-D Viterbi search method based system uses a si-

multaneous talker localization and speech recognition. In the evaluation system,

at each time frame a beamformer is steered to all directions and acoustic feature

vectors are extracted from each direction. Then matching is performed between

the extracted features vectors and the acoustic models.

In this approach, Viterbi search is performed in a 3-D trellis space (Fig. 5.1)

composed of input frames, direction and HMM models, and the path with the

highest likelihood is obtained. The path is a (q; d) (state; direction), which corre-

sponds to the uttered speech and talker locus. Therefore, the talker localization

and speech recognition is performed simultaneously. The (q; d) with the highest
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likelihood can be obtained using the following Equation:

(q; d) = argmax

q
0

;d
0

P (X(d)jq
0

; d

0

;M) (5.1)

In Eq. (5.1) M are the HMM models and X is the observation vector sequence.

The likelihoods of each (q; d) at the t time frame can be computed using the

following formula :

�(q; d; t) = max

q0;d0

f�(q0; d0; t� 1) + loga1(q; q
0) + loga2(d; d

0)g+ logb(X(d; t))(5.2)

In Formula (5.2), a1 is the state transition probability and a2 is the direction

transition probability. The state transition is provided by the acoustic models.

However, the training of the direction transition probability, that indicates the

movement of the talker, is very diÆcult and therefore a heuristic approach for its

computation is used.
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Table 5.1. Results obtained by using simulated data for talker located at �xed

position.

Clean SNR 20 dB SNR 10 dB

3-D Viterbi method -
96.2 72.6 28.2

Initial evaluation

3-D Viterbi method
96.2 94.9 88.4

with the weight function

Table 5.2. Results obtained by using simulated data for moving talker.

Clean SNR 20 dB SNR 10 dB

3-D Viterbi method -
96.2 74.5 26.8

Initial evaluation

3-D Viterbi method
96.7 93.9 84.7

with the weight function

The performance of the 3-D Viterbi search method based speech recognition

system was evaluated through experiments on simulated and real data. The ob-

tained results showed that the method provides eÆciently high performance, even

in the case of a moving talker talker. Tables 5.1, 5.2, 5.3 and 5.4 show the

obtained results as described in [65]. In the initial evaluation a delay-and-sum

beamformer was used and the experiments were carried out both on simulated

and real data. The introduction of a weight function, which increases the like-

lihood of the speech-likely directions resulted improvement in the performance.

Finally, experiments were carried out by using adaptive beamforming. In that

case, signi�cant improvement could be obtained. The results are obtained from
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Table 5.3. Results obtained by using real data for talker located at �xed position.

21 dB SNR 18 dB SNR 10 dB

3-D Viterbi method
92.5 79.1 53.2

with delay-and-sum beamforming

3-D Viterbi method
93.9 89.8 83.3

with adaptive beamforming

Table 5.4. Results obtained by using real data for moving talker.

SNR 21 dB SNR 18 dB SNR 10 dB

3-D Viterbi method
89.3 81.9 52.3

with delay-and-sum beamforming

3-D Viterbi method
92.5 88.8 81.0

with adaptive beamforming

experiments for speaker-dependent isolated word recognition.

The described results shows that the 3-D Viterbi search method and using

adaptive beamforming provides high recognition rates, even in the case of the

moving talker, too. However, a main disadvantage of this method is that it

cannot deal with multiple sources. The reason is that because it considers only

the most likely path in the 3-D trellis space. An additional problem of the method

is the huge computation amount occurred by the steering of the beamformer to

each direction.

In the following chapters we will explain our idea to solve the problem of the

presence of multiple sound sources. Our proposed method is an extension of the
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described 3-D Viterbi search method to the 3-D N-best search method.

5.1 Summary

This chapter describes the idea, the formulation, and some obtained results by

using the 3-D Viterbi search method. This method integrates sound source local-

ization and speech recognition process. The obtained results show that the 3-D

Viterbi search-based recognition system performs eÆciently, even in the case of a

moving talker, too. The main disadvantage of this method is that can deal only

with single sound source. Our proposed method attempts to solve this problem,

by extending the 3-D Viterbi search to the 3-D N-best search.
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Chapter 6

The proposed 3-D N-best Search

Method

6.1 Idea and Formulation

The idea to solve the problem of the recognition of distant-talking speech of

multiple sound sources is to introduce the N-best paradigm into the 3-D Viterbi

search method. More speci�cally, instead of keeping only the hypothesis with

the highest likelihood, we keep the N-best hypotheses, and in this way we can

consider speech signals arriving from multiple directions. Our N-best approach

[20, 22, 66, 67, 68, 26, 69] is di�erent from the conventional ones in the sense that

we keep N-best hypotheses for each direction. Our algorithm is one-pass search

strategy, which performs full search in all directions and keeps N-best for word

and direction hypothesis.

In a similar way to 3-D Viterbi search method based system, our system is

also microphone array based. At each time frame a beamformer is steered to each

direction and feature vectors are extracted. The N-best hypotheses are found by
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Figure 6.1. Direction sequences of the hypotheses /ogosoka/ and /yotsukado/

matching between the feature vectors and the HMM models, and by keeping the

hypotheses with the highest likelihoods. The obtained N-best list includes hy-

potheses from di�erent directions, and therefore multiple sound sources can be

recognized simultaneously. The phoneme sequences of a hypothesis corresponds

to the uttered speech and the direction sequence to the talker locus. Tables 6.1

and 6.2 show the obtained N-best lists. Figure 6.1 and Figure 6.2 show the ob-

tained direction sequences. In this experiment two sound sources located at �xed

position at 10 and 170 degrees, pronounces in the �rst case the Japanese words

=ogosoka= and =yotsukado= and in the other case the Japanese words =yuumoa=

and =omowazu=. As can be seen both words are included in the N-best list and

the direction sequences follow the correct talkers locations. Table 6.3 shows the

N-best list in the case of the pronounces words =ikioi= and =kakurepyuritan=
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Table 6.1. Top5 results. Both sound sources are included in the list

MHT FTK

Input /ogosoka/ /yotsukado/

Best Word Likelihood

1 /ogosoka/ -77.0445

2 /yotsukado/ -77.3181

3 /monosugoi/ -77.3501

4 /naosara/ -77.4224

and Fig. 6.3 the obtained direction sequences of the two hypotheses. In this

case only the word with the longer duration is included in the N-best lists and

the other one doesn't appear. Although we haven't investigated this problem in

details, a possible reason for this is that the algorithm attempts to search the

directions where the signal lasts longer than the other directions. The direction

sequences justify this observation. A possible solution to this problem is to im-

plement additional techniques, similar to those used in word-spotting in order to

terminate the search in one direction if for a number of frames silence is observed,

and extract the hypotheses of that direction.

The N-best hypotheses are chosen based on the Formula (6.1). Considering a

(q; d) (state; direction) node at t time frame, the �N(q; d; t) N-best hypotheses can

be obtained by adding the a1 state and a2 direction transition probability, as well,

to the �N(q; d; t� 1) arriving from all connected nodes hypotheses, then sorting

the overall hypotheses and, �nally by adding the b(X(d; t)) output probability of

the appropriate d direction.

�
N(q; d; t) = sort

q0;d0

f�
N(q0; d0; t� 1) + loga1(q; q

0) + loga2(d; d
0)g+ logb(X(d; t))(6.1)
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Figure 6.2. Direction sequences of the hypotheses /yuumoa/ and /omowazu/

The a1 state transition probability is provided by the transition matrix of the

acoustic models. However, for the a2 direction transition probability a heuristic

approach is used. More speci�cally the a2 can be computed as follows:

a2(d
0

; d) =

8><
>:

1

2�d
, jd� d

0

j � �d

0 , jd� d
0

j > �d
; (6.2)

where �d is the range of the talker movements. In this thesis the �d is 10 degrees.
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Table 6.2. Top5 results. Both sound sources are included in the list

MHT FTK

Input /yuumoa/ /omowazu/

Best Word Likelihood

1 omowazu -75.5039

2 imagoro -75.5795

3 yuumoa -75.8902

4 uyamau -75.9920

5 ikioi -75.9998

6.2 The Proposed Path Distance-based Cluster-

ing Technique

Table 6.4 shows the N-best list obtained in an experiment for the recognition

of two talkers located at �xed position, at 10 and 170 degrees, respectively. The

'Speaker A' pronounces the Japanese word =omoshiroi= and the 'Speaker B'

the Japanese word =wagamama=. Figure 6.4 shows the direction sequences of

the Top N hypotheses. The �rst observation is that only one talker appears in

the higher orders of the N-best list, and the other one appears in low order. The

second observation is that the hypotheses appeared in the higher order originated

from the 170 degrees direction. This is exactly a serious problem that our baseline

system faced. More speci�cally, if in one direction the likelihood is much higher

than the other directions then the N-best list is occupied by the hypotheses of

that direction.

In order to solve this problem, we introduce our proposed path distance-
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Figure 6.3. Direction sequences of the hypotheses /ikioi/ and /kakurepyuuritan/

based clustering technique [66, 67]. The main idea is to separate the hypotheses

according to the direction. The clustering technique provides multiple N-best

lists, which correspond to the multiple talkers. The results are obtained by picking

up the Top N from each cluster. The direction of the multiple talkers can be

obtained by examining the direction sequence of the Top 1 of each cluster.

Figure 6.5 shows the direction and power sequences of two hypotheses. Based

on this information, we calculate an Euclidean distance weighted with the power.

We name this distance Path Distance, and this is the measure our clustering

technique is based on. At the last frame of the input speech signal, for each

hypothesis-pair the path distance is computed and all the hypotheses are clustered

into a pre-de�ned number of clusters. In this thesis, we assume that the number

of sound sources is known and that a cluster corresponds to each sound source.
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Table 6.3. Top5 Results. Only one source is included in the list.

MHT FTK

Input /ikioi/ /kakurepyuuritaN/

Best Word Likelihood

1 kakurepyuuritaN -79.2763

2 hiQkurikaesu -80.3220

3 oiharau -80.3852

4 akegata -80.4967

5 atarimae -80.5042

Due to its simplicity, a bottom-up clustering technique was chosen. The Path

Distance is computed using the following formula:

D(k; k0) =
T�1X
t=0

f(dk(t)� dk0(t))
2
(p(dk(t); t) + p(dk0(t); t))g (6.3)

where k and k
0 are the ending directions, t is the time frame, T is the total

frame number, dk(t) is the direction value of the hypothesis ending in k at time

t, and p(dk(t)) is the power sequence of this hypothesis. The reason that we

introduce the power as weight in the path distance's computation is because our

algorithm cannot guarantee the correct direction in the silence region. Therefore,

by introducing the power we reduce the importance of the silence region in the

computation of path distance. In the Figure 6.5 we can observe that in the speech

region the two hypotheses can be separated based on their direction sequences.

However, in the silence region the two hypotheses appear to be originated from

the same direction.

Table 6.5 shows results described in Table 6.4 after the clustering is per-

formed. As can be seen, the two pronounced words are included in di�erent
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Table 6.4. Top 4 results. Sorting according to the likelihood. Only one sound

source was included in the N-best list

Speaker A Speaker B

Input /omoshiroi/ /wagamama/

Top Word Likelihood

1 /wagamama/ -78.5579

2 /hanahada/ -78.9105

3 /hanabanashii/ -78.9776

4 /wazawaza/ -79.2003

.. .. ..

7 /omoshiroi/ -79.5485

cluster and in the �rst order.

6.3 The Proposed Likelihood Normalization Tech-

niques

The N-best hypotheses of a (q; d) (state; direction) are found by sorting the overall

arriving hypotheses and choosing the top N. However, hypotheses arriving from

di�erent directions correspond to di�erent sound sources with di�erent likelihood

dynamic ranges. Therefore, the comparison of the hypotheses according to their

likelihoods can not be accurate. In order to avoid this problem we introduce a

technique for likelihood normalization [68].

The technique used for likelihood normalization is similar to the method pro-

posed by Matsui T. et al. [70]. That method was used for speaker recognition,
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but it was found that it can also be eÆciently applied for our task. Our one-state

Gaussian mixture (GM) (1 state, 64 mixtures) model is close to that proposed

by Matsui T. et al., but its objective is di�erent. More speci�cally, this model

runs in parallel with the other models and its accumulated likelihood is used to

normalize the likelihoods of the hypotheses involved. Two di�erent techniques

are implemented and compared. The two likelihood normalization techniques,

L1 and L2 are the following :

� L1 Likelihood Normalization Technique

In the �rst approach we normalize the likelihoods only at the last frame.

The actual likelihoods �(q; d; T ) of every state q and direction d are nor-

malized at the last frame T by dividing with the likelihood �G(d; T ) of the
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Figure 6.5. Direction and power sequences of the hypothesis-pair

one-state model. Considering logarithmic likelihoods, Eq. (6.4) gives the

normalized likelihood �(d; q).

�(q; d) = �(q; d; T ) � �G(d; T ) (6.4)
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Table 6.5. Top 4 results. The hypotheses are classi�ed using the path distance.

Speaker A Speaker B

Input /omoshiroi/ /wagamama/

Top 1st Cluster 2nd Cluster

1 /omoshiroi/ /wagamama/

2 - /hanahada/

3 - /hanabanashii

4 - /wazawaza/

� L2 Likelihood Normalization Technique

In this approach, the actual accumulated likelihoods �(q; d; t) of every state

q and direction d are normalized at each time frame t by dividing them with

the accumulated likelihood �G(d; t) of the one-state model. Considering

logarithmic likelihoods, Eq. (6.5) gives the normalized likelihood �(d; q; tf)

at time tf .

�(d; q; tf ) = �(q; d; tf )� �G(d; tf ) (6.5)

Figure 6.6 shows the results of the comparison of the two techniques. In this

experiments two talkers are used located at �xed position at 10 and 170 degrees.

A linear microphone array composed of 16 microphones is used. The distance

between the microphones is 2:83 cm. Results show that the likelihood normal-

ization in every frame provides higher performance. Therefore, we �nally choose

this method for likelihood normalization.
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6.4 Summary

This chapter describes our proposed 3-D N-best search algorithm able to recog-

nize distant-talking speech of multiple sound sources. Our method is one-pass

search strategy, which considers multiple hypotheses for each direction and word

hypothesis. In our system, a microphone array is steered to each direction in

each time frame, feature vectors are extracted, and matching is performed be-

tween the acoustic models and the input feature vectors. The baseline system

integrates the 3-D Viterbi search method and the N-best paradigm into a com-
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plete system. However, the simple integration is not suÆcient for our purpose

and, therefore we further improved the system by developing and implementing

a clustering and a likelihood normalization technique.
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Chapter 7

Evaluation of the 3-D N-best

Search Based Speech Recognition

System

The performance of our speech recognition system based on the 3-D N-best search

was evaluated through experiments carried out for the recognition of the speech

of two and three talkers.

7.1 Experiments Using Data With Time Delay

In these experiments simulated clean data (only time delay) are used for the

simultaneous recognition of the speech of two sound sources.

7.1.1 Experimental Conditions

The two sound sources are located at �xed position at 10 and 170 degrees and

pronounce a di�erent word. Several speaker- and word-pairs are used. Namely,
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Figure 7.1. Position of sound sources

we use as test data 216 phoneme words from four talkers and we form a large

number of variations. In total we use 2150 test word-pairs. Two linear microphone

array composed of 16 and 32 microphones are used. The distance between the

microphones is 2:83 cm. Figure 7.1 shows the experimental arrangement and

Table 7.1 the speci�cations of the system.

7.1.2 Results Using a 16-channels Microphone Array

Three kind of results are given by our experiments. More speci�cally, the Word

Accuracy (WA) of each speaker separately and the Simultaneous Word Accuracy

is also, described. The results are obtained by examining the Top N of the two

provided clusters. The two accuracies are de�ned as follows:
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Table 7.1. System speci�cation

Sampling frequency 12 kHz

Frame length 32 msec

Frame period 8 msec

Pre-emphasis 1� 0:97z�1

Parameter vectors
16-order mel-frequency cepstral coeÆcients (MFCCs),

16-order �MFCCs, 1-order �power

HMM
Tied-mixture with 256 distributions,

54 context-independent phoneme models

Training data ASJ continuous speech database (64 Speakers)

Test data 216 phonetically-balanced words of ATR Set A database

� Word Accuracy (WA)

WA =
Word Correct & Cluster Correct

Total T est Words

� 100 [%] (7.1)

� Simultaneous Word Accuracy (SWA)

SWA =
Both Words Correct & Both Clusters Correct

Total T est Words

� 100 [%] (7.2)
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Figure 7.6. Improvement by implementing clustering technique

Table 7.2 shows the obtained results. As can be seen, in the case of the 'Speaker

A' the CSP-based method operates slightly better. However, in the case of the

'Speaker B' the performance of our system is signi�cantly higher. Therefore, the

SWA provided by our system is also higher.

7.1.4 Results Including the Recognition of a Moving Talker

In order to evaluate the performance of our system in the case of a moving talker,

we carry out experiment for the simultaneous speech recognition of a moving and

a �xed talker. The �xed talker is located at 10 degrees and the other one moves
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Speaker A  - Fix

2.83 cm

16

1

2
10

 0 - 180

Speaker B - Move

Figure 7.10. Position of sound sources including a moving talker

ror in the silence region, where the hypothesized direction is not accurate. Figure

7.14 shows the histogram of the localization errors in both cases of microphone

arrays. As can be seen, in the case of the 32-channels microphone array the talker

is localized with much lower errors. Therefore, the word accuracy is higher. The

explanation of this fact can be given by examining the Directive Patterns (Fig.

7.15). In the case of the 32 microphones, the delay-and-sum beamformer forms

sharper beam and therefore the localization accuracy is higher. As conclusion, in

our experiments the 16 microphones can not form eÆciently sharp beam.

59



Table 7.2. Comparison between the 3-D N-best search method-based and a CSP-

based system

Localization Search #Source Directions WA [%] SWA

Method Method A B A B [%]

3-D N-best Search 2 Fix-30 Fix-150 90.09 84.19 73.68

CSP 2-D Viterbi 2 Fix-30 Fix-150 91.63 69.77 63.72

7.2 Experiments Using Simulated Reverberated

Data

In these experiments we use the Image Method [71] to simulate reverberated

data, and evaluate the performance of our 3-D N-best search based system in

real environments. The impulse responses provided by the image method are

convoluted with the clean speech in order to obtain the reverberated speech.

7.2.1 Experimental Conditions

Figure 7.16 describes the arrangement of the experiments. Two sound sources are

used located at �xed position, at 10 and 170 degrees. A linear microphone array

composed of 32 microphones is used. The distance between the microphones is

2:83 cm. The distance between the sound sources and the microphone array is

2 m. The (x,y,z) dimension of the room is (5:8 m; 4:3 m; 2:7 m). The microphone

array is located in the center of the room in 1 m distance from the wall.

The reverberation time is measured by using square integration. Based on

impulse response, the reverberation attenuation curve can be obtained. The
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Figure 7.14. Histogram of the localization Error

used. The distance between the microphones is 2:80 cm. The distance between

the loudspeakers and the microphone array is 2 m. The reverberation time (T[60])

in the experimental room is 280 ms.

Figures 7.22, 7.23, and 7.24 show the obtained results in comparison with

the achieved results by using the image method. Although the performance of

our system in real environments is decreased, the achieved results are comparable
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Figure 7.15. Directive patterns

with those when simulated reverberated data were used. However, in the case

of using real data we should consider also the presence of ambient noise and the

longer reverberation time. Therefore, we can conclude that the obtained results

using real data are expected lower than the case when we use simulated data,

and the comparison between the two cases is reasonable.
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Figure 7.16. Experiment arrangement for reverberated environment

7.4 Experiments for the Recognition of Three

Talkers

In this section we describe the experiments carried out for the simultaneous recog-

nition of speech of three talkers. The three talkers are located at �xed positions

at 10, 90, and 170 degrees, as Fig. 7.25 shows. In total we use 645 test word-

pairs. The microphone array is linear and it is composed of 32 channels. The

distance between two microphones is 2:83 cm. Figure 7.26 shows the Top 5

results. The A, B, and C indicate the Word Accuracy of the three talkers. A+B,

B + C, and A + C indicate the Simultaneous Accuracy for two talkers. Finally,

the A + B + C shows the Simultaneous Word Accuracy of all the three talkers.

Comparing with the two talkers case, the performance is degraded, since the used

delay-and-sum cannot separate eÆciently the speech signals of the three talkers.

However, results show that our system performs well even in the case of three

talkers, too.
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Figure 7.17. Measurement of reverberation time

7.5 Summary

This chapter describes the experiments carried out in order to evaluate the per-

formance of our system. In the initial experiments the 3-D N-best search method

was used without implementing the two additional techniques. However, in that

case the performance of the our system was low. The performance was further

improved by implementing the two additional techniques described in the previ-

ous sections. We carried out experiments using two microphone array geometries,

namely we used a 16-channels and a 32-channels microphone array. By using a

32-channels microphone array much higher recognition rates could be obtained.

This section describes also the comparison between our method and a con-

ventional talker localization method-based system. Finally, in this chapter we

introduced the results of the experiments using reverberated data, and results
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Figure 7.18. Speaker 'A' Word Accuracy

obtained for the recognition of three talkers.
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Figure 7.19. Speaker 'B' Word Accuracy
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Figure 7.20. Simultaneous Word Accuracy
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Figure 7.22. Speaker 'A' Word Accuracy
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Figure 7.23. Speaker 'B' Word Accuracy
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Figure 7.24. Simultaneous Word Accuracy
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Figure 7.25. Experiment arrangement for three talkers
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis deals with the simultaneous distant-talking speech recognition of mul-

tiple sound sources.

Chapter 1 described the distant-talking speech recognition problem and the

current status of the research �eld. In this chapter we introduced our idea and

proposed method to solve the problem of the simultaneous recognition of distant-

talking speech.

Chapter 2 addressed the speech recognition of multiple sound sources problem

and deals with possible solutions to this problem.

Chapter 3 dealt with speech recognition issues and explained about the speech

recognition task, the Hidden Markov Models and the Viterbi algorithm.

Chapter 4 briey addressed the microphone arrays, the delay-and-sum beam-

forming and some sound source localization techniques.

Chapter 5 described the 3-D Viterbi search method, which is the base of

this thesis. We explained the idea, the formulation, the advantages and the

disadvantages of this method.
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Chapter 6 introduced our proposed method to solve the problem of the si-

multaneous distant-talking speech recognition of multiple sound sources. In this

chapter we explained in details our proposed 3-D N-best search. Moreover we in-

troduced two additional techniques, which drastically increased the performance

of our system. Namely, a likelihood normalization technique and a path distance-

based clustering were introduced.

Chapter 7 described the experiments were carried out on simulated data in

order to evaluate the performance of our system. The experiments cover the

cases of two �x talkers, one �x and one moving talker and two microphone ar-

ray geometries. The obtained results are very promising and particularly in the

case of 32-channels microphone array we could achieve higher than 72 % Simul-

taneous Word Accuracy. The results showed that by increasing the number of

the microphones the performance of the system was signi�cantly increased. The

improvements in word accuracy by implementing the two additional techniques

are also described. In this chapter are also given the results of the compari-

son of our proposed method and a conventional talker localization method based

system. More speci�cally, we compared our proposed 3-D N-best search method

based system with a CSP-based system. Results showed that higher Simultaneous

Word Accuracy could be achieved by our system.

In the Chapter 7 we described also the experiments carried out on reverberated

data, which was obtained by using the image method and using data recorded in

real environments. The performance of our system under reverberant conditions

was decreased.
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8.2 Future Work

In this thesis we introduced our proposed 3-D N-best search algorithm able to

recognize distant-talking speech of multiple sound sources. The obtained results

are very promising and they justify the existence of our idea. However, prob-

lems are still remaining and further improvement is possible. Among others the

following problems are still remaining:

� Computational Cost

The search in the 3-D trellis space requires a large amount of computation.

Moreover, the introduction of the N-best paradigm further increases the

search space. Therefore, eÆcient methods are necessary in order to reduce

the computational amount that is required. A possible solution is the use

of the power as measure to eliminate the directions on which search is

performed.

� Multiple Talkers and Sound Sources

In this thesis we dealt only with the presence of two sound sources without

considering noise components. However, for practical use the presence of

noise sources should be also considered.

� Speech Enhancement

The delay-and-sum beamforming algorithm provides limited speech en-

hancement. For eÆciently sharp beams a large number of microphones

is required. However, this increases the system's complexity and cost. A

possible solution is the use of the adaptive microphone array.
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� Clustering Techniques

In this thesis we use a simple bottom-up method with the assumption that

the number of the clusters is pre-de�ned and it is the same as the number of

sources. The clustering could be more precise by avoiding this assumption

and by using a more sophisticated clustering method. Stopping rules can

be also used and in this way we can deal with unknown number of sound

sources.
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