

Doctoral Dissertation

Studies on DFT for Reducing Its Area and Test Application
Time of System-on-a-Chip

Masahide Miyazaki

February 2, 2006

Department of Information Processing
Graduate School of Information Science

Nara Institute of Science and Technology

Doctoral Dissertation
submitted to Graduate School of Information Science,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Masahide Miyazaki

Thesis committee: Professor Hideo Fujiwara, (Supervisor)
Professor Kenichi Matsumoto, (Co-supervisor)
Associate Professor Michiko Inoue, (Co-supervisor)

 i

Studies on DFT for Reducing Its Area and Test Application
Time of System-on-a-Chip

Masahide Miyazaki

Abstract

With the progress of the semiconductor process technology, a lot of functions came to

be included in a System-on-a-Chip (SoC). To test such SoCs, a test pattern is prepared for

each core, and the modular testing of embedded cores is carried out. For a core which is

reused in a high-level design methodology, the designer has to determine the design for

test (DFT) method along with the required quality and cost. In addition, many memories

with different sizes and frequencies are being used in SoCs. To test such memories, we

need memory BIST techniques. However, if memory BIST logics were individually added

to these various memories, the area overhead would be very high.

This thesis proposes a DFT selection method for reducing test application time. At

first an SoC test architecture generation framework is presented. It contains a database,

which stores the test cost information of several DFTs for every core, and a DFT selection

part that performs DFT selection for minimizing the test application time using this

database in the early phase of the design flow. Moreover, the DFT selection problem is

formulated and the algorithm to solve this problem is proposed.

This thesis also proposes a systematic way of memory grouping, for reducing area by

sharing BIST logic by a group. Two types of memory connection method and the

compatibility graphs that indicate whether the connection of each memory is possible are

introduced. The compatibility graph of each type of the connection makes it possible to

search for minimizing the area under constraints of the maximum test application time

and maximum power consumption. Furthermore, a memory-grouping problem is

formulated and an algorithm to solve the problem is proposed.

The effectiveness of all the above methods has been demonstrated through

 ii

experimental results.

keywords :

SoC, test scheduling, test access mechanism, wrapper, design for test, memory BIST

 iii

List of Publications

Journal Papers

1. Masahide Miyazaki, Toshinori Hosokawa, Hiroshi Date, Michiaki Muraoka and

Hideo Fujiwara, “A DFT selection method for reducing test application time of

system-on-chips”, IEICE Transactions on Information and Systems, Vol. E87-D,

No. 3, pp.609-619, Mar. 2004.

2. Masahide Miyazaki, Tomokazu Yoneda and Hideo Fujiwara, “A Memory grouping

method for reducing memory BIST logic of system-on-chips”, IEICE Transactions

on Information and Systems, Vol. E89-D, No. 4, pp.1490-1497, April 2006.

International Conference Papers (Reviewed)

1. Masahide Miyazaki, Toshinori Hosokawa, Hiroshi Date, Michiaki Muraoka and

Hideo Fujiwara, “A DFT selection method for reducing test application time of

system-on-chips”, Proceedings of the IEEE 12th Asian Test Symposium,

pp.412-417, Nov. 2003.

2. Masahide Miyazaki, Tomokazu Yoneda and Hideo Fujiwara, “A memory grouping

method for reducing memory BIST logic of system-on-chips”, Proceedings of the

IEEE 6th Workshop on RTL and High Level Testing, pp.31-37, July 2005.

3. Masahide Miyazaki, Tomokazu Yoneda and Hideo Fujiwara, “A Memory grouping

method for sharing memory BIST logic”, Proceedings of the IEEE 11th Asia and

South Pacific Design Automation Conference, pp.671-676, Jan. 2006.

 iv

Contents

1 INTRODUCTION ... 1

1-1 Motivation ... 1

1-2 Thesis Organization... 2

1-3 Contribution of This Thesis ... 3

2 A DFT SELECTION METHOD FOR REDUCING TEST APPLICATION TIME OF

SYSTEM-ON-CHIPS ... 4

2-1 Introduction ... 4

2-2 A Framework of SoC Test Architecture Generation ... 5

2-3 DFT of Each Core .. 8

2-3-1 Scan Design Method ... 8

2-3-2 Non-Scan DFT Method.. 9

2-4 DFT Selection Problem Formulation and Algorithm ... 11

2-4-1 DFT Selection Problem Formulation .. 11

2-4-2 Algorithm .. 11

2-5 Experimental Results .. 15

2-5-1 Experimental Environment .. 15

2-5-2 Experimental Circuits... 16

2-5-3 Experimental Results ... 17

2-6 Conclusions.. 25

3 A MEMORY GROUPING METHOD FOR REDUCING MEMORY BIST LOGIC OF

SYSTEM-ON-CHIPS ... 26

 v

3-1 Introduction ... 26

3-2 Memory BIST Logic Sharing ... 27

3-3 Memory-Grouping Problem and Algorithm.. 29

3-3-1 Formulation of Memory-Grouping Problem ... 29

3-3-2 Memory-Grouping Algorithm.. 35

3-4 Experimental Results .. 39

3-5 Conclusion ... 42

4 CONCLUSION AND FUTURE WORK ... 43

4-1 Summary of the Thesis .. 43

4-2 Future Work .. 44

ACKNOWLEDGEMENTS ... 46

REFERENCES .. 47

 vi

List of Figures

Fig. 1-1 Percentage of memory in area of SoC ... 1

Fig. 2-1 Framework of SoC test architecture generation..................................... 6

Fig. 2-2 DFT selection .. 7

Fig. 2-3 Relationship between scan chain length and number of chains............. 9

Fig. 2-4 Example of wrapper design for NS-DFT... 10

Fig. 2-5 DFT selection algorithm.. 12

Fig. 2-6 Lower bound case of test schedule .. 14

Fig. 2-7 Test schedule of SoC4.. 23

Fig. 3-1 Memory BIST wrapper.. 27

Fig. 3-2 Parallel connection of memories ... 28

Fig. 3-3 Serial connection of memories .. 29

Fig. 3-4 Compatibility graphs and target partition ... 31

Fig. 3-5 Test scheduling using rectangle packing .. 33

Fig. 3-6 Memory grouping algorithm ... 35

Fig. 3-7 Heuristic of graph division.. 36

Fig. 3-8 Memory grouping algorithm (pseudo code)... 38

Fig. 3-9 CPU time for memory grouping program ... 42

Fig. 4-1 Revised framework of SoC test architecture generation 44

 vii

List of Tables

Table 2-1 Information of the cores.. 16

Table 2-2 Test schedule and test application time (Scan only) 19

Table 2-3 Test schedule and test application time (NS-DFT only) 20

Table 2-4 Test schedule and test application time (Scan and NS-DFT) 21

Table 2-5 Comparison of test application time... 22

Table 2-6 Test application time and lower bound of optimum solution 24

Table 3-1 Algorithm input information on memories... 39

Table 3-2 Area of memory-BIST logic ... 41

 1

1 INTRODUCTION

1-1 Motivation

With the progress of the semiconductor process technology, the gate count of

System-on-Chip (SoC) is increasing as large as one hundred million gates through the

use of 90 nm process design rule toward 2010. As the size of the SoC is getting larger, the

reduction of the design productivity will be the most important issue. The technologies

that solve this issue are the design reuse methodology and design automation at the

high-level design phase. Research and development of these technologies is the key to

innovate the SoC design methodology.

In order to reduce design time, SoCs consist of a large number of reusable cores. To

test such SoCs, a test pattern is prepared for each core, and the modular testing of

embedded cores is carried out. For a core, which is reused in a high-level design

methodology, the designer has to determine the design for test (DFT) method along with

the required quality and cost. For this reason, the technique of determining an SoC test

architecture including DFT selection of each core, taking test cost and test quality into

consideration, during the early design phase is needed.

0

10

20

30

40

50

60

70

2004 2005 2006 2007 2008 2009

Year of production

P
e
rc

e
n
ta

ge

Fig. 1-1 Percentage of memory in area of SoC

 2

In addition, with the increasing demand for SoCs to include rich functionality, SoCs are

being designed with hundreds of small memories with different sizes and frequencies. If

all the memories are tested from ATE, they have to use interface sequentially. It takes

long test application time so that it is not acceptable. Therefore, memory BIST technique

must be used to test memories on SoCs. On the other hand, if memory BIST logics were

individually added to these various memories, the area overhead would be very high.

Moreover, the percentage of embedded memory used in SoC designs is steadily

increasing. According to the prediction of the International Technology Roadmap for

Semiconductors 2004 update [25], the area of the memory reaches 60% of SoC in 2009

(Figure 1-1). Therefore, it is easily surmisable that the area of memory BIST logic added

to the memory grows, too. For this reason, memory BIST logic sharing technique that

can ease an increase in BIST logic by testing two or more memories by a couple of BIST

logic is very important. But the increase of the number of memories makes it difficult to

decide groups of memories, which share BIST logic. So, a systematic way of memory

BIST logic sharing is needed.

1-2 Thesis Organization

This thesis is organized as follows.

Chapter 2 is devoted to DFT selection method for reducing test application time. At

first it proposes a framework of SoC test architecture generation. Thereafter, core’s DFT

method and the precondition of this research work are described. After that, the

formulation of the DFT selection problem and an algorithm are proposed. It is followed

by experimental results to show the effectiveness of this method.

Chapter 3 is devoted to memory grouping method for reducing area of memory BIST

logic. At first two types of memory-connection methods for memory BIST wrapper

sharing are presented. Thereafter, the memory-grouping problem formulation and an

algorithm to solve the problem are presented. In addition, the effectiveness of this

technique is demonstrated experimentally.

Finally, this thesis concludes with Chapter 4 where the main accomplishments of the

work are outlined and the future directions are identified.

 3

1-3 Contribution of This Thesis

This thesis makes following basic contributions.

First, for reducing test application time of System-on-Chips, this thesis proposes a

framework that includes the test cost estimation step and test cost information database.

In the test cost estimation step, information on each core is estimated, and the result is

output to the test cost information database. In addition, for each core, the test cost

information of two or more DFTs are estimated so that the most suitable DFT can be

selected.

Second, this thesis proposes a systematic way of memory group decision using graph

theoretic approach for determining memory group that share BIST logic. It is necessary

to connect memories to share memory BIST logic, but there are two or more types of the

connection, and the area, the power consumption and the test application time depend on

the type of the connection. To achieve a good solution, we have to optimize the type of the

connection. This thesis treats two types of connection methods, and two types of

compatibility graphs that indicate the connectivity are introduced. The search to

minimize the area under constraints of the test application time and power consumption

becomes possible by using the compatibility graph of each type of the connection.

 4

2 A DFT SELECTION METHOD FOR REDUCING TEST
APPLICATION TIME OF SYSTEM-ON-CHIPS

2-1 Introduction

Effective modular test requires efficient management of the test resources for

core-based SoCs. This involves the design of core test wrappers and TAMs (Test Access

Mechanisms), and the scheduling of core tests. In recent years, many research works

relevant to these issues have been presented.

Core test wrapper design and TAM design are important since they have impact on

hardware overhead and test application time. There are three main approaches to

achieve accessibility of embedded cores. The first approach is based on test bus

architectures, where the cores are isolated from each other in test mode using a

dedicated bus [1][2][3] around the cores to propagate test data. The second approach

uses boundary scan architectures [4][5] to isolate the core during test. The third

approach uses core bypass mode [6] or transparency [7][8][9]. Wrapper and TAM design

include wrapper optimization, core assignment to TAM wires, sizing of the TAMs, and

routing of TAM wires. So, wrapper and TAM co-optimization approach [10] is one of the

important subjects in modular testing.

The objective of test scheduling [11][12][13] is to minimize test application time

under one or more of the following constraints: maximum TAM width and maximum

allowed power consumption. Furthermore, optimal wrapper width selection and test

scheduling techniques have been proposed [14][15].

Most of the above research works assume scan design as a core's DFT, or do not

mention about a core's DFT. To cope with the testing of large and complex SoCs, the

modular testing of embedded cores will have to be rethought. For a core, which is reused

in a high-level design methodology, the designer has to determine the DFT method along

with the required quality and cost. For this reason, the technique of determining an SoC

test architecture including DFT of each core, taking test cost and test quality into

consideration, during the early design phase is needed.

In this chapter, we present the DFT selection method for reducing test application

 5

time under the following constraints: maximum TAM width, maximum allowed power

consumption, total area size, and test data size. Each core's DFT is chosen from scan

design or non-scan DFT [16][17].

This chapter is organized as follows. In section 2-2, a framework of SoC test

architecture generation is proposed. In section 2-3, core’s DFT method and the

precondition of this research work are described. In section 2-4, the formulation of the

DFT selection problem and an algorithm are proposed. It is followed by experimental

results in section 2-5. Finally, section 2-6 concludes this chapter.

2-2 A Framework of SoC Test Architecture Generation

In a high level design methodology, the designer has to determine the DFT method of

each core along with the required quality and cost. So we propose a new framework that

includes DFT selection phase in the SoC early design phase. Figure 2-1 shows our SoC

test architecture generation framework. The framework consists of the following stages.

In the first stage, the test cost information on each core is estimated, and the result

is output to the test cost information database. In addition, for each core, the test cost

information of two or more DFTs are estimated. Test cost information includes the

following information.

- Test application time

- TAM width

- Power consumption

- Area size

- Test data size

In a SoC design, a great portion of it is filled with reused IPs. Then, actual test cost

information obtained from a past design can be used in a reused portion. Moreover, if

possible, an estimation of the test cost information for a new design can be made based

on the test cost information of the past design. For example, when there is an actual

result value of the scan design of a certain core, it is possible to make an estimation of

the test cost information in which the number of the scan chain was changed.

 6

SoC
(Gate level,
After DFT)

Test Pattern
(SoC I/F)

Test Pattern
(Wrapper I/F)

Wrapper

Test Pattern
(Core I/F)

DFT for each Core

Core
(After DFT)

DFT
selection

Test cost
estimation

Test Cost
Information

Database

DFT

Wrapper Design

ATPG

TAM Design

Test
schedule

DFT
Selection

information

SoC
(RTL)

(Synthesis)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(1)

(2)

(3)

(4)

(5)

(6)SoC
(Gate level,
After DFT)

Test Pattern
(SoC I/F)

Test Pattern
(Wrapper I/F)

Wrapper

Test Pattern
(Core I/F)

DFT for each Core

Core
(After DFT)

DFT
selection

Test cost
estimation

Test Cost
Information

Database

DFT

Wrapper Design

ATPG

TAM Design

Test
schedule

DFT
Selection

information

SoC
(RTL)

(Synthesis)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(1)

(2)

(3)

(4)

(5)

(6)

Fig. 2-1 Framework of SoC test architecture generation

If high accuracy is needed, it is necessary to carry out logic synthesis according to

product specification, and to actually perform some scan design. If high accuracy is

needed, it is necessary to carry out logic synthesis according to product specification, and

to actually perform some scan design. If high accuracy is needed, it is necessary to carry

out logic synthesis according to product specification, and to actually perform some scan

design. If high accuracy is needed, it is necessary to carry out logic synthesis according to

product specification, and to actually perform some scan design. If high accuracy is

needed, it is necessary to carry out logic synthesis according to product specification, and

to actually perform some scan design. However, if accuracy is not needed, some

variations will be created only reflecting the change of the scan chain length when

changing the number of scan chains by assuming that the area size, the number of test

patterns and the number of flip-flops do not change. In this case, test application time,

TAM width, and test data size are easily calculated. It is difficult to estimate the value of

power consumption with high accuracy. However, there are conventional tools, which are

 7

able to estimate power consumption for an RTL description, and it is easy to perform

relative comparison among two or more DFT(s).

Newly designed cores need to carry out data creation by actually applying DFT using

RTL (a).

However, accumulating the actual result value in the test cost information database

(e) reduces the cost required to estimate test cost information, and it leads to an increase

in accuracy.

In the second stage, each core’s DFT selection is optimized to reduce the total test

application time using test cost information (e), which was estimated in the first stage,

and each core’s selected DFT (f) and test schedule (g) are output. Test schedule means

test start time and test end time of each core.

According to the DFT selection information of each core, design for test of each core is

performed in the third stage. The test pattern of the core (h) is created in fourth stage

using existing ATPG tools.

1

5 6
4

3 2

ATE
memory

Core2:DFT3
Test Cost
Information

Core2:DFT2
Test Cost
Information
Core2:DFT1
Test Cost
Information

Core1:DFT3
Test Cost
Information
Core1:DFT2
Test Cost
Information

Core1:DFT1
Test Cost
Information

:

Core1:DFT1
Test Data
Core2:DFT2
Test Data

:

Max Area Size

Max Data
Volume

MAX TAM width

Max Power

　　Test Cost Information
Database

-Power
-Area Size
-TAM width
-Test Data Volume
-Test Application Time

1

5 6
4

3 2

ATE
memory

Core2:DFT3
Test Cost
Information

Core2:DFT2
Test Cost
Information
Core2:DFT1
Test Cost
Information

Core1:DFT3
Test Cost
Information
Core1:DFT2
Test Cost
Information

Core1:DFT1
Test Cost
Information

:

Core1:DFT1
Test Data
Core2:DFT2
Test Data

:

Max Area Size

Max Data
Volume

MAX TAM width

Max Power

　　Test Cost Information
Database

-Power
-Area Size
-TAM width
-Test Data Volume
-Test Application Time

Fig. 2-2 DFT selection

 8

In the fifth stage, the core’s test wrapper is designed. Based on the test pattern of a

core, which was created in the third stage, the bit width compression function is

incorporated if needed. Moreover, the test pattern is modified to match the interface of

the designed wrappers. In the last stage, the cores tested simultaneously are divided

into several TAMs according to the test schedule (h), which was created in the second

stage, and SoC design that include TAMs is created. Moreover, the test pattern of each

core is edited and output with the interface of SoC pin.

The DFT selection stage is especially important among the above mentioned

framework stages. Figure 2-2 shows the work for which a designer is asked in this stage.

The designer determines the SoC’s test strategy, including DFT selection of each core to

reduce test application time under the following constraints: maximum TAM width,

maximum allowed power consumption, total area size, test data size.

2-3 DFT of Each Core

2-3-1 Scan Design Method
Full scan design is one of the most popular DFT methods. The scan test application

time depends on the maximum scan chain length. As a large TAM width can be taken, a

scan chain can be divided and thus the maximum scan chain length and test application

time can be shortened.

Figure 2-3 shows an example of the relationship between scan chain length and

number of chains in the case in which the number of FFs is 100. The vertical axis

expresses the scan chain length in logarithm scale, and the horizontal axis expresses the

number of scan chains. Figure 2-3 shows that when the number of scan chains is large,

the scan chain length function becomes a stair function. Therefore even if the TAM width

increases, the test application time is not always shortened [14].

In modular testing, the TAM width of each core should be selected to minimize the

total test application time. However, in the stair function portion shown in Figure 2-3, it

is enough that only the pareto-optimal-points [14] are taken into consideration as the

candidate points of the selection.

 9

1

100

4 10 16 22 28 34
Number of scan chains

Sc
an

 c
ha

in
 le

ng
th

candidate points

1
1

100

4 10 16 22 28 34
Number of scan chains

Sc
an

 c
ha

in
 le

ng
th

candidate points

1

Fig. 2-3 Relationship between scan chain length and number of chains

2-3-2 Non-Scan DFT Method
Scan design methods have the following disadvantages concerning test cost and test

quality:

- The additional test circuits for DFT cause the degradation of performance.

- The test length is very long.

- It is not suited for at-speed-testing.

In order to drastically improve the above-mentioned disadvantages while keeping

complete fault efficiency, non-scan DFT methods [16][17] for RTL design circuits were

proposed. In this thesis, the non-scan DFT method (NS-DFT) of reference [16] shall be

chosen as another DFT of a core.

NS-DFT needs parallel access from LSI pins to all the inputs and all the outputs.

Thus, NS-DFT is inapplicable to a core with input and output larger than the number of

LSI pins. Therefore, the core test wrapper with bit width compression function shall be

prepared. Figure 2-4 shows the wrapper design. Wrapper mode signals are used to

change between five modes: normal, test, isolation, input interconnect test, and output

 10

interconnect test. In normal mode, Functional inputs and Functional outputs are

connected to the core. When another core is tested, the core inputs are fixed to isolate, if

needed. In input interconnect test mode, the Functional Inputs are connected to the

Encoder and observed at Test Outputs. In output interconnect test mode, the Functional

Outputs are controlled from Test Inputs. In test mode, encoded test patterns are

supplied to Test Inputs, and decoded patterns are provided to the core’s inputs. The

outputs are encoded at Encoder, and observed at Test Outputs. The clock and

Asynchronous signal are directly connected in all modes.

The input compression technique shall use the coding technique using EOR network

[18][19]. The output compression technique shall use EOR tree. These bit width

compression techniques do not change test length, but the area size of the wrapper is

different with the compression ratio. If the compression rate is high, the area size of the

decoder and the encoder increase. Moreover, if the area size increases, power

consumption increases under the same frequency. Since the reduction of TAM width

increases the possibility that cores can carry out a simultaneous test, the total test

application time may be shortened. Thus, there is a trade-off between the total test

application time and area, and the total test application time and power consumption.

(Fix value for isolation)
F

core

Direct
Input

Test
Input

Functional
Input

Wrapper
Mode
signal

Test mode

clock
Async. reset

Functional
Output

Test
Output

F
F
F
F

D
ec

od
er

En
co

de
r

(Fix value for isolation)
F

core

Direct
Input

Test
Input

Functional
Input

Wrapper
Mode
signal

Test mode

clock
Async. reset

Functional
Output

Test
Output

F
F
F
F

D
ec

od
er

En
co

de
r

Fig. 2-4 Example of wrapper design for NS-DFT

 11

2-4 DFT Selection Problem Formulation and Algorithm

2-4-1 DFT Selection Problem Formulation
To select the DFT of each core in order to reduce the test application time under

constraints, we formulate the DFT selection problem as follows.

Inputs:

(1) Test cost information of each core : D=Dij (DFTij, wij, pij, vij, aij, tij)

 Here, DFTij, wij, pij, vij, aij, and tij are, respectively:

- DFTij: j th DFT of core i.

- wij: TAM width of core i to which DFTij is applied.

- pij: maximum power consumption of testing core i to which DFTij is applied.

- aij: Area of core i to which DFTij is applied.

- vij: The amount of test data of core i to which DFTij is applied.

- tij: Test application time of core i to which DFTij is applied.

(2) Maximum TAM width of the SoC : W

(3) Maximum available peak power of the SoC: P

(4) Maximum amount of the total test data size: V

(5) Maximum area size of the SoC: A

Outputs:

(1) Selected DFT of each core

(2) Test schedule

Objective:

The test application time of the SoC is minimum, and constraints (Input: (2), (3), (4),

(5)) are satisfied.

To solve this problem, an algorithm is proposed in the next paragraph.

2-4-2 Algorithm
The algorithm is shown in Figure 2-5. The following variables are used in it.

C: Variable to store test cost information of each core: C=Ci (CDFTi, wi, pi, vi, ai, ti)

CDFTi, wi, pi, vi, ai, ti are, respectively:

 12

Procedure DFT_selection(D,W,P,A,V)
1 Define initial DFT assignment　Cinit;
2 C=Cinit;
3 current_tat= sum of the all core’s test application time;

4 best_tat=rectangle_packaging(C,W,P,A,V,current_tat);
5 do{
6 current_tat= best_tat;
7 Ccurrent = C;
8 for(i = 1; i <= number of cores; i++){

9 for(j = 1; j <= number of DFTs of core i; j++){
10 if(CDFTi != DFTij){
11 Ci = Dij /*change the core’s DFT*/

12 trial_tat= rectangle_packaging(C,W,P,A,V, current_tat);
13 if(trial_tat < best_tat){
14 best_tat = trial_tat;

15 Cbest = C;
16 }
17 }
18 }
19 C =Ccurrent;
20 }

21 if(best_tat <current_tat){
22 restore C = Cbest;
23 }
24 }while(best_tat<current_tat);

Procedure DFT_selection(D,W,P,A,V)
1 Define initial DFT assignment　Cinit;
2 C=Cinit;
3 current_tat= sum of the all core’s test application time;

4 best_tat=rectangle_packaging(C,W,P,A,V,current_tat);
5 do{
6 current_tat= best_tat;
7 Ccurrent = C;
8 for(i = 1; i <= number of cores; i++){

9 for(j = 1; j <= number of DFTs of core i; j++){
10 if(CDFTi != DFTij){
11 Ci = Dij /*change the core’s DFT*/

12 trial_tat= rectangle_packaging(C,W,P,A,V, current_tat);
13 if(trial_tat < best_tat){
14 best_tat = trial_tat;

15 Cbest = C;
16 }
17 }
18 }
19 C =Ccurrent;
20 }

21 if(best_tat <current_tat){
22 restore C = Cbest;
23 }
24 }while(best_tat<current_tat);

Fig. 2-5 DFT selection algorithm
CDFTi: selected DFT of core i.

wi: TAM width of core i.

pi: Power consumption of core i.

ai: Area of core i.

vi: Test data volume of core i.

ti: Test application time of core i.

Cinit: Test cost information under the initial DFT selection.

Ccurrent: Variable which stores the test cost information under the present DFT

selection.

Cbest: Variable which stores the test cost information under DFT selection of the

 13

minimum test application time.

current_tat: Variable which stores the test application time.

best_tat: Variable which stores the minimum test application time.

trial_tat: Variable which stores the test application time.

In the first step, the initial DFT selection and the test cost information Cinit are

created (line1). Initialize the variable that stores the test cost information current_tat

with the sum of the test application time of each core of the initial DFT selection (line2).

Next, test scheduling aiming at minimizing test application time is performed with

the rectangle_packaging algorithm [14][15]. The return value of the above-mentioned

algorithm is the test application time of the whole SoC. This result is stored in the

variable best_tat (line4).

Hereafter, while best_tat is updated, change the DFT selection and test scheduling

repeatedly (line5-line24). The loop iteration is as follows.

current_tat is updated with the value of best_tat (line6). Test cost information C
under the current DFT selection is held as Ccurrent (line7). The following procedure is

performed on all DFTs of each core (line8-line20).

If the current DFT of core i is not DFTij then copy Dij to Ci (line10 - 11). Then, test

scheduling is performed (line12). Consequently, if the obtained test application time is

shorter than best_tat (line13), best_tat will be updated (line14) and the test cost

information C will be stored as Cbest (line15). After all DFTs of the concerned core are

tried, C is written back to Ccurrent (line18). Then, after all core’s trial, if best_tat was

updated after trying all cores and all DFTs (line21), Cbest is copied to C (line22), and go

back to the line 6 (line24), otherwise the algorithm ends. DFT of each core of Cbest
obtained at the end is the solution of DFT selection algorithm.

This algorithm performs exhaustive search in the worst case. The complexity of the

scheduling algorithm is O(nlogn). The search space size of the DFT selection is ∏=

n

i
j

1
.

Therefore the complexity of this algorithm is O((nlogn) x ∏=

n

i
j

1
). In other words, if the

number of DFTs of each core is at most m, the total complexity is O(mnnlogn).

 14

１

７

３

５

４
１１

６

８

９

２

１０

１２

total
TAM
width
(W)

core 1’s
TAM

width(w1j)

6

6
6

(1) Size of each rectangle
(TAM width x TAT)
is minimum.

total TAT

core 1’s
TAT(t1j)

(2) The Core’s
rectangles
fill the total
rectangle
(Total TAT x
Total TAM width).

１

７

３

５

４
１１

６

８

９

２

１０

１２

total
TAM
width
(W)

core 1’s
TAM

width(w1j)

6

6
6

(1) Size of each rectangle
(TAM width x TAT)
is minimum.

total TAT

core 1’s
TAT(t1j)

(2) The Core’s
rectangles
fill the total
rectangle
(Total TAT x
Total TAM width).

Fig. 2-6 Lower bound case of test schedule
Because the search space becomes large rapidly to the increase in the number of

cores and the number of DFTs, a search space reduction heuristic is needed for practical

use.

Generally, in order to reduce the search space, and in order to estimate the quality of

a solution, it is useful to know the lower bound of the cost function. In the DFT selection

problem, it is difficult to find the true optimal solution. However, it is possible to

calculate some lower bounds of the test application time.

One of the optimum cases is shown in Figure 2-6. The numbered rectangles represent

the test application time and the TAM width of each core under the selected DFT. The

rectangle’s vertical length represents the TAM width, and the rectangle’s horizontal

length represent test application time. The dotted line shows the total rectangle, in

 15

which the vertical length represents the total TAM width and the horizontal length

represents the total test application time. If (1) the DFT of each core is selected such that

the size of each core’s rectangle is minimum, and (2) the core’s rectangles fill the total

rectangles, then the total test application time is the true minimum. Thus a lower bound

of test application time lb1 can be calculated as follows.

lb1 = ∑=

n

i 1
minj(tij x wij)/W

Furthermore, the total test application time cannot be shorter than a core’s test

application time. Therefore another lower bound lb2 can be calculated as follows.

lb2 = maxi (minj(tij))

Let the largest of these two values lb1 and lb2 be the lower bound LB.

LB = max(lb1, lb2)

If some choices can be deleted so that LB is not changed, it may be used effectively in

a heuristics to prune the search space in the DFT selection algorithm. The other usage of

LB is that the quality of a solution can be pessimistically estimated by comparing with

LB.

2-5 Experimental Results

2-5-1 Experimental Environment
The experimental environment is as follows.

(1) The experiment had been held on the Sun ultra80 workstation, (Sun OS 5.6),

400MHz, 2Gbyte memory.

(2) The proposed algorithm was implemented in C.

(3) Nine RTL designs were used as experimental circuit.

(4) To prepare the test cost information, we used the following conventional EDA tools:

power consumption estimation : Wattme / Artgraphics

logic synthesis : DesignCompiler / Synopsys

Scan path synthesis :DFT Compiler / Synopsys

ATPG : Tetra MAX / Synopsys

(5) To prepare the test cost information of NS-DFT, we used an in-house tool.

 16

2-5-2 Experimental Circuits
Table 2-1 shows the characteristics of the experimental circuits without DFT. These nine

circuits were used as cores. The 1st column shows the core number. The 2nd column

shows the name of the core. The 3rd column shows the number of inputs. The 4th column

shows the number of outputs. The 5th column denotes the number of memory elements.

The 6th column shows the area in terms of gate number after logic synthesis. The 7th

column shows the system clock frequency. In addition, the frequency of the scan clock is

assumed to be 1/5 of the system clock of normal operation. This assumption is based on

the survey of some product data. Also, the frequency of the test clock of NS-DFT is the

same as the system clock at normal operation. The 8th column shows the estimated

power consumption. The values are relative to the normal operation of core No.1 without

DFT. The 9th column denotes the minimum number and maximum number of the scan

chains, which were added to prepare test cost information of scan DFT. The values inside

the parenthesis show the number of choices in DFT selection. For example, we prepared

11 cases of the test cost information about scan DFT for core No.1. Scan DFT needs 4

more inputs (clock, reset, test mode, scan enable) beside the scan chains. Therefore, the

sum of the extra 4 inputs and the number of chains corresponds to the TAM width. The

10th column denotes the minimum TAM width and the maximum TAM width of NS-DFT.

The values inside the parenthesis show the number of choices in DFT selection.

In this experiment, two types of DFTs are applied to each circuit: one is Scan DFT,

and the other is NS-DFT. NS-DFT is a technique still under research and, for this reason,

there are a few constraints when using it, such as controller and data-path must be

Table 2-1 Information of the cores
of # of # of

No. name Pis Pos FFs Area frequency power
（bit） （bit） (MHz) *1 min - max min - max

1 Gcd 32 16 51 1094 100 1.00 1 - 17 (11) (1)
2 Iir 20 16 192 2525 100 0.93 1 - 20 (16) (1)
3 Jwf 80 80 228 4494 100 2.16 1 - 80 (29) 32 - 64 (2)
4 Lwf 32 32 83 1647 100 1.04 1 - 32 (16) (1)
5 Paulin 32 32 115 4713 100 1.48 1 - 33 (18) (1)
6 Risc 32 98 1284 40528 100 141.31 1 - 92 (58) 32 - 98 (3)
7 Mpeg 58 128 1942 36560 100 116.15 1 - 122 (75) 32 - 128 (3)
8 DctF 129 260 357 22650 100 19.40 1 - 179 (37) 34 - 260 (5)
9 IdctC 96 224 838 58287 100 54.77 1 - 210 (54) 32 - 224 (4)

*1 Values relative to the normal operation of core No.1

16
16

32
32

Scan DFT NS-DFT
of chain TAM width

 17

designed separately. The selected experimental circuits satisfy these constraints.

Throughout this experiment, the constraints of the test scheduling were set as

follows.

(1) Maximum allowed power consumption: (Sum of each core’s power consumption

shown in Table 2-1) * 1.5=507.34

(2) Total area size: (Sum of each core’s area size shown in Table 2-1) *1.5=258747

(3) Total TAM width: 512, 256, 128, 64

These values had to be increased in order to obtain a solution in the case of only scan

DFT, and the case of only NS-DFT. For a thorough evaluation of the proposed algorithm,

more experiments under suitable constraints are needed.

2-5-3 Experimental Results
We made experiments for the following three cases: (1) Scan only (number of scan

chain selection), (2) NS-DFT only (TAM width selection), (3) Scan and NS-DFT (DFT

method and number of scan chain, TAM width selection).

Case 1: Scan only

In case 1, each core’s DFT was limited to scan design. The number of scan chains in

each core is selected to reduce the total test application time. Table 2-2 shows the results

of case 1. The 1st column shows the name of the SoC. The 2nd column shows each SoC’s

maximum TAM width. The 3rd column denotes each core’s number denoted in Table 1-1.

The 4th column shows each core’s selected TAM width. The 5th column shows the power

consumption. The power consumption results are shown relative to the normal operation

figures of the original core No.1. The 6th column shows each core’s area size. The 7th

column shows each core’s test application time. The 8th column and the 9th column

shows each core’s test schedule. “Start” denotes each core’s test start time, and “end”

denotes each core’s test end time. The 10th column shows each SoC’s maximum power

consumption under this test schedule. The 11th column shows each SoC’s total area size.

The 12th column shows each SoC’s total test application time, either.

In SoC1, a solution for testing all cores simultaneously was obtained. The DFT of

core No.6 has the largest test application time among all cores of SoC1, even though the

DFT with the smallest test application time was chosen for core No.6. Under this

condition, as long as there is no other choice of DFT which improves the test application

 18

time of core No.6, the total test application time does not improve.

In SoC2 and SoC3, a solution to reduce the TAM width of the largest core No.6-9, and

carries out a simultaneous test was obtained.

In SoC4, the found solution splits the test of core No.6 from the test of all other cores,

i.e., core No.6 is tested independently.

Case 2: NS-DFT only

In case 2, the choice of each core’s DFT was limited to NS-DFT. Table 2-3 shows the

results of case 2. The meaning of each column is the same as that of Table 2-2.

We obtained a test schedule such that SoC1 and SoC2 have the same test application

time.

There were two factors that contributed to obtaining this result.

First, the test length for any cores with NS-DFT does not depend on its TAM width,

and initial DFT selection was not changed. Although the influence of the difference of

TAM width appeared in the power consumption and the area after DFT, it did not appear

on these results. Second, the test application time of core No.7 was very large, and as

long as there was no choice of DFT which improves its test application time, the test

application time of the whole SoC was not shortened either. In addition, in the solution

for SoC3 and SoC4, DFTs with the minimum TAM width were already chosen by the

initial DFT selection except for core No.3, and there was no improvement from the initial

DFT selection.

Case 3: Scan and NS-DFT

In case3, each core’s DFT was selected from NS-DFT or scan design. Table 2-4 shows

the result of case 3. The meaning of the 1st-3rd columns is the same as that of Table 2-2

and Table 2-3. The 4th column shows the selected DFT. The meaning of the 5-13th

columns is the same as that of the 4-12th columns of Table 2-2 and Table 2-3.

As for the test application time of the whole SoC, we obtained the shortest times

compared to cases 1 and 2. In case 1, the test application time was longer because of the

DFT selected for core No.6. However, in case 3 we could choose another DFT for core No.6

such that test application time improved. In case 2, the test application time was longer

because of the DFT selected for core No.7. However, in case 3 we could choose another

DFT for core No.7 such that test application time improved.

 19

Table 2-2 Test schedule and test application time (Scan only)

Name TAM No. TAM Power Area TAT Max Total Total CPU
width width *1 (gates) (10-6s) Start End Power Area TAT (sec)

1 9 0.04 1301 50 0 50
2 11 0.04 3296 34 0 34
3 15 0.10 5409 56 0 56
4 11 0.05 1982 27 0 27
5 12 0.06 5176 43 0 43
6 96 6.36 45667 304 0 304
7 76 5.62 44331 195 0 195
8 55 0.82 24081 217 0 217
9 74 2.31 61642 244 0 244
1 9 0.04 1301 50 0 50
2 11 0.04 3296 34 0 34
3 15 0.10 5409 56 0 56
4 11 0.05 1982 27 0 27
5 12 0.06 5176 43 0 43
6 63 6.36 45667 466 0 466
7 34 5.62 44331 461 0 461
8 27 0.82 24081 462 0 462
9 74 2.31 61642 244 0 244
1 9 0.04 1301 50 0 50
2 11 0.04 3296 34 56 90
3 15 0.10 5409 56 0 56
4 11 0.05 1982 27 56 83
5 12 0.06 5176 43 0 43
6 34 6.36 45667 893 0 893
7 19 5.62 44331 916 0 916
8 17 0.82 24081 788 0 788
9 22 2.31 61642 902 0 902
1 10 0.04 1301 41 1330 1371
2 11 0.04 3296 34 1330 1364
3 19 0.10 5409 43 1330 1373
4 11 0.05 1982 27 1330 1357
5 12 0.06 5176 43 1330 1373
6 63 6.36 45667 466 864 1330
7 25 5.62 44331 657 0 657
8 16 0.82 24081 843 0 843
9 23 2.31 61642 864 0 864

*1 Values relative to the normal operation of core No.1 without DFT

75.8

55.4

19.5

32.6

15.32 192885

304

466

916

192885

192885

SoC4 1373

512

256

15.40

15.40

8.76 192885

128

64

Schedule

SoC1

SoC2

SoC3

 20

Table 2-3 Test schedule and test application time (NS-DFT only)

Name TAM No. TAM Power Area TAT Max Total Total CPU
width width *1 (gates) (10-6s) Start End Power Area TAT (sec)

1 16 1.53 1680 4 0 4
2 16 1.19 3229 6 0 6
3 64 2.92 6087 3 0 3
4 32 1.53 2428 3 0 3
5 32 1.76 5635 13 0 13
6 32 163.75 46966 51 0 51
7 32 161.06 50702 835 0 835
8 64 25.09 29300 15 0 15
9 64 102.36 108953 228 0 228
1 16 1.53 1680 4 0 4
2 16 1.19 3229 6 0 6
3 64 2.92 6087 3 228 231
4 32 1.53 2428 3 228 231
5 32 1.76 5635 13 0 13
6 32 163.75 46966 51 0 51
7 32 161.06 50702 835 0 835
8 64 25.09 29300 15 0 15
9 64 102.36 108953 228 0 228
1 16 1.53 1680 4 228 232
2 16 1.19 3229 6 835 841
3 64 2.92 6087 3 232 235
4 32 1.53 2428 3 228 231
5 32 1.76 5635 13 0 13
6 32 163.75 46966 51 0 51
7 32 161.06 50702 835 0 835
8 34 25.17 29396 15 835 850
9 32 102.46 109049 228 0 228
1 16 1.53 1680 4 228 232
2 16 1.19 3229 6 886 892
3 64 2.92 6087 3 901 904
4 32 1.53 2428 3 232 235
5 32 1.76 5635 13 835 848
6 32 163.75 46966 51 835 886
7 32 161.06 50702 835 0 835
8 34 25.17 29396 15 886 901
9 32 102.46 109049 228 0 228

*1 Values relative to the normal operation of core No.1 without DFT

0.6

0.6

0.5

Schedule

835461.19 254980 0.6

835

850255172

904

512

256

128

64

456.74 254980

429.04

263.53 255172

SoC1

SoC2

SoC3

SoC4

 21

Table 2-4 Test schedule and test application time (Scan and NS-DFT)

Name TAM No. selected TAM Power Area TAT Max Total Total CPU
width DFT width *1 (gates) (10-6s) Start End Power Area TAT (sec)

1 NS-DFT 16 1.53 1680 4 0 4
2 NS-DFT 16 1.19 3229 6 0 6
3 NS-DFT 80 2.89 6039 3 118 121
4 NS-DFT 32 1.53 2428 3 118 121
5 NS-DFT 32 1.76 5635 13 0 13
6 NS-DFT 64 163.41 46870 51 0 51
7 ScanDFT 126 5.62 44331 118 0 118
8 NS-DFT 64 25.09 29300 15 0 15
9 ScanDFT 172 2.31 61642 112 0 112
1 NS-DFT 16 1.53 1680 4 169 173
2 NS-DFT 16 1.19 3229 6 169 175
3 NS-DFT 80 2.89 6039 3 169 172
4 NS-DFT 32 1.53 2428 3 169 172
5 NS-DFT 32 1.76 5635 13 169 182
6 NS-DFT 32 163.75 46966 51 0 51
7 ScanDFT 112 5.62 44331 132 0 132
8 NS-DFT 64 25.09 29300 15 169 184
9 ScanDFT 109 2.31 61642 169 0 169
1 NS-DFT 16 1.53 1680 4 237 241
2 NS-DFT 16 1.19 3229 6 237 243
3 NS-DFT 80 2.89 6039 3 252 255
4 NS-DFT 32 1.53 2428 3 252 255
5 NS-DFT 32 1.76 5635 13 237 250
6 NS-DFT 32 163.75 46966 51 0 51
7 ScanDFT 63 5.62 44331 237 0 237
8 NS-DFT 64 25.09 29300 15 237 252
9 NS-DFT 32 102.46 109049 228 0 228
1 NS-DFT 16 1.53 1680 4 480 484
2 NS-DFT 16 1.19 3229 6 480 486
3 NS-DFT 64 2.92 6087 3 493 496
4 NS-DFT 32 1.53 2428 3 496 499
5 NS-DFT 32 1.76 5635 13 480 493
6 NS-DFT 32 163.75 46966 51 237 288
7 ScanDFT 63 5.62 44331 237 0 237
8 NS-DFT 64 25.09 29300 15 465 480
9 NS-DFT 32 102.46 109049 228 237 465

*1 Values relative to the normal operation of core No.1 without DFT

64

SoC1

SoC2

SoC3

SoC4 499

Schedule

512 200.92 201154

248657

266.21 248705

256

128 271.84

121

184

255

171.69 201250 55.1

26.4

28.5

33.7

 22

Table 2-5 Comparison of test application time

Name TAM case1 case2 case3 C/A C/B
width [A] [B] [C]

SoC1 512 304 835 121 0.40 0.14
SoC2 256 466 835 184 0.39 0.22
SoC3 128 916 850 255 0.28 0.30
SoC4 64 1373 904 499 0.36 0.55

Table 2-5 shows the comparison of test application time. The 1st column shows SoC

name. The 2nd column shows total TAM width. The 3rd-5th columns show the total test

application time of cases 1-3, respectively. The 6th column shows the ratio of test

application time in case 3 to the test application time in case 1. The 7th column shows

the ratio of test application time in case 3 to the test application time in case 2. In case 3,

the total test application times were shortened from 60% to 72% compared with case 1,

and from 45% to 86% compared with case 2.

Figure 2-7 shows the test schedule of SoC4. The vertical axis shows the TAM width

and the horizontal axis shows the test application time. In case 2, of all cores except for

Mpeg, the test application times are shorter than that of care1. So, the Mpeg is the

bottleneck of case2. In case3, Scan DFT is selected as the DFT of Mpeg, and the total test

application time is drastically improved.

These experimental results show that the differences in the selection scope of DFT

drastically changes the test cost of an SoC. Therefore, the usefulness of having a

database with the test cost information of several DFTs, and using this database to

optimize DFT selection to reduce test cost in early stages of design flow was shown.

 23

Risc

MPEG

DctF

IdctC

Scan only

Test application time

TA
M

 w
id

th

MAX=64

MPEG

IdctC

Risc

NS-DFT only
MAX=64

Test application time

TA
M

 w
id

th Bottleneck!

MPEG

IdctC

Risc

MAX=64
NS-DFT & Scan

TA
M

 w
id

th

Test application time

Risc

MPEG

DctF

IdctC

Scan only

Test application time

TA
M

 w
id

th

MAX=64

MPEG

IdctC

RiscMPEG

IdctC

Risc

NS-DFT only
MAX=64

Test application time

TA
M

 w
id

th Bottleneck!

MPEG

IdctC

Risc

MPEG

IdctC

Risc

MAX=64
NS-DFT & Scan

TA
M

 w
id

th

Test application time

Fig. 2-7 Test schedule of SoC4

 24

Table 2-6 shows the test application time, which is calculated in cases 1 to 3, and the

lower bounds of optimum solution, which is denoted in section 4. The 1st column shows

the case number. The 2nd column shows the name of the SoC. The 3rd column shows the

total TAM width. The 4th column shows total test application time, which is calculated

in this experiment. The 5th column shows the lower bound of test application time,

which is described in section 4. The 6th column shows the ratio of experimental results

relative to the lower bounds. The last column shows the CPU time of the experiments.

In cases 1, 2, and 3, the numbers of combinations of DFT selection are 1.28x1013, 360,

2.37x1013, respectively. In the worst case, the proposed algorithm performs exhaustive

search, and the execution time is possible to be so large that the experiment cannot be

completed. However, in this experiment, the execution time is less than 100 seconds.

Although the algorithm may have ended without carrying out sufficient search, the ratio

of experimental results to the lower bounds shows that the experimental results are less

than 1.6 times larger than the optimum solutions.

Table 2-6 Test application time and lower bound of optimum solution

Name TAM Total LB TAT/LB CPU
width TAT (sec)

SoC1 512 304 304 1.00 75.8
SoC2 256 466 304 1.53 55.4
SoC3 128 916 596 1.54 19.5
SoC4 64 1373 1191 1.15 32.6
SoC1 512 835 835 1.00 0.6
SoC2 256 835 835 1.00 0.6
SoC3 128 850 835 1.02 0.6
SoC4 64 904 835 1.08 0.5
SoC1 512 121 118 1.03 33.7
SoC2 256 184 118 1.56 55.1
SoC3 128 255 198 1.29 26.4
SoC4 64 499 396 1.26 28.5

case1

case2

case3

 25

2-6 Conclusions

The framework of an SoC test architecture generation was proposed. The framework

contains a database, which stores the test cost information on several DFTs for every

core, and DFT selection part. In the framework, each core’s DFT is selected for reducing

the test application time using test cost information database in the early phase of the

design flow. Moreover, the DFT selection problem was formulated and the algorithm,

which solves this was proposed. Experimental results show that bottlenecks in test

application time when using the single DFT method for all cores in a SoC is reduced by

performing DFT selection from two types of DFTs. As a result, the whole test application

time is shortened.

 26

3 A MEMORY GROUPING METHOD FOR REDUCING
MEMORY BIST LOGIC OF SYSTEM-ON-CHIPS

3-1 Introduction

With the increasing number of functions being included in SoCs, many memories

with different sizes and frequencies are being used. Recently, SoCs contain hundreds of

memories. Testing all the memories in these SoCs sequentially would take a long time.

Therefore, a memory BIST design that allows two or more memories to be tested

simultaneously is needed. However, due to power-consumption constraints, not all

memories can be activated at the same time. To solve this problem, a scheduling

technique for minimizing the test application time under power-consumption constraints

is needed. Adding individual circuits for memory BISTs to lots of small memories would

result in huge area overheads. To reduce these overheads, memory BIST logic must be

able to be shared.

A BIST architecture, based on a single micro-programmable BIST processor and a set

of memory wrappers, was proposed to simplify the testing of systems containing many

distributed SRAMs of different sizes [20]. To reduce the BIST area overhead, it was

proposed to share a single wrapper between a cluster of SRAMs (same type, width, and

addressing space). There is another architecture that can connect memories that have

different widths or addressing spaces and share BIST logic.[21]. In the architecture,

single memory BIST logic can test any number of memories. Memories can be tested

serially or in parallel. Each memory to test is assigned to a particular step. All memories

in step 1 are tested before memories in step 2, and so on. The designer can select a

satisfactory assign of memories in consideration of the test time, the diagnostic

resolution and the overhead. But there is no deterministic algorithm to find an optimal

assign of memories.

In this chapter, two types of memory-connection methods for BIST wrapper sharing

are proposed. A memory-grouping problem for test circuit minimization under

constraints of power consumption and test application time is also formulated together

with an algorithm that solves the problem. In addition, the effectiveness of this

 27

technique is demonstrated experimentally. This chapter is organized as follows. In

section 3-2, memory BIST logic sharing method is described. In section 3-3, the

memory-grouping problem and an algorithm to solve the problem are presented. The

experimental results are shown in section 3-4. Finally, section 3-5 concludes this chapter.

3-2 Memory BIST Logic Sharing

In this section, two methods of BIST logic sharing for single port and word access

memory are described. Figure 3-1 shows an example of a memory BIST wrapper. The

data generator generates input test sequences. The address generator generates read

and write addresses and the response analyzer captures test output responses and

detects faults. The by-pass FFs are not used to test memory, but are used to handle the

memory interface signal during a scan test. The area of the address generator, data

generator, and response analyzer are almost proportional to the bit width of the address,

input data, and output data, respectively. However, some of these logics can be shared by

different memories wherever the number of words or the data bit width are the same;

hence, the area of test circuits can be reduced. In this thesis, the following two memory

connection methods for memory BIST logic sharing are treated: parallel connection and

serial connection.

Memory
Cells

decoder

Data I/O

address

data

Control
(CS,R/W,reset)

BIST
Controller

Data
Generator

Address
Generator

Response Analyzer

m
u
x

m
u
x

m
u
x

de
co

de
r

m
u
x

Bypass FFs
for Scan test

Memory
Cells

decoder

Data I/O

address

data

Control
(CS,R/W,reset)

BIST
Controller

Data
Generator

Address
Generator

Response Analyzer

m
u
x

m
u
x

m
u
x

de
co

de
r

m
u
x

Bypass FFs
for Scan test

Fig. 3-1 Memory BIST wrapper

 28

data input

(1) (2) (3) (4)

A[4:0]

5
D [7:0]

88 5 8 5 8 5 8

5

Dout
[31:0]

DG

AG

RA

data output

CS CS CS CSA A A A

Dout Dout Dout Dout

D D DD

8 8 8 8

data input

(1) (2) (3) (4)

A[4:0]

5
D [7:0]

88 5 8 5 8 5 8

5

Dout
[31:0]

DG

AG

RA

data output

CS CS CS CSA A A A

Dout Dout Dout Dout

D D DD

8 8 8 8

Fig. 3-2 Parallel connection of memories
Parallel connection can be used to connect memories that have the same number of

words. Figure 3-2 shows an example of parallel connection.

In this example, three data and address generators are reduced to one by

distributing the same test data and address signals from a couple of data and address

generators to (1) - (4), enabling four memories to be tested simultaneously.

Serial connection allows memories with the same bit width to be connected. Figure

3-3 shows an example of four serially connected 8x32 word memories. In this example,

the four memories are tested as an 8x128 word memory. The address generator

generates an additional 2bit signal, and the signal is used to select the memories from

(1) - (4), enabling the four memories to be tested serially. If all the memories have

individual BIST logic, a 32-bit data generator and response analyzer are required, but in

this example, all the memories can be tested using a shared 8bit generator and 8bit

response analyzer.

 29

data input

(1) (2) (3) (4)
CS CS CS CS

A[6:0]

A A A A

5
D [7:0]

88 5 8 5 8 5 8

de
c

2
7

5

Dout Dout Dout Dout Dout
[7:0]

DG

AG

RA

data output

8

D D DD

8 8 8 se
l

data input

(1) (2) (3) (4)
CS CS CS CS

A[6:0]

A A A A

5
D [7:0]

88 5 8 5 8 5 8

de
c

2
7

5

Dout Dout Dout Dout Dout
[7:0]

DG

AG

RA

data output

8

D D DD

8 8 8 se
l

Fig. 3-3 Serial connection of memories
Serial connection reduces the area more than parallel connection and also uses less

power than parallel connection. However, the time required for serial connection testing

is longer than that for parallel connection testing.

To achieve the minimum area and a reasonable test application time under power

consumption constraints, the type of memory connection should be considered during

decisions on memory grouping. The layout design must also take into account distance

constraints in relation to these connections.

3-3 Memory-Grouping Problem and Algorithm

3-3-1 Formulation of Memory-Grouping Problem
In this subsection, a memory-grouping problem is formulated. It is assumed that the

following information for each memory mi is given:

 30

- bi: data bit width of mi

-wi: word depth of mi

- pi: maximum power consumption of testing mi

- fi: operating frequency of mi

-xi: X coordinate of mi, yi: Y coordinate of mi

We define two types of compatibility, namely p-compatibility and s-compatibility, as

follows:

Given a set of memories V={m1, m2, …mn}, a pair of memories mi, mj∈ V is

p-compatible if they satisfy the following conditions:

wi =wj (1)

fi =fj (2)

22)()(jiji yyxx −+− <D (3)

D is a constraint value that the designer decides according to the design condition.

P-compatibility is represented by a graph Gp = (V, Ep), where V is a set of a memory

and the edge between a pair of vertices (mi, mj).∈Ep exists if mi and mj are p-compatible.

If a set of memories can be connected in parallel, the graph induced on Gp by the

memories has to be a clique.

In the same way, a pair of memories mi, mj∈V is s-compatible if they satisfy the

following conditions:

bi =bj (4)

fi =fj (5)

22)()(jiji yyxx −+− <D (6)

S-compatibility is represented by a graph Gs = (V, Es), where V is a set of memories

and the edge between a pair of vertices (mi, mj).∈Es exists if mi and mj are s-compatible.

If a set of memories can be connected serially, the graph induced on Gs by the memories

has to be a clique.

To design memory BIST wrappers using these techniques for memory BIST logic

sharing, we have to find a partition of V such that the memories that share the wrapper

are included in the same block. Moreover, the partition π ={ }nBBB ,..., 21 has to satisfy

 31

the following conditions:

Gip is the graph induced on Gp by block Bi.

Gis is the graph induced on Gs by block Bi.

Gip or Gis is a clique.

When only the graph Gip (Gis) is a clique, the memories included in Bi are connected

in parallel (serially). Figure 3-4 shows an example of a compatibility graph and our

target partition. For a given set of memories M1-5, p-compatibility, and s-compatibility

graphs under the distance constraint D=30 can be generated as shown in Figure 3-4 (a)

and (b), respectively. Figure 3-4 (c) shows an example of our target partition. The

partition has two blocks, B1 and B2. B1 and B2 are the node set of the clique of the

s-compatibility and p-compatibility graphs, respectively.

M4 M2

M5

M1

M3

(a)p-compatibility graph

M4 M2

M5

M1

M3

(b)s-compatibility graph

(c)target partition

M4 M2

M5

M1

M3

-all blocks are node set of
clique of (a) or (b){ }

{ }
{ }M5M4,

M3M2,M1,
=
=
=

2

1

21

B
B

BB ,π

frequency
(MHz) x y

M1 32 128 133 20 10
M2 32 128 133 40 10
M3 32 128 133 41 10
M4 16 128 133 52 10
M5 16 128 133 53 10

bits words location

(D=30) (D=30)

M4 M2

M5

M1

M3

(a)p-compatibility graph

M4 M2

M5

M1

M3

(b)s-compatibility graph

(c)target partition

M4 M2

M5

M1

M3

-all blocks are node set of
clique of (a) or (b){ }

{ }
{ }M5M4,

M3M2,M1,
=
=
=

2

1

21

B
B

BB ,π

frequency
(MHz) x y

M1 32 128 133 20 10
M2 32 128 133 40 10
M3 32 128 133 41 10
M4 16 128 133 52 10
M5 16 128 133 53 10

bits words locationfrequency
(MHz) x y

M1 32 128 133 20 10
M2 32 128 133 40 10
M3 32 128 133 41 10
M4 16 128 133 52 10
M5 16 128 133 53 10

bits words location

(D=30) (D=30)

Fig. 3-4 Compatibility graphs and target partition

 32

For a partition π , we can calculate the area of the BIST wrapper, test application

time, and power consumption of each block. The area and test application time depend

on the test-pattern algorithm. In this work, these were calculated according to a

published design [24] using an 8N algorithm as follows.

If the connection type of block Bi={m1, m2, …mk} is a parallel connection,

Area SBi = ()() () () () 66325182750 2
1

2
2

2 +++++ ∑
=

llBi

k

l
lBiBi bwbwkw maxlogloglog. (7)

Power consumption PBi=∑
=

k

l
lp

1
 (8)

Test application time TBi= BiBi fw /8× (9)

(fBi=f1=f2=...=fk)

If the connection type of block Bj={m1, m2, …mk} is a serial connection,

Area SBj =

() 618149252750 2
1

2
1

2

2

1
2 +++++








+








+















 ∑∑∑
===

kbkbkkwwkw BjBj

k

l
l

k

l
l

k

l
l loglogloglog. (10)

 (bBj=b1=b2=...=bk)

Power consumption PBj= ()ll
pmax (11)

Test application time

TBj= Bj

k

l
l fw /8

1








× ∑

=

× (number of background patterns) (12)

The expressions for area calculation (7) and (10) do not consider the influence of

timing conditions, but feedback is available from previous designs.

Parallel-connected memories are tested concurrently, and the power consumption is

the sum of the power consumption of each memory. In contrast, serial-connected

memories are activated one by one. Therefore, the power consumption is the maximum

power consumption of the connected memories.

When a partition π as described in 3.1 is found, the area, power consumption, and

test application time of each block are calculated using the above expression.

The total area of the memory BIST wrappers Stotal is calculated as the sum of SBi.

 33

∑
=

=
n

i
Bitotal SS

1
 (13)

To control each memory BIST wrapper, at least one BIST controller must be used. In

this study, the number of memory BIST wrappers was reduced by using the proposed

connections. There was therefore no increase in the number of controllers. In addition,

our target design includes a lot of memories so that the area of the memory BIST

wrappers is predominant. Therefore the area of the BIST controllers is disregarded. But

if there is a large difference in BIST controllers between parallel and serial connection,

Stotal should include the area of BIST controllers. The difference in the BIST controller

area will depend on the BIST architecture and algorithm used.

If there are many memories close to each other, the wiring congestion may also need

to be taken into consideration. To add the parameter that reflects the amount of wiring

to the area calculation is our future work.

To calculate the total test application time of a memory BIST under a

power-consumption constraint, we used a rectangle packing algorithm that has been

described elsewhere [14]. The algorithm optimizes the test schedule of each core so that

the total test application time of an SoC is minimized under maximum power constraints.

The inputs of the scheduling algorithm are the maximum allowed power consumption,

the test application time, and the power consumption of each core. In this study, we

considered a block to be a core. Therefore, we input {PBj} {TBj} as the information for each

core. In addition, we assumed the bit width of the inter-connect between each wrapper

and control logic remained unchanged. We therefore disregarded the maximum TAM

width.

Constraint: Max power

Test application time

Rectangle of each memory group

Mem group
1

2
3

4

5

Total test application time

power
consumption

Constraint: Max power

Test application time

Rectangle of each memory group

Mem group
1

2
3

4

5

Total test application time

power
consumption

Fig. 3-5 Test scheduling using rectangle packing

 34

In this work, rectangles represent the test application time and power consumption

of each memory group were packed within limits representing the power consumption as

shown in Figure 3-5. The packing within the limits is determined so that the total test

application time is as short as possible. The left end of each rectangle shows the test

start time of the corresponding memory group.

To reduce the total area of memory BIST wrappers by memory BIST logic sharing, we

formulated the following memory-grouping problem.

Inputs:

a) A set of memories S and information for each memory: M=Mi (bi, wi, pi, fi, xi yi)

where, bi, wi, pi, fi, xi, and yi are as follows:

bi: data bit width of mi

wi: word depth of mi

pi: maximum power consumption of testing mi

fi: frequency of mi

xi: X coordinate of mi

 yi: Y coordinate of mi

Outputs:

a) A partition π of a given set of memories S for which all the blocks satisfy

the following conditions:

Gip is the graph induced on Gp by block Bi.

Gis is the graph induced on Gs by block Bi.

Gip or Gis is a clique.

b) Type of connection of each block

c) Test schedule of each memory

Constraints:

a) Maximum distance of memory connection: D

b) Maximum available peak power of the SoC: P

c) Maximum test application time of memory: T

Objective:

 To minimize totalS .

To solve this problem, an algorithm is proposed below.

 35

3-3-2 Memory-Grouping Algorithm
Figure 3-6 shows the memory-grouping algorithm. In step 1, the algorithm creates

an s-compatibility graph. In step 2, the minimum cut edge is calculated and deleted from

the s-compatibility graph. As a result of this operation, the graph is divided, leaving a

high possibility of a reduction in area. In step 3, if the graph is not divided as a clique

partition, the algorithm returns to step 2. In step 4, the algorithm calculates the test

schedule. In step 5, if the test scheduling fails, the algorithm returns to step 2 and

divides the graph. If all the memories are divided individually and the scheduling fails,

it means that there is no solution under the given constraints. In step 6, the algorithm

gathers blocks that have only one memory into one block, and searches for the partition

at which Stotal is minimized using p-compatibility. In this second search, it does not

consider blocks that are determined to include two or more memories by the first search.

These are considered to be suitable for serial connection, while the rest are considered to

be suitable for parallel connection.

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

No

No

Generate s-compatibility graph under constraint
(Distance < D)

Divide graph using mincut algorithm

Test scheduling under constraints
(Power & Test application time)

For memories that were not connected,
generate p-compatibility graph and repeat
Step2-5

Clique partition?

Did the scheduling succeed?

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

No

No

Generate s-compatibility graph under constraint
(Distance < D)

Divide graph using mincut algorithm

Test scheduling under constraints
(Power & Test application time)

For memories that were not connected,
generate p-compatibility graph and repeat
Step2-5

Clique partition?

Did the scheduling succeed?

Fig. 3-6 Memory grouping algorithm

 36

Our proposed algorithm repeats the division process from a 0-partition, that is, only

one block that includes all the memories, to obtain the target partition. As the algorithm

divides the block, Stotal increases. To reduce Stotal, we use the following heuristics. As

shown in Figure 3-7, we introduce the weight of an edge that represents the sum of the

reduced bit with the data generator and response analyzers resulting from the

connection. M1-M5 are the same set of memories that were denoted in Figure 3-4. For

example, M1 and M2 have 32-bit data inputs and outputs. If these memories are

connected using serial connection, we can reduce the 32-bit data generator and 32-bit

response analyzer. So the weight of the edge {M1, M2} in the s-compatibility graph is

calculated as 32+32=64.

M4 M2

M5

M1

M3

(a)p-compatibility graph

M4 M2

M5

M1

M3

(b)s-compatibility graph

M4 M2

M5

M1

M3

weight:
reduced bit

width by
connection

∑

64 64

64

32

16

16

16

16

16

64 64

64

16

Find partition of given memory set such that:
- all blocks are node set of clique of (a) or (b)
- the sum of weight is maximum

M4 M2

M5

M1

M3

(a)p-compatibility graph

M4 M2

M5

M1

M3

(b)s-compatibility graph

M4 M2

M5

M1

M3

weight:
reduced bit

width by
connection

∑

64 64

64

32

16

16

16

16

16

64 64

64

16

Find partition of given memory set such that:
- all blocks are node set of clique of (a) or (b)
- the sum of weight is maximum

Fig. 3-7 Heuristic of graph division

 37

To ensure that the area is reduced as much as possible, we use a min-cut method

[22][23] in the graph division process. The following strategies are also used to decide

the compatibility of each block of the partition. Serial connection reduces the area more

than parallel connection, and it also consumes less power. Therefore, it is possible that

giving priority to serial connection reduces Stotal. Based on this prospect, the proposed

algorithm searches for the partition that minimizes Stotal using only s-compatibility in

the first search. Figure 3-8 shows the pseudo code of the Memory Grouping Algorithm.

First, the algorithm initializes variables. The minimum value of Stotal is stored into

Smin, and, in the first step, Smin is set to the total area of memory BIST wrapper without

sharing. The partition of a set of memory S is stored into π , and the initial partition is

set to 0-partition of S. (line 1-2).

Next, the algorithm creates two compatibility graphs (line 3), and select

s-compatibility graph as the graph G that is used to find partition (line 4).

In order to check the compatibility of each block, the algorithm construct a set of

graph Call (line 6). Each graph Gi that is the member of Call is induced on G by block Bi

that is the member of π .

Then, for all Bi that include two or more memories, execute the following operations

(line 7-21).

The minimum cut edge is calculated and delete them from Gi. By this operation, the

vertex set Bi is divided into two blocks, leaving much possibility of the area reduction. If

all the graph of new graph set Call are clique, calculate Stotal and test schedule of the
new partition

tmpπ . If Smin>Stotal and the test scheduling succeeded,
tmpπ is stored

into bestπ as the best partition, and Stotal is stored into Smin (line 8-17). If there is a graph Gi

that is not a clique, or the test scheduling failed,
tmpπ is stored into nextπ (line 18-20).

If there is no partition that should be tried, the first search is end (line22-24). Then

the algorithm stores p-compatibility graph into G, and collects the blocks that have only

one memory into one block (line25-28). Then, the algorithm searches for the partition

that Stotal is minimized using p-compatibility (line5-24).

This algorithm performs n(n-1) times division and scheduling in the worst case. The

complexity of the scheduling algorithm and min-cut algorithm are O(VlogV) and
O(V2logV), respectively. Therefore the complexity of this algorithm is O(V3logV).

 38

Procedure Memory_Grouping (M, P, T, D){

1 Smin= the total area of memory BIST wrapper without sharing; maxedgenum=0; edgenum=0;

2 π ={B}, B={m1, m2, …mn}; φπ =tmp
; φπ =next ; φπ =best ; φπ =−compatibles

;

3 Gs = s-compatibility_graph of B; Gp = p-compatibility_graph of B;

4 G = Gs;

5 loop:

6 Construct a set of graph Call={ Gi| Gi is induced graph on G by Bi∈π }

7 for({Bi∈(compatibles−−ππ)|which includes two or more memories}){

8 delete min-cut edge from Gi, make a set of graph Cmin={Gi1,Gi2 };

9 Call= (Call- Gi)U Cmin;

10 Set edgenum=∑
j

(the number of edges of Gj∈Call);

11 Set a partition
tmpπ ={Bj| vertex set of Gj∈Call };if all Gj are clique,calculate Stotal of

tmpπ

12 if((
allj CG ∈∀ , Gj is clique)∧ (Smin>Stotal of

tmpπ)){

13 calculate Ttotal=Schedule(P, {PBj}, {TBj});

14 if((Schedule succeeded)∧ (Ttotal ≤ T)){
15 Smin = Stotal; bestπ =

tmpπ ;

16 }
17 }
18 if(edgenum > maxedgenum ∧ ((Schedule failed, or Ttotal ≤ T)∨
 (

allj CG ∈∃ , Gj is not a clique))){

19 nextπ =
tmpπ ; maxedgenum=edgenum;

20 }
21 }
22 if(nextπ φ≠){

23 π = nextπ ; φπ =next ; go to loop;

24 }
25 else if(G=Gs){

26 G = Gp; compatibles−π ={
bestjB π∈ | which includes two or more memories };

27 Bs=
k
U Bk (Bk∈(

compatiblesbest −−ππ)); π ={Bs}U compatibles−π ; go to loop;

28 }else{end;}

Fig. 3-8 Memory grouping algorithm (pseudo code)

 39

3-4 Experimental Results

We carried out experiments to evaluate the proposed method. The proposed

algorithm was implemented in C and the experiments were conducted on a 600-MHz

Windows PC. Table 3-1 shows the information in each memory used in the experiment.

The 2-4th columns denote the data bit width, word depth, and operating frequencies,

respectively. The 5th column shows the power consumption. In this experiment, the

power consumption of each memory was a relative value in which memory No. 1 was

assumed to be 100 under the following assumption:

(1) The area is proportional to (number of words × number of bits).

(2) The power consumption is proportional to the area.

(3) The power consumption is proportional to the frequency.

The 6th and 7th columns show location. In this experiment, the number of memories

was varied between 3 and 50, and the program was executed respectively. When the

number of memories was N<11, we used No. 1 to N, and for the rest, we extended the

same set of No.1-10, with the Y coordinate changing between 20 to 50.

Table 3-1 Algorithm input information on memories

Location
No.

data

bit width
#Words

Frequency

(MHz)

Power

*1 X Y

1 16 128 133 100 10

2 16 128 133 100 20

3 16 128 266 200 30

4 16 128 266 200 40

5 16 256 133 200 50

6 16 256 133 200 60

7 16 256 133 200 70

8 16 256 133 200 80

9 32 512 133 400 90

10 32 512 133 400 100

10,

20,

30,

40,

50

*1 Relative values in which memory No.1 is assumed to be 100

 40

In an actual test, several background patterns (e.g. marching, checker, checker-bar)

are used, but in this experiment, the test application time was calculated by assuming

the number of background patterns=1. In addition, the following constraint values were

used:

Maximum distance of memory connection: D=40

Maximum available peak power of the SoC: P=5000
Maximum test application time of memory: T=300 sµ

Experiments were carried out for the following five cases:

(1) Not shared (all the memories had individual BIST wrappers)

(2) Parallel connection (memory BIST logic was shared using only parallel

connection as described in the proposed technique)

(3) Serial connection (memory BIST logic was shared using only serial connection as

described in the proposed technique)

(4) Parallel and serial connection (memory BIST logic was shared using both

parallel and serial connection as described in the proposed technique)

(5) Exhaustive search (memory BIST logic was shared using only parallel

connection after an exhaustive search).

Table 3-2 shows the experimental results. The first column shows the number of

memories and the second column shows the total area of memory BIST wrappers without

sharing. Columns 3-5 show the total area of memory BIST wrappers using the proposed

techniques. The third column shows the results of using only parallel connection, while

the fourth column shows the results of using only serial connection. The fifth column

shows the results of using both parallel and serial connection and the sixth column

shows the minimum solution obtained using an exhaustive search. The last column

shows the ratio of the results of S&P relative to the minimum solutions.

We were only able to complete an exhaustive search when the number of memories

was less than 7. In these cases, the results of the exhaustive search showed that the

memory BIST logic sharing technique reduced the area of the BIST wrappers by between

21.59 and 47.83% as minimum solutions. When the number of memories is less than 6,

proposed technique achieved minimum solution. When the number of memories are 6

and 7, the results are 12% and 33% large than minimum solutions, respectively. The

 41

quality of the solution seems to deteriorate as the size of the problem grows. There may

be room for improving the quality of solution.

The average reduction ratio for parallel connection, serial connection, and parallel

and serial connection were 21.08%, 37.25%, and 40.55%, respectively.

Table 3-2 Area of memory-BIST logic

Proposed algorithm

#of mem not shared P only S only S&P exhaustive

S&P/

exhaustive

3 2289 1967 1660 1660 1660 1.00

4 2913 2591 2284 2284 2284 1.00

5 3537 2893 2279 2279 2279 1.00

6 4203 3559 3044 2722 2415 1.13

7 4869 3863 3690 3368 2540 1.33

8 5535 4529 3719 3397

9 6201 4793 3828 3506

10 7242 5427 3122 3122

11 8283 6021 6447 5678

12 8907 7539 4703 4703

13 9531 7394 5411 5089

14 10155 7696 5406 5406

15 10779 7998 5401 5401

20 14484 10854 6769 6769

30 21726 16281 10455 10455

40 28968 22070 23784 19662

50 36210 27497 22964 21551

N/A N/A

 42

0.1

1

10

100

1000

10000

0 10 20 30 40 50 60

exhaustive

Proposed (S&P)

number of memories

CPU
time
(sec)

0.1

1

10

100

1000

10000

0 10 20 30 40 50 60

exhaustive

Proposed (S&P)

number of memories

CPU
time
(sec)

Fig. 3-9 CPU time for memory grouping program

In all cases, parallel and serial connection achieved the best solution. This result

demonstrates that selection from two types of connection methods reduces the area more

than using a single connection method.

Finally, Figure 3-9 shows the execution time of the implemented memory-grouping

program. In all cases, the program was executed within 10 seconds using the proposed

algorithm. The technique thus obtained good results within a very short CPU time so it

is suitable for practical application.

3-5 Conclusion

A memory grouping problem was formulated and an algorithm to solve the problem

was proposed. Experimental results showed that the proposed method reduced the area

of memory BIST wrappers by up to 40.55%. It was also shown that the ability to select

from two types of connection methods reduced the area more than using a single

connection method.

 43

4 CONCLUSION AND FUTURE WORK

4-1 Summary of the Thesis

As the increasing of functionality of SoCs, SoCs are getting large, and the more test

application time would be needed. Furthermore, the functionality of SoCs increasing

causes high overhead of memory BIST logic. This thesis presents the methods for easing

these problems.

Chapter 2 presented a framework of an SoC test architecture generation. The

framework contains a database, which stores the test cost information on several DFTs

for every core, and DFT selection part. In the framework, each core’s DFT is selected for

reducing the test application time using test cost information database in the early

phase of the design flow. Moreover, the DFT selection problem was formulated and the

algorithm to solve the problem was proposed. Experimental results show that

bottlenecks in test application time when using the single DFT method for all cores in a

SoC is reduced by performing DFT selection from two types of DFTs. As a result, the

whole test application time is shortened.

Chapter 3 presented a memory grouping problem formulation and an algorithm to

solve the problem. Experimental results showed that the proposed method reduced the

area of memory BIST wrappers by up to 40.55%. It was also shown that the ability to

select from two types of connection methods reduced the area more than using a single

connection method.

Finally, I show the design phase in which the memory grouping should be done.

Figure 4-1 shows the new framework of SoC test architecture generation that presented

in chapter 2. Generally, memory BIST logic is often tested by scan test. In such case, it is

necessary to include the test of memory BIST logic in the test schedule of the DFT

selection. Therefore, it is preferable to build in memory grouping and memory BIST logic

before the selection of DFT as shown in Figure 4-1.

 44

SoC
(Gate level,
After DFT)

Test Pattern
(SoC I/F)

Test Pattern
(Wrapper I/F)

Wrapper

Test Pattern
(Core I/F)

DFT for each Core

Core
(After DFT)

DFT
selection

Test cost
estimation

Test Cost
Information

Database

DFT

Wrapper Design

ATPG

TAM Design

Test
schedule

DFT
Selection

information

SoC
(RTL)

(Synthesis)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(1)

(2)

(3)

(4)

(5)

(6)

Floor Plan
(memory
location)

(k)

Memory
Grouping

(7)SoC
(Gate level,
After DFT)

Test Pattern
(SoC I/F)

Test Pattern
(Wrapper I/F)

Wrapper

Test Pattern
(Core I/F)

DFT for each Core

Core
(After DFT)

DFT
selection

Test cost
estimation

Test Cost
Information

Database

DFT

Wrapper Design

ATPG

TAM Design

Test
schedule

DFT
Selection

information

SoC
(RTL)

(Synthesis)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(1)

(2)

(3)

(4)

(5)

(6)

Floor Plan
(memory
location)

(k)

Memory
Grouping

(7)

Fig. 4-1 Revised framework of SoC test architecture generation

4-2 Future Work

The development cost of SoCs becomes very high. Therefore, it is very important to

estimate the cost as much as possible at an early stage, and to take the trade-off at the

cost, the quality, and the development period. So, the test cost estimation step of the

framework that presented in this thesis is very important.

Actually, it is not easy to estimate the test cost information with high accuracy at the

early stage of the design. As described in chapter 2, test cost information obtained from a

past design can be used in a reused portion. However, if a new DFT technique will be

proposed in the future, it is necessary to estimate the cost information.

Moreover, if new DFT technique is proposed, we have to check that the problem

formulation of this research work should be revised or not. For example, memory repair

techniques are not mentioned in this thesis. However, the increasing of the percentage of

embedded memory used in SoC as shown in chapter 1 will cause the necessity of memory

repair technique. Therefore, the research on a method for reducing memory BIST logic

 45

that includes the memory repair technology may be needed.

The increasing of function and the embedded memory of SoC will continue along with

the progress of process technology. The test cost will increase rapidly if the effort to

decrease it is neglected. Therefore, the methods for reducing the testing cost of SoCs

should keep being pursued.

 46

Acknowledgements

I would like to thank my supervisor, Professor Hideo Fujiwara, for his guidance and

support during my graduate studies. He gave me a chance to enter this program, and

changed my engineer life.

I would also like to thank the Co-supervisor of the thesis committee, Professor

Kenichi Matsumoto for his valuable comments.

I am highly thankful to Assistant Professor Tomokazu Yoneda for his many valuable

suggestions and comments, continuous guidance. All of the discussions with him are

helpful for my research work.

I am highly thankful to Associate Professor Michiko Inoue and Assistant Professor

Satoshi Ohtake for their valuable discussions on NS-DFT.

I would like to thank members of Computer Design and Test Lab. (Nara Institute of

Science and Technology) for their valuable discussions.

I would like to thank Associate Professor Toshinori Hosokawa of Nihon University.

When he had been member of STARC, he had been a research partner of the DFT

selection problem. He recommended me to enter the graduate school, and changed my

life with Professor Fujiwara.

I am thankful to Professor Tomoo Inoue and Asssociate Professor Hideyuki Ichihara

of Hiroshima City University for their valuable discussion and comments.

I am highly thankful to Rafael K. Morizawa, Yasuo Sato (STARC) for their valuable

comments about presentation.

I am grateful to Hideyuki Nomoto (Renesas Technology) for his valuable comment

about power consumption constraints on products.

I wish to express my gratitude to Hiroshi Date (System JD) and Michiaki Muraoka

(SIRIJ) for alluring me in STARC, and having given the chance to get acquainted with a

lot of researchers.

Finally, I wish sincerely to express my gratitude to my parents and my elder sister.

 47

References

[1] T. Ono, K. Wakui, H. Hikima, Y. Nakamura and M. Yoshida, “Integrated and

automated design-for-testability implementation for cell-based ICs,” Proc. 6th Asian Test

Symposium, pp.122-125, November 1997.

[2] E. Marinissen, R. Arendsen, G. Bos, H. Dingemanse, M. Lousberg and C. Wouters, “A

structured and scalable mechanism for test access to embedded reusable cores,” Proc.

International Test Conference, pp.284-293, October 1998.

[3] P. Vama and S. Bhatia, “A structured test re-use methodology for core-based system

chips,” Proc. International Test Conference, pp.294-302, October 1998.

[4] N. A. Touba and B. Pouya, “Testing embedded cores using partial isolation rings,”

Proc. VLSI Test Symposium, pp.10-16, May 1997.

[5] L. Whetsel, “An IEEE 1149.1 based test access architecture for ICs with embedded

cores,” Proc. International Test Conference, pp.69-78, November 1997.

[6] M. Nourani and C. A. Papachristou, “Structural fault testing of embedded cores

using pipelining,” J. Electronic Testing: Theory and Applications. vol. 15, pp.129-144,

1999.

[7] I. Ghosh, S. Dey, N. K. Jha, “A fast and low cost testing technique for core-based

system-on-Chip,” Proc. 35th Design Automation Conference, pp.542-547, 1998.

[8] I. Ghosh, S. Dey, and N. K. Jha, “A low overhead design for testability and test

generation technique for core-based system-on-a-chip,” IEEE Trans.on CAD, vol.18,
No.11, pp.1661-1676, November 1999.

[9] T. Yoneda, H. Fujiwara, “A DFT Method for core-based systems-on-a-chip based on

consecutive testability,” Proc. 10th Asian Test Symposium, pp.193-198, November 2001.

[10] V. Iyengar, K. Chakrabarty and E. J. Marinissen, “Test wrapper and test access

mechanism co-optimization for system-on-chip,” J. Electronic Testing: Theory and

Applications.vol.18, pp.213-230, April 2002

[11] Y. Huang, W. T. Cheng, C. C. Tsai, and N. Mukherjee, “Resource allocation and test

scheduling for concurrent test of core-based SOC design,” Proc. 10th Asian Test

Symposium, pp.265-270, November 2001.

[12] E. Larsson, K. Arvidsson, H. Fujiwara, and Z. Peng, “Integrated test scheduling, test

 48

parallelization and TAM design,” Proc. 11th Asian Test Symposium, pp.397-404,

November 2002.

[13] H. S. Hsu, J. R. Hung, K. L. Cheng, C. W. Wang, C. T. Huang, and C. W. Wu, “Test

scheduling and test access architecture optimization for system-on-chip,” Proc. 11th

Asian Test Symposium, pp.411-416, November 2002.

[14] V. Iyengar, K. Chakrabarty and E. J. Marinissen, “On using rectangle packaging for

SOC wrapper/TAM co-optimization,” Proc. VLSI Test Symposium, pp.253-258, May

2002.

[15] Y. Huang, N. Mukherjee, S. Reddy, C. Tsai, W. Cheng, O. Samman, P. Reuter, and Y.

Zaidan, “Optimal core wrapper width selection and SOC test scheduling based on

3-Dimensional bin packing algorithm,” Proc. International Test Conference, pp.74-82,

October 2002.

[16] H. Date, T. Hosokawa, and M. Muraoka, “A SoC test strategy based on a non-scan

DFT method,” Proc. 11th Asian Test Symposium, pp.305-310, November 2002.

[17] S. Nagai, S. Ohotake, and H. Fujiwara, “A DFT method for RTL data paths based on

strong testability to reduce test application time,” Technical Report of IEICE

DC2002-84, pp.31-36, February 2003.

[18] B. Koneman, “LFSR-coded test patterns for scan designs,” Proc. European Test
Conference, pp.237-242, March 1993.

[19] I. Bayraktarouglu and A. Orailoglu, ”Test volume and application time reduction

through scan chain concealment,” Proc. 38th Design Automation Conference,
pp.151-155, June 2001.

[20] A. Benso, S. Di Carlo, G. Di Natale and P. Prinetto, “A programmable BIST

architecture for clusters of multiple-port SRAMs,” Proc. International Test Conference,

pp.557-566, October 2000.

[21] B. Nadeau-Dostie, Design for at-speed test, diagnosis and measurement, Kluwer

Academic Publishers, 2000.

[22] H. Nagamochi and T. Ibaraki, “A linear-time algorithm for finding a sparse

k-connected spanning subgraph of a k-connected graph,” Algorithmica, vol.7,

pp.583-596, 1992.

[23] H. Nagamochi and T. Ibaraki, “Computing the edge-connectivity of multigraphs and

 49

capacitated graphs,” SIAM J. Discrete Mathematics, vol.5, pp.54-66, 1992.

[24] Charles E. Stroud, A designer’s guide to built-in self-test, Kluwer Academic

Publishers, 2002.

[25] International Technology Roadmap for Semiconductors 2004 Update． (Design)

http://public.itrs.net/

