
NAIST-IS-DD0161017

Doctoral Dissertation

Mediation Architecture of Personal Robot

Applications Based on a Communications Model

Akihiro Kobayashi

August 25, 2005

Department of Information Systems

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Akihiro Kobayashi

Thesis Committee:

Professor Masatsugu Kidode (Supervisor)

Mediation Architecture of Personal Robot

Applications Based on a Communications

Model ∗

Akihiro Kobayashi

Abstract

This paper presents a middleware architecture for personal robots and ap-

plies such architecture to various environments. The architecture allows a robot

to consistently integrate environment-oriented applications with its original and

familiar characteristics for its user. Applications that generate familiar character-

istics and environment-oriented applications tend to be developed independently.

However, the two kinds of applications should share sensors and actuators to gen-

erate consistent actions. To this end, I have analyzed the relationship between

robot actions and the mental effects of these actions on the user, and I have

designed a middleware for personal robots, called a Personal Robots’ Intermedi-

ating Mediator for Adaptation (PRIMA). Using videos I created an experiment

to demonstrate the effect of mediation on PRIMA’s outputs.

Keywords:

Personal Robot, Human-Robot Interaction, Open Robot Architecture

∗ Doctoral Dissertation, Department of Information Systems, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DD0161017, August 25, 2005.

i

Contents

1. Introduction 1

2. Model Based Mediation Framework 7

2.1 Integration of Two Different Kinds of Applications 7

2.2 Mediation Framework . 7

2.3 Communication Interference . 10

2.4 Restrictions of PRIMA . 13

2.5 Summary . 17

3. Communication Model 19

3.1 Information Unit . 19

3.2 Communication Stream . 20

3.3 Communication Channel . 23

4. Implementation of Mediation Strategy 27

4.1 Implementation of the Information Unit 27

4.2 Basic Rules Mediating an Information Unit 30

4.3 Implementation of the Communication Channel 36

4.4 Implementation of the Communication Stream 36

4.5 Summary of Programmers’ Restriction 40

5. Experiment 41

5.1 Evaluation of Mediated Motions Using Video 41

5.2 Experimental Results . 48

5.3 Discussion . 51

6. Conclusion 59

Acknowledgements 60

References 61

List of Publications 66

ii

List of Figures

1.1 Personal Robots . 1

1.2 An Example of Parallel Execution 2

1.3 Relational Techniques . 3

2.1 Internal States of Applications . 8

2.2 A Mediation Architecture for Personal Robots 9

2.3 Relations between Developers using PRIMA 14

2.4 Functions of Personal Robots . 15

3.1 Communication Stream . 21

3.2 Robot’s Internal States Expected by A User 22

3.3 Communication Channel . 24

4.1 Atomic Behavior Tree . 31

4.2 Attributes of an Atomic Behavior Class 31

4.3 Working Memory of PRIMA . 32

4.4 Feedback Behavior . 33

4.5 Implementation of PRIMA . 35

4.6 Exceptions of Communications Stream 38

5.1 Output Example of FA2 . 43

5.2 Output Example of EA3 . 44

5.3 Mediated Output (Answer Sheet) 45

5.4 Mediated Output of FA2 and EA4 (Video) 46

5.5 Requests from EA3 . 47

5.6 Requests from FA2 . 47

5.7 Output Example of FA5 . 49

5.8 Output Example of EA2 . 49

5.9 Mediated Output of FA5 and EA2 50

5.10 Output Example of FA4 . 53

5.11 Output Example of EA1 . 54

5.12 Mediated Output of FA4 and EA1 55

iii

List of Tables

4.1 Command Attribute . 27

4.2 Examples of Command Types . 28

5.1 Application Example . 41

5.2 Test Sample . 42

iv

1. Introduction

Recent research studies provide several points of view for the use of autonomous

mobile robots, for example, a mobile and intelligent interface for information

systems [8, 43, 26], or a familiar and amusing robot that acts and looks like

a pet. Human-like expression in the pet robot’s appearance and motion is a

particularly important issue [15, 19]. Lately, a robot for home use has attracted

special interest. Such a robot is called a personal robot or a home robot [1, 5, 18, 44]

A personal robot is expected to take on the roles of a pet and an interface of home

appliances. A personal robot has a familiar appearance as shown in Figure 1.1.

This type of robot also emphasizes the importance of smooth communications to

its user, rather than quick or powerful outputs.

(a) PaPeRo (b) ApriAlpha (c) QRIO

Figure 1.1: Personal Robots

In the near future, a personal robot should be an interface between its owner

and an information service in the environments an owner visits, e.g., an office

building, a museum, a library, and an amusement park. This ability to interface

gives benefits to both the owner of the robot and a provider of an information

service. From the owner’s point of view, accessing the service through his or her

1

Corner1

Corner2

P os ter1
Keep Out

Staff
Only

Corner1

Corner2

P os ter1
Keep Out

Staff
Only

i i i) D anc e to a T u nei i i) D anc e to a T u ne
v i) Call U s ers A ttenti onv i) Call U s ers A ttenti on

i i) T ak e a P i c tu rei i) T ak e a P i c tu re
v) Navigate to a Room v) Navigate to a Room

i) M ak e i d le
Ch i t-c h at

i v) E x p lai n D i s p laysi v) E x p lai n D i s p lays

Figure 1.2: An Example of Parallel Execution

familiar robot is desired. A system of the information service can use the personal

robot as its physical interface for a visitor, although a traditional service provider

needs robots to provide these services. These services are composed of rules which

stipulating relationships between inputs and outputs of a robot. In this paper,

these rules are called an application. An application for an information service for

a visiting environment is called an Environment-oriented application (EA).

This research attempts to make a personal robot dynamically load an EA in its

visiting environment in order to adapt to the environment [24, 23, 22].

On the other hand, a personal robot has its original rules to represent its per-

sonality. These rules are called a Familiarity-oriented application (FA). An

owner feels the robot’s personality from its familiar motions and conversations,

in its FA. A personality of a personal robot might be an important factor in its

2

commercial value. A personal robot, while maintaining its personality, should

accomplish a set of tasks given in a visiting environment. For example, a robot

behaves as a pet interacting with the owner when the robot accompanies the

owner. Figure 1.2 shows a personal robot accompanying its owner to an exposi-

tion. The robot has a FA to make idle chit-chat, to take a picture, and to dance

to a tune. The robot loads an EA to explain displays, to navigate a room, and

to call the users’ attention to a corner. I attempt to integrate FA and EA , and

attempt to make the robot take a picture or express emotions while guiding its

owner.

In order for a robot to supply usages like above, I suggest, in the first chapter

of this thesis, a middleware called a Personal Robots’ Intermediating Mediator for

Adaptation (PRIMA), which integrates a FA and an EA. Chapter 2 introduces

concepts and problems of PRIMA. Figure 1.3 shows related works of the proposed

concept.

PRIMA

E nv ironm ent-oriented
Ap p l ic a tion

F a m il ia rity -oriented
Ap p l ic a tion

U s er

D ev ic es (Rob ot H a rdw a re)
Open Robot Architectures

C om m unica tion T heory
� Ana l y sis of S pok en D ia l og

- T C U
- C oherence, S peech Acts

� E f f ects of Robot’s E m bod im ents

U biq uitous C om puting
� D istributed Obj ects
� C ontex t Aw a reness

S pok en D ia l og ue S y stem sP et Robots

B eha v ior-B a sed S y stem s
� S ubsum ption Architecture
� B a y esia n N etw ork -B a sed S y stem s

Figure 1.3: Relational Techniques

3

Section 2.1 introduces the behavior-based architecture often used by an au-

tonomous mobile-robot, which has highly independent internal structures. PRIMA

attempts to run an EA and FA , like as behavior-based architectures behave. In

this case, an application interrupts communications between the user and other

applications. In order to solve these interferences, this paper introduces a mid-

dleware which mediates the output of EA and FA.

The contents of an EA and a FA are rules of interactions like scenario doc-

uments in a spoken dialogue system. Section 2.2 describes why a model of

behavior-based architectures is adopted, and compares this behavior-based ar-

chitecture with mixed-initiative spoken dialogue systems. Integrating an EA and

a FA into a document for an interpreter of generic spoken dialogue systems is

difficult, because an EA and a FA are independently developed. Therefore, the

middleware runs an EA and a FA in parallel and mediates between them, like as

an operating system which schedules individual applications.

Unlike operating systems, interferences between an EA and a FA breaks conti-

nuity and response speeds, which are essential for human-robot communications.

Section 2.3 explains the relationship between these problems and communication

theories, by providing an analysis of spoken dialogues and human-robot non-verbal

communication.

Section 2.4 clearly reveals problems that occur with PRIMA, when compared

to ubiquitous computing and open robot architectures. For programmers, it is

difficult to describe a behavior and its timing, because of a variety of situations,

not least of which includes problems surrounding ubiquitous computing.In the

case of PRIMA, an application’s programmer cannot have the responsibility for

the total results of a robot’s output from a user’s point of view.

Section 2.4 discusses how to divide the responsibility of middleware and that

of a programmer. This paper refers to open robot architectures that try to solve

problems for a variety of hardware. I focus on problems about communications

as the most important problems, and have designed communication models for a

user using two applications on a robot from communication theories.

Chapter 3 explains the basic ideas about these communication models. The

communication models adopt three types of constructive communication units:

the Information Unit, the Communication Stream, and the Communication Chan-

4

nel, based on communication theories about the analysis of spoken dialogues and

human-robot non-verbal communications. Chapter 5 conducted an experiment

to demonstrate the effect of mediation, by videos of PRIMA’s outputs.

Chapter 4 discusses the implementation of the middleware, which has rules

for mediation and internal expression based on the three communication models

proposed in the previous Chapter. Chapter 4 also discusses restrictions on devel-

oping an application that complies with these models. Chapter 5 conducted an

experiment to demonstrate the effect of mediation, by using videos of PRIMA’s

outputs. Finally, Chapter 6 concludes this work and provides suggestions for

future research.

5

6

2. Model Based Mediation Framework

2.1 Integration of Two Different Kinds of Applications

A new mediation framework is required for a robot to execute multiple applica-

tions in parallel, and these applications are developed independently. Behavior

based approaches [7, 13, 16] allow a robot to execute multi-behaviors in parallel.

The Subsumption Architecture[7] model represents a process where parallel data

flows from sensor inputs to actuator outputs. This model introduces layers of sys-

tem modules according to the various levels of goals. Interventions from upper

layers to lower layers are allowed. Designing under Subsumption Architecture,

a programmer must understand the lower layers in detail before designing the

upper layers.

In order to integrate multiple behaviors, Situated Multi-Agent Architecture

[13] and PEXIS [16] adopt bayesian networks to express relations among mod-

ules running in parallel. These systems learn the relations which are nevertheless

fixed under Subsumption Architecture. For robots to behave appropriately, these

systems require learning time and predefined links between modules which are

related to each other. PRIMA, compared with these architectures, aims at an

instant use of a new EA loaded in its visiting environment without interference

from a FA. Therefore, this thesis suggests a middleware with new models in-

dependent of applications logic and meaning, and which integrates EA and FA

based on these new models.

2.2 Mediation Framework

In our system, contents of an EA and a FA are rules of interactions like documents

of a spoken dialogue system such as, for example, VoiceXML [28], and XISL [21].

PRIMA should make appropriate output from these rules. Most spoken dialogue

systems manage statements based on a FSM (Finite State Machine) as shown

in Figure 2.1. In Figure 2.1, a node shows the state of a robot, and each node

decides the output of a robot, for example, what a robot speaks. A links shows the

next state when a robot gets input from environments such as a user’s utterance.

Handling of unexpected inputs is one of the most important problems for spoken

7

i

i’

i

i
i’

S0 S1

S2 i’

i

S’0 S’1 S’2i’’

S’3

i i

S’4

i’

i

?
Figure 2.1: Internal States of Applications

dialogue systems.

Static and dynamic methods are used to integrate an EA and a FA. In the

former methods, a robot integrates an EA and a FA into a consistent rule-set

before running them. Static integration has the advantage of integrating behav-

iors predicting future behaviors. However, integrating an EA and a FA into a

FSM which a generic spoken dialogue system can interpret, is difficult. The static

methods require links between states of both the applications’ FSMs as shown in

Figure 2.1. There are three approaches to getting these links.

• Existing systems are given these links as predefined information or are given

from a corpus in which a man takes both roles of both applications. For ex-

ample, caseframe [33] reduces the costs involved in describing the structure

of documents using mechanical learning from dialogue corpora. Okamoto

improves a learning algorism for a Probabilistic Deterministic Finite-state

Automaton, in order to learn a FSM for controlling a dialogue from cor-

pora given from a wizard of oz method [32]. However PRIMA does not

have these corpora and predefined links.

• A state explosion will occur, if PRIMA links a state to all states having the

possibility to change from the former state.

8

• If PRIMA links only between specific states of an EA and a FA, PRIMA

restricts situations changing a state into that of another application. The

restriction reduces familiarity of the robot. For example, a robot links only

between root documents of EA and FA in the case of VoiceXML. In this

case, when the user of a personal robot want to watch the robot’s FA’s

reaction against touching the robot during executing EA, the user must

input a signal to change the EA/FA before touching the robot. 1 This

system also has a problem similar to the “Go Back” implementation in

VoiceXML [4].

PRIMA, therefore, is designed based on behavior based architectures, which

are composed of highly independent modules. In PRIMA, each application is an

agent which runs as a process or thread, and has free-hands to express internal

state. Furthermore, PRIMA schedules each access from applications to devices,

just as a multi-task OS does.

PRIMA

Envi ronm ent-ori ented
Ap p l i c a ti on

F a m i l i a ri ty -ori ented
Ap p l i c a ti on

D evi c es (Rob ot H a rd w a re)

Park
L i b rary

E v e n t H al l
(L o c at i o n)

U ser
O u tp u t

E x : E x p l an at i o n ,
G u i d e , …e t c

E x : S ay H e l l o ,
T ake p i c t u re s , …e t c

Req u est

Sensor Event

Figure 2.2: A Mediation Architecture for Personal Robots

Figure 2.2 shows the relations between PRIMA and applications. Each agent

can access sensors to observe environments any time they like. In addition

PRIMA sends the events and values of sensors to an application, which sets

1 The signal to change applications may have a global scope in all documents

9

a condition to the event. EA and FA send requests about accessing each device

to PRIMA. PRIMA dynamically schedules these requests and solves interferences

in each device without applications’ internal states, in order to make a robot show

consistent motion to its owner.

2.3 Communication Interference

PRIMA focuses on designing a human-robot communication model for mediation.

Usual operating systems can encapsulate interferences from users because these

systems deal with interference among abstract resources. On the other hand,

interference on PRIMA appears to a user as robot motions. Interference occurs

and makes a robot unnatural, when an EA and a FA simultaneously access a

single device. For example, when an EA requests to move to a goal away from a

user, the EA’s request interferes with FA’s approaching the user in response to the

user’s touch. In such a case, the robot cannot reply quickly to the user because

of interference. Interference also occurs when an application accesses a device

which another application needs to remain motionless. For example, when a FA

requests the robot to speak something, the request sometimes interferes with an

EA’s request, e.g., speech recognition. PRIMA gives importance to continuity and

response speed, which such interference reduces, because continuity and response

speed are the essentials for natural communications between human and robot.

Continuity : These interferences cause interruption of the application’s output

although human-robot communication needs consistency in its sequence of

interactions. PRIMA considers that human-robot communications requires

continuity in three points, as minutely explained in the last half of this

section.

i. Locally, an interruption in the robot’s behavior causes recognition er-

rors by the robot, and misleads the user.

ii. In multi-turns of interaction, an interruption breaks contexts of utter-

ance and break relationships for embodied communications between a

user and a robot.

10

iii. A Robot’s body movements and direction of view lines often take im-

portant roles in starting and terminating human-robot communica-

tions. These motions of a robot often terminate not only a running

application, but also an interrupted application. Therefore, a robot

should take care of both applications, taking these motions into con-

sideration.

Response Speed : A personal robot should respond to its user’s inputs and en-

vironmental changes as quickly as possible. Improvement of response speed

is one of the most important problem for an autonomous mobile robot. Sub-

sumption architecture adopts a parallel layered architecture, to improve its

response speed [7]. In particular, a personal robot needs response speed to

realize cooperative embodied communications with its user. For example,

QRIO dances with the user using an entrainment ensemble model (EEM)

[39], and AIBO is trained like a dog using neural networks [42]. Neverthe-

less, a personal robot may delay its reactions to its user when such a FA

and an EA interfere with each other.

There is a trade-off between continuity and response speed. If an extreme

continuity of one application is kept in PRIMA, then the response speed of the

other application will be reduced. This work attempts to design and to implement

strategies mediating requests from an EA and a FA, so that PRIMA can balance

continuity and response speed. In order to design these strategies, PRIMA as-

sumes three communication models based on existing communication theories.

The first and second models are based on studies about spoken dialogues. The

third model is based on studies about non-verbal human-robot communications.

i. PRIMA’s model includes constructive units and scheduling strategies for

communications to analyze the necessity of continuity. A basic unit of

talk, called a “Turn Constructional Unit (TCU)”, is suggested in research

of conversation analysis [38]. TCU reveals the timings of turn-taking for

listeners. Intonation, clause, a slash, and inter-pause have relation to TCU,

but there is no clear definition of a TCU [9]. PRIMA defines a TCU-like

unit and assume that it has a great necessity of continuity.

11

ii. PRIMA focuses on relations of utterances. In general, a spoken dialog or

the text of one person has coherence. Coherence for a human is affected by

cohesion [12], such in referential expression. In PRIMA, cohesion between

utterances may be broken. For example, when a robot is explaining a poster

to an audience, and the robot says the following two sentences, interruption

between the two utterances may confuse a user about what “it” refers to.

(a) Robot: “Please look at a red line on this graph.”

(b) Robot: “It shows a case of success.”

Coherence is also affected by relational meanings between sentences. In-

ternal structure [11], coherence relation [14], and rhetorical relation [25]

are suggested to contribute to relational meaning. For example, when a

robot says the following two sentences, continuity between these sentences

is needed, so that a user can understand the latter sentence.

(a) Robot: “I have just got a message from Mr. Kobayashi.”

(b) Robot: “There are some questions about your appointment.”

On the other hand, the output of a robot has relations with before-and-

after input from a user. An utterance often includes illocutionary and

perlocutionary acts [6], which bring a new utterance or new actions of an

audience as follows. Studies of analyzing spoken dialogues often categorize

an utterance into speech acts, e.g., “request”, “propose”, and “promise”

[3]. These relationships need continuity between utterances of a robot and

a user.

(a) User: “Turn off the TV.”

(b) Robot: “Yes, sir.” (The robot turns off the TV.)

iii. PRIMA should consider not only spoken dialogs, but also other modalities.

Recent research reveals that a robot’s gesture and a body movement and

a direction of view lines are important roles for these relationships. Many

robots try to apply these gestures in order to communicate with the user

12

effectively; for example ASKA [31], ROBITA [27], Robovie [35], and Ges-

tureMan [36]. Robovie uses its motions to help a user understand space by

considering relationships between humans and robots [35]. ROBITA uses

a robot’s direction for turn-taking of multi-speakers [27]. GestureMan uses

its position and direction for a part of the communication media for re-

mote communication [36]. Article [30] discusses the effect of dancing robot

gestures. PRIMA also focuses its attention on position and the viewing

direction of a robot, and aims for continuity.

A goal of this work is that the communication models and their implements

fill the following three requirements:

• PRIMA guarantees continuity and response speed to a user.

• PRIMA applies various personal robots.

• A Programmer can easily describe a FA or an EA.

2.4 Restrictions of PRIMA

PRIMA makes the following four assumptions on hardware and software. The

communicationmodels proposed in Section 3 are designed based on these assump-

tions.

Developers using PRIMA :

Figure 2.3 shows the relations between 3 kinds of developers using PRIMA,

i.e., the EA Developer, the FA Developer and the Hardware Developer. In

this paper, a ”user” represents a person who is the owner of a personal robot,

and uses hardware and software, but doesn’t engage in implementations

such as programming. PRIMA satisfies common interfaces which access

hardware for EA Developers who don’t have a detailed knowledge of the

hardware.

FA Developers also use common interfaces. Different from EA Developers,

FA Developers can share information about hardware with the Hardware

13

Implement

PRIMA

Environment-oriented
Application

Familiarity-oriented
Application

Hardware

Park

Library

Event Hall

User

EA DeveloperFA Developer

OutputHardware
Developer

Implementation of
Common Functions

Hardware Specification

Common Functions for
Personal Robot

Implement

Implement

Figure 2.3: Relations between Developers using PRIMA

Developers, because the hardware of a personal robot and its original in-

teractions are always designed by the same manufacturer. If FA uses priv-

ileged access to hardware without PRIMA, the output sequence including

EA might be unnatural for the user. Therefore, PRIMA assumes that FA

accesses hardware through PRIMA. However, common interfaces do not

satisfy all the requirements of the original interactions in FA. PRIMA sup-

ports Hardware Developers who add options of common interfaces, such as

velocity or acceleration of a common interface, i.e., ”move 10 cm”.

Hardware Specification :

One of the targets of PRIMA is a robot, which fulfills following conditions.

• A robot has a device which implies a head.

• A robot has functions of locomotion, conversation, human-sensing, and

localization.

PRIMA assumes these hardware specifications in order for PRIMA to sup-

ply a common interface of middleware to an EA, which runs on various

personal robots. The interface for digital home appliances and the enter-

tainment of embodied interactions are mainly the tasks of personal robots

14

Guide

Move

Speech
Communication

Turn to Human

Communicate

Point Direction

Move with Global
Localization

Localization
Follow Human

Camera

Move with
Dead-Reckoning

Gesture

Detect Human

Speech
Recognition

Speech
Synthesis

Odometer

Ultrasonic Sensor
Rangefinder

IR Sensor

Mike

Head Gesture

Wheels
Legs

Speaker

Head
Actuator

Figure 2.4: Functions of Personal Robots

[1, 5, 18, 44]. The functions of locomotion and conversation, are necessary

for a personal robot which communicates with a user.

In this thesis, I normalize the functions and devices for personal robots as

shown in Figure 2.4. I use a guide of a building as an example of EAs, and

classify functions for the application. Figure 2.4 shows classified functions

and the devices required by function. I define minimum units which devel-

opers can use without thorough knowledge of hardware, and define these

minimum units as common interfaces of PRIMA. In order to satisfy require-

ments from these interfaces, I define hardware specifications. Hardware De-

velopers implement these hardware specifications. Therefore PRIMA can

guarantee the output of common interfaces to EA and FA Developers. For

example, a Hardware Developer has a free hand to implement the common

interface ”move 10 cm” using legs or wheels.

These common interfaces are desined as a common protocol to communicate

with devices, in order to support various devices. Open-robot-architectures

that aim to unify these protocols have been focused on recent years. These

architectures attempt to run a programs written by these common pro-

tocols on various robots. ORiN aims at a common protocol of industrial

robots [29]. OpenHRP aims at humanoids [20], and OPEN-R at pet robots

15

[2]. ORCA attempts to communicate with home appliances [37]. Because

PRIMA behaves as a wrapper for the functions defined in these architec-

tures, application interfaces of PRIMA should consider these architectures.

For example, PRIMA does not have an API which sets the velocity of a

specific motor depending on robot’s devices.

Loading Applications :

PRIMA assumes that each environment supplies only one EA, and PRIMA

is responsible for EA’s consistency. PRIMA interchanges an EA in each

environment, and simultaneously executes up to two applications, an EA

and a FA. PRIMA makes these assumptions, because PRIMA focuses on

the case where a developer cannot image any other applications.

Heterogeneity is one of the important issues of context-aware application in

ubiquitous computing. In order for a programmer to easily define context

deciding contents and timings, some describing methods of meta-contexts

have been developed [10]. However, these methods assume that a program-

mer has responsibility to never interfere between outputs from a context.

In PRIMA, both programmers of EA and FA can have this responsibility

only about themselves. PRIMA assumes that a programmer of EA can have

this responsibility in an area like an office-building. In addition, PRIMA

assumes that a user lets his/her robot load an EA. The user gets instruc-

tion from the EA when he/she is at the entrance of a building, in order to

simplify the problem of recognizing an area, and selecting an EA.

On uBlocks which is a middleware of ubiquitous computing, a user has

this responsibility [17]. The system enables users to combine distributed

objects flexibly on their own, because uBlocks is implemented based on an

Independent Modeling Topology. The system is effective in a user’s home,

because a user knows the situations in which he or she will want services.

However, in a new environment, a user may prefer entrusting mediation

rather than combining unknown services and the user’s robots.

16

Programming Styles of Applications :

An application does not require real-time control for long-term motion. In

other words, 1) an application requires abstract behaviors such as position

control, and allows the middleware to make a trajectory without restraint,

or 2) an application requires a short term motion which needs strict repro-

ducibility, and allows the middleware to decide the timing when starting

the motion.

2.5 Summary

This thesis suggests that a middleware for dynamic mediation based on communi-

cation models is needed for flexible use of EA and FA. The communication models

should balance continuity and response speed against a user. Response speed is

required for a user’s input and change of environments. Continuity is required for

verbal and non-verbal communication. The communication models described in

Chapter 3 assume that a personal robot has the basic functions of conversation

and locomotion. Furthermore, each environment supplies only one EA, and both

applications allow PRIMA to mediate these outputs’ timing. Chapter 3 shows

the details of the models.

17

18

3. Communication Model

PRIMA assumes that human-robot communication requires continuity of short-

term motions, topics, and a start and end of communication. PRIMA defines

three constructive units for communication, each with a different grain size. These

units are called (in Section 3.1) an Information Unit (IU), (in Section 3.2) a

Communication Stream (CS), and (in Section 3.3) a Communication Chan-

nel (CC). They have relationships as shown in Figure 3.3. These communication

models allow PRIMA to mediate EA and FA without knowledge of applications,

and don’t differ EA from FA. Therefore, these communication model are based

on analysis of generalized communications between human and robot. This chap-

ter discusses the trade-off between response speed and each unit, and suggests a

mediation strategy.

3.1 Information Unit

PRIMA defines primitive continuous sequences, as an Information Unit (IU).

The size of IU should be sufficient for a robot or a user to understand the IU. For

example, a turn of utterances, and a sequence of gestures are information units.

If a robot recreates these motions discontinuously, an owner cannot understand

them. A couple of question and answer pairs is also an IU. If a robot’s outputs,

such as in playing music or dancing, interrupts listing the user’s utterance of

other application, the recognition accuracy will be reduced.

It is difficult for PRIMA to divide an IU from outputs of a robot. For example,

an utterance or a TCU doesn’t have a clear definition in the research of analyzing

spoken dialogues [9]. Therefore PRIMA uses programmer’s definitions. Basically,

PRIMA thinks a request from application is an IU. Such a semantic definition

may be useful for a user, and easy for a programmer to describe.

PRIMA assumes that an IU has a strict restriction on its continuity. There-

fore, PRIMA nevertheless applies a strategy to guarantee continuous execution

of an IU, if response speed may be reduced. Section 4.1 explains how to decide

the size of an IU, and how to guarantee its continuity, as well as the restrictions

on IU for application programmers.

19

3.2 Communication Stream

In a usual robot’s application, output of robot has coherence with before-and-

after the robot’s output, such as the discourse of human-beings as described in

Section 2.3. If a robot doesn’t keep continuity among utterances, relations break,

and the user feels that the robot lacks coherence. In an extreme case, a user is

confused by a robot’s output if PRIMA alternates an EA’s IU, and a FA’s IU one

by one, just as in the fair scheduling of a CPU. PRIMA defines a block of these

semantic relations included in the IUs of an application as a Communication

Stream (CS), and aims to keep continuity of a CS as usual.

PRIMA adopts a strategy giving more importance to response speed rather

than continuity of a CS. PRIMA assumes that response speed is needed by re-

action to a user’s input and an environmental change. When a user’s inputs are

supported by an application which produces present streaming CS, a robot should

replay an output of the application. In this case, both continuity and response

speed are kept. However, when a user’s inputs are unexpected by a running ap-

plication, and are expected by the other, a robot should replay the latter. In

this case, a CS is broken by the user’s input or an environmental change, such as

in a speech act. PRIMA assumes that a robot can keep coherence because the

user can infer the cause of a reaction. Figure 3.1 shows internal states of PRIMA

when PRIMA mediates requests of applications. Mediating CS is composed of

three operations handling IU’s.

Interruption :

At t = T0, PRIMA runs Stream0 of App0. At t = T1, App1 creates Stream1

which is a reaction of the user’s input. PRIMA waits starting Stream1, until

a robot accomplishes an IU which was running when Stream1 was requested.

At t = T ′
1, PRIMA suspends Stream0, and starts Stream1, because PRIMA

gives a preference over response speed.

Keeping Continuity : PRIMA accomplishes Stream1 at t = T2 to keep the

continuity of Stream1. In order to detect actual breakpoints of contexts in

a robot’s behaviors, PRIMA needs to understand the syntax and seman-

tics of a robot’s behaviors, or needs explicit application definitions about

20

Stream 0 (App0) Now Running

D one
t = T 0 t

t = T ’’1 t

Stream 1 (App1)

Susp ended

I np ut from U ser

t

W aiting

Resumed

*

*

I nformation U nit

E nd of Stream

T0

t = T ’2

T1

T2

*

T’1 T”1

T’2

Figure 3.1: Communication Stream

the start and the end of a CS. In recent technologies, inferring these con-

texts from a robot’s and a user’s utterances is difficult without annotations

about illocutionary and perlocutionary acts by an application programmer.

Therefore, PRIMA aims at detecting an approximate end-point of a CS ,

even if a programmer need not worry about a CS.

PRIMA focuses on an elapsed time between an application’s requests as the

basic breakpoint of an application. In particular, PRIMA assumes that an

application terminates a CS when requests of the application run out. In

addition, PRIMA assumes that any of the relations described in Section 2.3

among IU’s in a CS of this definition exist. If PRIMA keeps a CS between

application requests, which have a time gap, PRIMA should wait for a

future request of the application, by suspending the other applications. In

this case, the robot greatly lacks response speed.

This assumption of terminating the CS applies to many cases. However,

there are some exceptions that need the continuity of CS, which the as-

sumption doesn’t cover. For example, an application cannot request a new

behavior, while the application is waiting for a user’s input, or waiting for

21

the end of output in order to observe environments at the time. PRIMA

regards these cases as exceptions of the terminating rule. Notably, PRIMA

supports methods for an application to express illocutionary acts bringing

a user’s reply, and detects the application’s needs of continuity.

Resume :

At the end of Stream1, PRIMA resumes Stream0 from the suspended IU

marked with an asterisk because PRIMA assumes the following user-model:

A user may think that his/her robot has multiple tasks, and stacks a state

of interrupt topics, as shown in Figure 3.2 (a). Some interactive systems,

like as GALAXY [40] and Caseframe [33] can deal with multiple tasks by

managing a history of dialogues. These dialogue-control methods have the

advantage of decreasing turns to accomplish multiple tasks.

t
Su s pen ded

I n pu t fr om U s er

(a) T h er e a r e 2 s lots for w h a t F A s h ou ld do, a n d E A s h ou ld do.

Slot App1: filled
Slot App0: Not filled

*

Stream 1 (App1)

Stream 0 (App0)

t
I n pu t fr om U s er

(b) T h er e is on ly 1 s lot for w h a t a r ob ot s h ou ld do.
T h e s lot is j u s t filled

C a n c eled
*

Figure 3.2: Robot’s Internal States Expected by A User

Contrary to the above case 3.2 (a), 3.2 (b) shows how a user thinks a robot

gives up an interrupted CS. In this assumption, the robot should either

recover nothing or the whole CS. However, PRIMA does not adopt this

assumption for the following reasons:

22

• A user knows and accepts running an EA loaded from each environ-

ment, as described in Section 2.4.

• An EA and a FA cannot completely unify the way of speaking and

other interactions.

In consequence, a user thinks his/her robot has multi-tasks at one time

as shown in Figure 3.2 (a). This strategy is effective for application pro-

grammers, because they don’t have to describe all cases of interruption and

recovering.

Section 4.4 shows the methods to decide the end of CS, as well as an IU, which

needs response speed, and explains restrictions for application programmers.

3.3 Communication Channel

If a robot follows the strategy described in Section 3.2, the robot gives priority to

a running a CS and an interruption caused by the user’s input and environmental

change. However, there are two patterns, PRIMA should not adopt the model

of CS, because IUs and CSs may need different continuity and response speed,

depending on their importance for a user.

• A robot should not interrupt Stream0 at t = T1 in Figure 3.1, if Stream0 is

much more important for a user than Stream1. For example, alarms should

not interrupt important conversations.

• A robot should not continue Stream1 at T1 < t < T2 while suspending

Stream0, if suspended Stream0 is much more important for a user than

Stream1.

PRIMA attempts to define a priority to estimate important aspects of an IU.

PRIMA focuses on a pose of the robot which shows the end of communications,

so that PRIMA can adopt to a case of latter patterns. PRIMA may recognize

easily these characteristics which apply to many users. PRIMA assumes that a

personal robot should not move away from its user, thus suspending a CS which

has not accomplished a task among CS’s interactions.

23

t = T’1+�t t

Stream 1 (App1)

Suspended

I nput f r o m U ser

t

*
�t

�t

t = T’2+�t

T’1

T’2

Stream 0 (App0)

C o m m uni c a ti o n C h a nnel Suspended

R esum ed

tt = T’3
T’3

C o m m uni c a ti o n C h a nnel

*

*

Figure 3.3: Communication Channel

Section 3.3 introduces a Communication Channel (CC) between a personal

robot and its user to explain the above cases. In general, a user communicating

with a robot, worries whether the robot gives its attention to the user. In resent

research, communication robots express their attention using their gaze-direction

and position, as described in Section 2.3. PRIMA defines that CC as established

when a user decides that his/her robot can interact with him/her. PRIMA as-

sumes that establishment of CC is related to the robot’s position and pose, and

defines a CC as follows:

• Face to face establishes CC.

• Leaving disconnects CC.

• Temporal distraction because of motions such as gestures does not discon-

nect CC.

If a user follows the user-model as described in Section 3.2, the user believes

that his/her robot has multiple tasks. If the robot breaks the CC before achieving

the goals of all the conversation tasks, the user may not feel that the robot is

24

coherent. PRIMA assumes that IUs disconnecting a CC are limited to specific

predefined IUs. PRIMA gives these IUs less priority, in order to keep the CC.

In particular, Figure 3.3 shows the case where Stream1 caused by a user’s input

interrupts Stream0, which maintains conversation. In this case, if IU (*) in

Stream1 makes a robot go away from its user, CC will be disconnected before

finishing Stream0. This leaving motion gives the impression that the robot breaks

off its communication with its user. In order to keep the coherence of a robot,

PRIMA mediates as in Figure 3.3.

Section 4.3 explains the classification of IUs, and restrictions of application

programmers.

25

26

4. Implementation of Mediation Strategy

I implement the models described in Chapter 3 using an internal expression called

an Atomic Behavior (AB), which is an implementation of IU. In principle, a

block size of an AB complies with the definition of IU described in Section 3.1.

PRIMA never simultaneously executes an AB which interferes with other ABs,

in order to guarantee continuity of an IU. In addition, PRIMA schedules ABs

based on a priority of each AB, in order to keep CC, as described in Section 3.3.

If ABs have the same priority, PRIMA schedules the ABs based on the strategy

as described in Section 3.2, so that a robot can balance CS and response speed.

4.1 Implementation of the Information Unit

On PRIMA, FA and EA call API’s in libraries named Command, which im-

plement concrete hardware actions. An application send an object which has

attributes shown in Table 4.1 to PRIMA. A Command type shows function of a

Command. Table 4.2 shows examples of command types. Motion arguments are

parameters of motions required by each command type. For example, velocity

or distance is assigned in motion arguments. Only FA uses additional arguments

as optional arguments of commands because FA Developer can share information

with Hardware Developer, and can understand implementation about each type

of commands. Therefor, FA set parameters using additional arguments, in order

to bring capabilities of hardwares. Before node shows the order of execution, and

is explained in Section 4.2.

Table 4.1: Command Attribute

Command
•Command Type
•Motion Arguments
•Before Node
•Additional Arguments

27

Table 4.2: Examples of Command Types
������������	�
����� ����������������� ����������� ���
 ���!"� ���$#%����&�� ���('%���)��� *+',�������$����!-���.!"� ����/�0��������1�.!-� ����/�0.������2 � 3��4!"� ���
�������5',������� ',�������$����!-���.!"� ����/�0��������1�.!-� ���
6)7� #,������8���9 /�#%�.������:<;=���������� !"� ���

=9 ����8�� ����'%�����.� *+',�������$����!-���.!"� ����/�0��������1�.!-� ���
�������5',���������.��	�#%������8 ',�������$����!-���.!"� ����/�0��������1�.!-� ����/�#%�.���.8.��9

>?A@
=��9 ������	B#,�.���.8 0�������1��!"� ����/�0�������2 � 3.�C!"� ����/.#%�.����8���9
#,��!���� 9 ����!"� ��� 0�������1��!"� ����/�0�������2 � 3.�C!"� ���

=��9 � 0�������1��!"� ���
#,��!�#,�.����	�����	�
%� �1� 0�������1��!"� ���
#D!E���GFB�.��� ��� 0�������1��!"� ���
#,�����.8 #,������8���9
F������5'%����	�H I=�.��/�
%� 2 !EJ K,����8
I,��� �.!�L��$'=����	 �9 �
M���&�!-��9 � �9 �NK%����8

=�����2 ����� ����2.F������ *O0�������1��!"� ����/�0�������2 � 3.�C!"� ���

>�P.@ #,��!�I,��&.� !"� ��� *O0�������1��!"� ����/�0�������2 � 3.�C!"� ���
#,��!�I,��&.� !"� ���(�.��	G��� 9 ���.!"� ���Q*O0�������1��!"� ����/�0�������2 � 3.�C!"� ���

FB: Feed-backs

When I design Commands, we enumerate behaviors required for communi-

cation by a personal robot which complies with the specifications described in

Section 2.4. PRIMA supports abstract Commands, and supports simple Com-

mands which are the minimum unit of behaviors such as set locomotion speed

and time, independent from hardware. PRIMA also supports abstract Commands

which implement behaviors such as moving a goal position written by topological

expression.

In principle, a Command brings an AB. We designed an interface of Com-

mands, so that the size of an AB can complies with the definition of an IU , as

described in Section 3.1. PRIMA guarantees continuities of any AB. In conse-

quence, PRIMA guarantees that most Commands requested from application are

never interrupted.

As described in Section 3.1, the size of an AB depends on arguments from

Commands given by application programmers. Therefore, PRIMA recommends

28

that an application programmer should provide these arguments, which are not

too big and have a meaningful size, such as in an utterance. For example, an

application should be able to divide a long poster explanation into some IUs. If

an application programmer describes a request of PRIMA that is divided into

meaningful units, legibility of the application increases. This recommendation is

practical, and most ABs comply with the definition of an IU. However, there are

two exceptions:

(1) A Command includes multiple IUs.

PRIMA supports Commands with enhanced functions, such as position

control, so that an EA can adapt to various robots. On the other hand, the

size of an AB should be as small as the AB, so that the AB can comply

with the definition of an IU because the size strongly affects response speed.

PRIMA assumes that a Command, which has a feedback loop, applies to

the case of (1). When a robot resumes an interrupted Command, which uses

feedback from environments at the time of resuming, a user can understand

the divided motions, and these motions are not against the definition of

an IU. Therefore, PRIMA defines each loop in a Command with the same

feedback as an AB, except for device-level feedbacks such as controlling

servo. If an application uses a Command setting a velocity, PRIMA entrusts

controlling velocities to device drivers, and creates only an AB.

These Commands are marked with a circle in Table 4.2. For example, the

Commands include tracking a human and setting a position on a map of

each environment. In conclusion, PRIMA has flexibility in the trajectories

that move toward their goals regarding these Commands, and does not

guarantee continuity of these Commands to application programmers. In

addition to Table 4.2, PRIMA will support new Commands applying this

case because feedback loops are often used to program robots.

(2) An IU includes multiple Commands.

Complex gestures and emotional dances are application-specific sequences

which need continuity for an owner to understand them. Nevertheless, it

is impossible for a middleware to support all the Commands of complex

29

gestures which the applications need. A programmer of an application im-

plements these complex gestures combining simple Commands. In this case,

PRIMA should consider multiple Commands as an IU. Therefore, PRIMA

allows applications to group Commands into an AB. PRIMA supports two

methods of grouping Commands.

• An application defines a list of multiple Commands, and sends the list

to PRIMA.

• An application defines a block of an AB, requesting the start and end

of it.

A programmer should consider effects on appearance of a robot’s output,

because an AB strongly restricts response speed. PRIMA recommends the

former definition. In the case of latter definition, PRIMA guarantees con-

cluding an AB started. Programming an application without AB’s conclu-

sions requires a technology, such as garbage collection of JAVA which does

not perfectly guarantee performance.

4.2 Basic Rules Mediating an Information Unit

(1) Atomic Behavior Tree

An AB is an implementation of an IU, as described in Section4.1. Sections

4.2-4.4 assume that an AB fills definition of an IU. This section explains basic

rule for mediating ABs and interactions between an application and PRIMA.

Controlling exclusive execution by keeping sequences included in robot behaviors

is easy if the expressing relations among ABs are made into a tree, called as AB

tree. Figure 4.1 shows ABs divided from the behavior of a robot as it guides

its owner through a museum and explains certain museum displays as shown in

Figure 1.2. Each node represents an AB, and each link represents a running

sequence. Each node runs from a root to the leaves of a tree, and all nodes of a

branch run in parallel.

30

Turn to Poster1
C a l l A ttenti on

usi ng b oth H a nd s

Poi nt to Poster1
usi ng th e L ef t H a nd

A c ti v e S ensi ng th e U ser
E x p l a i n
Poster1

K eep F a c i ng th e U ser

E x p l a i n
Poster2

Figure 4.1: Atomic Behavior Tree

(2) Attributes of an Atomic Behavior

Both EA and FA request AB trees to PRIMA asynchronously. As in Fig-

ure 4.2, each AB has information about concrete actions, links, priority and

occupying devices. PRIMA decides the values of AB’s attributes in the following

way.

Atomic Behavior
•Action s
•Bef ore N od e
• N ex t N od es
• O ccu p y in g D evices
• P riority
•R eactivity

Attribute

Figure 4.2: Attributes of an Atomic Behavior Class

• Priority and occupying devices are predefined on each Command.

• Before node means a parent node of this object in AB Tree, and next node

means children of the object.

31

• Actions and before node are given as Command’s arguments by an applica-

tion.

• Next nodes are decided by PRIMA’s exploring before nodes of leaf nodes.

• Reactivity is specially given depending on the application’s description han-

dling event, and is used for implementation of the CS model.

(3) Scheduling AB trees

PRIMA checks devices occupied with each AB, and exclusively executes ABs

which occupy the same devices because simultaneous access to the same device

causes interference between FA and EA. The priority of each AB decides the

execution order of competitive ABs.

Waiting List Waiting List
A B 1

A B 2 A B 3

A B 4
A B 5 A B 6

A B 0
A B 1

A B 2 A B 3 A B 7

A B 0

Waiting List A B 4
A B 5 A B 6

A B 1
A B 2 A B 3

A B 7

A B 0
A B 4

A B 5 A B 6
A B 1

A B 2 A B 3
A B 7

A B 0 Waiting List

t = 0
R u n

Done
Done

R u nni ng t = 1

t = 2 t = 3

Device:
Locomotion Device:

Locomotion

Figure 4.3: Working Memory of PRIMA

Figure 4.3 shows a snapshot of the working memory (WM) of PRIMA. In

Figure 4.3, one application requests the AB tree (0-3) at t=0, and the other ap-

plication requests the AB tree (4-7) at t=1. PRIMA updates WM when PRIMA

accepts AB trees, and when each AB completes its actions. When PRIMA ac-

cepts an AB tree, PRIMA adds the root node of the tree into the waiting list

in WM, and starts the AB of the root node as long as the AB doesn’t interfere

32

with other running ABs. For example, PRIMA doesn’t start AB4 at t=1, be-

cause AB0 and AB4 have a same occupying device. When each AB completes its

action, PRIMA adds the child node of an accomplished AB into the waiting list,

and selects starting ABs. If there is any interference among nodes in the waiting

list, PRIMA tries to start the nodes which have a higher priority and does not

interfere with any running AB. For example, at t=2, PRIMA adds AB1 into the

waiting list, and checks interference between AB1 and AB4. In the case of t=2,

AB4 is selected. After the end of AB4, PRIMA adds the children of AB4 into

the waiting list and selects starting nodes.

(4) Feedback Behavior

As described in Section 4.1, some Commands have a feedback loop, and create

one AB after another. PRIMA calls such an ABa Feedback Behavior (FB),

and reconfigures an AB tree includes FBs.

Move t o P ost er1 Top ol og i cal l y

Turn t o P ost er1

Move 2 0cm /s 2 sec
Turn 60rad/s 0.5sec
Move 3 0cm /s 4 sec
Move 3 0cm /s 4 sec

�: Virtual Node of FB

E x p l ai n P ost er1

S ay “S t art ”

WM Command:
Move t o P ost er1
Top ol og i cal l y

S e ns or

Move t o P ost er1 Top ol og i cal l y

Turn t o P ost er1

E x p l ai n P ost er1 WM

Feedb ac k L oop

C reation of
FBsR ec onfig uration

of L ink s

�: ins erted FB

Before R unning

Now R unning

Figure 4.4: Feedback Behavior

33

For example, Figure 4.4 shows an AB tree including FBs in WM. The node

α is a FB created by a Command of a topological move. The node α is a virtual

node, and is linked before and after nodes, until α starts running.

After α starts running, the Command of α creates a FB depending on the

state of the robots at each moment. PRIMA inserts a new FB between a FB

just created, and an AB of the next Command. When a FB finishes running,

a FB checks its own flag terminating feedbacks marked by a Command. When

a Command fills its termination conditions, the Command marks a FB as a

terminal FB, and PRIMA starts the next ABs created by other Commands. If

the flag doesn’t show termination, the FB waits to insert a new FB.

(5) Descripting the order of Commands

Figure 4.5 shows how PRIMA changes Commands requested by an Applica-

tion into AB trees. An application creates a Command object from each Com-

mand Type, and sends it to PRIMA. The application gives a before node and

parameters which show the amount of motion to the Command. PRIMA requires

information about a before node of each Command, in order to understand run-

ning order required by an application, and to compose an AB tree. However,

Setting a before node imposes complex description on FA or EA Developers.

Therefore, PRIMA supports a simple method to express a before node. The run-

ning order expresses the order of Commands requested by the application. An

application selects the following two options of a running order, and the argument

is related to a before node of an AB brought by the Command.

Run this Command after the latest Command requested :

PRIMA selects this option as a default if an application sets no value for

a running order. In this case, PRIMA considers that a before node of

the Command is the latest Command requested, and these Commands are

included in the same tree. In consequence, PRIMA runs Commands in

order of the application’s requests.

34

Device Driver

A p p l ica t ion

P R I MA ’s Working Memory

C omma nd

C omma nd
C omma nd C omma nd

C omma nd

Command’s P ar ame t e r
R u nni ng O r de r

A B
A B A B

A B

Cont r ol
R e t u r n V al u e
E v e nt

D e v i c e P ar ame t e r
N e x t N ode
P r i or i t y
O c c u p y i ng D e v i c e s

Figure 4.5: Implementation of PRIMA

Run this Command as soon as possible :

If an application selects this option, PRIMA starts the Command as soon

as possible, even though some requested Commands are canceled. In this

case, requests from an application may have some conflicts. For example,

an application often requests “Stop moving”, before a robot accomplishes

a request of “Move for 30 seconds” from the same application. In this case,

PRIMA believes a newer request. PRIMA cancels and deletes executing AB

trees in cases which have the same occupying devices with later AB trees

requested from the same application. As a matter of convenience, PRIMA

assumes the canceled Command as a before node of new Command, and

these Commands are included in the same tree, as described in Section 4.4.

A Command registers itself at a before Command of the Command, and makes

a Command tree. Each Command creates an AB. The Command gives predefined

priority and occupying devices, and brings parameters for the devices, as well as

next nodes given by its children, to the AB. Each AB starts and sends parameters

to devices, when PRIMA selects the AB . When these devices finish the motion,

PRIMA deletes the AB and the Command, and returns values and events to the

application.

35

4.3 Implementation of the Communication Channel

PRIMA aims to keep the CC, by way of delaying a Command which disconnects

the CC as described in Section 3.3. As shown in Table 4.2, Commands are

distinguished into two categories.

(i) A Command disconnects CC.

(ii) A Command doesn’t disconnect CC.

We assume that a Command disconnects the CC, if the Command has lo-

comotion without considering human position, and isn’t used for gestures. For

example, (i) includes moving to a topological goal, and moving to a map position.

A Command has a predefined priority, which is high or low. The Command

in (i) has a low priority, and the Command in (ii) has a high priority. An AB suc-

ceeds a priority from a Command. PRIMA schedules ABs based on their priority

as described in Section 4.2, in order to comply with the model in Section 3.3.

In consequence, when the request of an application includes the Command

of (i), PRIMA does not guarantee continuity of the Command. Therefore, an

application should not request these Commands when the application needs con-

tinuity.

4.4 Implementation of the Communication Stream

PRIMA aims at achieving the communication model as described in Section 3.2

under the rules of Section 4.2 and Section 4.3. PRIMA decides an end of a CS

and the necessity of response speed. In addition, PRIMA guarantees continuity

of a CS, as long as an application does not request an AB needing a response

speed.

We assume an AB tree as a CS. When any node of an AB tree is running,

PRIMA defines the AB tree as active. When a priority of an AB is equal to a

priority of other AB, PRIMA selects and runs an AB included in an active AB

tree, in order to keep the CS.

• The rules for keeping a CS is simple because PRIMA considers continuity

only between nodes of an AB tree.

36

• An application programmer can easily understand that each tree is com-

posed of Commands which have order or dependency relations with each

other.

Guarantee of Response Speed :

We assume that PRIMA can predefine the conditions when a robot should

react as soon as possible. PRIMA posts an event to both FA and EAwhen

a robot fills these conditions, such as in the commands “lost human”, or

“hear a sound”. When an application receives such an event, the application

handles the event and requests Commands. An application sets a flag on the

first Commands requested by an event handler. 2 The Command gives the

AB the attribute “Reactivity”, which shows the necessity of the response

speed. PRIMA selects the latest AB marked reactivity in WM, when ABs

in WM have the same priority, in order to guarantee response speed.

However, PRIMA cannot support all conditions, especially in the case where

FA to need a response speed. Therefore, PRIMA supports an application

to define an event, and to apply this priority. A FA has knowledge about

the original devices of a robot, and can define a new event such as “A robot

has just received an input from the touch sensor”. In conclusion, PRIMA

makes decisions in the following order, at t=2 in Figure 4.3.

1. PRIMA selects an AB with a higher priority, in order to keep CC.

2. If both of the ABs have the same priority, then PRIMA selects the

latest AB whose reactivity flag is on, in order to guarantee response

speed. For example, if the flag of AB4 is set, PRIMA selects AB4.

3. If there is no AB whose reactivity flag is on, PRIMA selects an AB

whose parent has just finished, for example AB0.

Guarantee of Continuity :

As mentioned in Section 4.2, the option of running order affects the setting

of before nodes. However, the option does not guarantee that PRIMA will

link ABs. PRIMA defines a leaf node of an AB tree as an AB which has

2 This basic function is supplied with an abstract class of applications.

37

no next nodes in WM when the AB finishes, as described in Section 3.2. In

consequence, PRIMA creates a new AB tree and doesn’t guarantee conti-

nuity between a new AB and its before node if an application requests the

new AB after the before node finishes running. Nevertheless the application

requests continuity.

However, an application sometimes needs continuity of CS although the

application cannot request a Command in time for terminating CS. When

an application waits for (1) the end of a Command or (2) the input of the

user, there is a moment when no AB is in WM because the application

requests a new behavior based on the state at the moment.

S0

S1

S2

S3

S4

S5

Ou t p u t o f a R o b o t

I n p u t f r o m a Us e r

E2

O1

E1

Communication Stream

S7

S8

S10

S9U1

U2

I n p u t f r o m En v i r o n m e n t s

S6

(1)

(2)

O2

O3

O4

O5

O6

Figure 4.6: Exceptions of Communications Stream

As described in Section 2.2, many application manages their internal states

based on a FSM. Figure 4.6 shows an example of FSMs includes above cases.

An application changes its state when a robot gets input or finishes output.

Although the application needs continuity while the sequence enclosed by

a dashed line, a CS is terminated at (1) and (2) in Figure 4.6. PRIMA has

exceptions, so that an application can express continuity in these cases.

(1) PRIMA uses the end event of a Command, in order to distinguish a

state of an application waiting for the end of Command. A Command

sends an end event, when it exits. PRIMA keeps the CS while an

38

application handles the event. 3 For example, if the application in

Figure 4.6 requests O3 from a handler of O1’s end event, PRIMA guar-

antees that O1 and O3 are included in the same CS. This exception

doesn’t allow E1 to take many times, because of keeping response speed

of other suspended applications. In particular, PRIMA terminates the

CS, when the end-event’s handler includes polling events.

(2) On the other hand, PRIMA supports a special Command which in-

cludes polling user’s input, for example, “Q&A”. For example, an ap-

plication uses a “Q&A” at the state of S3 in Figure 4.6. The “Q&A”

creates a robot’s utterance (O3) and waits user’s answer (U1) for a

predefined time. As described in Section 4.1, PRIMA defines O3 and

U1 as an AB, because O3 may include a speech act to require a user’s

answer. In addition, PRIMA assumes that a user’s answer of a “Q&A”

also includes such a speech act to require a robot’s output. At least, a

robot should output whether a speech recognition succeeds. Therefore,

PRIMA defines that O5 and O3 are included in a same CS. At the time

of S3, if a user inputs U3 which brings an event of other suspending

applications, PRIMA interrupts the CS after timeout of U1.
4

PRIMA decides an end point of a CS without knowledge of an application’s

logic. However, the decision includes incorrectness depending on the con-

texts of an application. Therefore, PRIMA supports a method to describe

links of Commands, and guarantees the links and their continuity. In this

method, an application sends a list of Commands expressing an AB tree.

For example, when O1 in Figure 4.6 includes multiple Commands, an appli-

cation sends the Commands all at once. PRIMA recommends this method

to an application when an application can decide future behaviors based on

a current state, for example by explaining displays along with a predefined

course.

3 In this case, PRIMA doesn’t set the attribute of reactivity, because these events doesn’t
mean user’s input or changing environment.

4 An example of interruption is shown in Section 5.2.

39

4.5 Summary of Programmers’ Restriction

One goal of PRIMA is to allow an application programmer to concentrate on

an application’s logic without the programmer having to worry about other ap-

plications. The expression of continuity is one difference between PRIMA and

traditional styles of programming a robot. A block size of AB depends on the

amount of motion given to a Command. In order to balance continuity and re-

sponse speed, PRIMA recommends that an application give arguments divided

at semantic breakpoints, such as at the slash of utterances. In addition, an ap-

plication programmer pays attention to continuity between Commands.

PRIMA considers two kinds of continuity between Commands of an applica-

tion. One is the continuity of the IU, and the other is the CS. An application

should define a block of an IU when an application needs continuity between

Commands. PRIMA overrides the definition of AB’s block by a Command into a

definition based on start and end signals brought by an application. In this case,

the programmer’s permission is strong so that a programmer should be careful

terminating AB. Allocating too many blocks reduces the response speed of other

applications.

On the other hand, PRIMA does not allow an application to define a CS

by barring some exceptions. Even if an application can request a block of CS,

the continuity of CS is not always guaranteed because PRIMA prefers response

speed to CS. It costs too much for an application to describe a block which

needs continuity, but when continuity is not essential, such as in a chitchat.

Therefore, PRIMA aims at detecting an approximate end-point of a CS without

the programmer having to worry about a CS.

PRIMA allows an application to define a condition when PRIMA posts an

event so that an application can express the conditions needed for response speed.

Express important timing is important when a system should react, such as in

the cases of JAVA [41] and CORBA [34]. Therefore, an application programmer

does not require much cost in expressing response speed.

With regard to CC, PRIMA guarantees keeping CC, but not to connect CC.

The motion of connecting CC may have a relation with the ”personality” of each

robot. Therefore, PRIMA entrusts an application to connect to the CC, but does

not add unnecessary motions.

40

5. Experiment

5.1 Evaluation of Mediated Motions Using Video

This section has evaluated the effectiveness of models of subjects watching videos

which have shown examples of mediations as described in Chapter 3. The test

applications in Table 5.1 below have been designed. All lines categorized as FA

correspond to functions included in the FA of a personal robot, e.g., FA1, FA2.

Each line categorized as a FA corresponds to an EA loaded in each environment.

This experiment includes 10 examples of mediated output, as shown in Table 5.2,

by changing applications and user’s inputs. This experiment includes videos of

the examples shown in Figure 1.1(a) using the personal robot PaPeRo made by

NEC.

Table 5.1: Application Example

1 E x p ress E motion s
2 W alk F ollow in g User
3 D an c e to a Tu n e
4 Tak e a P ic tu re
5 S et V id eo Timer
6 S c h ed u ler
1 G u id e User to Mu seu m an d E x p lain D isp lay s

E A 2 S earc h for B ook s in a L ib rary
3 Navigate User to a Room & Tell Messages from Hosts

F A

A subject watched videos, and compared an example mediating an EA and

a FA to each example running only the EA or the FA. A subject read texts

explaining the robot’s outputs and the user’s input of examples, and checked

subjectively the order of the robot’s outputs which the robot should change from

the viewpoint of a user.

Figures 5.1-5.4 represent show illustrate materials checked by a subject. Fig-

ure 5.1 illustrates an example running only FA2, and Figure 5.1 illustrates an

example of EA3. Figure 5.4 represents a part of a video illustrating an example

mediating FA2 and EA3. Figure 5.3 is a text explaining the video. Each number

41

in Figure 5.4 corresponded to the behavior ID of Figure 5.3. The colored line in

Figure 5.3 is an output requested from FA2. A robot’s output is marked as “R”,

and a user’s input behavior is marked as “U”. In these videos, captions explained

events about networks because a subject could not understand the timing of these

events from the videos alone.

Table 5.2: Test Sample������� ��� 	
�� 	 � � ��

���
��� � ��� 	��� ��� ��� 	 � ����
�� � ��	 ��������� 	 �!� ��� "$#
��� � ��� 	�	 � � % &�� ����
�� � ����� % �
�� �'��(�	 ����
�� � �) �!� � *
�� � 	 ���
�� � ��+�� ��� ��� 	 � � �#
,!����� � ��� 	�-�� � � � ����% � � �� � . /'��� 0 ��	 � � % &�� ��'	 ����
�� � �!� /�� 12(� � "3	 ����� ��� "4#

���
��� � ��� 	��� ��� ��� 	 � ����
�� � ��	 ��������� 	 �!� ��� "$#
��� � ��� 	�	 � � % &�� ����
�� � ����� % �
�� �'��(�	 ����
�� � �) �!� � *
�� � 	 ���
�� � ��+�� ��� ��� 	 � � �#
��� � ��� 	�� � 	���"2� � � � ����(� � "5	 ��������� 	 . /+��� 0 ��	 � � % &�� ��'	 ����
�� � � #

���
��� � ��� 	��� ��� ��� 	 � ����
�� � ��	 ��������� 	 �!� ��� "$#
��� � ��� 	�	 � � % &�� ����
�� � ����� % �
�� �'��(�	 ����
�� � �) �!� � *
�� � 	 ���
�� � ��+�� ��� ��� 	 � � �#
��� � ��� 	�� � 	���"2� � � � ����(� � "5	 ��������� 	 . /+��� 0 ����� 	 � % 	 � ��+	 ����
�� � ����� (� � �

�76
��� � ��� 	��� ��� ��� 	 � ����
�� � ��	 ��������� 	 �!� ��� "$#
��� � ��� 	�� 	 � � 	 � ��% � ���� � � � 	 � � 8(� �!����� ��� �+	 � "8� ����� % �
�� �'��(�	 ����
�� � �) �
� � *
�� � 	 ���
�� � ��+�� ��� ��� 	 � � �#
��� � ��� 	�� � 	���"2� � � � ����(� � "5	 ��������� 	�/+��� 0 �'0 � � 	 � �� ��'	 ����
�� � � ��
�	 	 � � � �% ��#

�96 ��� � ��� 	�/+� ��� � *
�� � 	 � �+	 �8� � 	������ ��� �+	 � "2� �!/'��� 0 �'% � ���� � � � 	 � � 8��(� � � � % ��� ��+����� &�� #
�9:<; 	���� % � "2��	 ����	 � "2��	 �8� �(� � "3
�� � � ��� % ��� �
�0 ��/'��� 0 ��% � ���� � � � 	 � � 8��(� � � � % ��� ��+����� &�� #
= � ��� � ��� 	�/+� ��� � *
�� � 	 � �+	 �+	 � � % &8��
�� � ��/+��� 0 ��� >�-�0 � � �� �������� � -�0 � 1�#
= � ��� � ��� 	�/+� ��	 �
�% ��� ����
�� � ��/'��� 0 �'� >�-�0 � � �� �������� � -�0 � 1�#
= = �+8� ��� �	�(� �!��� �% � ��+� � ��� ��/+��� 0 ��� >�-�0 � � �� �������� � -�0 � 1�#
=@?A��� � ��� 	�/+� ��� � *
�� � 	 � �+	 �+	 � &��'��-�� % 	
�� ��/'��� 0 ��� >�-�0 � � �� ��+�'��� � -�0 � 1�#

42

����� ��� ��	
�� � � ��
�� ���
������������� � �� � ��� ��� ��� ����� � � !�� ��"� � #�� � � $
% & ' ()��	 � * ��� ����+,	 � � � �-.� � ��/�� ��0 '
1 � ' 23� +���� �54 6 �� � -7+�� � '

89& ������ � #�� �� � !�� 	 � � ��� ����� !�� � � 	 �#�� ��	
�� � ����� ��: 	 ����: ;�� 	 � ��4�� 	 /�� ��"' ()��� ��	 �3/�� ��0 '
< & ������ � #�� �56 � ������� ������� � � $

=>& ������ � #�� ��� � 	 � � �.6 �� � -,� ��"�� ������� � 4�� 	 /5� ��"�' ?�6 � ������/�� ��4 ? * �� � 	 �6 �� � -,� ��"�/�� �5� '

@>& ������ � #�� ��+,����� 6 � � �,� � ��!���� � � � � �,	 ����!���� ��� ��A�� � !,	 �,	 !�!� � !� � 	 � ����� � � 	 ��� �6 � +B� ������� � �
C � ��������� � �� � ��� ��� ��� ���� � #�� � � $
D & ' EF	 /.?G� � � !,6 �� � -,� ��"�/�����0 '
H � ' I�� � � '
% �J&K������ � #�� ��� 	 � ��4 L M,� N�� ? O �� � � !,6 �� � -.� ��"�/�� ��4 	 ����-.� ����� ��� �,� � � !.+������ �

P�P�P � !�� � � 	 #�� ��	
�� � ����� ��: 	 ����: ;�� 	 � � P�P�P
������ � #�� ��� � 	 /��3� � � 4 ����� � �� ���� � #�� ��-.� � � � ��" ��� Q ��� ��������+�	 �.# /R� � �
� 	 +,� 	 � ? 6�� ���� � #�� ������� � ��* ��6 � ����� ��������+,	 �,6 � �� � ��� � � � ����� 4 � ���� � #�� �
� �� ����� ����	 ��"� ����6G� � �G� 	 +�� 	 * ��
�� � -,4 	 ���� � � � � ��� ���� � � ��" �5� � � � �5�

Figure 5.1: Output Example of FA2

43

����� ��� �
	 ��� � � ����� ���
���������� � �
� ��� ��� � � ��� �
������� � �
� �
 �! 	 �
�"� � 	 � � ��� �
���$#�%��
& � ' ()�
� �*	 �,+�� �" �
� �
 �- '
. / ' 0� ��1 � 2"� ������� 3 �� ��� 45� '
% � ' 6,� 4��*� ��!�� � � 3 �$ ��'
7 � ������ � �
� ��� � 	 � � �8	�� � 9
�
� �� �� : 	 � 4�� ����� � ;�	 ��� �
�< ��	 � �
=�� ������ � �
� �� � : � � ��� �8	<� ��: >�� ��4�� � � 	 ���1 � 4?0� ��1 � 2"� �������*;<��� � ��
	 ��� �	 � � �
 �� ������� � �� ��� �
�* ���	 � � @
A � ������ � �
� ��� � � 9�9
� ��� �
� � ! 	 �
�"� 	 � ��' B 3 �
��C ��� �� � ��	�4�� � � 	 �� � '
D � ' B 3 4?2"� ������� ! B E � ���
�*	 �
� ����=<45� ����� � �$� 	 � �*�
� : 	 ��� �*��1�	�4�� � � � �
 <�
� ;�� '
F � ' G��<+�� �8�
	 �
�*	� � 9�� +�- '
H / ' I�� � � '�' B�� � ��� B 3 � ��;�	 � ��� ��+
� ��� ��� 45� '
& �J� ������ � �
� ��� � ����� �
�*4"� � � 	 �*� ��� �
�<� � �
� !�� 	 +�� �
 "' K"� 2�� B 3 � ��� � �
�<+�� ��4"� � � 	 ��� '
&�& � ������ � �
� ��� � 	 � � �8	�� � 9
�
� �� �� : 	 � 4�� ��� �
& . � ������ � �
� �� � 	 : �
� �8	*: � �
� � @
& %L� ������ � �
� ��9
�
� �
� � �"	��
	 �
�8	 �
��� �� �
� ��� ��� �
�*�
� � : � � � �"��1�� �
�< ��	 �
� 	 +�� �

!M � �
�� ��� 4N��1�0� ��1 � 2"� �������<� �$� ��� �� ��� � � '
& 7 � ������ � �
� �� � 	 : �
� ��� �
�< ��	 � � @& =J�������� � �
� ��� � � 9�9
� �
! 	 �
�"� 	 � ��' B 3 ����C ��� �� � 	 : �
� ��� �
�< ��	 � � '

Figure 5.2: Output Example of EA3

44

����� ��� �
	 �� � � ���� �
�
����� ���� � �� ��� �
� � � � ��� ����
��� � �� ��
� 	 ��� � 	 � � � ��� ��!��"$#��

%'& � () �� � �*	 � �,+� �-� �� ��
. (
/1032 (4 � �
5 � 6�� �
�
�
� 7 �� �
� 89� (
� (: � 8-��� ���
� � � 7 ;� ��� (

<>= � � ���� � �� ��8�� �� �� � ?�� �
�� @ 	 � � +�� ��� ����
�
	 � �
A 2 � ����� � �;� �
� � � � � � ��� ��	!?� � � �B� +�� ��,C$	 +�� �$� ��*� �
	 � �
D 2 � ����� � �B� � �@ �� ��� ���8�� ��� ���*� � �� � � E

%GF � � ���� � �� �B � � ?
?� �$	 ��� 	 � � () �	 � 7 �� ��!8-	 � � � �BC�� � ��+� ��. (
/IHJ2 (: � 8-��� ��� KB�� � � CL8��
� (
<>M � � ���� � �� ��� � ?� 	 � � ��� ��* ?� @ � 	 � �� �	 �� � � � �
� �N 	 ��
N O� 	 � @ ���
 	 +�� ��

() �� � �*	 � �,+� ��. (

& �P�
� ���� � �� ��� � ��	* �
@ Q� ��8-� 	 � �*5 � � 8 4 � �
5 � 6�� �
�
�
� � C*��� � �� � 	 � @ ��� ��
� ����� � � � E

&
& � � ���� � �� �B � � ?
?� ��� �� � � � 	 ��� 	 � � (R 7 �
�BS �� ���
� ��	�8�� 	 � �
� (

& 0 �
(R 7 8T6�� �
�
�
� � R 7 � � ��*	 �� �
��5 � �
�!8U� �
�
� � ,� 	 � ��5 � �B8$+-	 ?
?�� �
� 8-� �
�
�� @ 	 �� � R 7 8V � � � ��� ��	�8�� � � � ���� (

%W& # � (X �*+� �$��	 �
�*	!� � ?�� +�. (
/ & = 2 (Y � � (!(R � �
� R 7 � �
C�	 � �B� ��+�� �
�B� �
�
8U� (

& A �
� ���� � �� �B � �
�� ���8�� 	 � �!� ��� ��!8-� 	 � �� � � �
� � �
 	 +�� �� (Z � 6-� R 7 � �
 � ��*+� �
��8�� 	 � �
� (

< & DP�
� ���� � �� ��� � � 	 � � � ��� ��* ?� @ � 	 �
�� �	 �� � � � �
� �N 	 ��
N O� 	 � @ ���
 	 +�� ��
() �� � �*	 � �,+� ��. (

& F � � ���� � �� ��5 � �
���� ��!�� � � � E
& H � � ���� � �� �B 	 � �� (R 5 � �
��*+� ��� R 7 � �� � 	 � ��5 �� � � C�� ��*+� ��� (
& M � � ���� � �� �B � 	 � � � �$5 �� � � C�� ���� ����� � � �

< 0 �P� � ���� � �� ��� � ?� 	 � � �$	�8��
�� 5 � @ 	 � � � ���
5B� � B?� � � � � �� ;	 ���?� ��� ��Q� � ?�	 �
	 ?
?
� � ?
� � 	 � ���� � 	 �@ �*5 � � 8T� ����� � � �

0 & 2 � ����� � �B� � � �
� �� ��� ��� ���?� � � � � 	 ���C�	 � @ �� ��� ��5 � �BC*��� � � �
< 0
0 � � ���� � �� ��Q
� ?
�� � 	 @ Q� ��*� ��!�� � � �
0 # 2 � ����� � ��5 � ��� �� ��� � 	 �� ��*� ��!?� � � � � 	 ���� � �@ �� ��� ���� � �� � � E

% 0 = � ([+ R � � ?�5 �� � � C�� ��*+� ��. (
/V0 A 2 (Y � � (
0 DP� (Z � 6-� R 7 � �5 � ��� ��5 ��� � � C$� ���+�� ��� (

< 0 F � � ���� � �� ��� � � 	 � � � ��� � ?�� �
�
� @ 	 �
8-� �� ���� ��� ����
�
	 � �
0�H � � ���� � �� ��� � 	 @ �� ��� ��*� �
	 � � E
0 M ��� ���� � �� �B � � ?
?� �� 	 ��� 	 � � (R 7 �
�BS �� ��� � 	 @ �� ��� ��*� �
	 � � (

Figure 5.3: Mediated Output (Answer Sheet)

45

Figure 5.4: Mediated Output of FA2 and EA4 (Video)

46

����������� 	
���� ��� ����� � � ��� � ��� � �
���� ��� ����� � � � � � ���! "�#�� ��	
$&%('�)(� * +-,�� � �.� � ��/�� 0�1 * �
243�5 � � 6�� * ��� ���� ����7 � 	 8 9�� ��� * � �:�� 5 ��7 ����; < � 7
�=>� #�� � "?).
�@."�A�
�B�C 3 D : D CE��
�F D @(C.@."?
���C(C�=>�

� $
3 	 � 5
�=G� #�; ��� � � �
3�5 � � 6�� * D 8 #���H 0�9 	�� � 	����� 9 9 � ��� � * � �
3�5 � � 6�� * D 8 IF�; ������� � D 8 7 7 J��.� J�� 0�	�� ; #����; ��0�	 � 9E7 � 	 ��� � ���/� 5�5 ��; ��	 �� ��	�J�� < � 0�9 � D 8 K9 	 ; 7 7�; ������ � 	 ; ����� * � �%('�)(� * @��./�� 0�,�� #��.��� � 5 7 /�1 * �

L

� M!3�5 � � 6�� * C�� F�� D 8 7 7�9 � ���./�� 0����� 9 9 � ��� � * � �:�� 5 ��7 ����; < � 7
�=>� #�� � "?).
�@."�A�
�B�C 3 D : D CE��
�F D @(C.@."?
���C(C�=>�
2�N 3 	 � 5
�=G� #�; ��� � � �

3�5 � � 6�� * D 8 #���H 0�9 	�� � � < ,�� �(,��.� ��� 7 � * �
L

Figure 5.5: Requests from EA3

����������� 	
���� ��� ����� � � ��� � ��� � �
���� ��� ����� � � � � � ���! "�#�� ��	
$&%('�) � * +-,�� 	 . /�	 ,����� 	 	 � ��0�1 	 ,(2���3�4 * � 5
6)�7 	 1 #�� 8�� ��/ 1 ��� 9(3��� ��� * +:,�� � ��� � �;2�� 3�4 * �
� < 8�=�� � >�� * ?�� � 3����@2�� 3�� ? . A A�/ 	 � � 	�� ��A A � 0�1 ���@2�� 3�� * � �

BC� � 7 >�1 ���
�9@3��� ��� � 5

D�E 8�	 ��=
�FG� #�1 ��� � � �
%('�) � * F:� 2�?C/ 	 � =�� ��A A � 0�1 ���@2�� 3�4 * � 5

D�H 8�=�� � >�� * I�� J�� ? . A A�� 1 ��1 / ,�� ��A A � 0�1 ����2�� 3�� * �

Figure 5.6: Requests from FA2

Figures 5.5-5.6 show Commands requested by each application in the example

of Figure 5.3. The numbers in Figures 5.5-5.6 correspond to the behavior ID

in Figure5.3. At a line including multiple Commands in Figures 5.5-5.6, an

application requested a list of these Commands as described in Section 4.4. A

mark in the Event column represents an application giving a flag of reactivity to

a root Command.

In the example of Figure 5.3, strategies of CS and CC were helpful to the

user. For example, at the 11th line of Figure 5.3, PRIMA selected a request

from EA4 which was a reaction of a network event rather than keeping a CS

of FA2, following the model described in Section 3.2. At the 6th line, PRIMA

47

also preferred the response speed. At the 15th line, because EA4 requested a

command disconnecting a CC (Figure 5.5 No.14), PRIMA selected the request

from FA2 (Figure 5.6 No.6), following the model described in Section 3.3. PRIMA

kept a CS expect from these two lines.

This experiment evaluated the effects of these models based on texts such as

in Figures 5.1-5.3. A subject interchanged lines by watching videos when he/she

preferred to do so. A line corresponding to an AB, excluded the case in (2) and

(3) below. In this experiment, a subject was given the following restrictions:

(1) A line marked by “?” included multiple ABs which allowed other lines to

interrupt them.

(2) A line closed by “[” was composed of an AB that did not allow interruption.

(3) The subject was not allowed to change the timing of events, because PRIMA

can not control the timing.

(4) The subject was not allowed to add or delete lines, because PRIMA can

not add or delete ABs.

5.2 Experimental Results

In this experiment, 12 subjects checked each 10 examples, and 120 trials were

carried out in total. A result of the experiment showed that 76% of 120 trials

did not need interchange and felt natural to the subjects. However, two patterns

were found in cases when many subjects required interchanges.

The first pattern was to terminate CS. 56% of 27 trials required to interchange

robot’s behaviors applied to this case. PRIMA decided a block size of CS without

explicit descriptions of an application as shown in Section 4.4. PRIMA termi-

nates CS when an application requests the new AB after the before node finishes

running. Therefore, PRIMA does not guarantee continuity while an application

waits for events to decide the next behaviors without outputs. When EA2 waited

for a reply from a server of a library, and when FA5 waited for a reply from

a server of a video, these applications were interrupted by other applications.

Figure 5.12 shows a mediated example of FA5 and EA2.

48

����� ��� �
	 ��� � � ����� ���
�������
����� � ������ �
� ��	�� � �
� � � � ��� � !��"# � $
� � �
%'& () �
	 � * �!� �
��+�	 � � � �,�� � �.-�� ��/ (
01� (2 � ��� ����� +�� � (
31& (4!5 � 	 � �.� � 5 � � �#	�� 2 � �
	 ���
� 5 � (
67� (% 0�� (
89& (4!5 � 	 � ��� � 5 5 +��:	�� � + ��� ��� � 	 � � (
;1� (% 6�� (
<1& (4!5 � 	 � ��� � 5 5 +��:	�� � + ��� ��� �
��� (
=�� (% >�� (
>9& (? 	 -�@!� � �
� �
����� ��� �.� � + � �� �. � � � �.� �
� % 0 � ��� �
	 ���
� 5 " � +A% 6

��* � 5 ��� B.� �C% >���* � 5 ��� B�/ (
% ��� (D � � � (
%�%E& ���
�� � $
� ��� � ����� �
�� � F �
� � ��� ��	���� ��� �
G 	 �
��� 	 � � (H � ���
� � � � �
I.� �
��
� ��� ��� � ��� � (
% 0J& ���
�� � $
� �� � � � � ��� ��	�+ � � � 	 I���	 $�� ����� �
�.� ��� � � � � � � ����"# � F �
� � � �" � +K� �
���
� ��� ��� L
% 8J& (�!�
���
� ��� ��� � � � � �
I�� �
� � � � �
� � (
% ;J&M���
�� � $
� ��� � 	 � � ��� 5 � � ��� �
I
�

Figure 5.7: Output Example of FA5

����� ��� �
	 ��� � � ����� ���
�������
�� � �
� ��� ��� � � ��� �
��� � �� 	 �! 	 �
�"� � 	 � � ��� �
����#�$��
%&� ' (� � 	 � ��� � � ��)��*	�� � � � ��� +	 ��	 ,�� �
� ���-�	��
��� .�� '
$�/ ' �+�
�*0 (�)1� � '

23� ���
�� � �
� ��� � ����� �
�*4 ,
� �� �"	�� � ��� +��-�� �
�*� � �� 	 �! 	 �
��� 	 � �' 5 	 � ��	�)1� ��,�� � � '
63� ���
�� � �
� ��7 � ��	 ��	 ��� 8�� ���-�� �
�*4 ,�� �� 9
:�� ' #� ��
� ,1� � 	 ; ��� �
7"< �+�
�*0 (�)�� < =�,���� � � �
� ��� "#1>
0�? ?+� ��- � 8"	 �� ; � � �
; � @ '
AB/ ' C � � � '
D�� ' E � F1� 0��)��*� ��� '

GB� ���
�� � �
� ��)�� �
� ��� � =
�
� ��7�� ; 	 � � "� ��	��
��� .
� �
� � -�8���� ; �1� �
; � ,���� �� �
���
��� .��
H3� ���
�� � �
� �� � 	 ; �
� ��� �
���
��� .
� �
� � - � 9
% �I� ' J � �*� ��� �
���
��� .� �� ,1� � 	 ; �
� �"- � � '

Figure 5.8: Output Example of EA2

49

����� ��� �
	 ��� � � ����� ���
����� �
�� � �
� ��� ��� � � ��� �
��� � �� 	 ��� 	 �
��� � 	 � � ��� �
���! �"��

#%$ � & ' � � 	 � ��� � � ��()��	*� � � � ��� !	 ��	 +�� �
� !��,-	*�
��� .�� &
/ "�0 � �
��+�� � -1�+�� �
� �2	*� � +
3 �)� � ��� � ���,� � ��� � � 4
576 � 8 � �
�* � �
� ���
	 ���
�2 � 	 3 � � � ��, � �	�, � 9:� � 3 � �
�
� � ;
#7< � & = �
	 � > �!� �
��(�	 � � � -9�� � ����� +�? &
5A@ 0 & B � ��� � � � ()� � &
#C$ �D� & ' � � 	 � ��� � � � 3 ��	 �!B 3 �
	 ���
� � � &5 $�$ 0 & $ "�� &
#AE � & ' � � 	 � ��� � � ��()��	*� � (���� ��� � 	 � � &
5AF 0 & $ G � &
#�G � & ' � � 	 � ��� � � ��()��	*� � (���� �2� �
��� &
57H 0 & $ H � &

$
" � & I 	 �2J!� � �
� �
�*��� ��� ��� � ()� -� �� � 3 � ��� �
� $ " � ��3 �
	 ���
� ��, � ($ G��> 3 � ��3 .2� � $ H ��> 3 � ��3 .
? &5 $ 6 0 & K � � � &

$ < �
� �
�� � �
� �-� � ����� �
�� � L +
� � �
� �2	*��� ��� �
� 	 �
��� 	 � � & M � ���
� 3 � � �
N�� �
�
�
� ��� ��� � ��� � &

#C$ @ � & ' � � 	 � ��� � � ��()��	*� � � � ��� !	 ��	 +�� �
� !��,-	*�
��� .�� &
/
/ $ E �

� �
�� � �
� �� � 3 � � ��� �2	*()� � � 	 N���	 �
� + ��� �
��� +
3 3 � � � � � ����,� � L +
� � � �
, � (:� �
���
� ��� ��� 4

5 $ F 0 & � �
� MO' � ()� � &
$ G � & � �
���
� ��� ��� � � � � �
N�� +
3 3 � � �
� � &

$ H �
� �
�� � �
� �-� � ����� �
�PL +
� ��� �2	�� � �
� !��,�� �
�P� � �� 	 ��� 	 �
��� 	 � �
& = 	 � ��	*(Q� ��+�� � � &

" �D� � �
�� � �
� ��N � ��	 ��	 ��� 9�� !��,�� �
��L +
� �-� 4

#
" $ �

& P �*�
� +)� � 	 3 ��� �
N2> � �
� MO' � ()� > 1
+���� � � �
� ��� �� �R M J J!� ��, � 92	 �
� 3 � � �
3 � ? &

5 "�"D0 & K � � � &
" 6 � & S � T)� M � ()��� ��� &

U " < �
� �
�� � �
� ��(�� �
� ��� � 1
�
� ��N�� 3 	 � � �2� �2	*�
��� .
� �
� � ,�9���� 3 �)� �
3 � +
��� �
� �
���
��� .��

" @ � � �
�� � �
� �� � 	 3 �
� ��� �
���
��� .
� �
� � , � 4
" E �D& V � �P� �-� �
�*����� .P��� +)� � 	 3 �
� �2, � � &

Figure 5.9: Mediated Output of FA5 and EA2

50

The second pattern occurred while starting communications. PRIMA guaran-

tees to keep CC, but not to connect CC, as shown in Section 4.5. An application

may skip face-to-face communication. For example, the robot started conversa-

tion as soon as the user touched at behavior No.1 in Figure 5.1. Therefore, in

the mediated examples in Figures 5.3-5.4, a robot started conversation before

turning to its user at behavior No.10. 25% subjects mentioned that the robot

should start conversation of the 9th line before facing the user of the 19th line,

in the case of this example.

5.3 Discussion

After each trial, a subject was interviewed. The subject was asked which be-

haviors of the robot’s did he/she feel were unnatural without any restrictions.

This interview showed that 58% of 120 trials stisfied with subjects. Based on

these interviews and experimental results, this thesis summarizes the following

functions which PRIMA should support in the future:

(1) Resumption of robot’s state

(2) Interruption of an AB

(3) Description of the continuity of CS

(4) Guarantee connection to CC

(5) Concurrent execution of ABs which interfere with each other

(6) Relaxing restrictions

(1) A robot should fill various states in order to communicate with a user.

Nevertheless, an interruption may break these states that were filled by an inter-

rupted application. PRIMA guarantees the continuity of IU, CS, and CC, and

contributes to keeping these states. In particularly, PRIMA attempts to keep

states of relative position between a robot and a user. However PRIMA cannot

keep all states an application requires in order to balance response speed and

continuity. The size of an IU is restricted. A CS is interrupted by an AB marked

as reactive. A CC doesn’t restrict all locomotion of a robot, as shown in Section

51

4.3. As a result, an interruption has possibilities to break the states of relative

positions.

In order to guarantee the states an application requires, PRIMA aims at

resuming the robot’s state rather than restricting interruption, such as stopping a

motion out of limits based on sensors. Resuming states will fill the requirements

of both applications by keeping response speed. Links in an AB tree include

information of the state of a robot needed at each moment by an application.

Exploring parent nodes will bring the preconditions of each node without the

strict descriptions.

(2) PRIMA gives importance to keeping the continuity of an IU, and does

not interrupt while an IU is running, as described in Section 3.1. The size of an

AB depends on the programmer’s descriptions, and there are few ABs which do

not comply with the definition of an IU, as shown in Section 4.1. These ABs

may cause a lack of response speed. In the interview after the experiment, some

subjects said that they wanted to interrupt motions defined as an AB, such as

an utterance and recognition of a turn of speech.

PRIMA will allow interruptions of an AB and will guarantee the restart of

an AB interrupted from the beginning of the AB. PRIMA will assume that this

rule will not mislead a user, and will not make a user uncomfortable. If the

assumption is correct, PRIMA will be able to adopt this rule. In this thesis, I

consider whether or not an IU should keep continuity even if PRIMA guarantees

the restart of an IU.

Figure5.10-5.12 are examples used in the experiment of Section 5.2, and these

examples show the necessity of interruptions. FA4 is an example in which a

FA developer explicitly defines a block of the ABdescribed in Section 4.1(2).

A FA developer defines a 3-10 line in Figure5.10 as a a block of AB , on the

condition that interruptions of EA do not make cameras depart from target.

In the interviews, many subjects wanted the robot to reply as soon as possible

when they touched the robot as in the 7R line of 5.12. If PRIMA allows the

interruption, a robot should turn to the user and start Explanation-1-1 again. As

described, the interruption of an AB needs a resumption of robot’s state.

52

No. Behaviors Event
0 U The user touched the sleeping robot.

�

1 R "What's the matter with you?"
2 U "Take a picture."

� 3 R "Which direction should I turn?"�
4 U "Turn to your right."�
5 R The robot turns right.�
6 R "May I take a picture?"�
7 U "Yes."

�
8 R The robot captures an image with its camera, and sends the image

to a mobile computer of the user.
�

�
9 R "I just sent a picture."�

10 R "May I take another picture?."
11 U "No."
12 R "O.K. Bye-bye."
13 R The robot goes to sleep.

Figure 5.10: Output Example of FA4

53

No. Behaviors Event
0 R The robot entered the exposition, and started the EA1.
1 R "I'm going to start the tour of the museum."
2 R The robot moves to Panel-1.
3 R The robot arrives at Panel-1

�

4 R The robot repeated the special behavior Turn-and-Search.
5 R The robot found the user.

�

6 R The robot turns to the user, and speaks Explanation-1-1. "This panel
shows research points of our laboratry."

7 R The robot turns to Panel-1, and speaks Explanation-1-2."Take
attention to this upper figure. Our laboratory has a project about

8 R The robot repeated the special behavior Turn-and-Search.
9 R The robot found the user.

�

10 R
The robot turns to the user, and speaks Explanation-1-3. "In
addition, we are studing various techniques processing multi-media
informations in the real world."

11 R "May I repeat the exaplantion?"
12 U "No."
13 R "May I go to the next panel?"
14 U "Yes."
15 R The robot says, "O.K.", and moves to Panel-2.

*** special behavior Turn-and-Search ***
The robot stays still, until the robot will recognize the human by its
camera. If the robot doesn't find the human for ten seconds, the robot
turns the angle of its camera's view, and retries the recognition.

Figure 5.11: Output Example of EA1

54

No. Behaviors Event
0 R The robot entered the exposition, and started the EA1.
1 R "I'm going to start the tour of the museum."
2 R The robot moves to Panel-1.
3 I The robot arrives at Panel-1

�

4 R The robot repeated the special behavior Turn-and-Search.
5 I The robot found the user.

�

� 6 R The robot turns to the user, and speaks Explanation-1-1. "This
panel shows research points of our laboratry."�

7 I The user touched the robot speeking Explanation-1-1.
�

�
8 R The robot finishes Explanation-1-1.

� 9 R "What's the matter with you?"�
10 U "Take a picture."

� 11 R "Which direction should I turn?"�
12 U "Turn to your right."�
13 R The robot turns right.�
14 R "May I take a picture?"�
15 U "Yes."

�
16 R The robot captures an image with its camera, and sends the image

to a mobile computer of the user.�
17 R "I just sent a picture."�
18 R "May I take another picture?."�
19 U "No."�
20 R "O.K. Bye-bye."

21 R
The robot turns to Panel-1, and speaks Explanation-1-2."Take
attention to this upper figure. Our laboratory has a project about
wearable computers."�

22 R The robot repeated the special behavior Turn-and-Search.
23 I The robot found the user.

�

24 R
The robot turns to the user, and speaks Explanation-1-3. "In
addition, we are studing various techniques processing multi-media
informations in the real world."

� 25 R "May I repeat the exaplantion?"�
26 U "No."

� 27 R "May I go to the next panel?"�
28 U "Yes."
29 R The robot says, "O.K.", and moves to Panel-2.

Figure 5.12: Mediated Output of FA4 and EA1

55

(3) PRIMA does not aim to describe termination of CS because of the costs to

the programmers, as described in Section 4.5. As a result, PRIMA may not keep

CS, which depends on the timing of requests from the application. Describing

a block size of AB will adapt to this case. These definitions involve a risk of

reducing response speed, as in Section 4.5. However, I expect that PRIMA will

manage this risk, if PRIMA supports the functions of (1) and (2).

In addition, PRIMA will allow an application programmer to express a CS

easily. In order to describe applications easily, PRIMA will adopt general lan-

guages of spoken dialogue systems such as VoiceXML. These languages of spoken

dialogue systems have structures controlling dialogues, similar to a document’s

tree of VoiceXML. These structures often depend on contexts and topics of dia-

logues. Therefore, it may be possible for an application programmer to express

easily a block of CS, by using these structures of documents.

(4) In general, the definition of CC is different depending on the situations

and features of a robot’s embodiment, as described in Section 4.5. A motion

for connecting a CC brought by a middleware may break a posture imagined by

an application. Therefore PRIMA dose not aim to connect CCs, except when

these resuming from other applications breaking CC, as in (1). On the other

hand, PRIMA can detect disconnecting CCs, and the strategy of the CCs as in

Section 3.3 is effective.

(5) As described in Section 4.2, PRIMA allows simultaneously running ABs

which doesn’t interfere with. For example, a robot can say hello while navigating

the user. In the future, PRIMA will also allow simultaneously running few kinds

of ABs which interfere with each other. For example, a robot may dance while

guiding the user if the robot doesn’t go far away from the user. PRIMA will

categorize robot’s locomotion into two patterns. Locomotion for a dance should

be loyal to trajectories required an application, but the global position of the

dance isn’t important. On the other hands, moving to a goal for navigations

allows PRIMA to make free trajectories.

(6) Section 2.4 assumes three restrictions designing PRIMA; hardware speci-

fications, loading applications, and programming styles of applications.

Hardware Specifications : In the future, PRIMA should increase kinds of de-

vices which PRIMA can deal with. I’m planning to draw up specifications

56

of Commands so that a FA can add a new Command which handles an

original device of each robot. PRIMA may allow variety of devices, guar-

anteeing an EA ’s output, if a robot fills functions specified by PRIMA

generalizing interface of PRIMA. For example, a robot uses a laser pointer

instead of pointing by a finger.

Arguments are needed so that PRIMA can relax the restriction that a robot

fills functions which PRIMA specifies. If a robot doesn’t fill the restriction,

PRIMA cannot accomplish an application’s request. It is necessary to con-

sider what PRIMA should guarantee to an application, and what PRIMA

should mediate these requests.

Loading Applications : PRIMA should relax an assumption in order to load

multiple EA’s which a user isn’t aware of loading the EA’s. In Section 3.2,

PRIMA designs rules of a CS, under the assumption that a user knows

whether an EA is loaded. In addition, PRIMA may have multiple applica-

tions suspended at a time. PRIMA needs a new rule of resuming CSs.

Programming Styles of Applications : PRIMA should need more clear def-

inition of programming styles, and usability for application programmers

needs more arguments.

57

58

6. Conclusion

In this paper, I proposed a framework to give a personal robot the ability to supply

local services in several environments while keeping its personality. I attempt to

integrate an Environment-oriented Application which is an information service

loaded in each environment, and a Familiarity-oriented application witch brings

a personality of each robot. The integration of two different kinds of applications

which have been independently developed causes a lack of continuity and a lack

of response speed in human-robot communication. In order to solve the trade-off

between continuity and response speed, I designed three communication models:

the Information Unit，the Communication Channel，and the Communication

Stream. I proposed a middleware named PRIMA, which mediates applications

based on these models. I demonstrated the effect of PRIMA using videos which

show examples of mediating applications. The outputs of PRIMA were given

mostly positive evaluations. However, the experiment revealed some points to

improve strategies of PRIMA. For future research, I will try to improve PRIMA by

resuming robot’s states, brushing up specifications of Commands, and adopting

to a general language describing interactions, in order to relax restrictions of

PRIMA.

59

Acknowledgements

First and foremost, I would like to show my deep appreciation to Prof. Masatsugu

Kidode and Associate Prof. Yasuyuki Kono, for their support and patience over

the course of my study at Nara Institute of Science and Technology (NAIST).

I would like to thank Prof. Tsukasa Ogasawara in NASIT and Associate Prof.

Michita Imai in Keio University for helpful comments. I would like to thank Dr.

Atsushi Ueno in Osaka City University and Dr. Izuru Kume in NAIT for many

of substantial arguments. I would like to thank NEC Personal Robot Research

Center for leasing personal robots “PaPeRo”. I would like to thank all members

of Artificial Intelligence Laboratory in Nara Institute of Science and Technology

for their participation in our experiment. Finally, I would like to thank two

PaPeRos for suffering my harsh experiments.

60

References

[1] http://www.incx.nec.co.jp/robot/.

[2] http://openr.aibo.com/.

[3] Masahiro Arai, Toshihiko Itoh, Tomoko Kumagai, and Masato Ishikawa.

“Proposal of a Standard Utterance-Unit Tagging Scheme”. JSAI Journal,

14(2):251–260, 1999.

[4] Masahiro Araki, Akihiko Kaga, and Takuya Nishimoto. “Comparison of

“Go back” implementations in VoiceXML”. In Proc. International Speech

Communication Association (ISCA) workshop on ERROR HANDLING IN

SPOKEN DIALOGUE SYSTEMS, 2003.

[5] Minoru Asada. “Entertainment Robotics and Emotion/Intelligence”. JSAI

Journal (in Japanese), 19(1):15–20, 2004.

[6] John L. Austin. How to Do Things with Words. London: Oxford Univ.

Press, 1962.

[7] Rodney A. Brooks. “A Robust layered control system for a mobile robot”.

IEEE Journal of Robotics and Automation, RA-2, 2(1):14–23, March 1986.

[8] J. Buhmann, W. Burgard, A.B. Cremers, T. Hofmann D. Fox, F. Schneider,

J. Strikos, and S. Thrun. “The Mobile Robot Rhino”. AI Magazin, 16(1):31–

38, 1995.

[9] Mika Enomoto, Masato Ishizaki, Hanae Koiso, Yasuharu Den, Etsuo

Mizukami, and Hiroyuki Yano. “A Statistical Investigation of Basic Units for

Spoken Interaction Analysis”. In Proc. Technical Report of IEICE SIG-HCS

(in Japanese), volume 29, pages 45–50, 2004.

[10] Kaori Fujinami and Tatsuo Nakajima. “A Framework for Developing

Context-aware Applications”. IPSJ Transactions on Advanced Computing

Systems (ACS) (in Japanese), 44(SIG10 (ACS2)), 2003.

[11] B. Grosz and C. Sidner. “Attention, intention and the structure of discourse”.

Computational Linguistics, 12(3):175–204, 1986.

61

[12] M.A.K. Halliday and R. Hasan. Cohesion in English. Longman, 1976.

[13] Isao Hara and Yo-ichi Motomura. “Situated Multi-Agent Architecture for

an Autonomous Robot”. In Proc. RSJ/SICE/JSME 5th Robotics Symposia

(in Japanese), pages 86–91, 2000.

[14] J. Hobbs. Literature and Cognition, volume 21 of CSLI Lecture Notes. CSLI,

1990.

[15] Michita Imai, Takayuki Kanda, Testuo Ono, Hiroshi Ishiguro, and Kenji

Mase. “Robot Mediated Round Table: Analysis of the Effect of Robot’s

Gaze”. In Proc. The 11th International Workshop on Robot and Human

Communication (RO-MAN2002), pages 411–416, September 2002.

[16] Tetsunari Inamura, Masayuki Inaba, and Hirochika Inoue. “PEXIS : Prob-

abilistic Experience Representation Based Adaptive Interaction System for

Personal Robots”. Systems and Computers in Japan (in Japanese), 35(6),

2004.

[17] Masayuki Iwai, Jin Nakazawa, and Hideyuki Tokuda. “Composition of

Distributed Application though Multiple and Multimodal User Interface”.

JSSST Computer Software (in Japanese), 21(1):13–26, 2004.

[18] Koji Kageyama and Tatsuzo Ishida. “Entertainment Robot Business”. RSJ

Journal (in Japanese), 20(7):668–671, 2002.

[19] Takayuki Kanda. A Constructive Approach for Communication Robots. PhD

thesis, Kyoto University, 2003.

[20] Fumio Kanehiro, Kiyoshi Fujiwara, Shuuji Kajita, Kazuhito Yokoi, Kenji

Kaneko, Hirohisa Hirukawa, Yoshihiko Nakamura, and Katsu Yamane.

“Open Architecture Humanoid Robotics Platform: OpenHRP”. RSJ Jour-

nal (in Japanese), 21(7):785–793, 2003.

[21] Kouichi Katsurada, Yusaku Nakamura, Makoto Yamada, Hirobumi Yamada,

Satoshi Kobayashi, and Tsuneo Nitta. “Proposal of MMI Description Lan-

guage XISL”. IPSJ Journal (in Japanese), 44(11):2681–2689, 2003.

62

[22] Akihiro Kobayashi, Yasuyuki Kono, Atsushi Ueno, Izuru Kume, and Masat-

sugu Kidode. “Personalization of Dynamically Loaded Service Programs

Keeping Human-Robot Communication Channel”. In Proc. The 13th IEEE

International Workshop on Rbot and Human Interactive Communication

(RO-MAN2004), pages OS–YN3, 2004.

[23] Akihiro Kobayashi, Izuru Kume, Atsushi Ueno, Yasuyuki Kono, and Masat-

sugu Kidode. “A Robot Programming Model for Mediating Between

Familiarity-Oriented Behaviors and Environment-Oriented Behaviors”. In

Proc. the 7th of the World Multi-Conference on Systemics, Cybernetics and

Informatics (SCI2003), pages 295–302, 2003.

[24] Akihiro Kobayashi, Atsushi Ueno, Izuru Kume, Yasuyuki Kono, and Masat-

sugu Kidode. “Robot Middleware Architecture Mediating Familiarity-

Oriented and Environment-Oriented Behaviors”. In Proc. The 5th IEEE

International Symposium on Computational Intelligence in Robotics and Au-

tomation (CIRA2003), pages 544–551, 2003.

[25] W. Mann and S. Thompson. “Rhetorical structure theory: Toward a func-

tional theory of text organization”. Text, 8:243–281, 1998.

[26] Toshihiro Matsui, Hideki Asoh, John Fry, Youichi Motomura, Futoshi Asano,

Takio Kurita, Isao Hara, and Nobuyuki Otsu. “Integrated Natural Spoken

Dialoge System of Jijo-2 Mobile Robot for Office Services”. In Proc. of The

16th National Conference on Artificial Intelligence (AAAI-99), Florida, July

1999.

[27] Yosuke Matsusaka, Tsuyoshi Tojo, and Tetsunori Kobayashi. “Conversa-

tion Robot Participating in Group Conversation”. IEICE Transaction of

Information and System (in Japanese), E86-D(1):26–36, 2003.

[28] Scott McGlashan et al. (Eds.). “Voice Extensible Markup Language

(VoiceXML) Version 2.0”. http://www.w3.org/TR/voicexml20/.

[29] Makoto Mizukawa, Hideo Matsuka, Toshihiko Koyama, Toshihiro Inukai,

Akio Noda, Hirohisa Tezuka, Yasuhiko Noguchi, and Nobuyuki Otera.

63

“ORiN: Open Robot interface for the Network, The Standard Network In-

terface for Industrial Robots and its Applications”. In Proc. International

Symposium on Robotics (ISR), 2002.

[30] Toru Nakata, Taketoshi Mori, and Tomomasa Sato. “Quantitative Anal-

ysis of Impression of Robot Bodily Expression based on Laban Movement

Theory”. RSJ Journal (in Japanese), 19(2):252–259, 2001.

[31] Ryuichi Nisimura, Takashi Uchida, Akinobu Lee, Hiroshi Saruwatari, and

Kiyohiro Shikano. “ASKA: Receptionist Robot with Speech Dialogue Sys-

tem”. In Proc. 2002 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS2002), pages 1314–1319, 2002.

[32] Masayuki Okamoto and Nobutoshi Yamanaka. “Wizard of Oz Method for

Constructing Conversational Web Agents”. JSAI Journal (in Japanese),

17(3):293–300, 2002.

[33] Tomoki Oku, Takuya Nishimoto, Masahiro Araki, and Yasuhara Niimi. “A

Task-Independent Control Method for Spoken Dialogs”. IEICE Journal (in

Japanese), J86-DII(5):608–615, 2003.

[34] OMG. “CORBA”. http://www.corba.org.

[35] Tetsuo Ono and Michita Imai. “Embodied Communications between Hu-

mans and Robots Emerging from Entrained Gestures”. In Proc. 2003 IEEE

International Symposium on Computational Intelligence in Robotics and Au-

tomation (CIRA2003), 2003.

[36] Sinya Oyama, Hideki Kuzuoka, Jyunichi Kosaka, and Keiich Yamazaki. “The

Proposal of Requirements on Designing the System to Support Remote Com-

munication on Embodied Space and the Development of the System”. IPSJ

Journal (in Japanese), 45(1):178–187, 2004.

[37] F. Ozaki. “Open Robot Controller Architecture (ORCA)”. In Proc. AIM2003

Workshop on Middleware Technology for Open Robot Architecture.

64

[38] H. Sacks, E. A. Schegloff, and G. Jefferson. “A simplest systematics for

the organization of turn-taking for conversation”. Language, 50(4):696–735,

1974.

[39] Yamada Seiji and Yamaguchi Tomohi. “Training AIBO like a Dog - Prelim-

inary results -”. In Proc. The 13th International Workshop on Robot and

Human Interactive Communication (RO-MAN2004), 2004.

[40] Stephanie Seneff, Ed Hurley, Raymond Lau, Christine Pao, Philipp Schmid,

and Victor Zue. “GALAXY-II:A referance architecture for conversational

system develpment”. In Proc. The 8th International Conference on Spoken

Language Processing (ICSLP1998), 1998.

[41] Sun Microsystems. “Java(TM) 2 Platform Standard Edition 5.0 API Speci-

fication”. http://java.sun.com/j2se/1.5.0/docs/api/.

[42] Fumihide Tanaka and Hirotaka Suzuki. “Dance Interaction with QRIO: A

Case Study for Non-boring Interaction by using an Entertainment Ensemble

Model”. In Proc. The 13th International Workshop on Robot and Human

Interactive Communication (RO-MAN2004), 2004.

[43] Sebastian Thrun, Maren Bennewitz, Wolfram Burgard, Armin B. Cremers,

Frank Dellaert, Dieter Fox, Dirk Hahnel, Charles Rosenberg, Nicholas Roy,

Jamieson Schulte, and Dirk Schulz. “MINERVA: A Second-Generation Mu-

seum Tour-Guide Robot”. In Proc. 1999 IEEE International Conference on

Robotics and Automation (ICRA1999), pages 1999–2005, 1999.

[44] Takashi Yoshimi, Nobuto Matsuhira, Kaoru Suzuki, Daisuke Yamamoto,

Fumio Ozaki, Junko Hirokawa, and Hideki Ogawa. “Development of a Con-

cept Model of a Robotic Information Home Appliance, ApriAlpha”. In

2004 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS2004), pages 205–211, 2004.

65

List of Publications

Journal (in Japanese)

[1] Akihiro Kobayashi, Izuru Kume, Atsushi Ueno, Yasuyuki Kono, and

Masatsugu Kidode. “Mediation Architecture of Personal Robot’s Applica-

tions Based on Communications Model”. IEICE Journal D-I, (to Appear).

International Conferences

[2] Akihiro Kobayashi, Yasuyuki Kono, Atsushi Ueno, Izuru Kume, and

Masatsugu Kidode. “Personalization of Dynamically Loaded Service Pro-

grams Keeping Human-Robot Communication Channel”. In Proc. The 13th

IEEE International Workshop on Rbot and Human Interactive Communica-

tion (RO-MAN2004), OS–YN3, 2004.

[3] Akihiro Kobayashi, Izuru Kume, Atsushi Ueno, Yasuyuki Kono, and

Masatsugu Kidode. “A Robot Programming Model for Mediating Between

Familiarity-Oriented Behaviors and Environment-Oriented Behaviors”. In

Proc. the 7th of the World Multi-Conference on Systemics, Cybernetics and

Informatics (SCI2003), pages 295-302, 2003.

[4] Akihiro Kobayashi, Atsushi Ueno, Izuru Kume, Yasuyuki Kono, and

Masatsugu Kidode. “Robot Middleware Architecture Mediating Familiarity-

Oriented and Environment-Oriented Behaviors”. In Proc. The 5th IEEE In-

ternational Symposium on Computational Intelligence in Robotics and Au-

tomation (CIRA2003), pages 544-551, 2003.

66

Domestic Conferences (in Japanese)

[5] Kenichirou Maeda, Akihiro Kobayashi, Izuru Kume, Atsushi Ueno, Ya-

suyuki Kono, and Masatsugu Kidode. “Robust Self-Localization Method

Based on Geometric Features of the Light Sources on a Ceiling”. In Proc.

The 66th National Convention of IPSJ, 6ZB-9, 2004.

[6] Akihiro Kobayashi, Atsushi Ueno, Izuru Kume, Yasuyuki Kono, and

Masatsugu Kidode. “A personal robot architecture with location-dependent

attachable functions”. In Proc. The 3th SICE System Integration Division

Annual Conference (SI2002), 1P2-32, 2002.

[7] Akihiro Kobayashi, Yasuyuki Kono, and Masatsugu Kidode. “A cooper-

ative framework of heterogeneous for the analysis of interactive navigation

with guests”. In Proc. The 16th Annual Conference of Japanese Society for

Artificial Intelligence, 1A1-03, 2002.

[8] Akihiro Kobayashi, Yasuyuki Kono, and Masatsugu Kidode. “A Multi-

Robot Architecture Aiming for Cooperative Indoor Navigation”. In Proc.

The 2th SICE System Integration Division Annual Conference (SI2001),

3P33-03, 2001.

[9] Akihiro Kobayashi, Yasuyuki Kono, and Masatsugu Kidode. “Graduate

School of Information Science, Nara Institute of Science and Technology”.

In Technical Report IPSJ SIG-HI, 2001(38), pages 7-14, 2001.

[10] Akihiro Kobayashi, Yasuyuki Kono, and Masatsugu Kidode. “Cooper-

ation of multi-robots in office environments”. In Proc. The 15th Annual

Conference of Japanese Society for Artificial Intelligence, 3C1-07, 2001.

67

