
NAIST-IS-DD0361207

Doctoral Dissertation

Kernels for Structured Data in Natural

Language Processing

Jun Suzuki

March 24, 2005

Department of Information Processing

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Jun Suzuki

Thesis Committee:

Professor Yuji Matshmoto (Supervisor)

Professor Shin Ishii (Co-supervisor)

Professor Hiroyuki Seki (Co-supervisor)

Associate Professor Kentaro Inui (Member)

i

Kernels for Structured Data in Natural

Language Processing∗

Jun Suzuki

Abstract

The recent success of statistical natural language processing (NLP) has made

feasible the development of challenging applications. For example, text classifi-

cation traditionally classified texts into ‘topics’ but now researchers attempt to

classify texts according to ‘sentiments’, such as ‘intention’ and ‘polarity’. Text

summarization traditionally only extracted important sentences from single docu-

ments but now strives to automatically generate an abstract from multiple-source

documents.

These trends indicate that recent tasks have increasingly demanded a text to

be interpreted semantically or contextually. In other words, solving recent tasks

with higher performance has required methods that can handle richer types of

linguistic information.

Conventionally, in the field of NLP, a set of words, called bag-of-words, is the

most widely used model for representing features of texts. However, it is known

that bag-of-words models lack many of the linguistic features found in texts. It

is widely accepted that the lack of structures in bag-of-words models has led to

inadequate performance in recent tasks. Therefore, methods are needed that are

capable of handling richer linguistic information within texts.

For these reasons, this dissertation proposes a methodology that is capable

of handling richer structural information derived from syntactic and semantic

analysis. I formalize all of my proposed methods within the framework of kernel

∗ Doctoral Dissertation, Department of Information Processing, Graduate School of Infor-

mation Science, Nara Institute of Science and Technology, NAIST-IS-DD0361207, March 24,

2005.

ii

methods. More specifically, the proposed methods are defined as kernel functions,

a very generalized mathematical framework developed in the Machine Learning

field. Since this formalization embeds the proposed methods in a generalized

framework, I can apply these methods to many other tasks, and even to other

research fields.

This dissertation discusses the following several methodologies that might lead

to a substantial improvement with respect to recent tasks in the application areas

of NLP. They are:

1. Effectively handling different levels of word attribute, such as words, se-

mantic information obtained from dictionaries and part-of-speech

2. Effectively handling richer structural information derived from integrated

syntactic and semantic analysis

3. The effect of statistical feature selection for structural features.

Chapters, 3 to 5, respectively, address the above three topics.

Before moving on to these topics I first describe in Chapter 1 the present state

of tasks in NLP application areas to provide the background to my work.

In Chapter 2, I explain the concepts necessary for understanding the disserta-

tion: namely kernel methods and kernels for discrete structures, discrete kernels,

in theory and mathematical formalism. This paves the way for embedding the

proposed methods in the framework of kernel functions. I also explain some

specific examples of kernel methods and discrete kernels, i.e., Support Vector Ma-

chines, as well as sequence kernels and tree kernels. Then, in the last part of

this chapter, I describe sentiment classification tasks, which I use to evaluate the

effect of the proposed method in the subsequent chapters.

Chapter 3 proposes a feature extraction method named Word Attribute N-

gram. Unlike the bag-of-words representation, the proposed method can handle

several levels of word information. Moreover, this method deals not only with

a set of word attributes, but also with conjunctions, or N -grams, of word at-

tributes which are expected to capture some important linguistic expressions. I

assume that these linguistic expressions are more effective than single words or

attributes. Moreover, I show the relationship between the word attribute N -gram

iii

method and sequence kernels, because the word attribute N -gram method can be

rewritten into the framework of kernels. In my experiments, I clarify the effects

of the proposed method and verify the effects of each feature on given tasks.

Chapter 4 proposes Hierarchically Structured Graph Kernels, a method deal-

ing with integrated structural information that reflects the results of syntactic

and semantic analysis within text. I assume that this richer structural infor-

mation gives clues of much higher quality for solving the target tasks. I define

the proposed method as kernels on a certain class of graph, called a hierarchi-

cally structured graph, which is a graph with a recursive hierarchical structure

constructed by using subgraphs and edges from vertices to subgraphs. Experi-

ments demonstrate the performance of this method compared with other discrete

kernels, which can only deal with restricted syntactic and semantic information

within text.

Chapter 5 proposes a statistical feature mining method for discrete kernels,

such as sequence and tree kernels. Unfortunately, previous experiments have

shown that in some cases there is a critical issue with discrete kernels, especially

in NLP tasks. That is, the over-fitting problem arises due to too many and sparse

but redundant features that are processed implicitly in these kernels. As a result,

the machine learning approach may not be trained efficiently. Conventionally,

this issue is addressed by eliminating large substructures from the set of features

used. However, the main reason for using discrete kernels is that we aim to use

structural features easily and efficiently. Therefore, I propose a new approach

based on statistical feature mining that avoids over-fitting without lacking any

statistically important features. Moreover, I embed our proposed feature selec-

tion method into an original kernel calculation process by using sub-structure

mining algorithms, thus allowing for efficient computation. Experiments are un-

dertaken on certain sentiment classification tasks to confirm the problem with a

conventional method and to evaluate the effect of the proposed method.

Finally, I summarize the dissertation and describe possible future directions

in Chapter 6.

Keywords:

natural language processing, structured text, kernel methods, discrete kernels,

hierarchically structured graph, feature mining

CONTENTS iv

Contents

1. Introduction 1

2. Preliminary 6

2.1 Kernel Methods . 6

2.1.1 Generalization Ability . 11

2.1.2 Dimensions of feature space 11

2.2 Discrete Kernels . 12

2.2.1 Sequence Kernels . 14

2.2.2 Tree Kernels . 17

2.3 Sentiment Classification Tasks . 20

3. Word Attribute N−gram: Extended Sequence Kernels 22

3.1 Introduction . 22

3.2 Word Attribute N -grams . 23

3.2.1 Primitive Word Attributes 23

3.2.2 Extraction Method . 23

3.3 Experiments . 26

3.3.1 Data . 26

3.3.2 Evaluation Method . 27

3.3.3 Experimental Settings . 28

3.4 Experimental Results and Discussion 30

3.4.1 Effect of Combining with SVM 30

3.4.2 Effect of Features . 37

3.5 Related Work: Sequence Kernels 42

3.6 Summary . 44

4. Hierarchically Structured Graph Kernels 46

4.1 Introduction . 46

4.2 Structured Natural Language Data 47

4.3 Hierarchically Structured Graph (HS-graph) 48

4.4 Kernels on Hierarchically Structured Graphs 50

4.4.1 Efficient Computation . 54

4.4.2 Convergence Condition . 61

CONTENTS v

4.4.3 Efficient Computation for Acyclic Graph 66

4.5 Experiments . 68

4.5.1 Data . 68

4.5.2 Comparison Methods . 71

4.5.3 Performance Evaluation Method 72

4.5.4 Results and Discussion . 73

4.6 Extension for Natural Language Processing 80

4.6.1 Weights . 80

4.6.2 Multiple Edges . 82

4.6.3 Vertex Skip (Virtual edge) 82

4.7 Related Work . 84

4.8 Summary . 85

5. Statistical Feature Mining for Convolution Kernels 86

5.1 Introduction . 86

5.2 Problem of Applying Convolution Kernels to NLP tasks 87

5.3 Statistical Feature Mining . 88

5.3.1 Statistical Metric . 89

5.3.2 Feature Selection Criterion 90

5.3.3 Efficient Feature Selection Algorithm 90

5.3.4 Sequence Kernels with Statistical Feature Mining 91

5.3.5 Implementation . 94

5.3.6 Tree Kernels with Statistical Feature Mining 96

5.3.7 Properties . 97

5.4 Experiments . 98

5.4.1 Data Set . 98

5.4.2 Comparison Methods . 99

5.4.3 Performance Evaluation Methods 100

5.4.4 Results and Discussion . 101

5.5 Summary . 109

6. Conclusion 112

6.1 Summary . 112

6.2 Future Directions . 114

CONTENTS vi

References 115

Acknowledgements 121

List of Publications 123

LIST OF FIGURES vii

List of Figures

1 Support Vector Machines . 8

2 Example of sequence kernel output 15

3 Example of tree kernel output . 18

4 An example of making feature vectors for semantic categories . . . 24

5 Example of word attribute N−grams 24

6 Example of extended word attribute N−grams 25

7 Learning curves of each question type (1/2) 35

8 Learning curves of each question type (2/2) 36

9 Effects of the threshold t on the word attribute N−gram 39

10 Information obtained from natural language processing resources . 48

11 Examples of integrated structure obtained from natural language

processing resources . 49

12 Examples of hierarchically structured graphs: (a) a graph G (b)

an HS-graph G1 (c) a labeled HS-graph G2 51

13 Example of the structured NL data shown in Figure 11rewritten

as an HS-graph . 52

14 Example graphical images of hi-walk on HS-graph G in Figure 12 53

15 Examples of input data for each method 71

16 Effect of changing parameter σ 76

17 Effect of changing parameter µ 77

18 Example of weighted labeled HS-graph 81

19 Examples of a vertex skip framework 83

20 Example of statistical feature selection for sequence kernels 91

21 Example of statistical feature selection for tree kernels 92

22 Example of searching and pruning sub-sequences by PrefixSpan

with SMP algorithm . 95

23 Example of string encoding for trees under the postorder traversal 96

24 Effect of structure size with each method (MOD) 102

25 Effect of structure size with each method (SUB) 102

26 Effect of threshold α . 104

27 Calculation speed of training in MOD 105

28 Calculation speed of test in the MOD 106

LIST OF TABLES viii

List of Tables

1 The number of samples used in the experiments 27

2 A comparison of the proposed method with the conventional methods 31

3 A comparison of the proposed method with the conventional meth-

ods based on the number of correct questions 32

4 Classification performance versus multi-class classification method 33

5 Effects of features . 37

6 Examples of effective features for each question type (1/2) 40

7 Examples of effective features for each question type (2/2) 41

8 Examples of word attribute N−grams typically used in each ques-

tion type . 43

9 Question types in English question classification data (50 types);

ABBR: abbreviations, DESC: description and abstract concepts,

ENTY: entities, HUM: human beings, LOC: locations and NUM:

numeric values . 69

10 Question types in Japanese question classification data (16 types) 70

11 Examples of English question classification data 70

12 Information dealt with in each comparison method: W: words,

N: named entities, P: phrases, S: semantic categories, wo: word

orders, dep: dependencies, sb: sub-structures of segments 72

13 Experimental results: Label accuracy for each question (EQC):

acc. and S.D. represent the average label accuracy and its standard

deviation. µ, σ and d represent the parameters for each method.

*, **, and *** represent p < 0.05, p < 0.01 and p < 0.005 of the

Wilcoxon signed rank test, respectively. 74

14 Experimental results: Label accuracy for each question (JQC): acc.

and S.D. represent the average label accuracy and its standard

deviation. µ, σ and d represent the parameters for each method.

*, **, and *** represent p < 0.05, p < 0.01 and p < 0.005 of the

Wilcoxon signed rank test, respectively. 74

15 Precision of optimal parameter µ for each iteration 78

16 Precision of optimal parameter σ for each iteration 79

17 Calculation cost for EQC . 79

LIST OF TABLES ix

18 Calculation cost for JQC . 80

19 Effect of vertex skip on performance (EQC) 83

20 Effect of vertex skip on performance (JQC) 84

21 Contingency table and notation for the chi-squared value 89

22 Data set for the experiments . 99

23 The best MOD results with each comparison method 101

24 The best SUB results with each comparison method 101

25 The number of features extracted by the proposed method 107

26 Examples of typical features in modality classification 107

27 Examples of typical features in SUB 108

28 Examples of topside large sub-structures in MOD 109

29 Examples of typical features in SUB 110

1 INTRODUCTION 1

1. Introduction

Statistical Natural Language Processing (NLP) and machine learning based NLP

have gained great popularity since the late 1980s. This trend is caused by the

rapid growth of the Internet and the progress made in computer technology in-

cluding the huge increase in CPU speed and the improved capacity-cost of storage

devices. These developments have allowed us to obtain a large number of natural

language corpora, and to apply complex but powerful machine learning methods

to large scale documents.

This recent success in the development of statistical NLP has led to improve-

ments in fundamental text analysis; such as part-of-speech (POS) tagging, phrase

chunking, dependency analysis and parsing. Using these components as funda-

mental building blocks, many NLP researchers have become interested in analyz-

ing text “semantically” or “contextually”. For example, named entity tagging,

semantic role tagging and discourse parsing are being investigated in the NLP

fields.

This move towards taking contextual or semantic information into account

has occurred in application areas of NLP such as text classification, text sum-

marization, information retrieval and question answering. That is, the research

interest in application areas of NLP1 has moved on to more challenging tasks.

For example, while information retrieval has been studied for a long time,

question answering is now being very actively investigated in the NLP field. The

purpose of these tasks is the same: to extract useful information from a large

number of documents. However, in contrast to information retrieval, which finds

relevant documents to a given query, the question-answering task requires the

extraction of the exact answer to a given question. If a question answering

system receives the question “When was Queen Victoria born?” it should an-

swer “in 1832”. Question Answering has been studied intensively throughout the

world since the start of the Question Answering Track at Text REtrieval Confer-

ence (TREC) [Voorhees99] in U.S., and now the Question Answering Challenge

(QAC) [Fukumoto03] has been held in Japan every year or year and a half.

1 Hereafter I use the abbreviation “text processing tasks” for tasks in NLP application areas.

1 INTRODUCTION 2

In text summarization, the first step is to extract important sentences from

single documents, but now, the generation of an abstract from multi-sources

and multi-documents is being discussed. In addition, there are summarization

workshops, called Document Understanding Conference (DUC) [Harman04] in

U.S., and Text Summarization Challenge (TSC) [Fukushima01] in Japan, which

foster the development of summarization techniques.

Even with text classification tasks, one of the traditional NLP tasks, the target

classes have recently been diversified from topics such as ‘sports’ and ‘economics’

to the contents of texts such as ‘polarity’ or ‘subjectivity’, called sentiment clas-

sification or sentiment analysis [Pang02, Pang04]. Sentiment classification is de-

fined as a task classifying texts into the sentiment matter contained in the texts,

such as like vs. dislike, recommend vs. not recommend, and subjective vs. ob-

jective.

These trends indicate that recent tasks increasingly demand a text to be

interpreted semantically or contextually. In other words, solving recent tasks with

higher performance requires methods that can handle richer types of linguistic

information.

Conventionally, in the field of NLP, a set of words, called bag-of-words [Salton75],

is the most widely used method for representing the features of texts. However,

it is known that the bag-of-words model lacks many of the linguistic features

found in texts. It is widely accepted that the lack of structures in bag-of-words

models leads to inadequate performance. This indicates that the bag-of-words

model does not scale well to more demanding tasks. Thus, methods are required

that are capable of handling richer linguistic information within texts.

For these reasons, the goals of this dissertation are as follows:

• To propose efficient methodologies that are capable of handling

rich information derived from syntactic and semantic analysis

This syntactic and semantic information can provide important informa-

tion for understanding natural language and for tackling real tasks in the

application areas of NLP.

• Then, to confirm the effectiveness of the rich information provided

by the proposed method

1 INTRODUCTION 3

Intuitively, we can say it is a better approach for dealing with richer in-

formation. However, no previous work has shown that richer structural

information improves the performance of text processing, and so we do

not know if dealing with richer information really improves performance.

Therefore, I undertook an experiment in this dissertation to verify the fact

by using real sentiment classification tasks.

I formalize all of my proposed methods within the framework of kernel meth-

ods [Vapnik95, Cristianini00]. More specifically, the proposed methods are defined

as kernel functions, a very generalized mathematical framework developed in the

field of machine learning. Since this formalization embeds the proposed methods

in a generalized framework, I can apply the proposed methods to many other

tasks, and even to other research fields.

To achieve the outlined goals, this dissertation discusses the following method-

ologies that are shown to lead to substantial improvement with respect to the

recent tasks described above. They are:

1. Effectively handling different levels of word attribute, such as words, se-

mantic information obtained from dictionaries and part-of-speech (Chapter

3)

2. Effectively handling richer structural information derived from integrated

syntactic and semantic analysis (Chapter 4)

3. The effect of statistical feature mining for structural features (Chapter 5).

In chapter 3, I discuss the effect of handling simple linguistic information that

is constructed by the gapped N -gram with different levels of word attributes. As

noted above, text classification and information retrieval have mainly employed

the bag-of-words model to represent texts. However, considering the tasks in

sentiment classification, I assume that more detailed information is required for

higher performance. In order to test this assumption, I propose a feature ex-

traction method called word attribute N-gram, which is capable of dealing with

a combination of several levels of word attributes. More specifically, I take ad-

vantage of the information obtained from dictionaries. Thus, compared with the

1 INTRODUCTION 4

bag-of-words model, this method deals not only with a set of word attributes,

but also with conjunctions, or N -grams, of word attributes, which are expected

to capture some important linguistic expressions. In the experiments, I clarify

the effect of the proposed method, which is equivalent to evaluating whether or

not richer information can provide better performance. Additionally, I analyze

the effect of each primitive feature to verify that the linguistic features are really

effective.

Chapter 4 discusses the effect of richer structural information derived from an

integrated syntactic and semantic analysis. Kernel methods [Vapnik95, Cristianini00]

suitable for NLP have recently been devised. Convolution Kernels [Haussler99,

Watkins99] demonstrate how to build kernels over discrete structures. Since nat-

ural language data take the form of sequences of words and parsed trees, discrete

kernels, such as sequence kernels [Lodhi02] and tree kernels [Collins01] have been

developed. Using the methodology of discrete kernels, I propose hierarchically

structured graph (HS-graph) kernels, that is, kernels that can handle integrated

analysis results of syntactic and semantic information within text. The accura-

cies of fundamental NLP tools, such as POS taggers, NP chunkers, named entities

taggers and dependency analyzers, have been improved to the point where they

can realize practical application tasks. It is natural to expect that dealing with

all of this integrated richer syntactic and semantic information provides much

better performance than conventional methods. I show that the results obtained

using the proposed method are significantly better than those obtained with con-

ventional methods while evaluating using sentiment classification tasks.

Finally, Chapter 5 discusses the topic of feature selection for discrete struc-

tures. Convolution kernels [Haussler99, Watkins99], such as sequence and tree

kernels, are advantageous in terms of both the concept and accuracy of many NLP

tasks. However, unfortunately experiments have shown that in some cases there

is a critical issue with convolution kernels, especially in NLP tasks [Collins01,

Cancedda03, Suzuki03b]. That is, the over-fitting problem arises due to too many

and sparse but redundant features that are processed implicitly in these kernels.

As a result, the machine learning approach may not be trained efficiently. To

solve this issue, we generally eliminate the effect of large sub-structures from the

feature set. However, the main reason for using discrete kernels is that we aim

1 INTRODUCTION 5

to use structural features easily and efficiently. If its use is limited to only very

small structures, it does not take full advantage of using these kernels. Therefore,

I propose a new approach based on statistical feature mining that avoids over-

fitting without missing any statistically important features. Moreover, I embed

our proposed feature selection method in an original kernel calculation process by

using sub-structure mining algorithms, thus allowing efficient computation. Ex-

periments are undertaken on some sentiment classification tasks to confirm the

problem with a conventional method and to evaluate the effect of the proposed

method.

2 PRELIMINARY 6

2. Preliminary

As mentioned in Chapter 1, the main topic of this dissertation is an evaluation

of the effect of handling richer information within text for text processing. I have

formalized all of the proposed methods in this dissertation (Chapters 3, 4 and 5)

in the framework of kernels.

Therefore, before explaining the proposed methods, this chapter provides the

background knowledge needed to understand the dissertation: Kernel methods

and discrete kernels in theory and mathematical formalism.

Section 2.1 explains the essence of the kernel methods, and then provides

one specific example, that is, Support Vector Machine. Section 2.2 introduces

the framework of discrete kernels, which is the key idea behind all the methods

proposed in the dissertation. The last part of this section briefly describes some

examples of specific discrete kernels, that is, sequence and tree kernels, which

are referred to many times in this dissertation, especially for the comparison

methods in the experimental part. Finally, Section 2.3 introduces the latest tasks

in the text classification area called sentiment classification. The experiments

in this dissertation are done on some sentiment classification tasks to evaluate

the performance of the proposed methods, and to clarify the effect of the richer

information derived by the proposed methods.

2.1 Kernel Methods

Kernel methods, such as Support Vector Machines [Vapnik95], constitute one of

the most successful recent developments in machine learning research area [Herbrich02,

Schölkof01]. They have been applied to a number of real world problems and are

now considered to provide state-of-the-art performance in various domains, such

as bioinformatics and natural language processing (NLP).

Kernel methods are characterized by the use of a kernel function K : X×X →

R, where X can be any non-empty set. Intuitively, a kernel function K(x, x′) ex-

presses a degree of similarity between two input objects x, x′ ∈ X . Generally,

kernel functions are required to satisfy the following two conditions: (1) symmet-

ric K(x, x′) = K(x′, x) and (2) positive definite
∑N

i=1

∑N

j=1 cicjK(xi, xj) ≥ 0, for

2.1 KERNEL METHODS 7

any N ≥ 1, {xi|xi ∈ X, i = {1, . . . , N}} and {ci|ci ∈ R, i = {1, . . . , N}}. Under

these two conditions, it is known from Mercer’s theorem [Vapnik98] that map-

ping, φ : X → F , from X to some (Hilbert) space F , usually called the feature

space, exists, such that K(x, x′) = φ(x) · φ(x′) for all x, x′ ∈ X . That is,

N∑

i=1

N∑

j=1

cicjK(xi, xj) =
N∑

i=1

N∑

j=1

cicjφ(xi) · φ(xj)

=
N∑

i=1

ciφ(xi)
N∑

j=1

cjφ(xj)

=
N∑

i=1

ciφ(xi)
N∑

i=1

ciφ(xi)

≥ 0 (1)

Therefore, calculating K(x, x′) is equivalent to mapping two input objects x and

x′ into feature space, then calculating the inner products between x and x′ in the

feature space. This means that kernel functions can be used even if the nature of

the corresponding mapping φ is not known. The computational attractiveness of

kernel methods originates from the fact that they can be applied without suffering

the high cost of explicitly computing the mapped data, φ(x).

In other words, kernel methods allow us to handle complex and high (even

infinite) dimensional feature space without increasing the computational com-

plexity. This approach usually leads to better performance than the conventional

non-kernel-based method.

Support Vector Machine

I continue to introduce Support Vector Machines (SVM) [Vapnik98, Cortes95]

which are now very well known kernel-based machine learning methods. An SVM

offer the following advantages over conventional statistical learning algorithms

(i.e., decision tree learning, maximum entropy method):

1. high generalization performance even with feature vectors of high dimen-

sions (See sections 2.1.1 and 2.1.2), and

2.1 KERNEL METHODS 8

: positive example
: negative example
: optimal hyperplane

g(x)=1

g(x)=0

g(x)=-1

: test data

: margin

Figure 1. Support Vector Machines

2. the ability to manage kernel functions (See section 2.2)

SVM starts with a set of l training data (x1, y1), · · · , (xl, yl) where xi(∈ X)

is a non-empty set and yi(∈ {+1,−1}) is the class label of i-th data. Formally,

we can define the classification problem as a learning and building process of the

decision function f : X → {±1}.

Basically, SVM tries to separate positive and negative examples by using linear

hyper-planes,

w · x + b = 0 w ∈ Rn, b ∈ R. (2)

Figure 1 shows training examples linearly separated into two classes. In this

figure,

yi[(w · x) + b] ≥ 1 (3)

2.1 KERNEL METHODS 9

are called separating hyper-planes. The distance between separating hyper-planes

is generally called margin. The basic idea of SVM is to maximize the margin

between the positive and negative examples.

The distance from the separating hyper-plane to point xi can be written as:

d(w, b; xi) =
|w · xi + b|

||w||
. (4)

Thus, the margin between two separating hyper-planes can be written as:

min
xi:yi=1

d(w, b; xi) + min
xi:yi=−1

d(w, b; xi)

= min
xi:yi=1

|w · xi + b|

||w||
+ min

xi:yi=−1

|w · xi + b|

||w||

=
2

||w||
(5)

To maximize this margin, ||w|| should be minimized. In other words, this

problem becomes the equivalent of solving the following optimization problem:

min
w,b

:
1

2
||w||2

s.t. : yi[(w · x) + b] ≥ 1 i = 1, . . . , l. (6)

In general, it is not necessary to separate training examples into individual

classes. Slack Variables ξi(≥ 0) are introduced for misclassification errors. Taking

slack variables into account, optimization problem (5) can be reformulated as

follows:

min
w,b,ξ

:
1

2
||w||2 + C

l∑

i=1

ξi ξi ≥ 0.

s.t. : yi[(w · x) + b] ≥ 1 i = 1, . . . , l. (7)

The first term in equation (7) specifies the size of the margin and the second term

represents the cost of the misclassification. C is the parameter that defines the

balance of two quantities. With increasing C, a greater number of classification

errors are neglected.

2.1 KERNEL METHODS 10

The optimization problem (7) can be rewritten into a dual form problem using

Lagrangian multipliers αi ≥ 0:

max
α

:
l∑

i=1

αi +
l∑

i=1

l∑

j=1

αiαjyiyj(xi, xj)

s.t. :
l∑

i=1

αiyi = 0 (0 ≤ αi ≤ C). (8)

In this dual form problem, xi with non-zero αi is called a support vector (SV).

For the SVM, w and b can thus be expressed as follows

w =
∑

i:xi∈SV s

αiyixi

b = w · xi − yi. (9)

The support vectors lie on the separating hyper-planes. Finally, the decision

function f : X → {±1}.

The decision function f(x) can be written as:

f(x) = sgn(g(x)) (10)

g(x) =
l∑

i

αiyi(xi · x) + b (11)

= w · x + b. (12)

Using a kernel function, we can rewrite Equation (11) as:

g(x) =
l∑

i

αiyiK(xi, x) + b. (13)

Moreover, in the SVM training part, we can rewrite Equation (8) as:

max
α

:
l∑

i=1

αi +
l∑

i=1

l∑

j=1

αiαjyiyj · K(xi, xj). (14)

2.1 KERNEL METHODS 11

2.1.1 Generalization Ability

Generalization analysis of classifiers is concerned with determining the factors

that affect the accuracy of a classifier. One of the most popular way is to estimate

the bounds on the generalization error, that is the probability of misclassifying

a randomly chosen example. According to [Vapnik98], it is possible to estimate

an upper bound of test error R[f], called risk, with respect to the training error

R̂[f], called empirical risk hold following inequality:

R[f] ≤ R̂[f] +

√
h(ln 2l

h
+ 1) − ln η

4

l
.

This inequality hold with a certain probability 1−η. In this inequality, h is a non-

negative integer and a measure of the complexity of the given decision function

f , called the VC dimension. That is, in order to minimize the risk, we have to

minimize the empirical risk as well as the VC dimension.

It is known that the following theorem holds for VC dimension and margin.

Theorem 1 Suppose that X is the ball of radius R in R
n, where X = {x ∈ R

n :

||x|| ≤ R}. Suppose n as the dimension of given training samples and M as the

margin. Then, VC dimension h are bounded by

h = min

(
R2

M2
, n

)
+ 1

VC dimension suggests that maximizing the margin can lead to a better gen-

eralization performance. Moreover, this result shows that the VC dimension of

large margin hyperplanes need not depend on the dimension of the feature space,

when the dimensions of feature space is high enough. This result indicates that

SVMs have a high generalization performance even with feature vectors of high

dimensions.

2.1.2 Dimensions of feature space

In general, the primal problem P is:

min
f

: {L(f, {xi, yi}) + Ω(||f ||)}

2.2 DISCRETE KERNELS 12

where i = 1...l. Note that the SVM can also be written in this form according to

Equation (6):

min
f

:
l∑

i=1

max(0, 1 − yif(xi)) +
λ

2
||f ||2.

If the problem satisfies the following two conditions: (1) the loss function L

is pointwise, that is, L(f, {xi, yi}) = L({xi, yi, f(xi)}) which only depends on

{f(xi)}, the values of f at the data points, and (2) Ω(·) is monotonically increas-

ing. Then the Representer Theorem [Kimeldorf71] states that every minimizer of

P admits a representation of the form

f(·) =
l∑

i=1

αiK(·, xi).

therefore, the optimal f ∗ is a linear combination of a finite set of functions given

by the data. This is a powerful result. It shows that although we search for the

optimal solution in an infinite-dimensional feature space, adding the regulariza-

tion term reduces the problem to finite-dimensional.

2.2 Discrete Kernels

One characteristic of the kernel approach is that it not only provides high accu-

racy and the concept of faster calculation for non-linear classifiers realized by the

kernels but also allows us to design a kernel function suited to modeling the task

at hand. In fact, the designing of appropriate kernel functions for specific tasks is

now the goal of many researchers in various domains, i.e. natural language pro-

cessing and bio-informatics. In particular, as most real world data is represented

not as numerical vectors, but as discrete structures such as graphs (including

sequences and trees), research into designing kernel functions has begun to focus

on kernels on discrete structures.

Convolution Kernels [Haussler99, Watkins99] is the first method to provide a

general framework for building kernels over discrete structures, such as sequences,

trees and graphs. This framework defines the kernel function between input

2.2 DISCRETE KERNELS 13

objects (no longer restricted to vectors) as the convolution of “sub-kernels”, i.e.

the kernels for the decompositions (parts) of the objects.

Let X and Y be discrete objects. Conceptually, a convolution kernel K(X,Y)

enumerate all sub-structures occurring in X and Y and then determines their

inner product,

K(X,Y) = 〈φ(X), φ(Y)〉 =
∑

i

φi(X) · φi(Y). (15)

φ represents the feature mapping from the discrete object to the feature space;

that is, φ(X) = (φ1(X), . . . , φi(X), . . .).

Subsequently, a number of kernels for discrete structures, such as sequences,

trees and graphs, have been successively proposed in the last five years. For

example, since natural language data take the form of sequences of words or

parsed trees, sequence kernels [Lodhi02, Cancedda03] and tree kernels [Collins01,

Kashima02], have been developed in the natural language processing (NLP) field

and shown to offer excellent results.

As an example, with sequence kernels [Lodhi02], input objects X and Y are

sequences, and φi(X) corresponds to a sub-sequence. In the case of tree ker-

nels [Collins01], X and Y are trees, and φi(X) represents a sub-tree. When im-

plemented, these kernels can be efficiently calculated in quadratic time by using

the dynamic programming (DP) technique.

Other examples in the area of bio-informatics, sequence kernels [Jaakkola00,

Leslie04] and graph kernels [Kashima03] have been proposed mainly for classify-

ing protein or chemical compounds. Other graph kernels [Gärtner03] have been

introduced in the machine learning field. The developments generated by these

researches have realized ways of dealing with discrete data in original and natural

representation.

Since the size of the input objects is usually not a constant, the kernel value

over discrete structures is sometimes normalized using the following equation:

K̂(X,Y) =
K(X,Y)√

K(X,X) · K(Y, Y)
. (16)

The value of K̂(X,Y) is from 0 to 1, K̂(X,Y) = 1 if and only if X = Y .

2.2 DISCRETE KERNELS 14

2.2.1 Sequence Kernels

Many kinds of sequence kernels have been proposed for a variety of different tasks.

This section basically follows the framework of word sequence kernels [Cancedda03],

and processes gapped word sequences to yield the kernel value.

Let Σ be a set of finite labels2 , and Σn be a set of possible (label) sequences

whose “sizes” are n that are constructed by labels in Σ. Then, let Σn
1 be a set of

sequences whose “sizes” are n or less, that is,

Σn
1 =

n⋃

i=1

Σi. (17)

Moreover, let Σ∗
1 be a set of sequences of any size,

Σ∗
1 =

∞⋃

i=1

Σi. (18)

In this dissertation, “size of sub-structure” indicates the number of labels in the

sub-structure. Namely, for a sequence, size n means the length of the sequence

is n. S can represent any sequence. si represents the ith label in S. Therefore, a

sequence S can be written as S = s1 . . . si . . . s|S|, where |S| represents the length

of S. I introduce u to represent a sub-structure, that is, a sub-sequence in the

sequence, where u = u1 . . . u|u|. If u is contained in sub-sequence S[i : j]
def
=

si . . . sj of S (allowing the existence of skipping some labels), the position of u in

S is written as i = (i1 : i|u|). This means sij = uj holds for any uj. The length of

S[i] is l(i) = i|u| − i1 + 1. For example, if u = ‘a’‘b’ and S = ‘c’‘a’‘c’‘b’‘d’, where

‘a’, ‘b’ ‘c’ and ‘d’ represent a label, then i = (2 : 4) and l(i) = 4 − 2 + 1 = 3.

By using the above notations, the feature mapping φ for a sequence S is given

by defining the u coordinate φu(S) for each u ∈ Σ∗
1, that is,

φu(S) =
∑

i:u=S[i]

µ|u|λζ(i), (19)

where λ and µ can be any constants. µ is usually defined as a decay factor of

sub-sequence size, 0 ≤ µ ≤ 1, and λ is introduced as a decay factor of the gap in

the sub-sequence, 0 ≤ λ ≤ 1, while ζ(i) = l(i) − |u|.
2 In this dissertation, I use the term as a primitive symbol and assume Σ to be the set of

labels, not symbols in the standard way.

2.2 DISCRETE KERNELS 15

1S µ

1 a_b_cS = 2 a_b_a_cS =

prod.

0

u

()2 4 2 64 1 2µ µ λ λ µ λ+ + + +k e rn e l v al u e

i n pu t s e q u e n ce s

s u b-s e q u e n ce s
(a, b, c, a_a, a_b, a_c, b_a, b_c, a_a_c, a_b_a, a_b_c, a_a_c, b_a_c, a_b_a_c)

µ µ 2µ 2µ λ 0 2µ 3µ

2S µ µ2µ 2µ λ 2µ ()2 1µ λ+ 2µ 2µ λ 3µ λ 3µ λ3µ 3µ λ 3µ 4µ

22µ 2µ 2µ 0 4µ ()4 2µ λ λ+ 0 04µ λ 0 0 0 06µ λ

0 0 0 0 0

(= primitive features)

Figure 2. Example of sequence kernel output

These features measure the number of occurrences of sub-sequences in S,

weighting them according to their sizes. Hence, the inner product of the feature

vector for two sequence S1 and S2 gives a sum over all common sub-sequences

weighted according to their frequency of occurrence and size. Thus, sequence

kernels can be defined as:

KSK(S1, S2) =
∑

u∈Σ∗

1

φu(S
1) · φu(S

2)

=
∑

u∈Σ∗

1

∑

i:u=S1[i]

∑

j:u=S2[j]

µ|u|µ|u|λζ(i)λζ(j). (20)

Figure 2 shows a simple example of the output of this kernel.

In general, the number of features |Σ∗
1|, which is the dimension of the feature

space, becomes very high. A naive computation of these features would involve

O(|
∑n |) time and space. It is therefore computationally infeasible to calculate

Equation (20) directly.

Therefore, to solve this problem, an efficient recursive calculation algorithm

has been introduced in [Lodhi02, Cancedda03]. In order to clarify the discussion

in this dissertation, I redefine the sequence kernels with the original notation.

2.2 DISCRETE KERNELS 16

The sequence kernel can be written as follows:

KSK(S1, S2) =

|S1|∑

i=1

|S2|∑

j=1

J(S1
i , S

2
j). (21)

where S1
i and S2

j represent the sub-sequences S1
i = s1

1, s
1
2, . . . , s

1
i and S2

j =

s2
1, s

2
2, . . . , s

2
j , respectively.

Let J(S1
i , S

2
j) be a function that returns the value of common sub-sequences

if s1
i = s2

j :

J(S1
i , S

2
j) = J ′(S1

i , S
2
j) · I(s1

i , s
2
j) + I(s1

i , s
2
j). (22)

I(s1
i , s

2
j) is a function that returns a matching value between s1

i and s2
j :

I(s1
i , s

2
j) = µ · δ(s1

i , s
2
j). (23)

Usually δ(s1
i , s

2
j) is defined as an indicator function that returns 1 if s1

i = s2
j , and

0 otherwise.

Then, J ′(S1
i , S

2
j) and J ′′(S1

i , S
2
j) are introduced to calculate the common

gapped sub-sequences between S1
i and S2

j .

J ′(S1
i , S

2
j) =

{
0 if j = 0,

λJ ′(S1
i , S

2
j−1) + J ′′(S1

i , S
2
j−1) otherwise

(24)

J ′′(S1
i , S

2
j) =

{
0 if i = 0,

λJ ′′(S1
i−1, S

2
j) + J(S1

i−1, S
2
j) otherwise

(25)

Thus, considering only non-gapped sub-sequences, namely λ = 0 is set, then

J(S1
i , S

2
j) can be simply written as:

J(S1
i , S

2
j) = J(S1

i−1, S
2
j−1) · I(s1

i , s
2
j). (26)

If we calculate Equations (22) to (25) recursively, Equation (21) provides ex-

actly the same value as Equation (20). The complexity of the efficient calculation

comes down to O(|S1||S2|).

2.2 DISCRETE KERNELS 17

Additionally, if we are only interested in sub-structures whose sizes are n or

less, then Equations (21) to (25),respectively, can be rewritten as follows:

KSK(S1, S2) =
n∑

m=1

|S1|∑

i=1

|S2|∑

j=1

Jm(S1
i , S

2
j). (27)

Jm(S1
i , S

2
j) = J ′

m−1(S
1
i , S

2
j) · I(s1

i , s
2
j). (28)

J ′
m(S1

i , S
2
j) =





1 if m = 0,

0 if j = 0 and m > 0,

λJ ′
m(S1

i , S
2
j−1) + J ′′

m(S1
i , S

2
j−1) otherwise

(29)

J ′′
m(S1

i , S
2
j) =

{
0 if i = 0,

λJ ′′
m(S1

i−1, S
2
j) + Jm(S1

i−1, S
2
j) otherwise

(30)

In this case, the complexity becomes O(n|S1||S2|).

2.2.2 Tree Kernels

As well as sequence kernels, many kinds of tree kernels have been proposed for

a variety of different tasks. This dissertation basically follows the framework of

[Kashima02]. Namely a labeled ordered tree kernel that is introduced as the most

general tree kernel framework.

In the case of a tree, “size” means the number of vertices (nodes) in the sub-

tree. Let T be a tree and u ∈ Σ∗
1 be any sub-tree. Therefore, in the case of tree

kernels, Σ∗
1 represents a set of all possible (sub-)trees and |u| denotes the number

of vertices in sub-tree u.

By using the same notations of sequence kernels, the feature mapping φ for a

tree T is given by defining the u coordinate φu(T) for each u ∈ Σ∗
1, that is,

φu(T) =
∑

i:u=T [i]

µ|u|λζ(i), (31)

where i represents a set of vertex indexes that construct u and ζ(i) = l(i) − |u|

represents the same value as with sequence kernels, that is, the number of gapped

2.2 DISCRETE KERNELS 18

1S µ

prod.

u

()2 4 2 3 63 1µ µ λ λ λ µ λ+ + + + +k e rn e l v a l u e

i n pu t t re e s

s u b -t re e s

µ 2µ 3µ

2S

2µ λ 2µ

2µ 2µ 2µ 4µ 0 0 0 0 0

(= pri m i t i v e f e a t u re s)

1T 2Ta
b c

a

a
b c

a

a
b
a

ba b c
a

c
a

c
a

b c
a

b c
a

a
a

a
b

a
b

a
b

c
b

c
c

a
c

a
a

b a
a

b a
b

c

a
b

c

a
c

a

a
c

a

a
b

a

a
b

a

a a
b c
a

a
b c
a

b
a c
a

b
a c
aa c

b
a c
b

a c
b
a

a c
b
a

a c
b
a

a
a c
b
a

a
µ 2µ

µ µ 2µ ()3 1µ λ+()2 2µ λ λ+ ()2 1µ λ+µ 2µ λ 2µ

c
a

b
c

a

b
c

a

b
a

c
a

b
a

3µ λ
3µ

3µ

()3 1µ λ+ 3µ 3µ λ

4µ

4µ 4µ 5µ

ca
b
a

a
ca

b
a

a

()4 2 3µ λ λ+ 4µ λ

0 0

0

0 0

0

0

0

0 0

0

3µ λ

0 0

0

0

0

0

0 0

00 0 06µ λ

Figure 3. Example of tree kernel output

vertices in the sub-tree. In the case of tree kernels, the existence of a “gap” allows

the structures of the subtrees to be elastic.

Therefore, by using the above notation, tree kernels (TK) can be defined as

being exactly the same as sequence kernels, namely:

KTK(T 1, T 2) =
∑

u∈Σ∗

1

φu(T
1) · φu(T

2)

=
∑

u∈Σ∗

1

∑

i:u=T 1[i]

∑

j:u=T 2[j]

µ|u|µ|u|λζ(i)λζ(j). (32)

Figure 3 shows a simple example of the output of a tree kernel.

However, the definition of efficient computation is different. As well as se-

quence kernels, the number of features |Σ∗
1| becomes very large, and a naive

computation of Equation (32) also takes O(|
∑n |) time and space. An efficient

recursive calculation algorithm has been introduced in [Kashima02].

An efficient computation of tree kernels can be written as follows:

KTK(T 1, T 2) =
∑

t1i∈V (T 1)

∑

t2j∈V (T 2)

C(t1i , t
2
j), (33)

where V (T) is a function that returns a set of vertices {ti|1 ≤ i ≤ |V (T)|} in T ,

where |V (T)| represents the number of vertices in T .

2.2 DISCRETE KERNELS 19

Let Ht1i ,t2j
(k, l) be the sum of the products of occurrences each sub-tree appears

at t1i and t2j when we consider only the vertices up to the i-th child of t1i and the

vertices up to the j-th child of t2j . Apparently,

C(t1i , t
2
j) =

{
I(t1i , t

2
j) if both t1i and t2j are leaves,

C ′
t1i ,t2j

(nc(t1i), nc(t2j)) otherwise
(34)

where nc(t1i) is the number of children of a vertex t1i . I(t1i , t
2
j) is the same as for

the sequence kernel, namely Equation (23).

Since all correspondences preserve the left-to-right ordering, C ′
t1i ,t2j

(k, l) can be

recursively defined as

C ′
t1i ,t2j

(k, l) =





1 if k = 0, l = 0,

C ′
t1i ,t2j

(k − 1, l) + C ′
t1i ,t2j

(k, l − 1) + C ′
t1i ,t2j

(k − 1, l − 1)

+C ′
t1i ,t2j

(k − 1, l − 1) · C ′′(ch(t1i , k), ch(t2j , l))

(35)

where ch(t1i , k) represents the k-th child of vertices t1i .

Then, C ′′(t1i , t
2
j) is introduced to calculate the common gapped sub-trees be-

tween t1i and t2j .

C ′′(t1i , t
2
j) = λ

nc(t2j)∑

l=1

C ′′(t1i , ch(t2j , l)) + λ

nc(t1i)∑

k=1

·C ′′(ch(t1i , k))

−λ2

nc(t1i)∑

k=1

nc(t2j)∑

l=1

C ′′(ch(t1i , k), ch(t2j , l)) + C(t1i , t
2
j). (36)

When considering only non-gapped sub-trees, namely λ = 0 is set, then

C ′(T 1
i , T 2

j) can be simply written as:

C ′
t1i ,t2j

(k, l) =





1 if k = 0, l = 0,

C ′
t1i ,t2j

(k − 1, l) + C ′
t1i ,t2j

(k, l − 1) + C ′
t1i ,t2j

(k − 1, l − 1)

+C ′
t1i ,t2j

(k − 1, l − 1) · C(ch(t1i , k), ch(t2j , l))

. (37)

Therefore, tree kernels can be efficiently computed C(t1i , t
2
j) by th dynamic

programming technique. Therefore, the computational complexity of tree ker-

nels comes down to the quadratic time of the number of vertices in both trees,

O(|V (T 1)||V (T 2)|).

2.3 SENTIMENT CLASSIFICATION TASKS 20

2.3 Sentiment Classification Tasks

Traditionally, the research field of text classification has dealt solely with the

task settings involved in classifying texts into various subjects, that are generally

called “topics”. Most text classification research uses the bag-of-words features.

This fact indicates that only information on the word itself is demanded from

text classification tasks, and linguistic information of the text is unnecessary.

However, research interest has been moving to more challenging tasks, called

sentiment classification. Sentiment classification is, of course, one of the sub-

groups of text classification tasks. Compared with the standard ‘topic-based text

classification’, sentiment classification tasks require that text be classified accord-

ing to the overall sentiment expressed in them, e.g,, like vs, dislike, recommend

vs. not recommend. It is now known that these sentiment classification tasks are

much more difficult than traditional topic-based text classification. This is be-

cause these tasks really demand linguistic information about the texts to realize

higher performance.

To summarize the features of sentiment classification compared with topic-

based text classification, I highlight out the following two points:

• Target texts are usually shorter than the documents that are dealt with

in topic-based text classification: they are sometimes sentences or short

passages.

• Target classes are strongly related to the meaning or context of the texts.

However, ‘sentiment classification’ is a term related to tasks that require text

to be classified with respect to the sentiment matter contained in the texts. There-

fore, there are several types of sentiment classification tasks. The following are

examples that have already been discussed in the NLP field;

• modality identification

• question classification

• subjectivity classification

2.3 SENTIMENT CLASSIFICATION TASKS 21

• polarity classification.

As regards modality identification, text must be classified in terms of modali-

ties, such as “opinion”, “assertion”, and “description”. This setting assumes the

use of an automatic text analysis system according to the context of the text.

Subjectivity classification requires the texts to be classified into “subjective”

or “objective” and the polarity classification requires the texts to be classified

into positive or negative statements. These two techniques are, for example,

undertaken in commercial research that automatically gathers subjective opinions

and classifies them into positive and negative market opinions with respect to

certain products, services and brands that are dispersed throughout online texts

such as product review articles, replies to questionnaires and messages in bulletin

boards on the Internet. That is, we first collect large scale documents, and

then employ ‘subjectivity classification’ to extract only subjective statements,

and finally employ ‘polarity classification’ to verify whether the statements are

positive or negative comments. Thus, these sentiment classification technologies

are closely related to the demands of real use.

The question classification task requires questions to be classified into the

classes that reflect the content of the question. More generally, this task is to

visualize the situation of a dialogue system or an automatic question answering

system, which must understand people’s intentions, such as requests, responses,

agreement and disagreement.

As I have already explained, these sentiment classification tasks can be con-

sidered appropriate tasks designed to evaluate the effect of how well linguistic

information is handled. This is why these tasks are used for evaluating the effects

of the proposed method explained in the following chapter while this dissertation

aims to clarify the effects of richer linguistic information.

3 WORD ATTRIBUTE N−GRAM: EXTENDED SEQUENCE KERNELS 22

3. Word Attribute N−gram: Extended Sequence

Kernels

3.1 Introduction

Traditionally, research in text classification and information retrieval have mainly

deal with the bag-of-words model for text, since it is the simplest but neverthe-

less powerful model with which to represent text. This model is based on the

rough assumption that a set of words appearing in a text is entirely related to

the meaning of the text. However, when we consider the text processing tasks

described in Chapter 1, this approach requires a lot of information to perform

well.

As a simple way of solving this issue, this chapter proposes a method for

extracting features from text, called word attribute N-gram. It is widely accepted

that “expressions” in the text characterize the text better than individual words.

Here, an “expression” means the features constructed from a combination of

words. The idea for the proposed method comes from this general intuition. More

specifically, I take advantage of the various levels of lexical information. Each

word generally has certain attributes such as part-of-speech (POS) and meaning.

This dissertation abbreviates the attributes of a word such as part-of-speech,

semantic information and word itself to “word attributes”. These attributes

are based on linguistics. The proposed method extracts a concatenation (or

N -gram) of mixed word attributes. These N -grams can capture some important

linguistic expressions. As a result, the proposed method is expected to improve

the performance of text processing.

In the experiment part, I clarify the effect of the proposed method by com-

paring the performance of several feature sets. Moreover, I analyze the effect of

each primitive N -gram to verify that the linguistic features are indeed effective.

Finally, this chapter clarifies the effect of linguistic information with experimental

results.

3.2 WORD ATTRIBUTE N -GRAMS 23

3.2 Word Attribute N-grams

This section explains the proposed feature extraction methods, namely word at-

tribute N -grams. First, I introduce the primitive word attributes dealt with in

this chapter. Then, I explain in detail how to extract word attribute N -grams

from text.

3.2.1 Primitive Word Attributes

In this chapter, I use word, part-of-speech (POS) and semantic category for word

attributes. Words and POSs are simply obtained from the results of a POS

tagger.

The semantic categories of words are obtained from a dictionary. More specif-

ically, we use the semantic attribute system of “Goi-Taikei — A Japanese Lexi-

con” [Ikehara97]. The semantic attribute system is a sort of hierarchical concept

thesaurus represented as a tree structure in which each node is called a semantic

category. An edge in the tree represents an is a or has a relation between two

categories. The semantic attribute system is 12 levels deep and contains 2715

semantic category nodes. More than 300,000 Japanese words are linked to the

category nodes. Figure 4 shows how to obtain the semantic category for each

word. As shown in the examples in the figure, upper layer categories of each

word are also given to the word. That is, if the word “Shinjuku” is located in the

semantic category “Location”, then semantic categories, “Entity” and “Noun”

are also added as attributes of “Shinjuku”.

3.2.2 Extraction Method

Figure 5 shows an example of word attribute N -grams. Note that in the case

N = 1 means the word attribute itself. The proposed method simply extracts all

possible concatenations of word attributes.

Then, I extend the proposed method to consider the arbitrary gap between

each word attribute, since some text processing tasks require us to deal with

gapped N -grams to improve the performance. To accomplish this extension, we

introduce a special attribute that represents an “arbitrary” attribute. Figure 6

3.2 WORD ATTRIBUTE N -GRAMS 24

Shinjuku
N N P

{L ocation}{Entity}
{noun}

P O S
W or d

Semantic
C ateg or y

ex amp l es

Koizumi
N N P

{Human}{Subjective}{Entity}
{noun}

s emantic attr ibute s ys tem

w5
w10 2

w1
w114 5

w54 5
w20

w224 5

w2

w9 8 7 w559

w22w6 7 w 7 26

w 7 6 58

w 3 4 56 w10 9 2

{O r g anization}

{N oun}

{Entity}

{Subjective}

{A bs tr act}

{L ocation}

{Human}
Shinjuku

Koizumi

Figure 4. An example of making feature vectors for semantic categories

Text :

POS

To k y o D i s n ey l a n d i s th e m o s t f a m o u s a m u s em en t p a r k i n J a p a n .

T o k y o

N N P

D i s n e y l a n d

N N P

i s

V B Z

t h e

D T

m o s t

R B S

f a m o u s

J J

a m u s e m e n t

N N

p a r k

N N

i n

I N

J a p a n

N N P

.

.

W o r d

A m u s e m e n t p a r kN a t i o n a l c a p i t a l Pa r k A s i a n c o u n t r ySe m a n t i c
C a t e g o r y

f e a t u r e s 1-g r a m 2-g r a m 3-g r a m
T o k y o { A m u s e m e n t p a r k }T o k y o D i s n e y l a n d
[N N P] [R B S] f a m o u s
{ A m u s e m e n t p a r k }

i s D T

I N J a p a n
.
.
.

Pa r k i n { A s i a n c o u n t r y }
.
.
.

.

.

.

Figure 5. Example of word attribute N−grams

shows an extended word attribute N -gram. All words are assumed to have a

special word attribute represented as (∗).

As shown in the figure, the extended proposed method extracts all the word

attribute N -grams including the word attribute ∗. However, ∗ can only appear in

the middle of the N -gram, that is, ∗ never appears at the head or tail of N -grams.

Since these are equivalent to an N -grams in which the head or tail ∗ has been

removed, these N -grams are redundant. Additionally, consecutive ∗ should be

3.2 WORD ATTRIBUTE N -GRAMS 25

Text :

POS

To k y o D i s n ey l a n d i s th e m o s t f a m o u s a m u s em en t p a r k i n J a p a n .

T o k y o

N N P

D i s n e y l a n d

N N P

i s

V B Z

t h e

D T

m o s t

R B S

f a m o u s

J J

a m u s e m e n t

N N

p a r k

N N

i n

I N

J a p a n

N N P

.

.

W o r d

A m u s e m e n t p a r kN a t i o n a l c a p i t a l Pa r k A s i a n c o u n t r ySe m a n t i c
C a t e g o r y

f e a t u r e s 1-g r a m 2-g r a m 3-g r a m
T o k y o { A m u s e m e n t p a r k }T o k y o D i s n e y l a n d
[N N P] [R B S] f a m o u s
{ A m u s e m e n t p a r k }

i s D T

I N J a p a n Pa r k i n { A s i a n c o u n t r y }
.
.
.

.

.

.

(*) (*) (*) (*) (*) (*) (*) (*) (*) (*)(*)

{ A m u s e m e n t p a r k } (*) D T

Pa r k (*) { A s i a n c o u n t r y }

e x t e n d e d
a t t r i b u t e

Figure 6. Example of extended word attribute N−grams

treated as one ∗ by definition, that is, word attribute N -grams of “A-∗-C” and

“A-∗-∗-C” are considered equivalantly. However, “A-C” and “A-∗-C” are not

considered to be equivalantly, since the latter has ∗ and the former has not.

We can easily imagine that the number of extended word attribute N -grams

increases exponentially with N . Therefore, in real use, we introduce the threshold

t for the number of appearances of each word attribute N -gram. We refuse to

extract word attribute N -grams whose appearance are below the threshold. This

process easily avoids an explosive increase in the number of features, since the

number of appearances of most word attribute N -grams is 1 or very small. This

phenomenon can easily be explained by the fact that the number of primitive

word attribute is very large, the probability of appearing in an N -gram is very

small. Thus, the introduction of threshold t for the appearance of N -grams is

sufficient to control the set of features being dealt with.

Finally, in the proposed method, when word attribute N -grams are treated

as features of machine learning, they all take a value of 1 or 0; 1 if it appears in

the text, and 0 otherwise.

3.3 EXPERIMENTS 26

3.3 Experiments

This section verifies that the effectiveness of our proposed method by using text

processing tasks. More precisely, I evaluate the proposed method from two dif-

ferent viewpoints, that is,

1. Effect of affinity with SVM classifier and word attribute N -gram

2. Effect of word attribute N -grams as features.

Typicaly, handling a large number of features has an adverse effect on the

generalization performance of machine learning. However, SVM is known to be

as robust for handling a large number of features. Although the proposed method

extracts a huge number of combinational features, SVM can handle this. Thus,

the first experiments clarify the effect of combining the proposed method with an

SVM classifier.

Then, I verify the effect of word attribute N -gram itself by using SVM.

3.3.1 Data

We used the question classification data constructed by [Sasaki01] for question

answering test collection. This data set has 10000 questions, and each question

has just one question type. In this paper, we call such label a “correct label”.

I call the final output label from the classifier for each question an “estimated

label”.

This data set actually has 35 question types. However, we decided to deal

only with question types that have more than 100 questions. The others may

not learn efficiently by any of the machine learning method, because it has very

few samples. Therefore, we deal with 17 question types: 16 question types that

have more than 100 questions plus one new question type, “OTHER”, which is

constructed from all the questions except for the questions in the 16 question

types.

Table 1 is a list of question types and the number of questions belonging to

each question type.

3.3 EXPERIMENTS 27

Table 1. The number of samples used in the experiments

Question type Abbreviation # of questions

AGE AGE 130

DATE DATE 1885

EVENT EVEN 165

LOCATION LOCT 1530

MONEY MONY 250

NORGANIZATION NORG 140

NPERSON NPER 365

ORGANIZATION ORGN 1605

PERCENT PCEN 190

PERIOD PERI 260

PERSON PERS 1615

PRODUCT PROD 135

PTITLE PTIT 270

SUBSTANCE SUBS 130

TIME TIME 125

TITLE TITL 150

OTHER OTHR 1055

Total 10000

3.3.2 Evaluation Method

Question classification is a task that gives one estimated question type for each

given question including question type “OTHER”. The reason for including “OTHER”

is that a question classification task is usually used under a setting where the given

question is not always classified as a pre-defined question type.

In this settings, I redefine the question classification task that finds one opti-

mal question type for a given question. This setting is derived because the data

set used here has the most appropriate question type for each question.

To evaluate the final performance, I used five-fold cross-validation, where I

3.3 EXPERIMENTS 28

used four-sets for training and the remaining set for the test and iterated this

procedure five times by changing test set.

I used two different evaluation measures: one is the average accuracy between

the correct and estimated labels for each question and the other is the average

F-measure for each question type. The average label accuracy is selected to

evaluate global performance of each method, and the average F-measure is used to

evaluate detailed performance of each question type. By using these two different

evaluation measures, we can discuss the performance of question classification

both locally with each question type and globally.

3.3.3 Experimental Settings

Below I summarize the experimental settings.

1. Effect of affinity with SVM classifier and word attribute N -gram:

rule based method, decision tree, maximum entropy and support vector

machine

(a) comparing the performance of multi-class classification methods:

one vs. rest model and pairwise model

(b) effect of kernel parameter:

degree of polynomial kernels

(c) learning curve

2. Effect of word attribute N -gram:

comparison of, (1) word and semantic category, (2) word N -grams, semantic

category N -grams, (3) word and semantic category N -grams, (4) combina-

tions of word and semantic category N -grams and (5) combinations of word,

semantic category and part-of-speech N -grams

(a) effect of threshold t with word attribute N -gram

(b) analysis of effective features for question classification

3.3 EXPERIMENTS 29

Effect of affinity with SVM classifier and word attribute

I tested the effect of affinity with the SVM classifier and word attribute N -gram.

This set of experiments compared the performance of our proposed method

with different machine learning methods. More precisely, decision tree (C4.5)

and maximum entropy methods (MEM) and support vector machine (SVM).

[Zukerman01] reports a decision tree based question answering system and [Ittycheriah00,

Ittycheriah01b, Ittycheriah01a] describe maximum entropy based methods. Note

that the features for C4.5, MEM and SVM are exactly the same, that is, they are

the features extracted by a word attribute N -gram. Moreover, as the baseline

method, I evaluated the rule based method [Sasaki01] (RULE).

Note that the rule-based method used in this experiments is allowed to output

duplicated labels with no ranking. Therefore, I conclude that this method esti-

mated the correct label if one of the output labels is the correct label. That is, I

evaluate the performance of the rule-based method by using a relaxed evaluation.

As regards the parameters, C in Equation (6) in Section 2.1 is set at 1 and

the threshold t for word attribute N -gram is set at 30.

Since SVM is a binary class classification, we adopted the “one vs. rest model”

[Schölkopf95, Blanz96] and adapted it for multi-class classification. This is derived

from the result of a comparison of the multi-class classification model for SVM,

that is, the one vs. rest with the pairwise model, which showed that the one vs.

rest model provided better performance than the pairwise model.

Effect of word attribute N-gram

This set of experiments compares the efficiency of word attribute N -grams.

To accomplish this, we compared the performance of several sets of extracted

features, that is, (1) bag-of-words and semantic category (W+S(N=1)), (2) word

N -gram (W), (3) semantic category N -gram (S), (4) word N -gram and semantic

category N -gram (S+W), (5) N -gram consisting of a combination of word and

semantic category (S∗W), (6) N -gram consisting of combination of word, seman-

tic category and part-of-speech (S∗W∗P). The term “+” here means the sum of

their features, and “∗” means the combination of word attributes is considered.

3.4 EXPERIMENTAL RESULTS AND DISCUSSION 30

Note that I delete the set of features of the part-of-speech N -gram, because its

performance was too poor. Only the part-of-speech N -gram gives any appropri-

ate information for question classification. First, I compare the performance of

(S+W(N=1)) and (S+W), to clarify the effect of considering N -gram features.

Then, I compare the performance of (W), (S), (S+W), (S∗W) and (S∗W∗P),

to determine out the effect of considering N -gram features of a combination of

different sources of word attributes.

In these experiments, parameter t is set at 15. This is because t = 15 gives the

best performance in most of the compared machine learning methods. Moreover,

parameter C in Equation (6) is set at 1, which is the same as in the previously

described experiments.

3.4 Experimental Results and Discussion

3.4.1 Effect of Combining with SVM

Table 2 shows the performance of each question type: (ave.F) represents the

average f-measures and (acc.) represents accuracy of the estimated question type

in each question. In this table, (SVM1) and (SVM2) represent an SVM with a

polynomial kernel whose degrees are 1 and 2, respectively.

As shown in these tables, SVM performed better than other methods. Specif-

ically, because of the much higher average f-measure, SVM can perform well in

all the question types including question types that have only a small number of

questions.

The rule-based method performed well for question types that are assumed to

be easier to classify, because it seems to possess some typical expression for identi-

fying the types, i.e., “who” with PERSON. However, in our experimental setting,

the data set contained a very wide variety of expression, and it is very difficult

to make rules to cover them all. Note that with the question type “OTHER”, a

high number of correct labels but a low f-measure means the rule-based method

always indicates question type “OTHER”, if there is no rule that can be applied

to a given question. This fact also indicates that the rule-based method omits

many necessary rules for question classification.

3.4 EXPERIMENTAL RESULTS AND DISCUSSION 31

Table 2. A comparison of the proposed method with the conventional methods

RULE C4.5 MEM SVM1 SVM2

type m F measure

AGE 130 .784 .878 .710 .904 .873

DATE 1885 .832 .924 .931 .965 .962

EVEN 165 .545 .296 .517 .585 .574

LOCT 1530 .616 .575 .738 .744 .784

MONY 250 .734 .810 .645 .808 .829

NORG 140 .746 .654 .637 .727 .722

NPER 365 .853 .834 .836 .863 .858

ORGN 1605 .618 .541 .739 .734 .751

PCEN 190 .817 .765 .759 .812 .800

PERI 260 .439 .734 .627 .774 .745

PERS 1615 .816 .707 .873 .894 .888

PROD 135 .402 .185 .348 .587 .521

PTIT 270 .790 .751 .881 .886 .874

SUBS 130 .498 .387 .373 .646 .647

TIME 125 .718 .778 .758 .812 .823

TITL 150 .316 .299 .335 .478 .404

OTHR 1055 .434 .575 .649 .665 .666

ave.F .645 .629 .668 .758 .748

acc. .683 .670 .779 .807 .813

The decision tree method performed the worst in this set of experiments.

I imagine the number of features is slightly large and this causes the classifier

over-fitting in the training data.

For these reason, SVM is more suitable than the other methods.

3.4 EXPERIMENTAL RESULTS AND DISCUSSION 32

Table 3. A comparison of the proposed method with the conventional methods

based on the number of correct questions

RULE C4.5 MEM SVM1 SVM2

type m #. of correct question type

AGE 130 87 111 77 118 107

DATE 1885 1391 1700 1839 1837 1832

EVEN 165 81 46 61 83 78

LOCT 1530 893 913 1196 1184 1259

MONY 250 164 199 127 198 201

NORG 140 86 82 72 97 95

NPER 365 285 297 288 318 322

ORGN 1605 1048 870 1293 1177 1217

PCEN 190 133 135 123 147 144

PERI 260 160 181 128 190 177

PERS 1615 1246 1149 1496 1490 1509

PROD 135 39 19 31 66 56

PTIT 270 182 203 223 237 229

SUBS 130 57 41 31 72 66

TIME 125 86 98 83 104 100

TITL 150 30 43 31 60 44

OTHR 1055 855 615 692 695 694

total 10000 6828 6702 7791 8073 8130

Effect of Multi-class Classification Methods

This section shows experimental results obtained when comparing multi-class

classification methods, one vs. rest and pairwise methods [Weston98, Weston99,

KreBel98].

The strategy for deciding final estimated question type for each method is as

follows:

• one vs. rest model: a question type that gives the largest value of Equation

3.4 EXPERIMENTAL RESULTS AND DISCUSSION 33

Table 4. Classification performance versus multi-class classification method

one vs. rest pairwise

SVM1 SVM2 SVM1 SVM2

type m F-measure

AGE 130 .904 .873 .857 .791

DATE 1885 .965 .962 .961 .957

EVEN 165 .585 .574 .608 .496

LOCT 1530 .744 .784 .763 .769

MONY 250 .808 .829 .781 .746

NORG 140 .727 .722 .737 .672

NPER 365 .863 .858 .856 .843

ORGN 1605 .734 .751 .720 .717

PCEN 190 .812 .800 .780 .743

PERI 260 .774 .745 .759 .688

PERS 1615 .894 .888 .880 .878

PROD 135 .587 .521 .584 .426

PTIT 270 .886 .874 .890 .841

SUBS 130 .646 .647 .590 .460

TIME 125 .812 .823 .825 .760

TITL 150 .478 .404 .464 .301

OTHR 1055 .665 .666 .663 .610

ave.F .758 .748 .748 .688

acc. .807 .813 .802 .783

(11) is chosen as the final estimated question type.

• pairwise model: a question type which is voted for most is chosen as the

final estimated question type, where each classifier votes 1 for each type

classified as positive.

Table 4 shows the result of a comparison of the one vs. rest and pairwise

models.

3.4 EXPERIMENTAL RESULTS AND DISCUSSION 34

Even though a previous study made it clear that the pairwise method is a

better approach than the one vs. rest model [KreBel98], in our experiments,

the one vs. rest model performed better than the pairwise method. I assume

that when dealing with very high dimensions of feature space, the pairwise model

only uses samples of the two target classes, while the one vs. rest model use

all the samples to construct each classifier, thus making it difficult to learn the

appropriate classifier.

Effect of Kernel Parameter

The comparison of the performance of SVM1 and SVM2 in Table 2, 4, shows that

SVM2 performed much worse with some question types that have only a small

number of questions, i.e., AGE, EVENT, PERCENT, PERIOD, PRODUCT,

PTITLE and TITLE. This means that considering the combination of features

by polynomial kernels leads to a negative effect. This is because the feature space

becomes too sparse, and the positive class is underestimated. Since even SVM1

can easily divide into positive and negative in every classifier in training, we need

not use such a high-dimensional feature space constructed by polynomial kernels.

Learning Curve

Here, I evaluate the effect of sample size an performance.

Figures 7 and 8 show the f-measure of question types, DATE, LOCATION,

AGE and TITLE. These question types are selected for the following reasons;

DATE: a large number of samples and high performance, LOCATION: a large

number of samples but poor performance, AGE: a small number of samples but

high performance, and TITLE: a small number of samples and poor performance.

That is, these question types are selected based on the criteria of question size

and performance.

The results revealed the difficulty posed by each question type or required

number of samples. The performance of question type DATE was near the 90%

with only 100 samples. We can say the DATE is an easier question type and the

data set has a sufficient number of samples for question classification.

3.4 EXPERIMENTAL RESULTS AND DISCUSSION 35

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600

F
-m

ea
su

re

Number of samples

SVM1
MEM

(a) DATE

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400

F
-m

ea
su

re

Number of samples

SVM1
MEM

(b) LOCATION

Figure 7. Learning curves of each question type (1/2)

In contrast to DATA, even though LOCATION has about 1200 questions,

this is insufficient to classify LOCATION. This means LOCATION is a difficult

3.4 EXPERIMENTAL RESULTS AND DISCUSSION 36

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

F
-m

ea
su

re

Number of samples

SVM1
MEM

(c) AGE

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

F
-m

ea
su

re

Number of samples

SVM1
MEM

(d) TITLE

Figure 8. Learning curves of each question type (2/2)

question type. Figures 7 and 8 show that increasing the training data improved

the performance, however, we can easily guess that it is very difficult to reach

3.4 EXPERIMENTAL RESULTS AND DISCUSSION 37

Table 5. Effects of features

MEM SVM1 SVM2

word attributes # of features ave.F acc. ave.F acc. ave.F acc.

S+W(N=1) 4090 .466 .644 .645 .729 .643 .758

S 7565 .559 .665 .636 .724 .668 .744

W 10114 .592 .733 .673 .763 .651 .750

S+W 17681 .659 .767 .741 .798 .747 .810

S∗W 45525 .684 .792 .773 .824 .754 .818

S∗W∗P 118509 .670 .777 .780 .824 .733 .807

90% solely by increasing the number of samples.

We can say the same for question types AGE and TITLE, that is, AGE has

a sufficient number of questions, and TITLE does not. Therefore, I confirmed

that I could observe an improvement by adding new samples. This is especially

for samples such as question type TITLE, which has only a small number of

questions and improved when I increased then number of samples.

3.4.2 Effect of Features

Table 5 shows the results of testing the effects of word attribute N -gram features.

As shown in this table, according to the results of S+W(N=1) and S+W,

N -gram features include efficient features for question classification.

Next, when compared with S+W and S ∗ W , whose difference relates to

whether the combination of different information such as word and semantic

category are considered or not, N -gram with the combination provides better

levels of performance. Some features are better to combine into one with upper

level information such as semantic category in this case to generalize the features,

however, some features are not. This situation can be handled by dealing with

different levels of information and lead to better performance. Note that dealing

with the different levels of information together in one feature is one of the main

3.4 EXPERIMENTAL RESULTS AND DISCUSSION 38

aspects of our method, and our approach is a more natural technique for question

classification.

However, our approach to dealing with part-of-speech, that is, S∗W∗P, did

not improve the performance much with an increase in the number of features.

This result indicates the part-of-speech information is not really related to ques-

tion classification. Moreover, MEM and SVM2 showed that S∗W∗P degraded

the performance. I believe effect of dealing with part-of-speech is less than the

negative effect of increasing the number of features, which sometimes leads to

over-fitting in the training data. Therefore, the above discussion shows that the

information of part-of-speech is not very important for question classification.

Effect of Threshold t

In this set of experiments, I evaluated the effect of threshold t in word attribute

N -grams. The results are shown in Figure 9.

As shown in the figure, decreasing t causes the number of features to increase,

and this might have an adverse effect on the generalization performance of the

machine learning method. However, SVM can improve the performance. This

showed that evidence of certain poor appearance features can also inform the

tasks, and also SVM has good generalization performance. From this result if we

could select only informative features from all possible features regardless of the

number of appearances, we could expect the performance to improve.

In the case of maximum entropy method, the performance worsened with

decreasing t. this might be the result of over-fitting to the training data and

degraded generalization performance. This result showed one reason for using

SVM with the proposed method.

However, using polynomial kernels with degree 2 also degraded the perfor-

mance, while decreasing t. As discussed previously, the proposed method al-

ready provided a large number of features. The polynomial kernels with degree

2 provided too many features and that caused the generalization performance

to worsen, as found with the maximum entropy method. Therefore, we have to

carefully choose appropriate kernels.

3.4 EXPERIMENTAL RESULTS AND DISCUSSION 39

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

020406080100

ac
cu

ra
cy

threshold t

SVM1
SVM2
MEM

(a) Shift in performance with threshold t

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0 50000 100000 150000 200000 250000

ac
cu

ra
cy

number of feature dimensions

SVM1
SVM2
MEM

(b) Shift in performance with feature dimensions

Figure 9. Effects of the threshold t on the word attribute N−gram

Feature Analysis

The proposed method which extracts large numbers of features, utilized the in-

herent SVM property, namely that it is robust when using many features. The

3.4 EXPERIMENTAL RESULTS AND DISCUSSION 40

Table 6. Examples of effective features for each question type (1/2)
AGE

{ 年齢 }

年齢

{ 年齢 }-(副助詞)

{ 年齢 }-は

{ 年齢 }-(*)-(助動詞)

{ 年齢 }-(*)-(記号)

(格助詞)-(*)-{ 年齢 }

何-歳

{ 数 }-{ 年齢 }

何-{ 年齢 }

DATE

いつ

{ 時間 }

{ 日程 }

いつ-(*)-(格助詞)

{ 時間 }-(*)-(格助詞)

{ 日程 }-(*)-(記号)

{ 日程 }-(*)-(動詞)

{ 日程 }-(格助詞)

は-いつ

は-{ 時間 }

EVENT

{ 挙行 }-(格助詞)

{ 式・行事等 }

(格助詞)-(*)-{ 挙行 }

イベント

(格助詞)-(*)-{ 行事 }

{ 日 }-(*)-で

{ 祭 }

{ 会議 }

{ 行事 }

{ 公共機関 }-(*)-{ 日 }

LOCATION

どこ

{ 地域（人間活動）}

どこ-で

会場

{ 地域（範囲）}-(格助詞)

{ 名詞 }-(*)-(格助詞)

{ 位置 }-で

どこ-(格助詞)

{ 地域（人間活動）}-で

{ 地域（人間活動）}-(格助詞)

MONEY

いくら

{ 値・額 }

{ 収入 }

{ 値・額 }-(格助詞)

いくら-(*)-(助動詞)

{ 値・額 }-(*)-(記号)

{ 負債 }

額

総額

(格助詞)-(*)-{ 収入 }

NORGANIZATION

(格助詞)-(*)-{ 企業 }

{ 企業 }

数

{ 企業 }-(*)-{ 数 }

{ 公共機関 }-(*)-{ 数 }

{ 公共機関 }-(格助詞)-{ 数 }

数-(*)-(記号)

幾-つ

幾-{ 単位 }

幾-{ 個数・回数等 }

NPERSON

人

何-人

{ 数 }-人

人数

の-{ 個数・回数等 }

{ 個数・回数等 }

{ 個数・回数等 }-(*)-(記号)

数

(格助詞)-{ 個数・回数等 }

居る

ORGANIZATION

どこ

{ 企業 }-を

の-(*)-{ 企業 }

{ 機関 }

どこ-(格助詞)

{ 位置 }

(記号)-(名詞)-(格助詞)

(名詞)-(*)-(副用語)

{ 事務所 }

どこ-が

experimental results described so far show that the proposed method is highly

suited to text processing tasks. However, we still do not know which primitive

features are really informative for the given tasks.

Therefore, this set of experiments clarifies which primitive feature are infor-

mative by using one of the features selection methods for SVM, called SVM

Recursive Feature Elimination (SVM-RFE)[Guyon02].

SVM-RFE calculates the contribution of each primitive feature by using the

value of w in Equation (11).

Tables 6 and 7 show the top 10 features for each question type derived by

SVM-RFE, where { } represents the semantic category from the dictionary, ()

represents the part-of-speech tags, ∗ represents arbitrary word attributes, and the

others are words themselves.

Note that the classification performance shown in the previous experiments is

obtained when all the features are dealt with in the training, and only the top 10

3.4 EXPERIMENTAL RESULTS AND DISCUSSION 41

Table 7. Examples of effective features for each question type (2/2)
PERCENT

{ 計算値 }

(格助詞)-(*)-{ 計算値 }

{ 計算値 }-(*)-(記号)

の-(*)-{ 計算値 }

{ 計算値 }-(副助詞)

割合

{ 計算値 }-(*)-(助動詞)

{ 計算値 }-は

何-{ 計算値 }

{ 数 }-{ 計算値 }

PERIOD

期間

(格助詞)-(*)-期間

{ 時 }

期間-(格助詞)

の-(*)-期間

どれぐらいの

(副助詞)-(*)-{ 期間（自然・人間活動等）}

期間-(*)-(記号)

期間-(*)-(助動詞)

{ 時点 }

PERSON

誰

{ 不定称 }

誰-(格助詞)

{ 不定称 }-(格助詞)

{ 偉人 }

{ 男 }-{ 競技場 }

(記号)-(*)-(格助詞)-(*)-(記号)

{ 人名 }

{ 人名 }-(*)-(記号)

は-誰

PRODUCT

{ 菓子 }

{ 仕事場 }

{ 仕事場 }-(格助詞)

(格助詞)-{ 菓子 }

{ 売り }

{ 乗り物（本体（移動（陸圏）））}-は

{ 乗り物（本体（移動（陸圏）））}-(副助詞)

(名詞)-(格助詞)

{ 電気部品 }

{ 企業 }-(格助詞)

PTITLE

{ 敬称 }

氏

{ 立場 }

役職

{ 職業 }

(名詞)-氏

{ 敬称 }-は

{ 敬称 }-(副助詞)

(名詞)-{ 敬称 }

どういう

SUBSTANCE

{ 物質（本体）}

物質

{ 属性 }

(格助詞)-(*)-{ 物質（本体）}

(格助詞)-(*)-物質

{ 物質（本体）}-(*)-(記号)

は-(*)-{ 物質（本体）}

(副助詞)-(*)-{ 物質（本体）}

(動詞)-(*)-{ 物質（本体）}

(副用語)-(*)-{ 物質（本体）}

TIME

{ 時刻 }

{ 時刻 }-(*)-(助動詞)

{ 時刻 }-(*)-(記号)

(格助詞)-(*)-{ 時刻 }

何-時

{ 時刻 }-を

{ 時刻 }-(格助詞)

の-(*)-{ 時刻 }

{ 時刻 }-(*)-(動詞)

{ 時刻 }-(格助詞)-(*)-(助動詞)

TITLE

{ 創作物 }

{ 出版物 }

作品

(格助詞)-(名詞)

{ 題名 }

(動詞)-(*)-{ 出版物 }

{ 創作物 }-(*)-(格助詞)

{ 創作物 }-(格助詞)

タイトル

{ 出版物 }-(格助詞)

features cannot provide such high performance. However, this ranking is a good

indicator of how informative the features are for the question types.

From an overall viewpoint, there are many semantic categories in the top

ranking. Then, from a local viewpoint, for example, the question type AGE has

semantic category {年齢 }, and MONEY has {値・額 }, PERCENT has {計

算値 }, and TIME has {時刻 }. These semantic categories are all related to

question types that match our intuition. In addition to these examples, there

3.5 RELATED WORK: SEQUENCE KERNELS 42

were many semantic categories that were semantically related to each question

type. This fact indicates that semantic categories provide a powerful clue as

regards classifying text into semantically related classes.

Another observation, 「いつ」 for DATE 「どこ」 for LOCATION and OR-

GANIZATION, 「いくら」 for MONEY, 「何-人」 for NPERSON and 「何-

時」 for TIME are typical expressions for each question type. Of course, these

expressions become very powerful rules for each question type. However, as there

are many questions that do not use these typical expressions, we cannot obtain

a high performance question classifier, solely using these rules.

Then, considering the N of the word attribute N -gram, most of the top fea-

tures are N = 1, 2, 3. I believe that the features of larger N obviously contain the

features of smaller N , and it is natural that the smaller N features are selected

as they are equally important. Thus, I observed a semantic category of N = 1

and semantic categories with particles of N = 2 constitute the majority of the

appearance patterns.

According to the above discussion, larger N -grams did not appear in the top

ten ranking. However, this does not mean that larger N -grams are useless. We

can find informative larger N -grams in or around the top hundred.

Table 8 shows similar features to the rule based method [Sasaki01]. The

leftmost number in the table shows the ranking. Note that this result does not

show a full the comparison of rules and features. As shown in the table, SVM

can automatically select the appropriate feature set that is strongly related to

our intuition.

According to these data, if we could select only the informative features, then

re-train the classifiers, we could improve the performance. However, this process

can be difficult because there is no instruction or theoretical proof as to which

ranks are really informative for given tasks.

3.5 Related Work: Sequence Kernels

Sequence kernels were proposed in [Lodhi02, Cancedda03]. As regards the kernels,

the proposed method can also kernelize, and be almost the same as sequence

3.5 RELATED WORK: SEQUENCE KERNELS 43

Table 8. Examples of word attribute N−grams typically used in each question

type

type rank feature

AGE 90 (格助詞)-(*)-{年齢 }-(格助詞)

94 {年齢 }-を-(*)-．

456 は-(*)-幾-つ

DATE 12 {日 }-は-？-(文末)

71 {時機 }-を-(*)-(記号)

113 {日 }-(*)-知る-たい-．

289 は-いつ-(*)-(助動詞)

EVNT 587 {催し }-[副助詞]-何-[助動詞]-[終助詞詞]

LOCT 45 ある-(*)-の-{名称 }

73 どこ-で-(*)-(格助詞)

392 (名詞)-(*)-は-どこ

ORGN 160 {企業 }-[格助詞]-名前-[格助詞]

MONY 98 {値・額 }-は-？-(文末)

NORG 113 {企業 }-は-{数 }-{個数・回数等 }

NPER 765 {数 }-人-[助動詞]-[終助詞詞]

PERI 100 {数 }-年-(*)-(助動詞)

250 は-(*)-{年月日 }-くらい

PTIT 437 {仕事 }-は-何

SUBS 109 {物質（本体）}-(*)-何-です

TIME 58 は-(*)-(格助詞)-いつ

588 いつ-[動詞]-[助動詞]-[準体助詞]

TITL 127 (格助詞)-(*)-の-{題名 }

kernels. However, the proposed method can be defined as extended sequence

kernels (ESK) because it can handle combinations of different levels of word

attributes, and distinguish between consecutive and non-consecutive sequences

(See section 3.2.2). That is, the framework of each node of a sequence can have

duplicate labels.

We can simply obtain to obtain the ESK by modifying Equations (22) to (25).

3.6 SUMMARY 44

Therefore, ESK can be defined as:

KSK(S1, S2) =

|S1|∑

i=1

|S2|∑

j=1

J(S1
i , S

2
j). (38)

First, I rewrite Equation (23) to handle duplicate labels in one node.

I(s1
i , s

2
j) = µ · sim(s1

i , s
2
j). (39)

where sim(S1
i , S

2
j) represents a similarity between S1

i and S2
j , that is, the number

of matching labels in S1
i and S2

j .

I rewrite Equations (22), (24) and (25) to realize the framework that dis-

tinguishes between consecutive and non-consecutive sub-sequences as different

features.

J(S1
i , S

2
j) = (J ′(S1

i , S
2
j) + J(S1

i−1, S
2
j−1)) · I(s1

i , s
2
j) + I(s1

i , s
2
j). (40)

The first term represents the value of non-consecutive sequences and the second

term represents the value of consecutive sequences. The following two recursive

equations are introduced to obtain the first term of Equation (40).

J ′(S1
i , S

2
j) =

{
0 if j = 0, 1,

λ(J ′(S1
i , S

2
j−1) + J ′′(S1

i , S
2
j−2)) otherwise

(41)

J ′′(S1
i , S

2
j) =

{
0 if i = 0, 1,

λ(J ′′(S1
i−1, S

2
j) + J(S1

i−2, S
2
j)) otherwise

(42)

The complexity of ESK comes down to O(|S1||S2|), while an explicit enumer-

ation of all the features, which I undertook in this chapter, takes the exponential

order of the length of a sequence.

3.6 Summary

This chapter presented the “word attribute N -gram”, which is a gapped N -gram

with a combination of different levels of information, such as word, POS and

semantic category derived from a dictionary.

3.6 SUMMARY 45

I assumed that the proposed method is well suited to text processing tasks that

require linguistic information to achieve higher performance. The experimental

results clarified that the feature set, which is constructed by word attribute N -

grams, is effectively suited to text processing tasks.

Moreover, when handling a large number of features, SVM is one of the best

choices for a machine learning algorithms. SVM is known to be very robust for

handling large numbers of features, and a combination consisting of the proposed

method and SVM provided the best result.

Finally, the experiments verified most of the relative features to given tasks by

using one of the feature selection methods, SVM RFE. These extracted features

are also intuitively related to each question type, thus, this fact also indicated

that the proposed method can automatically extract efficient features from the

texts.

4 HIERARCHICALLY STRUCTURED GRAPH KERNELS 46

4. Hierarchically Structured Graph Kernels

4.1 Introduction

Recently, the design of appropriate kernel functions for specific tasks has engaged

the attention of many researchers in various fields, e.g., natural language process-

ing and bio-informatics. In particular, as most real world data is represented not

as numerical vectors, but as discrete structures such as graphs including sequences

and trees, research on kernel design is now focused on investigating kernels on

discrete structures.

Convolution Kernels [Haussler99, Watkins99] are a pioneering general frame-

work that enables us to build kernels over discrete structures. In this framework,

input objects are decomposed into parts, and kernels are defined in terms of

the sub-kernels between their parts. In the last five years, a number of ker-

nels for discrete structures, such as sequences, trees and graphs, have been pro-

posed [Lodhi02, Cancedda03, Collins01, Kashima02, Jaakkola00, Leslie04, Kashima03,

Gärtner03]. The developments of this line of research ‘have made it possible to

handle discrete data in their original and natural representations.

Therefore, the motivation for this chapter is to propose kernels, called Hierar-

chically Structured Graphs (HS-graphs), specifically suited to structured natural

language data. To be more precise, I first define Hierarchically Structured Graphs,

which are constructed with recursive graph-in-graph structures, to represent inte-

grated syntactic and semantic information within texts. Then, I define kernels on

this class of graphs. This approach can be expected to improve the performance

of NLP tasks, because it can naturally deal with fully integrated syntactic and

semantic information within text.

This chapter is organized as follows. In Section 4.2, I discuss the structures

of natural language data. In Section 4.3, I define a class of graph, namely a

hierarchically structured graph, which is suited to representing structured NL

data. Then, in Section 4.4, I introduce the basic idea and an efficient compu-

tation method for kernels of hierarchically structured graphs. In Section 4.5, I

compare the performance of conventional methods with that obtained with the

proposed method by using real NLP tasks. Moreover, I clarify the advantages

4.2 STRUCTURED NATURAL LANGUAGE DATA 47

of the proposed method according to the experimental results. In Section 4.6, I

present some extensions of kernels on hierarchically structured graphs that are

more suited for handling structured NL data.

4.2 Structured Natural Language Data

In general, natural language data contain many kinds of syntactic and semantic

structures. For example, texts have several levels of syntactic and semantic seg-

ments (chunks), such as part-of-speech (POS) tags, named entities (NEs), noun

phrases (NPs), sentences, and discourse segments, and these segments have re-

lated structures, such as dependency structures, semantic roles, anaphora, coref-

erences, and discourse structures. These syntactic and semantic structures can

provide important information for understanding natural language and, more-

over, can tackle real tasks in NLP application areas. It is natural to expect that

dealing with all this richer syntactic and semantic information in an integrated

way provides much better performance than conventional methods, which lack

much of their information or only deal with part of it. That is, the idea arose

naturally from the desire to provide a method that can deal with all the syn-

tactic and semantic information that exists inherently in text. The background

to the approach is that fundamental natural language analysis tools and electric

dictionaries, namely natural language processing (NLP) resources, have improved

rapidly in recent years, and developed to the point that they can help us to realize

real applications.

Figure 10 shows an example of structures within texts analyzed by NLP re-

sources that are currently available and that offer high levels of performance.

Note that not only the NLP resources shown in Figure 10, but also semantic

roles, discourse structures and anaphora analyzers are now being developed by

many researchers and will be available soon.

Then I combine all of these analysis results in a single representation. Fig-

ure 11 shows an example of integrated structures within texts. As shown in Fig-

ure 11, structures in texts take the form of hierarchical or recursive structures.

This means segments that are obtained from syntactic and semantic informa-

tion are characterized by smaller segments inside them or relationships between

4.3 HIERARCHICALLY STRUCTURED GRAPH (HS-GRAPH) 48

(2) result of a phrase c hun k er

(1) result of a part-of-speec h tag g er

(3) result of a n am ed en ti ti es tag g er

T ex t :

(4) result of a d epen d en c y struc ture an aly z er

POS

T ok y o D i sn ey lan d i s the m ost fam ous am usem en t park i n J apan .

T o k y o
N N P

D i s n e y l a n d
N N P

i s
V B Z

t h e
D T

m o s t
R B S

f a m o u s
J J

a m u s e m e n t
N N

p a r k
N N

i n
I N

J a p a n
N N P

.

.

T o k y o D i s n e y l a n d i s t h e m o s t f a m o u s a m u s e m e n t p a r k i n J a p a n .

T o k y o D i s n e y l a n d i s t h e m o s t f a m o u s a m u s e m e n t p a r k i n J a p a n .
L o c a t i o n

T o k y o D i s n e y l a n d i s t h e m o s t f a m o u s a m u s e m e n t p a r k i n J a p a n .

N P A D J P N P PP

(5) sem an ti c i n form ati on from d i c ti on ary (eg . W ord -N et)
T o k y o D i s n e y l a n d i s t h e m o s t f a m o u s a m u s e m e n t p a r k i n J a p a n .

N E t a g

Ph r a s e t a g

W o r d o r d e r

C o u n t r y

A m u s e m e n t p a r kN a t i o n a l c a p i t a l Pa r k A s i a n c o u n t r yH y p e r n y m s

D e p e n d e n c ys t r u c t u r e

Ph r a s e a n d h e a dr e l a t i o n

Figure 10. Information obtained from natural language processing resources

them. For example, the segment labeled ‘Location’ is characterized by the word

sequence ‘Tokyo Disneyland’, and the second noun phrase (NP) is composed of

the word sequence ‘the most famous amusement park’. Therefore, this kind of

hierarchical information is well suited to model structured natural language data.

4.3 Hierarchically Structured Graph (HS-graph)

This section provides a definition of a class of graphs constructed by using hi-

erarchical structures such as those shown in Figure 11, that is, vertices can be

characterized by graphs. In other words, vertices can have certain ‘special edges’

directed to (sub-)graphs. We call this family of graphs hierarchically structured

graphs (HS-graph).

4.3 HIERARCHICALLY STRUCTURED GRAPH (HS-GRAPH) 49

Text :

POS

To k y o D i s n ey l a n d i s th e m o s t f a m o u s a m u s em en t p a r k i n J a p a n .

N E t a g
Ph r a s e t a g

W or d or de r

H y pe r n y m s

d: de pe n de n c y s t r u c t u r e
o: w or d or de r

I n teg r a ted s tr u c tu r es o f N L P r es o u r c es
: s e g m e n t
(di f f e r e n t l e v e l s of s e g m e n t)

: r e l a t i on b e t w e e ns e g m e n t s p: r e l a t i on b e t w e e n ph r a s e a n d h e a d
p

T ok y o
N N P

D i s n e y l a n d
N N P

i s
V B Z

t h e
D T

m os t
R B S

f a m ou s
J J

a m u s e m e n t
N N

pa r k
N N

i n
I N

J a pa n
N N P

.

.

N P A D J P
C ou n t r y

Amusement p a r kN a ti o na lc a p i ta l Pa r k
Asi a n c o untr y

PP

o o o o o o o o oo
d d

d
d

d
d

N P
L oc a t i on

o

d d d
o

do o o o

o o o o
p p pp

o
D e pe n de n c ys t r u c t u r e

Ph r a s e a n d h e a dr e l a t i on

Figure 11. Examples of integrated structure obtained from natural language

processing resources

Some similar classes of graphs with hierarchical graph structures have already

been proposed, such as hi-graphs [Harel88], clustered graphs [Eades96], compound

graphs [Sugiyama91] and hierarchical graphs [Buchsbaum00]. The definitions

they use are all slightly different. Therefore, this dissertation provides an original

definition of a hierarchically structured graph.

In order to define a hierarchically structured graph, first, I introduce a vertical

edge, which represents a special edge from a vertex to a (sub-)graph. Let G =

(V,E) be a graph, where V is the set of vertices, and E ⊆ V × V is a set of

edges3 . Then, let Gi = (Vi, Ei) be a subgraph in G = (V,E) where Vi ⊆ V and

Ei ⊆ E, and G = {Gi|i = 1 . . . n} be a set of subgraphs in G.

Definition 1 (Vertical Edge) F ⊆ V × G is a set of vertical edges. That is, a

vertical edge fi,j is defined as a directed edge from a vertex vi ∈ V to a subgraph

Gj ∈ G.

A hierarchically structured graph is defined as follows:

3 This dissertation only discusses the class of directed graphs, since an undirected graph can

be identified with a directed graph that has two edges of both directions for each edge.

4.4 KERNELS ON HIERARCHICALLY STRUCTURED GRAPHS 50

Definition 2 (Hierarchically Structured Graph) A hierarchically structured graph

can be represented by a 4-tuple, G = (V,E, G, F).

I use the notation V (G), E(G), G(G), and F (G) to represent the sets of all

vertices, edges, subgraphs, and vertical edges of graph G, respectively.

The purpose of this chapter is to propose kernels suited to dealing with struc-

tured NL data, therefore the graph generally has labels. Let Γ be a set of labels

and A : V ∪ E ∪ F → Γ be a label mapping to the vertices, edges and vertical

edges. Finally, a labeled hierarchically structured graph is defined as follows.

Definition 3 (Labeled Hierarchically Structured Graph) A labeled hierarchically

structured graph can be represented by a 5-tuple, G = (V,E, G, F,A).

Figure 12 shows examples of hierarchically structured graphs: (a) a standard

graph G, (b) an HS-graph G1 and (c) a labeled HS-graph G2. Hereafter, this

dissertation refers to labeled hierarchically structured graphs simply as hierarchi-

cally structured graphs.

Figure 13 shows an example of the structured NL data shown in Figure 11,

rewritten as an HS-graph.

4.4 Kernels on Hierarchically Structured Graphs

This section introduces the basic ideas behind kernels on hierarchically structured

graphs. Conceptually, I define kernels on HS-graphs as a set of walks4 on an HS-

graph, which we call hierarchically defined walks. Therefore, I first define the

concept of hierarchically defined walk, and then introduce a definition of kernels

on HS-graphs.

A walk ω(G) in graph G = (V,E) is generally defined as a possibly infinite

sequence of edges ei,j ∈ E which is produced by traversing the vertices with

connected edges. However, in order to understand the definition of kernels on

HS-graphs easily, a walk ω(G) is written as a possibly infinite alternating sequence

of vertices v and edges e, that is,

ω(G) = 〈vi1 , ei1,i2 , vi2 , ei2,i3 , vi3 , · · · , vjL−1
, eiL−1,iL , viL〉,

4 A walk is called a path, if it contains each vertex no more than once.

4.4 KERNELS ON HIERARCHICALLY STRUCTURED GRAPHS 51

v1

v2

v3 v5

v4

v6
v1

v2

v3 v5

v4

v6

e1,2 e2,3

e6,2 e4,6
e1,6

e5,6

e3,4

1G

2G

3G

e1,2
e2,3

e6,2 e4,6
e1,6

e5,6

e3,4

f6,2

f3,3

f1,1

f1,2

a

b

c d

a

d

h
i

g h

h
h

g

j

i

i

j

(a) Graph

(b) H i e rarc hi c al l y s t ru c t u re d g raph

(c) L ab e l e d hi e rarc hi c al l y s t ru c t u re d g raph

{ }a,b,c,d,g,h,i,jΓ =

: v e r t e x
: e dge
: v e r t ical e dge

() () { }1 2 3 4 5 6, , , , ,V G V v v v v v v= =G

() () { }1,2 1,6 2,3 3,2 3,4 4,6 5,6 6,2, , , , , , ,E G E e e e e e e e e= =G

() { }1,1 1,2 3,3 6,2, , ,F f f f f=G

() { }1 2 3, ,=G G G G G

i

e3,2

e3,2

1
G

2
G

G

: s u b-gr ap h

Figure 12. Examples of hierarchically structured graphs: (a) a graph G (b) an

HS-graph G1 (c) a labeled HS-graph G2

where vik ∈ V (G), eik,ik+1
∈ E(G) and {ik|k = 1, 2, . . . , L}. L represents the

length of a walk.

I introduce a hierarchically defined walk on HS-graphs. Let P(G) be a set of

all possible hierarchically defined walks in HS-graph G, and $(G) be a primitive

hierarchically defined walk, where $(G) ∈ P(G).

Definition 4 (Hierarchically Defined Walk (Hi-walk)) A hi-walk in HS-graph G

is a possibly infinite alternating sequence of h(v) and edges e, that is,

$(G) = 〈h(vi1), ei1,i2 , h(vi2), ei2,i3 , h(vi3), · · · , h(viL−1
), eiL−1,iL , h(viL)〉,

where h(vx) ∈ {vx} ∪ {(vx, fx,y, $(Gy))|vx ∈ V (G), fx,y ∈ F (G), $(Gy) ∈ P(Gy)}.

4.4 KERNELS ON HIERARCHICALLY STRUCTURED GRAPHS 52

Tokyo
N N P

D i sne yl a nd
N N P

i s
V B Z

t h e
D T

m ost
R B S

f a m ou s
J J

a m u se m e nt
N N

pa r k
N N

i n
I N

J a pa n
N N P

.

.

N P

A D J P C ou nt r y

Amusement p a r kN a ti o na lc a p i ta l

P a r k

Asi a n c o untr y

P P

o o o o o o o o oo
d d

d
d

d
d

N P

L oca t i on o
n

c

d d d
o

do o o o

o o o ons
c

c c
p p p

p

: v e r t e x : e dg e : v e r t i ca l e dg e
{ }p, d, o, n, s, c, NP, Japan NNP, Location, . . .Γ =

: su b -g r a ph

Figure 13. Example of the structured NL data shown in Figure 11 rewritten as

an HS-graph

More specifically, h(vx) represents either a vertex vx, or a 3-tuple consisting of a

vertex, a vertical edge and a hi-walk, (vx, fx,y, $(Gy)).

According to this definition, a hi-walk has recursive structure, that is, $ is

defined by h and h possibly consists of $. For example, as an explicit represen-

tation, a hi-walk is written as follows:

$(G) = 〈v2, e2,3, (v3, f3,3, 〈v5, e5,6, (v6, f6,2, 〈v4〉)〉), e3,4, v4, e4,6, v6〉.

Figure 14 shows graphical images of hi-walk. Intuitively, a hi-walk is allowed

to traverse into a sub-graph connected with vertices by vertical edges. Thus, a

hi-walk is constructed by a recursive walk in the walk structure.

Now I introduce the concept of hierarchical label sequences, which is a primitive

feature for defining kernels on HS-graphs. Let τ(x) where x ∈ V ∪ E ∪ F be a

function that returns the label allocated in x.

Definition 5 (Hierarchical label sequence (hi-label sequence)) A hi-label sequence

τ($) is a sequence of labels associated with a hi-walk $. Namely,

τ($(G)) = 〈τ(h(vi1)), τ(ei1,j1), τ(h(vj1)), τ(ei2,j2), · · · , τ(eiL−1,jL
), τ(h(vjL

))〉,

4.4 KERNELS ON HIERARCHICALLY STRUCTURED GRAPHS 53

v1
v1

v2
v6v5

v3 v2
v1 v2

v1
v1

v1 v2

()1 1 1,1 1 1,1 1 1,1 1 1,2 2 1,2 2 1,2 2, , , , , , , , , , , ,v f v f v f v e v e v e vϖ =G

f1, 1
f1, 1 f1, 11G

1G
1G

()2 1 1,1 1 1,2 2 2,3 3 3,3 5 5,6 6 3,2 2, , , , , , , , , , , ,v f v e v e v f v e v e vϖ =G

v2

v1
e1, 2

e1, 2
e1, 2

e1, 2 e2, 3 e3, 2
e5, 6f1, 1 f3, 3

1G 3G

Figure 14. Example graphical images of hi-walk on HS-graph G in Figure 12

where τ(h(vi)) = τ(vi) if h(vi) = vi, and τ(h(vi)) = (τ(vi), τ(fi,j), τ($(Gj))

otherwise.

A hi-label sequence is also defined recursively: τ($) possibly consists of τ($).

While each vertex, edge and vertical edge has a single label, a hi-label sequence

can be derived from a hi-walk. For example, the hi-label sequence extracted from

the hi-walk $2(G) in Figure 14 is τ($2(G)) = 〈a, i, 〈a〉, h, b, i, c, i, 〈d, h, d〉, i, b〉.

Given labels Γ, let Γn be a set of all label sequences of maximum length n,

that is, Γn = ∪n
l=1{〈a1, ..., al〉| a1, ..., al ∈ Γ}. Γ∗ is a case where n = ∞. A

set of all hi-walks 〈Γ∗〉m of maximum depth m is defined as 〈Γ∗〉m = ∪m
d=2 ∪

∞
l=1

{〈a1, ..., al〉|a1, ..., al ∈ Γ ∪ 〈Γ∗〉d−1}, where 〈Γ∗〉1 = Γ∗. 〈Γ∗〉∗ is the case where

m = ∞.

Returning to the standard kernel definition, I define an explicit representation

of a numerical feature vector of an HS-graph kernel as:

φ(G) = (φγ1
(G), . . . , φγi

(G), . . .),

where φ(G) represents the explicit mapping function from an HS-graph to the

feature space, φγ(G) represents the value of feature γ, and γ1, . . . , γi ∈ 〈Γ∗〉∗.

Then, kernels on HS-graphs can also be written as:

KHSG(G1,G2) =
∑

γ∈〈Γ∗〉∗

φγ(G
1)φγ(G

2). (43)

4.4 KERNELS ON HIERARCHICALLY STRUCTURED GRAPHS 54

According to Equation (43), two input HS-graphs, G1 and G2, are mapped by

φ into feature space. Then the inner product of the weighted common hi-label

sequences in G1 and G2 is calculated.

More specifically, φγ(G) indicates the appearance of γ in G,

φγ(G) =
∑

$∈P(G)

δ(γ, τ($)),

where τ($) represents a hi-label sequence obtained from hi-walk $. δ(x, y) is an

indicator function that returns 1 if x = y, and 0 otherwise.

Therefore, I can rewrite Equation (43) as follows:

KHSG(G1,G2) =
∑

$1∈P(G1)

∑

$2∈P(G2)

δ(τ($1), τ($2)), (44)

because only hi-label sequences that appeared in P(G1) or P(G2) are evaluated

as the kernel value. This equation indicates that the HS-graph kernel calculates

the inner product of all the pairs of hi-label sequences associated with hi-walks

extracted from each HS-graph.

4.4.1 Efficient Computation

The straightforward calculation of φγ in Equation (43) is obviously impossible.

Moreover, Equation (44) cannot be calculated, because there is an infinite number

of possible hi-walks in an HS-graph, i.e. cyclic graph. This means that the

possible number of common hi-walks and hi-label sequences that appear between

HS-graphs is also infinite.

In order to compute kernels on HS-graphs practically, I rearrange the terms;

that is I calculate matching values of all hi-label sequences with respect to the

convolution of every pair of vertices in the HS-graphs. Moreover, I apply a con-

vergence condition to the HS-graph kernels for practical calculation, namely the

kernel values of the HS-graph kernels converge with respect to the lengths of

the hi-walks. To obtain an efficient algorithm, I first introduce (sub-)kernels for

labels, vertices, edges and vertical edges.

4.4 KERNELS ON HIERARCHICALLY STRUCTURED GRAPHS 55

sub-kernels for labels

KΓ(ai, aj) = δ(ai, aj), (45)

where δ(a1, a2) = 1 if a1 = a2, and 0 otherwise.

sub-kernels for vertices

KV (vi, vj) = KΓ(τ(vi), τ(vj)). (46)

sub-kernels for edges

KE(v1
i , v

2
j , v

1
k, v

2
l) =

{
0, if ei,k /∈ E(G1) or ej,l /∈ E(G2),

KΓ(τ(ei,k), τ(ej,l)) otherwise
(47)

sub-kernels for vertical edges

KF (v1
i , v

2
j ,G

1
k ,G

2
l) =

{
0, if fi,k /∈ F (G1) or fj,l /∈ F (G2),

KΓ(τ(fi,k), τ(fj,l)) otherwise
(48)

Using these sub-kernels, sub-kernels for h(v) in Definition 4, which corre-

sponds to vertices with subgraphs connected with vertical edges, can be written

as follows.

sub-kernels for vertices with subgraphs connected by vertical edges

H(v1
i , v

2
j ,G

1,G2) = KV (v1
i , v

2
j) + KV (v1

i , v
2
j)

|G(G1)|∑

k=1

|G(G2)|∑

l=1

KF (v1
i , v

2
j ,G

1
k ,G

2
l)K

HSG(G1
k ,G

2
l), (49)

Intuitively, H(v1
i , v

2
j ,G

1,G2) represents the sum of all the hi-label sequences be-

tween G1
k and G2

l connected to v1
i and v2

j with vertical edges fi,k and fj,l, respec-

tively.

Suppose we can obtain H(v1
i , v

2
j ,G

1,G2) even though it has a term KHSG(G1
k ,G

2
l),

that means a recursive definition of KHSG(G1
k ,G

2
l). Then, let us introduce a func-

tion K$
L (v1

i , v
2
j ,G

1,G2) that returns the sum value between hi-label sequences in

G1 and G2 that started with labels obtained from vertices v1
i , v

2
j . L is introduced

4.4 KERNELS ON HIERARCHICALLY STRUCTURED GRAPHS 56

to represent the number of steps traversing the graph with respect to edges.

Namely, the number of h(v) in the hi-walk, that is, L = 4 if a hi-walk in graph G

is $(G) = 〈h(vi1), ei1,i2 , h(vi2), ei2,i3 , h(vi3), ei3,i4 , h(vi4)〉.

K$
1 (v1

i1
, v2

j1
,G1,G2) = H(v1

i1
, v2

j1
,G1,G2)

K$
2 (v1

i1
, v2

j1
,G1,G2) = H(v1

i1
, v2

j1
,G1,G2)

·




|V (G1)|∑

i2=1

|V (G2)|∑

j2=1

KE(v1
i1
, v2

j1
, v1

i2
, v2

j2
)H(v1

i2
, v2

j2
,G1,G2)




K$
3 (v1

i1
, v2

j1
,G1,G2) = H(v1

i1
, v2

j1
,G1,G2)

·




|V (G1)|∑

i2=1

|V (G2)|∑

j2=1

KE(v1
i1
, v2

j1
, v1

i2
, v2

j2
)H(v1

i2
, v2

j2
,G1,G2)

·




|V (G1)|∑

i3=1

|V (G2)|∑

j3=1

KE(v1
i2
, v2

j2
, v1

i3
, v2

j3
)H(v1

i3
, v2

j3
,G1,G2)






therefore for L ≥ 2,

K$
L (v1

i1
, v2

j1
,G1,G2)

= H(v1
i1
, v2

j1
,G1,G2)

·




|V (G1)|∑

i2=1

|V (G2)|∑

j2=1

KE(v1
i1
, v2

j1
, v1

i2
, v2

j2
)H(v1

i2
, v2

j2
,G1,G2)

·


· · ·




|V (G1)|∑

iL=1

|V (G2)|∑

jL=1

KE(v1
iL−1

, v2
jL−1

, v1
iL

, v2
jL

)H(v1
iL

, v2
jL

,G1,G2)




 · · ·


 .(50)

I can further simplify Equation (50) as follows:

K$
L (v1

i , v
2
j ,G

1,G2)

= H(v1
i , v

2
j ,G

1,G2) ·




|V (G1)|∑

k=1

|V (G2)|∑

l=1

KE(v1
i , v

2
j , v

1
k, v

2
l)K

$
L−1(v

1
k, v

2
l ,G

1,G2)


 , (51)

4.4 KERNELS ON HIERARCHICALLY STRUCTURED GRAPHS 57

where

K$
L−1(v

1
i2
, v2

j2
,G1,G2)

= H(v1
i2
, v2

j2
,G1,G2)

·


· · ·




|V (G1)|∑

iL=1

|V (G2)|∑

jL=1

KE(v1
iL−1

, v2
jL−1

, v1
iL

, v2
jL

)H(v1
iL

, v2
jL

,G1,G2)


 · · ·


 .

Now, I can define an efficient algorithm between HS-graphs G1 and G2, which

is the sum of all the common hi-label sequences whose lengths L are 1 to infinity

when derived from each pair of vertices:

KHSG(G1,G2) =

|V (G1)|∑

i=1

|V (G2)|∑

j=1

lim
L→∞

L∑

L=1

K$
L (v1

i , v
2
j ,G

1,G2). (52)

However, H in K$
L cannot be calculated individually because it is defined as

the recursive definition of KHSG. That is, H contains KHSG and KHSG contains

H. Therefore, I introduce HT instead of H, which allows us to calculate KHSG

recursively. T represents the “time”, in other words the maximum number of

steps of walks, that is, L ≤ T always holds.

Now, I redefine HS-graph kernels by using T :

KHSG(G1,G2) =

|V (G1)|∑

i=1

|V (G2)|∑

j=1

lim
T →∞

T∑

L=1

K$
L,T (v1

i , v
2
j ,G

1,G2). (53)

I modify the recursive definition of K$
L in Equation (51) with T , that is,

K$
L,T (v1

i , v
2
j ,G

1,G2)

= HT (v1
i , v

2
j ,G

1,G2) ·




|V (G1)|∑

k=1

|V (G2)|∑

l=1

KE(v1
i , v

2
j , v

1
k, v

2
l)K

$
L−1,T −1(v

1
k, v

2
l ,G

1,G2)


 .

(54)

In the same way, I also modify H in Equation (49) with T :

HT (v1
i , v

2
j ,G

1,G2) = KV (v1
i , v

2
j) + KV (v1

i , v
2
j)

|G(G1)|∑

k=1

|G(G2)|∑

l=1

KF (v1
i , v

2
j ,G

1
k ,G

2
l)

4.4 KERNELS ON HIERARCHICALLY STRUCTURED GRAPHS 58

·




|V (G1
k
)|∑

m=1

|V (G2
l
)|∑

n=1

T −1∑

L=1

K$
L,T −1(v

1
m, v2

n,G1
k ,G

2
l)


 . (55)

The function HT derived from H, where H = limT →∞ HT ;

H(v1
i , v

2
j ,G

1,G2)

= KV (v1
i , v

2
j) + KV (v1

i , v
2
j)

|G(G1)|∑

k=1

|G(G2)|∑

l=1

KF (v1
i , v

2
j ,G

1
k ,G

2
l)K

HSG(G1
k ,G

2
l)

= KV (v1
i , v

2
j) + KV (v1

i , v
2
j)

|G(G1)|∑

k=1

|G(G2)|∑

l=1

KF (v1
i , v

2
j ,G

1
k ,G

2
l)

·




|V (G1
k
)|∑

m=1

|V (G2
l
)|∑

n=1

lim
T →∞

JT (v1
m, v2

n,G
1
k ,G

2
l)




= lim
T →∞

HT (v1
i , v

2
j ,G

1,G2) (56)

I rewrite Equation (53) as

KHSG(G1,G2) =

|V (G1)|∑

i=1

|V (G2)|∑

j=1

lim
T →∞

JT (v1
i , v

2
j ,G

1,G2), (57)

where

JT (v1
i , v

2
j ,G

1,G2) =
T∑

L=1

K$
L,T (v1

i , v
2
j ,G

1,G2). (58)

Then, I need to compute limT →∞ JT to obtain KHSG.

By using the recursive relationship for K$
L,T , JT can be obtained by the fol-

lowing equation:

JT (v1
i , v

2
j ,G

1,G2)

=
T∑

L=1

K$
L,T (v1

i , v
2
j ,G

1,G2)

= K$
1,T (v1

i , v
2
j ,G

1,G2) +
T∑

L=2

K$
L,T (v1

i , v
2
j ,G

1,G2)

4.4 KERNELS ON HIERARCHICALLY STRUCTURED GRAPHS 59

= HT (v1
i , v

2
j ,G

1,G2) +
T∑

L=2

HT (v1
i , v

2
j ,G

1,G2)

·




|V (G1)|∑

k=1

|V (G2)|∑

l=1

KE(v1
i , v

2
j , v

1
k, v

2
l)K

$
L−1,T −1(v

1
k, v

2
l ,G

1,G2)




= HT (v1
i , v

2
j ,G

1,G2) + HT (v1
i , v

2
j ,G

1,G2)

·




|V (G1)|∑

k=1

|V (G2)|∑

l=1

KE(v1
i , v

2
j , v

1
k, v

2
l)

T∑

L=2

K$
L−1,T −1(v

1
k, v

2
l ,G

1,G2)




= HT (v1
i , v

2
j ,G

1,G2) + HT (v1
i , v

2
j ,G

1,G2)

·




|V (G1)|∑

k=1

|V (G2)|∑

l=1

KE(v1
i , v

2
j , v

1
k, v

2
l)JT −1(v

1
k, v

2
l ,G

1,G2)


 , (59)

where
∑T

L=2 K$
L−1,T −1 =

∑T −1
L=1 K$

L,T −1, and
∑T −1

L=1 K$
L,T −1 = JT −1. I define the

boundary condition, J0(v
1
i , v

2
j ,G

1,G2) = 0 for all v1
i , v

2
j ,G

1,G2, thus J1 = H1.

Replacing HT in Equation (59) with Equation (55), The following recursive

relationship holds between JT and JT −1.

JT (v1
i , v

2
j ,G

1,G2)

= KV (v1
i , v

2
j) + KV (v1

i , v
2
j)

|G(G1)|∑

k=1

|G(G2)|∑

l=1

KF (v1
i , v

2
j ,G

1
k ,G

2
l)

|V (G1
k
)|∑

m=1

|V (G2
l
)|∑

n=1

JT −1(v
1
m, v2

n,G1
k ,G

2
l)

+KV (v1
i , v

2
j) + KV (v1

i , v
2
j)

|G(G1)|∑

k=1

|G(G2)|∑

l=1

KF (v1
i , v

2
j ,G

1
k ,G

2
l)

|V (G1
k
)|∑

m=1

|V (G2
l
)|∑

n=1

JT −1(v
1
m, v2

n,G1
k ,G

2
l)

+


KV (v1

i , v
2
j) + KV (v1

i , v
2
j)

|G(G1)|∑

k=1

|G(G2)|∑

l=1

KF (v1
i , v

2
j ,G

1
k ,G

2
l)

4.4 KERNELS ON HIERARCHICALLY STRUCTURED GRAPHS 60

|V (G1
k
)|∑

m=1

|V (G2
l
)|∑

n=1

JT −1(v
1
m, v2

n,G1
k ,G

2
l)




·




|V (G1)|∑

k=1

|V (G2)|∑

l=1

KE(v1
i , v

2
j , v

1
k, v

2
l)JT −1(v

1
k, v

2
l ,G

1,G2)


 (60)

Assuming that JT converges when T → ∞, we have the following equilibrium

equation:

J∞(v1
i , v

2
j ,G

1,G2)

= KV (v1
i , v

2
j) + KV (v1

i , v
2
j)

|G(G1)|∑

k=1

|G(G2)|∑

l=1

KF (v1
i , v

2
j ,G

1
k ,G

2
l)

|V (G1
k
)|∑

m=1

|V (G2
l
)|∑

n=1

J∞(v1
m, v2

n,G1
k ,G

2
l)

+KV (v1
i , v

2
j) + KV (v1

i , v
2
j)

|G(G1)|∑

k=1

|G(G2)|∑

l=1

KF (v1
i , v

2
j ,G

1
k ,G

2
l)

|V (G1
k
)|∑

m=1

|V (G2
l
)|∑

n=1

J∞(v1
m, v2

n,G1
k ,G

2
l)

+


KV (v1

i , v
2
j) + KV (v1

i , v
2
j)

|G(G1)|∑

k=1

|G(G2)|∑

l=1

KF (v1
i , v

2
j ,G

1
k ,G

2
l)

|V (G1
k
)|∑

m=1

|V (G2
l
)|∑

n=1

J∞(v1
m, v2

n,G
1
k ,G

2
l)




·




|V (G1)|∑

k=1

|V (G2)|∑

l=1

KE(v1
i , v

2
j , v

1
k, v

2
l)J∞(v1

k, v
2
l ,G

1,G2)


 (61)

Therefore, the computation of the HS-graph kernel finally comes down to

solving Equation (61) and substituting the solutions into Equation (57).

The worst case time complexity when calculating KHSG(G1,G2) is nearly quadratic

in the total number of vertices in the graph and subgraphs with a linear constant

4.4 KERNELS ON HIERARCHICALLY STRUCTURED GRAPHS 61

of T , that is,

O


T ·

∣∣∣∣∣∣

|G(G1)|∑

i=0

V (G1
i)

∣∣∣∣∣∣
·

∣∣∣∣∣∣

|G(G2)|∑

j=0

V (G2
j)

∣∣∣∣∣∣


 ,

where G0 represents G itself.

4.4.2 Convergence Condition

The convergence condition needed to calculate the HS-graph kernel is as follows:

Theorem 2 The infinite positive sequence limT →∞ JT (v1
i , v

2
j ,G

1,G2) converges

for any v1
i ∈ G1 and v2

j ∈ G2, if the following two inequalities hold for all v1
i ∈ G1

and v2
j ∈ G2, that is,

0 ≤ HT (v1
i , v

2
j ,G

1,G2) ≤ HT +1(v
1
i , v

2
j ,G

1,G2) ≤ µ < 1, (62)

and

0 ≤

|V (G1)|∑

k=1

|V (G2)|∑

l=1

KE(v1
i , v

2
j , v

1
k, v

2
l) ≤ 1. (63)

Proof. If I can prove that JT (v1
i , v

2
j ,G

1,G2) is a monotonically increasing se-

quence bounded above for all v1
i ∈ G1 and v2

j ∈ G2, JT (v1
i , v

2
j ,G

1,G2) is sure to

converge by the monotone convergence theorem. This is in analogy to the proving

of the convergence for Euler’s constant, that is, limn→∞

(
1 + 1

n

)n
= e.

For this reason, I only need to prove monotonicity:

JT (v1
i , v

2
j ,G

1,G2) ≤ JT +1(v
1
i , v

2
j ,G

1,G2) ∀v1
i ∈ G1, v2

j ∈ G2, T ,

and bounded above:

JT (v1
i , v

2
j ,G

1,G2) < M ∀v1
i ∈ G1, v2

j ∈ G2, T ,

where M represents a certain constant.

First, I focus on the monotonically increasing sequence.

4.4 KERNELS ON HIERARCHICALLY STRUCTURED GRAPHS 62

Lemma 1 JT (v1
i , v

2
j ,G

1,G2) ≤ JT +1(v
1
i , v

2
j ,G

1,G2) is satisfied for all v1
i ∈ G1, v2

j ∈

G2 and T if the following inequality holds:

0 ≤ HT (v1
i , v

2
j ,G

1,G2) ≤ HT +1(v
1
i , v

2
j ,G

1,G2) ∀v1
i ∈ G1, v2

j ∈ G2, T . (64)

Proof. The proof is achieved by induction on T .

According to Equation (59), if T = 1, then

J1(v
1
i , v

2
j ,G

1,G2) − J0(v
1
i , v

2
j ,G

1,G2) = H1(v
1
i , v

2
j ,G

1,G2) − 0 ≥ 0 ∀v1
i ∈ G1, v2

j ∈ G2.

That is, JT ≤ JT +1 is satisfied for T = 1.

Then, assuming that JT ≤ JT +1 is satisfied for T > 1,

JT (v1
i , v

2
j ,G

1,G2) − JT −1(v
1
i , v

2
j ,G

1,G2) ≥ 0 ∀v1
i ∈ G1, v2

j ∈ G2. (65)

We can show that it is also true for T + 1:

JT +1(v
1
i , v

2
j ,G

1,G2) − JT (v1
i , v

2
j ,G

1,G2)

= HT +1(v
1
i , v

2
j ,G

1,G2) + HT +1(v
1
i , v

2
j ,G

1,G2)

·




|V (G1)|∑

k=1

|V (G2)|∑

l=1

KE(v1
i , v

2
j , v

1
k, v

2
l)JT (v1

k, v
2
l ,G

1,G2)




−HT (v1
i , v

2
j ,G

1,G2) + HT (v1
i , v

2
j ,G

1,G2)

·




|V (G1)|∑

k=1

|V (G2)|∑

l=1

KE(v1
i , v

2
j , v

1
k, v

2
l)JT −1(v

1
k, v

2
l ,G

1,G2)




=
(
HT +1(v

1
i , v

2
j ,G

1,G2) − HT (v1
i , v

2
j ,G

1,G2)
)

+

|V (G1)|∑

k=1

|V (G2)|∑

l=1

KE(v1
i , v

2
j , v

1
k, v

2
l)
(
HT +1(v

1
i , v

2
j ,G

1,G2)JT (v1
k, v

2
l ,G

1,G2)

−HT (v1
i , v

2
j ,G

1,G2)JT −1(v
1
k, v

2
l ,G

1,G2)
)

≥ 0, ∀v1
i ∈ G1, v2

j ∈ G2, T ≥ 2.

4.4 KERNELS ON HIERARCHICALLY STRUCTURED GRAPHS 63

This can be simply derived from the conditions (64) in Lemma 2 and Inequality

(65) of the assumption, and the fact that HT and JT are always non-negative.

That is,

HT +1(v
1
i , v

2
j ,G

1,G2)JT (v1
k, v

2
l ,G

1,G2) − HT (v1
i , v

2
j ,G

1,G2)JT −1(v
1
k, v

2
l ,G

1,G2) ≥ 0,

where

HT +1(v
1
i , v

2
j ,G

1,G2) − HT (v1
i , v

2
j ,G

1,G2) ≥ 0,

and

JT (v1
k, v

2
l ,G

1,G2) − JT −1(v
1
k, v

2
l ,G

1,G2) ≥ 0.

Hence the result follows by induction. Thus, I can say that for any v1
i ∈

G1, v2
j ∈ G2, JT (v1

i , v
2
j ,G

1,G2) and T is a monotonically increasing sequence be-

cause JT (v1
i , v

2
j ,G

1,G2) ≤ JT +1(v
1
i , v

2
j ,G

1,G2) is always satisfied. 2

Next, I consider whether JT (v1
i , v

2
j ,G

1,G2) is bounded above.

Lemma 2 JT (v1
i , v

2
j ,G

1,G2) for any v1
i ∈ G1, v2

j ∈ G2 and T = {1, 2, . . . ,∞}

are bounded above by 1
1−µ

, that is, JT (v1
i , v

2
j ,G

1,G2) < 1
1−µ

, if the following two

inequalities hold

0 < HT (v1
i , v

2
j ,G

1,G2) ≤ µ < 1 ∀v1
i ∈ G1, v2

j ∈ G2, T , (66)

and

0 ≤

|V (G1)|∑

k=1

|V (G2)|∑

l=1

KE(v1
i , v

2
j , v

1
k, v

2
l) ≤ 1 ∀v1

i ∈ G1, v2
j ∈ G2. (67)

Proof. JT represents the sum of K$
L,T , that is:

JT (v1
i , v

2
j ,G

1,G2) =
T∑

L=1

K$
L,T (v1

i , v
2
j ,G

1,G2)

= K1,T (v1
i , v

2
j ,G

1,G2) + K2,T (v1
i , v

2
j ,G

1,G2) +

. . . + KT ,T (v1
i , v

2
j ,G

1,G2).

4.4 KERNELS ON HIERARCHICALLY STRUCTURED GRAPHS 64

Each term in the above equation can be individually bounded above by con-

ditions (66) and (67) as follows:

K1,T (v1
i , v

2
j ,G

1,G2) = HT (v1
i , v

2
j ,G

1,G2) ≤ µ

K2,T (v1
i , v

2
j ,G

1,G2) = HT (v1
i , v

2
j ,G

1,G2)



|V (G1)|∑

k=1

|V (G2)|∑

l=1

KE(v1
i , v

2
j , v

1
k, v

2
l)HT −1(v

1
k, v

2
l ,G

1,G2)


 ≤ µ2

...

KL,T (v1
i , v

2
j ,G

1,G2) = HT (v1
i , v

2
j ,G

1,G2)

·


· · ·




|V (G1)|∑

k=1

|V (G2)|∑

l=1

KE(v1
i , v

2
j , v

1
k, v

2
l)HT −(L−1)(v

1
k, v

2
l ,G

1,G2)


 · · ·




≤ µL.

When KL,T has L terms of HT , it can be proved to be bounded by µL. Then we

can obtain the following inequality:

T∑

L=1

K$
L,T (v1

i , v
2
j ,G

1,G2)

= K1,T (v1
i , v

2
j ,G

1,G2) + K2,T (v1
i , v

2
j ,G

1,G2) + . . . + KT ,T (v1
i , v

2
j ,G

1,G2)

< µ + µ2 + . . . + µT

=
T∑

L=1

µL.

∑T
L=1 µL is known as a geometric series and is known to converge if and only

if |µ| < 1. In this case the limit is given by limT →∞

∑T
L=1 µL = 1

1−µ

Therefore, we can obtain the least upper bound of JT (v1
i , v

2
j ,G

1,G2) as follows:

lim
T →∞

JT (v1
i , v

2
j ,G

1,G2) < lim
T →∞

T∑

L=1

µL =
1

1 − µ
, ∀v1

i ∈ G1, v2
j ∈ G2.

Finally, Theorem 1 is proved from Lemma 2 and Lemma 3 that show for

any v1
i ∈ G1, , v2

j ∈ G2, JT (v1
i , v

2
j ,G

1,G2) is a monotonically increasing sequence

bounded above under conditions (62) and (63) of Theorem 1.

4.4 KERNELS ON HIERARCHICALLY STRUCTURED GRAPHS 65

2

To satisfy these convergence conditions, first, I introduce normalized weighting

for the edges.

Let K ′
E(v1

i , v
2
j , v

1
k, v

2
l) be a normalized edge of KE with respect to v1

i and v2
j :

K ′
E(v1

i , v
2
j , v

1
k, v

2
l) =

KE(v1
i , v

2
j , v

1
k, v

2
l)∑|V (G1)|

m=1

∑|V (G2)|
n=1 KE(v1

i , v
2
j , v

1
m, v2

n)
. (68)

Then, K ′
E has a value between 0 and 1, and satisfies

|V (G1)|∑

k=1

|V (G2)|∑

l=1

K ′
E(v1

i , v
2
j , v

1
k, v

2
l) = 1, ∀v1

i , v
2
j . (69)

K ′
E(v1

i , v
2
j , v

1
k, v

2
l) satisfies the latter condition of Theorem 1.

In the same way, we normalize KF ,

K ′
F (v1

i , v
2
j ,G

1
k ,G

2
l) =

KF (v1
i , v

2
j ,G

1
k ,G

2
l)∑|G(G1)|

m=1

∑|G(G2)|
n=1 KF (v1

i , v
2
j ,G

1
m,G2

n)
. (70)

Then, I introduce H ′
T , which is the normalized value of HT :

H ′
T (v1

i , v
2
j ,G

1,G2)

= σ · KV (v1
i , v

2
j) + (1 − σ) · KV (v1

i , v
2
j)

·

|G(G1)|∑

m=1

|G(G2)|∑

n=1

K ′
F (v1

i , v
2
j ,G

1
m,G2

n)

|V (G1)|∑

k=1

|V (G2)|∑

l=1

J ′
T −1(v

1
k, v

2
l ,G

1
m,G2

n), (71)

where

J ′
T −1(v

1
k, v

2
l ,G

1
m,G2

n) =
JT −1(v

1
k, v

2
l ,G

1
m,G2

n)√
KHSG(G1

m,G1
m) · KHSG(G2

n,G
2
n)

, (72)

and σ(0 ≤ σ ≤ 1), which is introduced as a tunable parameter of the ratio

between the evaluation of the matching of the subgraphs connected with vertical

edges: if σ = 1 holds, subgraphs connected with vertical edges are not used at

4.4 KERNELS ON HIERARCHICALLY STRUCTURED GRAPHS 66

all. The value of H ′
T (v1

i , v
2
j ,G

1,G2) lies between 0 and 1, H ′
T = 1 if and only if

all the subgraphs connected with vertical edges to v1
i and v2

j are isomorphic.

Then, I introduce a parameter for the convergence ratio 0 ≤ µ < 1.

H ′′
T (v1

i , v
2
j ,G

1,G2) = µ · H ′
T (v1

i , v
2
j ,G

1,G2) (73)

Parameter µ indicates the decay factor of the hi-label sequence size. Moreover, a

smaller µ leads to faster convergence.

H ′′
T (v1

i , v
2
j ,G

1,G2) satisfies the condition (62) of Theorem 1, namely the con-

vergence condition for HS-graph kernels, that is,

0 ≤ H ′′
T (v1

i , v
2
j ,G

1,G2) ≤ H ′′
T +1(v

1
i , v

2
j ,G

1,G2) ≤ µ < 1 ∀v1
i ∈ G1, v2

j ∈ G2, T .

By substituting K ′
E and H ′′

T into KE and HT of Equation (59), respectively ,

we can calculate HS-graph kernels that satisfy the convergence condition.

4.4.3 Efficient Computation for Acyclic Graph

Let us now consider a kernel that accepts only acyclic HS-graphs. In this case,

we can calculate the kernel much more efficiently by using dynamic programming

technique.

Before explaining an efficient computation method, I define the meaning of

acyclicity for HS-graphs.

Definition 6 (Hierarchically Structured Directed Acyclic Graph (HDAG)) An

HS-graph G = (V,E, G, F,A) is an HDAG if and only if there is no hi-walk

where the same vertex appears more than twice.

In other words, when all hi-walks in G are hi-paths, then G is an HDAG.

If an HS-graph is acyclic, vertices can be sorted in partial order (topological

order) under the following two conditions: (1) vi ≺ vj for every directed edge

ei,j ∈ E(G), (2) {V (Gj)} ≺ vi for every vertical edges fi,j ∈ F (G). Therefore,

we can employ the dynamic programming technique during kernel computation.

That is, if we calculate the kernel under the partial order of vertices, the values

4.4 KERNELS ON HIERARCHICALLY STRUCTURED GRAPHS 67

that are needed to calculate K(v1
i , v

2
j) have already been calculated in the previous

calculation K(v1
k, v

2
l), where 1 ≤ k < i ≤ |G1| and 1 ≤ l < j ≤ |G2| in the partial

order of vertices.

An efficient calculation formula for HDAGs G1 and G2 is written as:

KHDAG(G1,G2) =

|G1|∑

k=1

|G2|∑

l=1

J(v1
i , v

2
j ,G

1,G2),

where

J(v1
i , v

2
j ,G

1,G2) = H(v1
i , v

2
j ,G

1,G2) + H(v1
i , v

2
j ,G

1,G2)

·

(
i∑

k=1

j∑

l=1

KE(v1
i , v

2
j , v

1
k, v

2
l)J(v1

k, v
2
l ,G

1,G2)

)
, (74)

and

H(v1
i , v

2
j ,G

1,G2)

= KV (v1
i , v

2
j) + KV (v1

i , v
2
j)

|G(G1)|∑

k=1

|G(G2)|∑

l=1

KF (v1
i , v

2
j ,G

1
k ,G

2
l)

i−1∑

m=1

j−1∑

n=1

J(v1
m, v2

n,G1
k ,G

2
l).

For HDAG, J(v1
m, v2

n,G1
k ,G

2
l), which is on the right-hand side in equation (74), is

calculated in the previous step of J(v1
i , v

2
j ,G

1,G2), because m < i and n < j hold

under the partial order defined above.

The worst case time complexity for calculating KHDAG(G1,G2) is quadratic in

the total number of vertices in the graph and subgraphs, that is,

O



∣∣∣∣∣∣

|G(G1)|∑

i=0

V (G1
i)

∣∣∣∣∣∣
·

∣∣∣∣∣∣

|G(G2)|∑

j=0

V (G2
j)

∣∣∣∣∣∣


 .

Therefore, we can calculate the HDAG kernel much more efficiently than the

HS-graph kernel. Moreover, we do not need to satisfy the convergence conditions

described in the previous section. This is a trade-off between the restriction of

the acyclic graph and the convergence conditions.

4.5 EXPERIMENTS 68

4.5 Experiments

This section describes experiments. The aim is to confirm the effectiveness of the

richer structural information that reflects the syntactic and semantic information

within texts, which can be dealt with now for the first time by using the proposed

method. Intuitively, we can say it is a better approach for dealing with richer

information. However, no previous paper has shown that richer structural infor-

mation improves the performance of NLP tasks, and so we do not know if dealing

with richer information really improves performance. Therefore, I undertook an

experiment to verify the statement.

In order to accomplish this goal I selected an appropriate real NLP task,

question classification. The question classification task can be regarded as a sort

of text classification task and involves mapping a given question into a pre-defined

question type. However, it is known that the contextual and semantic features

within texts are required if we are to obtain better results [Li02, Suzuki03c], the

traditional topic based text classification, because the main point of this task is

to classify the intention of a question. This task is strongly related to one of the

latest topics in NLP, sentiment classification, whose purpose is to classify given

texts into semantically related classes, such as polarity, subjectivity, intention

and emotion. For the above reason, this task is suited to evaluating how well we

can evaluate the text contextually and semantically.

4.5.1 Data

I used QC data provided by [Li02] for English question classification (EQC)

and [Suzuki03c] for Japanese question classification (JQC).

The EQC data has 5952 questions in 50 fine question types. Table 9 shows

all the question types and the number of questions in each question type in the

EQC data.

The JQC data has 5011 questions in 150 question types, which are defined

in the CRL QA-data5 . However, it seems unnecessary to use all 150 question

types, because many question types have only a few questions. I selected 16

5 http://www.cs.nyu.edu/˜sekine/PROJECT/CRLQA/

4.5 EXPERIMENTS 69

Table 9. Question types in English question classification data (50 types); ABBR:

abbreviations, DESC: description and abstract concepts, ENTY: entities, HUM:

human beings, LOC: locations and NUM: numeric values

Question type # of questions

1 ABBR:abbreviation 17

2 ABBR:expression 78

3 DESC:definition 544

4 DESC:description 281

5 DESC:manner 278

6 DESC:reason 197

7 ENTY:animal 128

8 ENTY:body 18

9 ENTY:color 50

10 ENTY:creative 207

11 ENTY:currency 10

12 ENTY:disease and medicine 105

13 ENTY:event 58

14 ENTY:food 107

15 ENTY:instrument 11

16 ENTY:language 18

17 ENTY:letter 9

18 ENTY:other 229

19 ENTY:plant 18

20 ENTY:product 46

21 ENTY:religion 4

22 ENTY:sport 63

23 ENTY:substance 56

24 ENTY:symbol 11

25 ENTY:technique 39

Question type # of questions

26 ENTY:term 100

27 ENTY:vehicle 31

28 ENTY:word 26

29 HUM:description 50

30 HUM:group 195

31 HUM:individual 1017

32 HUM:title 26

33 LOC:city 147

34 LOC:country 158

45 LOC:mountain 24

36 LOC:other 514

37 LOC:state 73

38 NUM:code 9

39 NUM:count 372

40 NUM:date 265

41 NUM:distance 50

42 NUM:money 74

43 NUM:order 6

44 NUM:other 64

45 NUM:percent 30

46 NUM:period 83

47 NUM:speed 15

48 NUM:temperature 13

49 NUM:size 13

50 NUM:weight 15

Total 5952

appropriate question types. Question types are defined in a tree structure, and

the 16 question types I selected are located in the second level from the top-node

of the tree. Table 10 shows all the question types and the number of questions

in each question type in the JQC data.

4.5 EXPERIMENTS 70

Table 10. Question types in Japanese question classification data (16 types)

Question type # of question

1 NAME-PERSON 824

2 NAME-ORGANIZATION 733

3 NAME-LOCATION 752

4 NAME-FACILITY 147

5 NAME-PRODUCT 564

6 NAME-EVENT 143

7 NAME-TITLE 97

8 TIME TOP-TIMEX 652

Question type # of question

9 TIME TOP-PERIODX 125

10 NUMEX-MONEY 187

11 NUMEX-PERCENT 104

12 NUMEX-FREQUENCY 27

13 NUMEX-AGE 58

14 NUMEX-MEASUREMENT 133

15 NUMEX-COUNTX 326

16 Other 139

Total 5011

Table 11. Examples of English question classification data

Question type Question

NUM:date When did Hawaii become a state ?

LOC:other What is the highest dam in the U.S. ?

LOC:city What is the oldest city in the United States ?

Table 11 shows examples of the English question classification data.

4.5 EXPERIMENTS 71

Who i s p r i m e m i n i s t e r of J a p a n ?question:Who i s p r i m e m i n i s t e r of J a p a n ?question:
S e q -K

W h o is p r im e m inister of J a p a n ?J J N N I N .W P N N PV B J

W h o is p r im e m inister ofJ J N N I NW P V B J

T r e e -K
J a p a n ?.N N P

G r a p h-K

H S G -K

N P

[number] [ex ec ut i v e] [A s i a n C o unt ry]

W h o is p r im e m inister of J a p a n ?J J N N I N .W P N N PV B J

N P

C ountr yP P

N P

[number] [ex ec ut i v e] [A s i a n C o unt ry]

W h o is p r im e m inister of J a p a n ?J J N N I N .W P N N PV B J

N P

C ountr yP P

Figure 15. Examples of input data for each method

4.5.2 Comparison Methods

The objectives of the experiments are to observe the efficiency of the richer in-

formation in NLP tasks. I compared the performance of the proposed kernel,

the HS-graph Kernel (HSG-K), with Graph Kernels (Graph-K) [Kashima03],

Tree kernels (Tree-K) [Kashima02], and sequence kernels (Seq-K) [Cancedda03].

Moreover, I evaluated the bag-of-words kernel (BOW-K) [Joachims98], that is,

the bag-of-words with polynomial kernels, as the baseline method. The main

difference between the methods is the ability to deal with syntactic and semantic

information within texts.

Figure 15 shows example input objects for each method. Moreover, Table 12

outlines the information (features) of the text dealt with in each of the compared

methods. As shown in Table 12, Seq-K only considers word order, Tree-K deals

with the dependency structures of words, Graph-K deals with all of the words,

phrases, named entities, and semantic categories with dependency structures, and

HSG-K deals with the same information as Graph-K plus the sub-structures of

each segment. That is, a comparison of the performance of these methods can

clarify the impact of the structural information.

I evaluated the performance of HSG-K with the parameter µ = {0.1, 0.3, 0.5, 0.7, 0.9}

4.5 EXPERIMENTS 72

Table 12. Information dealt with in each comparison method: W: words, N:

named entities, P: phrases, S: semantic categories, wo: word orders, dep: depen-

dencies, sb: sub-structures of segments

Types of label Types of structure

Method W N P S wo dep sb

HSG-K o o o o o o o

Graph-K o o o o o o

Tree-K o o

Seq-K o o

BOW-K o

in Equation (73) and σ = {0.2, 0.4, 0.6, 0.8} in Equation (71) for all the exper-

iments in this chapter. The parameter µ = {0.1, 0.3, 0.5, 0.7, 0.9} was also ap-

plied with Seq-K, Tree-K and Graph-K, which is a decay factor according to the

sub-structure size as well as HSG-K. Moreover, I evaluated the performance of

BOW-K with d = {1, 2, 3, 4}, which represents the degree of polynomial kernels.

I used many NLP resources to obtain these structured input objects. For

English data, I first used the OAK system6 to obtain POS and NE tags. Then, I

parsed the input texts by using the Collins-Parser [Collins03]. Finally, I add the

hypernym from Word-Net [Fellbaum98].

For Japanese data, I first analyzed input data by using ChaSen [Asahara00]

for morphological analysis and a POS tagger. Then, I used CahoCha [Kudo02]

as a chunking and dependency analyzer, SVM-NE tagger [Isozaki02] as a named

entity tagger, and Goi-taikei [Ikehara97] for semantic information.

4.5.3 Performance Evaluation Method

Basically, I evaluated the overall performance by using the average accuracy of

ten fold cross validation. First, I divided data set into ten sets. Then, I used the

Support Vector Machine (SVM) [Vapnik95] as a kernel-based machine learning

6 http://nlp.cs.nyu.edu/oak/

4.5 EXPERIMENTS 73

algorithm to learn a decision function by using nine sets. While a question classi-

fication task is generally a multi-class classification task and an SVM is a binary

classifier, I used the one vs rest model to determine the final estimated label for

a given question. I calculated label accuracy, which is the accuracy of estimated

labels compared with the correct labels for the remaining set.

I iterated the above procedure ten times with changing the divided sets for

training and test data. Finally, I evaluated the performance by using the average

label accuracy of the ten iterated evaluations. Additionally, I tested the difference

in average label accuracy by using a paired Wilcoxon signed rank test, which is

a non-parametric statistical significance test.

4.5.4 Results and Discussion

Comparison with Conventional Kernels

In this set of experiments, I analyze the effect of using richer information within

text for NLP tasks. More specifically I compare the performance of the kernels

with that of sequence and tree kernels, which substitutes one of the latest methods

for handling structural information within text in the NLP field. Since text is

easily handled as a sequence of words or a parsed tree, these methods are natural

methods for use with text.

The results of these comparisons are described in Tables 13 and 14 for EQC

and JQC, respectively. The label accuracy (acc.) is given. It should be noted that

these tables also show the standard deviations (S.D.). µ and σ for Seq-K, Tree-K

and HSG-K, and d for BOW-K show each of the parameters explained in Section

4.5.2. These tables only show the best results obtained with parameters µ, σ

and d. The last column in the tables shows results for the Wilcoxon signed rank

test comparing the performance of the proposed method and those of the other

methods, where one (*), two (**) and three (***) asterisks represent p-values of

p < 0.05, p < 0.01, and p < 0.005, respectively.

According to these results, the proposed methods statistically outperformed

both sequence kernels and tree kernels. In the question classification task, a given

question is classified as a question type that reflects the intention of the question.

4.5 EXPERIMENTS 74

Table 13. Experimental results: Label accuracy for each question (EQC): acc.

and S.D. represent the average label accuracy and its standard deviation. µ,

σ and d represent the parameters for each method. *, **, and *** represent

p < 0.05, p < 0.01 and p < 0.005 of the Wilcoxon signed rank test, respectively.

Comparison methods Performance Parameters Statistical test

acc. S.D. µ σ p < {0.05, 0.01, 0.005}

HSG-K 0.844 0.0116 0.3 0.4

Graph-K 0.838 0.0108 0.3 - *

Tree-K 0.822 0.0142 0.3 - **

Seq-K 0.831 0.0131 0.3 - *

acc. S.D. d

BOW-K 0.799 0.0153 2 ***

Table 14. Experimental results: Label accuracy for each question (JQC): acc.

and S.D. represent the average label accuracy and its standard deviation. µ,

σ and d represent the parameters for each method. *, **, and *** represent

p < 0.05, p < 0.01 and p < 0.005 of the Wilcoxon signed rank test, respectively.

Comparison methods Performance Parameters Statistical test

acc. S.D. µ σ p < {0.05, 0.01, 0.005}

HSG-K 0.817 0.0098 0.5 0.2

Graph-K 0.809 0.0089 0.5 - *

Tree-K 0.804 0.0129 0.5 - **

Seq-K 0.803 0.0104 0.5 - **

acc. S.D. d

BOW-K 0.749 0.0160 2 ***

Therefore, this result indicates that the richer structural information gives more

clues with which to identify the differences in intentions inherently contained in

the text.

4.5 EXPERIMENTS 75

It is interesting to note that the effect of using richer structural information

leads to better performance both in English and Japanese. This fact also indicates

that the approach using richer structural information is language oriented and we

believe that we can improve the performance of NLP tasks for any other language.

Effect of Hierarchical Structure: Parameter σ

I clarify the effect of using hierarchical structures that are constructed from sub-

graphs and vertical edges in my method. If we remove whole subgraphs and

vertical edges from an HS-graph, it obviously becomes the same as a standard

graph. That is, we now compare the performance of HS-graph kernels and graph

kernels.

As mentioned earlier, parameter σ gives the relative ratio for evaluating the

matching of sub-graphs for connected vertices. If we set σ = 1 for HS-graph

kernels, that is, it can never evaluate the effect of sub-graphs, then it becomes

equivalent to evaluating standard graph kernels.

To obtain experimental evidence of the efficiency of hierarchical structures,

I evaluated the influence of σ on performance by changing the value. Figure

16 shows the results of this set of experiments in EQC and JQC. As shown in

this figure, the performance deteriorates with larger µ, and this tendency is the

same for all µ values. Moreover, σ 6= 1 always provides better performance than

σ = 1. This means that subgraph information is a more certain indicator for

identifying the intentions of the text. Generally, the subgraphs information is

more precise than the information of the vertex itself that is connected with

vertical edges. This may be the reason why evaluating the subgraphs improves

the overall performance.

Thus, this result showed further evidence that the proposed method, HS-graph

kernels, is a better approach than standard graph kernels for NLP tasks. This

indicates that the relation between different levels of segments, such as phrases

and named entities, provides informative features for solving real NLP tasks, and

moreover, for understanding natural language.

4.5 EXPERIMENTS 76

���

����

����

��� ��� ��� ��� � ��

�����������

�
�
�
�
��
�
�
�
�
	�
�

����� �����

����� �����

����	

� 	
 � �
 �

����

���

����

��� ��� ��� ��� � ��

�����������

�
�
�
�
��
�
�
�
�
	�
�

����� �����

����� �����

����	

	
 � �
 � �

(a) EQC (b) JQC

Figure 16. Effect of changing parameter σ

Effect of Kernel Parameter µ

Parameter µ gives the relative weight of the structure size. In previous studies,

larger sub-structures are down-weighted compared with smaller ones, to avoid

the over-fitting problem from occurring during learning. This parameter is used

for sequence kernels and tree kernels as well as the proposed kernels.

My aim in this experiment was to check the influence of µ on performance.

This experiment focuses only on σ = 0.2, which gave the best results in the

previous section. Note that the tendency of the influence of µ on the performance

obtained with other σ, including Graph-K (σ = 1.0), is almost the same (See

Figure 16). Figure 17 shows the performance when µ was changed from 0.1 to

0.9 in intervals of 0.2.

As shown in the figure, the performance seems to have one peak point, which

is nearly equal to optimal µ. Moreover, Seq-K and Tree-K also have the same

tendency. This indicates that parameter µ may have one optimal value for a

given set of data for each method. This is a positive result because it means

if we change µ slightly the performance does not change rapidly and there is a

direction for finding optimal µ.

4.5 EXPERIMENTS 77

����

��� �

��� �

��� �

��� ��� ��� ��� ���

�����������

�
�
�
�
��
�
�
�
�
	�
�

��������	

� �

 � �

�
 � � �

����

����

��� �

��� �

��� ��� ��� ��� ���

�����������

�
�
�
�
��
�
�
�
�
	�
�

��������	
��

 � � � ��

�� � ��

(a) EQC (b) JQC

Figure 17. Effect of changing parameter µ

When we consider a larger µ, this supposed over-fitting problem will arise

during SVM training [Collins01, Cancedda03]. On the other hand, with respect

to a small µ, these supposed effective features may lack for training.

Precision when selecting optimal parameters (σ and µ)

As in the actual use of question classification, we somehow need to find the

optimal (or near optimal) value for the parameters µ and σ. To evaluate the

robustness of each parameter simply, we assessed the precision with which the

optimal parameters, σ and µ, are chosen in each iteration. If the same parameter

gives the best performance in each iteration, this means it is very robust.

At first, we tested the precision when selecting the parameter µ. The results

of this set of experiments are shown in Table 15 for EQC and JQC. As shown in

these tables, the selection of the best µ value is achieved in almost every iteration.

More precisely, in EQC, the best value of µ = 0.3 occurs 8 times out of 10, and

in JQC, the best value of µ = 0.5 occurs 6 times out of 10.

I then tested the precision when selecting the parameter σ, and Table 16

shows the results. In EQC, the best value of σ = 0.4 occurs 5 times out of

10, and in JQC, the best value of σ = 0.4 occurs 7 times out of 10. However,

4.5 EXPERIMENTS 78

µ 1 2 3 4 5 6 7 8 9 10

0.1 0.832 0.841 0.842 0.839 0.849 0.849 0.850 0.842 0.829 0.820

0.3 0.829 0.856 0.857 0.844 0.855 0.849 0.852 0.842 0.840 0.820

0.5 0.829 0.856 0.855 0.840 0.842 0.839 0.845 0.835 0.839 0.822

0.7 0.819 0.849 0.847 0.834 0.839 0.830 0.835 0.834 0.827 0.824

0.9 0.812 0.839 0.830 0.825 0.818 0.808 0.807 0.818 0.808 0.800

(a) EQC: σ = 0.4

µ 1 2 3 4 5 6 7 8 9 10

0.1 0.805 0.816 0.790 0.782 0.796 0.790 0.818 0.802 0.792 0.786

0.3 0.819 0.830 0.802 0.802 0.824 0.798 0.826 0.818 0.810 0.800

0.5 0.819 0.826 0.806 0.810 0.824 0.810 0.834 0.822 0.820 0.800

0.7 0.803 0.824 0.802 0.812 0.824 0.808 0.844 0.796 0.822 0.792

0.9 0.783 0.808 0.786 0.804 0.806 0.800 0.832 0.792 0.812 0.784

(b) JQC: σ = 0.2

Table 15. Precision of optimal parameter µ for each iteration

the performance for different σ values is much closer than that for different µ

values, and it seems to be slightly difficult to chose the optimal parameter in

each iteration.

Calculation Speed

I compared the calculation speed for each method. I ran these tests on a “Linux

PC with Opteron 2.4GHz”. Tables 17 and 18 show the average evaluation time of

one iteration in the experiments. In the table, ‘ave. |V (G)|’ indicates the average

number of vertices in the training and test data, and ‘# of SVs.’ represents the

average number of support vectors in a model constructed by SVM training.

As shown in these tables, the proposed method requires a much greater cal-

culation cost than Seq-K and Tree-K. The main reason for this observation lies

in the different numbers of vertices in input objects, since the calculation costs

4.5 EXPERIMENTS 79

σ 1 2 3 4 5 6 7 8 9 10

0.2 0.827 0.856 0.854 0.845 0.850 0.847 0.845 0.845 0.840 0.818

0.4 0.829 0.856 0.857 0.844 0.855 0.849 0.852 0.842 0.840 0.820

0.6 0.824 0.852 0.857 0.844 0.852 0.845 0.845 0.840 0.844 0.824

0.8 0.824 0.849 0.859 0.839 0.854 0.837 0.842 0.842 0.845 0.824

1.0 0.822 0.846 0.855 0.837 0.852 0.830 0.845 0.839 0.834 0.824

(a) EQC: µ = 0.3

σ 1 2 3 4 5 6 7 8 9 10

0.2 0.821 0.830 0.802 0.802 0.816 0.798 0.834 0.816 0.816 0.802

0.4 0.819 0.830 0.802 0.802 0.824 0.798 0.826 0.818 0.810 0.800

0.6 0.819 0.828 0.804 0.800 0.820 0.798 0.824 0.818 0.808 0.798

0.8 0.819 0.830 0.794 0.794 0.820 0.796 0.824 0.812 0.806 0.798

1.0 0.817 0.822 0.792 0.796 0.814 0.796 0.818 0.812 0.810 0.800

(b) JQC: µ = 0.5

Table 16. Precision of optimal parameter σ for each iteration

Table 17. Calculation cost for EQC

Training Test

time (sec.) ave. |V (G)| time (sec.) ave. |V (G)| # of SVs

HSG-K 4112.72 97261.2 493.85 10806.8 24616.8

Graph-K 3852.70 97261.2 455.43 10806.8 24245.0

Tree-K 1442.20 53454.6 150.20 5939.4 30024.0

Seq-K 1397.65 53454.6 143.80 5939.4 29960.1

are obtained as a function of the number of vertices. Since HSG-K and Graph-K

are handling richer information than these kernels, the input objects of HSG-K

and Graph-K usually have a larger number of vertices than those of Seq-K and

Tree-K.

4.6 EXTENSION FOR NATURAL LANGUAGE PROCESSING 80

Table 18. Calculation cost for JQC

Training Test

time (sec.) ave. |V (G)| time (sec.) ave. |V (G)| # of SVs

HSG-K 5394.74 126266.4 586.03 14079.7 14478.5

Graph-K 4512.30 126266.4 513.60 14079.7 14186.3

Tree-K 3339.07 100490.4 329.06 11165.6 16038.7

Seq-K 3039.27 100490.4 321.55 11165.6 16410.7

Additionally, the average number of vertices of HSG-K and Graph-K is nearly

double that of Seq-K and Tree-K in EQC, while that in JQC is about 1.3 times

larger. This observation arises from the size of ‘phrases’. That is, in Japanese,

phrases (bunsetsu) are usually composed of more than two or three words, how-

ever, in English, most phrases are usually composed of one or two words.

Moreover, HSG-K and Graph-K reduced the number of support vectors. Since

the input objects of HSG-K and Graph-K have rich textual information, the SVM

seems to be able to find a better model with a small number of SVs. This fact

indirectly proves the effect of rich information.

4.6 Extension for Natural Language Processing

We sometimes need to modify the kernel computation to adapt it to the target

tasks. This section introduces some extensions of the proposed kernels for use in

NLP.

4.6.1 Weights

With NL data, we sometimes would like to take into account with the weight

factors of labels, vertices, and edges. This is because we have prior knowledge of

the target task that is more important or not important. For example, we may

know the score of tf ∗ idf [Salton83] for each label from large scale documents,

and types of segments such as words, phrases or named entities.

4.6 EXTENSION FOR NATURAL LANGUAGE PROCESSING 81

a:1.0

b :0.8

c :0.3 d :0.4

a:0.9

d :0.2

h :0.5
i :0.3

g :1.0 h :0.2

h :0.2
h :0.6

g :0.9

j:0.7

i :0.1

i :0.2

j:0.1

(l ab e l : w e i g h t)

i :0.4

e.g. a:1.0

G

W ei gh t ed l ab el ed h i er ar c h i c al l y s t r u c t u r ed gr ap h

Figure 18. Example of weighted labeled HS-graph

Let B : V ∪E ∪F ∪Γ → R be a weight mapping for the labels, vertices, edges

and vertical edges.

Definition 7 (Weighted Labeled Hierarchically Structured Graph) A weighted la-

beled hierarchically structured graph can be represented by a 6-tuple, G = (V,E, G, F,A,B).

Figure 18 shows an example of weighted labeled HS-graph.

Therefore, I redefine the sub-kernels of the labels, vertices, edges and vertical

edges, in Equations (45), (46), (47), (48), respectively.

sub-kernels for labels

KΓ(ai, aj) = w(ai)w(aj)δ(ai, aj), (75)

sub-kernels for vertices

KV (vi, vj) = w(vi)w(vj)KΓ(τ(vi), τ(vj)) (76)

sub-kernels for edges

KE(v1
i , v

2
j , v

1
k, v

2
l) =

{
0, if ei,k /∈ E(G1) or ej,l /∈ E(G2),

w(ei,k)w(ej,l)KΓ(τ(ei,k), τ(ej,l)) otherwise
(77)

sub-kernels for vertical edges

KF (v1
i , v

2
j ,G

1
k ,G

2
l) =

{
0, if fi,k /∈ F (G1) or fj,l /∈ F (G2),

w(fi,k)w(fj,l)KΓ(τ(fi,k), τ(fj,l)) otherwise
(78)

where w(x) is a function that returns the corresponding weight of x ∈ V ∪E∪F∪Γ.

4.6 EXTENSION FOR NATURAL LANGUAGE PROCESSING 82

4.6.2 Multiple Edges

Let E ′ ⊆ V ×Γ×V and F ′ ⊆ V ×Γ×G be a set consisting of a directed edge and

a vertical edge allowing plural edges with respect to labels, respectively. Then, a

weighted labeled hierarchically structured graph with multiple edges can be defined

by a 6-tuple, G = (V,E ′, G, F ′,A,B).

I only need to redefine the sub-kernels for the edges and vertical edges as

follows:

sub-kernels for multiple edges

KE′(v1
i , v

2
j , v

1
k, v

2
l) =





0, if ei,k /∈ E ′(G1) or ej,l /∈ E ′(G2),∑

ei,k∈E′(G1)

∑

ej,l∈E′(G2)

w(ei,k)w(ej,l)KΓ(τ(ei,k), τ(ej,l))

otherwise

(79)

sub-kernels for multiple vertical edges

KF (v1
i , v

2
j ,G

1
k ,G

2
l) =





0, if fi,k /∈ F ′(G1) or fj,l /∈ F ′(G2),∑

fi,k∈F ′(G1)

∑

fj,l∈F ′(G2)

w(fi,k)w(fj,l)KΓ(τ(fi,k), τ(fj,l))

otherwise

(80)

4.6.3 Vertex Skip (Virtual edge)

When we apply kernels to NLP tasks, we must sometimes deal not only with

exact structural matching but also with soft structural matching frameworks.

This is because text can have the same contextual meaning even if the structure

is slightly different.

To overcome this issue, I introduce the vertex skip framework during the

matching of hi-walks in kernel computation. This framework achieves soft struc-

ture matching automatically during kernel computation.

There are several possible ways to realize a vertex skip framework. In this

section, I propose a method that adds virtual edges thus allowing us to skip

vertices. Virtual edges are created between every pair of vertices only if the edges

of the path between the vertices have the same label. The label of a virtual edge

4.6 EXTENSION FOR NATURAL LANGUAGE PROCESSING 83

g:1.0 g:0.2
g:0.9

i :0.4
i :0.3

v1

v2

v3

v4

v2

v3

g:0.2 ��

g:0.18 ��
g:0.18 ��2

g:1.0

g:0.2

g:0.9
i :0.4

i :0.3

:virtual edge

v2 v3

v4

v4

v1

v1
g:0.9

g:0.2

g:1.0
g:0.2

v2 v3 v4
g:0.9

g:0.2
v3 v4 v1

g:1.0

()
()

()

Figure 19. Examples of a vertex skip framework

Comparison methods Performance Parameters

acc. S.D. λ µ σ increase

HSG-K 0.847 0.0105 0.3 0.7 0.2 +0.003

Graph-K 0.842 0.0062 0.3 0.7 - +0.004

Tree-K 0.823 0.0144 0.3 0.3 - +0.001

Seq-K 0.831 0.0131 0.3 0.3 - +0.000

Table 19. Effect of vertex skip on performance (EQC)

is the same as that of the corresponding edge and the weight is the multiplied

weight of the corresponding edge in the path. Moreover, I introduce a decay

function ΛV (v)(0 < ΛV (v) ≤ 1), which represents the cost of skipping vertex v,

that is, this decay function is multiplied by the weight of the virtual edge.

Figure 19 shows how to form virtual edges. Note that to realize the vertex

skip framework, we need a framework for handling weights and multiple edges.

Then, we simply tested the effect of the vertex skip framework. Tables 19 and

20 show the best results under the vertex skip λ = {0.1, 0.3, 0.5, 0.7, 0.9} with the

combination of parameters µ = {0.1, 0.3, 0.5, 0.7, 0.9} and µ = {0.2, 0.4, 0.6, 0.8, 1.0}.

As shown in these tables, the performance can be slightly improved by using

vertex skips. The reason that the different µ were selected with HSG-K and

4.7 RELATED WORK 84

Comparison methods Performance Parameters

acc. S.D. λ µ σ increase

HSG-K 0.818 0.0146 0.3 0.9 0.2 +0.001

Graph-K 0.810 0.0141 0.3 0.7 - +0.001

Tree-K 0.804 0.0131 0.3 0.3 - +0.000

Seq-K 0.805 0.0119 0.3 0.5 - +0.002

Table 20. Effect of vertex skip on performance (JQC)

Graph-K is following. Since we handled virtual edges for vertex skips, the total

number of the edges increased. Then, according to Equation (68), the weight of

each edge decreased. As a result, a larger µ was selected with the vertex skip

framework.

4.7 Related Work

Since natural language data take the form of sequences of words or parsed trees,

sequence kernels [Lodhi02, Cancedda03] and tree kernels [Collins01, Kashima02],

have been developed in the NLP field and shown to offer excellent results. Other

examples in the bio-informatics field are sequence kernels [Jaakkola00, Leslie04]

and graph kernels [Kashima03] that have been proposed mainly for classifying

proteins or chemical compounds. Another type of graph kernel [Gärtner03] has

also been introduced in the machine learning field. We have presented one kernel

for HS-graphs based on a hi-label sequence. Therefore, this chapter is strongly

related to these previous studies that designed kernels on discrete structures, es-

pecially graph kernels based on random walks [Kashima03, Gärtner03]. However,

this chapter focused on data (text) representation for tasks such NLP appli-

cation areas as question answering, text summarization and text classification.

With these tasks, richer types of information within texts, such as syntactic and

semantic information, are required if we are to obtain improved performance.

Moreover, the experiments proved that the relation between different levels of

segments provides informative clues for solving NLP tasks. However, integrated

4.8 SUMMARY 85

syntactic and semantic information are formed by very complex structures that

cannot be written in simple structures, such as sequences, trees and standard

graphs. Thus, HS-graph kernels is a better approach than standard graph ker-

nels for NLP tasks.

If we remove all the subgraphs and vertical edges from HS-graphs, that is,

they become standard labeled graphs, the proposed kernels calculate in the same

way as graph kernels. More precisely, parameter σ in Equation (71) gives the

relative ratio for evaluating the matching of sub-graphs for connected vertices.

If we set σ = 1 for HS-graph kernels, that is, it never evaluates the effect of

sub-graphs, then it becomes equivalent to evaluating standard graph kernels. We

can also say that graph kernels are one special example of the proposed kernels,

if the input object is constructed in standard graphs. Therefore, my method is a

more generalized graph kernel framework.

In terms of data representation ability, sequences and trees are one special

class of graphs. The proposed kernels generalize more than previously introduced

discrete kernels, that is, sequence, tree and graph kernels. The proposed kernel

can accept all structures of sequences, trees, and graphs.

4.8 Summary

This chapter proposed HS-graph kernels, which can handle integrated syntactic

and semantic information present within texts. The proposed method provides a

very generalized framework for handling natural language data by using a frame-

work of discrete kernels. I evaluated the performance of HS-graph kernels with the

English and Japanese question classification tasks, which are the real NLP tasks.

The experiments showed that HS-graph kernels provided better performance than

sequence, tree and graph kernels, and the baseline method bag-of-words kernels,

which have no frameworks with which to handle all the linguistic information

inherent in texts. Therefore, this result showed that the richer structural infor-

mation that reflects syntactic and semantic information within text can provide

substantial improvements for NLP tasks. Additionally, the experiments showed

that the proposed method is a language independent method: both English and

Japanese tasks were improved significantly in the same framework.

5 STATISTICAL FEATURE MINING FOR CONVOLUTION KERNELS 86

5. Statistical Feature Mining for Convolution Ker-

nels

5.1 Introduction

Over the past few years, many machine learning methods have been successfully

applied to tasks in natural language processing (NLP). In particular, state-of-the-

art performance can be achieved with kernel methods, such as Support Vector

Machine [Cortes95]. Examples include text categorization [Joachims98], chunk-

ing [Kudo02] and parsing [Collins01].

Another feature of this kernel methodology is that it not only provide high

accuracy but also allows us to design a kernel function suited to modeling the task

at hand. Since natural language data take the form of sequences of words, and

are generally analyzed using discrete structures, such as trees (parsed trees) and

graphs (relational graphs), discrete kernels, such as sequence kernels [Lodhi02],

tree kernels [Collins01], and graph kernels [Suzuki03a], have been shown to offer

excellent results.

These discrete kernels are related to convolution kernels [Haussler99], which

provides the concept of kernels over discrete structures. Convolution kernels allow

us to deal with structural features without explicitly representing the feature

vectors from the input object. That is, convolution kernels are well suited to

NLP tasks in terms of both accuracy and concept.

Unfortunately, experiments have shown that in some cases there is a critical

issue with convolution kernels, especially in NLP tasks [Collins01, Cancedda03,

Suzuki03b]. That is, since natural language data contain many types of labels,

NLP tasks usually deal with extremely high dimension and sparse feature space.

As a result, it is difficult ot train efficiently.

To solve this problem, we generally eliminate large sub-structures from the set

of features used. However, the main reason for employing convolution kernels is

that we aim to use structural features easily and efficiently. If their use is limited

to only very small structures, this negates the advantages of using convolution

kernels.

5.2 PROBLEM OF APPLYING CONVOLUTION KERNELS TO NLP TASKS 87

This chapter discusses this issue of convolution kernels, focusing particularly

on sequence and tree kernels, and proposes a new method based on a statistical

significance test. The proposed method deals only with those features that are

statistically significant to given data (tasks). This means large significant sub-

structures can be used without over-fitting. Moreover, by using sub-structure

mining algorithms, the proposed method can be executed efficiently by embedding

it in an original kernel calculation process, which is defined by the dynamic-

programming (DP) based calculation.

Section 5.2 discusses one problem related to convolution kernels, the main

topic of this chapter, and introduces some conventional methods for solving this

problem. In Section 5.3, I propose a new approach based on statistical feature

selection to offset the issue of convolution kernels using an example consisting of

sequence kernels. Section 5.4 compares the performance of conventional methods

with that of the proposed method by using several kinds of semantic classification

tasks. The experimental results clarify the advantages of the proposed method.

5.2 Problem of Applying Convolution Kernels to NLP tasks

This section discusses an issue that arises when applying convolution kernels to

NLP tasks.

According to the original definition of convolution kernels, all the sub-structures

are enumerated and calculated for the kernels (see Figure 2 in Section 2.2.1). The

number of sub-structures in an input object usually becomes exponential against

the input object size. Moreover, the number of labels |Σ| (see definition of se-

quence and tree kernels in Sections 2.2.1 and 2.2.2) is generally very large. In

some cases, even more than 10,000 sub-structures are enumerated, since words

are treated as labels. As a result, the dimension of the feature space becomes

extremely high, and most kernel values K(X,Y) are very small compared to the

kernel value of the object itself, K(X,X). In this situation, it is difficult to train

the convolution kernel approach effectively, and it will behave in accordance with

the nearest neighbor rule. This means that we obtain a result that is very precise

but with very low recall. This issue is described in detail in [Collins01].

To avoid this, most conventional methods use an approach that involves

5.3 STATISTICAL FEATURE MINING 88

smoothing the kernel values or eliminating sub-structures from the feature set

based on the sub-structure size.

For sequence kernels, [Cancedda03] use a feature elimination method based

on the size of sub-sequence n. This means that the kernel calculation deals only

with those sub-sequences whose length is n or less. In addition to the sequence

kernel, [Collins01] proposed a method that restricts the features based on sub-

tree depth for tree kernels. These methods seem to work well on the surface,

however, good results can only be achieved when n is very small, i.e. n = 2 or 3.

For example, n = 3 showed the best performance for parsing in the experimental

results reported by [Collins01], and n = 2 showed the best performance for the

text classification task reported by [Cancedda03]. The main reason for using

convolution kernels is that they allow us to employ structural features simply

and efficiently. When only small sized sub-structures are used (i.e. n = 2), the

full benefits of convolution kernels are missed.

Moreover, these results do not mean that larger sized sub-structures are use-

less. In some cases we already know that larger sub-structures are significant

features as regards solving the target problem. That is, these significant larger

sub-structures, which the conventional methods cannot deal with efficiently, offer

the possibility of further improving the performance.

The aim of the work described in this chapter is to make it possible to use

any significant sub-structure efficiently, regardless of its size, to solve NLP tasks.

5.3 Statistical Feature Mining

This section proposes a new approach to feature selection, which is based on a

statistical significant test, in contrast to the conventional methods, which use

sub-structure size.

For simplicity’s sake, I have restricted the discussion to the two-class (positive

and negative) supervised classification problem. This approach tests the statisti-

cal deviation of all sub-structures in the training samples between the appearance

of positive samples and negative samples, and then, selects only sub-structures

that are larger than a certain threshold τ as features. This allows us to select

only the statistically significant sub-structures.

5.3 STATISTICAL FEATURE MINING 89

Table 21. Contingency table and notation for the chi-squared value

c c̄
∑

row

u Ouc Ouc̄ Ou

ū Oūc Oūc̄ Oū
∑

column Oc Oc̄ N

This approach, which uses a statistical metric to select features, is quite nat-

ural. I note, however, that kernels are calculated using the DP algorithm. There-

fore, it is not clear how to calculate kernels efficiently with a statistical feature

selection method. First, I briefly explain statistical metric, the chi-squared (χ2)

value, and provide an idea of how to select significant features. I then describe a

method for embedding statistical feature selection into kernel calculation.

This chapter uses the notations defined in chapter 2.

5.3.1 Statistical Metric

There are many kinds of statistical metrics, including the chi-squared value, the

correlation coefficient and mutual information. In this dissertation, I explain the

proposed method by using the chi-squared (χ2) value as a statistical metric.

First, I briefly explain how to calculate the χ2 value by referring to Table 21. c

and c̄ represent the names of the positive class and the negative class, respectively.

Oij, where i ∈ {u, ū} and j ∈ {c, c̄}, represents the number of samples in each

case. Ouc̄, for instance, represents the number of u that appeared in c̄. Let N be

the total number of training samples. Since N and Oc are constant for training

samples, χ2 can be obtained as a function of Ou and Ouc. The χ2 value expresses

the normalized deviation of the observation from the expectation:

χ2(Ou, Ouc) =
∑

i∈{u,ū},j∈{c,c̄}

(Oij − Eij)
2

Eij

, (81)

where

Eij = n ·
Oi

n
·
Oj

n
, (82)

5.3 STATISTICAL FEATURE MINING 90

which represents the expectation. I simply represent χ2(Ou, Ouc) as χ2(u).

5.3.2 Feature Selection Criterion

The basic idea of feature selection is quite natural. First, I decide the threshold τ

of the statistical metric, that is, in this case, the threshold of the χ2 value. In the

kernel calculation with the statistical feature selection, if χ2(u) < τ holds, that

is, u is not statistically significant, then u is eliminated from the features, and the

value of u is presumed to be 0 for the kernel value. Therefore, the sequence kernel

and the tree kernel with feature selection (FSSK and FSTK) can be defined as

follows:

KFSSK(S1, S2) =
∑

τ≤χ2(u)|u∈Σ∗

∑

i:u=S1[i]

∑

j:u=S2[j]

µ|u|µ|u|λζ(i)λζ(j), (83)

KTK(T 1, T 2) =
∑

τ≤χ2(u)|u∈Σ∗

∑

i:u=T 1[i]

∑

j:u=T 2[j]

µ|u|µ|u|λζ(i)λζ(j). (84)

The difference from their original kernels, namely Equations (20) and (32), is

simply the condition of the first summation, which is τ ≤ χ2(u).

Figures 20 and 21,respectively, show simple examples of what FSSK and

FSTK calculate as regards the kernel value.

5.3.3 Efficient Feature Selection Algorithm

The basic idea of using a statistical metric to select features is quite natural, but

it is not a very attractive approach. Note, however, that although kernels are

calculated using the DP technique, it is not clear how to calculate that kernels

efficiently with a statistical feature selection. It is computationally infeasible to

calculate χ2(u) for all possible u with a naive exhaustive method. In the approach,

I take advantage of sub-structure mining algorithms in order to calculate χ2(u)

efficiently and to embed statistical feature selection in the original DP-based

kernel calculation.

Before explaining these algorithms, I introduce the upper bound of the χ2

value. The upper bound of the χ2 value of uv, which is the concatenation of

5.3 STATISTICAL FEATURE MINING 91

1S µ

()2 uχ 0.1 0.5 1.2 1.5 0.9 0.8

1 a_b_cS = 2 a_b_a_cS =

prod.

0

1.0τ =t h re s h ol d

2.5

u

()2 4 2 64 1 2µ µ λ λ µ λ+ + + +k e rn e l v al u e

k e rn e l v al u e u n de r t h e f e at u re s e l e ct i on

i n pu t s e q u e n ce s

s u b-s e q u e n ce s
(a, b, c, a_a, a_b, a_c, b_a, b_c, a_a_c, a_b_a, a_b_c, a_a_c, b_a_c, a_b_a_c)

µ µ 2µ 2µ λ 0 2µ 3µ

2S µ µ2µ 2µ λ 2µ ()2 1µ λ+ 2µ 2µ λ 3µ λ 3µ λ3µ 3µ λ 3µ 4µ

22µ 2µ 2µ 0 4µ ()4 2µ λ λ+ 0 04µ λ 0 0 0 06µ λ

0 0 0 0 0

(= primitive features)

pro d . 22µ 2µ 2µ 0 4µ ()4 2µ λ λ+ 0 04µ λ 0 0 0 06µ λ

2µ0 4µ 0 0 6µ λ0
2 4 6µ µ µ λ+ +

Figure 20. Example of statistical feature selection for sequence kernels

sequences u and v, can be defined by the value of u [Morishita00]:

χ2(uv) ≤ max
(
χ2(Ouc, Ouc), χ

2(Ou − Ouc, 0)
)

= χ̂2(u).

This inequality indicates that if χ̂2(u) < τ holds, all sub-sequences uv can be

eliminated from the features, since no sub-sequence uv can be τ ≤ χ2(uv).

5.3.4 Sequence Kernels with Statistical Feature Mining

Sequence kernels with the proposed feature selection method are defined in the

following equations.

KFSSK(S1, S2) =

|S1|∑

i=1

|S2|∑

j=1

Hn(S1
i , S

2
j) (85)

5.3 STATISTICAL FEATURE MINING 92

1S µ

prod.

u

()2 4 2 3 63 1µ µ λ λ λ µ λ+ + + + +k e rn e l v a l u e

i n pu t t re e s

s u b -t re e s

µ 2µ 3µ

2S

2µ λ 2µ

2µ 2µ 2µ 4µ 0 0 0 0 0

(= pri m i t i v e f e a t u re s)

1T 2Ta
b c

a

a
b c

a

a
b
a

ba b c
a

c
a

c
a

b c
a

b c
a

a
a

a
b

a
b

a
b

c
b

c
c

a
c

a
a

b a
a

b a
b

c

a
b

c

a
c

a

a
c

a

a
b

a

a
b

a

a a
b c
a

a
b c
a

b
a c
a

b
a c
aa c

b
a c
b

a c
b
a

a c
b
a

a c
b
a

a
a c
b
a

a
µ 2µ

µ µ 2µ ()3 1µ λ+()2 2µ λ λ+ ()2 1µ λ+µ 2µ λ 2µ

c
a

b
c

a

b
c

a

b
a

c
a

b
a

3µ λ
3µ

3µ

()3 1µ λ+ 3µ 3µ λ

4µ

4µ 4µ 5µ

ca
b
a

a
ca

b
a

a

()4 2 3µ λ λ+ 4µ λ

0 0

0

0 0

0

0

0

0 0

0

3µ λ

0 0

0

0

0

0

0 0

00 0 06µ λ

1.0τ =threshold

p rod. 2µ 2µ 2µ 4µ 0 0 0 0 0()4 2 3µ λ λ+ 4µ λ 0 0 0 0 0 00 0 06µ λ

()2 uχ 0.6 0.5 1.2 1.5 0.9 1.13.9
2µ 4µ()4 2 3µ λ λ+ 6µ λ000

k ern el v a lu e u n der the f ea tu re selec ti on ()2 4 2 3 61µ µ λ λ µ λ+ + + +

Figure 21. Example of statistical feature selection for tree kernels

Let Hn(S1
i , S

2
j) be a function that returns the sum value of all statistically signif-

icant common sub-sequences u that satisfy s1
i = s2

j and |u| ≤ n.

Hn(S1
i , S

2
j) =

∑

u∈Γn(S1
i ,S2

j)

Ju(S
1
i , S

2
j), (86)

where Γn(S1
i , S

2
j) represents a set of sub-sequences, where |u| ≤ n and that satisfy

τ ≤ χ2(u). The details of Γn(S1
i , S

2
j) are shown in Equation (91).

Then, let Ju(S
1
i , S

2
j), J

′
u(S

1
i , S

2
j) and J ′′

u (S1
i , S

2
j) be functions that calculate

the value of the common sub-sequences between S1
i and S2

j recursively.

Juw(S1
i , S

2
j) =

{
J ′

u(S
1
i , S

2
j) · Iw(s1

i , s
2
j) if uw ∈ Γ̂n(S1

i , S
2
j),

0 otherwise,
(87)

where

Iw(s1
i , s

2
j) = µ · δ(s1

i , s
2
j). (88)

5.3 STATISTICAL FEATURE MINING 93

δ(s1
i , s

2
j) is defined as an indicator function that returns 1 iff s1

i = w and s2
j = w,

and 0 otherwise. Γ̂n(S1
i , S

2
j) is a set of sub-sequences, where |u| ≤ n, that are

candidates for significant sub-sequences. The details of Γ̂n(S1
i , S

2
j) are shown in

Equation (92).

I introduce a special label Λ to represent an “empty sequence”, and define

Λw = w and |Λw| = 1. Then, J ′(S1
i , S

2
j) and J ′′(S1

i , S
2
j) are introduced to

calculate the common gapped sub-sequences between S1
i and S2

j .

J ′
u(S

1
i , S

2
j) =





1 if u = Λ,

0 if j = 0 and u 6= Λ,

λJ ′
u(S

1
i , S

2
j−1) + J ′′

u (S1
i , S

2
j−1) otherwise,

(89)

J ′′
u (S1

i , S
2
j) =

{
0 if i = 0,

λJ ′′
u (S1

i−1, S
2
j) + Ju(S

1
i−1, S

2
j) otherwise.

(90)

Equations (87), (89) and (90) are almost the same as Equations (28), (29)

and (30), respectively. The only difference is the selection of the features by

Γ̂n(S1
i , S

2
j) in the condition of Equation (87).

The following equations are introduced to select a set of significant sub-

sequences. Γn(S1
i , S

2
j) and Γ̂n(S1

i , S
2
j), which are described above, are defined

as follows:

Γn(S1
i , S

2
j) = {u | u ∈ Γ̂n(S1

i , S
2
j), τ ≤ χ2(u)} (91)

Γ̂n(S1
i , S

2
j) =

{
Ψn(Γ̂′

n(S1
i , S

2
j), s

1
i) ∪ {s1

i } if s1
i = s2

j ,

∅ otherwise,
(92)

where Ψn(F,w) = {uw | u ∈ F, τ ≤ χ̂2(uw), |uw| ≤ n}, and F represents a set of

sub-sequences. Note that Γn(S1
i , S

2
j) and Γ̂n(S1

i , S
2
j) have only sub-sequences u

that satisfy τ ≤ χ2(uw) and τ ≤ χ̂2(uw), respectively, iff s1
i = s2

j and |uw| ≤ n;

otherwise they become empty sets.

The following two equations are introduced to calculate Γn(S1
i , S

2
j) and Γ̂n(S1

i , S
2
j)

recursively.

Γ̂′
n(S1

i , S
2
j) =

{
∅ if j = 0,

Γ̂′
n(S1

i , S
2
j−1) ∪ Γ̂′′

n(S1
i , S

2
j−1) otherwise,

(93)

5.3 STATISTICAL FEATURE MINING 94

Γ̂′′
n(S1

i , S
2
j) =

{
∅ if i = 0 ,

Γ̂′′
n(S1

i−1, S
2
j) ∪ Γ̂n(S1

i−1, S
2
j) otherwise.

(94)

5.3.5 Implementation

In the implementation, I take advantage of sub-structure mining algorithms,

specifically a sequential pattern mining technique, PrefixSpan [Pei01], and a sta-

tistical metric pruning (SMP) method, Apriori SMP [Morishita00], in order to

calculate χ2(u) efficiently. By using PrefixSpan with the SMP algorithm, χ2(uw)

and χ̂2(uw), where uw represents the concatenation of a sequence u and a label

w, I can perform a calculation by using a set of pointers of u against data and

the number of appearances of w in the suffix of the pointers. I note that the set

of pointers of uw can be simply obtained from a previous search of u since uw

is simply the concatenation of u and w. In other words, uw will never appear

if u does not appear. Counting the number of w appearing in the suffix of u is

equivalent to counting the number of uw.

1. τ ≤ χ2(uw)

2. τ > χ2(uw), τ > χ̂2(uw)

3. τ > χ2(uw), τ ≤ χ̂2(uw)

With condition 1, sub-sequence uw is selected as a significant feature and stored

in Γn(S1
i , S

2
j) and Γ̂n(S1

i , S
2
j). With condition 2, uw is pruned, that is, all uwv are

pruned from the search space of PrefixSpan. With condition 3, uw is not a sig-

nificant feature, however, uwv can be significant, thus uw is stored in Γ̂n(S1
i , S

2
j)

and the search is continued to uw. Figure 22 shows an example of searching

and pruning the sub-sequences to select significant features by using PrefixSpan

with the SMP algorithm, and the internal results represented by a TRIE data

structure.

There are certain techniques that make it possible to calculate kernels faster

in the implementation. For example, since χ2(u) and χ̂2(u) are constant against

the same data, I only have to calculate them once. I store the internal search

results of PrefixSpan with the SMP algorithm in a TRIE structure. After that,

5.3 STATISTICAL FEATURE MINING 95

a b c cd b c ab a ca cd a b d

a b c cd b cb a ca cd a b d

⊥

a b c d

b c

1.0τ =

b:c:d:

+ 1-1+ 1-1-1

au =

w =

()2 uwχ
()2ˆ uwχ

T R I E r e p r e s e n t at i o n

x y

+ 1-1+ 1-1+ 1

abu =

d

c

…

w

231
121

+ 1-1+ 1-1-1

class t r ai n i n g d at a

su f f i x

c:d:w =
x y
11 10

5.0
0.0

5.0
0.8

5.0
0.8

2 .2
2 .2

1 .9
0.1

1 .9
1.9

0.8
0.8

5.0
2 .2

a:b:c:d:

+ 1-1+ 1-1-1

u = Λ

w =

x y
5442

2220

c

d

1.9
1 .9

0.8
0.8

…

a b c cd b c ab a ca cd a b d

su f f i x

su f f i x
a b c cd b cb a ca cd a b d5N =

2M =

2

3

1

4

5

se ar ch o r d e r

p r u n e d

p r u n e d

Figure 22. Example of searching and pruning sub-sequences by PrefixSpan with

SMP algorithm

I use that results in TRIE instead of calculating χ2(u) again when the kernel

finds the same sub-sequence. Moreover, I introduce a transposed index for the

fast evaluation of χ2(u) and χ̂2(u). By using this approach, I only have to consult

that index of w to evaluate whether or not any uw are significant features.

Equations (86) to (90) can be calculated in the same way as the original DP

based kernel calculation. The recursive set operations of Equations (92) to (94)

can be executed in the same way as Equations (87) to (90). Moreover, calculating

χ2(u) and χ̂2(u) with sub-structure mining algorithms allows us to calculate the

same order of the DP based kernel calculation. As a result, statistical feature

selection can be embedded in the original sequence kernel calculation based on

the DP.

5.3 STATISTICAL FEATURE MINING 96

a
b c

d d a
d a

(((d d (d a) a) b c) a)

c
b a

d
d

b

a

(((d d (d a) a) b c) a)

b

1T 2T

(((d b) b d ((d a) b) a) c)
3 3 4 4 3 2 2 1d d d a a b c a 3 3 2 2 4 4 2 2 1d b b d d a b a c

(((d b) b d ((d a) b) a) c)

0 - 1 - 2d b a

a

d

d
b

s u b-t r e e s :

postorder tra v ersa l :

1 2

3 4

5

6 7

8

3c
l a b el
rel a ti on i n dex

ad
b (((d d (d a) a) b c) a) (((d b) b d ((d a) b) a) c)

0 0 -1d a b

stri n g en c odi n g :

Figure 23. Example of string encoding for trees under the postorder traversal

5.3.6 Tree Kernels with Statistical Feature Mining

The famous tree mining algorithm [Zaki02] cannot be applied as a feature se-

lection method for tree kernels, because the tree mining algorithm executes a

preorder search of trees while tree kernels calculate the kernel value in postorder.

Thus, I take advantage of the string (sequence) encoding method for trees. In par-

ticular, I enumerate the nodes (labels) under the postorder traversal. Figure 23

shows an example of string encoding for trees under the postorder traversal. Each

label is converted with a certain number, which we call a ‘relation index’, written

in subscript of each label as shown in Figure 23. These numbers indicate the

depths of the node. However, if we consider sub-tree u, the number is calculated

from the leftmost node in u. Then, I deal with each label with a relation index

as a new label. That is, t1i = t2j means that both the label and relation index of

5.3 STATISTICAL FEATURE MINING 97

t1i and t2j are the same. For example, d0b0a−1 and d0b−1a−2 are different.

After converting the tree to the postorder node sequence, the small extension

of the FSSK, is used for the FSTK. Then, the proposed method for tree kernels

is defined in the following equations.

KFSTK(T 1, T 2) =

|T 1|∑

i=1

|T 2|∑

j=1

Hm(T 1
i , T 2

j) (95)

i and j represent indexes of nodes in the postorder transversal of T 1 and T 2,

respectively.

After that, I only show the extension parts of equations in the FSSK, that is,

Γn(T 1
i , T 2

j) and Ψn(F,w):

Γn(T 1
i , T 2

j) = {u | u ∈ Γ̂n(T 1
i , T 2

j), τ ≤ χ2(u), ι(u|u|) < min
i=1...|u−1|

ι(ui)}, (96)

Ψn(F,w) = {uw | u ∈ F, τ ≤ χ̂2(uw), η(uw) ≤ n, ι(u|u|) ≤ ι(w) + 1}, (97)

where ι(w) returns the relation index of w, and η(u) returns the depth of u,

which is written as η(u) = maxi=1...|u| ι(ui)−minj=1...|u| ι(uj). For example, if u =

d0b−1a−2, then u2 = b−1, ι(u2) = −1 and η(u) = 2. ι(u|u|) < mini=1...|u−1| ι(ui)

is realized to check if u is a complete sub-tree. That is, d0b−1a0 is not a subtree,

because d0b−1 and a0 are not connected. Since the tree kernel does not have

parameter λ, I calculate J ′
u(S

1
i , S

2
j) and J ′′

u (S1
i , S

2
j) as λ = 1.

I note that if we set τ = 0, which means that all features are dealt with by

kernel calculation, we can obtain exactly the same kernel value as the original

tree kernel.

5.3.7 Properties

The proposed method has several important advantages over conventional meth-

ods.

First, the feature selection criterion is based on a statistical measure, so sta-

tistically significant features are automatically selected.

5.4 EXPERIMENTS 98

Second, according to Equations (85) to (93), the proposed method can be

embedded in an original kernel calculation process, which allows us to use the

same calculation procedure as the conventional methods. The only difference

between the original sequence kernels and the proposed method is that the latter

calculates a statistical metric χ2(u) by using a sub-structure mining algorithm in

the kernel calculation.

The kernel calculation of the proposed method requires a longer training time

due to the feature selection. However, the selected sub-structures are represented

as a TRIE data structure. This means the fast calculation technique proposed

in [Kudo03] can be applied to the proposed method, which yields the classification

faster. For applications, classification speed is much more important than training

speed. This is the third advantage of the proposed method.

5.4 Experiments

The goal of the experiments described in this chapter is to clarify the effect of

statistical feature selection. To accomplish this goal, I compare the performance

of the proposed feature selection method and a conventional approach.

This comparison is performed using the following actual NLP tasks;

• modality identification (MOD) (Japanese)

• subjectivity classification (SUB) (English)

These tasks are defined as a sentiment classification task, which requires richer

structural information for improved performance (See Chapter 2).

5.4.1 Data Set

The following describes the data used in the experiments. Table 22 summarizes

the data set.

5.4 EXPERIMENTS 99

Table 22. Data set for the experiments

Modality Subjectivity

of samples 2095 10000

of classes 4 2

of BOW 5995 23435

Modality Identification

The data set was created from articles taken from Mainichi newspaper and one of

three modality tags, ‘opinion’, ‘assertion’, ‘description’ and ‘other’ were applied

to each sentence. These modality tags follow [Tamura96]. The data size was

2,095 sentences consisting of 195 sentences of ‘opinion’, 627 of ‘assertion’, 1,237

of ‘description’, and 36 of ‘other’.

Subjectivity

This data set was automatically mined from movie-reviews on the Web [Pang04]7 .

It contains 5,000 subjective and 5,000 objective sentences about movies. That is,

there are two target classes: ‘subjective’ and ‘objective’.

5.4.2 Comparison Methods

Mainly, I compared the performance of sequence kernels (SK) and sequence ker-

nels with the proposed feature selection (FSSK). In the same way, I compared

the performance of tree kernels (TK) and tree kernels with the proposed fea-

ture selection (FSTK). Moreover, I also evaluated bag-of-words (BOW) kernel

(BOW-K)[Joachims98] as a baseline method.

There are certain tunable parameters for each method. Parameter n repre-

sents the threshold associated with the size of the sub-structure. This means each

comparison method only deals with the sub-structures whose size is n or less for

7 This data is available at http://www.cs.cornell.edu/people/pabo/movie-review-data/.

5.4 EXPERIMENTS 100

the features. In the case of BOW-K, n indicates the degree of the polynomial

kernels. In the case of SK, TK, FSSK and FSTK, n represents the threshold of

the number of labels in the primitive sub-structures. I used n = {1, 2, 3, 4} for

BOW-K, and n = {2, 3, 4,∞} for SK, TK, FSSK and FSTK, while n = 1 of SK

and TK is exactly the same as BOW-K. Note that n = ∞ means all possible

sub-sequences are used.

The decay factor for the sub-structure size µ (See Chapter 2.2.1) is selected

from µ = {0.1, 0.3, 0.5, 0.7, 0.9} for the conventional SK and TK. Note that µ =

1.0 indicates that there is no feature weighting.

Then, in the case of the proposed method, there is a threshold of feature selec-

tion, τ , as I previously explained in Section 5.3. I used τ = {1.64, 2.71, 3.84, 6.64}

for each experiment. These numbers come from the χ2 significance test, namely

0.1, 0.05, 0.01, 0.005 % levels of significance in the χ2 distribution with one degree

of freedom, respectively.

5.4.3 Performance Evaluation Methods

Basically, I evaluated the overall performance using the average accuracy of a

ten fold cross validation. I used Support Vector Machine (SVM) [Vapnik95] as

a kernel-based machine learning algorithm to learn a decision function by using

nine sets. I set a soft margin parameter for SVM, C = 1000 in Equation (7).

While the modality identification is a multi-class classification task and SVM

is a binary classifier, I employed the ‘one vs. rest model’ to determine a final

estimated label. Finally I calculated “label accuracy”, which is the accuracy of

estimated labels compared with the correct labels of each given text.

I iterated the above procedure ten times while changing the set of test data.

Finally, I evaluated the performance by using the average label accuracy of the

evaluation. Additionally, I tested the difference in average label accuracy by

using a paired Wilcoxon signed rank test, which is a non-parametric statistical

significance test.

5.4 EXPERIMENTS 101

Table 23. The best MOD results with each comparison method

Performances Parameters Statistical test

acc. S.D. n µ α p < {0.05, 0.01, 0.005}

FSTK 0.856 0.0228 (∞) (1.0) 0.05

TK 0.844 0.0200 (∞) 0.5 - *

0.850 0.0200 2 (1.0) - *

FSSK 0.865 0.0203 (∞) (1.0) 0.05

SK 0.847 0.0108 (∞) 0.7 - **

0.858 0.0118 3 (1.0) - *

BOW-K 0.730 0.0304 1

Table 24. The best SUB results with each comparison method

Performances Parameters Statistical test

acc. S.D. n µ α p < {0.05, 0.01, 0.005}

FSTK 0.918 0.0142 (∞) (1.0) 0.05

TK 0.913 0.0123 (∞) 0.5 - -

0.904 0.0131 2 (1.0) - *

FSSK 0.912 0.0081 (∞) (1.0) 0.05

SK 0.917 0.0082 (∞) 0.7 - -

0.917 0.0068 2 (1.0) - -

BOW-K 0.902 0.1005 2

5.4.4 Results and Discussion

Tables 23 and 24, respectively, show the best modality identification (MOD) and

subjectivity identification (SUB) results obtained with each comparison method,

respectively. Note that n in each table indicates the threshold of the sub-structure

size.

Moreover, Figures 24 and 25 show the performance against sub-structure size.

5.4 EXPERIMENTS 102

���

����

����

����

� � � �
���������	�
	���
���������	����	�

��
�
�
��
�
�
�
�
��
�
	

��������	�
�

���� ��	
�

��

����

����

����

� � � 	

���������	�
	���
���������	����	�
��
�
�
��
�
�
�
�
��
�
	

����������	

���� ����

��

(a) tree kernels (b) sequence kernels

Figure 24. Effect of structure size with each method (MOD)

����

���

����

����

� � � 	

���������	�
	���
���������	�����	�

��
�
�
��
�
�
�
�
��
�
	

��������	�
�

���� ��	
 �

��

���

����

����

� � � �

���������	�
	���
���������	����	�

��
�
�
��
�
�
�
�
��
�
	

����������	

� ��� ���	

��

(a) tree kernels (b) sequence kernels

Figure 25. Effect of structure size with each method (SUB)

5.4 EXPERIMENTS 103

Effect of Structural Information

In general, according to the results of BOW-K and SK or TK, we can say that the

use of structural features can improve the performance of sentiment classification

tasks that require the details of the contents to perform well. In fact, under the

Wilcoxon signed rank test, there are significant differences (p < 0.01) between the

best performance of BOW-K and that of SK, and also between that of BOW-K

and TK in all the experiments. This indicates that the structural information

was very efficient as regards performing these tasks. Again, this fact is strong

evidence that structural information substantially improves the performance of

sentiment classifications.

Over-fitting Problem for SK and TK

All the results showed that SK and TK with no feature selection achieve their

maximum performance when n = 2 or 3. The performance deteriorates consid-

erably once n exceeds 4. Of course, there are significant differences (p < 0.01)

between the best performance of SK and that of SK with n = ∞, as well as TK.

This implies that SK and TK with larger sub-structures degrade classification

performance. These results show the same tendency as the previous studies dis-

cussed in Section 5.2. These experimental results showed additional evidence of

over-fitting in learning with standard SK and TK.

Effect of Statistical Feature Selection

As shown in the experimental results, FSSK and FSTK provided consistently

better performance than the conventional methods. Moreover, the experiments

confirmed one important fact. That is, in some cases maximum performance

was achieved with n = ∞. This indicates that very large sub-structures can

be extremely effective. In the case of the modality identification, a statistical

difference (p < 0.01) between n = 2 and n = ∞ was detected for both FSSK and

FSTK.

A larger feature space also includes the smaller feature spaces, Σn ⊂ Σn+1.

If the performance is improved by using a larger n, this means that significant

5.4 EXPERIMENTS 104

����

����

����

����

��� ���� ���� �����

���������	

��
�
�
��
�
�
�
�
��
�
	

����

��� �

���

����

����

��� ���� ���� �����

���������	

��
�
�
��
�
�
�
�
��
�
	

����

��� �

(a) tree kernels (b) sequence kernels

Figure 26. Effect of threshold α

features do exist. Thus, I can improve the performance of some classification

problems by dealing with larger substructures. Even if optimum performance was

not achieved with n = ∞, the difference between the performance levels of smaller

n values is very small compared with that of SK and TK. This indicates that the

proposed method is very robust as regards sub-structure size; It therefore becomes

unnecessary for us to decide the sub-structure size carefully. This indicates that

the proposed approach, using large sub-structures, is better than the conventional

approach of eliminating sub-structures based on size.

Moreover, these experimental results showed that there are some informative

larger-sized sub-substructures. This fact indicates that a method that can handle

larger-sized sub-substructures without over-fitting is a better approach for text

processing.

5.4 EXPERIMENTS 105

�

���

���

� ��

� ��

� ���

� ���

� � � �

���������	�
	���
���������	����	�

�
�
��
�
��
��
�
�
	�
�

�

����������	

���� ����

��

���

���

���

���

���

���

� � � �
���������	�
	���
���������	����	�

�
�
��
�
��
��
�
�
	�
�

�

��������	�
�

���� ��	
�

��

(a) sequence (b) tree

Figure 27. Calculation speed of training in MOD

Robustness of statistical metric threshold

Figure 26 shows the performance against the threshold α of a statistical metric.

α represents the level of significance. As shown in the figure, the performance

curve is convex. This seems to have an optimal threshold for statistical feature

selection. In fact, there is a trade-off between performance and the number of

features. A small number of features cannot make a good model for a target task,

however, a large number of features induces an over-fitting problem.

Experimentally, in the case of χ2 statistical metric, α = 0.05 or 0.01, which

are usually treated as a threshold for the statistical test, seem to appropriate for

the proposed method.

Calculation Speed

I compared the calculation speeds of the proposed method and conventional meth-

ods with MOD data. I ran these methods on a “Linux PC with Opteron 2.4GHz”.

Figures 27 and 28 show the results for the training and test, respectively.

5.4 EXPERIMENTS 106

�

��

��

� �

� �

� ��

� ��

� � � �

���������	�
	���
���������	����	�

�
�
��
�
��
��
�
�
	�
�

�

����������	

���� ����

��

�

� �

��

��

��

� �

� �

� � � �
���������	�
	���
���������	����	�

�
�
��
�
��
��
�
�
	�
�

�

��������	�
�

���� ��	
�

��

(a) sequence (b) tree

Figure 28. Calculation speed of test in the MOD

As shown in these tables, the increases in calculation time against n in SK and

TK have a linear relation, which is explained in Chapter 2. By comparison the

proposed method seems to have no correlation with size n. The main reason for

this observation arises from the pruning architecture with the proposed method.

Since the feature space is very sparse, we can usually prune most of features (sub-

structures) in the kernel calculation. As a result, even if the worst time complexity

of the proposed method becomes exponential against the size of an input object,

we can efficiently calculate kernels with the proposed feature selection.

Interestingly, the test calculation time was from 20 to 40 times faster than

with the conventional methods. There is a technique of efficient representation a

model constructed by SVM. While the proposed kernel calculation uses a TRIE

structure, I made an SVM model by this TRIE representation of features. This

model representation allows us to evaluate test data very quick.

5.4 EXPERIMENTS 107

Table 25. The number of features extracted by the proposed method

(a) MOD

of features

2 3 4 ∞

FSTK 3185 4027 4474 4966

FSSK 3090 3457 3618 3767

(b) SUB

of features

2 3 4 ∞

FSTK 33110 33879 33954 33959

FSSK 27854 29901 30306 30408

Table 26. Examples of typical features in modality classification

Class Weight Feature (sub-structure) size

Opinion 0.0846282 で-は-ない-か-。 5

0.542663 思え-ない-。 3

Assertion 4.15498 で-は-ない-。 4

3.41099 で-ある-。 3

2.0444 だっ-た-。 3

Description 0.160708 なっ-た-。 3

0.705698 に-ある-。 3

0.156255 で-は-ない 3

Feature Analysis

Now, I focus on the features that are extracted by the proposed method. First,

Table 25 shows the numbers of features which are extracted. This table provides

evidence of the calculation speed as discussed in the previous section. Increasing

n does not greatly affect the increase in the number of features.

5.4 EXPERIMENTS 108

Table 27. Examples of typical features in SUB

Class Weight Feature (sub-structure) size

subjective 0.522993 this is 2

0.00407342 this is the kind of 5

0.00407342 the story is 3

objective 0.977668 this is the story of 5

0.977668 is the movie of 4

Tables 27 and 26 show typical examples of large-sized features (sub-structures)

extracted by the proposed method. In the tables, ‘weight’ represents the weight

in a model that is constructed by SVM training.

For example, in the modality identification, the expression “ではないか” is

related to ‘opinion’, e.g. “～ 考えるべきではないか”, while “ではない。” is re-

lated to ‘assertion’, e.g. “～ に向けられた言葉ではない”. Moreover, if certain

word follows “ではない”, for example “ではない (と)“, then it is a feature of

‘description, e.g. “～ 便宜供与があったのではないかということだ”. This obser-

vation proves that the similar expressions can characterize different classes in the

modality identification. In the proposed method, base words such as “ない” and

“ではない” which have no information for classifying text, are eliminated by the

feature selection.

With the subjectivity identification, for example, “This is” was assigned as

subjective expression, because people present some opinion following this ex-

pression, for example, “this is one of the biggest disappointments of the year.”

However, “This is the story of ...” seems to be a typical expression for introduc-

ing an objective sentence while the data set is about reviews of movies, such as

“this is the story of their lives.” Moreover, the words “story” and ‘movie’ appear

frequently in this data set. In fact, the words “story” and ‘movie’ have no effect

in terms of subjective or objective classification. However, “the story/movie is” is

strongly related subjective, while “is the story/movie of” objective. This result

indicates that certain expressions (large sub-structures) are important features

for this family of text classification tasks.

5.5 SUMMARY 109

Table 28. Examples of topside large sub-structures in MOD

Class Weight Feature (sub-structure) size

Opinion 0.366795 を-感じる-。 3

0.209057 て-ほしい 2

1.17468 か-。 2

0.0846282 で-は-ない-か-。 5

0.318182 、-私-たち-は 4

0.155752 は-避け-て-通れ-ない 5

0.0895081 と-言っ-て-いる-の-だろ-う 7

Assertion 4.15498 で-は-ない-。 4

3.41099 で-ある-。 3

2.0444 だっ-た-。 3

1.81021 だ-。 2

1.33073 で-あっ-た-。 4

0.117897 み-て-は-なら-ない-。 6

0.0471337 に-する-必要-が-あっ-た-。 7

Description 1.28043 が-ある-。 3

0.705698 に-ある-。 3

0.561427 し-た-。 3

0.358281 て-き-た 3

0.325913 て-いる-。 3

0.160708 なっ-た-。 3

0.306159 こと-に-なる-。 4

Additionally, Tables 29 and 28 show examples of the top ranking of large

sub-structures in a model.

5.5 Summary

This chapter proposed a statistical feature mining method for sequence and tree

kernels.

5.5 SUMMARY 110

Table 29. Examples of typical features in SUB

Class Weight Feature (sub-structure) size

Subjective 0.55796 and amazing 2

0.546071 in the right place 4

0.548833 under the skin of 4

0.522993 this is 2

0.440011 ought to be 3

0.417562 the film is 3

0.404369 in the right place . 4

0.400738 manages to be 3

0.333458 one of the great 4

Objective 1.46837 the story of 3

0.849323 a story about 4

0.600706 has a way of 4

0.53318 the making of 3

0.458776 following the 2

0.386632 is going to 3

0.360019 about love 2

0.336961 cast of characters 3

0.321236 a series of 3

0.295688 is a documentary about 4

0.268486 in an effort to 4

0.258472 the first time . 4

0.249223 relationship with the 3

The proposed method can select statistically significant features automatically

based on a statistical significance test. The proposed method can be embedded

in the original DP based kernel calculation process by using sub-structure mining

algorithms.

The experiments demonstrated that the proposed method is superior to con-

ventional methods, which generally eliminate or down-weight larger sized sub-

5.5 SUMMARY 111

structures. Moreover, the experimental results indicate that larger sized sub-

structures can provide substantial information for improving the performance of

sentimental classification. Therefore, the proposed method, which can handle

larger sized sub-structure without creating over-fitting problems, yields benefits

in terms of concept and performance.

6 CONCLUSION 112

6. Conclusion

6.1 Summary

The goals of this dissertation were;

1. To propose efficient methodologies that are capable of handling

rich information derived from syntactic and semantic analysis

2. to confirm the effectiveness of the rich information provide by the

proposed method.

To achieve the outlined goals, this dissertation discussed the following method-

ologies:

1. Effectively handling different levels of word attribute, such as words, se-

mantic information obtained from dictionaries and part-of-speech (Chapter

3)

2. Effectively handling richer structural information derived from integrated

syntactic and semantic analysis (Chapter 4)

3. The effect of statistical feature mining for structural features (Chapter 5).

These proposed methods were evaluated by using certain sentiment classification

tasks, that demand a text to be interpreted semantically or contextually.

In chapter 3, I described a feature extraction method, called word attribute

N-gram, which is capable of dealing with a combination of several levels of word

attributes. Additionally, I showed that this method can be regarded as extended

sequence kernels:namely sequence kernels with a framework that allows the exis-

tence of duplicated labels in one node. The experimental results showed that the

proposed method significantly improved the performance of question classifica-

tion tasks. This result showed that the feature sets constructed by word attribute

N -grams are effectively suited to text processing tasks. Moreover, this chapter

verified most of the relative features to given tasks by using one of the feature

selection methods, SVM RFE.

6.1 SUMMARY 113

Chapter 4 proposed HS-graph kernel, that can handle integrated structural

information derived from syntactic and semantic analysis. The text processing

tasks such as sentiment classification are considered to be tasks that require deep

linguistic information within text to obtain good results. Therefore, the proposed

method presents one way of handling this information. I evaluated the perfor-

mance of HS-graph kernels using English and Japanese question classification

tasks. The experiments showed that HS-graph kernels offered better performance

than sequence, tree and graph kernels, and the baseline method, bag-of-words ker-

nels, which has no framework for handling all the linguistic information inherent

in texts. Therefore, this result revealed that the richer structural information that

reflects syntactic and semantic information within text can provide substantial

improvements as regards text processing. Additionally, the experiments showed

that the proposed method is a language independent method: both English and

Japanese tasks were improved significantly in the same framework.

Chapter 5 focused on one critical issue of convolution kernels and proposed

a statistical feature selection method for sequence kernels and tree kernels. This

provided a method that selects statistically significant sub-structures automati-

cally based on a statistical significance test. Moreover, the proposed method was

embedded into the original DP-based kernel calculation by using sub-structure

mining algorithms, and I was able to compute the proposed method efficiently.

Experiments were undertaken on some sentimental classification tasks to confirm

the problem with conventional methods and to evaluate the effect of the proposed

method. The experimental results demonstrated that the proposed method is su-

perior to conventional methods. Moreover, the results indicated that some of the

larger-sized sub-structures can provide effective information for text processing

tasks. The proposed method can use these sub-structures without creating over-

fitting problems and this yields benefits in terms of concept and performance.

The obtained experimental results showed that this dissertation verified that

handling richer information derived from syntactic and semantic analysis can

provide excellent improvements as regards text processing tasks; that is, the goal

of this dissertation. Moreover, this dissertation also made it clear that dealing

with only significant sub-structures can further improve the performance of text

processing tasks.

6.2 FUTURE DIRECTIONS 114

6.2 Future Directions

In this dissertation, I focused solely on sentiment classification tasks. However,

the methods that I proposed are generalized methods, because they are all defined

as kernel functions, which is a very generalized mathematical framework. As a

result, they can be applied to many tasks, other than classification, for example

clustering, regression and ranking. Question answering, text summarization and

machine translation are possible tasks to which the proposed methods can be

applied. This is because these tasks are generally broken down into small tasks

that can be regarded as simple classification, regression, ranking or clustering

tasks.

Moreover, the proposed methods can apply not only to NLP tasks, but also

to tasks in any number of field, if they consider the structures of input objects.

Bioinformatics is one good example of a science that involves handling structured

objects, such as chemical compounds and proteins. In the future, I plan to explore

opportunities to apply this method to the proposed method to other research

fields.

REFERENCES 115

References

[Asahara00] Asahara, A. and Matsumoto, Y.: Extended Models and Tools for

High-performance Part-of-speech Tagger, Proceedings of the 18th Interna-

tional Conference on Computational Linguistics (COLING2000), pp. 21–27

(2000).

[Blanz96] Blanz, V., Schölkopf, B., Bulthoff, H. H., Burges, C., Vapnik, V. and

Vetter, T.: Comparison of View-Based Object Recognition Algorithms Using

Realistic 3D Models, ICANN, pp. 251–256 (1996).

[Buchsbaum00] Buchsbaum, A. and Westbrook, J.: Maintaining hierarchical

graph views, Proc. 11th ACM-SIAM Symposium on Discrete Algorithms

(SODA’00), pp. 566–575 (2000).

[Cancedda03] Cancedda, N., Gaussier, E., Goutte, C. and Renders, J.-M.: Word-

Sequence Kernels, Journal of Machine Learning Research, Vol. 3, pp. 1059–

1082 (2003).

[Collins01] Collins, M. and Duffy, N.: Convolution Kernels for Natural Language,

Proc. of Neural Information Processing Systems (NIPS’2001) (2001).

[Collins03] Collins, M.: Head-Driven Statistical Models for Natural Language

Parsing, Computational Linguistics, Vol. 29, No. 4, pp. 589 – 637 (2003).

[Cortes95] Cortes, C. and Vapnik, V. N.: Support Vector Networks, Machine

Learning, Vol. 20, pp. 273–297 (1995).

[Cristianini00] Cristianini, N. and Shawe-Taylor, J.: An Introduction to Support

Vector Machines and Other Kernel-based Learning Methods, Cambridge Uni-

versity Press (2000).

[Eades96] Eades, P. and Feng, Q.-W.: Multilevel Visualization of Clustered

Graphs, Proc. Graph Drawing, GD, No. 1190, pp. 101–112 (1996).

[Fellbaum98] Fellbaum, C.: WordNet: An Electronic Lexical Database, MIT

Press (1998).

REFERENCES 116

[Fukumoto03] Fukumoto, J., Kato, T. and Masui, F.: Question Answering Chal-

lenge (QAC1): An Evaluation of QA Tasks at the NTCIR Workshop 3,

Proc. of AAAI Spring Symposium: New Directions in Question Answering,

pp. 122–133 (2003), http:// www.nlp.is.ritsumei.ac.jp/˜qac/index-j.html.

[Fukushima01] Fukushima, T. and Okumura, M.: Text Summarization Chal-

lenge: Text Summarization Evaluation in Japan, Proc. of the NAACL2001

Workshop on Automatic summarization, pp. 51–59 (2001).

[Gärtner03] Gärtner, T., Flach, P. and Wroble, S.: On Graph Kernels: Hardness

Results and Efficient Alternatives, Proc. 16th Annual Conference on Learning

Theory (COLT 2003), pp. 129–143 (2003).

[Guyon02] Guyon, I., Westion, J., Barnhill, S. and Vapnik, V. N.: Gene Selection

for Cancer Classification using Support Vector Networks, Machine Learning,

Vol. 46, pp. 389–422 (2002).

[Harel88] Harel, D.: On visual formalisms, Communications of the ACM, Vol. 31,

No. 5, pp. 514 – 530 (1988).

[Harman04] Harman, D. and Over, P.: The Effects of Human Variation in DUC

Summarization Evaluation, Proc. of the ACL2004 Workshop on Text Sum-

marization Braches Out, pp. 10–17 (2004).

[Haussler99] Haussler, D.: Convolution Kernels on Discrete Structures, Technical

Report UCS-CRL-99-10, UC Santa Cruz (1999).

[Herbrich02] Herbrich, R.: Learning Kernel Classifiers, MIT Press (2002).

[Ikehara97] Ikehara, S., Miyazaki, M., Shirai, S., Yokoo, A., Nakaiwa, H.,

Ogura, K., Oyama, Y. and Hayashi, Y. (eds.): The Semantic Attribute Sys-

tem, Goi-Taikei — A Japanese Lexicon, Vol. 1, Iwanami Publishing (1997),

(in Japanese).

[Isozaki02] Isozaki, H. and Kazawa, H.: Efficient Support Vector Classifiers for

Named Entity Recognition, Proc. of the 19th International Conference on

Computational Linguistics (COLING 2002), pp. 390–396 (2002).

REFERENCES 117

[Ittycheriah00] Ittycheriah, A., Franz, M., Zhu, W. and Ratnaparkhi, A.: IBM’s

statistical question answering system, Proc. of TREC-9, NIST (2000).

[Ittycheriah01a] Ittycheriah, A., Franz, M. and Roukos, S.: IBM’s Statistical

Question Answering System – TREC-10, Proc. of TREC 2001, NIST (2001).

[Ittycheriah01b] Ittycheriah, A., Franz, M., Zhu, W. and Ratnaparkhi, A.: Ques-

tion Answering Using Maximum-Entropy Components, Proc. of NAACL

2001, pp. 33–39, ACL (2001).

[Jaakkola00] Jaakkola, T., Diekhans, M. and Haussler, D.: A discriminative

framework for detecting remote protein homologies, Journal of Computa-

tional Biology, Vol. 7, No. 1,2, pp. 95–114 (2000).

[Joachims98] Joachims, T.: Text Categorization with Support Vector Machines:

Learning with Many Relevant Features, Proc. of European Conference on

Machine Learning (ECML ’98), pp. 137–142 (1998).

[Kashima02] Kashima, H. and Koyanagi, T.: Kernels for Semi-Structured Data,

Proc. 19th International Conference on Machine Learning (ICML2002), pp.

291–298 (2002).

[Kashima03] Kashima, H., Tsuda, K. and Koyanagi, T.: Marginalized Kernels

Between Labeled Graph, Proc. 20th International Conference on Machine

Learning (ICML2003), pp. 321–328 (2003).

[Kimeldorf71] Kimeldorf, G. S. and Wahba, G.: ”A Correspondence between

Bayesian Estimation on Stochastic Proccesses and Smoothing by Splines”

(1971).

[KreBel98] KreBel, Y. H.-G.: Advances in Kernel Methods, Pairwise Classifica-

tion and Support Vector Machines, pp. 255–268, MIT Press (1998).

[Kudo02] Kudo, T. and Matsumoto, Y.: Japanese Dependency Analysis Using

Cascaded Chunking, Proc. of the 6th Conference on Natural Language Learn-

ing (CoNLL 2002), pp. 63–69 (2002).

REFERENCES 118

[Kudo03] Kudo, T. and Matsumoto, Y.: Fast Methods for Kernel-based Text

Analysis, Proc. of the 41st Annual Meeting of the Association for Computa-

tional Linguistics (ACL-2003), pp. 24–31 (2003).

[Leslie04] Leslie, C., Eskin, E., Cohen, A., Weston, J. and Noble, W.: Mismatch

string kernels for discriminative protein classification, Journal of Bioinfor-

matics, Vol. 20, No. 4, pp. 467–476 (2004).

[Li02] Li, X. and Roth, D.: Learning Question Classifiers, Proc. of the 19th In-

ternational Conference on Computational Linguistics (COLING 2002), pp.

556–562 (2002).

[Lodhi02] Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N. and

Watkins, C.: Text Classification Using String Kernel, Journal of Machine

Learning Research, Vol. 2, pp. 419–444 (2002).

[Morishita00] Morishita, S. and Sese, J.: Traversing Itemset Lattices with Statis-

tical Metric Pruning, Proc. of ACM SIGACT-SIGMOD-SIGART Symp. on

Database Systems (PODS’00), pp. 226–236 (2000).

[Pang02] Pang, B., Lee, L. and Vaithyanathan, S.: Thumbs up? sentiment clas-

sification using machine learning techniques, Proceedings of the Conference

on Empirical Methods in Natural Language Processing (EMNLP), pp. 79–86

(2002).

[Pang04] Pang, B. and Lee, L.: A Sentimental Education: Sentiment Analysis

Using Subjectivity Summarization Based on Minimum Cuts, In Proc. of the

42st Annual Meeting of the Association for Computational Linguistics (ACL-

2004), pp. 271–278 (2004).

[Pei01] Pei, J., Han, J., Mortazavi-Asl, B. and Pinto, H.: PrefixSpan: Mining

Sequential Patterns Efficiently by Prefix-Projected Pattern Growth, Proc. of

the 17th International Conference on Data Engineering (ICDE 2001), pp.

215–224 (2001).

[Salton75] Salton, G., Wong, A. and Yang, C.: A Vector Space Model for Auto-

matic Indexing, Communication of the ACM, Vol. 11, No. 18, pp. 613–620

(1975).

REFERENCES 119

[Salton83] Salton, G. and McGill, M. J.: Introduction to Modern Information

Retrieval, McGraw-Hill (1983).

[Sasaki01] Sasaki, Y., Isozaki, H., Taira, H., Hirao, T., Kazawa, H., Suzuki, J.,

Kokuryo, K. and Maeda, E.: SAIQA: A Japanese QA System Based on

Large-Scale Corpus (in Japanese), IPSJ SIG-NL NLP-145, pp. 77–, IPSJ

(2001).

[Schölkof01] Schölkof, B. and Smola, A. J.: Learning with Kernel, MIT Press

(2001).

[Schölkopf95] Schölkopf, B., Burges, C. and Vapnik, V.: Extracting support data

for a given task, Proc. of First International Conference on Knowledge Dis-

covery & Data Mining, AAAI Press. (1995).

[Sugiyama91] Sugiyama, K. and Misue, K.: Visualization of structural informa-

tion: Automatic drawing of compound digraphs, IEEE Trans. Systems, Man

and Cybernetics, Vol. 21, No. 4, pp. 876–892 (1991).

[Suzuki03a] Suzuki, J., Hirao, T., Sasaki, Y. and Maeda, E.: Hierarchical Di-

rected Acyclic Graph Kernel: Methods for Natural Language Data, Proc. of

the 41st Annual Meeting of the Association for Computational Linguistics

(ACL-2003), pp. 32–39 (2003).

[Suzuki03b] Suzuki, J., Sasaki, Y. and Maeda, E.: Kernels for Structured Natural

Language Data, Proc. of the 17th Annual Conference on Neural Information

Processing Systems (NIPS2003) (2003).

[Suzuki03c] Suzuki, J., Taira, H., Sasaki, Y. and Maeda, E.: Question Classifi-

cation using HDAG Kernel, Workshop on Multilingual Summarization and

Question Answering (MSQA-2003), pp. 61–68 (2003).

[Tamura96] Tamura, N. and Wada, K.: Text Structureing by Composition and

Decomposition of Segments, Journal of Natural Language Processing, Vol. 5,

No. 1, pp. 59–78 (1996).

[Vapnik95] Vapnik, V. N.: The Nature of Statistical Learning Theory, Springer

(1995).

REFERENCES 120

[Vapnik98] Vapnik, V. N.: Statistical Learning Theory, John Wiley (1998).

[Voorhees99] Voorhees, E. M. and Tice, D. M.: The TREC-8 Question Answer-

ing Track Evaluation, Proc. of the 8th Text Retrieval Conference (TREC-8)

(1999).

[Watkins99] Watkins, C.: Dynamic Alignment Kernels, Technical Report CSD-

TR-98-11, Royal Holloway, University of London Computer Science Depart-

ment (1999).

[Weston98] Weston, J. and Watkins, C.: Multi-class support vector machines,

Technical Report CSD-TR-98-04, Department of Computer Science, Royal

Holloway, University of London, Egham (1998).

[Weston99] Weston, J. and Watkins, C.: Support Vector Machines for Multi-

Class Pattern Recognition, Proc. of 7th European Symposium on Artificial

Neural Networks (1999).

[Zaki02] Zaki, M. J.: Efficiently Mining Frequent Trees in a Forest, Proc. of

the 8th International Conference on Knowledge Discovery and Data Mining

(KDD’02), pp. 71–80 (2002).

[Zukerman01] Zukerman, I. and Horvitz, E.: Toward Understanding WH-

Questions: A Statistical Analysis, Proc. of Association for Computational

Linguistics (ACL-2001), ACL (2001).

ACKNOWLEDGEMENTS 121

Acknowledgements

I would like to express my sincere appreciation to Professor Yuji Matsumoto of

Nara Institute of Science and Technology for supervising this dissertation. I would

heartily appreciate continuous supports, various criticisms and timely advice he

has given to me. His encouragement helped shape the direction of my work.

I would like to express my gratitude to Professor Shin Ishii and Professor

Hiroyuki Seki of Nara Institute of Science and Technology for their valuable

suggestions and helpful comments.

I am indebted to Associate Professor Kentaro Inui, Dr. Masashi Shimbo and

Dr. Masayuki Asahara of Nara Institute of Science and Technology for construc-

tive and fruitful discussions.

I am also indebted to Professor Masakazu Nakanishi and Dr. Hiroaki Saito

of Keio University, who were my supervisors when I was an undergraduate and

master course student at Keio University.

I am greatful to my coleagues in the computational linguistics laboratory at

Nara Institute of Science and Technology.

I completed this dissertion at the Intelligent Commumication Laboratory

(ICL) of NTT Communication Scuence Laboratories (NN CS Labs.). I would

like to gave my appreciation to Dr. Noboru Sugamura, Director of NTT CS

Labs. Dr. Sigeru Katagiri, Vice-director of NTT CS Labs., Dr. Naonori Ueda,

the Executive Manager of the ICL, Dr. Eisaku Maeda, the formaer group leader

and Dr. Hideki Isozaki, our group leader, for providing me the opportunity to

complete this dissertation at NTT CS Labs.

I wish to thank my colleagues in the ICL, especially Dr. Eisaku Maeda, Dr.

Hideki Isozaki and Dr. Yutaka Sasaki. Dr. Maeda supported me and gave me

valuable comments. Dr. Isozaki and Dr. Sasaki encouraged me and discussed

many problems with me. Without their guideance, this dissertation would not

have been written. My appreciation also goes to members of the ICL. Especially,

Mr. Hajime Tsukada, Dr. Hirotoshi Taira, Mr. Hideto Kazawa, Dr. Tsutomu

Hirao and Dr. Taku Kudo encouraged me to work and research.

Special thanks are also due to all of the people who gave me valuable comments

ACKNOWLEDGEMENTS 122

and continuours encouragemant. They include ... Although I cannot list all of

their names, I would like to express my thanks all of them.

Finally, I wish to thank my parents, Tadashi and Yoshiko Imaichi, for their

continuous encouragements and supports.

LIST OF PUBLICATIONS 123

List of Publications

Journal Papers

[1] Suzuki, J., Sasaki, Y. and Maeda, E.: “Question Type Classification Using

Word Attribute N -gram and Statistical Machine Learning (in Japanese),”

Journal of IPSJ, Vol.44, No.11, pp.2839–2853, November 2003.

[2] Sasaki, Y., Isozaki, H., Suzuki, J., Kokuryo, K., Hirao, T., Kazawa, H. and

Maeda, E.: “SAIQA-II: A Trainable Japanese QA System with SVM (in

Japanese),” Journal of IPSJ, Vol.45, No.2, pp.635–646, February 2004.

[3] Suzuki, J., Sasaki, Y. and Maeda, E.: “Hierarchical Directed Acyclic Graph

Kernels (in Japanese),” Journal of IEICE, Vol.J88-DII, No.2, pp. 230–240,

February 2005.

[4] Suzuki, J. and Sasaki, Y.: “Kernels on Hierarchical Structured Graph for

Natural Language Data,” Journal of JMLR, (submitted).

Conference Papers

[1] Suzuki, J., Sasaki, Y. and Maeda, E.: “SVM Answer Selection for Open-

Domain Question Answering,” In Proceedings of 19st COLING, pp.974–980,

August 2002.

[2] Suzuki, J., Taira, H., Sasaki, Y. and Maeda, E.: “Question Classification

using HDAG Kernel,” In Proceedings of 2nd MSQA, pp.161–68, July 2003.

[3] Suzuki, J., Hirao, T., Sasaki, Y. and Maeda, E.: “Hierarchical Directed

Acyclic Graph Kernel: Methods for Natural Language Data,” In Proceed-

ings of 41st ACL, pp.32–39, July 2003.

[4] Suzuki, J., Sasaki, Y. and Maeda, E.: “Kernels for Structured Natural

Language Data,” In Proceedings of 17th NIPS, December 2003.

LIST OF PUBLICATIONS 124

[5] Suzuki, J., Isozaki, H. and Maeda, E.: “Convolution Kernels with Feature

Selection for Natural Language Processing Tasks,” In Proceedings of the

42nd ACL, pp.119–126, July 2004.

[6] Hirao, T., Suzuki, J., Isozaki, H., and Maeda, E.: “Dependency-based Sen-

tence Alignment for Multiple Document Summarization,” In Proceedings of

20th COLING, pp., August 2004.

List of Other Publications

[1] Suzuki, J., Hirao, T., Sasaki, Y. and Maeda, E.: “Question Type Classifi-

cation using Statistical Machine Learning (in Japanese)”, Forum on Infor-

mation Technology (FIT), Volume 1, pp.89–90, 2002.

[2] Suzuki, J., Hirao, T., Sasaki, Y. and Maeda, E.: “Efficient Calculation for

Similarity between Texts using Hierarchical Structure (in Japanese),” In

Proceedings of IPSJ SIG-NL, NL-154-15, pp.101–108, March 2003.

[3] Suzuki, J., Hirao, T., Sasaki, Y. and Maeda, E.: “Efficient Calculation

for Similarity between Texts using Structures of Texts (in Japanese),” In

Proceedings of NLP, pp.101–108, March 2003.

[4] Suzuki, J., Hirao, T., Isozaki, H. and Maeda, E.: “String Kernel with

Feature Selection Function (in Japanese),” In Proceedings of IPSJ SIG-NL,

NL-157-6, pp.41–48, September 2003.

[5] Suzuki, J., Hirao, T., Sasaki, Y. and Maeda, E.: “Text Analysis using

Hierarchically Structured Graph Kernel (in Japanese),” In Proceedings of

6th IBIS, pp.217–222, November 2003.

[6] Hirao, T., Suzuki, J., Isozaki, H. and Maeda, E.: “NTT’s Multiple Doc-

ument Summarization System for DUC2003,” In Proceedings of the 3rd

Document Understanding Conference (DUC-2003), pp.129–133, 2003.

[7] Hirao, T., Suzuki, J., Isozaki, H. and Maeda, E.: “Multiple Document Sum-

marization using Sequential Pattern Mining (in Japanese)”, In Proceedings

of IPSJ SIG-NL, NL-158-6, pp.31–38, November 2003.

LIST OF PUBLICATIONS 125

[8] Isozaki, H., Hirao, T. and Suzuki, J.: “On Selection Criteria of Combinato-

rial Features for Machine Learning (in Japanese)”, In Proceedings of IPSJ

SIG-NL, NL-158-10, pp.63–68, November 2003.

[9] Kazawa, H., Suzuki, J. and Maeda, E.: SVMAP - A Large Margin Map

Approximation (in Japanese) in Proceeding of IBIS, pp.205–210, November,

2003.

[10] Hirao, T., Suzuki, J., Isozaki, H. and Maeda, E.: “NTT’s Multiple Doc-

ument Summarization System for DUC2004,” In Proceedings of the 3rd

Document Understanding Conference (DUC-2004), May 2004.

Abbreviations

IEICE The Institute of Electronics, Information and Communication Engineers

IPSJ Information Processing Society of Japan

SIG-NLP Special Interested Group on Natural Language Processing

SIG-FI Special Interested Group on Foundation of Informatics

JMLR Journal of Machine Learning Research

ACL Annual Meeting of the Association for Computational Linguistics

NIPS Annual Conference on Neural Information Processing Systems

COLING International Conference on Computational Linguistics

MSQA Workshop on Multilingual Summarization and Question Answering

NLP Annual Meeting of The Association for Natural Language Processing

IBIS Information-Based Induction Sciences

