
NAIST-IS-DD0361039

Doctoral Dissertation

Achieving Quality of Service in Distributed

Multi-media Systems

Tao Sun

February 02, 2006

Department of Information Processing

Graduate School of Information Science

Nara Institute of Science and Technology



A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Tao Sun

Thesis Committee:

Professor Minoru Ito (Supervisor)

Professor Hiroyuki Seki (Co-supervisor)

Associate Professor Keiichi Yasumoto (Co-supervisor)



Achieving Quality of Service in Distributed

Multi-media Systems∗

Tao Sun

Abstract

In distributed multi-media systems, the QoS (quality of service) is restricted

due to various factors such as bandwidth, network jitter, performance of servers/

clients, battery amount and so on. It is important how to achieve QoS which

meets user’s requirements within these restrictions.

With the development of mobile systems and wireless networks, various kinds

of mobile terminals become part of distributed multimedia systems. However,

the restrictions, especially the limitation of battery amount restricts the quality

of video/audio playback, leading to the end user’s dissatisfaction. So, we need

a technique to adapt application-level QoS for end mobile users depending on

battery amount. With the development of distributed multi-media systems, the

performance of end terminals and user’s requirements become manifold. In order

to provide multiple users with multimedia streaming services, the multi-media

systems should be highly functional, scalable and robust. For this purpose, the

traditional server/client architecture is already obsolete. Instead, we need a new

architecture including an efficient delivery network based on peer-to-peer overlay

network and functional components distributed among multiple distant nodes for

accommodating a large number of users and continuing multimedia services even

with node/link failures. In order to guarantee the performance and/or appro-

priateness of QoS adaptation mechanisms implemented as a software system, it

is important to test whether each mechanism is correctly implemented, without

executing the whole system.

∗ Doctoral Dissertation, Department of Information Processing, Graduate School of Informa-
tion Science, Nara Institute of Science and Technology, NAIST-IS-DD0361039, February 02,
2006.
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So a new method for testing QoS in multimedia systems is indispensable. This

thesis provides the following three research topics.

First, in order to guarantee the correctness of QoS adaptation mechanisms, we

propose a testing method for QoS functions in distributed multi-media systems.

In the proposed test method, we use a statistical approach where test sequences

take samplings of actual frame rates and/or time lags when an IUT (implementa-

tion under test) is executed, and report test results from ratio of samplings with

low quality below a threshold in a normal distribution of all samplings.

Secondly, a QoS adaptation method for streaming video playback for portable

computing devices where playback quality of each video segment is automatically

adjusted from the remaining battery amount, desirable playback duration and

the user’s preference to each segment, is proposed. In this method, we assume

that video segments are classified into several predefined categories. Each user

specifies relative importance among categories and preferred video property such

as motion speed and vividness for each category. From the information, playback

quality and property of each category are determined so that the video playback

can last for the specified duration within the battery amount.

Finally, a new video delivery method called MTcast (Multiple Transcode based

video multicast) is proposed. It achieves efficient simultaneous video delivery to

multiple users with different quality requirements by relying on user nodes to

transcode and forward video to other user nodes. In MTcast, each user specifies

a quality requirement for a video consisting of bitrate, picture size and frame rate

based on the user’s environmental resource limitation. All users can receive video

with the specified quality (or near this quality) along a single delivery tree.

Some experimental results show that our proposed test method works effec-

tively for QoS functional tests in a typical multimedia playback program, and our

QoS adaptation method improves playback quality of important categories a few

times better than flattening the playback quality. Through simulations, we show

that our video delivery method can achieve much higher user satisfaction degree

and robustness against node failure than the layered multicast method.

Keywords:
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1. Introduction

As broadband infrastructure is widespread in the Internet, the distributed multi-

media systems have been deployed rapidly. The distributed multi-media system

is the system where the multimedia objects such as a video and a voice are

exchanged between multiple contents servers and user nodes in real time, and

all of user nodes are connected to a distributed system such as the Internet.

This revolution is transforming the way people live, work, and interact with one

another, and is impacting businesses, government services, education and so on.

In general, the quality of service (QoS) is restricted due to various factors such

as bandwidth, network jitter, performance of servers/clients, battery amount and

so on. So QoS (Quality of Service) requirements vary considerably depending on

types of networks and user terminals.

The current trend in distributed multimedia systems is to tackle adaptation to

ubiquitous environments. With the development of mobile systems and wireless

networks, various kinds of mobile terminals become part of distributed multi-

media systems. However, the restrictions, especially the limitation of battery

amount restricts the quality of video/audio playback, leading to the end user’s

dissatisfaction. This makes it difficult to integrate mobile terminals in distributed

multi-media systems. So, we need a technique to adapt application-level QoS for

end mobile users depending on battery amount. With the development of dis-

tributed multi-media systems, the performance of end terminals and requests

of users become manifold. In order to provide multiple users with multimedia

streaming services, the multi-media systems should be highly functional, scal-

able and robust. For this purpose, the traditional server/client architecture is

already obsolete. Instead, we need a new architecture including an efficient de-

livery network based on peer-to-peer overlay network and functional components

distributed among multiple distant nodes for accommodating a large number of

users and continuing multimedia services even with node/link failures.

In order to guarantee the performance and/or appropriateness of QoS adapta-

tion mechanisms implemented as a software system, it is important for distributed

multi-media systems to provide multi-media services with certain QoS functions

to end users satisfying user’s requests. Among various QoS functions, control

mechanisms for the frame rate (the number of frames displayed every second),
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size of picture, bit-rate and for the lip synchronization [8] among multiple con-

current media objects seem most important ones.

For development of multi-media systems with high reliability, it is desirable to

establish a method for testing if those QoS functions are correctly implemented in

a given IUT (Implementation Under Test). Traditional software testing methods

which have succeeded in protocol engineering, focus mainly on the correctness

of input/output correspondences[11]. Therefore those methods could not be di-

rectly applied to QoS testing such as video/audio playback timings. Essentially

important test problems of multi-media systems are not only correspondence re-

lations of input/output actions, but also time difference between an input and

the corresponding output or the time duration in executing a sequence of actions.

Then, even if all the correspondence relations of input/output actions hold, it is

not necessarily guaranteed to pass a test due to the time difference between input

and output actions.

Even if temporal relations among multi-media objects are specified in detail

by a formalism such as Timed CTL [2] used in real time systems, it makes test

sequences be explosively complicated and is not realistic to test multi-media sys-

tems. Suppose that a specification for a video playback system specifies that a

video frame is drawn exactly every 33 msec plus/minus 5msec. In general, when

an IUT does not satisfy such a specification a little (e.g., only a frame was de-

layed for 10msec), it may not be considered a problem as long as media objects

are played back naturally. So, for QoS testing for the playback of media objects,

it is desirable to statistically analyze the temporal relations and give test results

based on statistically calculated information[14].

There exist some studies on multi-media testing such as testing of multi-media

transmission systems [5], the quality of multi-media contents [6] and interoper-

ability and performance testing of distributed systems [14]. However they do not

deal with testing on temporal relations of input/output actions. A few researches,

which deal with temporal relations in multi-media systems explicitly, have been

reported [4, 12]. These studies propose a method to test binary temporal rela-

tions on the starting time and/or the ending time between two objects by using a

statistical approach. However they do not deal with the quality during playback

of an object. Moreover, [16] proposes a method for functional testing of media

2



synchronization protocols using a concurrent timed I/O automata model, where

a given IUT is tested by executing each input action within an appropriate time

interval calculated in advance, and by observing whether execution timings of

output actions are within the appropriate time interval. However, this approach

does not consider statistical aspects of multi-media systems. As a different ap-

proach, [3] proposes a model checking method for media constraints such as lip

synchronization among multiple media objects.

In Chapter 2, a new testing method based on statistical approach for QoS

functions in distributed multi-media systems is introduced.

Another problem in multi-media system is to keep good playback quality for

portable computing devices (such as PDAs and smart phones) within the lim-

itation of battery amount. Owing to recent innovations in portable computing

devices and wireless communication infrastructure (such as WLAN and wide-

band CDMA), we can watch video contents using those devices every time and

everywhere. However, the restrictions such as bandwidth and battery amount

are so hard that the portable computing device users may not be satisfied with

the quality of playback.

In such an on-demand video streaming and playback, however, the portable

computing device consumes much more battery amount than other business appli-

cations, due mainly to video decoding and wireless communication. Consequently,

there will be a demand to control battery life depending on user requirements or

situations so that the battery is not exhausted until the video playback finishes

or the specified amount of battery (e.g., 50%) is left after playing back the video

content. In general, we can extend video playback duration by reducing video

quality. However, it is difficult to estimate how long the battery lasts for each

playback quality, since the battery consumption depends on not only video play-

back but also other factors such as OS, LCD, and so on. Besides it, these factors

are device dependent. Moreover, when the remaining battery amount is small

and the playback quality is reduced over the whole playback duration, users may

get frustrated due to low playback quality. In order to mitigate such a situa-

tion, some fragments of a video important for a user should be played back with

higher quality than others. Also, to each fragment, a user should be able to

3



specify playback preferences such as balance of motion speed and vividness.

In Chapter 3, a QoS control mechanism which enables playback of multiple

video segments with different playback quality based on the user’s preference, is

presented. When a user specifies relative importance among video segments and

preferred video property (proportion between picture size and frame rate) for each

segment, the proposed algorithm determines the playback quality of each video

segment so that the video playback can last for the specified duration within the

remaining battery amount.

Due to difference in environmental limitation, performance of terminals and

users’ preferences, the required quality for a video stream becomes different among

users. On the other hand, as a consequence of recent innovation of information

technology and widespread of the Internet, various types of computing devices

such as PCs, PDAs, cell phones, car computers, and set-top boxes can be con-

nected to the Internet via various types of communication infrastructures includ-

ing ADSL, WLAN, W-CDMA, Bluetooth and so on.

Accordingly, there would be a demand for an efficient video delivery method

for these heterogeneous user nodes which have different computation powers,

display sizes and available bandwidths.

There are several approaches for simultaneously delivering video to multiple

users with different quality requirements. In the multiversion technique [34, 35],

multiple versions of a video with different bitrates are prepared in advance so

that the best one can be delivered to each user, within resource limitation.

In the online transcoding method [36], an original video is transcoded at

a server or an intermediate node (i.e. proxy) to videos with various quality,

according to receivers’ preferences, and forwarded to the receivers.

In the layered multicast method [37, 38, 39, 40, 41, 42], video is encoded with

layered coding techniques such as [43] so that each user can decode the video by

receiving arbitrary number of layers. Since each layer is delivered as an indepen-

dent multicast stream, each user can receive as many layers as possible within

his/her resource limitation. In this method, as the number of users increases,

more layers are required in order to improve user satisfaction degree. However,

decoding video from many layers consumes large processing power and buffers. In
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[37], a method for optimizing bitrate of each layer to maximize user satisfaction

degree is proposed. In the multiversion method, the control mechanism is simple,

but not efficient in terms of server storage and network bandwidth usage. In the

multiversion and layered multicast methods, there can be a large gap between

the requested quality and the delivered quality if there are not enough number

of versions or layers. It would also be difficult for these methods to treat user

preference which requires large picture size and a small frame rate. On the other

hand, the online transcoding method can satisfy all the above requirements since

it can transcode original video to arbitrary quality video. But, large computation

power required for transcoding can be a problem.

In the research of peer to peer network video streaming method, The Overlay

Multicast Network Infrastructure (OMNI) [49] is proposed. It builds a multicast

tree consisting of multicast service nodes which are connected by a set of clients

and service to them. This distributed scheme adapts to the changing of the client

distribution and network conditions. CoopNet [50] augments traditional client-

server streaming with P2P streaming when the load of server exceeds it’s limit.

In CoopNet clients cache parts of streams, and deliver them through multiple

diverse distribution trees to another client if the server is overwhelmed. Both of

them do not consider the different requirements of users.

In Chapter 4, a video delivery method called MTcast (Multiple Transcode

based video multicast) which achieves efficient simultaneous video delivery to

multiple users with different quality requirements by relying on user nodes to

transcode and forward video to other user nodes, is proposed.

Hereafter, in Chapter 2, a testing method for QoS functions in distributed

multi-media systems using a statistical approach is introduced. In Chapter 3,

a QoS adaptation method for streaming video playback for portable computing

devices is presented. In Chapter 4, a new video delivery method, which achieves

efficient simultaneous video delivery to multiple users with different quality re-

quirements, is proposed. Finally, Chapter 5 concludes this thesis.
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2. QoS Functional Testing

for Multi-media Systems

2.1 Introduction

In this chapter, in typical distributed multi-media systems consisting of servers

and clients connected via a network, a method for testing QoS of media play-

back functions with respect to frame rates and lip-synchronization for a client

program (IUT), is proposed. In the proposed method, we specify scenarios for

QoS functional tests for an IUT in timed EFSM (a hybrid model of EFSM and

timed automata [1]), where we designate the input flow characteristics like jit-

ter / packet loss ratio and the play-back quality of frames to be realized for the

given traffic. Furthermore, we specify the quality of inter-media synchronization

as a constraint to be satisfied among sub-scenarios corresponding to concurrent

playbacks of different media objects (e.g., video and corresponding audio) by us-

ing the constraint oriented description style [13]. From those test scenarios, we

generate test sequences to test whether a given IUT realizes the specified QoS.

In the proposed technique, the specifications of an input flow and the playback

quality to be realized (e.g., the range of fluctuation of frame rates) on playback

behaviors is given in timed EFSMs.

In the proposed test method, we use a statistical approach where test se-

quences take samplings of actual frame rates and/or time lags between the latest

frames on multiple objects when an IUT is executed, and report test results from

ratio of low quality samplings (e.g., frame rates less than a threshold) below a

specified threshold in a normal distribution of all samplings.

We have implemented a test system for executing test sequences in real-time

in Java language, and applied it to a sample video playback program. Our ex-

perimental results show that our method works effectively for QoS functional

tests.

2.2 Outline of Proposed QoS Functional Testing

As a target, we suppose distributed multi-media systems where a server transmits

a stream of a requested media object to each client. Here, we test whether the

6
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Figure 1. Existing real-time testing methods

playback quality of media objects at a client computer is feasible or not according

to the characteristic of the given input flow.

In existing real-time testing methods as in [7, 10], tests are carried out by

giving each input to the IUT at appropriate time, and by observing and testing

if the corresponding output action is executed at appropriate time satisfying the

constraints given in the specification (see Fig. 1). However, testing playback

quality of media objects in multi-media systems should be different from those

existing methods since some jitter in multi-media playback which may be caused

by packet losses/delays is allowed to a certain extent. So, we need a new testing

method for playback quality of multi-media objects.

In the proposed method, we adopt the statistical technique for testing play-

back quality of a single media object and of preciseness of inter-media synchro-

nization among multiple object playbacks at a client computer of a client-server

based system.
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2.2.1 Outline of Proposed Method

In the proposed method, we calculate the ideal playback quality of an object for

a given data stream (flow), and test whether or not the IUT works satisfying

the constraints in the specified test scenario by observing the time at which the

object outputs each data unit (called frame. e.g., a video picture, a unit of audio

data, etc) as shown in Fig. 2.

In general, when we measure the frame rate (the number of frames displayed

every second) of an object in a relatively short time interval (denoted as SP ),

it can vary due to the characteristics of an input flow such as jitter in packet

arrival time and packet losses. In the proposed method, we take a frame rate as

a sampling every SP time interval for a sufficiently long time interval (denoted

as LP ), calculate statistic information from distribution of those samplings, and

judge from the information whether or not the IUT correctly implements the

control mechanism for the frame rate.

We compose a test scenario of the following two sub-scenarios: (1) traffic

testing scenario which characterizes an input flow, and (2) quality testing sce-

nario which represents behavior of the playback with certain quality. From those

scenarios, we generate the following test cases (a set of test sequences).

• each test sequence transmits packets to the IUT at time within the allow-

able time range considering jitters and bursts specified in the traffic testing

scenario.

• each test sequence measures actual packet loss ratio in the IUT for a time

interval MP (such that SP ≤ MP ≤ LP ), and calculates the ideal frame

rate fps′ which is defined in Sect. 2.2.2.

• each test sequence measures average frame rate every time interval SP by

observing output from the IUT, and keeps it as a sampling. The test se-

quence collects samplings for time interval LP , and calculates the average

value and the standard deviation from those samplings. The test sequence

judges whether the IUT correctly implements the frame rate control mech-

anism with the specified QoS level, based on those calculated statistical

values and maximum tolerance acceptable denoted by ε which the test ex-

aminer gives in advance (see Fig. 3).
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For the sake of simplicity, we assume that the distribution of frame rates

follows the normal distribution like in Fig. 3. Then the judgment process can be

described as the following procedure.

1. calculate the average value µ and the standard deviation s derived from the

samplings kept during time interval LP .

2. apply normalization expression z = (x − µ)/s to ε, and calculate area C

that is an integral of (−∞, (ε − µ)/s] in the standard normal distribution

(see Fig. 3).

3. when the value of C is smaller than the reliance level r which was given by

the test examiner in advance, we conclude that the IUT passes the test.

In general, as shown in Fig. 3, we expect that the average frame rate µ

measured during time interval LP may match neither the original frame rate fps

nor the frame rate considering packet losses fps′ explained in the next section,

due to external and/or internal load factors.

2.2.2 Discussion about Playback Quality of Objects

The following factors are considered to give some influences to playback quality

of objects.

• jitter in packet arrival time and packet loss ratio

• heavy load/low performance at a client computer

For example, suppose that a server transmits to a client a video file encoded

in 30 frames/sec at a fixed transmission rate. A client computer receives packets

from the server and tries to play back the video at an appropriate frame rate. In

this case, the playback quality depends on the receiving rate, packet loss ratio,

jitters in packet arrival time, and load of the client computer.

If the client receives packets at almost the same rate as the server transmits,

if packet loss ratio is almost 0 %, and if its load is light enough, the frame rate to

be achieved will be close to the originally encoded one (i.e., 30 frames/sec). On

the other hand, if the packet loss ratio is high and/or the client’s load is high, the
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frame rate will be less than 30 frames/sec. According to the above discussion, we

define the ideally achievable frame rate as the following expression.

fps′ = fps · (1 − f(Loss)) · β

Here, fps and Loss denote the originally encoded frame rate and the packet

loss ratio, respectively. f(x) (0 ≤ f(x) ≤ 1) denotes the function representing

ratio of how much each packet’s loss causes the frame loss. Here, f(x) = x when

each frame is transmitted by exactly one packet. When each frame is transmitted

by several packets and/or there is inter-frame dependency like MPEG movies,

f(x) will be larger than x. β (0 < β ≤ 1) is another factor such as CPU load

other than flow characteristics at a client computer. For the sake of simplicity,

we suppose that β = 1 in this thesis.

2.3 Test Scenarios for Multi-Media Systems

As explained before, each test scenario for a multi-media system consists of a

multiple sub-scenarios. We specify these scenarios in a timed EFSM. In timed

EFSM, variables and guard expressions with those variables (i.e., execution con-

dition of transitions) used in EFSM can be used in addition to the basic functions

of timed automata[1]. Moreover, synchronization and constraints among multi-

ple timed EFSMs are specified in the form of synchronized parallel execution of

those timed EFSMs using the multi-way synchronization of LOTOS [9]. That

is, we specify behavior of the whole system by making timed EFSMs execute

synchronously and in parallel with the constraint oriented description style[13].

A timed EFSM is given as 6-tuple M =< S, A, C, V, δ, s0 >, where S =

{s0, s1, · · · , sn} is a finite set of states, A is a finite set of actions (events), C is a

finite set of clock variables, V is a finite set of variables, δ : S × A × C × V →
S×V ×C is a transition function, and s0 is an initial state. Let G be a set of gates

which represent interaction points to an external environment and IO be a set

of inputs/outputs from/to a gate. Here, A ⊆ G × IO. g?x represents an action

which inputs a value from gate g and stores it in variable x, and g!E represents

an action which outputs the value of expression E to gate g, respectively. A

transition function δ is represented by s
g?x[Guard]−→

Def s′ where s and s′ are the current
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state and the next state just after an action is executed at state s, respectively. A

transition condition for an action, denoted by Guard, is represented by a logical

conjunction of linear inequality with clock variables in C, variables in V and

constants. Def is a set of value assignments to variables including reset of clock

variables, which is represented as {x := x + 1, clock := 0} for example, and a

value assignment is executed when a state transition occurs.

We specify interaction and synchronization among timed EFSMs with the

multi-way synchronization mechanism. The test scenario for the whole system S

can be defined as follows.

S ::= S |[gate list]| S | S ||| S | (S) | EFSM

Here, EFSM is a name of a timed EFSM, and |[gate list]| is the synchronous

parallel operator where gate list is a gate list of the events to be synchronized

between its operator’s both sides of timed EFSMs. The operator ||| is the asyn-

chronous parallel operator, and it denotes that its operator’s both sides of timed

EFSMs can run in parallel without any synchronization. Those parallel operators

can be used recursively.

2.3.1 Test Scenario for Object Playback Functions

We suppose an IUT which plays back media objects such as audio and video

data. We specify a test scenario to test a playback function of the IUT with two

timed EFSMs: ST and SQ, which correspond to the traffic testing scenario and

the quality testing scenario, respectively. The whole test scenario P layer is given

as follows.

P layer := ST |||SQ

ST specifies traffic characteristics which the IUT receives, and SQ specifies

quality constraints about frame displaying time which the IUT should satisfy.

Note that these scenarios test given IUTs from external environments.

In ST , we explicitly specify an allowable time interval between subsequent

packets which the IUT receives. Here, for applicability to various network envi-

ronments, we use four parameters: (1) transmission rate AvRT of a media object,

(2) maximum burst length Burst, (3) maximum packet loss ratio Loss, and (4)
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maximum jitter in packet arrival time JT . For the sake of simplicity, we assume

that all packets have the same size and denote this by PctSz. We show example

description of ST in Fig. 4 where a double circle means the initial state.

In Fig. 4, clk and TP (q) represent a clock variable and a time interval by

which a server transmits each packet to realize playback quality q of a media

object, respectively. Here, TP (q) = PctSz/AvRT . ln and pn denote the num-

bers of lost packets and transmitted packets during a time interval MP , re-

spectively. There are four branches in ST : (1) normal mode: each packet is

transmitted to gate n(n!pct) in a time range of maximum jitter JT , that is,

TP (q)− JT ≤ clk ≤ TP (q) + JT ; (2) burst transmission: when going into burst

transmission mode (burst start), each packet is transmitted in smaller interval,

that is, clk < TP (q)−JT while the totally transmitted data size does not exceed

Burst. When burst transmission finishes, the current state returns to a normal

mode (burst end); (3) packet loss: each packet can be lost if packet loss ratio

((ln+1)/(pn+ ln+1)) measured during time interval MP is less than Loss; and

(4) initialization: pn, ln and burst are initialized to 0 (reset) every time interval

MP . As we will explain in Sect.2.4, by executing these choices repeatedly in an

appropriate probability we can test the IUT in the environment including jitter,

loss and burst to receive packets.

Similarly, we give SQ on playback quality of frames. For SQ, we use two

parameters FJT and MD, where FJT specifies the maximum value of fluctuation

on the time interval of subsequent frames while a media object is played back, and

MD specifies the maximum time skew representing how long the current frame

can be delayed or preceding from the expected displaying time of the frame (e.g.,

1000th frame in 30 fps video is expected to be displayed at 1000×33ms=33sec

after the video started). We show an example description of SQ in Fig. 5, where

TF (q) indicates the standard time interval between two subsequent frames with

quality q, and vn and sn indicate the numbers of displayed frames and skipped

frames measured during time interval MP , respectively.

There are three branches in SQ of Fig. 5: (1) frame display: when the current

time (clk) is within the appropriate time interval (TF (q)−FJT ≤ clk ≤ TF (q)+

FJT ) and the current frame (sn + vn + 1-th frame) is not too much delayed

or preceding from the expected time ((sn + vn + 1) · TF (q) − MD ≤ clk2 ≤
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n!pct[TP(q)-JT 
≤ clk ≤ TP(q)+JT]
{pn:=pn+1,clk:=0}

n!pct[clk  < TP(q)-JT 
and burst+PctSz ≤ Burst]
{burst:=burst+PctSz,
pn:=pn+1,clk:=0}

loss[TP(q)+JT+1 = clk
and (ln+1)/(pn+ln+1)<Loss]
{ln:=ln+1,clk:=0}

clk:=0

S T

burst_start

reset[MP/TP(q)≤ln+pn]
{ln:=0,pn:=0,burst:=0}

burst_end

Figure 4. Traffic Testing Scenario

skip[TF(q)+FJT+1= clk
and (sn+1)/(sn+1+vn) < f(Loss)]
{sn:=sn+1, clk:=0}

v?frame[TF(q)-FJT ≤ clk ≤ TF(q)+FJT 
and (sn+vn+1)·TF(q)-MD ≤ clk2 
              ≤ (sn+vn+1)·TF(q)+MD]
{vn:=vn+1, clk:=0}

clk:=0
clk2:=0SQ

reset[MP/TF(q)≤sn+vn]
{sn:=0,vn:=0}

Figure 5. Quality Testing Scenario

(sn + vn + 1) · TF (q) + MD), a frame is allowed to be displayed (v?frame);

(2) frame skipping: when the current time exceeds the allowable time interval

without displaying any frames and the frame skipping rate (sn+1)/(sn+vn+1)

measured during MP is less than f(Loss) defined in Sect. 2.2.2, a frame is

allowed to be skipped (skip[TF (q) + FJT + 1 = clk]); and (3) initialization: we

initializes variables sn and vn to 0 every time interval MP .

2.3.2 Scenario for Testing Lip-Synchronization among Multiple Ob-

jects

We describe a sub-scenario for testing lip-synchronization among multiple media

objects as a constraint among multiple quality testing scenarios for those objects,
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v?data[(cv+1)·TFv(qv)-ca·TFa(qa) ≤Tlip]
{cv:=cv+1}

Const sync

a?data[(ca+1)·TFa(qa)-cv·TFv(qv) ≤Tlip]
{ca:=ca+1}

cv:=0
ca:=0

skipv
{cv:=cv+1}

skipa
{ca:=ca+1}

Figure 6. Constraint for Lip Synchronization

using the constraint oriented description style[13].

For example, let P layer[nv, v, skipv] and P layer[na, a, skipa] be quality testing

scenarios for video playback and for audio playback, respectively, and we assume

that these two scenarios are executed independently in parallel. We also denote

nv, na and v, a to be input gate names and output gate names of video and audio,

respectively. skip behaviors for video and audio are distinguished by skipv and

skipa. Moreover, we let cv and ca denote the sequence numbers of frames of video

and audio frames, and TFv(qv) and TFa(qa) denote the playback interval of video

and audio frames, respectively. Here, we describe the sub-scenario Constsync such

that the maximum time skew between video and audio must be within Tlipmsec

as shown in Fig. 6. In general, Tlip should be less than 80msec. In Fig. 6, it

is explicitly described that each output of a video frame v? (output of an audio

frame a?) is allowed only if the time skew between the expected time of the

current frame and that of audio (video) is kept less than Tlip msec.

The test scenario for the whole system including the lip-synchronization con-

straint is given by the following constraint oriented description.

(P layer[nv, v, skipv]|||P layer[na, a, skipa])|[v, a, skipv, skipa]|Constsync

2.4 Test Case Generation

We derive test sequences from the traffic testing scenario, the quality testing

scenario, and the constraint for lip synchronization, explained in Sect. 3.2. Here-

after, we denote each test sequence as the following sequence Tseq.
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Tseq := a.Tseq|Tseq +p Tseq|(Tseq)|Tseq∗K

Here, a.Tseq, Tseq +p Tseq and Tseq∗K denote sequential execution of ac-

tions, choice between two sequences and iterative execution of the sequence,

respectively. Tseq1 +p Tseq2 specifies that Tseq1 and Tseq2 are executed at

probability 1 − p and p, respectively. In Tseq∗K , K denotes the number of it-

erations. If these values are not specified, default values such as p = 0.5 and

K = 100 are used when executing test sequences.

2.4.1 Test Case Generation for a Single Object Playback

In the proposed method, the test system observes time at which each frame is

displayed in the IUT, takes a sampling of a frame rate every time interval SP ,

and reports the test result by calculating ratio of samplings with low frame rate

below a threshold in a normal distribution of all samplings as explained in Sect.

2.2.1.

Consequently, from test scenarios ST and SQ, we derive test sequences TestT

and TestQ by adding new sequences for collecting a sampling every time interval

SP and for test verdict computation when monitoring period LP expires, and

by fixing the probability of choice “+” and the number of iteration “*” in the

sequences. We show examples of TestT and TestQ in Table 1 and Table 2,

respectively.

In Table 1, Open() and Read() denote some file operation primitives. Packet()

denotes a primitive to create a packet. In Table 2 Sampling(x), CalcStatistics

and Judgesult are primitives which record x as a sampling, calculates statistical

information, and calculates test verdict, respectively.

Derived test sequences TestT and TestQ must be executed in parallel for

an IUT. Since each action in those sequences can be executed at any time in-

stance within a specified time interval, the number of possible action sequences

for their parallel composition will be so many. Therefore, we do not serialize

those sequences. Instead, we make the test system capable of executing multiple

sequences in parallel.
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Table 1. Example Test Sequence TestT for Testing Input Traffic

TestT :=
{fp := Open(file)}.
{clk := 0, Loss := 0.0, ln := pn := burst := 0}.
({pct := Packet(Read(fp))}.
n!pct[TP (q) − JT ≤ clk ≤ TP (q) + JT ]{pn := pn + 1, clk := 0}

+[MP/TP (q) ≤ pn + ln]{pn := ln := 0}.
+([TP (q) + JT + 1 = clk and (ln + 1)/(pn + ln + 1) ≤ Loss]

{ln := ln + 1, clk := 0}
+(n!pct[clk < TP (q) − JT and burst + PctSz ≤ Burst]

{burst := burst + PctSz, pn := pn + 1, clk := 0}
)∗(Burst/PctSz)

)
)∗(LP/TP (q))

Table 2. Example of Test Sequence TestQ for Testing Playback Quality

TestQ :=
{clk2 := 0}.
({clk := 0, vn := sn := 0}.

(v?frame[TF (q) − FJT ≤ clk < TF (q) + FJT and

(sn + vn + 1) · TF (q) − MD ≤ clk2 ≤ (sn + vn + 1) · TF (q) + MD]
{vn := vn + 1, clk := 0}
+skip[TF (q) + FJT + 1 = clk]{sn := sn + 1, clk := 0}
+[MP/TF (q) ≤ sn + vn]{sn := vn := 0}.
)∗(SP/TF (q))

.Sampling(vn/SP ){vn := 0, sn := 0}
)∗(LP/SP )

.CalcStatistics.JudgeResult
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Table 3. Example Test Sequence Testsync for Lip Synchronization

Testsync :=
{ca = cv = 0}.
(v?data{cv := cv + 1}.Sampling((cv + 1) · TFv(qv) − ca · TFa(qa))
+skipv{cv := cv + 1}
+a?data{ca := ca + 1}.Sampling((ca + 1) · TFa(qa) − cv · TFv(qv))
+skipa{ca := ca + 1}
)∗(LP/Min(TFv (qv),TFa(qa))

.CalcStatistics.JudgeResult

2.4.2 Test Case Generation for Lip-synchronization among Multiple

Objects Playback

In the proposed method, a test of the lip-synchronization among multiple play-

backs of different media objects is similarly carried out using the statistical

method stated in Sect. 2.2.1, where a time lag of the latest frames between

two objects are collected as samplings. From test scenario Constsync in Sect.

2.3.2, we can derive a test sequence Testsync as shown in Table 3.

Let us denote Testv and Testa be test sequences for testing playbacks of video

and audio objects, respectively. Here, Testv := (TestTv |||TestQv). With Testv,

Testa and Testsync, we finally obtain the following test sequence for testing a

given IUT w.r.t. lip synchronization and playback qualities.

(Testv|||Testa)|[v, a, skipv, skipa]|Testsync

Since the above test sequence contains parallel and synchronization behaviors,

we have to implement a test system which provides parallel and synchronous

execution of multiple test sequences. Details of a test system are given in Sect.

2.5.

2.5 Implementation of Test System

A test system consists of a given IUT and a program which executes test sequences

derived in Sect. 2.4. We call the program as a tester. We would like to treat a
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given IUT as a black box. So, we make the IUT and its tester run in parallel as

different processes, and make them communicate with each other.

2.5.1 Implementation of Tester Program

Test sequences which we derived in Sect. 2.4 have the following characteristics.

(1) each action in a sequence specifies a time range during which it can be

executed. The exact execution time is not specified.

(2) a probability is specified in each choice “+” between two sub-sequences.

The number of iterative execution of a sub-sequence is also specified.

(3) for testing an object playback, two sequences are specified to be executed

in parallel.

(4) for lip-synchronization among multiple object playbacks, a constraint se-

quence is also specified to be executed synchronously with multiple test

sequences for those objects.

(5) statistical calculation primitives such as Sampling(), CalcStatistics(), JudgeRe-

sult() are contained in test sequences.

We have implemented a tester program which satisfies the above requirements

in Java language. Since test sequences are given in the syntax defined in Sect.

2.4, first we have developed a parser program using JavaCC. Based on some

techniques used in our real-time LOTOS compiler [17], we have implemented

parallel execution and synchronization mechanisms for multiple test sequences.

For the above (1), it is desirable to test if the IUT works correctly for all time

instances within the specified time range of each action in a given test sequence.

However, it is impossible since combination of time instances in multiple actions

will be infinite (in case of dense time). So, we have just implemented our tester

only to select a time instance at random within the specified range if the next

action in the test sequence is an output to the IUT. If the next action is an input

from the IUT, the tester measures the clock value based on the current system

time and checks whether or not the action has been executed within the specified

time range. If so, the tester continues. Otherwise, it stops to report that the
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Figure 7. Test Environment

test has failed. For the above (2), the tester just selects one of branching sub-

sequences based on random numbers, and repeats the specified sub-sequence the

specified times, respectively. To improve the validity of the test result in (1), we

can increase the number of iterations1 . For the above (5), we have implemented

statistical calculation primitives in Java, according to techniques explained in

Sect. 2.2.1.

2.5.2 Construction of Test Environment

The tester must be able to observe the time when each frame is output in the

IUT. Here, we assume that a certain event occurs and the time is notified to the

tester via gate v when a frame is output in the IUT. The test sequence for a single

1 In [4, 12], time instances near the borders of time ranges are intensively selected for tests.
We can also adopt the similar technique to improve the test validity.
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object playback derived in Sect. 2.4 contains parallel execution of two sub test

sequences: TestT and TestQ. In this case, the whole test system is executed as

shown in Fig. 7 (a). The test sequence for lip synchronization between two objects

contains four sub-test sequences (two for each) and one constraint Testsync. These

sequences are executed as shown in Fig. 7 (b). In order to reduce the influence

coming from the test environment such as additional delay and jitter, we execute

both the tester and the IUT in the same computer or in the separate computers

in the LAN.

2.6 Experimental Results

With the test system explained in Sect. 2.5, we have executed test sequences and

a given IUT and measured distribution of actual frame rates.

Our test purpose is to investigate whether a given IUT works satisfying QoS

functions (specified by ideal frame rate fps′, maximum tolerance acceptable ε,

and reliance level r of area below ε in the standard normal distribution) when the

IUT receives packets according to the specified traffic pattern (given by packet

loss ratio Loss, maximum jitter JT in packet arrival time, and maximum burst

length Burst).

Two kinds of programs have been used as IUT in our experiments: IUTa which

decodes and displays frames immediately after receiving packets (not regulate

frame rates); and IUTb which receives packets and stores them in a given buffer

for absorbing jitters of the packet arrival time in order to display frames at the

specified frame rate. We have implemented those IUTs in JMF2.1.1c(Java Media

Framework) [18].

With the test system explained in Sect.2.5, by changing the above parameters

given to IUTa and IUTb, we have examined the quality of playback mechanism

in those IUTs (Exp1 to Exp 10). The list of parameters is shown in Table 4.

We have used a motion JPEG stream (320×240pixels, 25fps, the size of each

frame is 5.88kbit) in all of our experiments and have applied SP=1s, MP=60s,

LP=1800s and TP=40ms (i.e, each frame is transmitted by one packet) to the

IUT. In the experiments we have measured the distribution of frame rates, by

which we can decide whether the IUT passes the test or not.

First, we have executed Exp1 to Exp5 for the IUTa. In the Exp1 and Exp2 we
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Table 4. Parameters used in Experiments

JT Loss Burst(bit)

Exp1 30ms 0.0 0

Exp2 10ms 0.0 0

Exp3 30ms 0.1 0

Exp4 30ms 0.1 58800

Exp5 30ms 0.2 58800

Exp6 30ms 0.0 0

Exp7 30ms 0.0 58800

Exp8 30ms 0.1 0

Exp9 30ms 0.2 0

Exp10 30ms 0.2 58800

Table 5. Test Results

average standard deviation given r given ε ratio under ε test result

Exp1 24.6 2.65 2% 25.0 4.2% failed
Exp2 24.8 1.71 2% 25.0 0.0% passed

IUTa Exp3 22.0 3.50 2% 22.5 12.3% failed
Exp4 19.6 4.36 2% 22.5 21.0% failed
Exp5 20.1 5.03 2% 20.0 20.3% failed

Exp6 25.0 — 2% 25.0 0.0% passed
Exp7 25.0 — 2% 22.5 0.0% passed

IUTb Exp8 22.5 4.23 2% 18.0 1.8% passed
Exp9 20.0 4.86 2% 16.0 16.6% failed
Exp10 19.7 3.80 2% 16.0 20.3% failed
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have investigated the difference in the distribution of the frame rate by changing

the value of JT . From Exp3 to Exp5 we have executed test sequences which

contains jitters, packet losses (Exp3, Exp4) and burst transmission (Exp5) to the

IUTa. The distribution of samplings for these experiments are shown in Fig. 8

and Fig. 9. These figures show that samplings are distributed in the wide range

where the center is around fps′ = 25× (1− Loss), and the distribution range of

samplings is influenced by each of jitters, packet losses, and burst transmission.

Then, we have executed Exp6 to Exp10 for the IUTb which has a buffer

and can control the frame rate. In Exp6 and Exp7, we have executed the test

sequence only containing jitters, and the test sequence containing both jitters and

burst transmission, respectively. In Exp8 and Exp9, we have executed the test

sequence containing jitters and packet losses, where the value of Loss is bigger in

Exp9 than in Exp8. In the last experiment Exp10, the test sequence contain all

factors: jitters, packet losses and burst transmission. The distribution of these

experiments are shown in Fig. 10 and Fig. 11. In Fig. 10, we see that all of

samplings concentrate in 25(fps′) or 24(fps′ − 1) because Jitters were absorbed.

On the other hand, if we compare Exp8 with Exp9 in Fig. 11, we see that the

distributed range of samplings is wider when the value of Loss is higher. We

think that this is because we specify Loss as the maximum packet loss ratio for

period MP=60s, but the actual packet loss ratio measured during short period

(e.g., SP ) may be more or less than the value of Loss. In Fig. 11 comparing

Exp8 with Exp9, we see that the influence due to burst transmission is small.

Next, with the method explained in Sect.2.2.1 , we have decided whether tests

pass or not. We calculated the average and standard deviation of samplings for

each experiment by supposing their normal distribution. Here, for example we

set maximum tolerance acceptable ε as fps′ ± 20% and reliance level r as 2%.

The list of the average, the standard deviation, the ratio of area under ε and the

test result for all experiments are shown in table 5. According to the table, we

see that the IUTa passes the test in the condition which JT was within 10ms and

Loss was close to 0 (Exp2). About IUTb, it passes the test when JT was within

30ms and Loss was within 0.1 (Exp6, 7, 8).

In order to evaluate the validity of our assumption which the distribution of

frame rates follow the normal distribution, we calculated the proportion of the
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Table 6. Comparison between Normal Distribution and Distribution of Actual

Samplings

proportion below(beyond) ε

frame rate normal distribution actual samplings

16 0.04182 0.002277

17 0.07493 0.010245

18 0.12302 0.026750

19 0.19215 0.088218

20 0.27759 0.198633

21 0.38209 0.355150

22 0.49601 0.582242

23 0.39358 0.417758

24 0.28774 0.211725

25 0.20045 0.076836

26 0.12924 0.018213

27 0.07927 0.003984

samplings under (or upper when ε > fps′) ε to the whole of samplings and the

proportion of C [−∞, (ε − µ)/s] to the whole area in the normal distribution.

We show the result in Table 6. Comparing the normal distribution and the

distribution of the actual samplings, we see that the proportion in the normal

distribution is in most cases bigger than in the actual samplings for each ε. If the

test passes on the proposed method, then the actual proportion under ε was not

bigger than reliance level r. So we think our assumption is valid enough.

Test for Lip Synchronization

Next, we have executed Exp11 to Exp13 for testing lip synchronization when

multiple object are played back in parallel.

In this experiment, the programs which can play back two videos in parallel

have been used as IUTc
2 . IUTc has a buffer and can control the frame rate

2 Althoughth we only observed the deviation of playback between two videos in experiment
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Table 7. Lip Synchronization Test Results

average standard deviation ε ratio under ε test result

Exp11(500ms) -0.520 12.842 40 0.082% passed

Exp12(1000ms) 1.279 16.141 40 0.84% passed

Exp13(5000ms) 16.057 20.815 40 12.5% failed
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similarly to IUTb, and can make two objects synchronize every SP ms. We have

executed Exp11-13 using IUTc which executes two test sequences in parallel and

SP is changed among 500ms, 1000ms and 5000ms. The distribution of samplings

corresponding to time skew between two objects in these experiments are shown

in Fig. 12. In Fig. 12, we see that samplings are distributed in the wide range

where the center is a round 0, and when the synchronization period is smaller,

more sampling are near the center.

Next, using the method explained in Sect.2.2.1, we have decided whether tests

pass or not. We calculated the average and standard deviation of samplings for

each experiment by supposing their normal distribution. Here, for example we

set ε as 40ms and reliance level r as 2%. The list of the average, the standard

deviation, the ratio of area under ε and the test result for all experiments are

shown in table 7. According to the table, we see that the IUTc passes the test in

the condition that SP is less than 1000 ms.

2.7 Conclusion

In this Chapter, we proposed a test method for QoS functions in distributed

multi-media systems. In the proposed method, using timed EFSM model, we

describe a test scenario which specifies input flow characteristics and play-back

quality to be realized for the flow, and generate test sequences from the scenario.

Using the generated test sequences, we can statistically test whether a given IUT

realizes certain quality for a given input flow. Through experiments with our

test system and sample IUTs, it is confirmed that the proposed test method

can efficiently test given IUTs depending on target network environments and

required playback quality.

for the sake of simplicity, the testing for deviation between audio can be executed as the same
method.
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3. Energy-aware Video Streaming System with

QoS Adaptation

Based on Inter-segment Importance

3.1 Introduction

In this Chapter, we propose a QoS adaptation method for streaming video play-

back for portable computing devices where playback quality of each video frag-

ment is automatically adjusted from the remaining battery amount, desirable

playback duration and the user’s preference to each fragment. In our method, we

assume that video segments (shots) of a video are classified into some predefined

categories in advance. For example, video segments of a soccer game can be clas-

sified into categories: shoot, normal-play, set-play, audience, other, etc. These

categories are described as meta information in MPEG-7 format. Classification

can be done manually using annotation tools like [30], or done automatically us-

ing tools like [31]. Next, a user specifies priorities among categories. For each

category, the user also specifies relative importance among playback parameters

such as motion speed, vividness and sound.

From the information above, playback quality/property for each category are

determined so that the video playback can last for the specified duration within

the battery amount. In our previous work [33], we have proposed a method to

determine fixed playback parameter values where a video can be played back

for the specified duration with the fixed quality. In this thesis, we enhance this

algorithm so that the battery amount can be allocated to categories according to

the specified priority and the playback property of each category is determined

based on the specified preference.

We have implemented a video streaming system consisting of a transcoder

which converts a video stream from a contents server to a new stream with any

specified parameters, and a video player which can be executed on PDAs. From

some experiments using our system, we have confirmed that the playback quality

of important categories can be improved a few times better than flattening the

playback quality over the playback duration, and that the prediction error of the

playback duration is within 5%.
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In previous transcoding techniques which simply reduce the picture size, ob-

jects in each picture frame become too small and difficult to identify. [29] copes

with this problem by specifying the user’s interesting area in the picture with the

MPEG-21 DIA framework so that only the area is trimmed off and transcoded.

In [28], a video in MPEG-4 format is divided into objects of several categories

such as foreground objects and background objects. Here, playback qualities of

important objects are maintained while qualities of other objects are lowered.

The objectives of these existing researches are to satisfy restrictions of portable

devices w.r.t. picture size and available bandwidth. However, we believe that the

restriction w.r.t. the battery amount and the playback property of each fragment

are also important. These points are new in our approach.

3.2 Describing Meta Data and Priorities

MPEG-7 has been standardized by ISO/IEC as a description method of meta

information for multimedia contents encoded in MPEG-1, 2 and 4. In MPEG-7,

meta data can be specified for any fragment of a video in order to facilitate users

to search a specified fragment by its “feature data”. These meta data of a video

are described in a XML file.

3.2.1 Specifying feature data to each video segment

We use a keyword called category as feature data, and denote a set of cate-

gories by C = {c1, · · · , cn}. Here, a category ci is specified by a string. For

example, for the video of a soccer game, we may use a set of categories C =

{shoot, play, audience, other}. A fragment in a video taken by the same camera

work is called a shot or segment. In this thesis, we suppose that a category ci ∈ C

is assigned to each segment.

In general, MPEG files do not contain the boundary information of each

segment. The tool named VideoAnnEx (IBM MPEG-7 Annotation Tool) [30] can

read a MPEG1 file, identify each video segment automatically, assign a string to

each segment, and output an MPEG-7 file as shown below.

<VideoSegment>

<TextAnnotation>
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<FreeTextAnnotation> shoot

</FreeTextAnnotation>

</TextAnnotation>

<MediaTime>

<MediaTimePoint> T00:00:00:0F25

</MediaTimePoint>

<MediaIncrDuration mediaTimeUnit

="PT1N25F"> 78

</MediaIncrDuration>

</MediaTime>

</VideoSegment>

In the above file, string shoot is specified to a video segment as a category

using tag <TextAnnotation>. Tag <MediaTime> describes the starting time and

the duration of this segment.

3.2.2 Specifying importance among categories

It is desirable for users to be able to specify what part of a video will be played

back with higher quality. So, we allow users to specify relative importance among

categories as priority values. Let pi denote the priority specified to category ci

where pi is an integer number such that pi ≥ 1.

The playback property of a video is decided by the balance of its picture

size, frame rate and bitrate. In general, users have different preferences for the

playback property of each category. Also, there may be various combinations of

properties which consume the same electric power. So, we allow users to specify

a preference to the property of each category by relative importance among three

factors: motion speed, vividness and sound. We denote these factors by spdi, vidi

and sndi for category ci. An integer number between 0 and m (m is a constant

such as 3) can be specified to each factor.

For example, in a video of a soccer game, suppose that sound is not very

important in all categories, that both the motion speed and the vividness are very

important in category shoot, that only the motion speed is somewhat important

in category play, and that only the vividness is somewhat important in categories

audience and other. In such a case, users give the following preference.
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category spd vid snd

shoot 3 3 1

play 2 1 1

audience 1 2 1

other 1 2 1

3.3 Algorithm for Deciding Playback Quality

3.3.1 Battery distribution among categories

Let us denote battery amount of a portable computing device by E0, and the

desirable playback duration of a video by T . We denote by w0 the power consumed

while no video is played back (i.e., the power consumed by the operating system,

the back-light for LCD, and so on). Thus, the battery required for playback of a

video with duration T is denoted by E = E0 −w0T . Here, we can easily measure

the actual value of w0 for any device.

For each category ci ∈ C, the product of its importance and playback duration

is called the virtual playback time of ci. We denote it by T ′
i (= piTi). Also, the

total sum of the virtual time of all categories is denoted by T ′(=
∑

ci∈C T ′
i ).

In our algorithm, we distribute the remaining battery amount E among cat-

egories according to the proportion of the virtual time T ′
i/T

′ of each category.

That is, Ei(= ET ′
i/T

′) is allocated for playback of each category ci.

The property of each video is represented by picture size r, frame rate f and

bitrate b. We denote it by (r, f, b). We denote the properties of videos with

the maximum quality and with the minimum quality by (rmax, fmax, bmax) and

(rmin, fmin, bmin), respectively. Here, the video with the maximum quality might

be the one with satisfactory quality or the maximum one which the device can

play back without changing its property. The video with the minimum quality

can similarly be defined.

In [33], we have confirmed that the battery amount E consumed by video

playback is approximately proportional to the product of picture size r, frame

rate f , bitrate b and playback duration T . That is, E = αrfbT . Here, α is a

device specific constant and can be measured for any device using our technique

in [33].
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Due to this fact, if Ei > αrmaxfmaxbmaxTi, Ei is too much for playback of

video segments in ci. Similarly, if Ei < αrminfminbminTi, Ei is too small for

playing back segments in ci. In either case, we fix Ei = αrmaxfmaxbmaxTi or

Ei = αrminfminbminTi, and distribute the remaining battery amount E ′(= E −
Ei) among remaining categories C − {ci}. Consequently, we can obtain battery

amount Ei for playback of category ci as a constant value.

3.3.2 Decision of each category’s playback property

We would like to decide the playback property of each category ci as picture size

(i.e., number of pixels) ri, frame rate fi and bitrate bi from battery Ei assigned

for ci, playback duration Ti and the user preference (spdi, vidi, sndi) for playback

property of ci.

Here, it is considered that motion speed spdi and vividness vidi influence the

frame rate and the picture size, respectively. On the other hand, bitrate bi is

influenced from all of spdi, vidi and sndi. Therefore, the proportion of bi will be

(vidi + spdi + sndi)/3. If we do not use sound (i.e., sndi = 0), the proportion will

be (vidi + spdi)/2. For the sake of simplicity, we suppose sndi = 0, hereafter.

When playing back from storage

From user preference (spdi, vidi), we would like to decide playback property

(ri, fi, bi) such that Ei = αrifibiTi. Since we cannot directly compare the ra-

tio between the picture size, the frame rate and the bitrate, we use the ratio of

each video parameter to the corresponding one of an original video (r0, f0, b0) as

follows.

ri

r0
:

fi

f0
:

bi

b0
= vidi : spdi :

vidi + spdi

2

From the above equation, we can derive fi = spdif0

vidir0
ri and bi = (spdi+vidi)b0

2vidir0
ri.

When we assign these equations to formula Ei = αrifibiTi,

Ei = α
spdi(spdi + vidi)f0b0

2vid2
i r

2
0

Tir
3
i

is derived. Then, we can calculate the value of ri as follows.
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ri = 3

√
2Eivid2

i r
2
0

αTispdi(spdi + vidi)f0b0

Similarly, the values of fi and bi can be obtained as follows.

fi = 3

√
2Eispd2

i r
2
0

αTividi(spdi + vidi)r0b0
bi = 3

√
Ei(vidi + spdi)2b2

0

4αTispdividif0r0

When playing back streaming video via wireless LAN

When playing back a video with bitrate b bps using IEEE 802.11b, the power con-

sumed for communication by a portable computing device and a WNIC (wireless

network interface card) can be approximated by the linear expression of bitrate

b [33]. That is, β + γb. Here, β and γ are device specific constants and can be

measured for any portable devices and WNIC.

Our preliminary experiments using IEEE 802.11b have shown that β is much

larger than γb. Owing to this fact, when available bandwidth is larger than b bps,

we can vastly reduce battery consumption [33] by dividing a video (whose bitrate

is b bps) to fragments with M bit, transmitting each fragment at B bps (B > b)

every M/b seconds so that the portable device stores each received fragment in

a local buffer, turns off its WNIC until the next transmission period comes, and

plays back the fragment from the buffer. We call this scheme buffered playback.

In the buffered playback, when transmitting each fragment at k(= B/b) times

of original bitrate b, the portable device can receive it in 1/k of the originally

required time. So, the power supply to WNIC can be stopped during most of the

playback time. However, actually, it takes a few seconds (denoted by ton/off ) to

stop/resume WNIC during which some power (denoted by τ) is consumed.

In a video, there are some video segments (denoted by segi) which belong to

category ci. Total size of video segments in ci is biTi. When we divide it to M

bit fragments, the total number of transmissions can be denoted by biTi

M
+ segi in

the worst case. Practically, we can omit “+segi” from the expression.

Consequently, battery consumption for playing back ci when using buffered

playback, is represented by
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 {<vid1,spd1,snd1>,...}

Figure 13. Energy-aware streaming system

Ei = αrifibiTi + (β + γB)
bi

B
Ti +

biTi

M
τton/off

By assigning equations fi = spdif0

vidir0
ri and bi = (spdi+vidi)b0

2vidir0
ri, we can get the

following equation of ri.

Ei = α
spdi(spdi + vidi)f0b0

vid2
i r

2
0

Tir
3
i

+(
β + γB

B
+

τton/off

M
)
(spdi + vidi)b0

2vidir0

Tiri

We can obtain the value of ri from the above equation, for example, using

Newton’s method.

If either of the calculated values of ri, fi and bi is larger/smaller than the

maximum/minimum threshold, we can fix the parameter value, and re-calculate

the values of the other parameters. For example, the value of ri is larger than

portable device’s screen size rmax, we fix ri to rmax and re-calculate fi and bi

using the algorithm recursively.

3.4 Streaming System

We have implemented a video streaming system consisting of a movie player and

a transcoding proxy as shown in Fig.13. The transcoding proxy is supposed to be

executed at a contents server or at an intermediate node on the network. Each
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user sends (1) a video’s URL with the desirable playback duration and its MPEG-

7 file, (2) priorities among categories, (3) a preference to the playback property for

each category and (4) the device specific terminal information (values of E, α, β, γ,

etc) to the transcoding proxy. The transcoding proxy transcodes a video stream

transmitted from a contents server to a new stream with the playback quality

and property calculated by the algorithm described in Sect. 4.3.3, and relays the

stream to the portable computing device.

3.5 Experimental Results and Evaluation

Playback quality in important categories

Using the algorithm in Sect. 4.3.3, we have investigated to what extent the

playback quality of important categories is improved and the quality of the other

categories is degraded.

In the experiment, we assume that video segments in a video are classified

into two categories: important category c1 and less-important category c2.

Let R denote the ratio of playback duration T1 of c1 to total playback duration

T = T1 + T2 (i.e., R
def
= T1/(T1 + T2)). Let p1 and p2 denote the priorities for c1

and c2, respectively. Let M denote the ratio of p1 to p2 (i.e., M
def
= p1/p2) and

we assume that 0.05 ≤ R ≤ 0.5 and 1.5 ≤ M ≤ 4.

We have observed variation of the playback qualities of video segments in c1

and c2 by changing R from 0.05 to 0.5 by 0.05 step and M in 1.5, 2, 3 and 4,

respectively. The resulting graphs are depicted in Fig. 14, where the horizontal

axis and the vertical axis represent R and playback quality Q, respectively. Since

quality Q is defined as 3

√
rifibi/r0f0b0, Q varies between 0 and 1, where (r0, f0, b0)

is the property of an original video before transcoding. Since we mainly focus

on the use of PDAs, we set (r0, f0, b0) to (320 × 240, 30fps, 700Kbps) in this

experiment. Q becomes 0.41, if all categories have the same priorities, that is,

p1 = p2. Fig. 14 shows that while R is less than 0.2, the playback quality in

important categories can be improved significantly by a small reduction of the

playback quality of less-important categories. Even when R is high (around 0.3),

we can improve the quality of important categories much with about 20 % quality

degradation in less-important categories, by controlling M under 2.
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Figure 14. Quality improvement

Playback property among categories

In the proposed method, we can also change the playback property of each cat-

egory according to the importance among categories. Here, using preferences of

pref1, pref2, pref3 and pref4 in Table 8, playback properties of their categories

were calculated using the algorithm in Sect. 4.3.3. The results are shown in Table

8.

The results show that the playback properties were changed by the ratio of

importance among categories. For example, for pref3 and pref4, we set the same

importance of category c2 as 2 and change the playback property of categories

(pref4 spdi: vidi = 2 : 1, pref3 spdi:vidi = 1 : 2). We see that the frame rate of

pref4 becomes larger than pref3 and the size becomes smaller.

Ratio of prediction error

We have measured actual playback durations of a video with 1800 sec. within

the remaining battery using preferences in Table 8.

In the experiment, a PDA (SHARP, ZAURUS SL-C700) with an IEEE 802.11b
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Table 8. Playback Qualities with property

cat. (Ti, pi, spdi, vidi) (r, f, b)

c1 (678, 1, 1, 1) (245 × 184, 17.60, 250K)

pref1 c2 (662, 1, 1, 1) (245 × 184, 17.60, 250K)

c3 (460, 1, 1, 1) (245 × 184, 17.60, 250K)

c1 (678, 1, 1, 1) (196 × 147, 11.26, 143K)

pref2 c2 (662, 2, 1, 1) (240 × 180, 16.91, 238K)

c3 (460, 4, 1, 1) (293 × 219, 25.06, 395K)

c1 (678, 1, 1, 1) (196 × 147, 11.26, 143K)

pref3 c2 (662, 2, 1, 2) (292 × 219, 12.47, 201K)

c3 (460, 4, 2, 3) (320 × 240, 21.61, 365K)

c1 (678, 1, 1, 1) (196 × 147, 11.26, 143K)

pref4 c2 (662, 2, 2, 1) (196 × 147, 22.48, 288K)

c3 (460, 4, 3, 2) (261 × 196, 29.97, 439K)

WLAN card (WN-B11/CF, I-O DATA Device, inc.) was used. A WLAN access

point is connected to the LAN to which a PC executing a transcoding proxy is

connected.

For pref1 - pref4 video segments in the video are played back with the playback

qualities of their categories shown in Table 8. For pref1, pref2, pref3 and pref4,

actual playback durations were 1868sec,1850sec, 1820sec and 1849sec.

Evaluation

We have evaluated the impact of the proposed method by means of questionnaire.

In the evaluation, we used a soccer video with 180 minutes and let four testers

watch the video with dynamic QoS adaptation using pref1 in Table 8 and that

with the fixed quality (picture size of 230 × 172, 15.51fps, 362Kbps) calculated

by our previous algorithm in [33].

As a result, all of testers preferred the playback quality in important cate-

gories using the proposed method to the fixed playback quality using our previous

method. Some of testers preferred larger picture size to larger frame rate. There
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are different opinions on the playback quality in less-important categories. Some

said that the picture size is too small and the motion speed is too clumsy, others

said no problem. Also, there is a comment that the sudden picture size change

is a bit unnatural.

3.6 Conclusions

In this Chapter, we proposed an energy-aware QoS adaptation method for stream-

ing video playback for portable computing devices, based on MPEG-7 meta infor-

mation and priorities among segments in a video. We confirmed that on portable

devices with limited battery amount, the user’s feeling of satisfaction can be

improved to some extent compared with flattening playback quality over the

playback duration.
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4. MTcast: A Multiple Transcoding Approach

for Video Multicast

4.1 Introduction

In this chapter, we propose a new video delivery method called MTcast (Multi-

ple Transcode based video multicast) which achieves efficient simultaneous video

delivery to multiple heterogeneous users by relying on user nodes to transcode

and forward video to other user nodes. In MTcast, each user specifies a quality

requirement for a video consisting of bitrate, picture size and frame rate based

on the user’s environmental resource limitation. All users can receive video with

specified quality (or near quality) along a single delivery tree. A different quality

requirement can be specified to each time segment or to each video shot.

In order to achieve the proposed method, the followings should be considered:

(1) high scalability for accommodating a large number of users, (2) high user

satisfaction degree in the sense that the delivered quality is close to the required

quality, (3) small resource consumption within available resource of each user

node, (4) short startup latency to start playing back video quickly, (5) reasonable

number of transcoding times for keeping good video quality as well as short de-

livery latency, and (6) high robustness for continuing video delivery service even

with node/link failures.

In order to achieve the above (1) to (3), in the proposed method, we construct

a delivery tree called transcode tree whose root is the sender of a video content.

The transcode tree is constructed as a perfect n-ary tree, where user nodes with

higher quality requirements are located near the root of the tree, and nodes with

lower quality requirements are located far from the root. Nodes are placed in the

appropriate places of the transcode tree according to their computation power,

available downstream and upstream bandwidths. Each node in the tree receives

a video stream, transcodes it to lower quality video in real time and forwards it to

its children nodes. In order to achieve the above (4) to (6), nodes are grouped so

that each group has k members with similar quality requirements. These groups

are called layers. All nodes in a layer receives the video with the same quality

from their parent nodes along the transcode tree. We let the representative node
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of each layer keep the complete information of the tree. This allows a new receiver

to easily find the layer which has the closest quality to its own quality requirement

and to quickly send a request to the node in the layer to start delivery of the video.

In order to accommodate new receivers or to replace faulty nodes with normal

ones, we made each layer to keep a certain amount of extra computation power

and available upstream bandwidth (computed from the value of k). In general,

if we use a large number for k, we can improve performance of the above (4) to

(6). However, user satisfaction degree may be reduced since the received video

quality is averaged over k members. So, in the proposed method, we adopted an

approach to dynamically increase the value of k as the total number of receivers

increases. When the number of receivers is sufficiently large, we can make both

user satisfaction and system robustness high.

After certain time elapses, extra resources at a layer might have been ex-

hausted. So, our method reconstructs the transcode tree periodically or at each

time boundary between subsequent video shots. Video delivery requests and fail-

ures occurring after extra resources of a layer is exhausted, are processed during

the next tree reconstruction.

We have investigated performance of MTcast by simulations using topologies

generated by Inet3.0[44]. As a result, we have confirmed that MTcast can achieve

both higher user satisfaction degree and higher robustness than the layered mul-

ticast method.

4.2 Basic Ideas

4.2.1 Target Environment and Goals

In this chapter, we deal with a method for simultaneously delivering a video

content to multiple heterogeneous users who have different available bandwidth,

different computation power, and different display resolutions. Here, we assume

the following number of users, types of user terminals, types of communication

infrastructures and target contents.

• user terminal: desktop PC, laptop PC, PDA, cellular phone, etc.

• communication infrastructure: Either fixed broadband (leased lines, ADSL,
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CATV, etc.) or wireless network (wireless LAN, W-CDMA, Bluetooth,

GSM/PDC, etc).

• the total number of users: 500 to 100,000

• target contents: video (both recorded and live)

We assume a service which starts to transmit a video content to all receivers

at the same starting time like TV broadcast. Even after the starting time of

the video, users can start to receive the video anytime, but the video can be

watched from the scene currently in transmission. The on-demand service in

which users can watch favorite contents from beginning anytime is out of scope

of this research.

Transmitting a video stream from a server to the several thousands of users

directly is not realistic in terms of the required bandwidth and the server load.

Here, we assume that user nodes are connected to each other through overlay

links, and that each node uses overlay multicast to transmit/receive streams

to/from the other node.

In order to achieve simultaneous video delivery to multiple heterogeneous users

by the overlay multicast, it is necessary to build a multicast tree which satisfies

the quality requirement and environmental restriction of each node. So, in the

multicast tree, we let each user node except leaf nodes transcode a video stream

and forward it to its children nodes as well as receive and play back the stream.

Although other existing methods such as the layered multicast method [39,

41], the multi-description coding [45, 46], and MPEG4-FGS[43] can change only

bitrates, the transcode method can change multiple video parameters (picture

size, bitrate, frame rate, encoding method, etc). Thus, it can treat user’s various

quality requirements such as keeping the picture size larger by reducing frame

rate within the same bitrate.

From the above discussion, the main purpose would be to build and manage

the multicast tree which satisfies criteria (1) to (6) in Sect. 4.1 and to devise the

efficient video delivery method using the tree.
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4.2.2 Basic Policy

In order to satisfy the criteria (1) to (6) in Sect. 4.1, the following four points

are considered as basic policies in our method.

Firstly, playback quality of a node cannot exceed parent’s quality even if

the terminal has ability to play back the video in higher quality. Thus, if a

terminal with poor computation power such as PDA is placed near the root of

the multicast tree, video quality of all descendant nodes of the PDA becomes

also poor. Accordingly, in order to satisfy as many users’ quality requirements

as possible, (1) we build the multicast tree so that the quality of video decreases

gradually from the root node to the leaf nodes.

Secondly, video quality deteriorates if transcoding is repeatedly applied to a

video. Thus, in order to reduce the number of transcoding times, (2) we build

the multicast tree whose height is as short as possible.

Thirdly, since the required computation power for transcoding is relatively big,

it is not realistic that a specific node transcodes multiple streams at the same

time. So, (3) we control computation power required for transcoding within a

certain threshold so that the service quality(i.e., playback quality) is not reduced

by transcoding load.

Finally, we must consider node failure in overlay networks. So, (4) even if a

node unexpectedly fails, we control the stream to be delivered smoothly to its

children nodes by assigning an alternative parent node.

4.3 MTcast

4.3.1 Definitions

Let s denote a video server, and U = {u1, ..., uN} denote a set of user nodes. We

assume that for each ui ∈ U , available upstream (i.e., node to network) bandwidth

and downstream (i.e., network to node) bandwidth are known in advance. We

denote them by ui.upper bw and ui.lower bw, respectively. Let ui.q denote ui’s

video quality requirement. In general, as ui.q, multiple video parameters such

as bitrate, picture size and frame rate are specified. Here, we assume that ui.q
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represents only bitrate of video3 . Let ui.ntrans(q) denote the maximum number

of simultaneous transcoding which can be executed by ui for videos with quality

q. Let ui.nlink(q) denote the maximum number of simultaneous forwarding of

videos with quality q which can be performed by ui. ui.ntrans(q) and ui.nlink(q)

are calculated from computation power of ui, ui.upper bw and video quality.

In the proposed method, we construct a multicast tree where s is a root node

and user nodes in U are intermediate or a leaf nodes. Hereafter, this multicast

tree is called the transcode tree. In a transcode tree, nodes with children nodes

are called internal nodes, and nodes without children nodes are called leaf nodes.

4.3.2 Structure of Transcode Tree

Internal nodes in a transcode tree transmit a video stream to children nodes. It

is not desirable for internal nodes to have too many children nodes since it would

cause severe overload. In the proposed method, we assume that fanout (degree)

of each node is basically a constant (denoted by n). As we will explain in Sect.

4.3.4, we decide the value of n depending on available resources of user nodes.

In order to reduce the delay time and the number of transcoding until each

leaf node receives video, we construct the transcode tree as a slight modification

of complete n-ary tree where degree of the root node is changed to k instead of n

(k is a constant, and explained later). In a transcode tree, for each node ui ∈ U

and each of its children nodes uj, ui.q ≥ uj.q holds. That is, from the root node

to each leaf node, nodes are ordered in decreasing order of quality requirements.

In order to tolerate node failures and to shorten startup delay to start video

delivery, every k nodes in U are bunched up into one group. We call each group

a layer, where k is a predetermined constant, as shown in Fig. 15. We let user

nodes in the same layer receive video with the same quality. This quality is called

the layer quality. A representative node is selected for each layer. Parent-child

relationship among all layers on the transcode tree is called the layer tree. Since

fanout of each node is n, each layer’s fanout in the layer tree also becomes n.

An example of the transcode tree with n = 2 and k = 6 is shown in Fig. 15.

Here, small circles and big ovals represent nodes and layers, respectively. Each

3 By defining the total order among tuples of video parameters, the proposed method can be
applied to multiple parameter cases.
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Figure 15. Example of Transcode Tree, where n = 2, k = 6

bitrate (e.g., 500kbps) represents the layer quality.

4.3.3 Construction of Transcode Tree

In our method, the transcode tree is calculated in a centralized way by a user

node uc or a server S. The way of deciding uc is explained later. We assume that

uc has information of a video server s and user nodes U ′ ⊆ U who have requested

video. Our tree construction algorithm consists of the following three steps.

Let A = {s} ∪U ′, denote the set of all nodes. In the first step, our algorithm

divides A into the set of candidate internal nodes UI and the set of leaf nodes

UL. We always put s into UI .

u.ntrans(u.q) ≥ 1 (1)

u.nlink(u.q) ≥ n + 1 (2)

For each node u ∈ A, the algorithm checks if the above inequalities hold or

not. If they hold for u, then u is put into UI , otherwise put into UL. The above

inequalities (1) and (2) represent whether node u can perform transcoding of one

or more videos and whether u can forward n + 1 video streams.

After that, if |UI | < 1
n
|A|, quality requirements of |UL| − n−1

n
|A| nodes in UL

with larger upstream bandwidths are reduced so that the inequalities (1) and (2)

hold. Then, those nodes are moved to UI . By the above procedure, |UI | ≥ 1
n
|A|

always holds.
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Figure 16. Layer-tree construction

In the second step, the algorithm assigns the set of all nodes A to layers.

Elements of UI are sorted in decreasing order of their quality requirements and

every bunch of k elements is packed to an internal layer. Here, we select the first

node of each layer as the representative node of the layer. The average value of

quality requirements is assigned as the layer quality. For the set of leaf nodes UL,

elements are similarly packed to leaf layers.

In the last step, the transcode tree is constructed. The algorithm sorts internal

layers in decreasing order of layer quality, and constructs the complete n-ary tree

of those internal layers so that the layer quality of each layer does not exceeds

that of its parent layer. Next, the algorithm attaches each leaf layer L to the

internal layer whose layer quality is closest to L. If the layer quality of L exceeds

that of L’s parent layer, the layer quality of L is adjusted to that of L’s parent.

The order of assigning internal layers to n-ary tree could be of many ways.

For example, either order of breadth-first search or order of depth-first search

can be used for this purpose. In Fig. 16, we show results when we assign to a

complete binary tree 8 internal layers and 7 leaf layers in order of breadth-first

search and order of depth-first search, respectively. Here, the layer quality of

internal layers is {100, 300, ..., 1500} and that of leaf layers is {200, 400, ..., 1400}.
We assigned one internal layer (layer with quality 100) without children as a child

of the internal node with the 2nd smallest layer quality.

From Fig. 16, we see that depth-first search based assignment can construct

a better layer tree than breadth-first search based one. So, in our algorithm, we

use the depth-first search based assignment.
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Finally, the transcode tree is obtained by assigning internal nodes and leaf

nodes to internal layers and leaf layers in decreasing order of their required quality,

respectively.

4.3.4 Adaptation to available bandwidth between nodes

In our method, after constructing the layer tree, each node which belongs to

the child layer selects an actual delivery node from k nodes in the parent layer.

Whether each child node can receive the video with the requested quality or not

depends on the available bandwidth on the path, that is, links on a physical

network connecting the child node to the parent node. Below, we describe how

to decide the parent nodes by taking into consideration of the physical topology

of the network and available bandwidths on paths in the network. Here, we also

consider the case that two or more overlay links share the same physical links

and thus compete the available bandwidths on those links.

Let C and P be the sets of nodes which belong to a layer and its parent layer,

respectively. We suppose that, for each pair of nodes between the child layer and

the parent layer, the physical path and the available bandwidth can be obtained

with tools such as traceroute and pathload [47], respectively. Let bw(c, p) and

L(c, p) denote the available bandwidth measured with a tool like pathload (called

measured available bandwidth, hereafter) and the set of links between c ∈ C and

p ∈ P except for links connected to nodes c and p, respectively.

Next, we estimate the worst-case available bandwidth of each overlay link

(called estimated available bandwidth, hereafter) by considering some of links are

shared among multiple overlay links. Initially, for each pair of nodes (c, p) ∈
C×P , the estimated available bandwidth of each link l ∈ L(c, p) is set to bw(c, p).

The estimation is done based on the link stress of each link (i.e., the number

of overlay links which use the same physical link for the same data transmission)

as follows. (1) The initial link stress is set to 0 for each physical link. (2) For each

pair (c, p) ∈ C×P and for each link l ∈ L(c, p), the link stress of l is incremented.

However, once the link stress has been already incremented by node c, we do not

let other paths including c increment the link stress of the same link to avoid

duplicated counting.

Based on the measured available bandwidth and the link stress of each physical
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link, we decide the parent node of each child node as follows. (i) For each c ∈ C,

the following step (ii) is examined in increasing order of node ID. (ii) For each

p ∈ P , whether node p can deliver the video with the specified bitrate to node

c or not is decided based on the estimated available bandwidth on path L(c, p).

If there is no parent node which has enough available bandwidth for the video

delivery to node c, node c is moved to a lower quality layer. If only a node can

deliver video to c with required bitrate, this node is selected as the parent node

of c, and the following step (iv) is executed. If there are multiple nodes which can

deliver video to node c with the required bitrate, the following step (iii) is applied

to selecting the parent node of c. (iii) For each node p ∈ P which can deliver

video to c with the required bitrate, the new estimated available bandwidth for

each link in L(c, p) is calculated by dividing the current estimated bandwidth

by the link stress. One node with the largest estimated available bandwidth is

selected as the parent node of c. (iv) Once node p is selected as the parent of c,

we re-calculate the link stress of each link l ∈ L(c, p) without incrementing it by

the paths including c and subtract the bitrate of the video from the estimated

available bandwidth of l. If some bandwidth is still remaining in l, it can be used

for another overlay links.

We will explain more about our algorithm with an example. We assume that

k = 3, C = {c1, c2, c3}, and P = {p1, p2, p3}. We also assume that each node c ∈ C

requires the video with bitrate 800Kbps. We show measured available bandwidths

and estimated available bandwidths in Fig. 17(a) and (b), respectively.

First, we decide the parent node of c1. Link stresses on all links are shown

in Fig. 17 (b). Here, all of p1, p2 and p3 have enough available bandwidths for

delivery of video with 800Kbps to node c1. So, among them, one with the largest

estimated available bandwidth is selected as the parent node of c1. Since the

estimated available bandwidths are 500Kbps, 400Kbps, and 400Kbps for links

(r3, r2), (r3, r6), and (r3, r6), respectively, node p1 which has the largest estimated

bandwidth is selected as the parent of c1. Then the link stresses of all links

included in the paths including p1 are re-calculated for the topology without those

paths, and the bitrate 800Kbps is subtracted from estimated available bandwidths

of links on the path between c1 and p1. Similarly, when we apply the same

algorithm to selection of the parent nodes of c2 and c3, p3 and p2 are selected as
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path measured bandwidth

(c1, p1) (c1, r3, r2, r1, p1) 1000Kbps

(c1, p2) (c1, r3, r6, r5, r4, p2) 800Kbps

(c1, p3) (c1, r3, r6, r5, r8, r7, p3) 800Kbps

(c2, p1) (c2, r6, r3, r2, r1, p1) 800Kbps

(c2, p2) (c2, r6, r5, r4, p2) 900Kbps

(c2, p3) (c2, r6, r5, r8, r7, p3) 2000Kbps

(c3, p1) (c3, r9, r5, r4, r2, r1, p1) 1500Kbps

(c3, p2) (c3, r9, r5, r4, p2) 1000Kbps

(c3, p3) (c3, r9, r10, r7, p3) 800Kbps

Table 9. Measured available bandwidths on physical paths

p1 p2 p3

c1 c2 c3

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

1500K/3

1000K/2

1500K/1

800K/2

1500K/3 2000K/2

2000K/2

800K/1

800K/1
1500K/1

2000K/2

estimated 
bandwidth

link stress

Figure 17. Physical topology between nodes with estimated available bandwidths

and link stresses
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their parent nodes, respectively.

How to decide appropriate values of n and k

In our method, the transcode tree is constructed as (a modified version of) a

complete n-ary tree. So, as the value of n becomes large, the tree height (i.e., the

number of transcoding) decreases. Since the required upstream bandwidth of each

node increases in proportion of n’s value, the value of n must be carefully decided

considering upstream bandwidth limitation of each node. We can decide the

maximum value of n so that the number of nodes satisfying inequality u.nlink(q) ≥
n + 1 is equal to 1

n
|A|. If f nodes can leave from a layer at the same time before

the transcode tree is reconstructed, the remaining k−f nodes in the current layer

must transmit video streams to n ·k children nodes. So, the following inequalities

must hold in order to recover from f simultaneous failures in each layer.

(k − f)u.nlink(q) ≥ n · k
(k − f)u.ntrans(q) ≥ 	 k

u.nlink(q)

n (3)

Thus, we can get the range of k from values of n and f . When we decide the

value of k, if the value of k is not multiple of n × ntrans(q), nodes of the child layer

can not be averagely distributed among nodes of the parent layer (for example,

when k = 5, n = 2 and ntrans(q) = 1, in a layer, a parent node may have 3 child

nodes, another parent node may have only 1 child node). On the other hand, if

the k is not multiple of nlink(q), the value of f will not change along with the

increase of k. For example, in case of nlink(q) = 3, the value of f is always 2 even

we change k from 6 to 8. So, the appropriate value of k can be selected so that

the value of k is multiple of nlink(q) and n × ntrans(q).

4.4 Behavior of MTcast

Startup Behavior

Let t denote the time when s starts video delivery. Each user who wants to

receive video stream sends a video delivery request to the video server s before
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time t − δ. At time t − δ, s calculates the transcode tree with the algorithm

explained in Sect. 4.3.3. Here, δ is the time to calculate the transcode tree and

distribute the necessary information to all nodes. s also decides the node uc which

calculates the transcode tree next time. uc is selected from representative nodes

of layers which have sufficient downstream bandwidths. Next, s distributes the

information which is necessary for video delivery to all nodes in T .

For information distribution, s composes data I which contains the complete

information on T , its layer tree, representative nodes and quality of layers, and

uc. Then, it sends I to the representative node of the root layer. Then, the

node forwards the information to its children layers’ representative nodes. Data

I is propagated until all leaf layers’ representative nodes receive it. When each

representative node receives the data I, it sends part of the information in I to

member nodes of the same layer. We let each representative node keep (a) the

whole layer tree with each layer’s layer quality and representative node’s address,

and (b) its responsible layer and addresses of the layer’s member nodes. We also

let each node keep (1) addresses and layer quality of children nodes, (2) current

layer’s quality and responsible node’s address, (3) parent node’s layer and its

responsible node’s address, and (4) node uc to calculate the transcode tree next

time.

By the above steps, information of the transcode tree is shared among all

nodes and video gets ready to be delivered.

How to cope with new delivery requests and node failures

As explained in Sect. 4.3.3, each node in an internal layer has an extra upstream

bandwidth for forwarding one more video stream. A user node unew who has

requested video delivery after time t can use this extra bandwidth to receive a

video stream. Here, the fanout of the forwarding node uf which sends a stream

to unew is allowed to be n + 1 tentatively. The forwarding node uf does not need

to transcode a video stream for unew, since uf is already transmitting a video

stream to n children nodes and it transmits the same stream to unew.

If one or more nodes in a layer fail or suddenly leave from the transcode

tree, all of their descendant nodes will not be able to receive video streams. Our

method allows children nodes of the failure nodes to find alternative nodes in
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the same layer as those failure nodes and to ask them to forward video streams.

Therefore those alternative nodes use their extra upstream bandwidths similar to

the case of processing new delivery requests.

As we will explain later, the transcode tree is reconstructed periodically, the

fanout of each stream is reduced to n or less than n and the consumed extra

upstream bandwidth is regained after reconstruction.

If the representative node of a layer fails, children nodes of the representative

node cannot find new parent nodes. Thus, one of other nodes in the layer be-

comes sub representative node, and nodes in children layers keep address of these

nodes. When the representative node fails, one of children nodes of the represen-

tative node sends switch request to the sub representative node so that the sub

representative node becomes the new representative node. If a sub representative

node fails before the representative node fails, one of the other nodes become sub

representative node.

Procedure for new delivery requests

We assume that a new user node unew knows at least one node u∗ in the transcode

tree which is already receiving a video stream. unew tries to find the best node in

the transcode tree which can be unews’s parent node in the following procedure.

(1) unew sends a query with its quality requirement unew.q and its address to u∗.

(2) If u∗ is not a responsible node of any layer, it forwards the received query to

the responsible node ur of u∗’s current layer. (3) When ur receives the query, it

sends the information of the layer tree to unew. (4) When unew receives the layer

tree, it finds the layer which has the layer quality closest to unew.q and sends a

video delivery request to the responsible node u′
r of the layer. (5) u′

r selects a

node u′ and forwards the request to u′ which has the required extra upstream

bandwidth. (6) Finally, u′ starts to deliver a video stream to unew.

Recovery from node failure

We let each node u monitor status of data receiving in real-time, and u thinks

that node failure happened when it does not receive any data (or the average data

reception rate is much less than the expected one) during a specified time period.

When u detects failure of its parent node up, u sends a video forwarding request
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to the representative node of up’s layer. Then, similarly to the case of a new

video delivery request, the video stream is forwarded from an alternative node if

it has an extra upstream bandwidth. At u, video can be played back seamlessly

by buffering certain time of video data during the above switching process.

Reconstruction of Transcode Tree

User node uc reconstructs the transcode tree in the following steps. We assume

that all nodes know the time tr when the reconstructed transcode tree is in effect.

Before time tr − δ′, each node u sends a new quality requirement which will

be effective after tr to the representative node of u′s current layer, if u wants to

change video quality. Here, δ′ is the time to gather quality requirements from

all nodes, calculate the transcode tree and distribute the necessary information

to (part of) nodes. When the representative node uL of each layer L receives

quality requirements from all members of L and those from representative nodes

of L’s children layers (if L has children layers), uL sends the unified list of quality

requirements to L’s parent layer’s representative node. Finally, the representative

node of the root layer sends the received list of quality requirements to node uc.

Finally, uc has quality requirements of all nodes which will be effective after time

tr.

Then, node uc calculates the transcode tree with the algorithm in Sect. 4.3.3

and distribute to all nodes the information for the new transcode tree and the

node u′
c which calculates the tree next time, as explained in Sect. 4.3.3.

At time tr, all nodes stop receiving streams from current parent nodes and the

nodes in the root layer of the new transcode tree starts to deliver video streams.

Nodes in internal layers also forward video streams after receiving them. The

video stream transmitted along the new transcode tree arrives after a certain

time lag due to transcode and link latency. So, during the time lag, each node

plays back video from its buffer to avoid blank screen.

For the next reconstruction of the transcode tree, the buffer of each node

must be filled with video data of the above time lag. This process is done by

transmitting the video stream slightly faster than its playback speed. This fast

transmission requires more computation power for transcode and more band-

width for forwarding video data. Let α denote the ratio of the above time lag
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over the time period between two subsequent tree reconstructions. Here, α is

a real constant number between 0 and 1. Then this fast transmission requires

computation power and upstream/downstream bandwidths (1+α) times as much

as the normal transmission.

Reconstruction of the transcode tree may greatly change positions of nodes

in the tree. For example, a node near the root node may change its position near

the leaf node in the new transcode tree, or vice versa. Because the time lag until

receiving the video stream since the video server sent it is different depending on

positions in the transcoding tree, we should keep all nodes to play back the same

scene in the video. To do so, we let nodes closer to the root node play back video

with larger delay by buffering certain time of video data. Data amount to be

buffered can be decided with statistic information calculated from received video

streams.

Considerations

Decision method of quality requirement

In our method, being an internal node requires rather high computation power,

since video decoding and transcoding are simultaneously performed. On the other

hand, being a leaf node only requires computation power to decode a video stream.

Also if a node doesn’t have enough processing power to transcode received video,

the node is likely assigned to a leaf layer. Thus, users may try to become a leaf

nodes by specifying superfluously high video quality. In this section, we describe

a way to avoid such a situation by defining the maximum quality requirement.

There are following restrictions of quality requirements. (1) If a node has

enough network bandwidth, screen resolution and processing power, the node

can request any quality requirement. (2) If a node doesn’t have large screen,

appropriate bitrate of video is calculated from the screen size, and the node can

request bitrate less than that. Appropriate bitrate of video can be calculated

from screen size and frame rate[48]. (3) If a node doesn’t have either large net-

work bandwidth or processing power, the node can request quality requirement

under the condition that the node can become an internal node. Only if the

maximum quality requirement calculated by this method is too low and useful

information cannot be obtained from the video, the node is allowed to request
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quality requirement which doesn’t meet the condition to become an internal node.

Validity of assumptions

As described in Sect.4.3.2, if there are not enough number of candidate internal

nodes, part of leaf nodes which have larger upstream bandwidths are transformed

into internal nodes by decreasing their quality requirements. This could be the

largest factor of users’ unsatisfaction. Thus, the proposed technique is especially

effective if (i) there are many users who have larger bandwidths compared to

quality requirements. Also, our technique is effective if (ii) users’ quality require-

ments distribute widely, since the technique can flexibly adjust video quality by

transcoding, compared to layered multicast techniques.

Hereafter, we give some typical environments where the condition (i) and

(ii) hold. Under following three example environments, condition (i) holds. (1)

A video delivery system in which users pay fee according to video quality. (2)

An environment where user’s available network bandwidth is much larger than

bitrate of video. (3) An environment where video quality is restricted by display

resolution. Regarding (1), even if a user has large available network bandwidth,

the user may want to keep video quality low, especially when the video is not

very important. Regarding (2), if a user is connecting to the Internet through the

optical fibre network, available network bandwidth is usually much larger than

bitrate of video, and thus there can be many users with large unused network

bandwidth if such a network becomes popular. Regarding (3), it is possible that

a user watches video using a portable game console or a PDA. These devices

normally have screens with resolutions smaller than VGA, and it is quite unlikely

that users of these devices request larger resolution than that, even if there is

plenty of network bandwidth.

Next, we give three examples under which condition (ii) holds. (1) Watching

multiple videos simultaneously on a single screen. (2) Recording video under

restriction of disk space. (3) Watching multi-object video with adjusted quality

of objects according to importance of each object. Regarding (1), contents such

as news and stock prices are displayed on PC screen, and watched when the user

is doing other jobs on another window. Users set window size according to their

interests, and thus there would be various quality requirements. Regarding (2),
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users may want to record received video in bitrate according to importance of

the video. In this case, quality requirement varies depending on user’s interest

and the size of disk space. Regarding (3), multi-object video is played back

under constraints of network bandwidth. Users may want to watch important

objects in higher bitrate. Quality requirements of objects would vary depending

on importance of objects.

Assuming environments described above, we investigate user’s satisfaction by

our technique under conditions where the number of transformed leaf nodes is

varied, and distributions of quality requirements are varied.

4.5 Evaluation

In order to show usefulness of MTcast, we have conducted several experiments.

We have measured (i) required computation power for transcoding, (ii) video

quality deterioration by multiple transcoding, (iii) overhead of tree reconstruc-

tion, (iv) the user satisfaction degree with MTcast, and (v) physical transmission

path length in overlay links.

4.5.1 Required Computation Power for Transcoding

In our method, since transcoding is processed on user nodes, the load of transcod-

ing should not influence the playback of video. So, we examined the load of

transcoding while playing back a video using a desktop PC, a laptop PC, and a

PDA. In the experiment, we measured maximum processing speed of transcoding

(in fps) while playing back a video and compared it with the actual playback

speed of the video. If the maximum processing speed is sufficiently larger than

the actual playback speed, it can be said that the load of the transcoding doesn’t

influence playback of the video. We measured the maximum processing speed

by changing the transcoding degree (i.e., the number of simultaneous transcode

processing) from 1 to 3. In the experiment, we used mpeg2dec 0.4.0b as the

decoder and ffmpeg 0.4.9-pre1 as the encoder. The experimental parameters

and results are shown in Table 10. The specifications of the devices in Table 10

are as follows: desktop PC (CPU: Pentium4 2.4GHz, 256MB RAM, Linux2.6.10),

laptop PC (CPU: Celeron 1GHz, 384MB RAM, Linux 2.4.29), and PDA (SHARP
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Zaurus SL-700, CPU: XScale PXA250 400MHz, 32MB RAM, Linux 2.4.28). The

original frame rate of all videos is 24 fps.

Table 10. Maximum processing speed while playing back a video

device original video transcoded video transcoding degree

picture size bit rate (kbps) picture size bit rate(kbps) 1 2 3

Desktop PC 640x480 3000 480x360 2000 35.66fps 20.03fps 14.84fps

Desktop PC 480x360 2000 352x288 1500 61.60fps 36.40fps 25.89fps

Laptop PC 352x288 1500 320x240 1000 49.90fps 30.65fps 21.84fps

PDA 320x240 1000 208x176 384 10.12fps 6.04fps 4.33fps

Table 10 shows that common desktop PCs and laptop PCs have enough com-

putation power to simultaneously transcode one or more videos with 3000Kbps

(640x480 pixels) and with 1500 Kbps (352x288 pixels) in real-time, respectively.

In MTcast, each internal node needs computation power more than one transcod-

ing degree. Table 10 shows that this requirement is not so hard. However, PDA’s

maximum processing speed is 10.12 fps even if the transcoding degree is 1. It

shows that PDAs and smaller computing devices cannot be used as internal nodes

of the transcode tree.

4.5.2 Degree of quality degradation by transcoding

In our method, transcoding is repeatedly performed at each internal node from

the root node to the leaf node in the transcode tree. Multiple transcoding may

cause serious quality degradation of video. So, we investigated the average PSNR

value among 500 frames using a video after (1) multiple transcoding has been

performed without changing parameter values of the video (picture size, frame

rate, and bit rate) and (2) multiple transcoding has been performed by changing

parameter values of the video. Experimental results for cases (1) and (2) are

shown in Fig.18 and Fig.19, respectively.

In Fig.18, transcoding is performed repeatedly without changing parameter

values of a video with 640x480 pixels, 24fps and 3000kbps. Fig.18 shows that

PSNR value decreases slightly before the third transcoding and keeps an almost

constant quality after that.
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Next, we applied transcoding four times to the original video with 640x480

pixels, 24fps, and 3000kbps to 208x176, 24fps. The parameter values of the video

are changed to (i) 480x360 pixels, 24fps and 2000Kbps by the first transcoding,

(ii) 352x240 pixels, 24fps and 1500Kbps by the second transcoding, (iii) 320x240

pixels, 24fps and 1000Kbps by the third transcoding, and (iv) 208x176 pixels,

24fps and 384Kbps by the fourth transcoding. We also changed parameter values

of the original video to the above (i), (ii), (iii) or (iv) by single transcoding. We

measured PSNR values of those obtained videos and compared those values of

the same resolution videos obtained by one transcoding and multiple transcoding.

The result is shown in Fig.19. Fig.19 shows that PSNR values are almost the

same between the multiple transcoding case and the single transcoding case.

From the above experiments, we think that quality degradation of multiple

transcoding is within the allowable range.

4.5.3 Overhead of Tree Reconstruction

In our method, the transcode tree is reconstructed periodically and/or when a

new video segment starts. The overhead of the tree reconstruction consists of

(i) aggregation of quality requirements for the new video segment from (part of)

user nodes, (ii) calculation of the new transcode tree, and (iii) distribution of the

new transcode tree to representative nodes of all layers.

For the above (i), even when the number of nodes is 100,000 4 and each node

sends a 50 Byte packet for quality requirement directly to the computation node

uc, 5 MByte information is sent to the node uc which computes the transcode tree.

If we assume that this information is sent in 10 seconds (it should be less than

the period of the tree reconstruction), the average transmission speed becomes 4

Mbps. Since only the node with enough downstream bandwidth can be selected

as uc, this would not be a bandwidth bottleneck. Also, the required bandwidth

can be reduced by letting each node send the quality requirement message along

the current transcode tree so that each internal node merges the received messages

into one message and forwards it to its parent node recursively.

In order to investigate the impact of the above (ii) and (iii), we measured the

4 This number is actually much smaller since only the nodes which want to change their
quality requirements for the next video segment send the messages.
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size and the computation time of the transcode tree with the number of nodes

from 1,000 to 100,000. Here, we assumed that n = 2 and k = 5, where n and k are

the fanout of each internal node and the number of layer members, respectively.

The experimental result is shown in Table 11.

Table 11. Size and Computation Time of Transcode Tree

number of nodes computation time (sec) size of tree (byte)

1000 0.016 3K

10000 0.140 30K

100000 1.497 300K

According to Table 11, the computation time was within 2 seconds even

when the number of nodes is 100,000 (Pentium 4 2.4GHz with 256MB RAM

on Linux2.6.10). So, computation time would not be a bottleneck.

The size of the transcode tree was 30 Kbyte when the number of all nodes is

10,000. The information of the tree is sent to representative nodes of all layers

along the layer tree. If we assume that this is sent in 10 seconds, each represen-

tative node needs 24Kbps extra bandwidth. Even when the number of nodes is

100,000, the required bandwidth would be 240Kbps. Also, the tree size can be

further reduced with the general compression algorithm like gzip.

4.5.4 User Satisfaction

In this section, we compare MTcast with the layered multicast method in terms

of the user satisfaction degree for the quality requirements.

Similarly to [37], the satisfaction degree of user u (0 ≤ Su ≤ 1) is defined as

follows.

Su = 1 − |u.q − u′.q|
u.q

(4)

Here, u.q represents u’s required quality and u.q′ represents the quality of the

received video. When u.q′ is closer to u.q, Su gets closer to 1.

The experiment has been conducted as follows: The physical network topology

with 6000 nodes is generated with Inet3.0 [44] and 1000 nodes are selected as user
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nodes. Links directly connected to those user nodes are regarded as LANs. Links

attached to LAN links are considered as MAN links, and other links are considered

as WAN links. We assume that there are the following four types of user nodes:

(1) user nodes with cell phone networks whose available downstream bandwidths

are 100 to 500 Kbps; (2) user nodes with wireless LAN (2 Mbps to 5 Mbps); and

(3) user nodes with wired broadband networks (10 Mbps to 20 Mbps). We assume

that each user node has the same amount of available upstream bandwidth as

the downstream bandwidth.

Table 12. Configuration of Available Bandwidth

100k to 500k 2M to 5M 10M to 20M

case1 33% 33% 33%

case2 5% 33% 62%

case3 45% 10% 45%

case4 62% 33% 5%

We selected the quality requirement of each user node according to one of the

following three distributions within the available bandwidth: (a) uniform distri-

bution from 300 Kbps to 3 Mbps; (b) bandwidth is chosen from 300Kbps and 3M

bps; and (c) sum of two normal distributions with 300 Kbps average and 50Kbps

standard deviation and with 3 Mbps average and 1 Mbps standard deviation.

On the other hand, the total sum of bandwidths of LAN links connected to each

MAN link was used as the bandwidth of the MAN link. 6 Gbps was used as

bandwidths for WAN links.

In the above simulation configuration, we measured the average user satisfac-

tion degree ( 1
|U |

∑
u∈U Su, U is the set of all users). We changed the number of

user nodes from 1 to 1000 and measured the average satisfaction degree for the

combination of the above three quality requirement distributions (a) to (c) and

four different types of populations of user nodes shown in Table 12. The experi-

mental results are shown in Fig. 20, Fig. 21 and Fig. 22. In the figures, X-axis

and Y-axis represent the number of nodes and the average satisfaction degree,

respectively.
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Figure 20. Average User Satisfaction by quality requirement (a)
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Figure 21. Average User Satisfaction by quality requirement (b)
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Figure 22. Average User Satisfaction by quality requirement (c)

From Fig. 20, Fig. 21 and Fig. 22, we see that MTcast can achieve pretty

high satisfaction degree for various distribution of quality requirements from user

nodes, when the number of user nodes are more than 100. The satisfaction degree

is lower in case 4 than other cases. This is because the percentage of user nodes

with higher bandwidth is much smaller in case 4. However, even in such a case,

MTcast achieved more than 70% user satisfaction.

In order to measure variation of user satisfaction degree depending on the

value of k, we measured average user satisfaction degrees for k = 2, 3, 6 and 9

which are derived when applying four different combinations of u.ntrans(u.q) and

u.nlink(u.q) in Table 13. From Table 13, when k = 2 or k = 3, the system can

be recovered from one node failure per layer, and when k = 6 or k = 9, the

system can be recovered from two and three simultaneous node failures per layer,

respectively (these are calculated by equation (3)). However, as the value of k

increases, the average user satisfaction degree might decrease since the delivered

quality is averaged among k members of each layer. The experimental result is

shown in Fig. 23.
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Figure 23. User Satisfaction vs. Allowable Failures per Layer
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Figure 24. Average User Satisfaction by Layered Multicast
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Table 13. Relationship among u.ntranscode, u.nlink and f

p.ntranscode p.nlink k f

pref. 1 2 4 2 1

pref. 2 1 3 3 1

pref. 3 1 3 6 2

pref. 4 1 3 9 3

From Fig. 23, while the number of nodes is relatively small (i.e., less than

300), the average user satisfaction degree decreases as the value of k increases.

However, as the number of user nodes increases, the decrease gets smaller. From

the result, while the number of user nodes is small, we should keep the value of

k small in order to keep the average user satisfaction degree high, and we should

increase the value of k gradually to improve robustness against node failure as

the number of users increases.

For comparison, we also measured the average user satisfaction degree when

using the layered multicast method. Here, we assume that each node only receives

streams. The average user satisfaction degree depends largely on the proportion

of bitrates among multiple layers. So, we used the following way for allocating

bitrates of layers: The average user satisfaction degree was considered as the

evaluation function, and the optimal allocation of encoding rates were calculated

for basic and extension layers using the Simulated Annealing method (the number

of repetition times were 10,000).

With this optimization technique, we measured the average user satisfaction

degrees. The results are shown in Fig. 24. From Fig. 23 and Fig. 24, when

the number of nodes is sufficient (more than 200), MTcast achieves much higher

satisfaction degree than the layered multicast with less than 10 layers.

4.6 Conclusions

In this Chapter, we proposed a new video delivery method called MTcast to

achieve efficient simultaneous video delivery to multiple heterogeneous users. In

the proposed method, the same video stream is transmitted from a video server
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to user nodes by step-by-step transcoding at each intermediate node. The main

contributions of MTcast are the following: (1) quick failure recovery and new

user’s quick reception of video streams can be achieved owing to layers of user

nodes, (2) the size and height of the tree are kept small by periodical tree re-

construction, and (3) higher user satisfaction can be achieved with reasonable

resource consumption at user nodes.

The above (2) also allows users to play back video segments with various

different quality. When we use MTcast with our energy consumption control

technique in Chapter 3, users can increase playback quality for preferred video

segments without shortening playable time at portable devices within the battery

amount.
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5. Conclusion

In this thesis, the following three research topics about achieving quality of service

in distributed multi-media systems have been studied.

First, a testing method for QoS functions in distributed multi-media systems

has been provided. Here, we use a statistical approach where test sequences take

samplings of actual frame rates and/or time lags when an IUT is executed, and

report test results from ratio of samplings with low quality below a threshold in

a normal distribution of all samplings.

Secondly, a QoS adaptation method for streaming video playback for portable

computing devices where playback quality of each video fragment is automatically

adjusted from the remaining battery amount, desirable playback duration and the

user’s preference to each fragment, has been proposed.

Finally, a new video delivery method which achieves efficient simultaneous

video delivery to multiple users with different quality requirements by relying on

user nodes to transcode and forward video to other user nodes has been proposed.

In the delivery method, although the load of decode/encode have been dis-

tributed to each node, we only provided a centralized algorithm for constructing

the transcode tree, although it works for the scale of 100,000 nodes. As part of

future work, we want to design a distributed algorithm for tree construction to

improve scalability further.
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