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オリゴペプチドに基づく 

タンパク質機能予測に関する研究* 

 

蓬莱尚幸 

 

 

内容梗概 

 

 本論文では、オリゴペプチドに基づく新しいタンパク質予測手法について論じる。本
論文の主たる目的は、オリゴペプチドの概念がさまざまなタンパク質機能に関する効率
的な予測手法を開発するために有効であることを示すことである。本論文で提案する予
測手法では、あるタンパク質の既知の機能は、そのオリゴペプチドに継承され、オリゴ
ペプチドと機能の関連度を全タンパク質に対して計算され、この関連度を用いて任意の
タンパク質の機能を自動的に予測する。 
 本論文では、ヒトの標準的なタンパク質を利用して、さまざまな酵素活性および
GeneOntology用語に対する提案手法による予測結果を計測し評価する。本論文での予測
精度評価には、情報検索分野で提案され通常的に利用されている手法を用いる。これら
の予測実験により、提案する手法は多くのタンパク質機能に関して非常に有効であるこ
とが示唆される。 
 提案する手法の予測性能を客観的に示すために、本論文では、既存の予測手法である
相同性検索およびパターンマッチングと比較する。対照的予測実験により、提案する手
法はパターンマッチングより非常に有効であり、相同性検索に対しても同等以上の性能
を持つことが示唆される。 
 オリゴペプチドの長さは、提案する手法における重要なパラメータであり、予測性能
に影響を与える。本論文では、長さ１から９のオリゴペプチドについて、それらを用い
た場合の予測性能を比較する。長さ1のオリゴペプチドには予測能力はなく、長さ５以
上ではほぼ同等であることが明示された。また、長さ２から４の予測性能は、機能によ
り異なるが、いずれの場合も長さと予測性能は正の相関を示すことも判明した。また、
オリゴペプチドが長くなるにつれ、共有性は低下し、予測手法適用性の低下を招く。オ
リゴペプチド共有性の評価を考慮に加えると、任意のタンパク質機能の予測に対して汎
用的に利用すべきオリゴペプチドの長さは５または６であることが示唆される。 
 さらに、オリゴペプチドと機能との関連度を利用して、機能に特有かつ一般的なオリ
ゴペプチドを提示する手法を例示する。 
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Hisayuki Horai 

 
 

Abstract 
 

This thesis proposes and investigates a new prediction method of protein function 
based on oligopeptides.  The main purpose of the thesis is to demonstrate that 
`oligopeptide' enable us to develop an effective method for predicting various protein 
function.  In the proposed method, a known function of each protein is regarded to be 
inherited to its oligopeptides, the correspondence between an oligopeptide and a 
function is calculated in the whole proteins, and unknown functions of an arbitrary 
protein are predicted by means of the correspondence automatically. 

The prediction performance of the proposed method is measured and evaluated 
through several experimental predictions for functions including enzyme activities and 
GeneOntology terms using the whole human proteins.  In order to evaluate the 
performance of prediction, the thesis utilises evaluation methods proposed and 
commonly used in the research domain of information retrieval.  The results of the 
comparative studies suggest that the proposed method is quite efficient for various 
protein functions. 

The thesis also characterises the relation between the length of oligopeptides and the 
prediction of protein functions.  The performance of prediction is measured for the 
length of oligopeptides between 1 and 9.  The results suggest that oligopeptides of the 
length of 1 has no predictability, oligopeptides longer than 4 are almost equally effective 
for all functions.  The predictability of oligopeptides of the length between 2 and 4 
depends upon the functions, and the longer oligopeptides are more efficient than the 
shorter ones for each function.  Furthermore, the longer oligopeptides are more 
versatile than the shorter one because the longer oligopeptide is more varied than the 
shorter one and the degree of the coexistence is inversely related to the length.  
Considerations on statistics of oligopeptides suggest that the most acceptable length of 
oligopeptides is 5 or 6 of generally predicting an arbitrary function. 

The thesis also describes an example of finding oligopeptides which are specific to and 
general in a function by means of the correspondence between each oligopeptide and a 
function 
 
Keywords: 
Protein function, prediction, oligopeptide, enzyme activity, and GeneOntology. 
.*Doctoral Dissertation, Department of Information Systems, Graduate School of Information 
Science, Nara Institute of Science and Technology, NAIST-IS-DD0461205, February 2, 2006. 
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1.  Introduction  
 
Prediction is researched widely in bio-informatics [9-27].  Proteomics is the large-scale 
study of proteins, particularly their structures and functions, and their existence.  
Identifying the function of each newly determined sequence by means of bioinformatics 
techniques is one of the most important problems in proteomics [5,6,57].  Although the 
function of each protein can be introduced in wide spectrum and predicted based on 
different properties, the thesis focuses on the prediction of protein functions based on 
sequence.  There are some methods for solving the problem proposed based on 
homology search [6] and pattern matching [5]. 
     Each method based on homology search focuses on similarity of a relatively long 
subsequence or the full-length sequence.  In many cases, each protein is related to 
several numbers of functions.  When a new protein has homology to such a multi 
functional protein, it is difficult to determine that each function is annotated or not.  
Consequently, further investigation of a protein at the level of every shorter 
subsequence is needed after homology search. 
     Each method based on pattern matching focuses on similarity of a relatively short 
subsequence.  These are conservative methods, taking similarity to clearly defined 
protein families whose members are annotated with functions.  It is difficult to predict 
all functions because many functions have not been able to relate with any families yet. 
     Oligopeptide is a subsequence of fixed length.  For example, in the 28,520 
whole human proteins registered in RefSeq (Reference Sequence of the National Center 
for Biotechnology Information dated 13-May-2005), there exist 2,361,750 kinds of 
oligopeptides of length 5 [3, 33].  The existence of oligopeptides shows quite 
interesting characteristics [2] :  (1) some oligopeptides exist commonly in many 
proteins and others exist unevenly; (2) some oligopeptides exist too many time in 
comparison with the existing probability of each component amino acid; and (3) many 
oligopeptides do not exist in the world of proteins (specificity of oligopeptide).  
Therefore, to view the world of proteins from the perspective of oligopeptides will 
provide a new computational science of proteomics.  As one of the first steps of such 
computational proteomics from the perspective of oligopeptides, the thesis proposes a 
new method based on the concept of the lexicon of oligopeptides that have been paid 
much effort to construct by some researchers [2].  In our method, each protein is 
characterised based on the existence of oligopeptides. 
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     In a large part of this thesis, oligopeptide of length 5 is utilised.  The length of 5 
is not mandatory in the proposed method.  The discussion on the length of 
oligopeptides also appears in this thesis.  Our method is based on the co-occurrence of 
each oligopeptide and the specificity of oligopeptide.  Longer the length of 
oligopeptide is, less the co-occurrence of each oligopeptide, while, in [5], the specificity 
of oligopeptide does not be observed strongly in oligopeptides whose length is less than 
5.  The thesis discuss the matter more precisely by some experiments and observation 
of the results using a real set of whole human proteins. 
     Our method predicts the functions annotated to a protein based on a set of 
proteins already annotated, called Annotated Proteins here.  Every Annotated Protein is 
divided into a set of its oligopeptides, and each function annotated to the protein is 
regarded to be related to all of its oligopeptides.  Finally, the correspondence between 
oligopeptides and functions in Annotated Proteins is calculated.  The correspondence 
between an oligopeptide and a function is the number of proteins which contain the 
oligopeptide and be annotated with the function.  This correspondence is uniquely 
defined for each set of Annotated Proteins and stored in a vector, PepFunc Vector. 
     The correspondence between a new protein and each function is calculated based 
on all oligopeptides in the protein and PepFunc Vector. 
     The thesis evaluates the prediction performance through several experiments.  In 
the evaluation, the thesis utilises some measurements used in information retrieval 
research, such as recall precision and f-measure [4].  In biolinguistics, i.e. information 
retrieval research sub-domain of bioinformatics, the measurements are commonly used 
[28-32].  These measurements are effective to evaluate a score-based prediction 
method.  Our method is regarded as a score-based method using the correspondence as 
score.  In a score-based method, the global property of performance for varied score 
threshold is more important than the best performance by a specific threshold.  The 
global property is usually shown in a recall precision graph. 
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2.  Prediction Method 
 
This section explains a method proposed and discussed in the thesis to predict a 
function of a protein from its sequence based on oligopeptides. 
 

Figure 2.1: Characteristic Oligopeptide

MADIK
ADIKT

DIKTG
IKTGI

KTGIF
TGIFA

GIFAD
IFADI

FADIK
ADIKT

DIKTK
IKTKR

KTKRL
TKRLN

KRLNR
RLNRA

MADIKTGIFADIKTKRLNRA

Characteristic Oligopeptides = {
ADIKT, DIKTG, DIKTK, FADIK,
GIFAD, IFADI, IKTGI, IKTKR,
KRLNR, KTGIF, KTKRL, MADIK,
RLNRA, TGIFA, TKRLN }

(duplicated)

Protein

 

 
2.1  Characteristic Oligopeptide 
 
In the proposed method, each protein is characterised by a set of oligopeptides, called 
Characteristic Oligopeptides.  The length of an oligopeptide is arbitrary fixed number 
noligo.  Characteristic Oligopeptides of a protein are a set of all oligopeptides (without 
duplication) which exist in the protein.  When the length of a protein is m then the 
number of Characteristic Oligopeptides is less than or equal to m − noligo + 1.  If there 
is no duplication of oligopeptides in the protein, the number of its Characteristic 
Oligopeptides is equal to m − noligo + 1.  Figure 2.1 shows a simplified small example 
for explanation.  In this example, a set of Characteristic Oligopeptides is generated 
from a protein, whose sequence is MADIKTGIFADIKTKRLNRA and m is 20.  In the 
example, noligo is 5, the only oligopeptide ADIKT appears twice, and 15 Characteristic 
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Oligopeptides are obtained for the protein. 
 
2.2  Training Set for Prediction 
 
For the prediction of an arbitrary function of protein f, the proposed prediction method 
needs a training set of proteins which is annotated appropriately concerning f.  This 
means that some proteins are annotated that they have function f and others are not.  
This situation is quite common in any research domain where some automatic 
prediction methods are adopted to solve some problem. 
     The training set of proteins, the subset of proteins which are annotated that they 
have f, and the remaining subset of proteins which are not annotated are called as 
Annotated Proteins, Positive Proteins, and Negative Proteins, respectively. 
 
2.3  PepFunc Vector 
 
When an arbitrary function of protein f and Annotated Proteins Ps are given, the 
proposed method calculates the correspondence between f and all oligopeptides which 
appear in Ps.  The correspondence is denoted by PepFunc Vector.  PepFunc Vector is 
a real number vector.  Each element is related to an oligopeptide and denotes the 
correspondence between f and its related oligopeptide, whose value is larger than or 
equal to 0.0, and smaller than or equal to 1.0.  The order of the elements in PepFunc 
Vector is arbitrary because the prediction method does not focus on relation among 
oligopeptides but only on the correspondence between the function and oligopeptides.  
In other words, an element of PepFunc Vector is not suffixed by an integer which 
denotes the position in the vector but by the related oligopeptide itself.  This 
subsection explains the calculation to generate PepFunc Vector from a set of Annotated 
Proteins Ps.  PepFunc Vector generated from Ps and the element of PepFunc Vector 
related to oligopeptide o are represented by VEC(Ps) and VEC(Ps)[o], respectively. 
     At first, the total union set of Characteristic Oligopeptides of all Annotated 
Proteins Ps, called Oligopeptide Universe of Ps, is generated.  For each Annotated 
Protein P, i.e. an element of Ps, Characteristic Oligopeptides of P, represented by 
OP(P), is obtained in the manner mentioned in the previous subsection.  Oligopeptide 
Universe of Ps, represented by OLIGO(Ps), is generated by the following equation: 
 

U
PsP

POPPsOLIGO
∈

= )()(  
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     Each element of OLIGO(Ps) is related to an element of PepFunc Vector.  The 
number of OLIGO(Ps) is the length of PepFunc Vector. 
     In the next, the number of Annotated Proteins and the number of Positive Proteins 
which obtain each oligopeptide of OLIGO(Ps) are counted.  The number of Annotated 
Proteins and the number of Positive Proteins which obtain oligopeptides o are 
represented by Nall(o) and Npositive(o), respectively. 
      Finally, the correspondence between oligopeptide o and function f, i.e. 
VEC(Ps)[o] is calculated in the following equation: 
 

N
N

all

positiveoPsVEC =])[( , where )(PsOLIGOo∈  

 
     VEC(Ps)[o] is a real number between 0.0 and 1.0 because Nall is a positive integer, 
Nposotive is a positive integer or 0, and Nall is greater than or equal to Npositive. 
 
2.4  Prediction of Function 
 
In the proposed method, the prediction of function f is the calculation of correspondence 
between an arbitrarily given protein X and a function f by means of preliminarily 
calculated PepFunc Vector VEC(Ps) by voting method.  The correspondence is 
represented by Cor(X, Ps). 
     A protein consists of many oligopeptides and each oligopeptide votes to judge 
whether the protein has the function or not.  For every oligopeptide o, VEC(Ps)[o] is 
utilised as the point to vote.  It means that the voting by o is weighted by the 
correspondence between o and f. 
     At first, for each Characteristic Oligopeptide o of the protein X, VEC(Ps)[o] is 
calculated.  If o does not appear in any Annotated Protein, then VEC(Ps)[o] have not 
been calculated yet.  In this case, VEC(Ps)[o] is defined as 0.0 because there is no 
Positive Proteins whose Characteristic Oligopeptides include o. 
     In the next, they are summed up for each occurrence of each Characteristic 
Oligopeptide o of the protein X.  The summation is not for each Characteristic 
Oligopeptide but for each occurrence of each Characteristic Oligopeptide.  If an 
oligopeptide appears in X more than once, VEC(Ps)[o] is multiplied by the number of 
occurrence and summed up. 
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     Finally, the total summation is normalised by the number of oligopeptides in X, 
and Cor(X, Ps) is obtained.  The number of oligopeptides in X, precisely speaking the 
number of all occurrence of all Characteristics of X, is m − noligo + 1, where m and noligo 
are the length of X and the length of an oligopeptide, respectively. 
     The calculation process results in the calculation of Cor(X, Ps) by the following 
equation, where  occur(X, o) is the number of occurrence of oligopeptide o in X: 
 

( )∑
∈

⋅
+−

=
)(

])[(),(
1

1),(
XOPooligo

oPsVECoXoccur
m

PsXCor
n

 

 
     Cor(X, Ps) is a real number between 0.0 and 1.0 because VEC(Ps)[o] is a real 
number between 0.0 and 1.0 and Cor(X, Ps) is the arithmetic average of VEC(Ps)[o] for 
all occurrence of all Characteristic Oligopeptides in X. 
     For the practical use of the proposed method, i.e. the answering to YES/NO 
question whether a given protein has the function f or not, the threshold of the 
correspondence in order to divide any proteins into YES groups and NO groups 
according the value of correspondence is usually introduced.  If the threshold is larger, 
then a smaller number of proteins belong to YES group.  The decision of the threshold 
is recognised as one of the severe problems in the research domain of informal retrieval.  
The most appropriate value of the threshold is case by case:  the threshold should be 
relatively low if a strong conservative prediction is purposed, while it should be 
relatively high if a week screening/filtering is purposed.  In this thesis, the absolute 
value of the correspondence including an appropriate threshold is not out of scope, and 
the performance of the method is evaluated relatively and globally.  This standpoint is 
quite common in the research domain of information retrieve.  In information retrieve, 
some evaluation methods are proposed and utilised for score-base prediction system like 
the proposed method.  The thesis evaluates the proposed method using such an 
evaluation method.  This is discussed in the next section. 
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3.  Evaluation Method and Materials 
 
This section explains the evaluation method of the proposed method.  The evaluation 
method is utilised throughout this thesis.  The evaluation method needs some materials.  
This section also explains the materials. 
 
3.1.  Evaluation Method 
 
In all experiments described in this thesis, the evaluation of the proposed method is 
performed by so-call 'Jack Knife Method' using a given set of proteins.  The set of 
proteins are called as Protein Universe.  For each protein in Protein Universe, the 
sequence must be fixed completely and it must be annotated whether it has function f or 
not. 
     For every protein X of Protein Universe, Protein Universe is divided into protein 
X and the remains of Protein Universe.  The remaining proteins of Protein Universe 
except X are utilised as Annotated Proteins, PepFunc Vector is generated from the 
Annotated Proteins, and the correspondence between X and f is calculated.  The 
prediction of f for X is performed by means of the relation between the other proteins 
and f.  In other words, the obtained correspondence depends upon other proteins than X 
only, and X itself does not affect to the correspondence. 
     This prediction is performed for every protein in Protein Universe.  The 
evaluation method consists of the repeated predictions by means of slightly different 
Annotated Proteins as many times as the number of proteins in Protein Universe. 
     After the predictions for all proteins in Protein Universe, the characteristics of 
prediction performance is evaluated by means of some measurements utilised in the 
research domain of information retrieval, such as precision (or 'accuracy'), recall (or 
'sensitivity') and f-measure (i.e. harmonic average of precision and recall) as follows: 
 

RP
RPf

FNTP
TPR

FPTP
TPP

+
××

=

+
=

+
=

2 measure-F

 Recall

Precision 

 

TP = number of true positive 
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FP = number of false positive 
FN = number of false negative 

 
     In order to overcome the threshold problem mentioned in the previous section, 
some evaluation methods are proposed and utilised in the research domain of 
information retrieve.  The thesis evaluates the proposed method using such an 
evaluation method:  calculate recall and precision for every threshold and drawing a 
recall precision graph. 
     To draw a recall precision graph, at first, Protein Universe is sorted in descending 
order, i.e. from the highest score to the lowest one.  For each i from 1 to the number of 
Protein Universe, the top i proteins are selected.  The top i proteins is regarded as a 
tentative prediction using Cor(the i-th protein, Ps) as threshold.  Using each tentative 
prediction, the precision, the recall and the f-measure are calculated, and the values are 
plotted as a point in the recall precision graph.  Finally, points as many as the number 
of Protein Universe are plotted in the recall precision graph, and these points are 
connected.  The maximum f-measure is also selected. 
 
3.2  Protein Universe 
 
All evaluations of the proposed method throughout this thesis are performed by means 
of Protein Universe made from proteins in NCBI Reference Sequence (RefSeq) which 
provides a non-redundant set of proteins.  The utilised version of RefSeq is dated 
13-May-2005.  Protein Universe includes all human proteins in RefSeq whose 
sequences are completely known, i.e. each of them does not include 'B', 'J', 'O', 'U', 'X' 
nor 'Z'.  The number of Protein Universe is 28,520.  2,361,750 kinds of oligopeptides 
whose length is 5 are extracted from Protein Universe. 
     Proteins in RefSeq are annotated in GenBank format.  All experiments are 
carried out on the assumption that RefSeq is annotated correctly and exhaustively.  
Based on the assumption, all subsets of Protein Universe made from RefSeq are utilised 
as Annotated Proteins which is divided into Positive Proteins and Negative Proteins. 
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4.  Prediction of Enzyme Activities 
 
In this section, the performance of the proposed method is evaluated for several enzyme 
activities.  An enzyme activity is known as one of the important function of protein.  
The length of oligopeptide is a parameter of the proposed method and has an impact to 
the performance of the prediction.  In this section, oligopeptide of length 5 is utilised. 
 
4.1  Enzyme Activity and its Annotation to Protein 
 
Enzymes activities are hierarchically classified and maintained by means of EC 
numbers [7, 34].  The EC number of an enzyme activity in the lowest class consists of 
4 integers.  For instance, EC2.7.1.112 denotes protein-tyrosine kinase [35, 36, 37]. A 
higher class of enzyme activity is denoted in the manner that the corresponding integer 
is replaced to character '-'.  Character '-' mans 'any'.  For instance, the parent class of 
EC2.7.1.112 is denoted as EC2.7.1.- and EC2.-.-.- denote the great-grand parent of 
EC2.7.1.112.  There are six largest classes of enzyme activities from EC 1.-.-.- to EC 
6.-.-.-. 
 

Table 4.1: Number of Positive Proteins 

EC number Enzyme activity 
Number of 

annotated proteins 
EC2.7.1.112 Protein-tyrosine kinase  134 (0.5 %) 
EC2.7.1.- Phosphotransferases with an alcohol group 

as acceptor 
 424 (1.5 %) 

EC2.7.-.- Transferring phosphorous-containing groups  516 (1.8 %) 
EC2.-.-.- Transferases  862 (3.0 %) 
EC1.-.-.- Oxidoreductases  312 (1.1 %) 
EC3.-.-.- Hydrolases  813 (2.9 %) 
EC4.-.-.- Lyases  89 (0.3 %) 
EC5.-.-.- Isomerases  76 (0.3 %) 
EC6.-.-.- Ligases  146 (0.5 %) 
EC-.-.-.- (Enzyme)  2,260 (7.9 %) 

 
     Proteins in RefSeq are annotated with EC numbers.  In the evaluation for a 
higher class of enzyme activity, Positive Proteins consists of proteins annotated as not 
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only itself but also its descendant.  For instance, Positive Proteins for EC2.7.1.- are all 
proteins annotated as EC2.7.1.A and EC2.-.-.- are all proteins annotated as EC2.X.Y.Z 
where A, X, Y and Z are arbitrary integers or character '-'.  Table 4.1 shows the number 
of Positive Proteins for all enzyme activities evaluated in this thesis.  A percentage in 
Table 4.1 denotes the ratio to the number of Protein Universe. 
     EC2.7.1.112 is the enzyme activity which has the largest number of Positive 
Proteins among the lowest enzyme activities.  Hierarchical enzyme activities from 
EC2.7.1.112 to EC2.-.-.- are evaluated in order to investigate the relation between the 
level of enzyme activities and the performance of the proposed method.  Six largest 
classes of enzyme activities are evaluated in order to investigate the relation between 
the type of enzyme activities and the performance of the proposed method.  EC2.-.-.- 
does not exist actually but generated in the thesis for the evaluation of the predictability 
for whole enzyme activities. 
 

0
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Figure 4.1: Recall Precision Graph for Protein-Tyrosine Kinase
 

 
4.2  Prediction of Protein-Tyrosine Kinase 
 
This subsection describes the evaluation of the prediction of protein-tyrosine kinase 
(EC2.7.1.112) [35, 36, 27].  This is the enzyme activity which has the largest number 
of Positive Proteins among the lowest enzyme activities. 
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     The recall precision graph of the prediction is shown in Figure 4.1.  63 (47.0%) 
proteins annotated with the EC number have been correctly predicted.  The 50%, 80%, 
and 90% of proteins annotated with the EC number have been predicted with 97.1%, 
94.7% and 93.0% precision, respectively.  With 80% precision, the 98.5% of proteins 
annotated with the EC number have been predicted.  The maximum f-measure is 
0.932. 
 
4.3  Prediction of EC2.7.1.- 
 
This subsection describes the evaluation of the prediction of the parent class of 
protein-tyrosine kinase, EC2.7.1.- phosphotransferases with an alcohol group as 
acceptor.  The enzyme activity includes protein kinase, diacylglycerol kinase, 
pantothenate kinase, hexokinase, galactokinase, and so on [38]. 
     The recall precision graph of the prediction is shown in Figure 4.2.  116 (27.4%) 
proteins annotated with the enzyme activity and its descendants have been correctly 
predicted.  The 50%, 80%, and 90% of proteins annotated with the enzyme activity 
and its descendant have been predicted with 96.4%, 85.8% and 65.8% precision, 
respectively.  With 80% precision, the 87.3% of proteins annotated with the enzyme 
activity and its descendant have been predicted.  The maximum f-measure is 0.839. 
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Figure 4.2: Recall Precision Graph for EC2.7.1.-
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4.4  Prediction of EC2.7.-.- 
 
This subsection describes the evaluation of the prediction of the grand parent class of 
protein-tyrosine kinase, EC2.7.-.- Transferring phosphorous-containing groups.  The 
enzyme activity includes phosphotransferases, diphosphotransferases, 
nucleotidyltransferases and transferases for other substituted phosphate groups [39]. 
     The recall precision graph of the prediction is shown in Figure 4.3.  122 (23.6%) 
proteins annotated with the enzyme activity and its descendants have been correctly 
predicted.  The 50%, 66%, and 80% of proteins annotated with the enzyme activity 
and its descendant have been predicted with 95.9%, 93.2% and 82.1% precision, 
respectively.  With 80% precision, the 82.9% of proteins annotated with the enzyme 
activity and its descendant have been predicted.  The maximum f-measure is 0.822. 
 

Figure 4.3: Recall Precision Graph for EC2.7.-.-
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4.5  Prediction of Transferases 
 
This subsection describes the evaluation of the prediction of transferases (EC 2.-.-.-).  
The enzyme activity is versatile including phosphotransferase, methyltransferase, 
acyltransferase, glycosyltransferase, transaminase, sulfurtransferase, and so on [40, 41].  
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Many kinases including protein-tyrosine kinase mentioned above are also classified in 
transferases. 
     The recall precision graph of the prediction for transferases is shown in Figure 4.4.  
171 (19.8%) proteins annotated with transferases have been correctly predicted.  The 
50%, 66%, and 80% of proteins annotated with transferases have been predicted with 
95.1%, 90.7% and 64.8% precision, respectively.  With 80% and 50% precision, the 
76.6% and 82.9% of proteins annotated with transferases have been predicted, 
respectively.  The maximum f-measure is 0.786. 
 

Figure 4.4: Recall Precision Graph for Transferases
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4.6  Prediction of Oxidoreductases 
 
This subsection describes the evaluation of the prediction of oxidoreductases (EC 
1.-.-.-).  The enzyme activity includes various oxidoreductases with many kinds of 
acceptors and donors [42, 43]. 
     The recall precision graph of the prediction for oxidoreductases is shown in 
Figure 4.5.  39 (12.5%) proteins annotated with oxidoreductases have been correctly 
predicted.  The 40%, 50%, and 66% of proteins annotated with oxidoreductases have 
been predicted with 89.2%, 76.8% and 17.2% precision, respectively.  With 80% 
precision, the 45.6% of proteins annotated with oxidoreductases have been predicted.  
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The maximum f-measure is 0.630. 
 

Figure 4.5: Recall Precision Graph for Oxidoreductases
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Figure 4.6: Recall Precision Graph for Hydrolases
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4.7  Prediction of Hydrolases 
 
This subsection describes the evaluation of the prediction of hydrolases (EC 3.-.-.-).  
The enzyme activity includes ester hydrolases, glycosylases, aminopeptidases and 
various hydrolases acting on many kinds of bonds [44, 45]. 
     The recall precision graph of the prediction for hydrolases is shown in Figure 4.6.  
22 (2.7%) proteins annotated with hydrolases have been correctly predicted.  The 50%, 
80%, and 90% of proteins annotated with hydrolases have been predicted with 98.8%, 
62.6% and 24.6% precision, respectively.  With 80% precision, the 72.5% of proteins 
annotated with hydrolases have been predicted.  The maximum f-measure is 0.765. 
 

Figure 4.7: Recall Precision Graph for Lyases
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4.8  Prediction of Lyases 
 
This subsection describes the evaluation of the prediction of lyases (EC 4.-.-.-).  The 
enzyme activity includes carboxy-lyases, hydro-lyases, ammonia-lyases, and so on [46, 
47]. 
     The recall precision graph of the prediction for lyases is shown in Figure 4.7.  30 
(33.7%) proteins annotated with lyases have been correctly predicted.  The 40%, 60%, 
and 70% of proteins annotated with lyases have been predicted with 94.6%, 80.6% and 
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18.6% precision, respectively.  With 80% precision, the 60.7% of proteins annotated 
with lyases have been predicted.  The maximum f-measure is 0.696. 

 
 

Figure 4.8: Recall Precision Graph for Isomerases
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4.9  Prediction of Isomerases 
 
This subsection describes the evaluation of the prediction of isomerases (EC 5.-.-.-).  
The enzyme activity includes racemases, epimerases, mutases, intramolecular 
oxidoreductases, Intramolecular lyases, and so on [48, 49]. 
     The recall precision graph of the prediction for isomerases is shown in Figure 4.8.  
23 (30.3%) proteins annotated with isomerases have been correctly predicted.  The 
40%, 60%, and 80% of proteins annotated with isomerases have been predicted with 
93.8%, 63.9% and 3.3% precision, respectively.  With 80% precision, the 47.8% of 
proteins annotated with isomerases have been predicted.  The maximum f-measure is 
0.652. 
 
4.10  Prediction of Ligases 
 
This subsection describes the evaluation of the prediction of ligases (EC 6.-.-.-).  The 
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enzyme activity includes various ligases forming many kinds of bonds [50, 51]. 
     The recall precision graph of the prediction for ligases is shown in Figure 4.9.  
11 (7.5%) proteins annotated with ligases have been correctly predicted.  The 50%, 
70%, and 80% of proteins annotated with ligases have been predicted with 97.3%, 
84.4% and 5.7% precision, respectively.  With 80% precision, the 47.8% of proteins 
annotated with ligases have been predicted.  The maximum f-measure is 0.770. 
 

Figure 4.9: Recall Precision Graph for Ligases
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4.11  Prediction of Enzyme 
 
This subsection describes the evaluation of the prediction of enzymes.  The prediction 
is regarded as the judgment whether a protein has enzyme activity or not. 
     The recall precision graph of the prediction is shown in Figure 4.10.  59 (2.6%) 
proteins annotated with an enzyme have been correctly predicted.  The 50%, 70%, and 
90% of proteins annotated with an enzyme have been predicted with 96.3%, 80.4% and 
30.8% precision, respectively.  With 80% precision, the 70.3% of proteins annotated 
with an enzyme have been predicted.  The maximum f-measure is 0.751. 
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4.12  Conclusion 
 
In the experiments for protein-tyrosine kinase, it scores maximum f-measure of 0.932.  
The result suggests that the proposed method is quite efficient for a specific enzyme 
activity. 
 

Figure 4.10: Recall Precision Graph for Enzyme
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     Observing the change of f-measure in a series of experiments for protein-tyrosine 
kinase, EC2.7.1.-, EC2.7.-.- and transferases, the proposed method is more efficient for 
a specific enzyme activity than for larger class of enzyme activity.  Nevertheless, it 
scores the maximum f-measure for transferases stays at the high value of 0.786, and the 
recall precision graph has a good convex upward shape.  It suggests that the proposed 
method is also efficient for predicting a large class of enzyme activities. 
     The evaluation for large classes of enzyme activities from EC1.-.-.- to EC2.-.-.- 
clarify that the proposed method is applicable to all classes but there are differences 
among them.  The proposed method is most suitable for predicting transferases.  The 
average of the maximum f-measure from EC1.-.-.- to EC2.-.-.- is 0.717, while the 
maximum f-measure for whole enzyme activities (EC-.-.-.-) is 0.770.  In order to 
decide whether a protein has enzyme activity or not, the prediction for whole enzyme 
activities is better than combining the predictions for six large classes.  It suggests that 
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the proposed method is suitable for the prediction of a high level of function.  It is one 
of the advantages of the proposed method. 
     Generally speaking for these experiments, every recall precision graph has a 
rectangular shape:  holding horizontally at relatively high precision from 0 to a certain 
value of recall, and slanted to the lower right corner.  The difference of the 
performance among functions mainly depends upon the length of the horizontal part.  
In a usual information retrieval system, this horizontal holding part becomes quite short 
when the prediction performance is quite low.  The experiments suggest the excellent 
performance of our method in terms of common sense of information retrieval. 
     Furthermore, typically in the recall precision graph for isomerase (Figure 4.8) and 
whole enzymes (Figure 4.10), the decline of precision is slower and the shape is not 
rectangular but trapezial.  In order to predict the Positive Proteins in this region, the 
prediction method must take account of the subtle similarity among Positive Proteins.  
It suggests the proposed method has an ability to take account of the subtle similarity 
sensitively. 
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5.  Prediction of GeneOntology Terms 
 
In this section, the performance of the proposed method is evaluated for several 
GeneOntology terms.  GeneOntology [1, 52] is known as one of the important 
ontology in biology, and is annotated to proteins.  The length of oligopeptide is a 
parameter of the proposed method and has an impact to the performance of the 
prediction.  In this section, oligopeptide of length 5 is utilised. 
 
5.1  GeneOntology Term and its Annotation to Protein 
 
GeneOntology provides a set of biological terms with some relations among them 
including part-of relations and is-a relations.  GeneOntology terms are divided into 
three categories, GO component, GO function and GO process.  Each GeneOntology 
term has a unique ID.  For instance, 'membrane' is a GO component term whose ID is 
'goid 001620'.  The version dated 26-Jun-2005 includes of 217,416 GeneOntology 
terms, which consists of 130,599 GO component terms, 150,641 GO function terms and 
143,876 GO process terms. 
     Proteins in RefSeq are annotated with GeneOntology terms.  In RefSeq utilised 
in this thesis, 4,488 GeneOntology terms are annotated.  They consist of 461 GO 
component terms, 2,124 GO function terms and 1,903 GO process terms. 
 
5.2  Prediction of GO Component 
 
The subsection describes the evaluation of the prediction of several GO component 
terms including membrane [goid 0016020] and nucleus [goid 0005634].  The numbers 
of proteins annotated with membrane and nucleus are 2,549 and 4,218, respectively. 
 
5.2.1  Prediction of Membrane 
 
The recall precision graph of prediction for membrane is shown in Figure 5.1.  424 
(16.7%) proteins annotated with the GO component term are predictable without false 
prediction.  The 50%, 66%, and 80% of proteins annotated with the GO component 
term is predictable with 95.4%, 86.1% and 61.1% precision, respectively.  With 80% 
and 50% precision, the 71.7% and 83.4% of proteins annotated with the GO component 
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term is predictable, respectively.  The maximum f-measure is 0.757. 
 

Figure 5.1: Recall Precision Graph for Membrane
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Figure 5.2: Recall Precision Graph for Nucleus
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5.2.2  Prediction of Nucleus 
 
The recall precision graph of prediction for nucleus is shown in Figure 5.2.  141 
(6.5%) proteins annotated with the GO component term are predictable without false 
prediction.  The 50%, 66%, and 80% of proteins annotated with the GO component 
term is predictable with 90.6%, 85.2% and 60.8% precision, respectively.  With 80% 
and 50% precision, the 70.4 and 84.8% of proteins annotated with the GO component 
term is predictable.  The maximum f-measure is 0.753. 
 
5.3  Prediction of GO Function 
 
This subsection describes the evaluation of the prediction of several GO function terms 
including ATP binding [goid 0005524], hydrolase activity [goid 0016787] and GTP 
binding [goid 0005525].  The numbers of proteins annotated with ATP binding, 
hydrolase activity and GTP binding are 1,655, 1,102 and 407, respectively. 
 

Figure 5.3: Recall Precision Graph for ATP Binding
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5.3.1  Prediction of ATP Binding 
 
The recall precision graphs of prediction for ATP binding is shown in Figure 5.3.  199 
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(12.0%) proteins annotated with the GO function term are predictable without false 
prediction.  The 50%, 66%, and 80% of proteins annotated with the GO function term 
is predictable with 97.0%, 95.5% and 79.4% precision, respectively.  With 80% and 
50% precision, the 80.0% and 62.2% of proteins annotated with the GO function term is 
predictable, respectively.  The maximum f-measure is 0.814. 
 
5.3.2  Prediction of GTP Binding 
 
The recall precision graph of prediction for GTP binding is shown in Figure 5.4.  51 
(12.5%) proteins annotated with the GO function term are predictable without false 
prediction.  The 50%, 66%, and 80% of proteins annotated with the GO function term 
is predictable with 87.9%, 85.6% and 83.8% precision, respectively.  With 80% and 
50% precision, the 82.1% and 89.9% of proteins annotated with the GO function term is 
predictable, respectively.  The maximum f-measure is 0.821. 
 

Figure 5.4: Recall Precision Graph for GTP Binding
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5.3.3  Prediction of Hydrolase Activity 
 
The recall precision graph of prediction for hydrolase activity is shown in Figure 5.5.  
144 (13.1%) proteins annotated with the GO function term are predictable without false 
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prediction.  The 50%, 66%, and 80% of proteins annotated with the GO function term 
is predictable with 95.5%, 86.3% and 35.0% precision, respectively.  With 80% and 
50% precision, the 69.6% and 71.1% of proteins annotated with the GO function term is 
predictable, respectively.  The maximum f-measure is 0.751. 
 

Figure 5.5: Recall Precision Graph for Hydrolase Activity
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5.4  Prediction of GO Process 
 
This subsection describes the evaluation of the prediction of several GO process terms 
including intracellular signaling cascade [goid 0007242] and ubiquitin cycle [goid 
0006512].  The numbers of proteins annotated with intracellular signaling cascade and 
ubiquitin cycle 492 and 334. 
 
5.4.1  Prediction of Intracellular Signaling Cascade 
 
The recall precision graph of prediction for intracellular signaling cascade is shown in 
Figure 5.6.  43 (8.7%) proteins annotated with the GO process term are predictable 
without false prediction.  The 50%, 66%, and 80% of proteins annotated with the GO 
process term is predictable with 95.0%, 87.5% and 63.5% precision, respectively.  
With 80% and 50% precision, the 73.6% and 81.3% of proteins annotated with the GO 
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process term is predictable, respectively.  The maximum f-measure is 0.769. 
 

Figure 5.6: Recall Precision Graph for Intracellular Signaling Cascade
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Figure 5.7: Recall Precision Graph for Ubiquitin Cycle
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5.4.2  Prediction of Ubiquitin Cycle 
 
The recall precision graph of prediction for ubiquitin cycle is shown in Figure 5.7.  66 
(19.8%) proteins annotated with the GO process term are predictable without false 
prediction.  The 50%, 66%, and 80% of proteins annotated with the GO process term 
is predictable with 95.5%, 85.5% and 35.0% precision, respectively.  With 80% and 
50% precision, the 62.6% and 76.1% of proteins annotated with the GO process term is 
predictable, respectively.  The maximum f-measure is 0.705. 
 
5.5  Conclusion 
 
In the experiments for GO function terms, ATP binding and GTP binding score over 
80% recall with over 80% precision, and the maximum f-measure is greater than 0.8.  
The results suggest that our method is quite efficient for predicting these GO function 
terms. 
     In contrast, the prediction performance for GO process terms is delicate.  The 
results for intracellular signaling cascade are almost equivalently favorable, while 
ubiquitin cycle scores lower than others (62.6% recall with 80% precision and 
f-measure = 0.705).  We consider that one of the reasons is that the number of 
annotated proteins is quite less in comparison with cases of other GeneOntology terms. 
     Generally speaking for all experiments, every recall precision graph has a 
rectangular shape:  holding horizontally at relatively high precision from 0 to a certain 
value of recall, and slanted to the lower right corner.  Prediction performance mainly 
depends upon the length of the horizontal part.  GTP binding (see Figure 11) is an 
excellent instance.  In a usual information retrieval system, this horizontal holding part 
is so short that the prediction performance is quite low.  The experiments suggest the 
excellent performance of our method in terms of common sense in information retrieval. 
Furthermore, we can explain the difference between ATP binding and GTP binding by 
the characteristics of correspondence calculation in our method.  Because the 
correspondence calculation is normalised by the number of included oligopeptides 
which is proportional to the length, each oligopeptide has larger impact and makes the 
characteristics of prediction performance more clearly in case of a short protein than a 
long protein.  Because the length of protein annotated with GTP binding (approx. 460 
amino acids in average) is quite shorter than ATP binding (approx. 900 amino acids in 
average), GTP binding results in better than ATP binding. 
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6.  Comparison with Other Prediction Methods 
 
To clarify the performance of the proposed method objectively, this section describes 
the comparative research with some already proposed prediction methods based on 
homology search and pattern matching.  The length of oligopeptide is a parameter of 
the proposed method and has an impact to the performance of the prediction.  In this 
section, oligopeptide of length 5 is utilised. 
 
6.1  Homology Search 
 
Homology search refers to scouring a sequence database to find sequences that are 
likely to be homologous to a given query sequence.  BLAST [53, 54, 55], one of the 
most common homology search tools, is utilised for the comparative studies.  BLAST 
calculates the score of homology, so-called `e-value', for every pair of the query 
sequence and each sequence in the database, and decides its output using a threshold of 
e-value.  Because the output homologous sequences are ordered by e-value, the most 
homologous sequence in the databases can be obtained if BLAST finds at least one 
sequences.  In this section, a prediction method of protein functions designed for the 
comparative studies. 
     BLAST database is constructed from all Protein Universe.  For each protein p of 
Protein Universe, the most homologous protein except p is searched by BLAST.  There 
are the following cases of the results: 
 

- It results in error.  The reasons include that some parameters cannot be 
calculated in BLAST because the new protein has an error-prone irrelevant 
sequence.  In this case, no functions are predicted because BLAST cannot find 
any homologous proteins. 

- BLAST does not find any homologous proteins.  It means that there are no 
sequences that score higher than the threshold.  In this case, no functions are 
predicted. 

- BLAST finds only one homologous protein.  In this case the functions of p is 
predicted as same as ones of the obtained Protein Universe. 

- BLAST finds a plural number of homologous proteins.  In this case the 
functions of p is predicted as same as the highest scored one.  If there are a 

27 



 

plural number of highest scored homologous proteins, then the predicted 
functions are a total union of each homologous protein's functions. 

 
6.2  Patten Matching 
 
There are some databases of consensus patterns in the world.  In this comparative 
study, patterns registered in PROSITE [8, 56] are utilised.  Each pattern of PROSITE 
is regarded as a regular expression whose alphabets include 20 symbols of amino acids. 
     For a new protein, if a consensus pattern is matched to the protein, then the 
function related to the consensus pattern is predicted to the protein.  If there are some 
patterns for a function, then at least one of the patterns are matched, then it is decided 
that the function is predicted. 
 
6.3  Comparison Method 
 
While methods based on oligopeptides and homology search can be applicable to any 
functions fundamentally, a method based on pattern matching is restricted to be applied 
because pattern matching needs the consensus pattern and there are many functions 
whose consensus patterns are not found.  The comparative studies including pattern 
matching must be performed for the functions whose consensus patterns are registered 
in PROSITE.  Some of enzyme activities are related to consensus patterns in 
PROSITE. 
     Unlike that the proposed method calculate the correspondence of each pair of a 
protein and a function, the methods based on homology search and pattern matching 
mentioned in the previous subsections definitely select a set of functions of a given 
protein.  It means that the evaluation of the methods based on homology search and 
pattern matching does not result in recall precision graph but in a pair of specific values 
of recall and precision.  A comparative study is performed in the following manners: 
 

- The maximum f-measure from the method based on oligopeptides and 
f-measures from the methods of homology search and/or pattern matching are 
compared. 

- The recall and precision from the method of homology search and/or pattern 
matching is plotted to the recall precision graph from the method based on 
oligopeptides.  If the plotted point is lower than the curve of the graph, then the 
method associated with the curve is more effective than the method associated 
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with the point, and vice versa. 
 
     The following subsections describe results of the comparative studies.    Table 
6.1 shows the number of proteins annotated with each function utilised in the 
comparative studies.  Subsection 6.4 describes a comparative study among the 
proposed method, homology search and pattern matching.  Subsections from 6.5 to 6.9 
describe comparative studies between the proposed method and homology search 
because consensus patterns concerning the functions utilised in these studies have not 
been found yet. 
 

Table 6.1: Number of Annotated Proteins 

Function Type Number of annotated proteins 
Protein-tyrosine kinase Enzyme  134 (0.5 %) 
Transferases Enzyme  862 (3.0 %) 
Nucleus GeneOntology  4,625 (16.2 %) 
Membrane GeneOntology  2,588 (9.1 %) 
ATP binding GeneOntology  1,784 (6.3 %) 
GTP binding GeneOntology  425 (1.5 %) 

 
6.4  Comparison for Protein-Tyrosine Kinase 
 
This subsection describes the prediction for protein-tyrosine kinase (EC2.7.1.112) by 
means of the proposed method, homology search and pattern matching.  The 
prediction for the function by means of the proposed method was already mentioned in 
the thesis. 
     At first, the consensus pattern utilised in this comparative study is clarified.  
Each record of ENZYME Nomenclature Database of Swiss Institute of Bioinformatics 
[7] includes the corresponding PROSITE document entry accession numbers if exist.  
For instance, ENZYME Release 37.0 of March 2005 provides the correspondence 
between protein-tyrosine kinase and PROSITE document PDOC00100. 
     Each record of PROSITE Documentation File of Swiss Institute of 
Bioinformatics [8] includes consensus patterns.  PDOC00100 in Release 19.4 of 
21-Jun-2005 includes three patterns:  i) [LIV]-G-{P}-G-{P}-[FYWMGSTNH]-[SG 
A]-{PW}-[LIVCAT]-{PD}-x-[GSTACLIVMFY]-x(5,18)-[LIVMFYWCSTAR]-[AIVP]
-[LIVMFAGCKR]-K, ii) [LIVMFYC]-x-[HY]-x-D-[LIVMFY]-K-x(2)-N-[LIVMFYC 
T] (3), and iii) [LIVMFYC]-{A}-[HY]-x-D-[LIVMFY]-[RSTAC]-{D}-x-N-[LIVMFY 
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C](3). 
     A consensus pattern of PROSITE is an extended regular expression.  A hyphen 
denotes concatenation.  The meaning of each component is as follows: 
 

- N : a single character which denotes the definitive amino acid. 
- [LIV] : characters enclosed by square brackets denote the choice of amino acids. 
- {PD} : characters (or a single character) enclosed by curly braces denote the 

exception of amino acids.  For instance, {PD} means as same as 
[ACEFGHIKLMNQ RSTVWY] 

- x : it denotes a single occurrence of any amino acid.  It means as same as 
[ACDEF GHIKLMNPQRSTVWY]. 

- ...(3) : an integer enclosed by parenthesis and attached to any component denotes 
the iteration of the component, where the integer denotes the number of iteration.  
For instance, [LIVMFYC](3) denotes three-time iteration L, I, V, M, F, Y or C in 
any combination, while x(2) denotes any pair of two amino acids. 

- ...(5,18) : two integers separated by comma, enclosed by parenthesis and attached 
to any component denote the iteration of the component, where the pair of 
integers denotes the range of the number of iteration.  For instance, x(5,18) 
denotes any sequences of any amino acids whose length is between 5 and 18. 

 
     Figure 6.1 shows the obtained recall precision graph of the proposed method 
based on oligopeptide.  The results of other methods are superimposed on the graph. 
     By means of the proposed method, the maximum f-measure is 0.932 as 
mentioned before.  The maximum f-measure is obtained at 93.3% recall and 93.3% 
precision. 
     By means of the method based on pattern matching, 666 proteins are predicted 
and 119 proteins of them are true positive.  Then, the recall, the precision and the 
f-measure of the method are 88.8 %, 17.9 % and 0.297, respectively. 
     By means of the method based on homology search, 166 proteins are predicted 
and 129 proteins of them are true positive.  Then, the recall, the precision and the 
f-measure of the method are 96.3%, 77.7% and 0.860, respectively. 
     The performance of pattern matching is quite worse than homology search and 
the proposed method.  The performance of the proposed method is better than 
homology search.  The Proposed method scores f-measure higher than homology 
search and the point of homology search is located lower than the line of the proposed 
method in Figure 6.1. 
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6.5  Comparison for Transferases 
 
Figure 6.2 shows the obtained recall precision graph of the proposed method based on 
oligopeptide.  The result of homology search is superimposed on the graph.  Pattern 
matching is not applicable to the prediction because the corresponding patterns have not 
been found. 
     By the proposed method, the maximum f-measure is 0.786 as mentioned before.  
The maximum f-measure is obtained at 76.2% recall and 81.2% precision. 
     By means of the method based on homology search, 1,027 proteins are predicted 
and 707 proteins of them are true positive.  Then, the recall, the precision and the 
f-measure of the method are 82.0 %, 68.8 % and 0.749, respectively. 
     The performance of the proposed method is equal to or better than homology 
search.  The proposed method scores f-measure higher than homology search, while 
the point of homology search is located upper than the line of the proposed method in 
Figure 6.2.  At the point for maximising f-measure, the precision is better than 
homology search, while the recall is worse.  It suggests that the performance of the 
proposed method is better than homology search in high precision region for predicting 
transferases. 
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Figure 6.2: Comparison for Transferases
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6.6  Comparison for Nucleus 
 
Figure 6.3 shows the obtained recall precision graph of the proposed method based on 
oligopeptide.  The result of homology search is superimposed on the graph.  Pattern 
matching is not applicable to the prediction because the corresponding patterns have not 
been found. 
     By the proposed method, the maximum f-measure is 0.753 as mentioned above.  
The maximum f-measure is obtained at 68.4% recall and 83.6% precision. 
     By means of the method based on homology search, 5,272 proteins are predicted 
and 3,407 proteins of them are true positive.  Then, the recall, the precision and the 
f-measure of the method are 80.7 %, 64.6 % and 0.718, respectively. 
     The performance of the proposed method is equal to or better than homology 
search.  The proposed method scores f-measure higher than homology search, while 
the point of homology search is located upper than the line of the proposed method in 
Figure 6.3.  At the point for maximising f-measure, the precision is better than 
homology search, while the recall is worse.  It suggests that the performance of the 
proposed method is better than homology search in high precision region for predicting 
the GeneOntology term. 
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Figure 6.3: Comparison for Nucleus
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Figure 6.4: Comparison for Membrane
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6.7  Comparison for Membrane 
 
Figure 6.4 shows the obtained recall precision graph of the proposed method based on 
oligopeptide.  The result of homology search is superimposed on the graph.  Pattern 
matching is not applicable to the prediction because the corresponding patterns have not 
been found. 
     By the proposed method, the maximum f-measure is 0.757 as mentioned above.  
The maximum f-measure is obtained at 72.3% recall and 79.6% precision. 
     By means of the method based on homology search, 3,171 proteins are predicted 
and 2,194 proteins of them are true positive.  Then, the recall, the precision and the 
f-measure of the method are 86.1 %, 69.1 % and 0.767, respectively. 
     The performance of the proposed method is worse than homology search.  The 
proposed method scores f-measure lower than homology search and the point of 
homology search is located upper than the line of the proposed method in Figure 6.4. 
 

Figure 6.5: Comparison for ATP Binding
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6.8  Comparison for ATP Binding 
 
Figure 6.5 shows the obtained recall precision graph of the proposed method based on 
oligopeptide.  The result of homology search is superimposed on the graph.  Pattern 
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matching is not applicable to the prediction because the corresponding patterns have not 
been found. 
     By the proposed method, the maximum f-measure is 0.814 as mentioned above.  
The maximum f-measure is obtained at 75.2% recall and 88.7% precision. 
     By means of the method based on homology search, 2,217 proteins are predicted 
and 1,525 proteins of them are true positive.  Then, the recall, the precision and the 
f-measure of the method are 92.1 %, 68.8 % and 0.788, respectively. 
     The performance of the proposed method is equal to or better than homology 
search.  The proposed method scores f-measure higher than homology search, while 
the point of homology search is located upper than the line of the proposed method in 
Figure 6.5.  At the point for maximising f-measure, the precision is better than 
homology search, while the recall is worse.  It suggests that the performance of the 
proposed method is better than homology search in high precision region for predicting 
the GeneOntology term. 
 

Figure 6.6: Comparison for GTP Binding
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6.9  Comparison for GTP Binding 
 
Figure 6.6 shows the obtained recall precision graph of the proposed method based on 
oligopeptide.  The result of homology search is superimposed on the graph.  Pattern 
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matching is not applicable to the prediction because the corresponding patterns have not 
been found. 
     By the proposed method, 51 the maximum f-measure is 0.821 as mentioned 
above.  The maximum f-measure is obtained at 81.1% recall and 83.1% precision. 
     By means of the method based on homology search, 504 proteins are predicted 
and 368 proteins of them are true positive.  Then, the recall, the precision and the 
f-measure of the method are 90.4 %, 73.0 % and 0.808, respectively. 
     The performance of the proposed method is equal to or better than homology 
search.  The proposed method scores f-measure higher than homology search, while 
the point of homology search is located upper than the line of the proposed method in 
Figure 6.6.  At the point for maximising f-measure, the precision is better than 
homology search, while the recall is worse.  It suggests that the performance of the 
proposed method is better than homology search in high precision region for predicting 
the GeneOntology term. 
 
6.10  Conclusion 
 
From the results of comparative research with some already proposed prediction 
methods based on homology search and pattern matching, the performance of the 
proposed method based on oligopeptide is clarified objectively. 
     Pattern matching is quite less efficient than the other methods. For instance, in 
predicting protein-tyrosine kinase, the f-measure by homology search is approximately 
2.9 times of the one of pattern matching, and the maximum f-measure by oligopeptides 
is more than 3 times of the one of pattern matching.  The recall by pattern matching is 
not quite low (88.8 %), while the precision is extremely low (17.9 %).  It suggests that 
the preciseness of pattern, i.e. the strength of regular expression, is quite low. 
     Table 6.2 summarises the performance of the proposed method and homology 
search mentioned in this section.  Concerning f-measure, the proposed method is better 
than homology search except for the prediction of membrane.  On the other hand, 
concerning recall precision graph, the point of homology search is located upper than 
the line of the proposed method except for prediction of protein-tyrosine kinase.  It 
means that oligopeptides method is suitable for protein-tyrosine kinase, while homology 
search is suitable for membrane.  The difference of the length of the focused 
subsequence is an explicable reason for the result that homology search is more efficient 
in predicting membrane than the proposed method.  Homology search focuses on 
relatively longer subsequence than the proposed method.  On the other hand, a 

36 



 

membrane protein has relatively long typical subsequence in its transmembrane 
subunits.  It is considered that the similarity of the subunits contributes the high 
performance of homology search in predicting a membrane protein. 
 

Table 6.2: Comparison between Proposed Method and Homology Search 

Function 
Maximum f-score in 

proposed method 
F-score in 

homology search 
Relation in 

recall precision graph
Protein-tyrosine kinase 0.932 0.860 OP > HS 
Transferases 0.786 0.749 OP < HS 
Nucleus 0.753 0.718 OP < HS 
Membrane 0.757 0.767 OP < HS 
ATP binding 0.814 0.788 OP < HS 
GTP binding 0.821 0.808 OP < HS 
  OP < HS : the point of homology search is located upper than the line of the proposed method. 

  OP > HS : the point of homology search is located lower than the line of the proposed method. 
 
     It was suggested in [2] that the length of sequence have an impact to the 
performance of the proposed method.  Because the voting of each oligopeptide in the 
longer sequence has relatively smaller influence to Cor(X, Ps) than the shorter sequence, 
it is more difficult to predict a function of the longer sequence more than a function of 
the shorter one.  This is the reason why the performance of predicting GTP binding by 
the proposed method is better than one of predicting ATP binding [2].  Table 2 shows 
that this situation is also observed in homology search, i.e. the f-scores for GTP binding 
and ATP binding is 0.808 and 0.788, respectively.  But the relative performance of the 
proposed method against homology search is not affected by the difference of sequence 
lengths, i.e. the difference of the maximum f-score in the proposed method and the 
f-score in homology search for GTP binding (0.821 − 0.808 = 0.013) is greater than one 
for ATP binding (0.814 − 0.788 = 0.026).  It suggests that the proposed method is more 
suitable for the prediction of a short protein than homology search. 
     The comparative studies on the length of oligopeptides suggest that the proposed 
method is much more efficient than pattern matching and it is more efficient than or 
equally efficient to homology search on the prediction of protein function. 
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7.  Length of Oligopeptides and Prediction 
 
The length of oligopeptides is an important parameter of the proposed method.  The 
length is thought to make a large impact to the performance of prediction.  The longer 
oligopeptide has relatively high specificity for proteins than the shorter one.  The 
specificity is a basis of the prediction method.  In the previous sections, the length of 5 
is utilised without any explanation. 
   To clarify the impact of the length of oligopeptides to the performance of prediction, 
this section shows the results of comparative research on the length of oligopeptides.  
In this section, a number of functions are predicted by means of varied lengths of 
oligopeptides from 1 to 9. 
 

Table 7.1: Length and Variety of Oligopeptides 

Length Variety Increasing Unique Co-occurring
1 20 −  0 (0.00%) 20
2 400 20  0 (0.00%) 400
3 8,000 20  0 (0.00%) 8,000
4 159,724 19.97  479 (0.30%) 159,245
5 2,361,750 14.79  527,213 (22.33%) 1,834,537
6 8,049,120 3.41  5,181,054 (64.37%) 2,868,066
7 10,138,751 1.26  7,897,565 (77.89%) 2,241,186
8 10,483,985 1.03  8,388,139 (80.01%) 2,095,846
9 10,589,523 1.01  8,530,459 (80.65%) 2,059,164

 
7.1  Statistics of Oligopeptides 
 
     Table 7.1 shows the variety of oligopeptides of the length from 1 to 9 in Protein 
Universe.  Because the variety of amino acids is 20, the theoretical maximum of 
oligopeptides of length i is 20 raised to the i-th power.  In the length from 1 to 3, 
Protein Universe contains the maximum number of oligopeptides.  The increasing rate 
of the variety descends according the elongation of oligopeptides.  Table 1 also shows 
the increasing rate.  In the lengths greater than 6, the variety is almost stable.  Some 
oligopeptides are unique in a specific protein and others are co-occurring in a plural 
number of proteins.  Table 7.1 also shows the breakdown of oligopeptides with the 
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percentage of unique oligopeptides.  All peptides are co-occurring in the lengths less 
than 5, while the unique peptides are more than half in the lengths greater than 5. 
     An oligopeptide of length 1 is an amino acid itself.  The actual variety of 
oligopeptides of length 1 counting in Protein Universe is equal to the theoretical one, i.e. 
20.  The actual variety of oligopeptides shorter than 4 is also equal to the theoretical 
one.  Concerning oligopeptides longer than 3, the variety of longer one is less than the 
variety of shorter one.  Concerning oligopeptides longer than 6, the increase of the 
variety is saturated.  It suggests that the coexistence of oligopeptides more than 6 
keeps almost equal characteristics. 
     All oligopeptides of length 1, 2 and 3 are coexistent to several proteins in Protein 
Universe and there are no unique oligopeptides for a specific protein.  It means that the 
specificity of longer oligopeptide is less than the one of shorter oligopeptides.  
Especially concerning oligopeptides longer than 5, the percentage of coexistent 
oligopeptides are less than one of unique oligopeptides.  Concerning oligopeptides 
longer than 4, the percentage of unique oligopeptides increases along with the length.  
The ratio of the increase becomes less with the length of oligopeptides.  It also 
supports that the coexistence of oligopeptides more than 6 keeps almost equal 
characteristics. 
     From the above observation, it is stated that the oligopeptides of length 1, 2 and 3 
are ubiquitous in Whole Proteins.  Because of the ubiquity, it is expected that the 
performance of the proposed method based on oligopeptides of these lengths is quite 
low.  On the other hand, quite long oligopeptides such as ones such as 7, 8 and 9 are 
maldistributed in Whole Proteins.  Because of the maldistribution, it is expected that 
the applicable functions of the proposed method based on oligopeptides of these lengths 
is quite low. 
 

Table 7.2: Number of Unique Proteins 

Length 1 2 3 4 5 6 7 8 9
Unique Proteins 0 0 0 0 0 0 107 2,900 6,739

 
     For some specific lengths of oligopeptides, there are Whole Proteins each of 
which does not have any oligopeptides that coexist in the other Whole Proteins.  Such 
proteins are called as Unique Proteins.  For each Unique Protein, its functions cannot 
be predicted from the other protein by the proposed method.  Table 7.2 shows the 
number of Unique Proteins for several lengths of oligopeptides.  Unique Proteins are 
found for oligopeptides longer than 6, and its amount is increased along with the length.  
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Furthermore, there is a Whole Protein whose length is 7.  The method based on 
oligopeptides more than 7 cannot be applied to the protein. 
 
7.2  Length of Oligopeptides and Transferases 
 
Figure 7.1 shows the obtained recall precision graph of the proposed method based on 
oligopeptide.  All graphs for the length of oligopeptides from 1 to 9 are superimposed.  
Table 7.3 shows the performance of prediction in each length of oligopeptides, i.e. 
maximum f-measure with the recall and the precision for obtaining the maximum 
f-measure. 
     The performance in the lengths of 1 and 2 is quite poor.  Especially the 
performance in the length of 1 is worse than the theoretical expectation of random 
sampling.  The length of 5 scores the best of maximum f-measure but the performance 
in the lengths greater than 4 is quite closed.  The convex downward shape of recall 
precision graph in the length of 3 is different from ones in greater lengths and is 
commonly observed in informal retrieval research domain.  The length of 4 has a 
similar rectangular shape of recall precision graph to ones in the longer oligopeptides 
but its performance is obviously worse than them. 
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Figure 7.1: Length of Oligopeptide and Transferases
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Table 7.3: Maximum F-measure for Transferases 

Length Maximum f-measure (*) Recall for * Precision for * 
1 0.059 100.0% 3.0% 
2 0.136 26.9% 9.1% 
3 0.459 39.8% 54.3% 
4 0.719 68.0% 76.4% 
5 0.786 76.3% 81.0% 
6 0.783 73.9% 83.4% 
7 0.782 74.4% 82.5% 
8 0.781 74.1% 82.5% 
9 0.780 74.9% 81.3% 

 
 

Figure 7.2: Length of Oligopeptide and  Protein-Tyrosine Kinase
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7.3  Length of Oligopeptides and Protein-Tyrosine Kinase 
 
Figure 7.2 shows the obtained recall precision graph of the proposed method based on 
oligopeptide.  All graphs for the length of oligopeptides from 1 to 9 are superimposed.  
Table 7.4 shows the performance of prediction in each length of oligopeptides. 
     The performance in the lengths of 1 and 2 is quite poor.  Especially the 
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performance in the length of 1 is worse than the theoretical expectation of random 
sampling.  The length of 7 scores the best of maximum f-measure but the performance 
in the lengths greater than 3 is quite closed.  The length of 3 has a similar rectangular 
shape of recall precision graph to ones in the longer oligopeptides but its performance is 
obviously worse than them. 
 

Table 7.4: Maximum F-measure for Protein-Tyrosine Kinase 

Length Maximum f-measure (*) Recall for * Precision for * 
1 0.009 100.0% 0.5% 
2 0.074 9.0% 6.3% 
3 0.772 85.8% 70.1% 
4 0.912 92.5% 89.9% 
5 0.933 93.3% 93.3% 
6 0.941 94.8% 93.4% 
7 0.942 96.3% 92.1% 
8 0.938 96.3% 91.5% 
9 0.936 97.7% 89.7% 

 

Figure 7.3: Length of Oligopeptide and of ATP Binding

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
re
c
is
io
n

1

2

3

4

5

6

7

8

9

 

 
 

42 



 

7.4  Length of Oligopeptides and ATP Binding 
 
Figure 7.3 shows the obtained recall precision graph of the proposed method based on 
oligopeptide.  All graphs for the length of oligopeptides from 1 to 9 are superimposed.  
Table 7.5 shows the performance of prediction in each length of oligopeptides. 
     The performance in the lengths of 1 and 2 is quite poor.  Especially the 
performance in the length of 1 is worse than the theoretical expectation of random 
sampling.  The length of 7 scores the best of maximum f-measure but the performance 
in the lengths greater than 4 is quite closed.  The convex downward shape of recall 
precision graph in the length of 3 is different from ones in greater lengths and is 
commonly observed in informal retrieval research domain.  The length of 4 has a 
similar rectangular shape of recall precision graph to ones in the longer oligopeptides 
but its performance is obviously worse than them. 
 

Table 7.5: Maximum F-measure for ATP Binding 

Length Maximum f-measure (*) Recall for * Precision for * 
1 0.110 98.2% 5.8% 
2 0.152 62.1% 8.7% 
3 0.368 35.5% 38.3% 
4 0.708 63.7% 79.8% 
5 0.814 75.1% 88.9% 
6 0.815 75.4% 88.8% 
7 0.825 80.7% 84.3% 
8 0.823 81.3% 83.4% 
9 0.817 79.9% 83.6% 

 
7.5  Length of Oligopeptides and GTP Binding 
 
Figure 7.4 shows the obtained recall precision graph of the proposed method based on 
oligopeptide.  All graphs for the length of oligopeptides from 1 to 9 are superimposed.  
Table 7.6 shows the performance of prediction in each length of oligopeptides. 
     The performance in the lengths of 1 and 2 is quite poor.  Especially the 
performance in the length of 1 is worse than the theoretical expectation of random 
sampling.  The length of 5 scores the best of maximum f-measure but the performance 
in the lengths greater than 3 is quite closed.  The convex downward shape of recall 
precision graph in the length of 2 is different from ones in greater lengths and is 
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commonly observed in informal retrieval research domain.  The length of 3 has a 
similar rectangular shape of recall precision graph to ones in the longer oligopeptides 
but its performance is obviously worse than them. 
 

Figure 7.4: Length of Oligopeptide and  GTP Binding
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Table 7.6: Maximum F-measure for GTP Binding 

Length Maximum f-measure (*) Recall for * Precision for * 
1 0.028 100.0% 1.4% 
2 0.235 24.3% 22.7% 
3 0.610 59.2% 62.9% 
4 0.786 74.4% 83.2% 
5 0.821 81.1% 83.1% 
6 0.819 83.3% 80.5% 
7 0.818 85.7% 78.3% 
8 0.806 82.8% 78.6% 
9 0.800 79.6% 80.4% 

 
7.6  Length of Oligopeptides and Membrane 
 
Figure 7.5 shows the obtained recall precision graph of the proposed method based on 
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oligopeptide.  All graphs for the length of oligopeptides from 1 to 9 are superimposed.  
Table 7.7 shows the performance of prediction in each length of oligopeptides. 
 

Figure 7.5: Length of Oligopeptide and Membrane
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Table 7.7: Maximum F-measure for Membrane 

Length Maximum f-measure (*) Recall for * Precision for * 
1 0.166 93.1% 9.1% 
2 0.256 48.5% 17.4% 
3 0.375 50.8% 29.6% 
4 0.601 58.3% 62.0% 
5 0.758 72.3% 79.6% 
6 0.778 72.5% 83.8% 
7 0.778 75.5% 80.2% 
8 0.775 74.0% 81.4% 
9 0.771 74.0% 80.5% 

 
     The performance in the lengths from 1 to 3 is quite poor.  Especially the 
performance in the length of 1 is worse than the theoretical expectation of random 
sampling.  The length of 5 scores the best of maximum f-measure but the performance 
in the lengths greater than 3 is quite closed.  The length of 4 has a similar rectangular 
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shape of recall precision graph to ones in the longer oligopeptides but its performance is 
obviously worse than them. 
 

Figure 7.6: Length of Oligopeptide and  Nucleus
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Table 7.8: Maximum F-measure for Nucleus 

Length Maximum f-measure (*) Recall for * Precision for * 
1 0.264 96.1% 15.3% 
2 0.385 57.1% 29.0% 
3 0.470 57.2% 39.9% 
4 0.653 63.8% 66.8% 
5 0.753 68.6% 83.4% 
6 0.750 71.4% 78.9% 
7 0.743 72.8% 75.8% 
8 0.740 72.2% 75.9% 
9 0.737 72.0% 75.5% 

 
7.7  Length of Oligopeptides and Nucleus 
 
Figure 7.6 shows the obtained recall precision graph of the proposed method based on 
oligopeptide.  All graphs for the length of oligopeptides from 1 to 9 are superimposed.  

46 



 

Table 7.8 shows the performance of prediction in each length of oligopeptides. 
     The performance in the lengths of 1 and 2 is quite poor.  Especially the 
performance in the length of 1 is worse than the theoretical expectation of random 
sampling.  The length of 5 scores the best of maximum f-measure but the performance 
in the lengths greater than 3 is quite closed.  The convex downward shape of recall 
precision graph in the length of 2 is different from ones in greater lengths and is 
commonly observed in informal retrieval research domain.  The length of 3 has a 
similar rectangular shape of recall precision graph to ones in the longer oligopeptides 
but its performance is obviously worse than them. 
 
7.8  Conclusion 
 
Table 7.9 summarises the results of the experiments mentioned in the previous section.  
For each function, the length which scores the best maximum f-measure and the 
qualitative evaluation of the shape of recall precision graph are shown.  The criteria of 
qualitative evaluation are as follows: 
 

- −− : Quite poor.  The graph is little too high on the right.  It means that the 
performance is worse than the theoretical expectation of random sampling. 

- − : Poor.  The graph is horizontal line like.  The ability of prediction is slightly 
observed but quite restricted. 

- ± : Marginal.  The graph is convex downward and commonly observed in 
information retrieval research domain. 

- + : Good.  The graph is convex upward or rectangular.  But the performance is 
obviously worse than excellent graphs. 

- ++ : Excellent.  The graph is rectangular.  It is the best length for the prediction 
or is closed the best. 

 
     No predictability is observed in the length of 1.  It means that the amino acid 
profile is not applicable prediction of the functions evaluated in this section.  In 
contrast, oligopeptides is efficient to predict these functions. 
     The predictability of the oligopeptides whose length is from 2 to 4 depends upon 
the function to predict.  The range of applicable functions of the longer oligopeptides 
is larger than one of the shorter oligopeptides.  For each function, the performance of 
the longer oligopeptides is better than the shorter oligopeptides. 
     The oligopeptides whose length is greater than 4 has an excellent predictability.  
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Figure 7.7 shows the schematic proportion of recall precision graphs for these 
oligopeptides.  A recall precision graph is divided into five regions as follows: 
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Figure 7.7: Recall Precision Graph of Length 5 to 9
 

 
- The horizontal line where precision is equal to 1.  The longer oligopeptides 

keep the length longer.  The length of the horizontal line where precision is 
equal to 1 is positively correlated with the number of Positive Proteins whose 
Cor(X, Ps) is higher than the highest Cor(X, Ps) of Negative Proteins.  It 
suggests that the longer oligopeptides avoid a high score of Negative Protein. 

- The longer oligopeptides score higher precision than the shorter ones.  This is 
the natural consequence of the difference of the length of the horizontal line 
mentioned above. 

- The graphs meet again.  This region is located at the upper right corner of 
rectangular recall precision graph and the maximum f-measure is obtained from 
this region.  It suggests that the shorter oligopeptides are comparable in the 
ability of avoiding a high score of Negative Proteins to the longer oligopeptides 
in the range where the method achieves the best performance to predict. 

- The longer oligopeptides score higher precision than the shorter ones again.  
The reason is same as the relation between the length of oligopeptides and Cor(X, 
Ps) which causes the length of horizontal line where precision is equal to 1, i.e. 
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the longer oligopeptides avoid a high score of Negative Protein.  This region ant 
the next region mentioned below must be discussed together because these 
regions are caused by two conflicted relations between the length of 
oligopeptides and Cor(X, Ps). 

- The shorter oligopeptides score higher precision than the shorter ones.  In order 
to predict the Positive Proteins in this region, the prediction method must take 
account of the subtle similarity among Positive Proteins.  The Cor(X, Ps) of 
Positive Proteins in this region by means of the shorter oligopeptides is higher 
than one by means of the longer oligopeptides.  It suggests the shorter 
oligopeptides amplify a low score of Positive Protein. 

 
This schematic proportion is extended for the oligopeptides whose length is less than 5 
when the qualitative evaluation of its recall precision graph is ++ (i.e. excellent).  This 
distinguishing schematic proportion is caused by two conflicted properties: i) the longer 
oligopeptides avoid a high score of Negative Protein; ii) the shorter oligopeptides 
amplify a low score of Positive Protein.  In other words, the shorter oligopeptides 
contribute to recall while the longer oligopeptides contribute to precision.  It is one of 
the general findings in information retrieval research domain that recall and precision 
conflict other. 
     From the viewpoint of the range of applicable proteins, the longer oligopeptides 
have a little disadvantage.  Table 1 depicts the less co-occurrence of longer 
oligopeptides.  The co-occurrence of an oligopeptide is one of the foundations of the 
method.  If a protein does not share any oligopeptides with any other protein, then the 
method does not predict any functions for the protein.  The number of such 
inapplicable proteins is positively correlated with the length of oligopeptides.  In fact, 
there are 107, 2,900 and 6,739 inapplicable proteins in Protein Universe for the length 
of 7, 8 and 9, respectively.  There are not inapplicable proteins in Protein Universe for 
oligopeptides whose length is less than 7.  Furthermore, there is a protein whose total 
length is 7 in Protein Universe.  From the viewpoint of efficiency and applicability, it 
is suggested that five or six is the most acceptable length to predict any functions 
generally. 
     In Table 7.9, the performance of prediction of membrane is relatively worse than 
one of other functions in case of the shorter oligopeptides.  The characteristic 
subsequence of membrane proteins is transmembrane domain.  The domain is so 
relatively long that prediction in case of the shorter oligopeptide is worse.  In Table 9, 
the performance of prediction of GTP binding by means of the shorter oligopeptides is 
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better than one by means of the longer oligopeptides in comparison with prediction of 
ATP binding.  It also suggested that the characteristic subsequence of GTP binding 
proteins is shorter than one of ATP binding proteins.  Actually, the full sequence of 
GTP binding proteins is shorter than one of ATP binding proteins and it was suggested 
in [2] that this is the reason why the performance for GTP binding is better than one for 
ATP binding.  These discussions on the length of a characteristic subsequence and of a 
full sequence might support each other. 
 

Table 7.9: Summary of Performance in Various Lengths of Oligopeptides 

Recall precision graph 
Function 

Length for 
Maximum f-score 1 2 3 4 5 6 7 8 9

Transferases 5 −− − ± + ++ ++ ++ ++ ++
Protein-tyrosine kinase 7 −− − + ++ ++ ++ ++ ++ ++
ATP binding 7 −− − ± + ++ ++ ++ ++ ++
GTP binding 5 −− ± + + ++ ++ ++ ++ ++
Membrane 7 −− − − + ++ ++ ++ ++ ++
Nucleus 5 −− ± ± + ++ ++ ++ ++ ++

−− : Quite poor.  − : Poor.  ± : Marginal. + : Good.  ++ : Excellent. 
 
     The thesis investigates the length of oligopeptides and its predictability of some 
functions including enzymes and GeneOntology.   From the viewpoint of the 
performance and applicability, it suggests that the most acceptable length of 
oligopeptides is 5 or 6 of generally predicting an arbitrary function. 
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8.  Correspondence between Oligopeptide and Function 
 
The proposed method is based on the correspondence between oligopeptide and 
function.  For each function, the correspondence is calculated from Annotated Protein 
Ps and stored in PepFunc Vector VEC(Ps).  This section investigates the 
correspondence between Protein Universe and protein-tyrosine kinase.  This is a 
typical example of the discussion on the correspondence between oligopeptides and a 
function.  In this section, oligopeptide of length 5 is utilised. 
 
8.1  Statistics on Proteins and Oligopeptides 
 
The number of proteins in Protein Universe is 28,520.  2,361,750 kinds of 
oligopeptides whose length is 5 are extracted from Protein Universe.  The total 
occurrence of the whole oligopeptides is 14,111,969. 
     The number of proteins annotated with protein-tyrosine kinase (EC2.7.1.112) is 
134 (0.47% of Protein Universe).  58,303 kinds of oligopeptides whose length is 5 are 
extracted from the Positive Proteins (2.5% of oligopeptides of Protein Universe).  The 
total occurrence of the oligopeptides in the Positive Proteins is 74,989 (0.53% of the 
total occurrence of oligopeptides in Protein Universe). 
 
8.2  Uniqueness of Oligopeptide and Evaluation Method 
 
The 58,303 oligopeptides of the Positive Proteins contribute the score of prediction 
Cor(X, Ps).  In the evaluation method of the thesis, for each protein in Protein 
Universe, a prediction is performed by means of the Positive Protein except the protein.  
If an oligopeptide in the protein is unique in Protein Universe, then it does not 
contribute the score of any protein in Protein Universe.  If an oligopeptide in the 
protein is unique in Positive Proteins, then it does not contribute the score of any 
Positive Protein but contributes to the score of Negative Proteins which has the 
oligopeptide.  Consequently, from the viewpoint of the evaluation method, the 58,303 
oligopeptides of the Positive Proteins are classified into following 3 groups: 
 

- Unique in Protein Universe.  The oligopeptides in this group does not contribute 
any protein in the course of evaluation.  The number of such proteins in Protein 
Universe is 2,717. 
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- Unique in the Positive Protein but co-occurring in Protein Universe.  It means 
that there is some Negative Proteins which have such an oligopeptide.  An 
oligopeptide in this group contributes the score of such Negative Proteins only.  
The number of such oligopeptides is 32,309. 

- Co-occurring in Positive Proteins.  An oligopeptide in this group contributes the 
score of proteins which have the oligopeptide.  The number of such 
oligopeptides is 23,277. 

 
     For investigating the correspondence between oligopeptides and function by 
means of the evaluation method, the 23,277 oligopeptides co-occurring in Protein 
Universe are utilised.  The oligopeptides are called as Effective Oligopeptides. 
 
8.3  Oligopeptide of High Correspondence 
 
Table 8.1 shows the classification of Effective Oligopeptides by means of the 
correspondence for protein-tyrosine kinase.  For instance, there are 4,874 Effective 
oligopeptides whose correspondence for protein-tyrosine kinase is greater than or equal 
to 1.0 and less than 2.0.  The oligopeptides whose correspondence is greater than or 
equal to 7 are decreased, while there are relatively many oligopeptides whose 
correspondence is 1, called as Highest Oligopeptides. 
 

Table 8.1: Correspondence of Effective Oligopeptides 

Correspondence <0.1 <0.2 <0.3 <0.4 <0.5 <0.6 
Oligopeptides 3,784 4,874 4,144 2,063 1,798 1,959 

Correspondence <0.7 <0.8 <0.9 <1.0 =1.0  
Oligopeptides 1,874 591 431 108 1,647  

 
Table 8.2: Co-Occurrence of Highest Oligopeptides 

Co-occurrence 2 3 4 5 6 7 8 9 10 
Oligopeptides 1,043 290 138 41 28 9 21 10 5 

Co-occurrence 11 12 13 15 16 17 19 20 >20
Oligopeptides 9 5 13 10 3 5 5 1 11 

 
     A Highest Oligopeptide exists only in Positive Proteins.  Table 8.2 shows the 
classification of Highest Oligopeptides by means of the number of the co-occurring 
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Positive Proteins.  For instance, 1,043 Highest Oligopeptides exist in two proteins of 
Protein Universe and the proteins are Positive Proteins.  Oligopeptides with more 
co-occurring Positive Proteins are regarded to correspond more strongly with the 
function than ones with less co-occurring Positive Proteins.  Table 8.3 lists up the 
Highest Oligopeptides whose correspondence is greater than 20.  For instance, 
KWMAP exists in 32 Positive Proteins but does not exist in any Negative Proteins.  It 
is suggested that these oligopeptides are specific to and general in the function.  
Furthermore, both of QPHIQ and PHIQW are Highest Oligopeptides whose occurrence 
in Positive Proteins is 25.  It is predicted that QPHIQW has same property.  This 
prediction is proved by the investigation to oligopeptides whose length is 6.  Similarly, 
SINHTY is Highest Oligopeptides whose occurrence in Positive Proteins is 21.  The 
situation of NVMKI and MKIAD is more complicated.  Although VMKIA exists in 21 
Positive Proteins, it is not a Highest Oligopeptide because 2 Negative Proteins have the 
oligopeptide.  The investigation to oligopeptides whose length is 6 clarifies that 
NVMKIA and VMKIAD exist only in 21 Positive Proteins. Furthermore, the 
investigation concerning the length of 7 shows that NVMKIAD also exists only in 21 
Positive Proteins. 
 

Table 8.3: Highest Oligopeptides Co-Occurring in Many Positive Proteins 

Co-Occurrence Oligopeptides
32 KWMAP 
29 VKWMA 

QPHIQ 
PHIQW 

25 

KCIHR 
23 WEFPR 
 HRIGG 

SINHT 
NVMKI 
MKIAD 

21 

INHTY 

 
     Other than Highest Oligopeptides, oligopeptides whose correspondence with the 
function and co-occurrence in Positive Proteins are also suggested to be specific to and 
general in the function.  Table 8.4 shows the top 10 oligopeptides in the co-occurrence.  
For instance, DFGLA exists in 54 Positive Proteins but also in 148 Negative Proteins, 
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then its correspondence is low in 0.267.  In contrast, DVWSF exists in 70 Positive 
Proteins and its correspondence is high in 0.921 caused by the fact that only 6 Negative 
Proteins have the oligopeptide.  DVWSF is suggested to be one of the most specific to 
and general in the function.  There are three oligopeptides whose length is 6 and 
include DVWSF as subsequence: ADVWSF, DVWSFG and SDVWSF.  It means that 
DVWSF is always succeeded by a glycine, while it is preceded by an alanine or a serine.  
Because ADVWSF exists in a Positive Protein and a Negative Protein, it is nor specific 
to nor general in the function.  SDVWSF is in almost same situation as DVWSF. 
 

Table 8.4: Top 10 Oligopeptides in Co-Occurrence 

Co-occurrence Oligopeptide Correspondence 
93 HRDLA 0.861 
90 SDVWS 0.804 
85 LAARN 0.752 
84 DLAAR 0.694 
82 RDLAA 0.713 
70 VWSFG 0.886 
70 DVWSF 0.921 
57 IHRDL 0.435 
54 DFGLA 0.267 
50 WSFGV 0.746 

 
8.4  Conclusion 
 
This section investigates the correspondence between Protein Universe and 
protein-tyrosine kinase.  The oligopeptides whose correspondence is greater than or 
equal to 7 are decreased, while there are relatively many Highest Oligopeptides.  This 
investigation results in some seemingly important oligopeptides in some reason, 
because they are specific to and general in protein-tyrosine kinase: 
 

- Highest Oligopeptides with high co-occurrence in Positive Proteins: KWMAP, 
VKWMA, QPHIQ, PHIQW, KCIHR, WEFPR, HRIGG, SINHT, NVMKI, 
MKIAD, and INHTY. 

- Longer oligopeptides suggested by the above oligopeptides: QPHIQW, SINHTY, 
NVMKIA, VMKIAD, and NVMKIAD. 

54 



 

- Oligopeptide with high correspondence to the function and high co-occurrence in 
Positive Proteins: DVWSF. 

- Longer oligopeptides suggested by the above oligopeptides: DVWSFG and 
SDVWSF. 

 
    The investigation on each oligopeptide is a great side benefit of a prediction 
method based on oligopeptide. 
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9.  Conclusion 
 
     The prediction of protein function using the sequence is one of the important 
research topics in bioinformatics.  Meanwhile, the statistical characteristics of 
oligopeptide, relatively short subsequence, have been investigated.  This thesis 
investigates a new method based on oligopeptides.  The main purpose of the thesis is 
to demonstrate that `oligopeptide' enable us to develop an effective method for 
predicting various protein function.  A known function of a protein is regarded to be 
inherited to its oligopeptides, and the correspondence between oligopeptides and the 
function is calculated in the whole proteins.  In the proposed method, unknown 
functions of proteins are predicted by means of the correspondence automatically. 
     The prediction performance of the method is measured for several functions 
including GO terms and enzyme activities by recall precision graphs using the 28,520 
whole human proteins registered in RefSeq.  The GO terms include 'membrane', 
'nucleus', 'ATP binding', 'hydorolase activity', 'GTP binding', 'intracellular signaling 
cascade' and 'ubiquitin cycle'.  In most cases, it scores 70% recall with 80% precision.  
The prediction for ATP binding and GTP binding results in quite high performance:  it 
scores 80% recall with 80% precision.  Even in the worst case (ubiquitin cycle), it 
scores 62.6% recall with 80% precision.  The enzyme activities include a specific 
enzyme 'protein-tyrosine kinase' (EC 2.7.1.112) and a large class of enzymes 
'transferases' (EC 2.-.-.-).  The former and the latter score maximum f-measure of 
0.932 and 0.786, respectively.  These results suggest that the proposed method is quite 
efficient for various protein functions. 
     To clarify the performance of the proposed method objectively, this thesis include 
the results of comparative research with some already proposed prediction methods 
based on homology search and pattern matching.  For instance, on the prediction of 
protein-tyrosine kinase, a method based on homology search scores f-measure of 0.860 
and a method based on pattern matching scores f-measure of 0.297.  These results 
suggest that the proposed method based on oligopeptides is quite more efficient than 
pattern matching and is a little more efficient or equal to homology. 
     The thesis also characterises the relation between the length of oligopeptides and 
the prediction of protein functions.  The performance of prediction is measured for the 
length of oligopeptides between 1 and 9.  For instance, the maximum f-measures for 
the prediction of transferases are 0.059, 0.136, 0.459, 0.719, 0.786, 0.784, 0.782, 0.781, 
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and 0.780 using the lengths of oligopeptides from 1 to 9, respectively.  These results 
suggest that oligopeptides of the length of 1 has no predictability, oligopeptides longer 
than 4 are almost equally effective for all functions.  The predictability of 
oligopeptides of the length between 2 and 4 depends upon the functions, and the longer 
oligopeptides are more efficient than the shorter ones for each function.  The 
prediction based on oligopeptides utilises coexistence of oligopeptides among proteins.  
The longer oligopeptides are more versatile than the shorter one because the longer 
oligopeptide is more varied than the shorter one and the degree of the coexistence is 
inversely related to the length.  Considerations on statistics of oligopeptides results 
suggest that the most acceptable length of oligopeptides is 5 or 6 of generally predicting 
an arbitrary function. 
     The thesis also describes an example of the investigation the correspondence 
between each oligopeptide and a function, and finds several seemingly important 
oligopeptides in some reason, because they are specific to and general in a function.  
This kind of investigation provides the first step to oligopeptide profiling, which will 
become a useful results of researches based on oligopeptides. 
     Future works also include improvement of the method and further investigation 
on every oligopeptide which make predominant impact to predication positively or 
negatively.  The difference of the predictability in various lengths differs according to 
functions.  Future works also include the characterisation, classification and reasoning 
of proteins from the viewpoint of the difference. 
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