
NAIST-IS-DD0261204

Doctoral Dissertation

Instruction-Based Self-Testing of Performance

Oriented Faults in Modern Processors

Virendra Singh

July 25, 2005

Department of Information Processing

Graduate School of Information Science

Nara Institute of Science and Technology

Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Virendra Singh

Thesis committee: Professor Hideo Fujiwara, (Supervisor)

Professor Minoru Ito, (Member)

Professor Kenichi Matsumoto, (Member)

Dedicated to my

grandmother (Late) Smt. Padma Devi

i

”karmany evadhikaras te

ma phalesu kadachana

ma karma-phala-hetur bhur

ma te sango ’stv akarmani”

(From the Geeta – in Sanskrit)

English translation

On action alone be thy interest,

Never on its fruits.

Let not the fruits of action be thy motive,

Nor be thy attachment to inaction.

ii

Instruction-Based Self-Testing of Performance

Oriented Faults in Modern Processors∗

Virendra Singh

Abstract

Aggressive microprocessor design methodologies using gigahertz clock and

very deep sub-micron technology are necessitating the use of at-speed testing

of small and distributed timing defects caused by process variations during man-

ufacturing. A primary objective of such tests is to test for the faults that can

lead to performance degradation, such as delay faults. However, at-speed testing

using external tester is not an economically viable scheme and hardware BIST

leads to unacceptable performance loss and area overhead. A new paradigm,

instruction-based self-testing, can alleviate these problems as it uses processor

instructions to deliver the test patterns and collect the test responses. Also, it

has the ability to link to low level fault models and it is well-suited methodology

for testing processors, embedded processor cores, IP cores, and SoCs. Moreover,

the same test can also be used for online periodic testing of processors to improve

the reliability.

This thesis proposes an instruction-based self-testing methodology for delay

fault testing of modern processors in a chronological way by first dealing with

non-pipelined processors, and then pipelined processors and superscalar processor

architectures.

In order to test a non-pipelined processor a graph theoretic model, called

instruction execution graph based on the register transfer level description of

the processor is developed. This model, in conjunction with the structural and

∗Doctoral Dissertation, Department of Information Processing, Graduate School of Infor-
mation Science, Nara Institute of Science and Technology, NAIST-IS-DD0261204, July 25,
2005.

iii

functional information, is used to identify and classify all paths into functionally

testable and untestable paths and to generate tests and test instruction sequences

that can be applied in functional mode of operation of the processor. The com-

pleteness of the test method is guaranteed by extracting constraints for the paths

that are testable.

The approach proposed above is expanded to include pipelined architectures.

A new graph model, called pipeline instruction execution graph, is defined that

captures the effect of executing multiple instructions concurrently. This graph

model is then used to generate tests and test sequences for normal as well as

forwarding paths between different stages of a pipelined processor.

Finally, the thesis explores path delay testing of superscalar architectures, one

of the most complex architectures of the modern processors. Such architectures

use out of order execution technique to enhance the throughput, which poses

serious challenges to instruction-based testing. This thesis identifies test related

issues. It proposes a superscalar processor model, called superscalar instruction

execution graph, and provides a method of generating test programs that can force

scheduler to execute the instructions in the desired order to test the processor.

The effectiveness of all the above stated approaches has been demonstrated

through experimental results for some representative processors.

Keywords:

microprocessor testing, performance oriented faults, at-speed test, functional

mode testing, delay fault testing, self-test

iv

List of Publications

Journal Papers

1. Virendra Singh, Michiko Inoue, Kewal K. Saluja, and Hideo Fujiwara, “De-

lay Fault Testing of Processor Cores in Functional Mode,” IEICE Trans.

on Information and Systems, Vol. E-88D, No. 3, pp. 610–618, Mar. 2005.

2. Michiko Inoue, Kazuko Kambe, Virendra Singh, and Hideo Fujiwara, ”Software-

Based Self-Test of Processors for Stuck-at Faults and Path Delay Faults,”

Trans. of IEICE (DI), Vol. J88-D-I, No.3, pp. 1003–1011, Jun. 2005. (In

Japanese)

International Conferences (Reviewed)

1. Virendra Singh, Michiko Inoue, Kewal K. Saluja, and Hideo Fujiwara,

”Software-Based Delay Fault Testing of Processor Cores,” Proceedings of

the IEEE 12th Asian Test Symposium, pp. 68–71, Nov. 2003.

2. Virendra Singh, Michiko Inoue, Kewal K. Saluja, and Hideo Fujiwara,

“Instruction-Based Delay Fault Testing of Processor Cores,” Proceedings

of the 17th International Conference on VLSI Design, pp. 933–938, Jan.

2004.

3. Virendra Singh, Michiko Inoue, Kewal K. Saluja, and Hideo Fujiwara,

”Instruction-Based Delay Fault Self-Testing of Pipelined Processor Cores,”

Proceedings of the IEEE International Symposium on Circuits and Systems,

pp. 5686–5689, May. 2005.

v

4. Virendra Singh, Michiko Inoue, Kewal K. Saluja, and Hideo Fujiwara,

“Program-Based Testing of Superscalar Microprocessors ,” Proceedings of

the IEEE 14th North Atlantic Test Workshop, pp. 79–86,May 2005.

5. Virendra Singh, Michiko Inoue, Kewal K. Saluja, and Hideo Fujiwara,

”Testing Superscalar Processors in Functional Mode,” Proceedings of the

15th International Conference on Field Programmable Logic and Applica-

tions, pp. 747–748, Aug. 2005.

Other Publications

1. Virendra Singh, Michiko Inoue, Kewal K. Saluja, and Hideo Fujiwara,

“Program-Based Delay Fault Self-Testing of Processor Cores,” Technical

Report of IEICE (DC2003-37), Vol. 103, No. 476, pp. 19–24, Nov. 2003.

vi

Contents

1 Introduction 1

1.1. Motivation and What to Test for 3

1.2. Thesis Organization . 5

1.3. Contributions of This Thesis . 6

2 Taxonomy of Microprocessor Testing 8

2.1. Introduction . 8

2.2. Functional Test . 8

2.3. Structural Tests . 11

2.3.1 External Tester Based Testing 12

2.3.2 Hardware-Based Self-Testing 14

2.3.3 Instruction-Based Self-Testing 16

2.4. Fault Models . 17

2.4.1 Stuck-at Fault Model . 18

2.4.2 Delay Fault Models . 18

2.5. Conclusion . 22

3 Instruction-Based Self-Testing 23

3.1. Introduction . 23

3.2. IBST Methodology . 23

3.3. Previous work . 28

3.4. Conclusion . 31

4 Non-pipelined Processor Testing 32

4.1. Introduction . 32

vii

4.2. Non-pipelined Processor Architecture 33

4.3. Overview of the Proposed Work 40

4.4. Testing Methodology . 42

4.4.1 Datapath Testing . 42

4.4.2 Controller Testing . 48

4.4.3 Test Instruction Sequence Generation 53

4.5. Experimental Results . 54

4.6. Conclusion . 58

5 Pipelined Processor Testing 59

5.1. Introduction . 59

5.2. Pipelined Processor Architecture 59

5.3. Overview of the Proposed Approach 66

5.4. Pipeline Instruction Execution Graph 68

5.5. Testing Methodology . 70

5.5.1 Datapath Testing . 70

5.5.2 Controller Testing . 79

5.5.3 Test Instruction Sequence Generation 82

5.6. Experimental Results . 85

5.7. Conclusion . 87

6 Superscalar Processor Testing 88

6.1. Introduction . 88

6.2. Superscalar Architecture . 89

6.3. Test Issues and Overview of the Approach 94

6.4. Superscalar Instruction Execution Graph 97

6.5. Testing Methodology . 99

6.5.1 Datapath Testing . 99

6.5.2 Controller Testing . 106

6.6. Experimental Results . 107

6.7. Conclusion . 108

7 Conclusion and Future Work 109

7.1. Summary of the Thesis . 109

viii

7.2. Future Work . 111

Appendix 114

A. VPRO Processor . 114

Acknowledgements 117

References 120

ix

List of Figures

1.1 Complexity growth . 2

2.1 External tester based testing . 12

2.2 Built-in self-testing . 15

2.3 Testability classification of path delay faults 22

3.1 IBST with external tester . 24

3.2 IBST without external tester . 25

3.3 Application of instruction-based self-test 27

4.1 Block diagram of a non-pipelined processor 33

4.2 Datapath of a non-pipelined processor 35

4.3 Phases of an instruction execution process 36

4.4 Structural organization of a controller 38

4.5 Structural organization of Parwan processor 39

4.6 State diagram of Parwan processor 40

4.7 IE-graph of Parwan processor . 43

4.8 Constraintextraction and test generation procedures 47

4.9 Instruction sequence . 53

5.1 Basic structure of a pipeline . 61

5.2 Five-stage instruction pipeline . 62

5.3 Five-stage instruction pipeline with forwarding 65

5.4 Test program flow . 68

5.5 PIE-graph of VPRO processor . 70

5.6 Target path and pipeline stages 73

x

5.7 Edge consideration for constraint extraction (a) structural organi-

zation (b) edges in PIE-graph . 76

5.8 Edge consideration for the paths between S1 and ALO 78

6.1 A 6-stage dynamic pipeline . 90

6.2 A Superscalar Organization of the DLX-SV 93

6.3 Part of SIE-graph of DLX-SV processor 99

6.4 Forwarding and normal paths . 101

A.1 Structural Organization of VPRO Processor 116

xi

List of Tables

4.1 Instruction set of Parwan processor 40

4.2 Data constraints for the paths between IN and AC 46

4.3 State transition table of Parwan processor (partial) 49

4.4 Transition on bits in PSR with state transition (Parwan processor) 50

4.5 Activities at bit i and j in PSR 51

4.6 Results for Parwan processor . 56

4.7 Results for DLX processor . 57

4.8 Comparison with earleir work (Fault Coverage) 58

5.1 Execution of instruction in a five stage pipeline 63

5.2 Register mapping - VPRO processor 83

5.3 Results for VPRO processor . 86

5.4 Results for pipelined DLX processor 86

6.1 Results for datapath of DLX-SV processor (NR test) 108

xii

Chapter 1

Introduction

”.... Productivity increases as quality improves ... [but] inspection to

improve quality is too late, ineffective, costly ... note that there are

exceptions, circumstances in which mistakes and duds are inevitable

but intolerable. An example is, I believe, manufacture of complicated

integrated circuits. Separation from good ones from bad ones is the

only way out ... It is important to carry out inspection at the right

point for minimum total cost.”

— W. Edward Deming, in the book, Out of the crisis [37]

The reliability is no longer a concern limited to the military, aerospace, and

banking organizations where failure consequences may have catastrophic effect.

Reliability and testing techniques have become of increasing interest to all other

applications such as computers, telecommunications, consumer products, and

automobiles, as today’s systems are built around very high-speed processors to

meet the consumer’s demand of high performance and rich functionality. The

expectation of zero failure can only be met if all manufacturing defects are elim-

inated. A key requirement for obtaining reliable electronic systems is the ability

to determine that systems are error-free.

The complexity of VLSI technology has reached the point where we are trying

to put billions transistors on a single chip, and implementing these with GHz clock

1

Figure 1.1. Complexity growth

frequency. Transistor feature sizes on a VLSI chip reduce roughly by 10.5% per

year, resulting in a transistor density increase of roughly 22.1% every year. An

almost equal amount of increase is provided by wafer and chip size increases and

circuit design and process annotations. This is evident from Figure 1.1, which

shows nearly 44% increase in the transistors on microprocessor chips every year.

According to the prediction of the 2003 International Technology Roadmap

for Semiconductors (ITRS) [41], by year 2018 the half pitch of Dynamic Ran-

dom Access memories (DRAMs), microprocessors and Application Specific ICs

(ASIC) will drop to 18 nm and the microprocessor physical gate length will drop

to 7nm. The implementation of correctly operating electronic circuits in such a

small geometry - usually referred as Very Deep Submicron (VDSM) manufactur-

ing technologies - was believed, just a few years ago, to be extremely difficult,

if at all possible, due to hurdles imposed by the fundamental laws of the mi-

2

croelectronics physics when circuit elements are manufactured in such distances

separating them. Despite the skeptical views, VDSM technologies are successfully

used today to produce high performance circuits and continue providing evidence

that Moore’s law is still valid.

1.1. Motivation and What to Test for

As the chip density grows beyond millions of gates, VLSI circuit testing becomes

a formidable task. A number of companies estimate that about 7% to 10% of the

total cost is spent in single device testing [40]. This figure can rise to as high as

20% to 30% if the cost of the in-circuit testing and board-level testing is added.

However, the most important cost can be the loss in time-to-market due-to hard

to detect faults. Recently, studies show that a six months delay in time-to-market

can reduce the profit by 34%. Thus, testing can pose serious problems in VLSI

design.

To make testing more manageable, it is thus important to characterize the

defects in the circuits, logical or electrical value on the nodes connecting various

components of the circuit, that is, to represent failure modes by a logical value.

This amounts to representing physical defects by model on logical level. If this

mapping is one-to-one, there will be a large number of models to represent. As

a model, the fault does not have to be an exact representation of the defects,

but rather, be useful in detecting the defects. For example, the most common

fault model assumes single stuck-at (SSA) lines even though it is very clear that

this model does not accurately represent all actual physical failures. However,

despite its popularity, the stuck-at fault is no longer sufficient for present circuits

and technologies. Some of the stringent faults that cannot be covered by conven-

tional stuck-type fault models are dielectric, conductor, and metallization failures

[42]. These faults manifest themselves as performance oriented faults and remain

challenging faults to test.

Aggressive timing requirement of high performance processors have introduced

the need to test smaller timing defects and distributed faults caused by process

variations. Delay fault testing determines the operational correctness of the cir-

cuits at its specified speed. Even if its steady behaviour is correct, it may not

3

be reached in the allotted time. Delay fault testing exposes such circuit malfunc-

tions.

For the proper operation of a circuit, the propagation delay of each sensitizable

path in the circuit should be less than a specified limit (usually the clock interval).

As the clock interval is gradually decreasing, the need and significance of delay

fault testing is gradually increasing. Like all other faults, delay faults are also

originated from manufacturing defects. Now, for the sake of the propagation delay

in the circuit, it is not feasible to test every manufacturing defects and some sort

of modeling is required. Several fault models of delay fault are proposed in the

literature such as transition delay, path delay, and segment delay fault models.

Some models use lumped delay assumption where as others use distributed delay

assumption. Path delay fault model is more close to the reality but the number

of paths grows exponentially as circuit size grows.

In some way, microprocessors test is a reflection or superset of the today’s

industrial test issues. Testing microprocessors presents a real challenge [35], for

the following reasons.

• They have diverse and complex architectures

• They run at very high speed

• They are highly integrated

• They have complex memory and data architectures

• They use most advance processes

• They are high volume and cost sensitive

Testing of defects in high-speed circuits such as microprocessors requires high-

speed testers. At-speed testing of processors using external tester is not an eco-

nomically viable scheme. Moreover, the inherent inaccuracy of the ATE also

leads to yield loss. Traditional hardware BIST moves the testing task from exter-

nal tester to the internal hardware but this often needs design changes that can

stretch the time to market. In addition, such methods lead to unacceptable per-

formance loss and area overhead, and can also result into burn out of the chip due

4

to excessive power consumption during the test. A new paradigm, instruction-

based self-testing (also known as software-based self-testing) can alleviate the

problems of both external tester and structural BIST. It links instruction-level

test with the low level fault model. In order to apply test in functional mode,

instruction-based self-testing uses processor instructions to deliver the test pat-

terns and collect the test responses. Thus, being inherently non-intrusive, it does

not require area and performance overheads and it is well suited test method-

ology for the testing of microprocessors and processor cores embedded deep in-

side a System-on-a-Chip (SoC). Furthermore, the test programs developed for

this method can also be used for online periodic testing to improve the proces-

sor reliability. This thesis focuses on the delay fault testing of processors using

instruction-based self-testing methodology. It proposes testing methodologies for

modern processors in their chronological order.

1.2. Thesis Organization

The thesis is organized as follows. Chapter 2 is devoted to the taxonomy of mi-

croprocessor testing. It describes two methods of microprocessor testing, namely,

functional testing and structural testing and their pros and cons. It further de-

scribes various fault models to test a microprocessor such as stuck-at fault model

and, delay fault model. It also presents further classification of path delay faults,

as the path delay fault model is the target model addressed in this thesis.

Chapter 3 is devoted to instruction-based self-testing technique. At first it

presents the concept of instruction-based self-testing and the method of applica-

tion of the test vectors in the functional mode of operation. Thereafter, a survey

of previous work in the domain of instruction-based self-test targeting stuck-at

faults and delay faults is presented.

Chapter 4 is devoted to the testing methodology of non-pipelined processors.

At first, it describes non-pipelined processor architecture. Thereafter, it presents

models for the datapath (called instruction execution graph) and the controller

(state transition diagram). Based on these models, architectural constraint ex-

traction and path classification methods are presented. The method to generate

the test sequences to apply test vectors in functional mode are discussed near

5

the end of this chapter. At last, in order to demonstrate the effectiveness of the

method, experimental results for two representative processors are presented.

Chapter 5 is devoted to the testing methodology of pipelined processors. It

starts with the architectural description of a pipelined processor. After archi-

tectural description, it presents a graph theoretic model of a pipelined processor

(called pipeline instruction execution graph) which captures the pipelined behav-

iour of the processor in addition to the information about the flow of data and

control. Constraint extraction, path classification and instruction sequence gen-

eration procedures are discussed. Finally, it presents the experimental results for

two representative pipelined processors to demonstrate the effectiveness.

Chapter 6 is devoted to the testing methodology of superscalar processors.

After a brief introduction of superscalar architecture, it identifies test issues re-

lated to this architecture. A graph model is presented to model dynamic pipeline

behaviour of superscalar architectures. A method of generating test programs

that can force scheduler to execute the instructions in the desired order is de-

scribed. As in other chapters, in order to demonstrate the effectiveness of the

methodology, experimental results for a representative superscalar processor are

also presented.

Finally, this thesis concludes with Chapter 7 where the main accomplishments

of the work are outlined and the future directions are identified.

1.3. Contributions of This Thesis

This thesis makes three basic contributions to the problem of testing high per-

formance microprocessors.

First, this thesis proposes a graph theoretic model, called instruction execution

graph, for a non-pipelined processor which is based on the ground breaking work

by Thatte and Abraham [1]. Subsequently, this graph model is extended to

capture the pipeline processor behaviour (pipelined instruction execution graph)

and superscalar processor behaviour (superscalar instruction execution graph).

Modeling of these behaviours is the first work in the direction of modeling static

and dynamic pipeline behaviour of processors to facilitate testing.

6

Second, this thesis proposes a unified approach for testing of the forwarding

paths and normal paths in a pipelined processor.To achieve this the graph model

developed for various processor architectures are used. The thesis also presents a

hierarchical test generation methodology, which classifies paths at RT level and

generates test at gate level. Methods for instruction sequence generation so that

the test generated to test different parts of a microprocessor can be applied in

the functional mode of operation are also developed .

Third, test issues related to superscalar processor testing using instruction-

based self-test methodology are identified and these are demonstrated, through

examples, to be substantially different from the conventional test generation is-

sues. The thesis developes various methods of generating test programs that

can force a ou-of-order scheduler of a modern superscalar processor to execute

the instructions in the desired order to make sure that the tests can be applied

correctly.

7

Chapter 2

Taxonomy of Microprocessor

Testing

2.1. Introduction

The role microprocessors play in the present society cannot be overemphasized.

Since the introduction of Intel’s 4004, microprocessors have proliferated in size,

performance, and complexity. Today’s microprocessors consist of hundreds of

millions of transistors operating at extraordinarily high speeds. Test and ver-

ification of these high-performance devices continuously challenges engineers in

every processor design cycle. This chapter presents the methods to test a micro-

processor and fault models which are being used in microprocessors testing.

2.2. Functional Test

The main objective of functional testing is to validate the correct operation of a

system with respect to its functional specifications. A functional model reflects

the functional specifications of the system which is most of the time indepen-

dent of its implementation. Therefore, functional test derived from a functional

model can be used not only to check whether physical faults are present in the

manufactured system, but also as design verification tests for checking that im-

plementation is free of design errors.

8

This can be approached in two different ways. One approach assumes func-

tional fault model and tries to generate tests that detect the faults defined by

these models. In contrast to this, the other approach is not concerned with the

possible types of faulty behaviour and tries to generate tests based only on the

specified fault free behaviour. Between these two there is a third approach that

defines an explicit fault model which assumes that almost any fault can occur.

Functional tests detecting almost any fault are said to be exhaustive, as they

must completely exercise the fault free behaviour. Because of the length of the

resulting tests, exhaustive testing can be applied in practice only to small circuits.

In general, functional testing methods are tightly coupled with a specific func-

tional modeling technique. Thus the applicability of a functional testing method

is limited to systems described via a particular modeling technique. Because

there exists many widely different functional modeling techniques, it is unlikely

that a generally applicable functional testing method can be developed. More-

over, deriving the functional model used in test generation is often manual, time

consuming and error prone process. Another major problem is lack of means of

evaluating the effectiveness of test sequences at the functional level.

A functional test performs the following tasks:

• Check the existence and responsiveness of all sub-systems.

• Check system specifications. For example, amount of memory available in

a system.

• Check critical functions of a system. This part can be more or less elaborate

depending on the environment in which the test is applied. For example,

the functional test at manufacturing may execute many of the tests that

have been used in simulation-based verification.

The functional test is usually executed by the software of the system. Soft-

ware test coverage criteria, such as statement coverage, branch coverage, and path

coverage, which are not good indicators of the hardware fault detection capability.

The function of a system usually consists of an operation perform on some

data. A system test is then a collection of operation-data pairs. Some heuristics

used to generate tests are:

9

Instruction-set fault model: The instruction decoder is assumed to malfunction,

causing wrong instruction to execute. The data is selected so as to indicate error

in result. These tests are found to thoroughly cover some portion of hardware.

However, good coverage is not guaranteed for the complete system.

All instructions with random data: All instructions are exercised with randomly

generated data. These tests can quickly cover some faults, but for other faults

that have low probabilities of detection the coverage remains low. For adequate

coverage, random test tends to be too long to be practical.

These procedures are similar to those often used to generate design verification

tests, which otherwise tend to be very lengthy. A good functional test should be

as short as possible and yet comprehensive enough to cover all failures that are

”likely to occur”.

The test is built through the design and development phases and its optimiza-

tion continues through manufacturing, field trials, and system use. As actual

faults are found and repaired, new test sequences are added. Also, some existing

tests are not found to be useful in detecting actual faults are dropped.

In summary, advantages of functional testing are:

• Low-level details are not needed

• Functional verification pattern can be used

• Less test development cost

And, disadvantages of functional testing are:

• No relation with the structural fault

• Low defect coverage

• Long test sequences

• Lack of means of evaluation

10

2.3. Structural Tests

The drawback of functional testing is that it is not directly connected to actual

structural testability of the processor, which is related to the physical defects.

Structural test uses specific fault model to test the structure for errors. EDA tools

can be used for automatic generation of test patterns (ATPG tools). Structural

test generation can be performed only if a gate level model of the processor is

available; and high fault coverage can be achieved for the target structural fault

model with a small test set or a small test program that is executed in short time.

Typically used fault models are stuck-at fault model, delay fault model, bridging

fault model, and cross talk fault model. Some of the fault models are discussed

in the next section.

Advantages of structural testing are:

• EDA tools can be used

• High fault coverage

• Small test sequence

• Fast test program

And, disadvantages of structural testing are:

• Needs gate level model of processor

• Higher test development cost

• Most of the time, it needs circuit modification

A structural fault can be tested in the following ways:

1. External tester based testing

2. Hardware-based self-testing

3. Instruction-based self-testing

11

2.3.1 External Tester Based Testing

It is a conventional method for the testing of high volume electronic chips after

manufacturing. The test patterns previously stored in the tester memory are

applied to an IC under test and operate it under this test input. The response of

each of the applied test patterns is captured by the tester, and stored back in the

tester memory. Finally, the stored response is compared with the known, correct

response. Subsequently, the next test pattern is applied to the IC, and process is

repeated until all patterns of the test set stored in the tester memory have been

applied to the chip.

Figure 2.1 presents the idea of external tester based testing. The operating

speed of today’s chips (fchip) is usually more than the operating speed of the

tester (ftester). The relation between these two frequencies is a critical factor that

determines both the quality of the testing process using external tester and also

test application time and subsequently test cost.

Circuit

under test

Test Patterns

Test Responses

Tester memory

Tester

(fchip)

(ftester)

Figure 2.1. External tester based testing

The essence of the relation between the tester and the chip frequencies is that

if we want to execute a high quality test to a chip and detect all (or most) physical

failure mechanisms of modern manufacturing technologies, we must use a tester

with a frequency ftester which is close to or equal to the actual chip frequency

12

fchip. This means, for a high frequency chip, a very expensive, high frequency

tester must be used and this fact will increase the over all test and development

cost of the chip. According to [6], if the current testing techniques are to be

continued, the test equipment cost can rise towards $20 million.

Another cost-related consideration for external testing is the size of the tester’s

physical memory where test patterns and test responses are stored. In case,

memory size is not large enough, multiple loading of memory is needed to apply

entire test vector set, which in turn leads to extension of test application time.

Extension of test time directly implies higher test cost.

When a complex chip design has to be tested by an external tester with test

pattern generated by ATPG tools and possibly applied in scan-based fashion,

following are the limitations of the external tester based testing:

1. At speed testing: Continuously widening gap between the tester operating

frequency and the IC operating frequency does not allow the detection of

a large percentage of physical failures in CMOS technology that manifest

themselves as delay faults instead of logical faults. A very large set of

physical mechanisms that lead to circuits not operating in the target speeds

can only be detected if the chip is tested in the actual frequency in which

it is expected to operate which is called at-speed testing. Even for the best

available tester at any point of time, there will always be a faster IC in which

performance related circuit malfunctions will remain untestable because it

is testing next generation ICs which is often true for modern processors.

Therefore, the fundamental target of manufacturing testing – detection of

as many as possible physical defects that may lead the IC to malfunction –

cannot be met under these conditions.

2. Yield loss due to tester inaccuracy: Testers are external devices that per-

form measurements on manufactured chips, and thus they suffer from severe

measurement inaccuracy problems which for high speed designs of these

days lead to serious production yield loss. A significant set of correctly

operating chips are characterized as faulty and rejected just due to tester’s

inaccuracies in the performance measurement. According to [6], due to in-

herent inaccuracy of testers, at-speed testing of high speed processors may

result in an unacceptably high yield loss of 48% by 2012.

13

3. Yield loss due to over-testing: Over testing is another source of yield loss.

Scan-based testing may put the circuit in non-operation, and it can detect a

fault that never appears in the functional mode. In many cases, the circuit

is tested for potential faults that, even if they exist, they will never affect the

normal circuit operation. The rejection of chips that have non-functional

faults (like non-functionally sensitizable path delay faults) leads to further

yield loss in addition to yield loss due to tester inaccuracy.

2.3.2 Hardware-Based Self-Testing

Traditional hardware-based self-testing or built-in self-testing (BIST) techniques

have been proposed since several decodes ago [35] to resolve the bottlenecks that

external tester based testing can not, by moving testing task from external tester

to the internal hardware. It uses embedded hardware test generators and test

response analyzers to generate and apply test pattern on chip at the speed of

circuit, thereby eliminating the need for an external tester. The only necessary

external action is the initiation of the self-testing execution.

Self-testing is defined as the ability of an electronic circuit to test itself, i.e.

to excite potential fault sites and propagate their effect to observable locations

outside the chip (Figure 2.2). The tasks of the test pattern generation and test

response collection are both performed by internal circuit resources, and the fault

inside them must also be detected.

The advantages of self-testing strategies compared to external tester based

testing are:

• Expensive external tester is not needed

• Self-testing mechanisms have a much better access to internal resources

than the external tester based mechanism

• It can be applied at the operating frequency. Hence at-speed testing be-

comes possible, which leads to high quality test.

• It can be applied at the operating frequency. Hence at-speed testing be-

comes possible, which leads to high quality test

14

Self-test
pattern generation

Self-test response
analyzer

Module

under test

Chip under test fchip

Figure 2.2. Built-in self-testing

• No yield loss due to tester inaccuracy

Memory BIST has been commonly used for testing embedded memory compo-

nents, as it performs well due to deterministic nature of memory tests facilitated

by regular structure of memory components. Logic BIST, however, faces many

challenges because it relies on the generation and application of pseudo-random

test patterns [6].

1. For random-pattern-resistant circuits, the fault coverage achieved by pseudo-

random testing may be low.

2. The insertion of the BIST circuitry used for generating and applying pseudo-

random patterns may result in significant area overhead and performance

penalty

3. The application of pseudo-random patterns often results in excessive power

consumption in the BIST mode which may some times leads to burn out of

the chip.

4. The application of random test patterns may drive the circuit under test

into nonfunctional mode in which free flow of test data can be impeded by

problems such as bus contentions.

15

Fault coverage could be improved by techniques such as deterministic BIST

[38] or weighted random patterns [39]. In scan-based BIST, the test overhead may

also be reduced by techniques such as test scheduling, reducing input activities,

or filtering non-detecting vectors. BIST readiness may be achieved by design

changes.

While logic BIST may perform well on industrial application specific inte-

grated circuits (ASICs), its feasibility on microprocessors is yet to be investi-

gated. First design changes needed for making a microprocessor BIST ready may

come with unacceptable cost, such as manual effort and significant performance

degradation. In addition, microprocessors are especially random-pattern resistant

circuits. Due to, timing critical nature of microprocessors, test points insertion

can not be acceptable as a solution to this problem, as they could introduce per-

formance degradation in critical paths. Deterministic BIST, on the other hand,

may lead to unacceptable area overhead, as the size of the on-chip hardware for

encoding deterministic test patterns depends on the testability of the circuit. For

at-speed testing complex issues related to timing, like multiple clock domain and

clock skew, must be resolved.

Further, this method may be unacceptable for testing an optimized processor

core embedded deep inside a System-on-a-Chip (SoC) due to its poor and limited

accessibility.

2.3.3 Instruction-Based Self-Testing

A new paradigm, Instruction-Based Self-Testing could alleviate the problems of

both external tester and structural BIST. It links instruction-level test with the

low level fault model. In order to apply test in functional mode, it uses processor

instructions to deliver the test patterns and collection of test responses. There-

fore, it does not require to modify the circuit and is capable to apply test patterns

at operating frequency.

Self-test routines are stored in instruction memory and data they need for

execution are stored in data memory. Both transfers (instructions and data) are

performed using external test equipment which can be as simple as a personal

computer and as high as a high-end tester. Tests are applied to components of

the processor (or processor core) during the execution of the self-test programs

16

and test responses are stored back in the data memory.

Instruction-based self-test (functional self-test) methodology uses processor

instructions and its functionality in order to test the processor core. Therefore,

it has the following advantages over structural BIST:

• Non-intrusive approach

• Low cost

• No area overhead

• No performance penalty

• At-speed testing is possible

• No excessive power consumption during test

• Flexible and programmable

Thus, being inherently non-intrusive, it does not require area and performance

overheads and it is well suited test methodology for the testing of processor cores

embedded deep inside an SoC. Furthermore, the test programs developed for this

method can also be used for online periodic testing to improve the processor

reliability. This approach is discussed in detail in next chapter.

2.4. Fault Models

The consideration of possible faults in a digital circuit is undertaken in order to

establish a minimum set of test vectors, which collectively will test that faults

are or are not present. If none of the predefined faults are detected then circuit

is considered to be fault free. There are several fault models presented in the

literature to model various defects. This section presents two widely used fault

models; namely stuck-at fault model and delay fault model, which deal with

logical and timing defects respectively.

17

2.4.1 Stuck-at Fault Model

A stuck-at fault is assumed to affect only the interconnection between the gates.

Each connecting line can have two types of faults: stuck-at-0 (s-a-0) and stuck-at-

1 (s-a-1). Thus, a line with s-a-0 fault will always have a logic state 0 irrespective

of the correct logic output of the gate driving it.

In general, several stuck-at faults can be simultaneously present in the circuit.

A circuit with n lines can have 3n-1 possible stuck line combinations, because each

line can be in one of three states: s-a-0, s-a-1, or fault-free. All combinations

except one having all lines in fault-free states are counted as faults. Clearly, even

a moderate value of n will give an enormously large number of multiple stuck-at

faults. It is common practice, therefore, to model only single stuck-at faults. An

n-line circuit can have at most 2n single stuck-at faults. This number is further

reduced by fault collapsing technique.

2.4.2 Delay Fault Models

These faults cause the combinational delay of the circuit to exceed the clock

period. The manufacturing defects that lead to the timing faults are modeled by

several fault models such as transition delay, gate delay, line delay, path delay

and segment delay fault models based on the lumped delay or distributed delay

assumptions. We discuss each model briefly.

Transition delay fault model: This model is based on the assumption that

the delay fault affects only one gate in the circuit. Each gate may have two faults:

slow to rise or slow to fall, i.e. the fault results in an increase in the propagation

delay of the gate. Under the transition fault model, this increase in delay is

large enough to prevent the transition from reaching any primary output within

specified time. However, this assumption is not realistic and a disadvantage of

this fault model. The advantages of this model are: i) the number of faults in

the circuit is linear in terms of the number of gates, ii) the stuck-at fault test

generation and fault simulation tools can be easily modified to handle transition

faults.

18

Gate delay fault model: This fault model is based on the assumption that the

delay fault is lumped at one gate in the circuit. Unlike the transition fault model,

gate delay fault model does not assume that the fault affects the circuit perfor-

mance independent of the propagation path through the fault site. It is assumed

that only long paths through the circuit might cause performance degradation.

The advantages of gate delay fault model are similar to those transition delay

fault model.

Line delay fault model: Line delay fault model is a variation of gate delay

fault model. This model tests rising or falling delay faults on a given line in the

circuit. The fault is propagated through the longest sensitizable path passing

through the line. The number of faults equals twice the number of lines in the

circuit because each line is tested for rising and falling delay faults. Sensitizing

the longest path through the target line allows the detection of the smallest delay

fault on the target line.

Path delay fault model: The delay defect in the circuit is assumed to cause

the cumulative delay of a combinational path, i.e. distributed delay in the circuit

is assumed. The combinational path begins at a primary input or a clocked flip-

flop, contains a connected chain of gates, and ends at a primary output or a

clocked flip-flop. A path is considered faulty if its propagation delay exceeds a

specified duration. The specified time duration can be the duration of the clock

period (or phase), or the vector period. The propagation delay is the time that

a signal event (transition) takes to traverse the path. Both switching delay of

device and transport delays of interconnects on the path contribute to propagation

delay. It is more realistic model, however, the major limitation of this model is

the number of faults in the circuit can be very large - increases exponentially with

circuit size.

Segment delay fault model: A segment delay fault model is somewhere in

between path delay fault model and transition delay fault model. A segment is

a partial path and this model assumes the delay fault of segment is large enough

to cause a delay fault on all paths that include the segment. The number of

segments for some given length is much lower than the number of paths in a

19

circuit. This helps to reduce the number of faults while considering some sort of

distributed delay, which is more realistic. The length of a segment can be decided

based on available statistics about the manufacturing defects.

Classification of Path Delay Faults

Cheng and Chen [31], [27] classifies path delay faults as robust, non-robust, func-

tional sensitizable, and functional unsensitizable, based on the sensitization cri-

teria. The robust, non-robust, and functional sensitizable faults can affect circuit

performance; hence circuit must be tested for these faults. On the other hand,

functional unsensitizable fault can never independently affect the circuit perfor-

mance and need not to be tested. Before explaining each of these fault types, we

discuss some terminology used. An input to a gate is said to have a controlling

value if it determines the output of the gate regardless the value of the other

inputs of the gate, and its complement is said to be non-controlling value. For

example, logic value 0 is the controlling value for the AND/NAND gate, and logic

value 1 is non-controlling value for these gates. An input to a gate is called on-

input with respect to a path P if it is on P . An input to a gate is called off-input

with respect to a path P if gate is on P and the input is not an on-input.

Robust Testable Path Delay Faults: A path is called robust testable if there exist

at least one vector pair (V1, V2) such that:

• It launches the desired logic transition at the beginning of P , and

• At each gate along P , if the on-input transitions to a controlling value, the

off-inputs of the gate remain stable at non-controlling value or if the on-

input transitions to a non-controlling value, the off-inputs of the gate either

remain stable at non-controlling values or transitions to a non-controlling

value.

The robust testability condition ensures that if the path is faulty then it is

guaranteed to fail independent of the delays in the other paths of the circuit.

Therefore, for testing purposes, robust tests are the highest quality tests and

should be applied when they exist.

20

Non-Robust Testable Path Delay Faults: A robust untestable path is non-robust

testable if there exists at least one vector pair (V1, V2) such that:

• It launches the desired logic transition at the primary input of the target

path P , and

• All side inputs of the target path settle to non-controlling value under vector

V2.

A non-robust test to detect a delay fault along a path may be invalidated by the

presence of delay faults along one or more side paths.

Functional Sensitizable Path Delay Faults: A non-robust untestable path P is

functional Sensitizable if there exists at least one vector pair (V1, V2) such that,

• It launches the desired logic transition at the primary input of the target

path P , and

• At least at one gate along P , if the on-input transition to a controlling value,

the off-input(s) of the gate also transitions to a controlling value and the

rest of the gates satisfy either robust or non-robust testability condition.

Functional Sensitization criterion requires the presence of multiple faults in

the circuit in order to detect the target fault.

Functional Unsensitizable Path Delay Faults: Functional unsensitizable path de-

lay faults are defined as the faults for which all possible vector pairs at least at

one gate if the on-input transitions to a controlling value, the off-inputs of the

gate remain stable at controlling values or if the on-input transitions to a non-

controlling value, the off-inputs of the gate either remain stable at controlling

values or transitions to a controlling value. Functional unsensitizable paths can

never affect the circuit performance and need not be tested.

Relations between robust testable, non-robust testable, functional Sensitizable

faults have been presented in Figure 2.3.

21

Total paths

 Functional sensitizable paths

 Non Robust testable paths

Robust testable
Paths

Figure 2.3. Testability classification of path delay faults

2.5. Conclusion

This chapter presented two methods for microprocessor testing, namely, func-

tional testing, and structural testing. It is pointed out that functional testing

needs long test sequence, and lacks in fault coverage evaluation method, although

it can use design verification sequences. Hence, structural testing is a practical

approach to test a processor. Various structural test application methods are

presented. It is shown that instruction-based self-testing is the best suitable

methodology for processor testing as it has the capability to apply test in func-

tional mode of operation. Details of delay fault models have been presented as

this thesis targets the timing defects in the processors which can lead to perfor-

mance degradation of the processors.

22

Chapter 3

Instruction-Based Self-Testing

3.1. Introduction

As discussed in chapter 2, instruction-based self-testing (IBST) methodology ad-

dresses the problems faced by external tester based testing and built-in self-testing

for testing high performance processors or processor cores embedded inside an

SoC. This chapter describes instruction-based self-testing approach in detail and

the previous work done in the domain of instruction-based self-testing for the

testing of processors.

3.2. IBST Methodology

IBST links functional testing with gate level fault model. The concept of the

IBST is illustrated in the Figure 3.1. It uses on chip resources and processor

instructions to deliver the test patterns and collection of test responses. Self-test

routines are stored in instruction memory and data they need for execution are

stored in data memory. Both transfers (instructions and data) are performed

using external test equipment which can be as simple as a personal computer and

as high as a high-end tester. Tests are applied to components of the processor (or

processor core) during the execution of the self-test programs and test responses

are stored back in the data memory.

At first, the self-testing code is downloaded to the processor instruction mem-

23

ory of the processor via external tester which has access to the internal system

bus. Alternatively, the self-test code may be ”built-in” in the sense that it is

permanently stored in the chip in a ROM or flash memory which is shown in the

Figure 3.2. In this case, there is no need for downloading process and self-test

code can be used many times for periodic/on-line testing of the processors in the

field.

Self-test data

Self-test
Response(s)

Data memory

Self-test
code

Instruction
memory

Processor

External
Tester

CPU bus

Figure 3.1. IBST with external tester

The test data is downloaded to the data memory of the processor via the

same external tester. Self-test data may consist, among others, of: i) parameters,

variables and constants of the self-test code, ii) test patterns that will be explicitly

applied to internal processor modules or the paths between the registers, and

iii) the expected fault-free test responses to be compared with the actual test

responses. Downloading of self-test data does not exist if on-line testing is applied

and the self-test program is permanently stored in the chip.

Once self-test code and data are transferred to processor memory, the control

is transferred to self-test program which starts execution of self-test. Test pat-

terns are applied to internal processor component via processor instructions to

24

Self-test data

Self-test
Response(s)

Data memory

Self-test
code

Instruction
memory

Processor

CPU bus

Figure 3.2. IBST without external tester

detect their faults. Test responses of the applied test instructions are collected

in registers and/or data memory locations. Responses may be collected in the

unrolled manner in the memory or may be compacted using known test response

compaction algorithm. In the former case, more data memory is required and test

application time may be longer, but, on the other hand, aliasing may be avoided.

In later case, data memory requirements are smaller because only a few self-test

signatures are collected, but aliasing problem may appear due to compaction.

After self-test code completes execution, the test responses previously col-

lected in data memory, either as individual responses for test pattern or as com-

pacted signatures are transferred to the external tester for evaluation.

In case of periodic, on-line testing there is no need to transfer self-test code,

data and responses to and from external tester. Self-test code, data and expected

response(s), are stored in the chip. Execution of self-test programs leads to a

pass/fail indication which can be used subsequently for further actions on the

system (repair, re-configuration, re-computation etc.).

Application of test patterns to processor via processor instructions consists of

the following three steps, which are shown in Figure 3.3.

25

Test preparation: Test patterns are placed in locations (usually registers but

also in memory locations) from which they can be easily applied to a processor

component (the component under test or the path under test). This step may

require more than one processor instructions.

Test application and response collection: Test patterns are applied to the proces-

sor’s component (path) under test and component’s (path’s) response(s) are col-

lected in locations (usually registers but may also be memory locations). This

step usually takes one instruction.

Response extraction: Responses collected internally are exported towards data

memory (if not already in the data memory by the test application instruction).

This step may also require the execution of more than one instruction.

For example, a fault inside a shifter can be tested by the following instruction

sequence:

I1: LOAD R1, mem[1] – transfers test vector to register R1

– from memory location mem[1]

I2: LOAD R2, mem[2] – transfers test vector to register R2

– from memory location mem[2]

I3: SLL R3, R1, R2 – applies test vector and store result in register R3

I4: STORE R3, mem[3] – transfers result from register R3

– to memory location mem[3]

The test patterns must be loaded at mem[1] and mem[2] memory locations.

It transfers the response to mem[3] location, which can be compared with the

correct response.

Due to inherent non-intrusive approach, IBST has following advantages:

• No area overhead: This approach uses only processor resources (functional

units, processor buses, registers etc.) for test application and response

collection. Hence, it doesn’t lead to area overhead.

26

Processor

Module/Path
Under test

Fault

From memory

Test preparation

Processor

Module/Path
Under test Fault

Fault
effect

Test application/response collection

Processor

Module/Path
Under test

Fault
Fault
effect

To memory

Response extraction

Figure 3.3. Application of instruction-based self-test

• No performance penalty: This approach does not modify the circuit under

test; hence, it does not lead to performance penalty.

• No excessive power dissipation: This approach can be applied in functional

mode of operation, instead of ortho-normal test mode. Hence, it cannot

dissipate power greater than the rated power.

• At-speed test: This approach always applies test vectors at-speed as it uses

functional mode of operation. Hence, it can be easily used for the testing

of timing faults.

27

Due to the above stated advantages of IBST, it is a suitable testing methodol-

ogy for processor testing. Next section describes the reported work in the domain

of instruction-based self-testing of microprocessors.

3.3. Previous work

Many approaches have been reported in the literature to test a processor. This

section provides a survey of IBST approaches proposed for the testing of micro-

processors. We will first, enlist the approaches for non-pipelined architecture,

followed by the approaches for pipelined architecture, targeting both stuck-at

fault, and path delay faults. To the best of our knowledge no approach has been

reported for the superscalar architecture. We believe this thesis proposes first

approach to test a superscalar architecture using instruction-based testing.

For non-pipelined architecture:

In a landmark paper in the early 80’s Thatte and Abraham [1] proposed a graph

theoretic model for testing a microprocessor, and based on this and functional

fault model, they developed test procedures to test a microprocessor. Saluja et al.

[2] used timing and control information along with processor model [1] to reduce

the test complexity. Brahme and Abraham [3] proposed an improved functional

model to further reduce the test size. All these approaches use functional fault

model but, little if any, fault grading was done on structural model in these

approaches.

A number of instruction-based self-test approaches [4] – [14], targeting stuck-

at faults for non-pipelined processors, have also been proposed. Shen and Abra-

ham [4] proposed an approach based on instruction randomization. This ap-

proach generates a sequence of instructions that enumerates all combinations of

operations and systematically selected operands. Batcher and Papachristou [5]

also proposed an instruction randomization approach which combines the exe-

cution of microprocessor instructions with a small amount of on-chip hardware

for randomization of instructions. Both these approaches [4],[5] give low fault

coverage due to high level of abstraction and they generate large code sequence

resulting in large test application time. Chen and Dey [6] used the concept of

28

self-test signature in which they generate structural tests in the form of self-test

signatures for functional modules by taking constraints into consideration. These

self-test signatures are expanded into test sets using software LFSR during self-

test and applied using a test application program. Responses are collected and

compared with a response signature stored in memory. Due to pseudorandom

nature of this methodology self-test code size and test application time are large.

Moreover, efficiency of pseudorandom software based methodology depends on

internal architecture and bit width. Paschalis et al. [7] use self-test routines

for functional modules based on deterministic test sets for testing datapath of a

processor. Similarly, Krantis et al. [8],[9] proposed a methodology based on in-

struction set architecture and RT level description while using deterministic test

sets to test every functional component of the processor for all the operations

performed by that component. Deterministic nature of these [7] – [9] approaches

lead to reduced test code size but these methods find difficult to achieve high

fault coverage for complex architectures. Kambe et al. [10] proposed a template

based approach, that generates templates and uses fault simulation. It needs long

sequence for hard to detect faults. The above stated approaches do not explicitly

consider the controller.

An instruction-based self-test approach targeting delay faults was proposed

by Lai et al. An instruction-based self-test approach targeting delay faults was

proposed by Lai et al. [11] – [13]. This approach, first classifies a path to be

functionally testable or untestable. The authors argue that delay defects on the

functionally untestable paths will not cause any chip failure. They also suggest

that gross delay defects should be tested by transition fault testing. In their

method, datapath and controller are considered separately. Path classification

is performed by extracting a set of constraints for the datapath logic and the

controller. In constraint extraction procedure for datapath, all instruction pairs

are enumerated and for each instruction pair all possible vector pairs that can

be applied to the datapath are derived symbolically. These symbolic vector pairs

represent the constraints for datapath testing. This requires a substantial effort

to analyze all the instructions and all possible pairs of instructions even though

it is not necessary to analyze all the pairs as shown in chapter 4 of this thesis.

For controller, constraints in terms of legitimate bit patterns in registers and

29

correlation between control signals and transition in registers are extracted. A

procedure given in [11] is used to classify paths in controller which uses multiple

time frames. This procedure uses sequential path classification methodology i.e.,

in order to classify a path it propagates the transition forward till PO and back-

ward till PI in multiple time frames under the constraints. This is needed because

it is not extracting the constraints provided by the state transitions. After clas-

sification of paths, constrained ATPG is used to generate the test patterns for

testable paths. Lai and Cheng [14] proposed an approach for delay fault testing of

a System-on-a-Chip using its own embedded processor instructions, and also pro-

posed a methodology to include new test instructions for testability enhancement

and test program size reduction.

For pipelined architecture:

A methodology for pipelined processor based on the test templates was presented

by Chen et al. [19], which uses statistical regression for function mapping, but it

leads to long program size for complex architectures due to its statistical nature.

Kranitis et al. [20] also proposed a methodology for pipelined processors based

on RTL description and instruction set architecture using deterministic tests for

functional blocks, whereas Paschalis et al. [21] proposed an online periodic test

methodology for pipeline processors. But these approaches [20] and [21] target

only functional blocks; hence they are unable to achieve high fault coverage for

complex architectures. Although [19] – [21] considered pipelined processor, the

pipelined behaviour was not considered explicitly in these, as they are largely

focused on the functional blocks. Also none of the above stated approach target

controller explicitly.

To the best of our knowledge, no approach has been proposed in literature

for testing of pipelined processors targeting delay faults so far. We believe this

thesis proposes the first work towards modeling of pipeline behavior for testing

of a microprocessor and a delay fault testing methodology of pipelined processors

in functional mode.

30

3.4. Conclusion

This chapter described a new paradigm, instruction-based self-testing method-

ology, which is being proposed recently in order to overcome the limitations of

external tester based and built-in self-test based testing of processors. It has been

shown that this is the most suitable approach for the testing of processors and

processor cores embedded deep inside an SoC. It also presented the approaches

proposed in the literature for the testing of processors using instruction-based

self-testing.

31

Chapter 4

Non-pipelined Processor Testing

4.1. Introduction

Today’s SOCs are built around high performance processors to meet increasing

consumers demand of rich functionality and performance with short turn around

time. Design reuse is being regarded as the only way that allows designers to

keep pace with the technological developments. It reduces the time to market

and design effort significantly. However, it introduces test difficulties. Chapter 2

highlighted the need of at-speed delay fault testing of such a high performance

processors or processor cores to make sure the performance of these high-speed

processors. At-speed testing problem can be addressed by instruction-based self-

testing, as described in chapter 3. An ad-hoc instruction-based self-testing ap-

proach targeting delay faults is proposed by Lai et al [11]. This approach extracts

constraints by exhaustively searching instructions and instruction pairs. More-

over, results for the controller are not reported for this approach

This chapter proposes [16] – [18], an efficient and systematic methodology

of delay fault self-testing of processors or processor cores using their instruction

set. The proposed approach uses a graph theoretic model (represented as In-

struction Execution Graph) of the datapath and a finite state machine model

of the controller for the elimination of functionally untestable paths at the early

stage without looking into the circuit details, and extraction of constraints for

the paths that can potentially be tested. Parwan and DLX processors are used

to demonstrate the effectiveness of our approach.

32

S1

S2 S3

Controller Datapath

Control Signals

Status Signals

To memory

From memory

Figure 4.1. Block diagram of a non-pipelined processor

This chapter first describes non-pipelined processors architecture and overview

of the approach. Thereafter it presents graph model and the testing methodolo-

gies for the datapath and the controller. Following test generation procedure,

an instruction sequence generation procedure is presented. Finally experimental

results are discussed.

4.2. Non-pipelined Processor Architecture

A microprocessor is a computer’s central processing unit (CPU) implemented on

a chip. The processor has two parts: a control part and a data part. The control

part says what to do, and the data part does it. The control part decodes in-

structions and guides the processor through its internal states. The data part (or

execution unit) contains the registers, arithmetic and logic unit, shifter, and other

pieces that directly store or manipulate data. The control part directs operations

in the execution unit. It consists of clock-phase generator, bus controller, and

processor controller. The processor controller consists of an instruction decoder,

and a finite-state machine to generate the control signal for every cycle.

Figure 4.1 shows a block diagram of the implementation of a processor.

Datapath

Datapath executes instructions using available architectural registers and func-

tional units. Figure 4.2 shows a general architecture of the datapath of a non-

33

pipelined processor.

In general, the execution of an instruction can be divided into three main

phases as shown in Figure 4.3. The phases are instruction fetch, decode opfetch,

and execute opwrite. In the instruction fetch phase, an instruction is retrieved

from the memory and stored in the instruction register. The sequence of actions

required to carry out this process can be grouped into three major steps.

1. Transfer the contents of the program counter to the memory address and

increment the program counter. The program counter now contains the

address of the next instruction to be fetched.

2. Transfer the content of the memory location specified by the memory loca-

tion specified by the memory address register to the memory data register.

3. Transfer the contents of the memory data register to the instruction register.

In the decode opfetch phase, the instruction in the instruction register is de-

coded, and if the instruction needs an operand, it is fetched and placed into the

desired location.

The last phase, execute opwrite, performs the desired operation and then

stores the result in the specified location. Sometimes, no further action is re-

quired after the decode opfetch phase. In these cases, the execute opwrite phase

is simply ignored.

The three phases described must be processed in the sequence.

Controller

The major parameters of interest to design a controller are:

• Speed

• Complexity

• Flexibility

The design of the control unit must provide for the fastest execution of instruc-

tions possible. Instruction execution speed obviously depends on the datapaths

34

Program Counter

MAR

Register
File

Instruction Register

MDR

AC

ALU

Data
from/to
memory

Memory
address

Internal
data
bus

Figure 4.2. Datapath of a non-pipelined processor

35

Instruction fetch
phase

decode_opfetch
phase

execute_opwrite
phase

Instruction
fetch

Instruction
decode

Generate
operand
address

Operand
fetch

Execute

Operand
write

Figure 4.3. Phases of an instruction execution process

36

resources (i.e., number of buses etc.) available in the structure; the complexity

of instruction itself (number of memory addresses, number of addressing modes,

etc.); and the speed of hardware components in the circuit. The control unit

should minimize the instruction cycle time (i.e., the time to fetch and execute an

instruction) for each instruction.

The complexity of the control unit is predominantly a function of instruction

size, although factor such as ALU complexity, the register complexity, and the

processor bus structure influence it. Early design used complex instruction set

architecture (complex instruction set computers – CISC) which supports complex

addressing modes in order to ease out the programmers task. It was observed

that on an average 20% to 30% of the instructions in an instruction set are not

commonly used by application programmers. These observations led to the de-

velopment of the reduced instruction set computer (RISC). RISC architectures

use large number of instruction with fewer addressing mode, hence, reduce the

controller complexity. Today, nearly all the processors are using RISC architec-

ture.

Two popular implementation techniques of the control unit are:

• Hardwired control

• Micro-programmed control

Note that each instruction cycle corresponds to a sequence of micro-operations

(or register transfer operations) brought about by the control unit. These se-

quences are produced by a set of gates and flip-flops in a hardwired control

unit, or from the programs located in the micro-programmed ROM in a micro-

programmed control unit. The micro-programmed control unit offers flexibility in

terms of tailoring the instruction set for a particular application. The hardware

implementations, on the other hand, offer higher speed. Almost all hardware

control units are implemented as synchronous units whose operation is control by

a single clock signal.

Generally, modern RISC processors use hardwired control and these are im-

plemented using finite state machine based controller. In this work, we consider

a finite state machine based controller. The controller, as shown in Figure 4.4,

37

consists of an instruction register (IR) to hold the fetched instruction until it com-

pletes, a status register (SR) to hold status signals received from the datapath,

and a present state register (PSR) to hold the current state of the sate machine

which is used by next state logic to update the state and output logic to generate

control signals in each state.

 P
S
R

NS
Logic

O/P
Logic

SR

IR

PI
To
datapath

Figure 4.4. Structural organization of a controller

In order to execute an instruction, the controller should generate control sig-

nals to carry out the operations shown in Figure 4.3 sequentially. The state

diagram can be used to implement a hardwired circuit as a Mealy type or as a

Moore type finite state machine.

Parwan Processor

We will use Parwan processor [28] as a running example in this chapter to explain

many of the concepts. Parwan processor is an accumulator based 8–bit processor

with a 12–bit address bus. It has 17 instructions, listed in Table 4.1, and it

supports both direct and indirect addressing modes. The structural organization

of the processor is shown in Figure 4.5 and the state diagram of the controller in

the Parwan processor is shown in Figure 4.6.

38

Figure 4.5. Structural organization of Parwan processor

39

Table 4.1. Instruction set of Parwan processor

1. LDA 5. JMP 9. BRA C 13. CLA 17. ASR

2. AND 6. STA 10. BRA Z 14. CMA

3. ADD 7. JSR 11. BRA N 15. CMC

4. SUB 8. BRA V 12. NOP 16. ASL

s1 s2

s3

s4

s5 s6
s7

s8

s9

Figure 4.6. State diagram of Parwan processor

4.3. Overview of the Proposed Work

Our methodology considers datapath and controller separately as both of these

have different design characteristics. The activities in the datapath are controlled

by the controller. The controller is also constrained by state transitions and

signals from the datapath. Hence, only a subset of structurally applicable test

vectors may be applied in the functional mode. Path delay fault model is used.

We model datapath by a new graph theoretic model called Instruction Exe-

cution Graph (IE-graph) that can be constructed from the instruction set archi-

tecture and RT level description of the processor. In our formulation of the test

problem IE-Graph is used to classify all paths as functionally untestable (FUT)

paths or potentially functionally testable (PFT) paths, and to extract the con-

straints imposed on the datapath for PFT paths. First, constraints on the control

signals that can be applied on the paths between a pair of registers in consecutive

cycles are extracted. Next, constraints on justifiable data inputs (registers) are

extracted. Following these, a combinational constrained Automatic Test Pattern

40

Generator (ATPG) is used to generate test vectors under the extracted con-

straints. Thus, in this approach only those vectors are generated that can be

applied functionally. Further, the search space is significantly small as only those

states are used during test generation which can cause data transfer to take place

on a path between a pair of registers.

For testing the controller, the constraints are extracted in the form of state

transitions from its RT level description. These constraints also include the val-

ues of status signals in the status register and instruction code in the instruction

register of the processor. After extracting the constraints, paths are classified as

FUT paths or PFT paths. Combinational constrained ATPG is used to generate

the test vectors for the paths classified as PFT paths. As the vectors must be

generated with constraints on the states and inputs to the controller (contents of

the instruction register and status register), the number of time frames that are

required for sequential test generation are eliminated. In the final phase test in-

structions are generated using the knowledge of the control signals and contents

of the instruction register. Justification and observation instruction sequence

generation processes are based on heuristics which minimize the number of in-

structions and/or the test application time. In order to test the processor core,

the test program (a sequence of generated instructions) is loaded into the mem-

ory. The processor fetches the instructions from the memory and after execution,

the results are transferred to the memory.

Throughout this chapter the following concepts and notation will be used.

Definition 1 A path [31] is defined as an ordered set of gates {g0, g1,, gn},
where g0 is a primary input or output from a FF, and gn is a primary output or

input to a FF. Output of a gate gi is an input to gate gi+1 (0<i<n-1). 2

Definition 2 A path is (enhanced-scan or standard-scan) structurally testable

[11] if there exists a structural test for the path, which can be applied through

the (enhanced or standard) full-scan chain. 2

Definition 3 A path is functionally testable [11] if there exists a functional test

for that path, otherwise the path is functionally untestable. 2

A functional two-pattern test does not exist to test a path implies that there

does not exist an instruction or an instruction sequence to apply the required test

41

in functional mode of operation. Clearly, functionally untestable paths are never

activated in normal (functional) operational mode and we need not target these

paths in our approach. We use the following notation to represent signal values.

c : represents a bit which has the same value as in the previous timeframe.

x: represents a bit that can be assigned either a logic 0 or a logic 1 value at will.

d: represents a bit which is not cared by state transition. It is the same as x,

except that legitimate bit pattern in the register has to be justified.

R: represents rising transition.

F: represents falling transition.

Definition 4 A constraint P is represented by a vector pair and each element

of P can be 0, 1, x, c, or d. 2

Definition 5 A constraint P is said to cover a constraint Q if P = Q or Q can

be obtained from P by assigning 0 and 1 values to x’s in P. 2

4.4. Testing Methodology

4.4.1 Datapath Testing

In this section we deal with only those paths that are relevant to data transfer

between registers in the datapath. The paths which include the logic in the

controller are considered in the next section, even if they start from and end at

some registers in the datapath.

Datapath is modeled by an IE-Graph. This is based on the concept of S-

Graph proposed in [1]. However, unlike S-Graph, the IE-Graph contains infor-

mation about data transfer activities associated with an instruction as well as the

state during which a given action takes place. IE-Graph is constructed from the

instruction set architecture and register transfer level description and includes

architecture registers of the datapath.

Nodes of the IE-graph are:

1. registers,

2. two special nodes IN and OUT, which model external world such as memory

and I/O devices,

42

3. part of registers which can be independently readable and writable, and

4. equivalent registers (set of registers which behave in the same way with

instruction set, as defined by [3], such as registers in a register file).

A directed edge between two nodes is drawn iff there exists at least one in-

struction which is responsible for transfering data (with or without manipulation)

over the paths between two nodes (registers). Each edge is marked with a set of

[state, instruction(s)] pairs, which are responsible for the data transfer between

the pair of nodes.

An IE-graph of Parwan processor is shown in Figure 4.7.

IN

SR AC IR

MARl
PCl

OUT

{[s3, I15]}

{[s7, I7]}

{[s6, I6]}

{[s3, I15],[s4,I1-11],
 [s5,I1-6],[s6,I1-4],
 [s7,I7]}

{[s6, I5],
 [s9, I8-11]}

{[s4, I1-11],
 [s5, I1-6]}

{[s3, I13,14,16,17],
 [s6, I2-4]}

{[s6, I1-4]}

{[s1, I1-17],
 [s3, I1-11]}

{[s4, I1-6]}

{[s2, I1-17]}

{[s6, I1-4]}

{[s3, I16,17],
 [s6,I1-4]}

MARu PCu

{[s1, I1-17],
 [s3, I1-11]}

{[s2, I1-17],
[s4, I1-11],
[s8, I7]}

{[s6, I5],
 [s9, I8-11]}

{[s4, I7-11],
[s5, I1-6]}

{[s3, I15],[s4,I1-11],
 [s5,I1-6],[s6,I1-4],
 [s7,I7]}

{[s7, I7]}

{[s2, I1-17],
[s4, I1-11],
[s8, I7]}

{[s2, I1-17],
[s4, I1-11],
[s8, I7]}

Figure 4.7. IE-graph of Parwan processor

43

Test vector generation process uses instruction set architecture, RT level de-

scription, and gate level netlist. It is a two-step process. The first step is con-

straint extraction process and the second step is test vector generation process.

Constraint Extraction and Path Classification

There are two types of constraints imposed on the datapath by the controller: i)

control constraints, and ii) data constraints. Control constraints are imposed on

control signals, which are responsible for transferring data between two registers.

These constraints are obtained from IE-graph and RT level description. Data

constraints, on the other hand, are the constraints on the justifiable data in the

registers under control constraints, which are obtained from RT level description.

Definition 6 Let there be an edge from node Ri to Ro, marked with [sl, Ip].

The marked state sl is defined as a latching state for the paths represented by

that edge. 2

Data transfer activity from register Ri to Ro takes place in state sl during

the execution of instruction Ip and register Ro will be latched. Hence, state sl is

defined as a latching state.

Lemma 1 Let <V1, V2> be a test vector pair for a path from register Ri to a

register Ro, where test vector V1 is followed by V2 and the edge between these

registers is marked with a set of state-instruction pairs {[sl, Ip]}. This vector

pair can be a test vector pair in functional mode only if there exists at least one

state-instruction pair [sl, Ip]∈ {[sl, Ip]}, such that

1. vector V2 can be applied in the latching state sl of the instruction Ip, and

2. vector V1 can be applied in the state just before the latching state sl of the

instruction Ip.

2

Note that every instruction is a sequence of state transitions and the latching

state(s) in this sequence for a register pair is well defined. However, if the latching

state happens to be the very first state of an instruction then the last state of

44

every instruction needs to be considered as the state that immediately precedes

the latching state.

During the latching state sl, data transfer (with or without manipulation)

from register Ri to Ro takes place and the result is latched in register Ro. There-

fore, we can apply the second vector only in the latching state (say sl) and the

first vector must be applied in a state just before the latching state (say sj). Two

consecutive states sj and sl provide the control constraints, and control signals in

these states during the execution of instruction(s) marked with the latching state

are obtained from RT level description. Constraints on the states during which

we can apply the test vectors <V1, V2> take care of justification of the control

signals in the functional mode of testing. Data constraints in the form of justi-

fiable data in the input register of the register pair and other registers required

for the execution of marked instruction are obtained from RT level description.

Lemma 2 Paths from register Ri to Ro are functionally untestable if the follow-

ing conditions exist,

1. Ri is not an IN node, and

2. Ri has no incoming edge marked with the state just before the latching

state (sl) of the instruction Ip for any [sl, Ip] marked on the edge (Ri, Ro).

2

If conditions stated in Lemma 2 exist then transition cannot be launched from

register Ri. Hence, the paths between a register pair Ri and Ro are FUT paths.

Otherwise, these paths are classified as PFT paths and we need to extract the

data constraints for the these paths. Covering relation, defined in section 4.3,

helps reduce the number of constraints.

Following examples should help clear the above concepts.

Example 1 Constraints on paths between AC and AC:

The edge between nodes AC and AC is marked with {[s3, (I13−14, I16−17)], [s6, I2−4]},
as shown in Figure 2. The previous states of s3 and s6 are s2 and s4(or s5), re-

spectively (as shown in Fig. 1). AC is neither an IN node nor it has any incoming

45

edge which is marked with just previous state of its latching state s3 or s6. There-

fore, using Lemma 2 we can conclude that paths from AC to AC are functionally

untestable. 2

Example 2 Paths from IN to AC:

The edge between nodes IN and AC is marked with [s6, I1−4], as shown in Figure

1. These paths are PFT paths in accordance with Lemma 2, as input node

is an IN node, and the latching state for these paths is s6. Therefore, control

constraints are the control signals generated in state s4 or s5 followed by s6 for

the instructions I1, I2, I3 or I4. This is obtained from IE-graph and RT level

description. The states s4 and s5 are the previous state of the latching state s6

(as shown in Fig. 4.6). Data constraints can be obtained in the state s4 followed

by state s6 or state s5 followed by s6, for the instructions I1, I2, I3 and I4. Data

constraints for the instruction I3 are shown in Table 4.2. This table shows the

constraints for ALU control signals (ALU ctrl) and SHU control signals (SHU

ctrl) as control constraints and constraints for IN and AC as data constraints in

consecutive two time frames corresponding to s4 and s6 states of the instruction

I3. We consider these constraints as ALU and SHU lie in the paths and AC is

the other input needed by the instruction I3. The extracted data constrained for

IN and AC shows that any value can be justified in IN, where as AC must have

the same value across two time frames. Here we assume that when input to a

combinational logic is in high impedance state then it can hold the logic value

that is applied before the high impedance state. Parwan processor uses tristate

buses which are responsible for the constraints on IN node. 2

Table 4.2. Data constraints for the paths between IN and AC

State I3(ADD)

ALU SHU IN AC

ctrl ctrl (other i/p)

s4 000 00 xxxx xxxx xxxx xxxx

s6 101 00 xxxx xxxx cccc cccc

46

For instruction I3, both control constraints, s4 followed by s6 and s5 followed

by s6, are identical. Hence, using the covering relation one of these two constraints

can be eliminated. All other constraints are extracted similarly.

Test Vector Generation Procedure

Constrained ATPG is used to generate the test vectors for the PFT paths under

the extracted constraints. Path lists between a register pair and their correspond-

ing constraints are provided as inputs to an ATPG along with gate level netlist

and it returns the test vectors for the testable path.

A procedure to extract the constraints and test generation is given in Figure

4.8. This procedure systematically extracts the constraints using IE-Graph and

uses constrained ATPG to generate the test vectors.

Constraint Extraction Procedure
1.Constraint path pair set W = Φ
2.for nodes Ri (i = 1 to n) { // there are n nodes in IE-Graph
3. for each edge (Ri, Rj) (j = 1 to m) { //
 // there are m edges from node Ri //
4. if paths are PFTP then { // (using Lemma 2) //
5. Pij = Set of all paths between Ri and Rj
6. Cij= Set of constraints for the paths from

node Ri to node Rj
7. W = W ∪ {[Cij, Pij]}
8. }
9. }
10.}
Test Generation Procedure
 Constrained ATPG process
 Input : Constraint path pair set W, Gate level net list
 Output : Set of testable path with their test vector pairs

Figure 4.8. Constraintextraction and test generation procedures

47

4.4.2 Controller Testing

As described in section 4.2, controller is a sequential circuit that is normally

implemented as a Mealy type or a Moore type finite state machine. Structural

organization of the controller is shown in Fig 4.4. In this section, we treat all

paths which include logic elements in the controller. Test vectors applicable in

functional mode of operation to the controller are restricted by the state transi-

tions. If for a path there exists no sequence of valid state transitions which can

launch a transition and propagate it along the path then that path is a function-

ally untestable path, even though that may be structurally testable. Therefore,

we extract constraints on state transitions prior to test generation.

Constraint Extraction

Change of state of controller is determined by the contents of registers (IR and

SR), inputs (PI), and the present state. Input from registers IR and SR (i.e.,

registers other than the present state register (PSR)) are treated as Constrained

Primary Input (CPI). Therefore, we need to extract two types of constraints: i)

constraints on state transition, and ii) constraint on legitimate values in IR and

SR registers, because these are treated as constrained primary input.

1. Constraints on state transitions:

Constraints on state transitions can be extracted by extracting possible

valid state transition under legitimate values in IR, SR and input, by using

instruction set architecture and RT level description. We demonstrate this

using Parwan processor as an example. Table 4.3 shows a part of the state

transition table of Parwan processor.

This table shows that when present state is s1 then next state will be either

s1 or s2 depending on the value of input, and independent of values in IR

and SR registers. During these state transitions (s1 to s1 or s2) register IR

and SR can have any legitimate value in the present state (s1) and must

have the same values in next state (s1 or s2). Hence, we cannot launch

transition from IR and SR during these state transitions. When present

state is s2 then next state is always s3. IR can have any legitimate value in

48

Table 4.3. State transition table of Parwan processor (partial)

PS NS IR IR SR SR In

(PS) (NS) (PS) (NS) (PS)

s1 s1 dddd dddd cccc cccc dddd cccc 1

s2 dddd dddd cccc cccc dddd cccc 0

s2 s3 dddd dddd 0xxx xxxx dddd cccc d

100x xxxx dddd cccc d

101x xxxx dddd cccc d

110x xxxx dddd cccc d

1110 0000 dddd cccc d

1110 0001 dddd cccc d

1110 0010 dddd cccc d

1110 0100 dddd cccc d

1110 1000 dddd cccc d

1110 1001 dddd cccc d

present state (s2) as well as in next state (s3). Therefore, transition can be

launched from IR during the state transition s2 to s3.

2. Constraints on legitimate values in IR and SR registers (registers other than

the present state register):

A set of legitimate values in the registers other than the present state reg-

ister can be obtained from its instruction set architecture and RT level de-

scription. For example, the legitimate bit patterns that the register IR of the

Parwan processor can have are specified as {IR, < 0xxx xxxx, 10xx xxxx,

110x xxxx, 1111 0100, 1111 0010, 1111 0001, 1110 0000, 1110 0001, 1110 0010,

1110 0100, 1110 1000, 1110 1001>}.

Path Classification

After extraction of constraints, each path is classified as PFT path or FUT path.

This process uses state transition diagram and gate level implementation. There

49

are three types of paths in a controller

1. PSR to PSR

2. PI or CPI (registers IR and SR) to PSR

3. PI, CPI, or PSR to a register in datapath.

Paths from PSR to PSR are only responsible for sequential behavior of the

controller circuit. For path classification, we construct a table that shows tran-

sition on bits in PSR and other registers with state transitions. Table 4.4 shows

transition on bits in PSR with state transitions for Parwan processor when states

are binary encoded.

Table 4.4. Transition on bits in PSR with state transition (Parwan processor)

bit s1 s2 s3 s4 s5 s6 s7 s8 s9

b3 R s9

F s1

b2 R s5,s6,s7

F s1,s2 s1

b1 R s3

F s5,s6,s9

b0 R s2 s4 s6 s8

F s3 s5,s7,s9 s1 s1

This table shows that there can be rising transition on bit b3 only when there

is a state transition from state s4 to s9. Similarly, there can be falling transition

on b3 only when there is a state transition from state s9 to s1.

Lemma 3 Paths between bit i in register R1 and bit j in register R2 (registers

R1 and R2 need not be different) in controller circuit are functionally untestable

paths for a transition (rising or falling) if

1. there does not exist a valid state transition sm to sn to launch the transition

at bit i, or

50

2. there does not exist a state transition sp to sq which can receive the launched

transition (launched during the state transition sm to sn) or its inverse

(receive f alling transition when rising is launched) at bit j, such that sn =

sp.

2

A path is functionally testable if we can create a transition and propagate its

effect along the path. If the conditions stated in Lemma 3 exist then we either

cannot launch a transition or cannot propagate the created transition. Hence,

the paths between bit i in register R1 and bit j in register R2 are FUT paths.

Otherwise, these paths are classified as PFT paths because transitions can be

created and may be propagated if values in other registers are justifiable. We

also get precise constraints under which these paths can be tested using state

transition table.

1. Paths from PSR to PSR (Paths from controller to controller):

A path between bit i and bit j in PSR can be classified as follows for rising

transition, using Lemma 3. We consider 3 consecutive time frames as shown

in the following table. Activities at bit i and j in PSR and required state

transitions are listed in Table 4.5. These paths are PFT paths iff either sm

to sn to sr, or sm to sp to sq state transition sequence exists.

Table 4.5. Activities at bit i and j in PSR

Time frame k k + 1 k + 2

bit i 0 1 x

bit j x 0 (1) 1 (0)

state sm sn(sp) sr(sq)

Example 3 PSR to PSR paths classification in Parwan processor when

states are binary encoded. Table 4.4 shows transition on bits in PSR with

state transitions. Paths from b2 to b1 (for rising transition) are classified

as FUT paths because no one state transition sequence exists to test these

51

paths, where as paths from b2 to b1 (for falling transition) are classified as

PFT paths because a state transition sequence s6 to s2 to s3 exists. State

transition sequence s6 to s2 to s3 is an exact constraint for these paths (b2

to b1, falling transition) under which these can be tested if other values are

justifiable. Similarly, we can find out all PFT paths, which are the potential

candidates for the next phase. 2

2. Paths from PI or CPI to bit i in PSR (Paths from input or datapath to

controller):

(a) Paths from PI to bit i in PSR are classified as PFT paths, iff there

exists a state sequence (sm to sn), which can receive a transition at bit

i.

(b) Paths from CPI to bit i in PSR are classified as PFT paths, iff there

exist a valid state transition (sm to sn) to create a transition at CPI

(register IR or SR) and there exists a valid state transition (sn to sp)

at bit i of PSR (according to Lemma 2).

3. Paths from CPI or PSR to a register in datapath (Paths from controller to

datapath):

(a) there exists a state sequence (sm to sn) which can launch a transition

at bit i in PSR or CPI, and

(b) the register in the datapath, where these paths terminate, has an in-

coming edge, marked with state sn in IE-Graph and state sm and sn

are two consecutive states of the marked instruction Ip.

Test Vector Generation

A constrained combinational ATPG is used to generate the test vectors for the

paths, which are, classified as PFT paths under the extracted constraints. ATPG

is given with a set of PFT paths along with their respective constraints. ATPG

will return the test vectors if a path is testable under constraints.

This approach extracts the constraints in the form of state transitions and

classifies the paths as functionally untestable or potentially functionally testable.

52

Functionally untestable paths are removed from the path list. It uses combina-

tional constraint ATPG to generate test vectors. Therefore, we need not consider

multiple time frames for all the paths like a sequential ATPG, as sequential be-

havior is taken care of by the state transition in our approach. This also reduces

the complexity of test generation. Note that the vectors generated by us are valid

instructions and/or data.

4.4.3 Test Instruction Sequence Generation

The generated test vector pairs as explained in the preceding section are assigned

to control signals and registers. Control signals and value(s) in IR in two consec-

utive time frames give the test instruction(s). Data in registers and in memory,

which will be used by the test instruction, must be justified, using justification

instruction. The result from the output register must be transferred to memory

using observation instructions.

For example, consider a test vector pair (V1, V2), where

V1 = {ALU ctrl=000, SHU ctrl=00, AC=48H, IN=24H},
V2 = {ALU ctrl=111, SHU ctrl=00, AC=48H, IN=04H}.

Instructions
000H LDA 400H -- Load value from 400H to AC
002H SUB 424H -- AC <= Value at 424 –AC
004H STA 401H -- Store AC to 401H
Data
400H 48H
424H 04H

Figure 4.9. Instruction sequence

Figure 4.9 shows the generated test instructions for this example. In this

figure, each line shows the memory location followed by an instruction mnemonic

(with comments) or a content of the location. The generated test implies that a

53

SUB instruction (which provides ALU ctrl = 000, SHU ctrl = 00 at s4, and ALU

ctrl = 111, SHU ctrl = 00 at s6) is applied as a test instruction.

The lower order 8 bit of the memory address used by the SUB instruction

(i.e., 424H) must be 24H (value of IN in V1) and the value stored at this location

must be 04H (value of IN in V2). The value of AC is 48H in V1. This implies that

we should justify the value at AC prior to SUB instruction. This is achieved by

LDA instruction that loads 48H to AC. The test instruction SUB stores the result

in AC. We can observe the result by STA instruction (store AC) that transfers

the result to memory.

We can generate a test instruction sequence for every test vector pair in the

above stated manner.

4.5. Experimental Results

A constraint extraction procedure for the datapath and the controller has been

implemented in C language. Constrained ATPG for delay fault testing has also

been implemented in C language, as commercially available ATPGs are not ca-

pable of handling our constraints.

We have applied our methodology to Parwan processor [28] and DLX processor

[29]. The synthesized version of the Parwan processor contains 888 gates and

53 flip-flops and DLX processor contains 16152 gates and 1446 flip-flops. IE-

graphs for these processors are constructed and functionally untestable paths are

identified. For example, the paths from AC to AC, AC to SR, AC to OUT, SR to

SR, SR to OUT and PC to PC in the datapath of the Parwan processor are found

to be untestable. We extract constraints for rest of the paths using IE-Graph and

RT level description. Similarly, state transition tables for both of the processors

are constructed which show the constraints on the controllers.

We generated test patterns for Robust (Rob), Non Robust (NR) [31] and

Functional Sensitizable (FS) [31] paths under the extracted constraints using our

constrained ATPG. The test vectors are generated in the following order: Rob,

NR, and FS. For each path, first it generates a test vector pair for the robust

test, if exist under the constraints; otherwise go for NR test followed by FS test.

Here we consider, the paths which are starting from some register in datapath

54

(e.g., IR or SR) going through the controller and terminating at some register in

datapath, as a part of the controller. These paths are large in number (about

98-99% of the total paths in the controller). Results are shown in the tables 4.6

and 4.7.

The results show that 37% of paths in Parwan datapath, 46% paths in Par-

wan controller, and 17% paths in DLX datapath are identified as functionally

untestable paths and these are eliminated during the first phase without using

circuit details. However, all the paths in the controller of the DLX processor are

determined to be potentially functionally testable paths because of the completely

specified state space in the state encoding (64 states are encoded in 6 bits). We

have extracted the constraints for these paths efficiently and achieved 100% fault

efficiency. The paths shown as functionally untestable in 9th row of the table

4.6 and 4.7 include the paths which are declared functionally untestable in first

phase. NR testable paths include the robust testable paths, and FS testable paths

include Robust and NR testable paths. The CPU time shown in table 4.6 and

4.7 is the total time taken by ATPG to generate Rob, NR and FS test vectors.

Table 4.8 shows that our methodology achieves higher fault coverage for the

datapath of Parwan processor as compared to [12] because we are considering

at microinstruction level during the extraction of constraints for the potentially

testable paths. Note that [12] uses a different synthesized version of Parwan

processor with 168 sequential elements in order to separate out controller and

datapath to make it better testable and reduction of number of paths, where

as we are using original Parwan processor. Similarly, their DLX processor is

also differently synthesized. The results for the controller are not shown in [12].

Our approach can eliminate substantial number of paths without looking into

the circuit details, where as [12] uses the circuit details for path classification.

Moreover, [12] has not shown the results other the results for NR test for the

datapath of Parwan and DLX processors.

55

T
ab

le
4.

6.
R

es
u
lt

s
fo

r
P
ar

w
an

p
ro

ce
ss

or

D
at

ap
at

h
C

on
tr

ol
le

r

R
ob

N
R

F
S

R
ob

N
R

F
S

T
ot

al
P
at

h
5,

21
7

5,
21

7
5,

21
7

17
4,

36
2

17
4,

36
2

17
4,

36
2

N
o.

of
fa

u
lt

s
10

,4
34

10
,4

34
10

,4
34

34
8,

72
4

34
8,

72
4

34
8,

72
4

F
au

lt
s

d
ec

la
re

d
u
n
te

st
ab

le
3,

90
2

3,
90

2
3,

90
2

16
2,

81
2

16
2,

81
2

16
2,

81
2

in
fi
rs

t
p
h
as

e

P
er

ce
n
ta

ge
of

el
im

in
at

ed
37

.4
37

.4
37

.4
46

.6
46

.6
46

.6

fa
u
lt

s

N
o.

of
fu

n
ct

io
n
al

ly
te

st
ab

le
15

6
1,

65
3

2,
61

8
40

7
2,

41
7

3,
52

0

fa
u
lt

s

F
au

lt
co

ve
ra

ge
(%

)
1.

5
15

.8
25

.0
0.

1
0.

7
1.

0

N
o.

of
u
n
ct

io
n
al

ly
u
n
te

st
ab

le
10

,2
78

8,
78

1
7,

81
6

34
8,

31
73

34
6,

30
7

34
5,

20
4

fa
u
lt

s

F
au

lt
effi

ci
en

cy
(%

)
10

0
10

0
10

0
10

0
10

0
10

0

C
P

U
ti

m
e

(A
T

P
G

)
3

m
in

u
te

s
41

se
c

3
h
ou

rs
27

m
in

u
te

s

56

T
ab

le
4.

7.
R

es
u
lt

s
fo

r
D

L
X

p
ro

ce
ss

or

D
at

ap
at

h
C

on
tr

ol
le

r

R
ob

N
R

F
S

R
ob

N
R

F
S

T
ot

al
P
at

h
26

4,
90

6
26

4,
90

6
26

4,
90

6
74

3,
41

1
74

3,
41

1
74

3,
41

1

N
o.

of
fa

u
lt

s
52

9,
81

2
52

9,
81

2
52

9,
81

2
14

68
,8

22
14

68
,8

22
14

68
,8

22

F
au

lt
s

d
ec

la
re

d
u
n
te

st
ab

le
34

,9
24

34
,9

24
34

,9
24

0
0

0

in
fi
rs

t
p
h
as

e

P
er

ce
n
ta

ge
of

el
im

in
at

ed
17

.0
17

.0
17

.0
0

0
0

fa
u
lt

s

N
o.

of
fu

n
ct

io
n
al

ly
te

st
ab

le
19

,3
54

34
,9

24
44

,3
24

15
,1

46
42

,2
95

11
2,

73
5

fa
u
lt

s

F
au

lt
co

ve
ra

ge
(%

)
3.

6
6.

5
8.

3
1.

0
2.

8
7.

6

N
o.

of
u
n
ct

io
n
al

ly
u
n
te

st
ab

le
51

0,
45

8
49

4,
88

8
48

5,
48

8
14

53
,6

76
14

26
,5

27
13

56
,0

87

fa
u
lt

s

F
au

lt
effi

ci
en

cy
(%

)
10

0
10

0
10

0
10

0
10

0
10

0

C
P

U
ti

m
e

(A
T

P
G

)
1

h
ou

r
32

m
in

u
te

s
15

h
ou

rs
18

m
in

u
te

s

57

Table 4.8. Comparison with earleir work (Fault Coverage)

Parwan DLX

Lai [10] Our Lai [10] Our

work work work work

Datapath Rob – 1.5 – 3.6

NR 3.7 15.8 7.2 6.5

FS – 25.0 – 8.3

Controller Rob – 0.1 – 1.0

NR – 0.7 – 2.8

FS – 1.0 – 7.6

4.6. Conclusion

A systematic approach for the delay fault testing of processor core using its

instruction set has been presented in this chapter. A graph theoretic model for

data path has been developed. This model is used with the RT level description

to eliminate the functionally untestable paths at the early stage and it is also

used for extraction of constraints. Controller is modeled as a finite state machine

and constraints on state transitions are extracted. This eliminates the need for

multiple time frame consideration for test generation, and hence reduces the test

generation complexity. Our experimental results show that our test generation

process can efficiently generate test vectors for functionally testable paths which

can be applied by test instructions.

58

Chapter 5

Pipelined Processor Testing

5.1. Introduction

Although nearly all modern processors use pipelined architecture, yet no method

has been proposed in literature to model these for the purpose of test generation.

This chapter proposes a graph theoretic model of pipelined processors and de-

velops a systematic approach to path delay fault testing of such processors using

the processor instruction set. To the best of our knowledge no approach has been

proposed for delay fault testing of pipelined processors in functional mode.

This chapter describes the pipelined processor architecture first and then

overview of the approach. It describes a graph theoretic model of a pipelined

processor in section 5.4. Section 5.5 describes the testing methodology for data-

path and controller. Experimental results are presented in section 5.6 to demon-

strate the effectiveness of the proposed approach.

5.2. Pipelined Processor Architecture

Pipelining [29] is a powerful implementation technique for enhancing system

throughput without requiring massive replication of hardware. This architectural

approach allows the simultaneous execution of several instructions. Pipelining is

transparent to the programmer; it exploits parallelism at the instruction level by

overlapping the execution process of instructions. It is analogous to an assem-

59

bly line where workers perform a specific task and pass the partially completed

product to the next worker. Pipelining is a technique that is now widely em-

ployed in the design of instruction set of processors. This chapter focuses on the

scalar pipelined processors. The current trend is towards very deep pipelines.

Pipeline depth has increased from less than 10 to more than 20. Deep pipelines

are necessary to achieve very high clock frequencies. This has been very effective

in gaining greater processor performance. There are some indications that this

trend will continue.

The primary motivation for pipelining is to increase the throughput of a sys-

tem with little increase in hardware. Pipelining involves partitioning of the sys-

tem into multiple stages with added buffering between the stages. These stages

and the inter-stage buffers constitute the pipeline. The computation carried out

by the original system is decomposed into k sub-computations, carried out in k

stages of the pipeline. A new task in pipeline can start into the pipeline as soon

as the previous task has traversed the first stage. The pipeline designer’s goal

is to balance the length of each pipeline stage, just as the designer of assembly

line tries to balance the time for each step in the process. Given that the total

number of tasks to be processed is very large, the throughput of the pipelined

system can potentially approach k times that of a non-pipelined processor in case

of balanced pipeline. This potential increase in the performance by a factor of k

by simply adding new buffers in a k–stage pipeline is the primary attraction of

the pipelined design.

A pipeline stage performs a particular function and produces an intermediate

result. It consists of an input latch, also called a register or buffer, followed

by a processing circuit (A processing circuit can be combinational or sequential

circuit). The processing circuit of a given stage is connected to the input latch

of the next stage as shown in Figure 5.1. A clock pulse, every stage transfers its

intermediate result to the input latch of the next stage. In this way, the final

result is produced after the input data have passes through the entire pipeline,

completing one stage per clock pulse. The period of the clock pulse should be

large enough to provide sufficient for a signal to traverse through the slowest

stage, which is called the bottleneck (i.e., the stage needing the longest amount

of the time to complete).

60

Input
Output

Clock

Latch
Processing

Logic
Processing

Logic
Processing

Logic Latch Latch

Figure 5.1. Basic structure of a pipeline

As described in chapter 4, the process of executing an instruction involve

several steps. First, the control unit of a processor fetches the instruction from the

cache (or from memory). The control unit decodes the instruction to determine

the type of operation to be performed. When the operation requires operands,

the control unit also determines the address of each operand and fetches them

from cache (or memory). Next, the operation is performed on the operands and,

finally, the result is stored in the specified location. A five-stage instruction

pipeline is shown in Fig. 5.2, which consists of following stages:

1. Instruction Fetch (IF): Retrieval of instructions from cache (or main mem-

ory).

2. Instruction Decoding (ID): Identification of operations to be performed, and

operand read.

3. Execution (EX): Perform operations on the operands.

4. Memory (MEM): Read from or write to memory.

5. Write-back (WB): Updating the destination operands.

An instruction pipeline overlaps the process of the preceding stages for dif-

ferent instructions to achieve a much lower total completion time, on average,

for a series of instructions. As an example, consider Table 5.1, which shows the

execution of four instructions in an instruction pipeline. During the first cycle,

61

Instruction Fetch
(IF stage)

IF/ID Reg.

Instruction Decode
(ID stage)

MEM/WB Reg.

ID/EX Reg.

EX/MEM Reg.

Memory operation
(MEM stage)

Write Back
(WB stage)

Execution
(EX stage)

Figure 5.2. Five-stage instruction pipeline

or clock pause, instruction i1 is fetched from memory. Within the second cycle,

instruction i1 is decoded while instruction i2 is fetched. This process continues

until all the instructions are executed. The last instruction finishes the write back

stage after 8 clock cycles.

The major hurdle of Pipelining – Pipeline hazards

There are situations, called hazards that prevent the next instruction in the

instruction stream from executing during its designated clock period. Hazards

reduce the performance from the ideal speed up gained by pipelining. There are

three classes of the hazards:

62

Table 5.1. Execution of instruction in a five stage pipeline

Instruction 1 2 3 4 5 6 7 8

i1 IF ID EX MEM WB

i2 IF ID EX MEM WB

i3 IF ID EX MEM WB

i4 IF ID EX MEM WB

1. Structural hazards arise from source conflicts when the hardware cannot

support all possible combinations of instructions in simultaneous overlapped

execution.

2. Data hazards arise when an instruction depends on the results of a previous

instruction in a way that is exposed by the overlapping of instructions in

the pipeline.

3. Control hazards arise from the overlapping of branches and other instruc-

tions that change the program flow.

Hazards in pipelines can make it necessary to stall the pipeline, which in

turn degrade the performance. Eliminating a hazard often requires that some

instructions in the pipeline be allowed to proceed while others are delayed. When

an instruction is stalled, all instructions issued later than the stalled instruction

– and hence not as far along the pipeline – are also stalled. Instructions issued

earlier than the stalled instruction – and hence farther along in the pipeline –

must continue, since otherwise the hazard will never clear. As a result no new

instructions are fetched during the stall.

Structural Hazards: When a machine is pipelined, the overlapped executions

requires pipelining of functional units and duplications of resources to allow all

possible combinations in the instruction in the pipeline. If some combinations

of the instructions cannot be accommodated because of resource conflict, the

machine is said to have a structural hazard. The most common instances of

63

structural hazards arise when functional unit is not fully pipelined or some re-

source has not been duplicated enough. The designer allows structural hazards

in order to reduce the cost of the system and latency of the unit. Pipelining all

functional units, or duplicating them, may be too costly.

Data Hazards: A major effect of pipelining is to change the relative timing of

instructions by overlapping their execution. This introduces data and control

hazards. Data hazards occur when the pipeline changes the order of read/write

access to operands so that the order differs from the order seen by the sequential

executing instruction on a non-pipelined machine.

This problem can be solved by a simple hardware technique called forwarding

(also called bypassing and sometimes short-circuiting), where result of the preced-

ing instruction is forwarded to later dependent instruction without going through

write back. It makes controller quite complex.

Data hazards may be classified as one of three types, depending on the order of

read and write accesses in the instructions. By convention, the hazards are named

by ordering in the program that must be preserved by the pipeline. Consider two

instructions i and j, with i occurring before j. The possible data hazards are:

• RAW (Read after write) – j tries to read a source before i write it, so j

incorrectly gets the old value. This is most common type hazard and the

kind that we use forwarding to overcome.

• WAW (Write after write) – j tries to write an operand before it is written

by i. The writes end up being performed in wrong order, leaving the value

written by i rather than the value written by j. This hazard is present

only in pipelines that write in more than one pipeline stage (or allow an

instruction to precede even when a previous instruction is stalled).

• WAR (Write after read) – j tries to write a destination before it is read by

i, so i incorrectly gets the new value. These are rare hazards.

Control Hazards: Control hazards occur when an instruction such as branch

instruction, causes a change in the program flow.

A general organization of 5 stage pipeline processor is shown in Figure 5.3.

64

We will use a 16–bit, 5–stage pipelined processor VPRO design which has

most common 24 instructions to demonstrate the concept. This processor uses

load/store RISC architecture. It has register type, immediate type, and jump

type instruction formats. This represents the features of most of the pipelined

RISC processors. Its instruction set architecture and structural organization is

given in the appendix.

Instruction Fetch

(IF stage)

IF/ID Reg.

Instruction Decode
(ID stage)

MEM/WB Reg.

ID/EX Reg.

EX/MEM Reg.

Memory operation
(MEM stage)

Write Back
(WB stage)

Execution
(EX stage)

Forwarding
path from
EX unit

Forwarding
path from
Mem unit

Figure 5.3. Five-stage instruction pipeline with forwarding

65

5.3. Overview of the Proposed Approach

The objective of this work [22] , [23] is to develop a procedure for delay fault

testing of a pipeline processor core that can be used to generate tests for the

functional mode of operation of a processor using its instruction set. The main

objectives of this work are:

• Develop a graph theoretic model for pipeline behaviour using the RT level

description of the processor

• Provide a systematic approach to test the processor based on the developed

model

• Evaluate the method using experimental studies

This chapter presents a unified approach to test all normal and bypassing/

forwarding paths in the datapath and all paths in the controller by using a graph

model of the behaviour of the processor. A hierarchical approach is presented for

the test generation which classifies paths at RT level and extracts the constraints

for potentially functionally testable paths to generate test vectors at gate level

using constrained ATPG. Path delay [31] fault model is used in this work.

As discussed in the last section, unlike a non-pipelined processor which com-

pletes execution of one instruction before the execution of the next instruction,

in a pipelined processor multiple instructions can be in various stages of exe-

cution. These stages can be viewed as independent hardware units and all the

stages execute instructions concurrently. In order to support concurrent execu-

tion of instructions, necessary data and control signals are carried along as an

instruction progresses in the pipeline stages. Simultaneous execution of multiple

instructions can lead to data, control and structural hazards. Data bypassing is

a commonly used technique to resolve data hazards; stalling is used for the unre-

solved hazards. Data flows from the first pipeline stage to the last pipeline stage

during the normal execution (without any hazard). The simultaneous execution

of multiple instructions in various stages and the use of data forwarding/bypassing

mechanism make the behaviour of pipelined processor complex.

It is very difficult to separate datapath and controller parts clearly in a

pipelined processor as every pipeline stage carries all the data and control signals

66

required by the pipeline stages ahead of it. Nonetheless, our model defines them

clearly and considers the paths in the datapath part and the control part sepa-

rately. The data transfer activities between the architectural registers and data

and address (memory address and register address) part of the pipeline registers

is assumed to be in the datapath. The paths, which go through the control logic,

are considered in the control part. The activities in datapath are controlled by

the control signals which are carried forward with the data; thus the function of

datapath is constrained by the controller. Hence, only a subset of structurally

applicable test vectors may be applied in the functional mode of operation due

to the presence of constraints.

A graph theoretic model called pipeline instruction execution graph (PIE-

graph), has been developed that is constructed by using the instruction set ar-

chitecture and RT level description. It is based on instruction execution graph

(IE-graph), described in chapter 4, for non-pipelined processors. This graph

models the complex pipeline behaviour. Our present model classifies paths as

functionally testable (FT), functionally untestable (FUT), potentially function-

ally testable (PFT), and parity check functionally untestable (PCFUT) paths.

After the classification, it extracts constraints for the PFT and PCFUT paths.

First, constraints on the control signals in one or more relevant pipeline stages

are extracted and then the constraints on justifiable data in the data registers

or pipeline registers under the control constraints are extracted. PCFUT paths

are further classified as FUT paths or PFT paths. A combinational constrained

ATPG is used for the test vector generation for the PFT paths. We can get test

sequences without using ATPG for FT paths, and no test sequence is needed for

FUT paths. For testing the controller, the constraints on the legitimate values

for a group of control signals are extracted by using the RT level description.

PIE-graph is used along with these constraints for further extraction of control

and data constraints for target control paths, and their classification. Constrained

ATPG is used to generate the test vectors. Finally, instruction sequences to apply

the generated test vectors, are generated by using the knowledge of the control

signals of various pipeline stages and the PIE-graph. Test program generation

flow is shown in Figure 5.4.

67

ISA and RTL description

PIE-graph construction

Path classification and constraint
extraction

Constrained TPG

Test instruction sequence generation

Figure 5.4. Test program flow

5.4. Pipeline Instruction Execution Graph

Data transfer activities between the data registers of a pipelined processor can be

modeled by PIE-graph, which as stated earlier, is based on IE-graph, described

in chapter 4, for non-pipelined processors. IE-graph models the behaviour of a

simple non-pipelined, FSM based processor. PIE-graph can be constructed from

the instruction set architecture, and RTL description of a processor. It captures

the pipeline behaviour. This includes architecture registers and data and address

part of the pipeline registers. Note that this does not include the control part of

the pipeline registers.

Definition 7 The number of pipeline stages bypassed by a path is defined as

distance associated with the path. 2

We noticed that many paths directly transfer data to the next stage using

simple interconnects or through a set of multiplexers. Keeping this in mind we

classified logic into three types: i) interconnect (I), ii) multiplexers (M), and

iii) processing logic (L). This classification simplifies the test generation process.

68

This information can be obtained from RTL description even when full structural

description is not available.

Nodes of the PIE-graph are:

1. architectural registers,

2. part of architectural registers which can be independently readable and

writeable,

3. equivalent registers (set of registers which behave identically as a group

with instruction set, such as register file),

4. two special nodes, IN and OUT, which model the external world such as

memory and IO devices, and

5. data and address (memory address and register address) part of pipeline

registers.

A directed edge between two nodes is drawn iff there exists at least one in-

struction responsible to transfer data (with or without manipulation) over the

edge (paths) between the two registers corresponding to nodes. Each edge is

marked with a 4-tuple [〈instruction set〉, 〈stage from, stage to〉, 〈distance〉, 〈logic
type〉]. This 4-tuple signifies that a set of instructions 〈instruction set〉 is respon-

sible for the data transfer from 〈stage from〉 stage to 〈stage to〉 stage through

the logic type 〈logic type〉, and the pair of instructions for delay testing must be

separated by the cycles specified by the 〈distance〉.
If a pipeline register is a source node then the pipeline stage succeeding it will

be 〈stage from〉 stage; otherwise, the stage controlling the data transfer activities

in the register will be in 〈stage from〉. If a pipeline register is a destination node,

then the stage just before it (whose data it is latching) will be 〈stage to〉 stage,

otherwise the stage that controls the data write activity in the register is 〈stage
to〉. Data transfer activities inside a pipeline stage are modeled by keeping the

same 〈stage from〉 and 〈stage to〉 and zero distance, and the data transfer activities

across the pipeline stages (mainly bypassing paths) are modeled by using 〈stage

69

{<I>, <mem, mem>, 0, M}

{<I2-11,13-21>, <wb, wb>, 0, I}

{<I2-21>, <ex, id>, 1, L}

{<I2-21>, <mem, id>, 2, M}

{<I2-11,13-21>,
<wb, wb>,
0, I}

{<I2-21>, <id, id>, 0, M}

{<Iall>, <if, if>, 0, M}

{<I2-18>, <ex, id>, 1, L}

{<I2-18>,
<ex, id>,
 1, L}

{<I19-21>, <id, id>, 0, L}

{<I22-23>, <id, if>, 1, L}{<I2-11, 13-21>,
<id, id>,
0, I}

{<I2-11, 13-21>,
<ex, ex>,
 0, I}

{<I2-11, 13-21>,
 <mem, mem>,
0, I}

{<Iall>, <id, if>, 1, L}

{<I12>, <mem, ex>, 1, M}

{<I12>, <ex, ex>,0, M}

{<I2-11, 13-18>, <mem,
id>, 2, M}

{<I2-10, 13-21>, <mem, mem>, 0, M}

{<I12>, <mem, mem>, 0, I}

{<I2-18>,
<ex, id>,
 1, L}

{<I2-21,
<ex, ex>,
 0, L}

{<I2-11, 13-21>,
<ex, ex>,
 0, L}

{<I2-18>, <id, id>, 0, M}

{<Iall>, <if, if>, 0, I}

{<I11-12>,
<mem, mem>,
0, I}

IR

OUT

IN

DRA2

NPC

DOUT

S1

S2

ALO
RF

MEO

DRA1

DRA3

Figure 5.5. PIE-graph of VPRO processor

from〉, 〈stage to〉 and appropriate distance to create hazard in order to transfer

data over that.

A complete PIE-graph of 5 stage pipelined VPRO processor is shown in Fig. 5.5.

5.5. Testing Methodology

5.5.1 Datapath Testing

This section deals with the paths that transfer data between architectural reg-

isters or data and address part of the pipeline registers, which are significant

70

in number. Other paths will be considered in the control part. Datapath of a

pipeline processor is modeled by PIE-graph, and is used for the constraint ex-

traction, path classification, and instruction sequence generation.

We assume that any instruction can be followed by any other instruction

in a pipeline stage except those instructions, which always need stall after the

execution such as unconditional jumps. In order to test a path from register Ri to

register Ro, we must create a transition at Ri and capture the transferred data at

Ro. Although there may be paths with distance > 0 (bypass paths) to Ri, there

is guaranteed to be a path with zero distance (normal path) which brings the

same values as the bypass paths, and hence we only need to consider the normal

path (d = 0) for data transfer to Ri. We also allow the propagation of data to Ro

through normal paths except from Ri. This observation prunes the search space

substantially.

Definition 8 Instructions, which behave identically within a pipeline stage, are

defined as equivalent instructions, for that stage. 2

For example, ADD and INC behave identically in EX stage of VPRO proces-

sor, hence, these are the equivalent instructions in EX stage. Similarly, instruc-

tions (ADD, ADDU, ADDI, ADDUI, LW, LH, LB, SW, SH, SB) are the equiva-

lent instructions for EX stage of the pipelined DLX processor. We can use these

equivalent instructions to reduce the marked instructions which in turn reduce

the constraint extraction and test generation effort. We make a table of the equiv-

alent instructions for every stage, which is also used during instruction sequence

generation.

Example 4 The bypass paths from memory to register S1 of VPRO proces-

sor (represented by an edge between IN and S1) can be tested by the following

instruction sequence:

I1: LOAD R1, R5 – [R1] ⇐ Mem[R5]

I2: LOAD R2, R6 – [R2] ⇐ Mem[R6]

I3: ADD R3, R1, R0 – [R3] ⇐ [R1] + [R0]

71

I4: ADD R4, R2, R0 – [R4] ⇐ [R2] + [R0]

The edge between IN and S1 is marked with distance 2 means these paths

bypass two pipeline stages. We need four instructions to test these paths. The in-

structions I1 and I2 launch a transition from memory and propagate the launched

transition in mem stage, and the instructions I3 and I4 propagate the transition

in the decode stage. Finally, the instruction I4 transfers the result to register R4.

During first cycle, the instructions I1 and I3 execute concurrently in mem stage

and decode stage respectively and during second cycle, the instructions I2 and I4

execute concurrently in mem stage and decode stage respectively. Therefore, this

sequence can test the paths from IN to S1.

2

A path from register Ri to register Ro, marked with [〈 Iset 〉, 〈Sj, Si〉, d, LT],

where LT ∈ {I,M,L}, can be tested by a test instruction sequence (IP1, IP2,

ID1, ,IDd−2, IS1, IS2), where ID1, ID2, , IDd−2 are the

(d− 2) filler instructions. To test a path, we need constraints for both stages Sj

and Si in two consecutive cycles (as shown in Fig. 5.6). Instruction pair (IP1,

IP2) is responsible to create a transition at register Ri and allows it to propagate

in Sj stage. Instruction pair (IS1, IS2) is responsible to propagate the created

transition in Si stage and finally instruction IS2 latches the result in register Ro.

The instructions IP1 and IS1 must be executed concurrently in the stages Sj

and Si respectively. Similarly, the instructions IP2 and IS2 must be executed

concurrently in the stage Sj and Si. Other instructions (ID1, ,IDd−2)

are used to provide the proper distance between the instructions IP2 and IS1, so

that a transition along the path can be excited, propagated and the result will

be latched. We assume that data from another stages (ex. data from S’ in Fig.

5.6) come through MUX and such data do not affect the data transfer along the

target path. Therefore, ATPG does not care these values and we do not need to

extract their constraints. A sequence of d + 2 instructions is needed to test these

paths. Note that IP2 = IS1 if d = 1, and IP1 = IS1 and IP2 = IS2 if d = 0.

Instruction pair (IP1, IP2) must be marked on any zero distance (with d = 0)

in-edge of Ri and instruction pair (IS1, IS2) must be marked on the target path

(edge between Ri and Ro). If source node is IN node then any load instruction

72

Si Sj

 Ri Ro

S’

Figure 5.6. Target path and pipeline stages

can be used as IP1 or IP2. If target path is inside a pipeline stage (d = 0) then

we don’t need dummy instructions, and are left with an instruction pair (IS1,

IS2). The instructions IS1 and IS2 must be marked on any zero distance in-edge

of Ri and at target edge respectively.

Path Classification and Constraint Extraction

Our approach classifies all paths into four categories, which are: (i) function-

ally testable (FT) paths, ii) functionally untestable (FUT) paths, iii) potentially

functionally testable (PFT) paths, and iv) parity check functionally untestable

(PCFUT) paths. We can get a test sequence without using ATPG for FT paths,

whereas we don’t need to generate test for FUT paths. For the rest of the cate-

gories we need to extract architectural constraints.

There are two types of constraints: i) control constraints, and ii) data con-

straints. Control constraints are the constraints on control signals, which are

responsible to transfer data between two nodes. These are obtained from PIE-

graph. Data constraints are the constraints on justifiable data under the control

constraints. Control constraints are extracted as instruction pairs (IP1, IP2) and

(IS1, IS2). Note that Non-Robust test [31] does not take care of first vector for

off inputs. Therefore, we need to extract a set of instructions for IP2 and IS2

instead of instruction pairs (IP1, IP2) and (IS1, IS2). We can easily get the set

of instructions for IP2 and IS2 from the instructions marked on the input edge

to Ri and on target edge respectively.

Let there be an edge between nodes Ri and Ro, marked with [〈Iset〉, 〈Sj, Si〉,
d, LT]. Constraints for paths of various types of logic are extracted as follows:

73

1. when logic type is interconnect ’I’:

These paths are generally used to carry forward data to the next stage and

are always with d = 0. Ro has only one in-edge, which is from Ri. An

instruction sequence (IS1, IS2) is needed to test. Any instruction marked

on the zero distance (d = 0) in-edge of register Ri, can be used as IS1, and

any instruction marked in the target edge can be used as IS2. These two

instructions give the constraint on the control signals in Si stage. Ro has no

other in-edge; hence, it will not observe any data constraint. These paths

can be tested as interconnects test. Therefore, these paths are classified as

FT paths.

2. when logic type is multiplexer ’M ’:

These paths pass through a set of MUXs and behave as interconnects if

control signals are properly assigned. Therefore, under the control con-

straints (proper assignment of MUX select signals), data constraints are

not applicable, as other paths to Ro will automatically be deselected with

the proper assignment of MUXs control signals. These paths can be tested

as interconnect test.

We consider two different distance cases separately:

(a) when d = 0 (Normal flow inside a pipeline stage):

These paths transfer the data inside the same stage. Therefore an

instruction pair (IS1, IS2) is needed to test these paths. Any instruc-

tion marked on the zero distance (d = 0) in-edge of Ri can be used

as IS1, and any instruction marked on the target edge can be used as

IS2. Instruction pair (IS1, IS2) gives the constraints on the control

signals in Si stage. These paths always find a sequence of instructions

without any data constraints, hence classified as FT paths.

(b) when d > 0 (data flow across the pipeline stages, i.e., forwarding path):

These paths are responsible for the data transfer across the pipeline

stages. These paths are classified as FUT paths if these are marked

with d = 1 and have a self-loop because a transition cannot be launched.

Other paths can be tested by an instruction sequence (IP1, IP2, ID1, .

. . . , IDd−2, IS1, IS2). Instructions IP1 and IP2 must be marked on

74

any of zero distance in-edge of Ri, and instructions IS1 and IS2 must

be marked on the target edge. Therefore, the instruction pair (IP1,

IP2) gives the control constraints on the control signals of stage Sj,

and the instruction pair IS1, IS2 gives the constraints on the control

signals in stage Si. These paths are classified as FT paths.

3. when logic type is processing logic ’L’:

This includes the paths which pass through the combinational logic. Let

an edge between two registers Ri and Ro be marked with [〈Iset1〉, 〈Sj, Si〉,
d, LT]. Following edges and nodes must be considered: i) all the in-edges

to Ro with distance d and logic type ’L’ (having some instructions common

with Iset1), ii) all the in-edges to Ro with zero distance, logic type ’L’, and

have some instruction common with Iset1, and iii) all zero distance (d = 0)

in-edges to Ri.

All those registers which have out-edge to Ro (with distance d – same as

distance of target path, logic type ’L’, and some instruction common with

the target edge) provide the data constraints for the propagation of cre-

ated transition in Sj stage. All those registers which have out-edge to Ro

(with zero distance, logic type ’L’, and have some instructions common

with the target path) provide data constraints for the propagation of the

created transition in Si stage. Fig. 5.7 shows the edges and nodes which

are needed to be considered. Note that Iset1 ∩ Iset2 6= φ, and Iset1 ∩ Iset3 6= φ.

We consider two different distance cases separately:

(a) when d = 0 (Normal flow inside a pipeline stage):

This includes the paths in a single stage. We need an instruction

pair (IS1, IS2) for testing. IS1 can be any instruction among the in-

structions marked on the in-edge of Ri, and IS2 can be any instruction

among the instructions marked on the target edge. An instruction pair

(IS1, IS2) gives the constraint on control signal in Si stage. We have

to find out the data constraints on all those registers which have zero

distance in-edge to Ro with logic type ’L’ using PIE-graph and RTL

description. Let Ro has an in-edge from register Rp which is marked

75

Si Sj

 Ro

S’
77

 Ri

 Rq
 Rp

(a)

Ri
Ro

Rp
Rq

{<I set1>, <Sj, Si>, d, L>}

{<I set2>, <Si, Si>, 0, L>}

{<I set3>, <Sj, Si>, d, L>}

{<I set4>, <Sk, Sk>, 0,< L/M/I>}

(b)

Figure 5.7. Edge consideration for constraint extraction (a) structural organiza-

tion (b) edges in PIE-graph

with common instructions with the target edge. Data constraints for

these registers can be obtained as follows.

If the selected instruction IS2 is not marked on any of the in-edge

of Rp, then the register Rp must have constant value across two time

frames (under IS1 and IS2).

(b) when d > 0 (data flow across pipeline stages, i.e., forwarding path):

These paths are responsible to transfer data across the pipeline stages.

These paths need (d+2) consecutive instructions (IP1, IP2, ID1, . . .

, IDd−2, IS1, IS2) to test, which consists of (d−2) filler instructions to

excite these paths. IP1 and IP2 can be any instruction marked at any

zero distance in-edge of Ri, and IS1 and IS2 can be any instruction

marked at target edge. Instruction pair (IP1, IP2) gives the control

constraints on the control signals of Sj stage, and instruction pair (IS1,

IS2) gives the constraint on the control signals of Si stage. Note that

IP1 = IS1 for d = 1, and we need an instruction sequence (IP1, IS1,

IS2) to test a path.

76

If an edge between register Ri to Ri is marked with logic type ’L’ and

d = 1, then the paths from bit i to bit i of register Ri represents a

self-loop. The paths between bit i to bit i of the register Ri can be

functionally testable only when there is an odd inversion parity exists

in the path, i.e, when odd number of gates which can invert the logic

(e.g., NOT, NOR etc.) exists, otherwise, these paths are functionally

untestable. These paths are classified as PCFUT. Many paths of such

kind exist in the circuit, such as paths in the pass logic of ALU, paths

in shifter, paths in logic operation block of ALU etc. Rest of the paths

are classified as PFT paths.

Instruction pair (IP1, IP2) imposes constraints on those registers which

have out-edge to Ro with distance d, logic type ’L’ and some instruc-

tions common with the target edge. Instruction pair (IS1, IS2) im-

poses data constraints to those registers which have zero distance out-

edge of logic type ’L’ to register Ro with some instruction common with

the target edge. Let register Rq has out-edge to Ro which is marked

with distance d, logic type ’L’, and has some common instruction with

target edge, and a register Rp has zero distance out-edge to Ro which

is marked with logic type ’L’, and has some common instructions with

target edge. Register Rq must have constant value across two time

frames (under IP1 and IP2) if selected instruction IP2 is not marked

on any in-edge of Rq. Register Rp must have constant value across two

time frames (under IS1 and IS2) if selected IS2 is not marked on any

the in-edge of Rp.

Example 5 Paths from the node S1 to ALO in VPRO processor:

Paths from S1 to ALO are marked with [〈I2−21〉, 〈ex, ex〉, 0, L] as shown in Fig.

5.8. This implies that any instruction from I2 to I21 can transfer data on the

target path. We consider only normal data flow for the paths other than the

target paths. Register S1 has only one zero distance edge marked with the tuple

[〈I2−21〉, 〈ex, ex〉, 0, L]. Therefore, IS1 can be any instruction from I2 to I21,

and IS2 can also be any instruction from I2 to I21. We can extract constraints

in terms of instruction pairs and convert them into pairs of control signals (alu

control and comparator control). Register S2 also has an out-edge with ALO

77

S1
ALO

S2

{<I2-21>, <ex, ex>, 0, L>}

{<I2-11, 13-21>, <ex, ex>, 0, L>}

{<I2-21>, <id, id>, 0, M>}

Figure 5.8. Edge consideration for the paths between S1 and ALO

marked with [〈I2−11,13−21〉, 〈ex, ex〉, 0, L], which provides the data constraints.

Since register S2 does not have any instruction marked at the in-edge which is

not marked at the zero distance in-edge of S1, these paths do not observe data

constraints. Since there are no constraints on data registers, we can find the

values for control signals (ALU control signals and comparator signals) for the

set of valid instructions for IS2 and IS1, i.e set of control signals for instructions

I1 to I21. All the possible combination of control signals under IS1 and IS2 are

the control constraints. Eight sets of control signals have been extracted under

IS1 and the same eight sets for IS2. 2

Test vector generation

Inversion parity test program, which checks the parity of the path, is used to

further classify PCFUT paths into FUT paths or PFT paths. The above stated

procedure can be use to simplify the circuit for ATPG. Constrained ATPG is

used to generate test vectors for all the PFT paths by using extracted constraints.

ATPG is given with PFT paths and their respective extracted constraints, and

it returns the test vectors if paths are functionally testable or identifies these to

be untestable.

78

5.5.2 Controller Testing

This section deals with the paths that contribute to control signals. Any path,

which goes through control logic, is dealt in this section.In order to execute an

instruction, the instruction is decoded by the decode unit (in decode stage).

The decode unit dispatches control signals along with the required data to the

pipeline stages ahead. Therefore, each pipeline stage has control signals that are

not structured in nature but most of the time these can be grouped together in

a small group.

Path Classification and Constraint Extraction

In our approach, small grouping of control signals is used to find constraints. We

need to extract two types of constraints: i) constraints on the legitimate value of

the group of control signals, and ii) constraints on inter group signals in a pipeline

stage.

1. Constraints on the legitimacy of signals: Control signals generally form a

group of small number of signals, where every possible value is not valid.

Therefore we need to extract all the legitimate values. Test patterns must

be generated under the legitimate values. For example, comparator control

(comp ctrl) signals in VPRO are grouped in a group of 3 bits, and legitimate

values are 〈0XX, 10X, and 110〉.

2. Constraints on inter group signals: It is not sufficient to consider only the

legitimate values for a group of signals but we need also to consider the

legitimacy of the inter group signals in a pipeline stage, as all the possible

combinations are not valid. We extract these in terms of instructions, i.e.,

map the control signals to the instruction which can generate the particular

combination and all possible combinations are extracted. For example,

in VPRO when ALU ctrl (alu ctrl) signal is 0000 the comparator control

(comp ctrl) signal must be 000. Here onwards we will discuss how we can

use these constraints for the test generation.

The part of a pipeline register, which carries the control signals is called control

register. There may be paths between control register (CR) to control register,

79

control register to data register (DR), data register (such as IR) to control register,

or data register to data register through control logic. Paths between CR to CR

are used to carry the control signals for the pipeline stages ahead. These paths

usually connected directly and these can always be tested as interconnect test.

Hence, these paths are classified as FT paths. Test vectors are generated under

above stated constraints. Paths from data register to control register usually

present in decode stage. These paths are classified as PFT paths, and test vectors

for these paths can be generated under above stated constraints. Paths from CR

to DR are the paths which pass through the combinational logic and these are

significant in number. We construct a table which shows the transition on some

bit in CR with instructions after exclusion of equivalent instructions.

Let there be a path between a bit i of control register Ck, and data register

Ro. Constraints can be extracted in the following manner:

1. when control register Ck and data register are in the same stage:

It needs an instruction sequence of two instructions (IS1, IS2). All those

instruction pairs that can produce a transition at bit i and those are also

marked on the in-edge of the register Ro can be the test instructions (IS1,

IS2). All the data registers that have zero distance out-edge to Ro (have

some common instruction with the selected potential instruction pairs) are

needed to check for data constraints. Data constraints can be obtained in

the same way as we obtain for datapath. These paths are classified as PFT

paths.

2. when control register Ck and data register Ro are in different stages:

Register Ro must have an edge from a register Ri that lies in the same stage

in which Ck lies. This edge gives us the distance (say d), and we need a

(d + 2) instruction sequence (IP1, IP2, ID1, . . . ,IDd−2, IS1, IS2) to

apply a test. All those instructions which can produce a transition at bit

i of Ck and marked on any of the in–edge of those registers which have

out-edge to Ro with same distance d, can act as IP1, and IP2. Constraints

on those registers which have out-edge to Ro (with distance d) must be

considered under IP1, and IP2. All those instructions which are marked

on the in-edge of Ro (with distance = d) can act as IS1 and IS2, and data

80

constraints on those registers which have zero distance out-edge to Ro must

be considered under the control constraints of IS1, IS2 instructions. These

data constraints can be obtained in the same way as in datapath. These

paths are classified as PFT paths.

Paths between DR to DR through control logic, usually carry control signals

to multiplexers in the forwarding paths. Let there be a path between registers

Ri and Ro.

1. when both registers Ri and Ro are in the same stage:

The instructions marked on zero distance in-edges of regsiter Ro provide

the control constraints (for IS1 and IS2). These paths do not observe data

constraints and these are classified as PFT paths.

Depending on the multiplexer control signals, an in-edge to Ro is selected

which forwards data during this test. Let that edge be marked with distance

d. Hence test can be applied by an instruction sequence (IP1, IP2, ID1, .

. . ,IDd−2, IS1, IS2).

2. when both registers Ri and Ro are in different stages:

Register Ro must have an edge from a register Rj that lies in the same

stage in which Ri lies. The edge between Rj to Ro gives us the distance

(say d). The test vectors can be applied through an instruction sequence

(IP1, IP2, ID1, . . . ,IDd−2, IS1, IS2). All the instruction marked on the

edge between Rj to Ro can act as IS1 and IS2. All the instructions marked

on the in-edges of Rj can act as IP1 and IP2. These paths do not observe

data constraints and these are classified as PFT paths.

Test Vector Generation

Constrained ATPG is used to generate test vectors for all the PFT paths under

the extracted constraints. ATPG is given with PFT paths and their respective

extracted constraints, and it returns the test vectors if paths are functionally

testable or identifies these to be untestable.

81

5.5.3 Test Instruction Sequence Generation

The generated test vector pairs as explained above are assigned to control signals

and registers. A sequence of instructions is needed to apply these test vectors.

This process needs following three steps:

1. Test instruction sequence generation

2. Justification instruction sequence generation

3. Observation instruction sequence generation

Test instruction sequence generation step, generates a sequence of instructions

which is responsible to launch the transition, propagate the launched transition,

and latch the result provided that desired data are available in the appropriate

registers. These data are made available by the justification instruction sequence.

Finally, the result must be transferred to memory by a sequence of instructions,

called observation sequence.

1. Test instruction sequence generation:

We have generated test vectors for the paths between a register pair, under

extracted constraints, and the information regarding the registers is avail-

able to us. We can use this information and PIE-graph to generate test

instructions, which make this process simpler. It is clear from the earlier

discussion that if an edge between registers Ri and Ro is marked [〈Iset〉,
〈Sj, Si〉, d, LT], then we need an instruction sequence (IP1, IP2, ID1, . .

. , IDd−2, IS1, IS2) to apply the test vectors provided that test vectors

are available in desired registers. Instructions IP1 (when d > 0) and IP2

(when d > 1) are decided by the control signals of the stage Sj, and in-

structions IS1 and IS2 are decided by the control signals of Si stage. If

there are more than one potential candidates for these instructions then we

must select easy to observe instruction (such as STORE) for IS2, and easy

to justify instruction for the rest. Once IP1, IP2, IS1, and IS2 instructions

are decided, we fill the rest of the instructions by NOP instructions which

can be later on replaced by the justification instructions for IS1 and IS2

that can reduce the number of instructions.

82

Table 5.2. Register mapping - VPRO processor

Register I1 I2 I3 I4 I12

S1 – RF/RF RF/RF RF/RF RF/mem

S2 – RF/RF RF/RF RF/RF RF/mem

ALO – RF/RF RF/RF RF/RF RF/mem

MEO – – – – RF/mem

2. Justification instructions:

During the test instruction sequence generation, we assumed that desired

data are available in appropriate registers. Now, we need to generate a

sequence of instructions to justify the data in the registers.

We cannot directly justify data in the pipeline registers. Therefore, we

map back the data to either memory or architecture registers where we

can justify easily. In order to do this, we construct a table that maps

every pipeline data/address register to justifiable register or memory and

to output register or memory when we execute some particular instruction.

Such a table for VPRO is shown in part which contain some of the mapped

input/output in the table 5.2.

We use this table to find the register/memory where we need to justify

data. Simple justification instructions are used. A special routine developed

specifically for justification of a value in a special register, is used to justify

the value in the special register.

3. Observation instructions:

Result from the register Ro must be transferred to memory. The instruction

IS2 transfers data to some output register or memory, and that information

we can get from the table stated above. If it is transferred to memory then

we don’t need any observation instruction, otherwise we need to transfer

data from register file to memory using STORE instruction. Special rou-

tine is used for the data transfer from the special registers and the control

registers

83

Example 6 Consider a test vector pair for a path between registers S1 and ALO

of VPRO processor

V1 = {S1 = 0024H, S2 = 0428H, alu ctrl = 0100, comp ctrl = 000}, and

V2 = {S1 = 0004H, S2 = 0224H, alu ctrl = 0101, comp ctrl = 000}
The test instruction sequence will be

ADD R5, R1, R2

ADD R6, R3, R4

where [R1] = 0024H, [R2] = 0004H, [R3] = 0428H, and [R4] = 0224H

This edge is marked with distance = 0. Therefore, we need two test instruc-

tions IS1 and IS2 which can be obtained from the control signals of the execution

stage. Control signals imply that the instruction IS1 must be ADD (provide ALU

ctrl = 0100, CMP ctrl = 000) and IS2 must be SUB (provide ALU ctrl = 0101,

CMP ctrl = 000). We map pipeline register S1 and S2 to memory or architectural

registers using mapping table. Both these registers are mapped to register file.

We must choose four different registers from register file to justify the value. Let

R1 and R2 are chosen for S1, and R3 and R4 are chosen for S2. The content of

R1, R2, R3, and R4 must be 0024H, 0004H, 0428H, and 0224H respectively. We

must also map the output pipeline register to memory or architectural register

using mapping table. ALO is mapped to register file. Therefore, we must once

again choose some register from the register file, and let it be R5 (it can also be

R1 or any other register). Test instructions will be ADD R5, R1, R3, and SUB

R5, R2, R4. In order to observe the result we have to transfer data to memory.

Observation instruction will be STORE instruction. In order to justify data in

registers R1, R2, R3, and R4 we need LOAD instructions.

2

The above stated method can generate a test sequence to apply the generated

test vectors under architectural constraints. However, in theory it is possible that

a fault effect (error) that is captured in a register may be masked when the results

are propagated for storage in the memory, or even the justification sequence may

not be valid. But, we believe that the likelihood of this to happen is very little

and in any case such fault masking can be identified by fault simulation. If fault

84

is masked by the justification sequence then the fault effect from the justifica-

tion sequence can be directly transferred to memory by an observation sequence

without going through test instruction sequence, because fault is already excited

by the justification instruction sequence. If fault is masked by the observation

sequence then it can be eliminated by insertion of some dummy instruction(s) be-

tween test instruction sequence and the observation instruction sequence. Hence,

fault masking can be eliminated.

5.6. Experimental Results

We have applied our methodology to two processors namely 16 bit 5 stage pipelined

VPRO processor and 32 bit 5 stage pipelined DLX processor. VPRO processor

has been synthesized using 2345 gates and 268 sequential elements, and pipelined

DLX processor [29] is synthesized with 34,347 gates and 1898 sequential ele-

ments. Complete PIE- graphs for both of the processors are constructed by using

instruction set architecture and RT level description. PIE- graph is used for

the constraint extraction and the path classification. Our developed constrained

ATPG for path delay faults is used, as commercially available ATPG are not

capable of handling required constraints.

Results for VPRO and DLX processors for the Non Robust (NR) and Func-

tional Sensitizable (FS) [31] tests are shown in the tables 5.3 and 5.4, respectively.

The order of generation of test vectors is NR test followed by FS test. For each

path, at first, ATPG generates a test vector pair for the NR test, if exists under

the extracted architectural constraints. Otherwise, it generates test vector pair

for the FS test if exists under architectural constraints. FS testable paths include

the NR testable paths. Here we considered a path that goes through the control

logic as a part of the controller. The results show that only a small fraction

(about 24%) of paths are functionally testable. However, we achieve 100% fault

efficiency in the test generation. These test vectors are generated under archi-

tectural constraints; hence these can be applied through instruction sequences.

As pointed out in Section 5.5.3, these instruction sequences may lead to fault

masking due to observation and justification sequences. Fault masking can be

identified by fault simulation and eliminated as explained in Section 5.5.3.

85

Table 5.3. Results for VPRO processor

Datapath Controller

NR FS NR FS

No. of paths 112,752 112,752 98,786 98,786

No. of faults 225,504 225,504 197,572 197,572

No. of functionally testable paths 32,134 52,092 27,512 42,282

No. of functionally untestable paths 193,370 173,412 170,060 155,290

Fault coverage (%) 14.2 23.1 13.9 21.4

Fault efficiency (%) 100 100 100 100

Table 5.4. Results for pipelined DLX processor

Datapath Controller

NR FS NR FS

No. of paths 372,459 372,459 190,542 190,542

No. of faults 744,918 744,918 381,084 381,084

No. of functionally testable paths 148,718 185,247 57,502 89,974

No. of functionally untestable paths 596,200 559,671 323,582 2 91,110

Fault coverage (%) 19.9 24.8 15.0 23.6

Fault efficiency (%) 100 100 100 100

We now estimate the size of the test programs to test these processors. In

order to apply a test vector pair, a sequence consisting of approximately 15 in-

structions is sufficient as follows. We need a sequence of about 8 instructions to

load operands, about 4 test instructions - without filler instructions, one observa-

tion instruction, and about 2 instruction to load the memory locations. Therefore,

a maximum of 2,858,130 instructions are needed to apply the generated 190,542

test vector pairs for DLX processor. Assuming each instruction to be 4 bytes,

we need 10.9 MB storage space. Such a test program will take 37 milliseconds to

run on a 100 MHz implementation of a DLX processor, assuming average 30%

stalls during execution. Although these numbers can be reduced substantially by

86

merging some vector pairs. Nonetheless, these figures (storage requirement and

test time) show that this approach is suitable for self-testing of processors and it

can also be applied for periodic on-line testing.

5.7. Conclusion

In this chapter we presented a systematic hierarchical approach for the delay fault

testing of pipelined processor cores using their instruction set. To achieve this we

developed a graph theoretical model using the RTL description of the processor

to captures the complex pipeline behaviour. The graph model is used to extract

architecture constraints for test generation. The extraction process can also iden-

tify some functionally untestable paths at this stage. The test generator uses the

gate level description of the design and the extracted constraints to generate test

vectors. In order to apply these generated test vectors in functional mode for

at-speed test, a test instruction sequence generation procedure is developed. The

graph model also assists the test instruction sequence generation process. Effec-

tiveness of this approach is demonstrated through experimental results on two

representative pipelined processors. The estimated test program size and test

application time are suitable for on-line periodic testing. Hence, the proposed

approach can also be used for on-line periodic testing which can further improve

the reliability of the system in the field.

87

Chapter 6

Superscalar Processor Testing

6.1. Introduction

Instruction-based self-testing approach enables at-speed testing without any per-

formance penalty. However, testing superscalar processors using this approach

faces serious challenges, as these architectures discover the instruction-level paral-

lelism on the fly, and use out-of-order execution, to achieve high throughput. This

chapter identifies test challenges for the testing of superscalar architectures using

instruction-based self-testing. A graph theoretic model is presented to model the

superscalar behavior. Procedures for generating test programs which make sure

that generated test vectors are applied in the correct order to test each testable

path, are developed. Test results for a superscalar DLX (DLX-SV) processor

are presented to demonstrate the effectiveness of the approach. To the best of

our knowledge, this is the first work for superscalar processor testing using its

instruction set.

This chapter first discusses superscalar architecture in Section 6.2, followed

by test issues for this architecture in Section 6.3. Section 6.4 presents a graph

model and testing methodology is discussed in section 6.5. Finally, it discusses

the experimental results in Section 6.6.

88

6.2. Superscalar Architecture

Scalar pipelines are characterized by a single instruction pipeline of k stages. All

instructions, regardless of type, traverse through the same set of pipeline stages.

At the most one instruction can be resident in each pipeline stage at any one time

and the instructions advance through lock step fashion. Fundamental limitations

of scalar pipeline architecture are:

• The maximum throughput for a scalar architecture is bounded by one in-

struction per cycle

• The unification of all instruction types into one pipeline can yield an inef-

ficient design

• The stalling of a lockstep or rigid scalar architecture induces unnecessary

pipeline bubbles

Superscalar pipeline [33], [34] can be viewed as natural descendant of the scalar

pipelines and involve extensions to alleviate the three limitations with scalar

pipelines. Superscalar pipelines are parallel pipeline, instead of scalar pipelines,

in that they are able to initiate the processing of multiple instructions in every

machine cycle. In addition, superscalar pipelines are diversified pipelines in em-

ploying multiple and heterogeneous functional units in their execution stage(s).

Finally, superscalar pipelines can be implemented as dynamic pipelines which

discover instruction level parallelism, in order to achieve the best possible perfor-

mance without requiring reordering of instructions by the compiler. A six stages

superscalar pipeline is shown in the figure 6.1. These six stages are fetch, decode,

dispatch, execute, complete and retire. The execute stage can include multiple

(pipelined) functional units of different latencies. This necessitates the dispatch

stage to distribute instruction of different types to their corresponding functional

units. With out-of-order execution of instruction of instructions in the execute

stage, the complete stage is needed to reorder the instructions and ensure the

in-order updating machine state. Note also that there are multi-entry buffers

separating these six stages. Complexity of buffers can vary depending on their

functionality and location in the superscalar pipeline.

89

Instruction buffer

Fetch

Decode

Dispatch

Retire

Complete

Dispatch buffer

Reservation stations

Completion/Re-order
 buffer

Finish

Issue

Execute

Store buffer

Figure 6.1. A 6-stage dynamic pipeline

90

Unlike a scalar pipeline, a superscalar pipeline, being a parallel pipeline, is

capable to fetch multiple instructions from the I-cache in every machine cycle.

Given a superscalar pipeline of width w, its fetch stage can fetch w instructions

from I-cache, that means the physical organization of the I-cache must be wide

enough that each row of the I-cache array can store w instructions and that an

entire row can be accessed at a time. The primary objective of the fetch stage to

maximize the instructions-fetching bandwidth. Instruction decoding involves the

identification of the individual instructions, determination of instruction types,

and detection inter-instruction dependences among the group of instructions that

has been fetched but not dispatched yet. The complexity of the instruction-

decoding task is strongly influenced by two factors, namely, the ISA, and width

of the parallel pipeline.

Unlike, scalar pipelines, superscalar pipelines are diversified pipelines that

employ multiple heterogeneous functional units in the execution unit. Different

functional units can execute different types of instructions. Hence, decoded in-

structions must be routed to relevant functional units. This job is carried out

by dispatch stage. Fetch and decode stages operate in centralized fashion, i.e.,

all instructions are managed by the same controller. Fetch unit fetches multiple

instructions from same I-cache and deposited into the same buffer. In order to

detect inter-instruction dependency, instructions fetched in a cycle must be de-

coded in centralized fashion. On the other hand, all the functional units in a

diversified pipeline can operate independently in distributed fashion, once inter-

instruction dependency is resolved. Consequently, going from decode stage to

execution stage, there is a change from centralized processing of instructions to

distributed processing of instructions. This change is carried out by, and is the

reason for, the instruction dispatch stage in a superscalar pipeline. Another mech-

anism that is necessary between instruction decoding and instruction execution

is temporary buffering of instructions. In order to execute an instruction, all the

required operands must be ready. In a superscalar architecture it is possible that

some of these operands are not yet ready because earlier instructions that update

these operands have not finished their execution. A solution to this problem,

without using stall, is to fetch those register operands which are ready and go

ahead and advance these instructions into a separate buffer to wait those register

91

operands that are not ready. When all register operands are ready, those instruc-

tions can then exit this buffer and be issued into the functional unit for execution.

These instruction buffers are called reservation stations. The use of reservation

station decouples instruction decode and instruction execution. Reservation sta-

tions can be implemented as centralized reservation station which is shared by

all the functional units, or as distributed reservation stations for every functional

units.

Instruction execution by heterogeneous functional units is a heart of super-

scalar architecture. These functional units perform more efficiently by specializing

them for executing specific instruction types. In real superscalar processor ar-

chitecture, the total number of functional units exceeds the actual width of the

parallel pipeline. Because of specialization and heterogeneity of the functional

units the total number of pipeline functional units must exceed the width of the

superscalar pipeline to avoid having instruction execution portion become the

bottleneck due to excessive structural dependences related to unavailability of

certain functional unit types. Large number of functional units result into addi-

tional hardware complexity due to the need of forwarding results from the output

of functional units to the input of reservation stations.

After being executed in out-of-order, an instruction must be written back in

program order. This task is performed by completion buffer (or Re-Order Buffer)

which is managed as a circular queue with instructions arranged according to pro-

gram order. An instruction is considered completed when it finishes the execution

and updates the machine states. An instruction finishes execution when it exits

the functional unit and enters the completion buffer. Subsequently, it exits the

completion buffer and becomes completed. In the complete stage, it writes back

result to architectural register. With instruction that actually update memory

locations, there can be a time period when they are architecturally completed

and when the memory locations are updated. For example, store instruction can

be architecturally completed when it exits the completion buffer and enters the

store buffer to wait for the availability of the bus cycle in order to write to D-

cache. This store instruction is considered retired when it exits the store buffer

and update the D-cache.

92

Instr.cache

Decoder RF ROB

Data Cache

BRU ALU1 ALU2 MULT LSU

Figure 6.2. A Superscalar Organization of the DLX-SV

There are many possible superscalar organizations. Typically a superscalar

organization consists of instruction fetch and branch prediction unit, decode and

register renaming unit, instruction issue unit, execution unit, and commit unit.

In this work we consider a most common organization of a superscalar processor

which use distributed reservation station for each functional unit. The Re-order

buffer (ROB) is used to commit the instructions. Figure 6.2 shows an organization

of the DLX superscalar processor. For simplicity of presentation, we will use

this particular organization to explain the various concepts. We believe, all the

concepts can easily be generalized to other organizations.

Pipeline Vs Superscalar Processors

Scalar pipelines are characterized by a single instruction pipeline of k stages.

All instructions, regardless of type, traverse through the same set of pipeline

stages. At the most one instruction can be resident in each pipeline stage at

any one time and the instructions advance through lock step fashion. Whereas,

superscalar processors go beyond just a single-instruction pipeline by being able to

simultaneously advance multiple instructions through the pipeline stages. They

93

incorporate multiple functional units to achieve greater concurrency of processing

multiple instructions for higher instruction execution throughput, often quantified

as instructions per cycle (IPC). Another fundamental attribute of the superscalar

processors is their ability to execute instructions in an order different from the

order specified by the original program.

6.3. Test Issues and Overview of the Approach

This work is aimed at delay fault testing of superscalar processors. The objective

is to generate tests and test sequences that can be applied in the functional

mode of operation, using path delay fault model [31]. We believe that this [24] –

[25] is the first work towards the modeling of the superscalar (dynamic pipeline)

behaviour for the purposes of testing of a superscalar processor. This chapter

describes some of the important issues that are pertinent to testing superscalar

architectures.

We use an example superscalar DLX processor to demonstrate the concept.

This processor uses a branch history table with 2 history bits to predict branch.

It fetches four instructions and commits at most four instructions per cycle. Ex-

ecution unit has 5 functional units (2 ALU, 1 Multiplier, 1 Branch unit, and 1

Load Store unit). Every unit has its own reservation station with 2 entries and

ROB is implemented as a circular queue with 32 entries.

Superscalar Test Issues

Instruction based testing faces serious challenges due to the out of order execution

with multiple functional units and in-order commit behavior, because it is the

processor scheduler who decides the order of instruction execution, on the fly,

and not the program that executes on the processor. This means that even if

we have a test vector sequence generated under architectural constraints, when

we apply such a sequence, there is no guarantee that the sequence will indeed be

executed by the same functional unit for which it was meant to be. In fact, in

a superscalar processor, the instructions in the sequence may be executed on a

different functional unit and possibly in different order of instructions. Further,

superscalar architecture uses buffers and queues, which makes it a challenging

94

task to ensure that a given instruction resides at a given location in the buffer

or queue with appropriate data at a given time. We explain this through the

following example.

Example 7 Consider a 4 instruction wide fetch superscalar implemented with

2 ALU, 1 Multiplier, 1 Shifter, 1 Load, 1 Store and 1 Branch Unit, where every

unit has individual reservation station with 2 entries, and ROB has 32 entries.

Processor instructions are represented as (I Rd, Rs1, Rs2) where I specifies oper-

ation, Rd is the destination, and Rs1 and Rs2 are the two source operands. Let a

path through ALU be tested by an instruction sequence ADD followed by SUB.

This path is from the reservation station to the reorder buffer. Let the desired

operands be placed in the registers R2 and R3 for the ADD instruction and in

registers R6 and R7 for the SUB instruction. Conventionally, we apply the test

vectors in the following sequence:

I1: ADD R1, R2, R3 – processor schedules this instruction to ALU1

I2: SUB R5, R6, R7 – processor schedules this instruction to ALU2

The processor may schedule instructions I1 and I2 to two different ALUs.

Therefore, this sequence will not apply the desired test to any of the ALUs. We

will get the correct result in spite of having a faulty path, because the fault is

not excited. A possible partial solution to this problem is to concurrently test

the two ALU’s by the following program segment.

I1: ADD R1, R2, R3 – processor schedules this instruction to ALU1

I2: ADD R21, R2, R3 – processor schedules this instruction to ALU2

I3: SUB R5, R6, R7 – processor schedules this instruction to ALU1

I4: SUB R25, R6, R7 – processor schedules this instruction to ALU2

This can apply the test sequence to both the ALUs provided that these in-

structions are aligned, i.e., all these 4 instructions are fetched simultaneously.

We can achieve this by having branch instruction preceding this set. Now, these

instructions can be applied in our desired order. However, reservation station has

95

two entries and first two instructions will be placed in the first entries of respec-

tive reservation stations and next two instructions will be placed in the second

entries of the corresponding reservation stations. Therefore, the transition will

not be launched and the path will remain untested. Again, a possible partial

solution is to insert two instructions between I2 and I3 which are being scheduled

to some other functional units. Therefore, the partial solution which can test the

path from the first entry of reservation station to ROB is:

I1: J 2000H

I2: 2000H ADD R1, R2, R3 – Processor schedules it for

– ALU1 (stays at 1st position in RS)

I3: ADD R21, R2, R3 – Processor schedules it for

– ALU2 (stays at 1st position in RS)

I4: MULT R10, R11, R12 – Processor schedules it

– for Multiplier (Filler instr.)

I5: SW R1, 100 (R15) – Processor schedules it for

– Load store unit (Filler instruction)

I6: SUB R5, R6, R7 – Processor schedules it for

– ALU1 (stays at 1st position in RS)

I7: SUB R25, R6, R7 – Processor schedules it for

– ALU2 (stays at 1st position in RS)

2

This way, we can make sure that the desired transitions will be created and

propagated. Still the consideration to make sure that a result will be transferred

to some particular entry of ROB is not looked at in this example. This simple

example demonstrates the need for carefully developing a test sequence. The

situation becomes even more complex when we consider feedback paths (due to

the presence of forwarding logic) in the out of order execution engine.

Overview of the Approach

In order to test the processor, we consider paths in datapath part and controller

part separately. Clearly it is very difficult to separate out datapath and controller

96

in superscalar processor as every stage carries data and control signals. We define

data transfer activities between architectural registers, and data and address part

of pipeline registers, buffers and queues, as a part of the datapath. All other paths

are considered as a part of the controller.

A graph theoretic model called Superscalar Instruction Execution graph (SIE-

graph) has been developed that is constructed by using RT level description and

instruction set architecture. This graph model is an extension of our pipeline in-

struction execution graph [15] – [16]. This graph models the complex superscalar

behaviour. The paths in datapath are classified as functionally testable, function-

ally untestable, and potentially functionally testable. The graph is used to extract

the constraints. Combinational constrained ATPG is used to generate test vectors

for potentially functionally testable paths. Vectors thus generated can be applied

in functional mode using carefully crafted instruction sequences generated under

architectural constraints. The test vectors so generated are mapped to control

signals and registers. Processor instructions are used as vehicles to deliver test

patterns and collect test responses. It was indicated earlier that a superscalar

processor executes instructions out-of program order using multiple functional

units and it is the processor scheduler that decides, on the fly, which instruction

will be executed by which functional unit. Therefore, we need to carefully craft

the test instruction sequence that can force scheduler to execute in our desired

order as well as on a given functional unit. We have developed a methodology to

generate an instruction sequence for every path based on the graph that forces

scheduler to execute instructions in our desired order. We limited ourselves to

Non Robust testing of the path delay faults.

6.4. Superscalar Instruction Execution Graph

The pipeline instruction execution graph (PIE-graph), described in chapter 5, is

extended to capture the superscalar behaviour. SIE-graph is used for constraint

extraction, path classification, and test instruction sequence generation.

SIE-graph can be constructed from RTL description and instruction set ar-

chitecture. This includes the architectural registers, data and address part of the

pipeline registers, buffers (Reservation Station), and queues (Re-Order Buffer).

97

Note that this does not include control part of the registers, buffers, and queues.

Nodes of SIE graph are:

1. Architectural Registers

2. Part of architectural registers if it is independent readable and writable

3. Equivalent registers (Set of registers that behave identically with the in-

struction set, such as register file, and stacks)

4. Two special nodes, IN and OUT, which models the external world such as

memory or IO devices

5. Data and address part of the pipeline registers

6. Data and address part of buffers (like Reservation Station)

7. Data and address part of queues (like ROB

There are four types of nodes in SIE-graph, which are special type (IN and

OUT), register type (R), buffer type (B), and queue type (Q). Every node is

labeled with its type and its attribute. The number of entries in buffers or

queues are the attributes. Every node, except special node, is labeled with its

name, node type, and the attributes of the type if any. For example, a node

representing ROB with 16 entries is labeled as (ROB, Q, 16).

A directed edge between two nodes is drawn iff there exists at least one in-

struction responsible to transfer data (with or without manipulation) between

corresponding two registers. Each edge is marked with a 4 – tuple [〈 instruction

set〉, 〈stage from, stage to〉, 〈logic type〉, 〈cardinality〉]. This 4 – tuple signifies

that instructions from the 〈 instruction set〉 are responsible for the transfer data

from 〈stage from〉 to 〈stage to〉 through the logic specified by 〈logic type〉. Logic

classification for logic type is based on our observation that many paths directly

transfer data to the next stage using simple interconnects or through multiplex-

ers. Keeping this in mind we classify logic in three types, namely interconnect

(I), multiplexers (M), and processing logic (L). This classification simplifies the

test generation process.

98

RSALU, B, 2 ROB, Q,
16

RF, R

[Iset1, <ex, ex>, L,2]

[Iset1, <comit,disp>, M,1]

[Iset1, <disp, disp>, M,1]

[Iset3, <comit, comit>, I,1] [Iset1, <ex, disp>, L,2]

Figure 6.3. Part of SIE-graph of DLX-SV processor

Superscalar processors often use multiple identical functional units. Edges

for these are merged and a cardinality of the edge is specified as 〈cardinality〉.
SIE-graph for a part of the superscalar DLX processor is shown in the Fig. 6.3.

6.5. Testing Methodology

6.5.1 Datapath Testing

In this section we consider the paths that transfer the data between architectural

registers, data and address part of the pipeline registers, buffers and queues.

These paths are significant in number. Other paths are considered in the control

section.

We assume that any instruction can follow any other instruction. Data for-

warding takes place through the multiplexers. So, the data that can be received

through forwarding path can also be received by the normal paths.

Path Classification and Constraint Extraction

A path can be, i) functionally testable (FT) path, ii) functionally untestable

(FUT) path, or iii) potentially functionally testable (PFT) path. In order to test

a path, we extract the architectural constraints by using SIE-graph. There are

two types of constraints, i) control constraints and ii) data constraints. Con-

99

trol constraints are the constraints on the control signals, which are responsible

to transfer data between two nodes. These are obtained from the instructions

marked on the corresponding edge on SIE-graph. Data constraints are the con-

straints on the justifiable data under the extracted control constraints. Data

constraints are not applicable to Non Robust (NR) testable paths.

1. when logic type is interconnect ’I’:

These paths always carry data for the preceeding stages. Therefore, these

paths do not observe data constraints and can be tested as interconnects.

These paths are classified as FT paths.

2. when logic type is multiplexer ’M ’:

These paths pass through a set of multiplexers and behave as interconnects

if control signals are properly assigned. Therefore these can also be tested

as interconnects and classified as FT paths.

3. when logic type is processing logic ’L’:

These paths transfer data to destination node after manipulation.

(a) Normal paths:

These paths carry manipulated data inside the same pipeline stage.

An instruction pair (IV 1, IV 2) is needed to test such a path. Any pair

of instructions marked on the target path can be a test instruction,

and can be used as IV 1 and IV 2. The constraints on the control sig-

nals of the modules in the target path are extracted under this set of

instructions. Non Robust test do not observe any data constraints.

For Robust test, we must consider the data constraints on the nodes

which have out–edge to the target destination node inside the same

stage and have some common instruction with the target edge. These

paths are classified as PFT paths.

(b) Forwarding paths:

These paths carry data to the other stages. Therefore, they need

a sequence of three instructions (IV 1, IV 2, and IV 3) to test, where

instruction IV 1 and IV 2 must be marked on the in–edge of the target

source node, and IV 3 must be marked on the target edge. Non robust

100

Forwarding path

Normal path

RS

ROB

Figure 6.4. Forwarding and normal paths

test do not observe any data constraints. These are also classified as

PFT paths.

The forwarding paths from the ith entry of a buffer to the ith entry

of the same buffer are classified as FUT paths because a transition

cannot be launched and propagated through this path.

As shown in the Fig. 6.4, the forwarding paths always go through

MUX and the MUX can always be set to forward data. Therefore, the

forwarding paths dominate the normal paths. Hence, it reduces the

test generation effort.

Test Generation

After extraction of constraints, constrained ATPG is used to generate the tests for

the potentially functionally testable paths. The ATPG returns the test vectors

for the functionally testable paths.

Test Instruction Sequence Generation

The generated test vectors are mapped to the control signals and the registers.

An instruction sequence is needed to apply the test vectors, justify the valus,

101

and transfer the results to memory. We need to carefully craft an instruction

sequence which can force scheduler to apply the test patterns in desired order.

Test instruction generation procedures are explained through examples. In the

examples we consider a processor that has 2 ALUs (1 ALU is considered for

p = 1 case to demonstrate some concepts), with 2–entry reservation station and

32 entry ROB. The fetch width of the processor is 4 instructions. The other

functional units in the processor are multiplier, load store unit, and branch unit.

We assume that the ADD instruction followed by the SUB instruction is a test

instruction pair.

Paths from node Ni to No (register type nodes): Fetch and the decode

stages usually consist of these paths. These stages are in-order processing stages.

Let us consider that a test instruction sequence (IV 1, IV 2) is needed to test a

path. Let the superscalar width be w, and the cardinality of the edge be p. The

instruction pair (IV 1, IV 2) can be applied by an instruction sequence [p number

of I1 instructions, (w − p) other instructions except branching instructions, p

number of I2 instructions].

Paths from a buffer type node Ni to queue type node No: These paths

originate from a reservation station and terminate at ROB. Let a reservation

station has k entries and there be p number of identical functional units. The

node representing the RS is labeled as (Ni, B, k). Let ROB be labeled with

(No, Q, l). Derivation of test sequence for a path from ith entry of RS to jth entry

of ROB is explained for two cases through examples.

1. when p = 1

Example 8 A path from 2nd entry in RS to 6nd entry in ROB can be tested

by the following instruction sequence. We assume that the processor has

one ALU.

I1: J 2000H – Instruction for the alignment

I2: 2000H MULT R7, R8, R9 – Instr. for dependency

102

I3: AND R10, R7, R11 –Instr. to occupy 1st entry

I4: ADD R1, R2, R3 – Instruction IV 1

I5: SW R7, R13, R14 – Filler instruction

I6: SW R12, R15, R16 – Filler instruction

I7: SUB R4, R5, R6 – Instruction IV 2

The first jump instruction flushes the RS and the ROB (assuming this entry

is seen first time). The next 4 entries will be fetched in next cycle. The

AND instruction (I3) will be placed at first entry of the RS and the ADD

instruction (I4) will be placed in the second entry of the RS. During second

cycle instruction I4 will be executed. Next four instructions will be fetched

in the second cycle and instruction I7 will be placed in the second entry

of the RS. During the third cycle, instruction I7 will be executed and will

transfer the result to the 6th entry of the ROB. Hence, the path from the

2nd entry of RS to the 6th entry of ROB is tested.

2

Branch instruction, [(int(j/w)-1)*w] instructions at branch address which

are not marked on the edge, instruction for dependency creation (should not

be marked on the edge), (i − 1) instructions marked from the instructions

marked on the edge with dependency to the instructions which are not

marked on the edge, IV 1 instruction, (w− i− 1) instructions which are not

marked on the instruction, (rem (j-1/w)) instructions which are not marked

the edge, IV 2 instruction. In case of 1 < j < w, j = l + w. We need a

previously unseen branch instruction to align instructions and flush RS and

ROB to make sure that desired data transfer takes place.

2. when p > 1 (Multiple identical functional units exist)

In case of multiple identical units, our approach tests these units simulta-

neously. Here, we assume that p ≤ w, i.e., the number of multiple units

is less than or equal to the fetch width. Let a test sequence IV 1, IV 2) be

required to test a path from the RS to the ROB.

Example 9 A path from 2nd entry in RS to 9nd and 10nd entries in ROB

can be tested by the following instruction sequence.

103

I1: J 2000H – Instruction for the alignment

I2: 2000H LW R8, 100(R10)

I3: MULT R7, R8, R9 – For dependency creation

I4: AND R11,R7,R12 – Schedules to 1st entry in RS of ALU1

I5: AND R13,R7,R14 – Schedules to 1st entry in RS of ALU2

I6: ADD R1, R2, R3 – Instruction IV 1

– Schedules to 2nd entry in RS of ALU1

I7: ADD R21, R2, R3 –Instruction IV 1

– Schedules to 2nd entry in RS of ALU2

I8: SW R11, 100(R15) – Filler instruction

I9: SW R13, 104(R14 – Filler instruction

I10: SUB R24, R5, R6 – Instruction IV 2

– Schedules to 2nd entry in RS of ALU1

– Transfers the result to the 9th entry of ROB

I11: SUB R4, R5, R6 – Instruction IV 2

– Schedules to 2nd entry in RS of ALU2

– Transfers the result to the 10th entry of ROB

The procedure to test a path from any entry in a buffer to any entry in

queue can be generalized without much difficulty.

2

Paths from a buffer type node Ni to buffer type node No (Forwarding

paths): These paths are responsible to forward data to the instructions residing

in the RS without going through commit stage. These paths dominate the normal

paths, i.e, a test for a forwarding path can also test the corresponding normal

path. Hence, normal paths can be tested along with forwarding paths by using

observation sequence for normal paths. An instruction sequence (IV 1, IV 2, IV 3)

can test a path from RS (ith entry) to the same RS (jth entry) if it is applied in

the following manner. This instruction sequence will test both normal paths and

forwarding paths.

Example 10 A path from the 1st entry in RS to the 2nd entry in RS can be

tested by the following instruction sequence.

104

I1: J 2000H – Instruction for the alignment

I2: 2000H ADD R1, R2, R3 – Instruction IV 1

I3: ADD R21, R2, R3

I4: SW R1, 100 (R9)

I5: SW R21, 104 (R14) – Filler instruction

I6: SUB R4, R5, R6 - Instruction IV 2

I7: SUB R24, R5, R6 - Instruction IV 2

I8: ORA R7, R4, R8 - Instruction IV 3

I9: ORA R7, R24, R8 - Instruction IV 3

2

Paths from a queue type node Ni to buffer type node No (From ROB to RS):

These are the paths which forward the data from the ROB to the RS. Following

example explain the procedure to test a path from ith entry in ROB to jth entry

in RS.

Example 11 A path from 3rd entry of ROB to 2nd entry in RS of multiplier unit

can be tested by the following instruction sequence.

I1: J 2000H – Instruction for the alignment

I2: 2000H LW R1, 100(R10)

I3: AND R11,R7,R12

I4: ADD R1, R2, R3 – Instruction IV 1 schedule to

– 3rd entry in ROB

I5: J 2100H

I6: 2100H LW R11, 100 (R15) – Filler instruction

I7: AND R14, R12, R13

I8: SUB R4, R5, R6 – Instruction IV 2 schedule to

– 3rd entry in ROB

I9: SW R4, 104(R14) – Filler instruction

I10: MULT R7, R8, R9 – Schedule to 1st entry

– in RS of multiplier

I11 MULT R10, R4, R11 – Instruction IV 3 schedule to

– 2nd entry in RS of Multiplier

105

The paths from ROB to register file can also be tested along with these paths

by observing the result of IV 2.

2

6.5.2 Controller Testing

Instruction decoder dispatches the control signals with the data, which are used

by the stages ahead. These control signals are often not structured. However they

form a small group. We use this grouping to find the constraints. There are two

types of constraints. i) intra group constraints, and ii) inter group constraints.

1. Intra-group signal constraints:

Some combinations of value on a small group of signals are not valid combi-

nation. Therefore, we need to extract all the legitimate values. For example,

test control (test ctrl) signals in DLX-SV are grouped in a group of 3 bits,

and legitimate values are 〈0XX, 10X, and 110〉.

2. Inter group signal constraints:

We extract these constraints in terms of instructions, i.e., map to the in-

struction which can generate the particular combination and all possible

combinations are extracted. For example, in DLX-SV when ALU ctrl

(alu ctrl) signal is 0000 the test control (test ctrl) signal must be 000.

The part of a pipeline register, which carries the control signals is called

control register. There are paths between control register (CR) to control register,

control register to data register (DR), or data register (such as IR) to control

register. The paths between CR-to-CR are used to carry the control signals

for the pipeline stages ahead. These paths are connected directly and can be

tested as interconnects. Paths from CR to DR are the paths which pass through

the combinational logic such as paths from control register of RS to the ROB.

Following example shows the procedure to test such paths.

Example 12 A path from 1st entry of CR in RS to 6th entry in ROB can be

tested by the following instruction sequence.

106

I1: J 2000H – Instruction for the alignment

I2: 2000H ADD R1, R2, R3 – Instruction IV 1

I3: MULT R10, R11, R12

I4: SW R1, 100 (R15)

I5: SW R10, 104 (R15) – Filler instruction

I6: SUB R4, R5, R6 – Instruction IV 2

I7: SUB R4, R5, R6 – Instruction IV 2

2

Similarly, the test procedures for the paths from the control part of RS to

the data part of RS (feed back paths) and other paths can also be developed as

explained in the previous section.

6.6. Experimental Results

In order to demonstrate the effectiveness of our approach, we implemented a

superscalar version of DLX processor (DLX-SV) with 5 functional units (2 ALU,

1 Multiplier, 1 Branch Unit, and 1 Load Store unit). Each functional unit has

2-entry reservation station. ROB is implemented as 16 entry circular queue. It

can fetch two instructions and can commit at most 2 instructions.

Using RT-level description, SIE-graph is constructed. Based on the SIE-graph,

paths are classified, and constraints for the potentially functionally testable paths

have been extracted. Some of the paths are classified as functionally untestable at

this stage. Test vectors are generated using constrained ATPG. Table 6.1 shows

the results of the Non Robust tests [31] for the data path of DLX-SV processor.

The results achieved so far indicate that high fault efficiency can be achieved to

ensure the performance of processors. Although fault coverage is low, but that

is normally true for path delay faults even if full scan techniques are employed.

In order to apply these test patterns an instruction sequences can be generated

using the procedures given in this chapter.

107

Table 6.1. Results for datapath of DLX-SV processor (NR test)

No. of paths 1 2,559,284

No. of Faults 5,118,568

No. of functionally testable paths 1,576,122

No. of functionally untestable faults 3,542,446

Fault coverage (%) 30.7

Fault efficiency (%) 100

6.7. Conclusion

This chapter presented an at-speed testing methodology for testing of superscalar

processors. It highlighted the test challenges pertinent to testing of superscalar

architectures in the functional mode of operation. A graph theoretic model is

developed to extract the constraints. We have developed a method of generating

test programs that can force the processor scheduler to execute program in our

desired order. Hence, these procedures can apply test vectors in the functional

mode of operation. In order to show the effectiveness of the methodology, results

for a superscalar DLX (DLX-SV) processor are presented.

1Except paths which go through multiplier unit

108

Chapter 7

Conclusion and Future Work

This chapter first summarizes the work completed in this thesis and then presents

the future directions for this work. In particular two extensions of our existing

work, namely application of these methods to design verification and study of

simultaneously threaded processors, are perceived and described under the future

work section.

7.1. Summary of the Thesis

In order to ensure the performance of a processor after manufacturing, it must

be tested for the smaller timing defects and distributed faults caused by statis-

tical process variations. This thesis presented an instruction-based self-testing

methodology for modern processors in their chronological order of complexity.

We believe that the instruction-based self-testing is one of the important and

most suitable test methodology for testing of high performance processors as it

applies test vectors through processor instructions in functional mode of opera-

tion, as illustrated in chapter 3. However, it needs an efficient method to extract

the architectural constraints and test vector generation, so that generated tests

can be coded (possibly automatically) in terms of valid processor instructions.

This thesis presented processor models, which facilitate the test generation for

processors under architectural constraints and the generated tests can always be

coded into valid instructions.

109

In chapter 4, a systematic approach for the delay fault testing of non-pipelined

processors has been presented. A graph theoretic model for data path has been

developed. This graph model is constructed with the help of RT level description

and instruction set architecture of the processor. This model, in conjunction

with RT level description, is used to classify paths and eliminate the functionally

untestable paths at the early stage of test generation process without looking

into circuit details. Our method can efficiently extract the constraints for the

remaining paths using graph model, as this model has information about the

data transfer activities. A constrained ATPG is implemented to generate the test

vectors under the extracted constraints so that these vectors can easily be applied

by the instruction sequences. Controller is modeled as a finite state machine

and constraints on state transitions are extracted. This eliminates the need for

multiple time frame consideration for test generation, and hence reduces the

test generation complexity. Experimental results show that our test generation

process can efficiently generate test vectors for functionally testable paths which

can be applied by test instructions. Results also show that a significant number

of paths are identified as functionally untestable at higher level without using

circuit details, which in turn reduces test generation effort significantly.

Chapter 5 presented a systematic approach for the delay fault testing of a

pipelined processor using its instruction set. To the best of our knowledge, this is

the first work that modeled the pipeline behaviour of a processor for the purpose

of test generation. Once again, the pipeline behaviour is modeled by a graph

theoretic model using RT level description and instruction set architecture. A

hierarchical test generation procedure is presented. It classifies paths at higher

level using graph model and efficiently extracts the constraints for potentially

functionally testable paths and parity checkable functionally testable paths using

RT level description and graph model. This model also assists the test instruc-

tion sequence generation process. Some paths can be declared as functionally

untestable paths at the early stage. Effectiveness of this method is demonstrated

through experiments on two representative pipelined processors.

Chapter 6 presented instruction-based delay fault self-testing methodology

for superscalar processors. Testing superscalar processors using instruction-based

self-testing approach faces serious challenges, as these architectures discover the

110

instruction-level parallelism on the fly, and use out-of-order execution, to achieve

high throughput. This chapter highlighted the test challenges pertinent to test-

ing of superscalar architectures in the functional mode of operation. As for the

pipelined processors, a graph theoretic model is developed to extract the con-

straints. We have developed a method of generating test sequences that can force

the processor scheduler to execute program in our desired order because it is

the processor scheduler which decides the order of execution on the fly. Hence,

these procedures can apply test vectors in the functional mode of operation. In

order to show the effectiveness of the methodology, results for a superscalar DLX

(DLX-SV) processor are presented.

7.2. Future Work

This thesis presented systematic approaches for the testing of modern processors,

which can easily be automated. However, the method of extraction of graph

model of a processor from the RT level description and instruction set architecture

is still manual, because of the different styles used in writing RT level descriptions.

However, the complexity of graph is not high, therefore manual generation of

graph model is manageable. But, in order to automate the entire process to

develop a tool, the graph extraction process must also be automated.

We have developed algorithms to identify testable and untestable path delay

faults in the datapath as well as in the control unit of the processors. Our

algorithms use a constraint based test generator which guarantees to find all

functionally testable paths and is highly efficient. However, we need to develop

algorithms to automatically generate test sequences that can be used to apply

the required vectors. Chapter 6 of this thesis identifies the complexity of this

problem, through numerous examples, if the underlying processor is a superscalar

processor. We believe that we have enumerated nearly all cases that can arise

during testing of a superscalar processor and we can generate the test sequences

for each case of interest but this process needs to be automated and efficient

algorithms to achieve this are required. Methods to overlap sequences, to generate

memory and performance efficient programs, without loss of coverage, still remain

to be developed.

111

This thesis presented efficient instruction-based self-testing methodologies that

can apply test vectors in functional modes through instructions. This work can

be extended in two ways:

1. For design verification: Design verification is considered one of the se-

rious bottlenecks for modern processors. There are two broad approaches

to hardware design verification: Formal verification and simulation-based

verification. Formal methods use mathematical proofs to verify the correct-

ness. Simulation-based method tries to uncover design errors by detecting

the behaviour of the faulty circuits when deterministic or pseudorandom

test vectors are applied. The verification process for the modern complex

designs is largely based on simulation methods using pseudorandom vectors,

which take long time to uncover a design errors. Our method generates test

vectors that can be applied in functional mode of operation by linking high

level information with gate level information. Hence, it can also be ex-

tended for design verification by using error modeling techniques which can

generate deterministic test vectors. Deterministic methodology gives bet-

ter coverage. Some error modeling [43], [44] techniques have already been

proposed in literature.

2. For next generation processor architecture testing: Simultaneous

Multithreaded Processor (SMT) architecture is a natural descendant of su-

perscalar architecture. It combines the hardware features of superscalar

architecture with the multithreaded processors. From superscalar, it in-

herits the ability to issue multiple instructions each cycle; and like mul-

tithreaded processors it contains hardware state of several programs (or

threads). The result is a processor that can issue multiple instructions,

from multiple threads each cycle, to achieve better performance for variety

of workloads. Thus the SMT architecture by being inherently superscalar,

poses all the challenges to instruction based testing that superscalar proces-

sor faces. Moreover, it is the processor fetch unit that decides, on the fly,

which instructions from which thread are being fetched and issued in next

cycle, hence it make it even more complex. A simple way to apply our ap-

proach for testing SMT processors is by operating it in single thread mode.

112

Once it starts to operate in single thread mode, it behaves like a super-

scalar processor. However, the coverage of data transfer paths regarding

other threads in the fetch unit needs to be investigated. More over, an

advantage of functional testing is that it can also be used for online testing

of SMT processors, as they have capability to run multiple threads simulta-

neously. One thread can be dedicated to be a test thread to achieve online

testing.

Introduction of one test thread that runs periodically can also help speed

path fixing. When error is detected, the processor either increases its voltage

or decreases its operating frequency, as most of the modern processors are

able to run at multiple voltages and frequencies. The tests are run to see

if it fixes the problems. This process can be repeated until the problem is

fixed or some threshold is reached and system is shutdown. This technique

could increase the reliability of the systems and also decrease the number

of systems that would need repair.

113

Appendix

A. VPRO Processor

VPRO is a 16 bit, 5-stage pipelined RISC processor. It has 24 most common

instructions. It uses load/store architecture. It consists of 8 general purpose 16

bit registers.

Instruction set

1. NOP 5. OR 9. SRL 13. SEQ 17. SGT 21. DEC

2. ADD 6. XOR 10. SRA 14. SNE 18. SGE 22. BEQ

3. SUB 7. MOV 11. LOAD 15. SLT 19. MVI 23. BNE

4. AND 8. SLL 12. STORE 16. SLE 20. INC 24. JUMP

Instruction Set Architecture

It consists of 3 type of instruction

1. Register- Register type instructions

OP Rs1 Rs2 Rd Fn2 Fn1

(2 – bit) (3 – bit) (3 – bit) (3 – bit) (3 – bit) (2 – bit)

2. Immediate Instruction
OP Rs1 Immediate Unused Fn1

(2 – bit) (3 – bit) (8 – bit) (1 – bit) (2 – bit)

3. Jump Instruction

OP Immediate

(2 – bit) (14 – bit)

114

Instruction Encoding

Instructions Operation Op Fn1 Fn2 Type

NOP No operation 00 00 000 R

ADD Rd, Rs1, Rs2 [Rd] ⇐ [Rs1] + [Rs2] 00 00 001 R

SUB Rd, Rs1, Rs2 [Rd] ⇐ [Rs1] - [Rs2] 00 00 011 R

AND Rd, Rs1, Rs2 [Rd] ⇐ [Rs1] and [Rs2] 00 00 100 R

OR Rd, Rs1, Rs2 [Rd] ⇐ [Rs1] or [Rs2] 00 00 101 R

XOR Rd, Rs1, Rs2 [Rd] ⇐ [Rs1] xor [Rs2] 00 00 110 R

MOV Rd, Rs1 [Rd] ⇐ [Rs1] 00 00 111 R

SLL Rd, Rs1, Rs2 [Rd] ⇐ [Rs1] sll [Rs2] 00 01 000 R

SRL Rd, Rs1, Rs2 [Rd] ⇐ [Rs1] srl [Rs2] 00 01 001 R

SRA Rd, Rs1, Rs2 [Rd] ⇐ [Rs1] sra [Rs2] 00 01 010 R

LOAD Rd, Rs1 [Rd] ⇐ mem[Rs1] 00 10 000 R

STORE Rd, Rs1 Mem [Rs1] ⇐ [Rd] 00 10 001 R

SEQ Rd, Rs1, Rs2 [Rd]⇐ 1 if Rs1 = Rs2 else 0 00 11 001 R

SNE Rd, Rs1, Rs2 [Rd] ⇐ 1 if Rs1 6= Rs2 else 0 00 11 010 R

SLT Rd, Rs1, Rs2 [Rd]⇐ 1 if Rs1 < Rs2 else 0 00 11 011 R

SLE Rd, Rs1, Rs2 [Rd] ⇐ 1 if Rs1 ≤ Rs2 else 0 00 11 100 R

SGT Rd, Rs1, Rs2 [Rd] ⇐ 1 if Rs1 > Rs2 else 0 00 11 101 R

SGE Rd, Rs1, Rs2 [Rd] ⇐ 1 if Rs1 ≥ Rs2 else 1 00 11 110 R

MVI Rd, #imm8 [Rd] ⇐ [Imm8] 01 00 – I

INC Rd, #imm8 [Rd] ⇐ [Rd] + [Imm8] 01 10 – I

DEC Rd, #imm8 [Rd] ⇐ [Rd] - [Imm8] 01 11 – I

BEQ Rs1, #imm8 PC ⇐ PC+ [Imm8] if Rs1 = 0 10 00 – I

BNE Rs1, #imm8 PC ⇐ PC+ [Imm8] if Rs1 6= 0 10 00 – I

JUMP #imm14 PC ⇐ PC+ [Imm14] 11 – – J

115

Structural Organization

2

1

2

I.
Mem

N
P
C

I
R

‘0’

‘nop’

+

+

S
1

S
2

A
L
C

C
P
C
M
C
M
F

L
I
R
W

D
R
A

A
L
O

M
E
O

M
C
R
W

D
R
A

R
F

S. Extn

Zero
Det.

1

2

D
O
U
T

D
R
A

R
W

R
F

D.
Mem

2

1

A
L

Control
Logic

IF ID EX MEM WB

2

Figure A.1. Structural Organization of VPRO Processor

116

Acknowledgements

I would like to thank my supervisor, Professor Hideo Fujiwara, for his guidance

and support during my graduate studies, and for the invaluable training I received

as his student. His influence is sure to stay with me for long time and help me

in my career in many ways. I feel honored as his student, and I cherished the

freedom he offered me to explore and develop new ideas. This freedom kept my

interest alive in my research throughout my course of study at Nara Institute of

Science and Technology (NAIST).

I would also like to thank the members of the thesis committee, Professor

Minoru Ito and Professor Kenichi Matsumoto for their valuable comments and

important suggestions concerning this thesis.

I am highly thankful to Associate Professor Michiko Inoue, whose continuous

guidance, valuable suggestions and encouragement, played an important role in

the completion of this thesis. Despite her bad health towards the end of this

thesis, her willingness to help always encouraged me.

I am also thankful to Assistant Professors Satoshi Ohtake and Tomokazu

Yoneda for their friendly discussion and continuous cooperation.

I would like to express my heartiest gratitude to Professor Kewal K. Saluja,

University of Wisconsin-Madison, USA, for his constant guidance and encourage-

ment throughout the course of this research. He gave extremely insightful advice

aimed at making me target higher and higher in doing research. He influenced

almost every corner of my life. I feel honored and privileged to have worked with

him for this thesis.

I would also like to extend my gratitude to Ms. Yoshiko Hirayama and Ms.

Saeko Ono for helping me in different official correspondence.

I am grateful to Prof. Samiha Mourad, Santa Clara University, and Prof.

117

Jacob Savir, New Jersey Institute of Technology, for their friendly discussions.

I am indebted to Dr. Erik Larson, Dr. Md. Altaf-Ul-Amin, Dr. Shintaro

Nagai, Dr. Tsuyoshi Iwagaki, Dr. Kazuko Kambe, Dr. Thomas Clouqueur,Mr.

Yusuke saga, Mr. Zhiqiang You, Ms. Chia Yee Ooi, and Mr. Yoshiyuki Nakamura

for their support and cooperation which made my stay very pleasant and comfort-

able. Thanks are also due to all other present and past members of the Fujiwara

Laboratory for making my stay, within the confines of laboratory, pleasurable.

I am deeply indebted to the members of STARC (Semiconductor Technology

Academic Research Centre), Mr. Tokonori Kozawa (STARC), Mr. Shunsuke

Miyamoto (STARC), Dr. Kazumi Hatayama (Renesas), Mr. Mamoru Mukuno

(Sanyo), Mr. Ryoji Sakurai (Sharp), and Mr. Yashuyuki Nozuyama (Toshiba)

for their valuable comments on each and every part of this work.

This work was supported in part by the STARC, JSPS (Japan Society for

Promotion of Science) under Grant-in-Aid for Scientific Research and Foundation

of NAIST under the grant for activity of education and research. I express my

gratitude to all these sponsoring organizations.

I am grateful to Ministry of Education, Culture, Sports, Science and Technol-

ogy (MEXT), Government of Japan for supporting me with Japanese government

scholarship through out my course of study. I am also grateful to Ministry of Hu-

man Resource Development, Government of India, for providing me a chance to

pursue doctoral degree at NAIST, Japan.

My institute, Central Electronics Engineering Research Institute (CEERI),

Pilani, India, also deserve thanks for providing me study leave to pursue higher

study at NAIST, Japan. I am thankful to Dr. Shamim Ahmad, Dr. Chan-

drashekhar, Mr. Raj Singh, and Dr. R.S. Shekhawat, for their suggestions and

cooperation.

I would like to express my gratitude to Prof. N.S. Verma for his continu-

ous guidance during undergraduate study and motivating me to pursue doctoral

course in Japan. I am also thankful to Prof. M.S. Gaur and Prof. Rakesh

Bairathi for their encouragement.

My parents, Mr. Rameshwar Singh and Mrs. Phool Kaur, also deserve thanks

not only for the love and support they have given me – over phone, through e-

mail – for last three years, but also every thing they have done for me during last

118

thirty two years. I am also grateful to my sister Saroj and brother Rajesh for

their cooperation and support I received through out my life. Thanks are also

due to other members of my family.

I would also like to express my sincere gratitude to my friend Sushil Kabra

for his help and support, I received as and when I needed. Last but not least,

I would like to thank Mr. Prem Prakash Kothari, my school teacher, whose

teachings always motivated me to take up challenging work.

119

References

[1] S. M. Thatte and J. A. Abraham, “Test generation for microprocessors,”

IEEE Trans. on Computers, Vol. C–29, No.6, pp. 429–441, Jun. 1980.

[2] K. K. Saluja, L. Shen, and S. Y. H. Su, “A simplified algorithm for testing

microprocessors,” Proc. of the International Test Conference, pp. 668–675,

1983.

[3] D. Brahme and J. A. Abraham, “Functional testing of microprocessors,”

IEEE Trans. on Computers, vol. 33, No. 6, pp. 475–484, Jun. 1984.

[4] J. Shen and J. A. Abraham, “Native mode functional test generation for

processors with applications to self test and design validation,” Proc. of the

International Test Conference, pp. 990–999, 1998.

[5] K. Batcher and C. Papachristou, “Instruction randomization self test for

processor cores,” Proc. of the VLSI Test Symposium , pp. 34–40, 1999.

[6] L. Chen, and S. Dey, “Software-based self-testing methodology for processor

cores,” IEEE Trans. on CAD of Integrated Circuits and Systems, Vol. 20,

No. 3, pp. 369–380, Mar. 2001.

[7] A. Paschalis, D. Gizopoulos, N. Krantis, M. Psarakis, and Y. Zorian, “De-

terministic software-based self-testing of embedded processor cores,” Proc.

of the Design Automation and Test in Europe, pp. 92–96, 2001.

[8] N. Krantis, D. Gizopoulos, A. Paschalis, and Y. Zorian, “Instruction-based

self-testing of processor cores,” Proc. of the VLSI Test Symposium , pp. 223–

228, 2002.

120

[9] N. Krantis, A. Paschalis, D. Gizopoulos, and Y. Zorian, “Instruction-based

self-testing of processor cores,” Journal of Electronic Testing: Theory and

Application (JETTA), Vol. 19, pp. 103–112, 2003.

[10] K. Kambe, M. Inoue, and H. Fujiwara, “Efficient template generation for

instruction-based self-test of processor cores,” Proc. of the IEEE Asian Test

Symposium, pp. 152–157, 2004.

[11] W. -C. Lai, A. Krstic, and K. -T. Cheng, “On testing the path delay faults

of a microprocessor using its instruction set,” Proc. of the VLSI Test Sym-

posium , pp. 15–20, 2000.

[12] W. -C. Lai, A. Krstic, and K. -T. Cheng, “Test program synthesis for path

delay faults in microprocessor cores,” Proc. of the International Test Con-

ference , pp. 1080–1089, 2000.

[13] W. -C. Lai, A. Krstic, and K. -T. Cheng, “Functionally testable path delay

faults on a microprocessor,” IEEE Design & Test of Computers, Vol. 17, No.

4, pp. 6–14, Oct-Dec 2000.

[14] W. -C. Lai, and K. -T. Cheng, “Instruction-level DFT for testing processor

and IP cores in system-on-a-chip,” Proc. of the Design Automation Confer-

ence , pp. 59–64, 2001.

[15] A. Krstic, L. Chen, W. -C. Lai, K. -T. Cheng, and S. Dey, “Embedded

software-based self-test for programmable core-based designs,” ”, IEEE De-

sign & Test of Computers, Vol. 19, No. 4, pp. 18–27, Jul-Aug 2002.

[16] V. Singh, M. Inoue, K. K. Saluja, and H. Fujiwara, “Software-based delay

fault testing of processor cores,” Proc. of the IEEE Asian Test Symposium,

pp. 68–71, 2003.

[17] V. Singh, M. Inoue, K. K. Saluja, and H. Fujiwara, “Instruction-based delay

fault testing of processor cores,” Proc. of the International Conference on

VLSI Design , pp. 933–938, 2004.

121

[18] V. Singh, M. Inoue, K. K. Saluja, and H. Fujiwara, “Delay fault testing

of processor cores in functional mode,” IEICE Trans. on Information &

Systems, Vol. E-88D, No. 3, pp. 610–618, Mar. 2005.

[19] L. Chen, S. Ravi, A. Raghunath, and S. Dey, “A scalable software-based

self-test methodology for programmable processors,” Proc. of the Design

Automation Conference , pp. 548–553, 2003.

[20] N. Krantis, G. Xenoulis, A. Paschalis, D. Gizopolous, Y. Zorian, “Applica-

tion and analysis of RT-level software-based self-testing for embedded proces-

sor cores,” Proc. of the International Test Conference, pp. 431–440, 2003.

[21] A. Paschalis, D. Gizopoulos, “Effective software-based self-test strategies for

on-line periodic testing of embedded processors,” Proc. of the Design and

Test in Europe, pp. 578-583, 2004.

[22] V. Singh, M. Inoue, K. K. Saluja, and H. Fujiwara, “Instruction-based delay

fault self-testing of pipelined processor cores,” Proc. of the IEEE Interna-

tional Symposium on Circuits and Systems, pp. 5686–5689, 2005.

[23] V. Singh, M. Inoue, K. K. Saluja, and H. Fujiwara, “Instruction-based self-

testing of delay faults in pipelined processors,” IEEE Trans. on VLSI Sys-

tems, Vol. , No. , pp. xx–xx, 20xx. (Submitted)

[24] V. Singh, M. Inoue, K. K. Saluja, and H. Fujiwara, “Program-based testing

of superscalar microprocessors,” Proc. of the IEEE 14th North Atlantic Test

Workshop, pp. 79–86, 2005.

[25] V. Singh, M. Inoue, K. K. Saluja, and H. Fujiwara, “Testing superscalar

processors in functional mode,” Proc. of the 15th International Conference

on Field Programmable Logic and Applications, 2005. (To appear)

[26] A. Krstic, S. T. Chakradhar, and K. -T. Cheng, “Testable path delay fault

cover for sequential circuts,” Journal of Information Science and Engineer-

ing, Vol. 16, pp. 673-686, 2000.

122

[27] K. -T. Cheng, and H. -C. Chen, “Classification and identification of non-

robust untestable path delay faults,” IEEE Trans. on CAD of Integrated

Circuits and Systems,Vol. 15, No. 8, pp. 845-853, 1996.

[28] Z. Navabi, VHDL: Analysis and modeling of digital systems, McGraw-Hill,

NY, 1997.

[29] J. L. Hennessy and D. A. Patterson, Computer architecture: A quantitative

approach, Morgan Kaufmann, 1996.

[30] M. Gumm, “VLSI Design Course: VHDL-Modeling and Synthesis of DLXS

RISC Processor,” University of Stuttgart, Germany, Dec. 1995.

[31] A. Krstic and K. -T. Cheng, Delay fault testing for VLSI circuits, Kluwer

Academic Publishers, 1998.

[32] D. Gizopoulos, A. Paschalis, and Y. Zorian, Embedded processor-based self-

test, Kluwer Academic Publishers, 2004.

[33] J. E. Smith, and G. S. Sohi, “The microarchitecture of superscalar proces-

sors,” Proc. of the IEEE, Vol. 83, No. 12, pp. 1609–1624, Dec 1995.

[34] J. P. Shen, and M. H. Lipasti, Modern processor design,Mc. Graw Hill Pub-

lication, 2004.

[35] W. Needham, “Microprocessor testing today,” IEEE Design & Test of Com-

puters, Vol. 15, No. 3, pp. 56–57, Jul 1998.

[36] R. Tupuri, A. Krishnamachari, and J. A. Abraham, “Test generation for

gigahertz processors using automatic functional constraint extractor,” Proc.

of the Design Automation Conference, pp. 647–652, 1999.

[37] M. L. Bushnell and V. D. Agrawal, Essentials of electronic testing for digital,

memory & mixed-signal VLSI circuits, Kluwer Academic Publishers, 2000.

[38] S. Hellebrand, and H. -J. Wunderlich, “Mixed-mode BIST using embedded

processors,” Proc. of the International Test Conference, pp. 195–204, 1996.

123

[39] F. Brglez, C. Gloster, and G. Kedem, “Built-in self-test with weighted

random-patterm hardware,” Proc. of the IEEE International Conference on

Computer Design, pp. 161-167, 1990.

[40] M. T. Lee, High-level test synthesis of digital VLSI circuits, Artech House

Publisher, 1997.

[41] International Technology Roadmap for Semiconductors (ITRS). On-line ref-

erence. http://public.itrs.net/

[42] A. K. Sharma, Semiconductor memories: Technology, Testing , and Relia-

bility, IEEE Press, 1997.

[43] D. Van Campenhout, H. Al-Asaad, J. P. Hayes, T. Mugde, and R. B. Brown,

“High-level design verification of microprocessors via error modeling,” ACM

Trans. on Design Automation of Electronics Systems, Vol. 3, No. 4, pp. 581–

599, Oct 1998.

[44] M. N. Velev, “Collection of high-level microprocessor bugs from formal veri-

fication of pipelined and superscalar designs,” Proc. of the International Test

Conference, pp. 138–147, 2003.

124

