
NAIST-IS-DD9761210

Doctoral Dissertation

Machine Learning Approaches to Rhetorical Parsing
and Open-Domain Text Summarization

Tadashi Nomoto

December, 2004

Graduate School of Information Science

Nara Institute of Science and Technology



A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of Engineering

Tadashi Nomoto

Thesis Committee:
Professor Yuji Matsumoto (Supervisor)
Professor Shunsuke Uemura (Member)
Professor Shin Ishii (Member)



Machine Learning Approaches to Rhetorical Parsing
and Open-Domain Text Summarization

Tadashi Nomoto

Abstract

The present thesis primarily concerns the use of machine learning for rhetorical pars-

ing and open-domain text summarization. Chapter 1 sets a general backdrop on text

summarization and its subfield, rhetorical parsing, and defines the area of investigation.

Chapters 2 through 9 form the core of the thesis, developing each theme in great depth, for

which we will give a brief overview below. (Throughout the thesis, we talk about extractive

summarization, meaning that we create a summary by putting together bits and pieces,

usually, sentences extracted from text.)

In chapters 2 through 5, we motivate and develop a novel approach to rhetorical parsing

based on the decision tree (DT) learning, which one could adapt for any genre and language

given a training corpus. (Unless stated otherwise, DT here and below means Quinlan’s

C4.5 with default settings.) An important goal of rhetorical parsing is to recover rhetorical

structure of text for potential use with text summarization. Performance of our approach

is evaluated using an hand-annotated corpus of Japanese newspaper articles. Also some

problems with annotating with rhetorical information such as the variability of human

judgments on labeling are noted and discussed.

In addition some refinements are made on the DT learning itself by appeal to the

minimum description length principle (MDL) and active learning. Evaluation is done using

the same data as above. We also look into how a DT harnessed with MDL (DT/MDL),

compares in performance with AdaBoosted DT.

Due to poor results with the linguistically motivated paradigm that previous chap-

ters represent, we turn an eye on non-linguistic approaches to summarization. Chapter 6

explores an unsupervised paradigm for text summarization. We develop there what we

call the diversity based summarization or DBS, which consists in the K-means clustering

(again extended with MDL) and a simple sentence ranking scheme. A new evaluative

scheme for summarization (which we call the information-centric approach to evaluation

of summaries, or ICE) is also proposed with an eye to providing an objective assessment
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of the utility of machine generated summaries. Evaluation is conducted using a publicly

available corpus known as BMIR-J2.

Then we proceed to the issue of modeling human created summaries in the DBS

paradigm. We compare performance of DBS and DT- (and DT/MDL-) based summa-

rizers trained on a human-annotated corpus. Curiously enough, it is found that DBS

closely rivals and sometimes outperforms DT- and DT/MDL- based summarizers – which

we collectively call ‘DT(/MDL)’ here – when tested on those annotations which judges

tend to disagree on, but falls behind DT(/MDL) on annotations for which there is a strong

agreement among judges. The result suggests that there are some useful, i.e., DT-learnable,

patterns in annotations for which people have a more or less same idea about what they

should be like. While DT(/MDL) is apparently able to exploit patterns to its advantage,

DBS, being unsupervised, is not able to perform as well as when it is run on annotations

with varying judgments. Which however points to an integration of DT(/MDL) with DBS

as a possible alternative to DBS as the combine should then be able to take into account

the regularity as well as variability of human summaries, an issue that engages us in sub-

sequent chapters, where we consider other variations of DT. We argue that taking into

account both properties indeed leads to a better performing summarizer.

Finally, we look at curious regularities in the way people vote for summary sentences

when asked to pick up those they consider important or summary-worthy. Texts from

a news wire domain typically show that initially occurring sentences are popularly voted

or preferred for summary sentences while those occurring later in text decidedly get less

popular. Texts from a column domain, on the other hand, exhibit a somewhat different

pattern, showing that sentences occurring towards the end are as much favored by people

as those occurring text-initially. We argue that the distribution of votes for summary

sentences, which we call ‘DOV,’ has some shape specific to a domain, and propose a

particular approach that directly exploits DOVs by way of Bayesian modeling. We show

that the Bayesian model provides a significant leverage over approaches based on pattern

classifiers such as C4.5, Adtree, Kstar, Naive Bayes, etc.

Keywords: Machine Learning, Text Summarization, MDL, Bayes Model, Parsing, Rhetor-

ical Structure
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Chapter 1 Background and Overview

In this chapter, we go over some background on automatic text summarization, and

give a brief overview of what will come in each chapter. Text summarization is generally

characterized as a scientific inquiry into identifying or extracting a small portion of a text,

usually sentences, that serves as a surrogate of that text, providing the gist of that text.

Throughout the thesis, we hold to the view of summarization as a process of extracting a

subtext for use as a surrogate of its full-length version.

Consider Table 1-1. It lists some of major research paradigms in automatic text sum-

marization and their features. Luhn (1958),Edmundson (1969) and Pollock and Zamora

(1999) represent the classical paradigm which typically relies on the use of superficial infor-

mation such as sentence location, term frequency and cue words for identifying sentences

that may be able to serve as a summary. Edmundson (1969), for instance, uses a sim-

ple weighting scheme, which involves a weighted combination of information of the sorts

mentioned above, to determine relative significance of sentences, and select those ranking

highest. In the learning paradigm, on the other hand, one makes an explicit use of hu-

man supplied information such as whether or not a given sentence is to be included in a

summary.

Kupiec et al. (1995) are first to approach automatic summarization from the learning

paradigm. What distinguishes their work is their view of summarization as a statistical

classification problem. They devised a simple Bayesian classifier to estimate the probability

that a given sentence is included in a summary. A summary can then be generated by

selecting sentences with top probabilities.

Marcu (1999b), Boguraev and Kennedy (1999), and Barzilay and Elhadad (1999) rep-

resent another research direction in summarization. They typically advocate linguistically

motivated models of discourse for text summarization. Marcu (1999b), for instance, at-

tempts to recover a rhetorical structure tree à la Mann and Thompson (1987a) out of a

text and exploit that tree for determining which sentence to extract for a summary. In

chapters 2 to 5, we pursue the idea of using a linguistic model of discourse for summariza-

tion and point out some inherent problems with this approach. In particular, we examine

the assumption that importance or summary-worthiness of a sentence can be determined

1
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Table 1-1 Major Paradigms in Summarization Research

Paradigm Features Papers

Classical uses location,frequency,
cue. non-learning

(Luhn, 1958; Edmundson, 1969;
Pollock & Zamora, 1999)

Learning
(Statistical)

learns human supplied data.
uses features (e.g., location,
frequency, cues, etc.)

(Kupiec, Pedersen, & Chen,
1995; Aone, Gorlinsky, Larsen,
& Okurowski, 1999; Nomoto &
Matsumoto, 1997; Zechner, 1996;
Gong & Liu, 2001; Nomoto &
Matsumoto, 2001b)

Linguistic exploits discourse structure (Miike, Itoh, Ono, & Sumita,
1994; Marcu, 1999b; Boguraev &
Kennedy, 1999; Barzilay & El-
hadad, 1999)

on the basis of rhetorical structure associated with a text. We empirically examine the

assumption by modeling it in the supervised learning framework and identify difficulties

with the approach and with the theoretical assumption that the approach adopts. Faced

with the problems, we turn in chapter 6 to a radically different assumption that summary-

worthiness of a sentence can be determined without reference to rhetorical structure and

even without supervision by humans. We empirically compare the two assumptions using

a set of data created from a natural language corpus.

In chapter 2 we talk about discourse parsing. The goal there is to discover rhetorical

dependencies among sentences that make up the discourse, for a possible application in text

summarization. A collection of news articles from a Japanese economics daily are manually

marked for dependency relations and used as a training and testing corpus. We construct

a C4.5 based parser to model rhetorical dependencies in text. We further study effects of

features such as clue words, distance and similarity on performance of the discourse parser.

In chapter 3, we discuss some issues related to creating a corpus for the rhetorical

analysis. We introduce Ichikawa’s theory of discourse (ITDR) largely because it allows for

the reduction of annotation labor through simplifying assumptions it makes about Japanese

discourse. We report poor agreement among humans judges on labeling with ITDR, and

discuss improving agreement through some modification of ITDR.
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Chapter 4 addresses the question of how one might reduce the amount of training data

for discourse parsing. The issue of reducing training data is largely motivated by practical

concerns such as reducing work load for labeling, and a rapid system deployment. It is

arguably the case that creating a training corpus with discourse labels involves a great deal

of human efforts.

To that end, we work on two kinds of approaches here: one is what we call the sampling

centric approach (SCA) and the other classifier centric approach (CCA). In SCA, one seeks

to reduce data by selecting only those one finds useful based on some criterion, while in

CCA, one attempts to reduce amounts of data by using a strong classifier with the ability to

generalize itself on a small amount of data. As a representative SCA, we consider a selective

sampling method called the committee-based sampling (CBS) (Dagan & Engelson, 1995;

Engelson & Dagan, 1996), while we implement CCA through a DT extended to support

MDL.

We compare performance of SCA and CCA using a data set created from a Japanese

newspaper corpus. Chapter 5 examines two well-known enhancements to a learning al-

gorithm, namely MDL and boosting, and compares their respective effectiveness on the

analysis of discourse, in particular, the task of identifying rhetorical relations in text. We

create a data set containing 1,736 news paper articles. Each article is hand-annotated with

rhetorical relations. We apply the two enhancements to C4.5 and find out how DT/MDL

and boosted DT compare in performance.

Chapter 6 shifts the focus from supervised to unsupervised paradigm. This shift is

motivated by a concern that the supervised approach to rhetorical parsing tends to perform

poorly presumably due to inconsistencies or variability in annotations produced by humans.

Since the whole business of rhetorical parsing is to provide the rhetorical analysis to be

exploited for summarization, poor performance of parsing leads to a degraded performance

of whatever summarizer we may want to use. Which gave us enough reason to explore an

alternative avenue for text summarization, desirably one which does not rely on human

annotations. One such is what we call a diversity based approach to summarization (DBS),

which we spend most of time discussing in the chapter. It is clustering based and operates

by extracting sentences representative of various topics discussed in the text.

The problem is, however, as was the case with annotation with rhetorical relations,

it is notoriously difficult to establish a unique summary or extract for a given text, as
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people tend to disagree on what they want to see in a summary. We respond to this lack-

of-uniqueness issue by proposing what we call the information-centric evaluation (ICE),

where the quality of a summary is judged not in terms of how well it matches its human-

created version but in terms of how well it serves as a surrogate of the source document in

IR tasks such document retrieval and text categorization. We evaluate performance of the

diversity based approach using a data set known as BMIR-J2 within the ICE framework.

Chapter 7 continues with the theme of the diversity based summarization from a dif-

ferent perspective. In particular, we deal with the question of how closely the diversity

approach models human judgments on summary extraction. We create a test data by ask-

ing human subjects to extract part of a text as a summary. We also make a comparison

between a decision tree based summarizer and the diversity based summarizer.

In chapter 8, we will be talking about combining DT and DBS. The idea is motivated

by results from the previous chapter, which indicate that DT works better than DBS

when there is a strong tendency for people to prefer a particular set of sentences for a

summary, the converse is true when they don’t. Since people may or may not agree on

their preferences for summary sentences, we may expect to do well in both situations by

combing DT and and DBS. Whether or not it is indeed the case is a question that we try

to answer in this chapter.

Chapter 9 is an interesting departure from previous chapters. In contrast to approaches

discussed earlier, which are mostly discriminative, i.e., classificatory, we will work here with

a Bayesian approach to summarization. It takes seriously the distribution of preferences

people have for summary sentences, which we believe to have a shape specific to a given

domain. What we aim to do in the chapter is to build a summarizer based on a probabilistic

model of preferences.



Chapter 2 Rhetorical Parsing and Decision Tree

Learning

2.1 Introduction

Attempts to the automatic identification of a structure in discourse have so far met with

the limited success in the computational linguistics literature. Part of the reason is that,

compared to sizable data resources available for parsing research such as the Penn Tree-

bank (Marcus, Santorini, & Marcinkiewicz, 1993), large corpora annotated for discourse

information are hard to come by. Researchers in discourse usually work with a corpus of

a few hundred sentences (Kurohashi & Nagao, 1994; Litman & Passonneau, 1995; Hearst,

1994). The lack of a large-scale corpus prevented us from making general and reliable

statements about results of discourse studies.

The chapter describes an effort to collect and exploit a large corpus of natural language

data for computational research on discourse, in particular, rhetorical parsing. We begin

by collecting a relative large corpus from a financial newspaper and manually annotating

it with rhetorical information. It is comprised of 645 articles, totalling 12,770 sentences

and 5,352 paragraphs, which is relatively large compared to previous similar efforts in the

discourse research. We annotate each article with what we call rhetorical dependency rela-

tions. We then build a generic discourse parser based on the C4.5 decision tree algorithm

(Quinlan, 1993), which is trained and evaluated on the corpus created. The idea of the

rhetorical parser here is inspired by Haruno (1997)’s work on statistical sentence parsing.

The chapter is organized as follows. Section 2.2 presents a brief review of Rhetorical

Structure Theory (Mann & Thompson, 1987a), which sets a linguistic background for the

discussion on rhetorical parsing. Section 2.3 presents general ideas about statistical parsing

as applied to discourse, in particular, text. After a brief introduction to the decision tree

learning, we discuss how to embed it within a statistical parsing framework. Section 2.4

describes in detail the procedure and evaluation of the current approach.

5
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Table 2-1 An excerpt from a news article.

Music giant sets sights on Internet

Britain’s EMI Group and Time Warner Inc. said Monday they were merging their music
businesses to create the world’s top record company, worth $20 billion, with a powerful
presence on the Internet.

The new music giant, Warner EMI Music, will bring together a star-studded roster of
artists and catalogues in a 50-50 joint venture.

The U.S. group will have management control of the new combine, which will have a
global market share of around 20 percent and annual sales of $8 billion.

Asahi Evening News, Jan. 25, 2000.

S1 S2
elaboration

kk S3

elaboration

zz

Figure 2-1 Schematic representation of rhetorical relations

2.2 Rhetorical Structure Theory: A Review

Since the present approach to rhetorical parsing draws heavily on previous work in text

linguistics (Mann & Thompson, 1987a; Ichikawa, 1990), it would be in order to review

some established work in the field.

In general, text linguistics is concerned with finding regularities in relations among sen-

tences or text fragments spanning multiple sentences. In some instances, relations between

sentences are explicitly signalled by connectives such as because, however, therefore, etc.,

in English. However, more often than not, they are not marked by any linguistic devices.

Consider, for instance, a news article excerpt in Table 2-1. It has three paragraphs. While

there is no explicit cues indicating any discourse relation, it is easy to see that the second

and third paragraph stand in a particular relation to the leading paragraph; that is, both of

them are an elaboration on the first paragraph, giving complementary information on the
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Table 2-2 RST relations (Mann & Thompson, 1987a)

Circumstance
Solutionhood
Elaboration
Enablement and Motivation

Enablement
Motivation

Evidence and Justify
Evidence
Justify

Relations of Cause
Volitional Cause
Non-Volitional Cause
Volitional Result
Non-Volitional Result
Purpose

Antithesis and Concession
Anthithesis
Concession

Condition and Otherwise
Condition
Otherwise

Interpretation and Evaluation
Interpretation
Evaluation

Restatement and Summary
Restatement
Summary

Other Relations
Sequence
Contrast

event described in the first paragraph. Schematically, we have the situation like Figure 2-1,

where Sn represents the n-th paragraph of the article.

Notice, moreover, that the order in which they appear is important for interpreting the

article; exchanging the first and the second paragraphs makes the article a non-sequitur,

while replacing the second with third does not change the general claim of the text as a

whole.

Rhetorical Structure Theory or simply RST (Mann & Thompson, 1987a) represents a

major attempt to construct a linguistic theory of the rhetorical organization of naturally

occurring English texts. It subscribes to the view that a text is a set of sentences arranged

not haphazardly, but in such a way as to achieve some rhetorical goals such as informing,

persuading, motivating, etc. A rhetorical relation according to RST is typically an relation

that holds between two text spans, unbroken non-overlapping linear fragments of text. One

of the text spans is called the nucleus and the other the satellite. RST recognizes the kinds

of relations listed in Table 2-2. The circumstance relation holds if the satellite provides a

temporal or spatial framework in which to interpret the nucleus; the solutionhood relation

holds if the satellite provides some solution to the problem presented in the nucleus; the
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Table 2-3 Circumstance relation (Mann & Thompson, 1987a)

1. Probably the most extreme case of Visitors Fever I have ever witnessed was a few
summers ago

2. when I visited relatives in the Midwest.

Table 2-4 Solutionhood relation from an insurance advertisement on the Web.

1. Why Choose Between Service and Price?
2. Safe drivers can save up to 15%
3. and get expert claims advice with The American Express Property Casualty com-

panies.
4. Save even more with our multi-policy discount.
5. Get a free online quote.

elaboration relation holds if the satellite provides some additional detail for the nucleus.

Now it is important to note that rhetorical relations are generally asymmetrical; if A is

elaboration for B, then B is not elaboration for A. (Recall our discussion on the article

in Table 2-1, where we mentioned that replacing the leading paragraph with the second

makes the text nonsensical, which is a case in point.)

Table 2-3 gives an example of circumstance relation from (Mann & Thompson, 1987a).

The clause “Probably ...” is a nucleus and the when clause a satellite, which sets a temporal

framework in which to interpret the initial clause. Schematically, we have the situation

depicted in Figure 2-2, where S2 represents the second clause and S1 the nucleus.

Table 2-4 illustrates an solutionhood relation, which somewhat differs from the previous

example in that a set of sentences following the initial nucleus clause “Why ... ” collectively

S1 S2

circumstance
uu

Figure 2-2 Schematic representation of circumstance relation
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S1 S2,...,5

solutionhood
uu

Figure 2-3 Schematic representation of solutionhood relation

form a satellite, as schematically represented in Figure 2-3. S1 refers to the initial clause,

which is a nucleus, and S2,...,5 sentences 2 through 5.

As for elaboration relation, the reader is referred to Table 2-1, which provides a good

illustration of the relation, and also to the discussion thereof.

RST makes several strong claims about what the rhetorical organization of text should

look like as listed below:

completeness The rhetorical structure of a text consists of a set of rhetorical rela-
tions, and there is one “root” relation that spans the entire text.

connectedness Each text span is part of some rhetorical relation.
uniqueness Each rhetorical relation accounts for a different set of text spans.
adjacency One text span does not overlap another text span.

Thus RST demands in effect that a rhetorical analysis be a tree covering the entire text.

The realization that a rhetorical relation is asymmetrical and one member of the relation

is more central to the function of the text than the other is one of the most important

contributions of RST to computational as well as text linguistics. Indeed, in the natural

language processing community, there has been a strong expectation that asymmetries of

rhetorical relations can be exploited to provide useful information for text summarization

and information extraction.

The problem, however, is that at present there is no robust method available for iden-

tifying such abstract relations. The purpose of the present chapter is to explore the use of

machine learning techniques to furnish such a method.1

1Throughout the rest of the chapter, we use “discourse relation” and “rhetorical relation”, interchange-
ably.
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S0

S1

S2

S3

S4

S8

S9

S5

S6 S7

S10

S11

S12

S13

S14

Figure 2-4 A discourse tree. ‘S’ denotes a sentence.

2.3 Statistical Approach to Rhetorical Parsing

The foremost job of parsing is to find whatever dependencies there are among minimal

units that constitute a particular linguistic object. In the context of rhetorical parsing, we

view minimal units as corresponding to sentences, and an linguistic object to a discourse

or a text. So a dependency we are looking for is a rhetorical relation between a pair of

sentences, where the interpretation of a satellite sentence literally depends on that of the

nucleus, as discussed above.

Then the task of a discourse parser is to take as inputs a discourse, or a set of sentences

that make up a discourse and to produce as output a parse, or a set of dependency relations

(which may give rise to a tree-like structure as in Figure 2-4). In statistical parsing, this

could be formulated as a problem of finding a best parse with a model P (T | D), where T

is a set of dependencies and D a discourse.

Tbest = arg maxTP (T | D)

Tbest is a set of dependencies that maximizes the probability P (T | D). Further, we

assume that a discourse D is a set of sentences marked for some pre-defined set of features

F = {f1, . . . , fn}. Let CF (S1) be a characterization of sentence S1 in terms of a feature set

F . Then for D = {S1, . . . , Sm}, CF (D) = {CF (S1),CF (S2), . . . ,CF (Sm)}. Let us assume

that:

P (T | D) =
∏

A←B∈T

P (A← B | CF (D)).
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Table 2-5 An illustration: hotel preferences. ‘Bath/shower’ means a room has a bath,
a shower or none. ‘Time’ means the travel time in min. from an airport. ‘Class’ indicates
whether a particular hotel is a customer’s choice.

bath/shower time room rate class

1 bath 15 expensive no
2 shower 20 inexpensive no
3 shower 10 inexpensive yes
4 bath 15 moderate yes
5 bath 25 moderate yes
6 none 20 inexpensive no
7 shower 50 inexpensive no

‘A← B’ reads like “ sentence B is dependent on sentence A”, where A,B ∈ {S1, . . . , Sm}.
The probability that T is an actual parse of discourse D is estimated as the product of

probabilities of its member dependencies when a discourse has a representation CF (D).

We make a usual assumption that member dependencies are probabilistically independent.

2.3.1 Decision Tree Model

A general framework for discourse parsing described above is thus not much different

from that for statistical sentence parsing. Differences, however, lie in a makeup of the

feature set F . Rather than to use information on word forms, word counts, and part-

of-speech tags as in much research on statistical sentence parsing, we exploit as much

information as can be gleaned from a discourse, such as lexical cohesion, distance, location,

and clue words, to characterize a sentence. Therefore it is important that you do not end

up with a mountain of irrelevant features.

A decision tree method represents one of approaches to classification problems, where

features are ranked according to how much they contribute to a classification, and models

are then built with features most relevant to that classification. Suppose, for example,

that you work for a travel agency and want to find out what features of a hotel are more

important for tourists, based on data from your customers like Table 2-5. With decision

tree techniques, you would be able to tell what features are more closely associated with

customers’ preferences.
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bath/shower

room rate

bath

time

shower

NO

none

NO

expensive

YES

moderate

YES

<=15

NO

>15

Figure 2-5 A decision tree for the hotel example.

The aim of the decision tree approach is to induce rules from data that best characterize

classes. A particular approach called C4.5 (Quinlan, 1993), which we adopt here, builds

rules by recursively dividing the training data into subsets until all divisions contain only

single class cases. In which subset a particular case is placed is determined by the outcome

of a ‘test’ on that case. Let us explain how this works by way of the hotel example above.

Suppose that the first test is “bath/shower”, which has three outcomes, bath, shower, and

none. Then the data set breaks up into three groups, {1,4,5} (bath), {2,3,7} (shower),

and {6}(none). Since the last group {6} consists of only a single case, there is no further

division of the group. The bath group, being a multi-class set, is further divided by a test

“room rate”, which produces two subdivisions, one with {1} (expensive), and the other

with {4,5} (moderate). Either set now consists of only single class cases. For the shower

group, applying the time test(<=15) would produce two subsets, one with {3}, and the

other with {2,7}.2 Either one now contains cases from a single class. A decision tree for

divisions we made is shown in Figure 2-5.

Now compare a hand-created decision tree in Figure 2-5 with one in Figure 2-6, which

is generated by C4.5 for the same data. Surprisingly, the latter tree consists of only one

test node. This happens because C4.5 ranks possible tests, which we did not, and apply

one that gives a most effective partitioning of data based on information-theoretic criteria

known as the gain criterion and the gain ratio criterion (See Appendix A.1). The intuitive

idea behind the criteria is to prefer a test with a least entropy, i.e., a test that partitions

2Here we choose a midpoint between 10 and 20 as in C4.5.
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room rate (7)

NO (1)

expensive

YES (2)

moderate

NO (4/1)

inexpensive

Figure 2-6 A tree for the hotel example by C4.5. Figures in parentheses indicate the
number of cases that reach relevant nodes. A figure after a slash, e.g. (4/1), indicates the
number of misclassified cases.

data in such a way that a particular class may become dominant for each subset it creates.

Thus a feature that best accounts for a class distribution in data is always chosen in

preference to others. For the data in Table 2-5, C4.5 determined that the test room rate

is a best class identifier and everything else is irrelevant to identifying the classes. All that

one needs to account for the class distribution in Table 2-5 turn out to be just one feature.

So we might just as well conclude that the customers are just interested in the room charge

when they pick up a hotel.

A benefit of using the decision tree method is that it enables us to identify relevant

features for classification and disregard those that are not relevant, which is particularly

useful for a task such as ours, where a large number of features are potentially involved

and their relevance to classification is not always known.

2.3.2 Parsing with Decision Tree

As we mentioned in section 2.3, we define discourse parsing as a task of finding a best

tree T , or a set of dependencies among sentences that maximizes P (T | D).

Tbest = arg maxTP (T | D)

P (T | D) =
∏

A←B∈T

P (A← B | CF (D)).

What we do now is to equip the model with a feature selection functionality. This can be

done by assuming:

P (A← B | CF (D)) =
P (A← B | CF (D),DTF )∑

X<B

P (X ← B | CF (D),DTF )
(2-1)



2 RHETORICAL PARSING AND DECISION TREE LEARNING 14

dist

YES (10/3)

<=3

YES (14/8)

>3

Figure 2-7 A hypothetical decision tree.

DTF is a decision tree constructed with a feature set F by C4.5. ‘X < B’ means that X

is a sentence that precedes B.3P (X ← Y | CF (D),DTF ) is the probability that sentence

Y depends on sentence X under the condition that both CF (D) and DTF are used. We

estimate P , using class distributions from the decision tree DTF . For example, we have

numbers in parentheses after leaves in the decision tree in Figure 2-6. They indicate

the number of cases that reach a particular leaf and also the number of misclassified

cases. Thus a leaf with the label inexpensive has the total of 4 cases, one of which is

misclassified. This means that we have 3 cases correctly classified as “NO” and one case

wrongly classified. Thus a class distribution for “NO” is 3/4 and that for “YES” is 1/4. In

practice, however, we slightly correct class frequencies, using Laplace’s rule of succession,

i.e., x/n→ x+ 1/n+ 2.

Now suppose that we have a discourse D = {. . . , Si, . . . , Sj, . . . , Sk, . . . } and want to

know what Si depends on, assuming that Si depends on either Sj or Sk. To find that out

involves constructing CF (D) and DTF . Let us represent sentences Sj and Sk in terms of

how far they are separated from Si, measured in sentences. Suppose that dist(Sj) = 2 and

dist(Sj) = 4; that is, sentence Sj appears 2 sentences behind Si and Sk 4 sentences behind.

Assume further that we have a decision tree constructed from data elsewhere that looks

like Figure 2-7.

With CF (D) and DTF at hand, we are now in a position to find P (A← B | CF (D)),

3Note that here we are in effect making a claim about the structure of a discourse, namely that a
sentence modifies one that precedes it. Changing it to something like ‘X ∈ D, X 6= B’ allows one to have
forward as well as backward dependencies.
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for each possible dependency Sj ← Si, and Sk ← Si.

P (Sj ← Si | Cdist(D),DTdist)
= (10− 3 + 1)/(10 + 2)
= .67

P (Sk ← Si | Cdist(D),DTdist)
= (14− 8 + 1)/(14 + 2)
= .44

Since Si links with either Sj or Sk, by Equation 2-1, we normalize the probability estimates

so that they sum to 1.

P (Sj ← Si | Cdist(D)) = .67/(.67 + .44) = .60

P (Sk ← Si | Cdist(D)) = .44/(.67 + .44) = .40

Recall that class frequencies are corrected by Laplace’s rule. Let Tj = {Sj ← Si} and

Tk = {Sk ← Si} Then P (Tj | D) > P (Tk | D). Thus Tbest = Tj. We conclude that Si is

more likely to depend on Sj than Sk.

2.3.3 Features

The following list a set of features we used to encode a discourse. As a convention, we

refer to a sentence for which we like to find a dependency as ‘B’, and a sentence preceding

‘B’ as ‘A’.

<DistSen> records information on how far ahead A appears from B, measured in sen-

tences.
#S(B)−#S(A)

Max Sen Distance

‘#S(X)’ denotes an ordinal number indicating the position of a sentence X in a text, i.e.,

#S(kth sentence) = k. ‘Max Sen Distance’ denotes a distance, measured in sentences,

from B to A, when B occurs farthest from A, i.e., #S(last sentence in text)− 1. DistSen

thus has continuous values between 0 and 1. We discard texts which contain no more than

one sentence.
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<DistPar> is defined similarly to DistSen, except that the distance is measured in para-

graphs.
#Par(B)−#Par(A)

Max Par Distance

‘Par(X)’ is a paragraph that contains a sentence X, and ‘#Par(X)’ denotes an ordinal

number of Par(X). ‘Max Par Distance’ is a maximal distance one could have between two

paragraphs in a text, that is, #Par(last sentence in text)− 1.

<LocSen> defines the location of a sentence by:

#S(X)

#S(Last Sentence)

Here ‘Last Sentence’ is the last sentence of a text. LocSen takes values between 0 and 1.

A discourse-initial sentence takes 0, and a discourse-final sentence 1.

<LocPar> is defined similarly to DistPar. It gives information on the location of a

paragraph in which a sentence X occurs.

#Par(X)

#Last Paragraph

‘#Last Paragraph’ is the position of the last paragraph in a text, represented by its ordinal

number.

<LocWithinPar> gives information on the location of a sentence X within a paragraph

in which it appears.
#S(X)−#S(Par Init Sen)

Length(Par(X))

‘Par Init Sen’ refers to the initial sentence of a paragraph in which X occurs, ‘Length(Par(X))’

denotes the number of sentences that occur in that paragraph. LocWithinPar takes con-

tinuous values ranging from 0 to 1. A paragraph initial sentence would have 0 and a

paragraph final sentence 1.

<LenText> the length of a text, measured in Japanese characters.

<LenSenA> the length of A in Japanese characters.

<LenSenB> the length of B in Japanese characters.
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<Sim> gives information on the lexical similarity between A and B, based on an information-

retrieval measure known as tf ·idf .4 One important point here is that we did not use words

per se in measuring the similarity. What we did was to break up nominals from sentences

into simple characters (grapheme) and use only them to measure the similarity. We did

this to deal with abbreviations and rewordings, which we found quite frequent in the corpus

we used.

<Sim2> same as Sim feature, except that the similarity is measured between A and

Par(B), a paragraph in which B occurs. We define Sim2 as ‘SIM(A,Concat(Par(B)))’

(see footnote 4 for the definition of SIM), where ‘Concat(Par(B))’ is a concatenation of

sentences in Par(B).

<IsATitle> indicates whether A is a title. We regarded a title as a special sentence that

initiates a discourse.

<Clues> differs from features above in that it does not refer to any single feature but is

a collective term for a set of clue-related features, each of which is used to indicate the

presence or absence of a relevant clue in A and B. We examined N most frequent words

found in a corpus and associated each with a different clue feature. We experimented with

cases where N is 0, 100, 500 and 1000. A sentence can be marked for a multiple number

of clue expressions at the same time. For a clue c, an associated Clues feature c′ takes

one of the four values, depending on the way c appears in A and B. c′ = 0 if c appears in

neither A or B; c′ = 1 if c appears in both A and B; c′ = 2 if c appears in A and not in B;

4For a word j ∈ Si, its weight wij is defined by:

wij = tfij · log
N

dfj

dfj is the number of sentences in the text which have an occurrence of a word j. N is the total number
of sentences in the text. The tf · idf metric has the property of favoring high frequency words with local
distribution. For a pair of sentences X = {x1, . . . } and Y = {y1, . . . }, where x and y are words, we define
the lexical similarity between X and Y by:

SIM(X, Y ) =

t∑

i=1

w(xi)w(yi)

√√√√
t∑

i=1

w(xi)2 ·
t∑

i=1

w(yi)2
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Table 2-6 Top 20 lexical clues. Suushi below is a grammar term of a class of numerals.
Since there are infinitely many of them, we decided not to treat them individually, but to
represent them collectively with a single feature suushi.

lemma explanation

、 comma
。 period

suushi∗ numerals
wa topic marker

suru ‘do’
」 right angular parenthesis
「 left angular parenthesis
mo topic marker
( left parenthesis
) right parenthesis

nado ‘so forth’
－ dash
nai negative auxiliary
aru ‘exist’,‘be’
kara ‘from’
koto nominalizer
dewa topic marker
nen ‘year’
hi ‘day’
no possessive particle

and c′ = 3 if c appears not in A but in B. We consider clue expressions from the following

grammatical classes: nominals, adjectives, demonstratives, adverbs, sentence connectives,

verbs, sentence-final particles, topic-marking particles, and punctuation marks.5 While we

did not consider a complex clue expression, which can be made up of multiple elements

from various grammatical classes6, it is possible to think of a complex clue in terms of its

component clues for which a sentence is marked.

5They are extracted from a corpus by a Japanese tokenizer program (Sakurai & Hisamitsu, 1997).
6English examples would be for example, as a result, etc., which are thought of as an indicator of a

discourse relationship.
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Classes For a sentence pair A and B, the class is either yes or no, corresponding to the

presence or absence of a dependency link from B to A.

The features above are more or less plucked from the air. Some are motivated, and

some are less so. Our strategy here, however, is to rely on the decision tree mechanism to

select ‘good’ features and filter out features that are not relevant to the class identification.

Let us make further notes on the issue of encoding a discourse with the set of features

we have described. We characterize a sentence in relation to its potential nucleus sentence,

a sentence which it is likely to depend on. Thus encoding is based on a pair of sentences,

rather than on a single sentence. For example, a discourse D = {S1, S2, S3} would give a

set of possible dependency pairs P(D) = {< S2, S1 >,< S3, S1 >,< S1, S2 >,< S3, S2 >

,< S1, S3 >,< S2, S3 >}. We assume that CF (D) = CF (P(D)). Furthermore, we could

constrain P by focusing only on pairs of a particular type. If we are interested only in

backward dependencies, then we will have P(D) = {< S1, S2 >,< S1, S3 >,< S2, S3 >}.
In experiments to be described below, for more or less practical purposes such as less-

ening the burden of annotators and speeding up the annotation process, we adopted a

moderate version of RST with the following constraints.

1. A text consists solely of backward dependencies.

2. Each sentence has exactly one preceding nucleus.

3. A text may have crossing dependencies.

Note that the adjacency principle is no longer upheld by the moderate version.

2.4 Evaluation

2.4.1 Test Data

To evaluate our method, we have done a set of experiments, using data from a Japanese

economics daily (Nihon-Keizai-Shimbun-Sha, 1995). They consist of 645 articles of diverse

text types (prose, narrative, news report, expository text, editorial, etc.), which are ran-

domly drawn from the entire set of articles published during the year. Sentences and

paragraphs contained in the data set totalled 12,770 and 5,352, respectively. We had, on

the average, 984.5 characters, 19.2 sentences, and 8.2 paragraphs, for one article in the
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data. Each sentence in an article was annotated with a link to its associated nucleus sen-

tence. Annotations were given manually by the first author. Each sentence was associated

with exactly one sentence.

In assigning a link tag to a sentence, we did not follow any specific discourse theories

such as Rhetorical Structure Theory (Mann & Thompson, 1987b). This was because they

often do not provide information on discourse relations detailed enough to serve as tagging

guidelines. In the face of this, we fell back on our intuition to determine which sentence links

with which. Nonetheless, we followed an informal rule, motivated by a linguistic theory of

cohesion by Halliday and Hasan (1990): which suggests that we relate a sentence to one that

is contextually most relevant to it, or one that has a cohesive link with it. This included

not only rhetorical relationships such as ‘reason’, ‘cause-result’, ‘elaboration’, ‘justification’

or ‘background’ (Mann & Thompson, 1987b), but also communicative relationships such

as ‘question-answer’ and those of the ‘initiative-response’ sort (Fox, 1987; Levinson, 1994;

Carletta et al., 1997).

Since the amount of data available at the time of the experiments was rather moderate

(645 articles), we decided to resort to a test procedure known as cross-validation. The

following is a quote from Quinlan (1993).

“In this procedure, the available data is divided into N blocks so as to make

each block’s number of cases and class distribution as uniform as possible. N

different classification models are then built, in each of which one block is

omitted from the training data, and the resulting model is tested on the cases

in that omitted block.”

The average performance over the N tests is supposed to be a good predictor of the

performance of a model built from all the data. It is common to set N = 10.

However, we are concerned here with the accuracy of dependency parses and not with

that of class decisions by decision tree models. This requires some modification to the way

the validation procedure is applied to the data. What we did was to apply the procedure

not on the set of cases as in C4.5, but on the set of articles. We divided the set of articles

into 10 blocks in such a way that each block contains as uniform a number of sentences

as possible. The procedure would make each block contain a uniform number of correct

dependencies. (Recall that every sentence in an article is manually annotated with exactly
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Table 2-7 Effects of lexical clues on the performance of models. N is the number of
clues used. Figures in parentheses represent the ratio of improvements against a model
with N = 0.

N = 0 N = 100 N = 500 N = 1000

0.642 0.635 (−1.100%) 0.632 (−1.580%) 0.628 (−2.220%)

one link. So the number of correct links equals that of sentences.) The number of sentences

in each block ranged from 1,256 to 1,306.

The performance is rated for each article in the test set by using a metric:

precision =
number of correct dependencies retrieved

total number of dependencies retrieved

At each validation step, we took an average performance score for articles in the test set

as a precision of that step’s model. Results from 10 parsing models were then averaged to

give a summary figure.

2.4.2 Results and Analyses

We list major results of the experiments in Table 2-7, The results show that clues are

not of much help to improve performance. Indeed we get the best result of 0.642 when

N = 0, i.e., the model does not use clues at all. We even find that an overall performance

tends to decline as models use more of the words in the corpus as clues. It is somewhat

tempting to take the results as indicating that clues have bad effects on the performance

(more discussion on this later). This, however, appears to run counter to what we expect

from results reported in prior work on discourse(Kurohashi & Nagao, 1994; Litman &

Passonneau, 1995; Grosz & Sidner, 1986; Marcu, 1997), where the notion of clues or cue

phrases forms an important part of identifying a structure of discourse.7

Table 2-8 shows how the confidence value (CF) affects the performance of discourse

models. The CF represents the extent to which a decision tree is pruned; A small CF

leads to a heavy pruning of a tree. The tree pruning is a technique by which to prevent a

7One problem with earlier work is that evaluations are done on very small data; 9 sections from a
scientific writing (approx. 300 sentences) (Kurohashi & Nagao, 1994); 15 narratives (1113 clauses) (Litman
& Passonneau, 1995); 3 texts (Marcu, 1997). It is not clear how reliable estimates of performance obtained
there would be.
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Table 2-8 Effects of pruning on performance. CF refers to a confidence value. Small
CF values cause more prunings than large values.

Clues CF = 5% CF = 10% CF = 25% CF = 50% CF = 75% CF = 95%

0 0.626 0.636 0.642 0.633 0.625 0.624
100 0.629 0.627 0.635 0.626 0.614 0.609
500 0.626 0.630 0.632 0.616 0.604 0.601
1000 0.628 0.627 0.628 0.616 0.601 0.597

decision tree from fitting training data too closely. The problem of a model fitting data too

closely or overfitting usually causes an increase of errors on unseen data. Thus a heavier

pruning of a tree would result in a more general tree.

While Haruno (1997) reports that a less pruning produces a better performance for

Japanese sentence parsing with a decision tree, results we got in Table 2-8 show that this

is not true with discourse parsing. In Haruno (1997), the performance improves by 1.8%

from 82.01% (CF = 25%) to 83.35% (CF = 95%). 25% is the default value for CF in

C4.5, which is generally known to be the best CF level in machine learning. Table 2-8

shows that this is indeed the case: we get a best performance at around CF = 25% for all

the values of N .

Let us turn to effects that each feature might have on the model’s performance. For each

feature, we removed it from the model and trained and tested the model on the same set of

data as before the removal. Results are summarized in Table 2-9. It was found that, of the

features considered, DistSen, which encodes a distance between two sentences, contributes

most to the performance; at N = 0, its removal caused as much as an 8.62% decline in

performance. On the other hand, lexical features Sim and Sim2 made little contribution

to the overall performance; their removal even led to a small improvement in some cases,

which seems consistent with the earlier observation that lexical features are a poor class

predictor.

To further study effects of lexical clues, we have run another experiment where clues

are limited to sentence connectives (as identified by a tokenizer program). Clues included

any connective that has an occurrence in the corpus, which is listed in Table 2-10. Since

a sentence connective is relevant to establishing inter-sentential relationships, it was ex-



2 RHETORICAL PARSING AND DECISION TREE LEARNING 23

pected that restricting clues to connectives would improve performance. As with earlier

experiments, we have run a 10-fold cross validation experiment on the corpus, with 52

attributes for lexical clues. We found that the accuracy was 0.642. So it turned out that

using connectives is no better than when we do not use clues at all.

Figure 2-8 gives a graphical summary of the significance of features in terms of the ratio

of improvement after their removal (given as parenthetical figures in Table 2-9). Curiously,

while the absence of the DistSen feature caused a largest decline, the significance of a

feature tends to diminish with the growth of N . The reason, we suspect, may have to do

with the susceptibility of a decision tree model to irrelevant features, particularly when

their number is large. But some more work needs to be done before we can say anything

about how irrelevancy affects a parser’s performance.

One caveat before leaving the section; the experiments so far established neither positive

or negative correlation between the use of lexical information and the performance on

discourse parsing. To say anything definite would probably require experiments on a corpus

much larger than is currently available. However, it would be safe to say that distance and

length features are more prominent than lexical features when a corpus is relatively small.
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Table 2-10 Connectives found in the corpus. Underlined items (also marked with an
asterisk) are those that the tokenizer program erroneously identified as a connective.

shikashi but, ippou whereas, daga but, soreo (?), shikamo moreover, toko-
roga but, soshite and, soreni moreover, sokode incidentally, soredemo still,
sore (?), tadashi provided that, soredakeni all the more because, tokini by
the way, dakara so, demo but, sonoue moreover, sitagatte therefore, dewa
now, nimokakawarazu despite, soredewa well, sorede and then, sorekara af-
ter that, towaie nevertheless, shitagatte therefore, tsuide while, katoitte
but, dakarakoso consequently, matawa or, soretomo or else, soreto for an-
other thing, nanishiro anyhow, omakeni in addition, sunawachi in other
words, toiunowa because, naraba if, sonokawari instead, samunakuba or else,
sunawachi namely, naishiwa or, sate by the way, toshite (?), toiunomo be-
cause, sorenimokakawarazu nonetheless, sorenishitemo yet, oyobi moreover,
tokorode incidentally, nazenara because, tosureba if, nanishiro anyhow, otto
(?), nanoni but

Finally, Figure 2-9 shows an experimental reading aid which makes use of the rhetorical

parser. It generates a fully connected rhetorical tree and allows the user to fold and unfold

a given subtree while reading the text: at the initial state, the user is presented only

with with the top node (left panel). Unfolding it gives the user more details about topics

discussed in the node. So if the user does not wish to bother about details, all he or she

has to do is just to keep the node folded, which spares the user trouble reading parts he

or she is not interested in. Thus the aid provides the user with some control over what to

read in the text.

2.5 Summary

The chapter demonstrated how it is possible to build a discourse parser which performs

reasonably well on diverse data. It relies crucially on (a) feature selection by the decision

tree model and (b) the way a discourse is encoded. While we have found that distance and

length features are more prominent than lexical features, we were not able to establish the

usefulness of the latter features, which is expected from earlier work on discourse as well

as on sentence parsing (Magerman, 1995; Collins, 1996).
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One of the important questions that remain is whether the consistency or integrity of

annotations by humans in any way affects performance of the parser trained on them. We

will return to the issue in a slightly different guise in chapter 7.



Chapter 3 Towards Learning Rhetorical Relations

In this chapter and the next two, we are going to be concerned with the computational

analysis of rhetorical relations and how to bring machine learning to bear on it. We

learned from the previous chapter that manual annotation of rhetorical dependencies is

prone to inconsistency and incoherence due to the lack and, perhaps, impossibility of

objective rules to follow. So, from the results obtained, it is not possible to extrapolate

general performance of the rhetorical parser on data elicited from humans. In face of

this problem, we will attempt some reformulation of the problem, which involves making

simplifying assumptions about rhetorical structure and introducing explicit and intuitively

clear guidelines.

3.1 Rhetorical Theories and Corpus Development

Since, at the time of the research, there was no discourse corpus available for rhetorical

relations, we decided to create one by collecting news articles from a Japanese financial

paper, and hand-labeling each sentences with a possible discourse or rhetorical relation,

drawing largely on Ichikawa’s theory of discourse relations (ITDR) (Ichikawa, 1990) (Ta-

ble 4-2). We chose ITDR over other more popular theories mainly because it makes a

number of assumptions about discourse which make itself an easy guideline to follow when

annotating the corpus. For instance, ITDR directly associates discourse relations with

explicit surface cues (e.g., sentential connectives), making it possible for the coder to de-

termine a discourse relation by figuring out a most natural cue that goes with the sentence.

In contrast, rhetorical structure theory (RST)(Mann & Thompson, 1987a) , which is one

of the more popular theories of discourse, assumes discourse relations to be highly ab-

stract ones, and their relation to actual sentences is far more indirect (see Section 2.2 for

a review).

29
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Table 3-1 Taxonomy of discourse relations (Ichikawa, 1990).

The leftmost column lists major classes and the center subclasses. The rightmost lists
some examples associated with each subclass. Note that expanding has no examples in
it because Japanese makes available no explicit cue to mark the relation.





logical consequential dakara therefore, shitagatte thus
antithesis shikashi but, daga but

sequence additive soshite and, tsuigi-ni next
contrast ippô in contrast, soretomo or
initiation tokorode to change the subject,

sonouchi in the meantime
elaboration appositive tatoeba for example,

yôsuruni in other words
complementary nazenara because,

chinamini incidentally
expanding

Another advantage of ITDR is that it attempts to characterize discourse in terms of

local relations holding between adjacent sentences, which, we expected, would further

lessen the difficulty of annotation and increase the reliability of the corpus1.

In ITDR, discourse relations are organized into three major classes: the first class

includes logical (or strongly semantic) relations where one sentence is a logical consequence

or contradiction of another; the second class consists of sequential relations where two

semantically independent sentences are juxtaposed; the third class includes elaboration-

type relations where one of the sentences is semantically subordinate to the other.

When labeling sentences, coders were instructed not to identify abstract discourse re-

lations such as logical, sequence and elaboration, but to choose from a list of

pre-determined connective expressions. We expected that the coder would be able to iden-

tify a discourse relation with more confidence when working with explicit cues than with

abstract concepts of discourse relations. Moreover, since 93% of sentences considered for

labeling in the corpus did not contain any of pre-determined relation cues, the annotation

task was in effect one of guessing a possible connective cue that may go with a sentence.

1This does not mean to say that all of the discourse relations are local. There could be exceptions that
involve sentences separated far apart. However we did not consider non-local relations, as our preliminary
study found that they are rarely agreed upon by coders.
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Figure 3-1 Emacs based annotation aid
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Table 3-2 Average kappa agreement among three humans on three annotation tasks
under the ITDR paradigm. “3 class” denotes a three-way classification task where one is
asked to first identify pairs of rhetorically associated sentences and then determine for each
pair whether the association is “logical”, “sequence”, or “elaboration.” The second column
gives an agreement score as found when the three-way taxonomy of relations is reorganized
into two groups, elaboration and non-elaboration. The third column shows what happens
in terms of agreement when we take out relation types and consider dependencies alone.

3 class 2 class dep. only

0.333 0.708 0.956

The advantage of using explicit cues to identify discourse relations is that even if one has

little or no background in linguistics, he or she may be able to assign a discourse rela-

tion to a sentence by just asking him/herself whether the associated cue fits well with

the sentence. In addition, in order to make the usage of cues clear and unambiguous, the

annotation instruction carried a set of examples for each of the cues. Further, we devel-

oped an emacs-based software aid which guides the coder to work through a corpus and

also is capable of prohibiting the coder from making moves inconsistent with the coding

instruction (Figure 3-1).

A preliminary study, however, found that coders only modestly agree even on the three

major relations (logical, sequence and elaboration) (κ = 0.333 for three coders, see

Table 3-2). But agreement climbed to 0.708 when we used a two-way categorization scheme

involving elaboration and non-elaboration, where the the latter subsumes logical

and sequence, which suggests that humans are more reliable in recognizing elaboration

than any other relation, and therefore gives some ground for preferring the elaboration/non-

elaboration dichotomy over the three-way taxonomy as formulated in Table 4-2. Let us

note parenthetically that high agreement on dependencies in Table 3-2 is attributable to

the fact that humans worked on a paragraph-by-paragraph basis.

Moreover, the elaboration/non-elaboration dichotomy can be motivated by its poten-

tial use for applications such as automatic text summarization, where the distinction plays

an important role; as suggested in Mann and Thompson (1987a), one simple approach to

summarization is to eliminate elaborations from the text. Moreover, it is arguable that the

non-elaboration/elaboration distinction correspond to the nuclear/satellite distinction in
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rhetorical structure theory (Mann & Thompson, 1987a). Intuitively, nuclear elements of

the text are something that could be understood by itself and without which the text be-

comes incomprehensible. Satellites are elements whose interpretation cannot be determined

independent of other elements such as sentences or clauses. In Table 4-1, for instance, the

leading sentence is a nuclear, for it can be understood by itself, whereas the second and

third sentences are satellites because they will become a non sequitur if we remove the lead-

ing paragraph. RST also claims that satellites could be dispensed with without affecting

the coherence of the text. It is this claim that makes the nuclear/satellite dichotomy par-

ticularly important for text summarization, since it means that we could make a coherent

summary simply by identifying satellites and then removing them. This stands in contrast

to other extraction-based approaches to summarization, which usually destroy the integrity

or coherence of the text. So the non-elaboration/elaboration distinction has practical as

well as linguistic significance. Chapter 6 will discuss some computational consequences of

this idea.

Prompted by above considerations, we decided to work with elaboration/non-elaboration

scheme instead of a taxonomy involving three or more relations as originally given in

Ichikawa (1990).



Chapter 4 A Minimally Supervised Learning of

Rhetorical Relations

4.1 Introduction

The success of corpus-based approaches to discourse ultimately depends on whether

one is able to acquire a large volume of data annotated with discourse-level information.

However, to acquire merely a few hundred texts annotated for discourse information is

often impossible due to the enormity of the human labor required.

This chapter explores several approaches to reducing labeled data for training a decision

tree classifier in the discourse domain. While there has been some work exploring the use

of machine leaning techniques for discourse and dialog (Marcu, 1997; Samuel, Carberry, &

Vijay-Shanker, 1998; Choi, Cho, & Seo, 1999; Marcu & Echihabi, 2002), to our knowledge,

no computational research on discourse or dialog so far has addressed the problem of

minimizing data for training a learning algorithm.1

One obvious way to reduce training data is by avoiding data which do not contribute

to improving performance. A representative approach of this sort is known as committee-

based sampling (CBS), a voting-based sampling method initially proposed for Bayesian

classifiers by Dagan and Engelson (1995), where an example is selected from the corpus,

according to its utility in improving statistics. To use CBS with decision trees, however,

requires some modifications to the way committee members are generated, since there is

no straightforward way to randomize model parameters as in Bayesian classifiers. In the

present chapter, we experimented with two methods for model generation: bootstrapping

(Cohen, 1995) and randomization (Dietterich, 2000).

1One caveat. Later in the chapter, we will introduce a model selection scheme known as the minimum
description length principle or MDL, which, though it bears the word minimum, has nothing to do with
the issue of minimizing training data. It refers to a well known criterion for selecting among statistical
models (Rissanen, 1997), and is used here to help boost performance of a decision tree algorithm. Similar
principles include Bayesian Information Criterion and Akaike Information Criterion (Duda, Hart, & Stork,
2001).

34



4 A MINIMALLY SUPERVISED LEARNING OF RHETORICAL RELATIONS 35

Table 4-1 An excerpt from a news article.

Music giant sets sights on Internet

Britain’s EMI Group and Time Warner Inc. said Monday they were merging their music
businesses to create the world’s top record company, worth $20 billion, with a powerful presence
on the Internet.

The new music giant, Warner EMI Music, will bring together a star-studded roster of artists
and catalogs in a 50-50 joint venture.

The U.S. group will have management control of the new combine, which will have a global
market share of around 20 percent and annual sales of $8 billion.

Asahi Evening News, Jan. 25, 2000.

Cotraining represents another entirely different approach to reducing supervision (Collins

& Singer, 1999; Blum & Mitchell, 1998; Abney, 2002).2 Cotraining is an attempt to make

most use of unlabeled data for training a classifier. It starts by training two distinct clas-

sifiers on a small set of labeled data, and bootstraps the classifiers by training them on

each other’s outputs from unlabeled data. Collins and Singer (1999) report some promising

results for cotraining on named entity tasks.

The present approach to discourse analysis is much informed by previous work on text

linguistics (Mann & Thompson, 1987a; Ichikawa, 1990). In general, text linguistics is

concerned with finding regularities in relations among sentences or text-parts spanning

multiple sentences. In some instances, relations between sentences are explicitly signaled

by connectives such as because, however, or therefore. However, it is often the case that

they are not marked by any linguistic means.

Consider for instance a news article excerpt with three paragraphs in Table 4-1.3 While

there is no explicit cues indicating any discourse relation, it is easy to see that the second

2Note that bootstrapping here refers to a particular statistical method for generating a sampling dis-
tribution without having to know anything about the population distribution (Efron & Tibshirani, 1993;
Cohen, 1995), which is to be distinguished from its use in the NLP literature, where it usually means a
method which incrementally learns by feeding upon itself.

3The sentences in Table 4-1 are presented as they appear in a news article. We call them paragraphs
because each of them starts with an indentation.
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Table 4-2 Taxonomy of discourse relations (Ichikawa, 1990). The leftmost column lists
major discourse relations and the center subrelations. The rightmost lists some connectives
associated with each subrelation. Note that expansion has no explicit connectives to mark
the relation.





logical consequential dakara therefore, shitagatte thus
antithesis shikashi but, daga but

sequence additive soshite and, tsuigi-ni next
contrast ippô in contrast, soretomo or
initiation tokorode to change the subject,

sonouchi in the meantime
elaboration appositive tatoeba for example,

yôsuruni in other words
complementary nazenara because,

chinamini incidentally
expansion no relevant cues

and third paragraph stand in a particular relation to the leading paragraph; that is, both

of them are an elaboration on the first paragraph, giving complementary information on

the event described in the first paragraph.

Notice moreover that the order in which they appear is important for interpreting the

article; exchanging the first and the second paragraphs makes the article somewhat less

readable, though exchanging the second and third does not affect the readability. Thus

being in a particular relation has some syntactic consequences as well.4

In the natural language processing community, there is a popular belief that text-level

dependencies such as discourse relations could provide useful information for text sum-

marization and information extraction. Recent years have witnessed a growing interest in

this area. Nomoto and Matsumoto (1998) apply a probabilistic decision tree to identifying

discourse-level dependency relations in Japanese texts. Marcu (1999a) makes use of the

C4.5 decision tree which refers to explicit linguistic cues, among others, to identify rhetor-

ical relations in the text and reports that its performance is moderately comparable to

humans. Choi et al. (1999) develop a statistical approach based on the maximum entropy

model and puts it to the task of marking off a subdialog boundary. Marcu and Echihabi
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(2002) address an approach to detecting rhetorical relations using binary classifiers based

on Naive Bayes.

4.2 Building Corpus with Ichikawa’s Theory of Discourse
Relations

Since, at the time of the research, there was no discourse corpus available for evaluating

our approach,5 we started by collecting news articles from a Japanese financial paper, and

hand-labeling each sentences with a possible discourse relation, drawing on Ichikawa’s the-

ory of discourse relations (ITDR) (Ichikawa, 1990) (Table 4-2).6 ITDR, first and foremost,

purports to be a theory of discourse structure in Japanese, and shows how linguistic con-

nectives are usefully exploited to identify discourse level relations among sentences. Our

goal was to read some RST-like features off ITDR and use them to characterize sentential

relations in Japanese.

We chose ITDR over other more popular theories such as RST (Mann & Thompson,

1987a) mainly because it makes a number of assumptions about discourse which lend it to

an easy-to-follow guideline for annotating the corpus. For instance, ITDR directly asso-

ciates discourse relations with explicit surface cues (e.g., sentential connectives), making it

possible for the coder to determine a discourse relation by figuring out a most natural cue

that goes with the sentence.7 By contrast, RST assumes discourse relations to be highly

abstract ones, and their relation to actual sentences is far more indirect.8

Another advantage of ITDR is that it attempts to characterize discourse in terms of

local relations holding between adjacent sentences, which, we expected, would make the

job easier and therefore the annotation more reliable.9

4It rarely happens in English that an elaborative sentence precedes a sentence it is an elaboration of.
If it does, then it would be interpreted as something else such as background, cause, sequence,etc.

5We started working on a corpus around 1997, which predates LDC’s RST corpus (www.ldc.upenn.edu).
6We had two to three Japanese graduate students working on the annotation.
7Moser and Moore (1993) also talk about identifying discourse relations through lexical cues.
8Another difference is that RST allows rhetorical relations to hold among linguistic units larger than

sentences, which ITDR does not, as it is more concerned with rhetorical functions of sentential connectives.
9Note that by defining discourse relations as those that relate two adjacent sentences, ITDR is by no

means attempting to equate discourse segments with sentences. It is simply restricting its attention to
those relations that involve adjacent sentences. So with ITDR, one is not able to work with segments
larger than sentence, but it is a sort of compromise we make in order to have an easy-to-follow annotation
scheme.
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In ITDR, discourse relations are organized into three major classes: the first class

includes logical (or strongly semantic) relations where one sentence is a logical consequence

or contradiction of another; the second class consists of sequential relations where two

semantically independent sentences are juxtaposed; the third class includes elaboration-

type relations where one of the sentences is semantically subordinate to the other.10

Just to give a better idea of what ITDR is about, let us go through some examples.

There, by ‘SBJ,’ ‘OBJ,’ and ‘DAT,’ we mean case marking devices signaling subject, object,

and dative, respectively. ‘COP’ indicates copula.

(4-1) Namikimichi
street lined with trees

wo
OBJ

aruite
walk

itta.
continued to

Suruto
then

hitorino
a

otoka
man

ga
SBJ

mukowkara
from far side

chikazuite
approach

kita.
come.

‘I was walking down the street lined with trees when I found a man approaching
from the far side.’

Here the word suruto acts as a connective, signaling a ‘consequential’ relation between the

two sentences. Consider the following.

(4-2) Madono
window

soto
outside

wa
SBJ

harusame
spring rain

da.
COP

Watashi
I

tabako
tabacco

ni
DAT

hi
fire

wo
OBJ

tsukeru.
add

‘Outside the window is spring rain falling. I light my tabacco.’

In this somewhat poetic example, we have no connective linking the two sentences. What-

ever relation they are in needs to be inferred (or imagined) to make sense of them.

(4-3) 8 gatsu
August

15 nichi.
15th

Watashi
I

wa
SBJ

kono-hi
this day

ga
OBJ

wasure-rarenai.
cannot forget.

‘August 15th. The day is forever on my memory.’

10It is worth noting that sequence and elaboration in ITDR have close analogues in Dynamic Discourse
Model (DDM) (Polanyi & Scha, 1984): what DDM calls the ‘list’ structure is in fact something ITDR is
getting at with; the additive relation, and also elaboration in ITDR is though of as broadly corresponding
to what DDM calls the expansion relation.
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Table 4-3 Discourse Functions in ITDR.

Relation Definition Nuclearity
consequential B describes a consequence of A −
antithesis B presents an idea that runs against A −
additive B describes an event that runs in parallel or in suc-

cession to A
+

contrast B describes a idea which stands in contrast to A −
initiation B initiates a subject distinct from A +
appositive B reframes A −
complementary B provides a supplementary statement for A −
expansion B expands/elaborates on an idea presented by A −

Again there is no explicit connective here. One of the possible rhetorical relations could

be elaboration, the second sentence giving a qualification to the first. Table 4-3 lists

definitions of relevant discourse relations from ITDR, along with their nuclearity (Also see

footnote 14 below). ‘A’ and ‘B’ are sentences in discourse, with ‘B’ standing in a particular

rhetorical relation to ‘A.’ By the nuclearity, we mean the nuclearity of sentence ‘B.’

When labeling sentences, coders were instructed not to label them with abstract dis-

course relations such as logical, sequence and elaboration, but to choose from a list

of pre-determined connective expressions.11 We expected that the coder would be able to

identify a discourse relation with more confidence when working with explicit cues than

with abstract concepts of discourse relations. Moreover, since 93% of sentences consid-

ered for labeling in the corpus did not contain any of pre-determined relation cues, the

annotation task was in effect one of guessing a possible connective cue that may go with a

sentence. The advantage of using explicit cues to identify discourse relations is that even

if one has little or no background in linguistics, he or she may be able to assign a discourse

relation to a sentence by just asking him/herself whether the associated cue fits well with

the sentence. In addition, in order to make the usage of cues clear and unambiguous, the

annotation instruction carried a set of examples for each of the cues. Further, we provided

an emacs-based software aid which helps the coder with tagging and also is capable of

prohibiting the coder from making moves inconsistent with the coding instruction.12

11See Table 4-2 for examples (given in the rightmost column). The connectives here are all among those
given in Ichikawa (1990). Coders are asked to label each sentence with one of the eight relation types
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A preliminary study, however, found that the agreement in kappa among three coders

on the leaf-level relations, namely, consequential, antithesis, additive, etc, was at

0.36 on 114 sentences. (We had the agreement at 0.56 on the top-level categories in the

taxonomy, i.e, logical, sequence, and elaboration.) The agreement, however, rose

to 0.63 when we switched to a two-way categorization scheme involving elaboration and

non-elaboration, where the the latter subsumes both logical and sequence.13

The elaboration/non-elaboration distinction, though not part of the ITDR taxonomy,

is motivated by its potential for yielding applications such as automatic text summariza-

tion, where the distinction plays an important role; as suggested in Mann and Thompson

(1987a), one simple approach to summarization would be to eliminate elaborations from

the text (Rino & Scott, 1996; Marcu, 1998).14

We could put forward another argument in favor of the two-way taxonomy, from the

perspective of machine learning (or engineering), which is that since the three- or eight-

way taxonomy produces data with poor agreement on their relation labels, it is likely to

contain more inconsistencies and irregularities than the two-way approach, and therefore

could only deliver a train/test data of low quality. We do not expect an automatic learner

of any sort does well if the data it is working on contain a large amount of noise. Indeed

listed at the second tier of the taxonomy in Table 4-2.
12Note that coders are asked to first identify a type of discourse relation such as consequential,

antithesis, etc, before proceeding to choose among possible cues that belong to each relation. So we
would reasonably expect them to be able to resolve ambiguity if any across relations, of cues.

13The experiment involved seven texts from a Japanese newswire domain (Nihon-Keizai-Shimbun-Sha,
1995).

14 Here is why it makes sense to do so. Intuitively, nuclear elements of the text are something that could
be understood by itself and without which the text becomes incomprehensible. Satellites are elements
whose interpretation cannot be determined independent of other elements such as sentences or clauses. In
Table 4-1, for instance, the leading sentence is a nuclear, for it can be understood by itself, whereas the
second and third sentences are satellites because they will become a non sequitur if we remove the leading
paragraph. RST also claims that for the most of time, satellites could be dispensed with, without affecting
the coherence of the text. It is this idea that makes the nuclear/satellite dichotomy particularly important
for text summarization, as it implies that we could make a coherent summary simply by removing satellites.
This stands in contrast to other extraction-based approaches to summarization, which usually destroy the
integrity or coherence of the text.

For instance, in a corpus we will discuss later on in the chapter (Section 4.5), we found about 39% of
sentences there are elaborative and the remaining 61% are non-elaborative: elaboration forms a single
largest class in terms of membership in comparison to other relation types, namely, logical and sequence,
which have the membership ratio of 27% and 34%, respectively. So simply by eliminating elaborative
sentences, we get, on average, as much as 39% reduction in the text length. To get further reduction,
one would probably need some way of choosing among non-elaborative sentences, perhaps in the manner
of Zechner (1996). Also, a cursory review of the corpus suggested that for the most of time, eliminating
elaborative sentences does not seriously hurt the integrity of a text, as long as one is working in a news
domain, from which our corpus is derived, though it may not hold for other genres.
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we could argue that data labeled with the three- or eight-way taxonomy is unfit to serve

as a train/test data for automatic learning.

All this had led us to primarily work with the two-way taxonomy instead of the three-

or eight-way scheme as originally given in Ichikawa (1990): our decision here is more of an

engineering decision than a linguistic one.

In what follows, we will look at how we might devise decision tree based learners for

detecting elaboration and non-elaboration relations which run on the minimal amount of

training data. We like to see whether it is possible to train a machine learner on reduced

training data and get it working just as well as if it were trained on a full data set.

Here is how we proceed. We begin by invoking a particular sampling method known as

committee based sampling (CBS) to choose among the available data those that are most

useful, in a sense defined below, and then train a base learning algorithm such decision tree

on only those that are chosen. (To slightly complicate the picture, we try two alternative

approaches to CBS, one that uses bootstrapping and another that uses randomization.)

We are done if the base learner trained on a small portion selected from the training data

performs just as good as if it were trained on the whole, unabridged data. For a base

learner, we adopt the C4.5 decision tree (Quinlan, 1993).

4.3 Learning with Minimum Supervision

In the following, we will look at two alternative approaches to minimizing supervised

data: committee-based sampling and randomization. Either operates by calling upon an

ensemble of classifiers (C4.5s) to take a vote on which sample to use for training a machine

learner, but they differ in specific ways in which they come up with voter classifiers. The

committee based sampling addresses a data-driven approach based on a statistical method

known as bootstrapping, while randomization focuses more on manipulating the internal

structure of C4.5.

In addition, we will supply C4.5 with some extension based on a model selection strategy

known as the minimum description length principle (MDL) in the statistics literature. Note

that even though it bears the word minimum, MDL has absolutely nothing to do with the

issue of minimizing supervised data.
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Although it happens that a voter classifier, one that is involved in selecting data, and

a base classifier, that is, one that learns on the data chosen by voter classifiers, are all

derived from C4.5, obviously it need not be the case.

4.3.1 Committee-based Sampling

In the committee-based sampling method (CBS) (Dagan & Engelson, 1995; Engelson

& Dagan, 1996), a training example is selected from a corpus according to its usefulness;

a preferred example is one whose addition to the training corpus improves the current

estimate of a model parameter which is relevant to classification and also affects a large

proportion of examples. CBS tries to identify such an example by randomly generating

multiple models (committee members) based on posterior distributions of model param-

eters and measuring how much the member models disagree in classifying the example.

The rationale for this is: disagreement among models over the class of an example would

suggest that the example affects some parameters sensitive to classification, and further-

more estimates of affected parameters are far from their true values. Since models are

generated randomly from posterior distributions of model parameters, their disagreement

on an example’s class implies a large variance in estimates of parameters, which in turn

indicates that the statistics of parameters involved are insufficient and hence its inclusion

in the training corpus (so as to improve the statistics of relevant parameters).

For each example it encounters, CBS goes through the following steps to decide whether

to select the example for labeling.

1. Draw k models (committee members) randomly from the probability distribution

P (M | S) of models M given the statistics S of a training corpus.

2. Classify an input example by each of the committee members and measure how much

they disagree on classification.

3. Make a biased random decision as to whether or not to select the example for labeling.

This would make a highly disagreed-upon example more likely to be selected.

As an illustration of how this might work, consider a problem of tagging words with

parts of speech, using a Hidden Markov Model (HMM). A (bigram) HMM tagger is typically

given as:
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T (w1 . . . wn) = argmax
t1 . . . tn

n∏
i=1

P (wi | ti)P (ti+1 | ti)

where w1 . . . wn is a sequence of input words, and t1 . . . tn is a sequence of tags. For a

sequence of input words w1 . . . wn, a sequence of corresponding tags T (w1 . . . wn) is one

that maximizes the probability of reaching tn from t1 via ti (1 < i < n) and generating

w1 . . . wn along with it. Probabilities P (wi | ti) and P (ti+1 | ti) are called model parameters

of an HMM tagger. In Dagan and Engelson (1995), P (M | S) is given as the posterior

multinomial distribution P (α1 = a1, . . . , αn = an | S), where αi is a model parameter and ai

represents one of the possible values. P (α1 = a1, . . . , αn = an | S) represents the proportion

of the times that each parameter αi takes ai, given the statistics S derived from a corpus.

(Note that
∑n

i P (αi = ai | S) = 1.) For instance, consider a task of randomly drawing a

word with replacement from a corpus consisting of 100 different words (w1, . . . , w100). After

10 trials, you might have outcomes like w1 = 3, w2 = 1, . . . , w55 = 2, . . . , w71 = 3, . . . , w76 =

1, . . . , w100 = 0: i.e., w1 was drawn three times, w2 was drawn once, w55 was drawn twice,

etc. If you try another 10 times, you might get different results. A multinomial distribution

tells you how likely you get a particular sequence of word occurrences. Dagan and Engelson

(1995)’s idea is to assume the distribution P (α1 = a1, . . . , αn = an | S) as a set of binomial

distributions, each corresponding to one of its parameters. An arbitrary HMM model

is then constructed by randomly drawing a value ai from a binomial distribution for a

parameter αi, which is approximated by a normal distribution. Given k such models

(committee members) from the multinomial distribution, we ask each of them to classify

an input example. We decide whether to select the example for labeling based on how

much the committee members disagree in classifying that example. Dagan and Engelson

(1995) introduces the notion of vote entropy to quantify disagreements among members.

Though one could use the kappa statistic (Siegel & Castellan, 1988) or other disagreement

measures such as the α statistic (Krippendorff, 1980) instead of the vote entropy, in our

implementation of CBS, we decided to use the vote entropy, for the lack of reason to choose

one statistic over another. A precise formulation of the vote entropy is as follows:

V (e) = −
∑

c

V (c, e)

k
log

V (c, e)

k

Here e is an input example and c denotes a class. V (c, e) is the number of votes for c. k

is the number of committee members. A selection function is given in probabilistic terms,
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based on V (e).

Pselect(e) =
g

log k
V (e)

g here is called the entropy gain and is used to determine the number of times an example is

selected; a greater g would increase the number of examples selected for tagging. Engelson

and Dagan (1996) investigated several plausible approaches to the selection function but

were unable to find significant differences among them.

At the beginning of the section, we mentioned some properties of ‘useful’ examples.

A useful example is one which contributes to reducing variance in parameter values and

also affects classification. By randomly generating multiple models and measuring a dis-

agreement among them, one would be able to tell whether an example is useful in the

sense above; if there were a large disagreement, then one would know that the example is

relevant to classification and also is associated with parameters with a large variance and

thus with insufficient statistics.

In the following section, we investigate how we might apply CBS to a decision tree

classifier. As a decision tree algorithm, we used C4.5 (Release 5)(Quinlan, 1993).

4.3.2 CBS with Decision Tree Classifiers

Since it is difficult to express the model distribution of decision tree classifiers in terms of

multinomial distribution, we turn to the bootstrap sampling method to obtain P (M | S).

Bootstrapping provides a way for artificially establishing a sampling distribution for a

statistic, when the distribution is not known (Cohen, 1995). For us, a relevant statistic

would be the posterior probability that a given decision tree may occur, given the training

corpus.

Bootstrap Sampling Procedure

Repeat i = 1 . . . K times:

1. Draw a bootstrap pseudosample S∗i of size N from S by sampling with replacement

as follows:

Repeat N times: select a member of S at random and add it to S∗i .

2. Build a decision tree model M from S∗i .

Add M to SB.
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S is a small set of samples drawn from the tagged corpus. Repeating the procedure 100

times would give 100 decision tree models, each corresponding to some S∗i derived from the

sample set S. Note that the bootstrap procedure allows a datum in the original sample

to be selected more than once. Given a sampling distribution of decision tree models, a

committee can be formed by randomly selecting k models from SB.

4.3.3 Randomization

An alternative to bootstrapping for constructing multiple classifiers (Dietterich, 2000)

is randomization, whose idea is to randomize the decision on splits to introduce at each

node. As a comparison with the bootstrapping method, we implemented the randomization

in the C4.5 decision tree algorithm and performed experiments. Our implementation is

based on Dietterich (2000), where a split is chosen at random from the 20 best splits (with

non-negative information gain) computed at each node. For continuous attributes, each

possible threshold is considered a distinct split, so that the 20 best splits may include

multiple splits on the same attribute. As with the bootstrapped CBS, an example is

selected by taking votes on an ensemble of randomized classifiers.

4.3.4 Features

In the following, we will discuss a set of features we adopted for characterizing a pair of

sentences, a minimum text over which a discourse relation could be defined. We consider

here two contiguous sentences A and B, where B is running right after A. We are interested

in particular in whether B is an elaboration of A. We note that both voter and base

classifiers make use of a same set of features which are described below.

<LocSen> defines the location of a sentence by:

Ord(X)

Ord(Last Sentence)

‘Ord(X)’ denotes an ordinal number indicating the position of a sentence X in a text,

starting with 0, i.e., Ord(kth sentence) = k (k ≥ 0). ‘Last Sentence’ refers to the last

sentence in a text. LocSen takes a continuous value between 0 and 1. A text-initial

sentence takes 0, and a text-final sentence 1.
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Table 4-4 Sentence-final forms EndCue encodes.

value explanation
1 base form of verb or verbal adjective
2 ta-form (past/perfective) of verb or verbal adjective
3 copula
4 nominal
5 parentheses
6 sentence-final particle
0 none of above

<LocPar> encodes the location of a paragraph in which a sentence X occurs.

Ord(Par(X))

Ord(Last Paragraph)

‘Ord(Par(X))’ denotes the ordinal number indicating the position of a paragraph contain-

ing X. ‘Ord(Last Paragraph)’ is the position of the last paragraph in a text, represented

by the ordinal number.

<LocWithinPar> records information on the location of a sentence X within a paragraph

in which it appears.
Ord(X)−Ord(Par Init Sen)

Length(Par(X))

‘Par Init Sen’ refers to the initial sentence of a paragraph in which X occurs, ‘Length(Par(X))’

denotes the number of sentences that paragraph. LocWithinPar takes continuous values

ranging from 0 to (N − 1)/N , where N is the length of a paragraph: a paragraph initial

sentence would get 0 and a paragraph final sentence (N − 1)/N .

<LenText> is the length of a text, measured in Japanese character.

<LenSenA> is the length of A in Japanese character.

<LenSenB> is the length of B in Japanese character.

We use the following two attributes to encode information about sentence-ending cues.

<EndCueA> records information about a sentence-ending form of the ‘A’ sentence. It takes

a discrete value from 0 to 6, with 0 indicating the absence in the sentence of relevant cues.

(Table 4.3.4)
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<EndCueB> Same as above except that this feature is concerned with a sentence-ending form

of the ‘B’ sentence. Finally, we have two classes elaboration and non-elaboration.

Now let us qualify some of the choices we made in Table 4.3.4. In the Japanese lin-

guistics literature, there is an argument that some sentence endings could indicate se-

mantic relations among sentences. Some such are inflectional categories of verbs such as

past/non-past, interrogative, and also morphological categories like nouns and par-

ticles (e.g. question-markers). Drawing in part on Sakuma (1987), we defined six types of

sentence-ending cues and marked a sentence according to whether it contains a particular

type of cue. Included in the set are inflectional forms of the verb and the verbal adjec-

tive, past/non-past, morphological categories such as copula, and noun, parentheses

(quotation markers), and sentence-final particles such as -ka. All the relevant linguistic

cues as well as sentences are identified using a Japanese tokenizer ChaSen (Matsumoto,

Kitauchi, Yamashita, & Hirano, 1999). (Also detecting sentence boundary is not much of

a problem, since ChaSen is already equipped for doing that. Besides, written Japanese

sentences rarely fail to accompany a sentence boundary marker.)

Consider, for instance, the following, a short text consisting of two sentences pulled out

of a Japanese newspaper article. ‘GEN’ stands for genitive, ‘CLS’ for numeral classifier (in

a linguistic sense).

(4-4) Chugaku-sotugyo
middle school graduate

no
GEN

kyûshokusha-sû
job-seekers

wa
SBJ

yaku
some

13,000-nin
13,000-CLS

to
at

12-nen
12 years

renzokusi-te
continue

genshôshi-ta.
decline-PERF

Kyûjin-sû
number of available jobs

wa
SBJ

zennen
previous year

yori
from

32.4%
32.4%

heri
decrease

yaku
some

30,400-nin.
30,400-CLS.

‘The number of middle school graduates looking for jobs is on the decline for 12
years in a row, and is estimated at around 13,000. The number of jobs available for
them is around 30,400, 32.4% decline from the previous year.’

Note the second sentence ends with a noun phrase or a numeral, which is somewhat unusual

for an SOV language like Japanese. What is remarkable, however, is that they abound in

newspaper texts and often serve as a complementary statement to the sentence immediately

preceding them. Also a cursory look at the corpus indicates that a newspaper article often

opens a paragraph (a leading paragraph in particular) with a sentence with the perfective

or ta ending and elaborate on that sentence with those ending with non-past verb forms

like suru (do) as well as auxiliary da (copula).
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As a final note on features, let us mention that not every feature here is linguistically

motivated. This is rightly so. Since it is simply unknowable in advance which feature

is effective for recognizing elaboration, it is best to try out whatever clue is available in

a text, be it linguistic or otherwise. We will be least surprised if a feature of little or

no linguistic import turns out to be very relevant for identifying discourse relations. The

features we have here are meant to capture some notable characteristics, whether syntactic,

morphological, orthographic or whatever, of two adjacent sentences in a text.

4.4 Extending C4.5 with MDL

In what follows, we will discuss extending C4.5 with what is called the minimum de-

scription length principle (MDL), a well-known criterion for choosing among statistical

models. We will first provide a somewhat technical introduction to MDL and go on to talk

about how it can be integrated with C4.5.

4.4.1 Minimum Description Length Principle (MDL)

Given a data sequence (x1, y1), . . . , (xm, ym) of objects and corresponding categories, the

minimum description length principle (MDL) claims that a model that allows a shortest

description of the sequence y1, . . . , ym is most likely to have given rise to the observed data.

A model here refers to the probability distribution of a variable Y given X, where X = xi

and Y = yi. In the MDL, the length of a description of data is given as the sum of bits

required to encode a model and bits required to encode the data given the model. The

best hypothesis h for ym = y1, . . . , ym is then expressed as follows:

hbest(y
m) = arg min

M ∈M
L(ym : M)

where L(ym : M) = L(ym | M) + L(M), M is the set of possible models, and L(x) is a

description-length of x.

In the context of the decision tree learning, it is natural to think of MDL as a way to

find a best pruned tree from the set of all prunings possible for a certain decision tree T . M
would be a set of all subtrees of T . Moreover, MDL requires the probability distributions of

categories. But given a decision (sub)tree M ∈ M, probability distributions of categories

can be obtained by associating each leaf in M with P (Y | X), the probability of category Y

given a set X of attribute values. Thus instead of outputting a classification for an object,
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Figure 4-1 A probabilistic decision tree.

the decision tree outputs the probability that the object belongs to a particular class. Let

θi = (θi
1, . . . , θ

i
s), where θi is a list of probabilities or a parameter vector associated with a

leaf i and θi
j is the probability of category j at the leaf i. Note also that

∑s
j θj = 1.

Consider a binary decision tree in Figure 4-1, which has X1, X2 for attributes (with

values 0 and 1), Y1, Y2, Y3 for leaves, and y(es), n(o) for categories. Associated with each

leaf is θy and θn, representing the probability of a respective category therein.

Since the probability of observing the data y1, . . . , ym given a decision tree M with

parameters θ1, . . . , θm is P (ym | θ,M), the number of bits needed to encode the data is

then − logP (ym | θ,M)15. In general, the description-length of the data y1, . . . , ym under

model M (together with bits required to encode parameters) is known to come to:

L(ym |M) = − logP (ym | θ̂,M) +
k

2
logm+O(1) (4-5)

Li (1998)

Write θ̂ for the MLE (maximum likelihood estimate) of θ and let θ̂i = (θ̂i
1, . . . , θ̂

i
s).

O(1) is a function such that limm→∞O(1) = c and can safely be ignored here. k is the

number of free parameters. Equation 4-5 is regarded as an approximation to the stochastic

complexity as formulated in Rissanen (1997).

In addition to the length of describing data, we need to take into account the length of

encoding the decision tree itself. One approach proposed in Quinlan and Rivest (1989) is

to translate the tree into a string of 1’s and 0’s (1 for the node and 0 for the leaf) and take

the description-length of the string as that of the tree. Or more simply, if we assume that

15Throughout the chapter, we use the base 2 logarithm unless otherwise stated.
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M is finite and the probability distribution over it is uniform, then the length of encoding

a model M is L(M) = log |M |. However we take a more straightforward approach to

finding the length of the decision tree as will be explained in the following section.

4.4.2 Pruning with MDL

Now finding a subtree with the minimum description length is tantamount to finding

an optimal pruning for a given decision tree. Essentially we take a approach based on

Yamanishi (1997) and Rissanen (1997).

Consider a decision tree T , with a set H of subtrees of T and a set A of attributes.

Then a best pruning for T given the data y1, . . . , ym is one whose description length equals

minM∈H{L(ym : M)}. Based on Equation 4-5, we define the the length of describing data

at the node u by:

I(u) = −
K∑

j=1

Fu(j) log P̂u(j) +
k

2
logN

where N is the number of cases that reached u, Fu(j) is the frequency of category j at u,

K is the number of categories, P̂u(j) is the maximum likelihood estimate of the category

j at u, k is the number of free parameters at u, so this would be K − 1. The model length

of u is given as follows:

lu(m) =

{ − logP0 if u is a leaf
− logP1 + lu(a) otherwise

where lu(a) is the length of a splitting attribute a at u, which is given as lu(a) = log | A |,
for a set A of possible attributes, which a is part of. If the attribute is continuous-valued,

then the cost of encoding a threshold, log(r), is added to lu(a), where r is the number of

possible thresholds at u. P1 is the probability of observing a nonterminal node in T and

P0 that of observing a leaf in T . Note that P1 + P0 = 1. Thus for a tree in Figure 4-1,

P0 = 3
5
, P1 = 2

5
, l(X1) = l(X2) = log |A|.

As in Li (1998), we take a dynamic programming approach to finding a subtree with the

minimal description length, which basically consists of working up the tree by eliminating

daughters of u if the following condition is met:

− logP0 + I(u) ≤ − logP1 + l(u) +
∑

v∈D(u)

L(v),

where D(u) denotes a set of daughter nodes of u. A precise algorithm is given in Table 4-5.
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Table 4-5 A pruning algorithm based on MDL

MDL-Prune(u)
/* input:root node of a tree */

begin
if u is a leaf then

set L(u) = − logP0 + I(u)
return L(u)

else
L(u) =

∑
v∈D(u) MDL-Prune(v)

where D(u) is a set of daughter nodes of u.
if − logP0 + I(u) ≤ − logP1 + l(u) + L(u) then

¿ remove every v ∈ D(u)
endif
return min{− logP0 + I(u), − logP1 + l(u) + L(u)}

endif
end

4.5 Evaluation

Now let us find out whether C4.5 driven CBS is effective in reducing training data.

To that end, we ran a series of experiments, using a corpus containing news articles from

a Japanese economics daily (Nihon-Keizai-Shimbun-Sha, 1997). The corpus had 894 ar-

ticles, randomly selected from issues that were published during the year. Each sentence

in the articles was tagged with one of the discourse relations at the subrelation level (i.e.

Table 4-6 Performance of a non-sampling C4.5 with various pruning options, as deter-
mined by running 10-fold cross validation on the entire data set. The baseline here is C4.5
without pruning. ‘REP’ refers to C4.5 coupled with reduced error pruning, and ‘MDL’
C4.5 with MDL pruning. The figures denote error rates averaged over 10 runs (folds).

baseline rep mdl
40.9% 38.2% 35.4%
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Table 4-7 The impact of features on performance. The follow figures show what happens
to C4.5 when a particular feature is removed. none means running C4.5 with no feature
removed. ‘EndCueAB’ means that both EndCueA and EndCueB are removed when run-
ning the classifier, and similarly for ‘LenSenAB.’ ‘EndCueAB’ leads to the most notable
differences in performance.

feature removed no pruning rep
none 40.9% 38.2%
EndCueA 41.2% 38.6%
EndCueB 42.1% 39.8%
LenSenA 41.9% 39.0%
LenSenB 41.3% 38.2%
LenText 40.4% 36.9%
LocPar 40.9% 37.7%
LocSen 41.1% 38.3%
LocWithinPar 41.1% 38.5%
EndCueAB 42.4% 39.9%
LenSenAB 41.6% 38.0%

consequential, antithesis, etc.). However, in experiments, we translated each sub-

relation into either non-elaboration or elaboration, to give some lift to the kappa

score.16 Furthermore, we explicitly asked coders not to tag a paragraph initial sentence

for a discourse relation, for we found that coders rarely agree on their classifications.17

Paragraph-initial sentences were dropped from the evaluation corpus. This had left us with

7,851 sentences, of which 39% are labeled elaboration and 61% non-elaboration.

Table 4-6 lists performance (in error rate) of C4.5 with and without reduced error

pruning (henceforth, REP), and also when coupled with MDL pruning. Performance was

measured by using 10-fold cross validation, where the corpus is divided evenly into 10

blocks of data and 9 blocks are used for training and the remaining one block is held out

for testing. The figures in the table were error rates averaged over the 10 runs. MDL

16What we did was to put appositive, complementary, and expansion under elaboration and
everything else under non-elaboration.

17Another reason behind this move is that we had the feeling that paragraph initial sentences participate
in discourse relations not at the sentence level, but at the paragraph level: they typically summarize or
represent the paragraph which they introduce, and whatever discourse relation they participate in also
tends to affect the whole paragraph. Recall that ITDR is not about rhetorical relations among paragraphs,
or textual units beyond sentences.
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pruning produces performance about 10% smaller in error rate than the baseline, and

also performs better than C4.5 with REP. Also one thing to note about the baseline is

that we do not use here a frequency based baseline which works by simply picking up

a most frequent relation as correct, because we are concerned with how sampling affects

performance of various forms of C4.5. Besides, the distribution of classes may well vary

from one sampled set to another.

Table 4-7 shows the impact of features on performance of C4.5, which is more visible

when pruning is turned off. Note that the figures there indicate performance of C4.5 in the

absence of a particular feature or a set of features. We find that some of the features such

as LenSens, and EndCues have more notable effect on performance than others. Among

them, EndCues seem most effective for discriminating between the two classes, that is,

elaboration and non-elaboration. By contrast, neither LenText nor LocPar has apparent

positive effect on performance: indeed, their removal leads to a better performance when

coupled with REP.

We tested various sampling strategies on the corpus and measured performance by

10-fold cross validation. Note that our concern here is not so much with the question of

which strategy performs better than a non-sampling C4.5 as with finding out whether they

could deliver a learner that works with less data and its performance comparable to a fully

trained C4.5. Thus exactly to what degree they perform better than C4.5 is not much of

a concern nor issue here.

In CBS and randomization, one starts with 10% of the data randomly drawn from the

training blocks and sequentially examines samples from the rest of the set until all the

data are examined. A sample is selected on the basis of the vote entropy of decisions by

classifiers generated. Each time a sample is selected, a decision tree is built on the sample

together with the data acquired so far, and tested on the held-out data. Since a single run

of the sampling procedure failed to gather much data, we repeatedly ran the procedure on

the same data set until we used up almost all the data for training: each run starts with

the set of samples accumulated in the previous runs, and sequentially examines what is

left to be selected. The number of repetitions was empirically determined and set to ten.

Performance was measured each time that we added a set of ten samples to the training

set, and figures were averaged, point by point, over 10 folds to give a summary graph for a

particular sampling strategy. For CBS and randomization, we set k = 10 and g = 1, i.e.,

ten committee members and the entropy gain of 1. However, we did not make use of what
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Dagan and Engelson (1995) call the ‘temperature,’ as the instability of the decision tree

classifier apparently led to a generation of sufficiently diverse committee members.

Figure 4-2 shows performance of random sampling (top), bootstrapped CBS (center),

and randomized CBS (bottom), as they are applied to C4.5. The pruning is not used.

The horizontal line (target line) indicates the 10-fold cross-validated error rate of C4.5

trained on the entire data set, which is 40.9% for cases in Figure 4-2. Thus if a given

method breaks the target line, it means that it achieves better performance with less than

the whole data. In addition, each graph contains a regression line generated by the loess

smoother (MathSoft, 1998), which gives a rough idea of what is happening with a particular

method. We consider here three different target lines, C4.5s with no pruning, REP, and

MDL and examine which sampling approach works best under which target line.

In Figure 4-2, bootstrapped CBS starts to drop below the target line around 2,000

and consistently stay under the line. With random sampling, however, the pattern is not

so evident. Though its error rate slowly drops with the samples, the performance widely

zigzags along the target line even with a substantial number of data. Randomized CBS

(the bottom panel) fares even worse. Its performance hovers above the target line and

remains so until the end.

While Figure 4-2 does witness a general tendency for performance of a sampling based

system, whether it is random sampling, bootstrapped CBS, or randomized CBS, to improve

with the training data, it is apparent that the growth of the training data has non-linear

effects on performance, which makes an interesting contrast with probabilistic classifiers

like HMM, whose performance improves linearly as the training data grow. The reason

may have to do with the instability of the decision tree classifier. A learning algorithm is

said to be instable if small changes to the training set cause large changes in the learned

classifier.

Figure 4-3 shows results for the same three methods with REP, the confidence level

being set to 25%. We find that regardless of which sampling method we would use, the

pruning has notable effects on performance, which improves by a few percent compared

to methods in Figure 4-2, which employ no pruning. The general pattern appears similar

to that in Figure 4-2, with differences between random sampling and bootstrapped CBS

still visible though somewhat subdued compared to the previous figure. Bootstrapped CBS

requires less data for training to break the target line than the other two. Randomized CBS
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Figure 4-2 Performance of random sampling (top), bootstrapped CBS (center), and
randomized CBS (bottom) with no pruning.
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Figure 4-3 Performance of random sampling (top), bootstrapped CBS (center), and
randomized CBS (bottom) with reduced error pruning.
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Figure 4-4 Performance of random sampling (top), bootstrapped CBS (center), and
randomized CBS (bottom) with MDL pruning.
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requires more than 5,000 samples to outperform the target line. Note that the target line

here represents a non-sampling C4.5 with REP, whose error rate on the corpus is 38.2%.

We have a quite different picture with the MDL pruning (Figure 4-4). Random sampling

converges at a much faster rate than the other two, leveling off at around 4,000 with

the error rate of about 36.0%. By contrast, it takes almost the whole data (more than

5,000 samples) for bootstrapped CBS and randomized CBS to beat the target line, or

a non-sampling C4.5 with MDL pruning (whose averaged performance on the corpus is

at 35.4%). Figure 4-4 shows that whatever difference may exist between bootstrapping

and randomization has little influence on MDL-based C4.5, which gives by far the most

significant reduction in error rate, improving performance by as much as 10% compared to

C4.5 with REP in Figure 4-3.

One curious result of the experiments is that randomized CBS is persistently worse

than other methods. While the exact cause of the behavior is not clear, it may be due

to noise in the training data, which could be substantial. Dietterich (2000). reports that

in situations with substantial classification noise, randomization tends to perform worse

than bagged C4.5, which is a close analogue of bootstrapped CBS. In situations with little

classification noise, on the other hand, randomization could be superior to bagged C4.5.

In sum, the experiments found that bootstrapped CBS is effective with C4.5 with

no pruning as well as with REP, allowing the latter to achieve the level of performance

comparable to a fully-trained C4.5, with less than half as much data. With MDL based

C4.5, however, bootstrapped CBS is found to be not as effective, which is significantly

outperformed by random sampling. MDL based C4.5, coupled with random sampling,

achieves by far the largest reduction in error rate with training data about 50% of the

corpus.

Recall once again that our primary concern in the study is not with how much better

sampling based approaches perform against the target lines, but how little data need to

be fed into the systems before they break the target lines. The experiments demonstrate

that it is indeed possible to cut back on training data for a decision tree learner without

compromising its performance. Another point we learned from the experiments is that a

same sampling approach may not always deliver best results: bootstrapped CBS works

best for C4.5 with no pruning and with REP, and not for MDL C4.5, while random

sampling works best for MDL C4.5, and not for C4.5 with no pruning or with REP. So



4 A MINIMALLY SUPERVISED LEARNING OF RHETORICAL RELATIONS 59

Table 4-8 The granularity of discourse relations and classification performance in rela-
tion to the Kappa statistic. The 3-way taxonomy includes three major relations, logical,
sequence, and elaboration, and the 8-way taxonomy includes all the relations at the lowest
level such as consequential, antithesis, etc.

taxonomy no pruning rep κ
2-way 40.9% 38.2% 0.63
3-way 59.7% 58.2% 0.56
8-way 75.2% 74.4% 0.36

which sampling method is most effective pretty much depends on what learning algorithm

is used for a task.

4.6 Summary

This chapter presented an empirical comparison of some alternative approaches to min-

imizing data for training decision tree classifiers towards the automatic detection of dis-

course relations. We studied several combinations of sampling methods and pruning algo-

rithms. Among the sampling methods considered here are bootstrapped CBS, randomized

CBS, and random sampling, and for pruning algorithms, we considered the reduced error

pruning and MDL pruning. CBS is motivated by the idea that data can be somehow

discriminated in terms of usefulness for improving model parameters, and one can reduce

training data by dismissing those not useful. How useful a given example is depends on

how much an ensemble of classifiers disagree in its classification.

The experiments show that bootstrapped CBS does have a positive effect on perfor-

mance of C4.5 with no pruning as well as with REP. However the effects are all but gone

on classifiers with MDL pruning. Randomized CBS did not perform well in any of the

experiments conducted. The MDL pruning, when used with random sampling, gave the

best performance in terms of accuracy and convergence rate. With 50% of the training

data, it reached the error rate of around 36.0%, which amounts to some 10% improvement

over a decision tree with REP trained on the entire data.
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As for CBS, we were unable to find the effectiveness comparable to that observed for

Bayesian classifiers (Dagan & Engelson, 1995). Perhaps one possible place to look at for

an explanation is noise contained in the train data, which could be large.

In this connection, it is interesting to look at Table 4-8, which shows how the granularity

of discourse relations and associated kappa scores relate to performance of C4.5.18 Appar-

ently, the larger the granularity, the higher the kappa statistic, and the better the classifier’s

performance, which may suggest that the kappa may indeed dictate the performance of

the classifier. So somehow fixing the agreement among coders may lift performance of the

classifier.

However, low kappa rates from the experiments indicate that discourse relations are not

the sort of things that naturally come to mind for the most people. Therefore, a practical

and perhaps most sensible way to boost the agreement is not by fixing the annotation

scheme and training lay people on that, but rather hiring one coder-linguist trained in

rhetorical theories and letting her work on the annotation alone.

18Though we did not elaborate on it in the paper, there is nothing in principle that prevents the decision
tree from going beyond the simple binary classification.



Chapter 5 MDL and Boosting in Learning

Rhetorical Relations

In this chapter, we will make an experimental comparison of two methods known in the

literature to improve learning effectiveness; one is AdaBoost, a particular form of boosting

whose goal is to construct an ensemble of diverse classifiers and combine them to produce

a single high-accuracy classifier (Freund & Schapire, 1996); and the other is MDL as laid

out in the previous chapter. Let us begin by introducing the reader to some basic ideas of

boosting.

5.1 Boosting

We will focus on a particular boosting method called adaptive boosting or AdaBoost

(Freund & Schapire, 1996; Dietterich, 2000), which is widely recognized as most effective

for improving performance of learning algorithms. AdaBoost works by repeatedly training

classifiers and then combining them into a single composite (and highly accurate) classifier.

The method was tested on various kinds of tasks and learning algorithms and proved

to be effective. One property of AdaBoost is that it directs classifiers generated later

in the boosting process to concentrate on more difficult or exceptional cases that are

misclassified by ones generated earlier, thus deriving hypotheses from very different subsets

of the training data. A final composite hypothesis AdaBoost outputs takes a weighted

majority over its component hypotheses to determine a classification. One obvious effect

of AdaBoosting is that by combining many hypotheses, it significantly reduces the random

variability (or variance) of classification, thus contributing to reduced error rate.

Fig. 5-1 describes the AdaBoost algorithm (Freund & Schapire, 1996). AdaBoost takes

as input a set of example-label pairs. It begins by initializing the probability distribution

of examples, assigning them a uniform probability, i.e., an equal chance of being chosen.

In the next step, AdaBoost calls WeakLearn, some learning algorithm, (e.g. a decision

tree) in a series of rounds, and trains and tests the algorithm on samples selected according

to the probability distribution Dt (the distribution on the t-th round). Define the error as

61
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Table 5-1 AdaBoost (Freund & Schapire, 1996)

Input sequence of m examples (x1, y1), . . . , (xm, ym) with labels yi ∈ Y
weak learning algorithm WeakLearn
integer T specifying number of iterations

Initialize D1(i) = 1/m for all i

Do for t = 1, 2, . . . , T

1. Call WeakLearn, with the distribution Dt.

2. Get back a hypothesis ht : X → Y .

3. Calculate the error of ht : εt =
∑

i:ht(xi) 6=yi

Dt(i).

4. If εt > 1/2, then set T = T − 1 and abort.

5. Set βt = εt/(1− εt).

6. Update the distribution:

Dt+1(i) =
Dt(i)
Zt
×

{
βt if ht(i) = yi

1 otherwise
where Zt is a normalization constant.

Output the final hypothesis:

hfin(x) = arg max
y ∈ Y

∑

t:ht(x)=y

log
1
βt

the sum of probabilities of misclassified samples and the update weight βt as the ratio of

non-error to error. Use βt to update the distribution Dt to Dt+1, which results in decreasing

the probability of correctly classified examples, thus a less chance of being picked up again.

Updating the distribution will force a learner on the next round to work on examples

harder than ever. After the T -th round, output a final hypothesis which is an aggregation

of hypotheses built so far. Note that the final hypothesis takes weighted votes over weak

hypotheses; a vote of a hypothesis with less error is weighted heavier that that of a more

error-prone hypothesis.
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Table 5-2 Classification tasks.

task relations to be identified

1 consequential, antithesis, ad-
ditive, contrast, initiation, ap-
positive, complementary, ex-
panding

2 logical, sequence, elaboration
3 {logical, sequence}, elabora-

tion

5.2 Experiments

We conducted experiments on a corpus of news articles randomly selected from a

Japanese financial paper (Nihon-Keizai-Shimbun-Sha, 1997). The corpus contained 894

articles with the total of 13,563 sentences, each of which was hand-annotated with one of

the eight discourse relations in Table 4-2, except for paragraph-initial sentences, which we

had removed from the corpus, because people rarely agree on their relation types. Those

that are mistakenly left untagged were also removed. This had left us with 7,851 sentences.

In experiments, we prepared three learning tasks, differing in number of classes to be

identified (Table 5-2). The tasks differ only in the way discourse relations are grouped into

classes. In the first task, all the eight relations at the bottom of the taxonomy are used,

while the second makes use of three classes logical, sequence and elaboration. The

third task was to distinguish between elaboration and non-elaboration and was constructed

by grouping logical and sequence into one class and elaboration into another. In the

following, we refer to tasks with the eight, three, and two classes as eight-class, three-class

and two-class problem, respectively.

5.3 Results and Discussion

Table 5-4 shows performance of C4.5 (Quinlan, 1993), AdaBoost C4.5 and MDL C4.5

on the three classification tasks as measured by using 10-fold cross-validation. C4.5 served
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Table 5-3 Results of statistical tests for differences in 10-fold performance. In the table,
‘2c’ refers to the two-class task, ‘3c’ refers to the three class task, ‘8c’ refers to the eight-class
task. ‘+’ indicates significance at the 1 % confidence level, ‘−’ represents no significance,
and ‘†’ near 10 % significance. Figures given in parentheses are p-values. The testing
method is two-sided standard t test.

null hypo. 2c 3c 8c

mdl = boost † (0.147) − −
c4.5 = mdl + † (0.104) +

boost = c4.5 + † (0.104) +

as a base classifier. We have made some modifications to C4.5 to build AdaBoost C4.5 and

MDL C4.5. Refer to Section 4.3.4 for the explanation of features used for C4.5 here. As

a boosting algorithm, we used AdaBoost.M1 (Freund & Schapire, 1996). The number of

rounds was set to 50 and N examples were chosen according to each round’s distribution,

where N is the size of the original training set.

Figures in Table 5-4 are an error rate averaged over 10 cross-validation folds. The

baseline C4.5 used the default pruning option, i.e., pessimistic pruning, with the confidence

level set to 25%. It is found that MDL’s performance is roughly comparable to AdaBoost,

though performance of either method declines as the number of classes increases. On

the two-class problem, MDL achieves 9% reduction in error rate as compared against the

baseline C4.5 while AdaBoost achieves 6%. On other tasks, the difference in performance

is slightly smaller; 3% on the three-class problem and 6% on the eight-class problem. As

shown in Table 5-3, on all the tasks, both methods perform significantly better than C4.5

with the default pruning. No significant differences, however, are found between MDL

and AdaBoost except that the two-class task had differences near the 10% confidence

level. Figure 5-1 gives a breakdown of the cross-validated performance of MDL C4.5 and

AdaBoost C4.5. In the panels, the error rate of AdaBoost on each of 10 folds is matched

against that of MDL on the corresponding fold. We see a clear pattern in the left panel,

where MDL has more wins than AdaBoost, while they seem to break even in others.

Now the right panel in Figure 5-2 shows how performance of MDL and AdaBoost on the

two-class problem scales with the number of training samples. The horizontal dimension
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Figure 5-1 Performance (error rate) of MDL as compared against AdaBoost on the
two-class problem (left), three-class problem (center), and eight-class problem (right). The
vertical dimension represents the error rate of MDL, the horizontal dimension represents
that of AdaBoost.

Table 5-4 10-fold cross-validated performance of C4.5, AdaBoost C4.5 and MDL C4.5
on the three tasks.

task C4.5 (baseline) AdaBoost MDL

two-class 38.6% 36.4% 35.4%
three-class 58.2% 56.9% 56.9%
eight-class 74.3% 70.9% 70.5%
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Figure 5-2 Learning curves of MDL and AdaBoost for two-class (left), three-class (cen-
ter), and eight-class problem (right). Each point is the average of 10-fold cross-validation
scores for a particular sample size. The filled diamond represents MDL and the white
diamond AdaBoost.
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Table 5-5 Difference in tree size (number of nodes) between C4.5 default pruning and
MDL

Task Unpruned Default Pruning MDL

two-class 2821.3 1756.7 14.0
three-class 3725.4 2939.3 14.0
eight-class 4287.2 3646.6 25.8

Table 5-6 Agreement scores for seven articles from Nikkei 95. Parenthetical figures
indicate error rate of MDL C4.5 (averaged over 10 folds). (Nihon-Keizai-Shimbun-Sha,
1995)

task 3 humans + MDL C4.5 3 humans

two-class 0.613 (0.39) 0.631
three-class 0.574 (0.55) 0.558
eight-class 0.345 (0.66) 0.355

represents the ratio of samples randomly chosen from the training set to the total number

of training samples, which is about 7,000, and the vertical dimension gives the error rate.

The center and left panels show results for the three- and eight-class problems, respectively.

The dominant pattern seems to be that MDL starts below AdaBoost, but picks up quickly

as the number of samples increases, and the rate of improvement is much faster than

AdaBoost.

Table 5-5 lists tree sizes (in number of nodes) under different pruning methods. MDL

achieves more than 99% reduction of an decision tree with the default pruning.

Furthermore, roughly, the total time required to complete a sequence of the 10-fold

cross-validation procedure for the two-class problem (including the disk I/O), was found

to be 34 seconds for MDL C4.5 and 15,840 seconds (4 hrs. and 24 min.) for AdaBoost C4.5

on a Pentium III 550 MHz machine with 1GB RAM. The three-class task took 46 seconds

for MDL and 21,000 seconds (5 hrs. and 50 min.) for AdaBoost, and the eight-class task

took 63 seconds for MDL and 17,640 seconds (4 hrs. and 56 min.) for AdaBoost. Thus

MDL runs significantly faster than AdaBoost.



5 MDL AND BOOSTING IN LEARNING RHETORICAL RELATIONS 68

Although the error rate is generally high for all the tasks, it appears that humans are

not much better off when put to the same classification tasks. Table 5-6 gives two set of

agreement scores, one among humans alone and other among humans and a machine, as

measured by the kappa statistic (Siegel & Castellan, 1988), whose value ranges from 0 (no

agreement) to 1 (perfect agreement). We randomly chose seven articles from a corpus of

news paper articles in Nikkei 95 (Nihon-Keizai-Shimbun-Sha, 1995) and asked three (post

graduate level) human subjects to annotate the articles with the set of eight labels from

ITDR. The two- and three-class tasks had original hand-coded labels collapsed into two

(elaboration, sequence), and into three (logical, sequence, elaboration), respectively. For a

machine coder, we used an MDL C4.5 classifier trained on 477 articles (5221 examples)

from the same corpus, which had the 10-fold cross-validated error rate at 0.39.

As Table 5-6 shows, even with this much error, in all the tasks, the machine’s agreement

with humans is comparable to that among humans alone, which suggests that in practice

the machine could be used in place of humans. The results also suggest a possible cause of

generally high error rates. Though there is no universally accepted rules for rating kappa

scores, the data with the kappa score of less than 0.67 is believed to be marginally reliable,

meaning a considerable lack of consistency in producing data. Thus the poor performance

of the algorithm may have been caused not so much by having wrong or non-adequate

features for representation but by using data containing a large amount of inconsistencies

in classification.

5.4 Summary

We have made an experimental comparison of MDL and AdaBoost, two methods known

to improve learning algorithms. We have found that as far as the present domain is

concerned, MDL performs as well as AdaBoost and tends to outperform the latter in some

cases when applied to the C4.5 algorithm. We suspect that relatively poor performance

of either method may be attributable to a substantial classification noise that the training

set may contain. Experiments also found that MDL does not fare well when the training

data set is small. AdaBoost, however, does not seem to be affected as much by the paucity

of the training data.

One of the topics which we did not address in the present chapter and are interested in

pursuing in the future is use of MDL as a statistical measure of information. It is observed
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in the literature (Li, 1998) that MDL can be regarded as an improved notion of entropy

and thus could be put to use in place of information gain when selecting an attribute.

From a standpoint of computational linguistics, it is interesting to note that machine

learning techniques such as ones investigated here can be used for exploratory purposes. In

discourse studies, where there is no systematic method available to choose one classification

scheme over another other than relying on one’s intuition, machine learning furnishes

us with powerful tools by which to discriminate among possible classification schemes

otherwise hard to distinguish.



Chapter 6 Unsupervised Approach to Text

Summarization

It has been argued in the literature that one of the merits of discovering rhetorical

structure is its potential use for text summarization. The previous chapter demonstrated

that the supervised method approaches human performance in identifying rhetorical re-

lations. However, very low agreement for human judgments could put into jeopardy the

whole enterprise of the systematic discovery and exploitation of rhetorical structure for

summarization. In light of this, it makes sense and an interesting exercise to look for and

pursue another possible avenue for summarization research.

6.1 Introduction

Supervised approaches to summarization (Chuang & Yang, 2000; Kupiec et al., 1995;

Berger & Mittal, 2000; Marcu, 1999c) typically make use of human-made summaries or

extracts to find features or parameters of summarization algorithms, while unsupervised

approaches (Zechner, 1996; Carbonell & Goldstein, 1998; Luhn, 1958; Gong & Liu, 2001)

determine relevant parameters without regard to human-made summaries. One of the prob-

lems with the former approach has to do with its underlying assumption that human-made

summaries are reliable enough to be used as “gold standards” for automatic summariza-

tion. Recently, research on human summarization has witnessed some conflicting results

about the validity of the assumption.

Nomoto and Matsumoto (1997), for instance, asked a large group of university students

to identify 10% sentences in a text which they believe to be most important, which was

drawn from one of various domains in a news paper corpus. They reported a rather modest

result of around 25% (kappa) agreement among students on their choices. Also Salton et al.

(1999) reports low inter-subject agreement on paragraph extracts from encyclopedias. On

the other hand, there have been some reports to the contrary. Marcu (1997) found 71%

(percent) agreement among judges on sentence extracts from expository articles; Jing et al.

(1998) found quite high percent agreement (96%) for extractions from TREC articles.

70
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It is not known at present what factors are involved in influencing the reliability of

summarization and therefore we do not know whether there is any principled way of eliciting

reliable summaries from humans.

Another problem associated with the approach concerns the portability of a summariza-

tion system: deploying the system in a new domain usually requires one to collect a large

amount of data, which need to be manually annotated, and then train the system. Besides

being costly, the annotation work is known to be quite labor-intensive, which prompted,

for example, Marcu (1999c) to address the problem of automating the construction of

summarization corpora.

The first part of the chapter describes the approach to text summarization which strives

to overcome the issues of portability and the quality of human made summaries mentioned

above. We begin by arguing for what we call the information-centric approach for summary

evaluation. We will then explain mechanisms that drive the summarizer, and evaluate our

approach using a data set known as BMIR-J2, under the information-centric paradigm.

6.2 Information-Centric Approach to Evaluation

Like previous extract-based approaches (Luhn, 1958; Edmundson, 1969; Kupiec et al.,

1995), we define a summary as a set of sentences extracted verbatim from a text, which

cover major substance of that text.

However, the present approach significantly differs from previous work in taking an

information-centric approach to evaluation. We evaluate summaries, not in terms of how

well they match human-made extracts (Kupiec et al., 1995; Edmundson, 1969), nor in

terms of how much time it takes for humans to make relevance judgments on them (Mani

et al., 1998), but in terms of how well they represent source documents in usual IR tasks

such as document retrieval and text categorization. We are interested in asking whether

it is possible to replace documents altogether by corresponding summaries and do as well

with them in IR tasks. Thus an ideal summary would be one whose rank order in retrieved

documents is same as that of its source document, or whose assigned category is same

as that of its source document. This notion of summary as a perfect surrogate of its
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source, while left unexplored in research on summarization, permits a simple and objective

characterization of how well summaries represent the original documents.1

There have been arguments against extractive summarization in the computational

linguistics literature, because extracts generally lack fluency or cohesion. However, Morris

et al. (1999) found in a reading comprehension study that humans were able to perform

as well reading 20-30% extracts as the original full texts and expert-created abstracts.

Humans were able to capture enough of the information from extracts so that they could

perform as if they had read their full-length versions.

6.3 The Diversity-Based Summarization

If we agree that the problem of summarization is one of finding a subset of sentences in

text which in some way represents its source text, then a natural question to ask is, ‘what

are the properties of text that should be represented or retained in a summary?’ Katz’s

work Katz (1996) is enlightening in this regard. In his work on language model (Katz,

1996), he made an important observation that the numbers of occurrences of content

words in a document do not depend on the document’s length, that is, the frequencies

per document of individual content words do not grow proportionally with the length of

a document. Where is the missing mass that accounts for the discrepancy between the

document length and frequencies of content words? He resolves the apparent puzzle by

showing that it is the number of different content words in text that increases with the

document length.

Katz’s observation illuminates two important properties of text: redundancy and di-

versity. The former relates to how repetitive concepts (or content words) are, the latter

relates to how many different concepts there are in the text. While much of the prior work

on summarization capitalize on redundancy to find important concepts in the text or its

relevance to the query, few of them take an issue with the problem of diversity. One excep-

tion is Carbonell and Goldstein (1998), who added the diversity component to a criterion

for sentence selection, which they call maximal marginal relevance or MMR. MMR selects

a sentence in such a way that it is both relevant to the query and has the least similarity to

sentences selected previously. Mani et al. (1998) report that MMR-based summarization

1One might consider the information-centric evaluation here an extreme form of extrinsic evaluation
(Sparck Jones & Gallier, 1995; Mani et al., 1998).
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ranks among the best in the 1998 SUMMAC conference. Radev et al. (2000) also makes

use of some dissimilarity measure for ranking sentences for multi-document summariza-

tion. Gong and Liu (2001) presents yet another attempt to use an MMR-like feature in

summarization.

6.3.1 The Method

The above discussion motivates a summarization strategy which takes seriously diver-

sity as well as redundancy of concepts in text. We will show how to construct a generic

single-document summarizer along this direction. Roughly, the summarizer consists of the

following two operations:

Find-Diversity Find diverse topic clusters in text.

Reduce-Redundancy From each topic cluster, identify the most important
sentence and take that sentence as a representative of
the area.

Finally the summarizer outputs a set of sentences identified by Reduce-Redundancy as

a summary for the text. (The summarizer could invoke some post-summarization proce-

dures such as putting sentences in textual order.) The term “topic cluster” here is to be

understood as a set of sentences which are mutually similar by some criterion but may not

be necessarily contiguous. Let us look at each of the operations in details.

6.3.1.1 Find-Diversity.

Find-Diversity is built upon the K-means clustering algorithm extended with MDL

(Rissanen, 1997; Li, 1998). The algorithm presented here is an MDL-version of X-means

(Pelleg & Moore, 2000). X-means itself is an extension of the popular K-means clustering

algorithm with an added functionality of estimating K, the number of clusters which

otherwise needs to be supplied by the user. We call our adaptation of X-means ‘XM

means.’

For the remainder of the chapter, borrowing in part notations from Pelleg and Moore

(2000), we denote by µj the coordinates of the centroid with the index j, and by xi the

coordinates of the i-th data point. (i) represents the index of the centroid closest to the

data point i. µ(j), for example, denotes the centroid associated with the data point j. ci

denotes a cluster with the index i.
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K-means is a hard clustering algorithm that produces a clustering of input data points

into K disjoint subsets. It dynamically redefines a clustering by relocating each centroid to

the center of mass of points associated with it and re-associating the centroid with points

closest to it.

K-means starts with some randomly chosen initial points. As noted in Bradley and

Fayyad (1998), Pelleg and Moore (2000), a bad choice of initial centers can have adverse

effects on performance in clustering. In experiments described later in the chapter, follow-

ing an advice by Bradley and Fayyad (1998), we repeatedly ran K-means with random

initial points and selected a best clustering solution from solutions generated, on the basis

of distortion, a measure for the tightness of a cluster. A best solution is one that minimizes

distortion.

We define distortion as the averaged sum of squares of Euclidean distances between

objects of a cluster and its centroid. Thus for some clustering solution S = {c1, . . . , ck},
its distortion is given by:

D(S) =
k∑
i

V(ci),

where

V(ci) =
1

| ci |
∑

j

(xj − µ(i))
2.

Here ci denotes a cluster, xj is a multidimensional point in ci, µ(i) represents the centroid

of ci, and | · | is the cardinality function.

One problem with K-means is that the user has to supply the number of clusters, and

it is known that it is prone to searching local minima (Pelleg & Moore, 2000). X-means

overcomes these problems by globally searching the space of centroid locations to find the

best way of partitioning the input data. X-means resorts to a model selection criterion

known as the Bayesian Information Criterion (BIC) to decide whether to split a cluster.

The splitting happens when the information gain from splitting a cluster as measured by

BIC is greater than the gain for keeping that cluster as it is.

Let us graphically illustrate this situation. Figure 6-1 shows a K-means solution with

four centroids (large dots), which cover four distinct regions of the data space. The split

operation examines each of the four clusters, breaks each of them in two, running the

regular K-means on each local cluster region with K = 2, and decides whether the splitting

is worthwhile in terms of BIC. As mentioned above, each call to K-means involves repeated

runs of itself with randomly chosen initial centers and selecting the best clustering solution
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Figure 6-1 The initial state with four regions.

Figure 6-2 Each local cluster splits into two sub-regions.

Figure 6-3 BIC determines that some of sub-regions are not worth keeping.
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Table 6-1 The XM -means Algorithm. c0 here stands for the entire data space, L for
the description length. cji indicates a cluster originating from a cluster indexed with j.
2-means indicates K-means with K = 2.

XM -means(c0,Kmax)
begin
C = φ
(c01, c

0
2) = 2-means(c0)

C = C ∪ {c01, c02}
k = 2
while k < Kmax and there is no convergence

begin
S = {c : c ∈ C,L(2-means(c)) < L(c)}
if S is not empty then
cbest=arg min

c ∈ S
L(2-means(c))

(ck1, c
k
2) = 2-means(cbest)

C = C\{cbest} ∪ {ck1, ck2}
k = k + 1

endif
end

end

from those runs. (In experiments described later, we performed 200 runs of K-means

and selected from those runs a solution with the least distortion.) Figure 6-2 shows a

state where each local cluster splits into two sub-regions by K-means. In Figure 6-3, BIC

determines that the upper left and upper right regions are not worth breaking up, leavings

us with six clusters.

Our modification toX-means consists in replacing BIC by Minimum Description Length

Principle or MDL, a well-studied general criterion for model selection.

In general, given the data x1, . . . , xm, MDL contends that a model that allows a shortest

description for the data is most likely to have given rise to them. (A model here is thought

of as the probability distribution of a variable X, where X = xi.) In MDL, the length
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of a description of data is given as the sum of bits required to encode a model and bits

required to encode the data given the model. The best hypothesis, i.e. a model, h for

xm = x1, . . . , xm is then expressed as follows:

hbest(x
m) = arg min

M ∈M
L(xm : M),

where L(ym : M) = L(xm | M) + L(M), M is the set of possible models, and L(x) is a

description-length of x. L(xm |M) denotes the description length of data, given the model

M , which is the sum of the maximum log-likelihood estimate of P (xm |M) and the coding

length of parameters involved.

Let us assume identical hyper-spherical Gaussian distributions for input data. Also

let each data point represent a multi-dimensional encoding of the sentence in text, i.e.

a vector of weights of index terms in the sentence. Then the probability that a given

multidimensional data point xi belongs to a cluster c(i) can be defined as the product of

the probability of observing c(i) and the multivariate normal density function of xi, with

the covariance matrix Σ = σ2I.2 Therefore we have

P̂ (xi) =
R(i)

R
· 1√

2πσ̂U
exp

(
− 1

2σ̂2
‖xi − µ(i)‖2

)
,

where R(i) = |c(i)|, ‖ · ‖ is the Euclidean norm, R is the total number of input data points,

U is the number of dimensions, and σ̂2 is the maximum likelihood estimate of the variance

such that:

σ̂2 =
1

R−K
∑

i

‖xi − µ(i)‖2.

Therefore the maximum log-likelihood of the cluster cj is:

l̂(cj) = log
∏

i∈cj
P̂ (xi)

=
∑
i∈cj

(
log

1√
2πσ̂U

− 1

2σ̂2
‖xi − µ(i)‖2 + log

R(i)

R

)
,

which is equivalent to:

− R(i)

2
log(2π)− R(i) · U

2
log(σ̂2)− R(i) −K

2
+Ri logRi −Ri logR.

2Thus we assume that the features are statistically independent and have the same variance σ2. See,
for instance, Duda et al. (2001), for details.
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Now define the probability of observing the model M by:

P (M) =
1

|M| .

Then the description-length of the model M is: L(M) = − log|M|. We note that |M | =
(KN−K)

K!
+ 1, where K represents Kmax and N denotes the number of points one wishes to

cluster. |M | corresponds to the number of clusterings of N points into up to Kmax clusters.

But we can drop it from the MDL formula since it is invariant for any choice of M . This

brings us to the final form of MDL:

L(D : M) = −
K∑
ci

l̂(ci) +
k

2
logR

where M is a model, D is a set of data points in the input space, ci is a region or cluster as

demarcated by M , R is the size of the input data, and k is the number of free parameters

in M . The number of parameters here is simply the sum of K − 1 cluster probabilities,

U ·K centroid coordinates, and one variance estimate.

Table 6-1 shows an algorithm for XM means. It takes as input the entire data region

(represented by a single cluster c0) and the maximum number Kmax of clusters one likes to

have. It begins then by running 2-means (i.e. K-means with K = 2) on the entire region,

giving birth to two subregions (clusters) c10 and c20. Add those to C. Set k, the number of

clusters in C, to 2. If k < Kmax and there is no convergence, then run 2-means on each

local region found in C and test if the splitting produces a pair of child regions whose MDL

is smaller than that of the parent. If that is the case, store that information in S. Find a

region in S whose splitting results in the smallest MDL. Replace the region with those of

children. Increment k by 1. Again test if the stopping conditions are met. If not, repeat

the whole process. The idea here is that regions which are not represented well by current

centroids will receive more attention with an increased number of centroids in them. The

algorithm searches the entire data space for the best region to split.

6.3.1.2 Reduce-Redundancy.

For Reduce-Redundancy, we will use a simple sentence weighting model by Zechner

(1996) (call it the Z-model), where one takes the weight of a given sentence as the sum of

tf · idf values of index terms in that sentence. Let the weight W of sentence s be given by:

W (s) =
∑
x∈s

(1 + log(tf(x))) · log(N/df(x))︸ ︷︷ ︸
tf.idf

(6-1)
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Table 6-2 The classification of queries in BMIR-J2. Figures under the primary (sec-
ondary) heading indicates the number of queries that fall under a given type.

type explanation primary secondary
A morphological analysis, the use of thesaurus 14 0
B the analysis of collocation involving numbers,

e.g. inequality, range
3 1

C syntactic analysis 10 1
D semantic, discourse analysis 9 2
E world/common sense knowledge 4 3
F semantic, world/common sense knowledge, rea-

soning
10 3

where x denotes a index term, tf(x) is the frequency of term x in a document, idf(x)

is the inverse document frequency of x. In the Z-model, sentence selection proceeds by:

determining the weights of sentences in the text; sorting them in a decreasing order; and

finally selecting top sentences. Our implementation of Z-model further normalized sentence

weight for length.

Reduce-Redundancy applies the Z-model to each one of the clusters identified by Find-

Diversity and finds out a sentence with the bestW (s) score, which it takes as representative

of the cluster. Note that this strategy of picking up best scoring sentences is designed to

minimize the loss of the resulting summary’s relevance to a potential query. This is in

contrast to an approach by Radev et al. (2000), where the centroid of a cluster is selected

instead.

6.4 Test Data and Evaluation Procedure

6.4.1 BMIR-J2

BMIR-J2 (Benchmark for Japanese IR system version 2) developed jointly by a

Japanese academic society and a government-funded research consortium represents a

test collection of 5,080 news articles in Japanese, all of them published in 1994 (Nichi-

Gai Associates, 1995). Articles were collected from such diverse domains as economy,

engineering, and industrial technology, but they all came from a single news paper source.

The collection comes with a set of 60 queries and the associated list of answers indicating
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which article is relevant to which query to what degree. The degree of relevance falls into

one of three categories: A, B, and C. A indicates a perfect match to the query, B some

relevance and C no relevance. All of the articles were manually labeled for relevance, and

labelings were reviewed by the project committee, comprising researchers from industry

and academia. The collection also features a classification of queries based on sorts of

language technologies potentially required to process them (Table 6-2). As can be seen

from the table, the classification gives us a general idea of how difficult the task of retrieval

using a given query is. For instance, to properly identify documents relevant to a query

of type A requires the morphological analysis of the query, which involves tokenization,

lemmatization and assignments of grammatical categories, and also the possible use of a

thesaurus, and to deal with a query of type B, one needs some way of analyzing collocation

involving numbers, which is more difficult than an A-type query. To find documents

relevant to a query of type F, it is claimed, one has to make reference to common sense or

knowledge about the world and also some reasoning, which is the hardest of all. C, D, and

E-type queries come in between.

Moreover, a set of queries prepared by BMIR-J2 comprises a primary set of 50 queries,

for each of which there are five or more relevant documents, and a secondary set of 10

queries, each having one to four relevant documents. The description of a query in BMIR-J2

contains two types of information; query words/phrases used for the retrieval of documents

and a short explanation of search needs the query is intended to fulfill. In experiments, we

used the primary set of queries.

6.4.2 Experiment Setup and Procedure

We have conducted experiments using BMIR-J2. Our interest was in finding out

whether the diversity-based summarization as formulated here is superior to relevance-

based summarization, which represents a class of summarization methods broadly charac-

terized as creating a summary from a list of sentences in the document ranked according

to their salience or their likelihood of being included in a summary. As a representative of

the class, we used Z-model described earlier, which can be thought of as a baseline model

for relevance-based approaches. Another point of using Z-model is that since the model

is already part of our diversity-based scheme, experiments would reveal true effects of the

diversity component on performance. We could see how much the diversity component

contributes to performance by comparing it to an approach without one.
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We treated summaries as if they were stand-alone documents, and performed usual

document retrieval sessions using them: which is to retrieve documents for a particular

query and rank them according to the cosine similarity to the query. We scored performance

in F-measure where for given P (precision) and R (recall),

F =
2 · P ·R
P +R

.

We performed two sets of experiments which differ in what relevance scheme is em-

ployed. One scheme, which we call the strict relevance scheme (SRS), takes only A-labeled

documents as relevant to the query, while another, called the moderate relevance scheme

(MRS), takes both A- and B-labeled documents as relevant. BMIR-J2 recommends the

latter scheme.

In each experiment, we ran a number of summarizers set at a particular compres-

sion rate, which include Z-model, a diversity-based summarizer with the standard K-

means (hereafter, DBS/K), and a diversity-based summarizer with XM -means (hereafter,

DBS/XM). In addition, largely for the purpose of reference, we ran a lead based summa-

rizer (LEAD), which works by the simple idea of selecting the initial portion of text as a

summary. DBS/K, which is identical to DBS/XM except for the diversity component, was

introduced to determine the effects of MDL on K-means. To obtain a given compression

level α for DBS/XM , we set Kmax to the corresponding number of sentences in text: e.g.

for the text of 10 sentences, Kmax = 5 for α = 50%. Similarly for DBS/K. Let us note

here that the number of sentences DBS/XM picks for a summary may be less than Kmax,

as it is up to MDL to determine the number of clusters and it could settle for less than

Kmax. However, on BMIR-J2, DBS/XM was found to return a Kmax long summary for

most of the time.

One feature specific to the present test domain is the use of a Japanese tokenizer

ChaSen (Matsumoto et al., 1999), which breaks up sentences into words, each labeled with

relevant morphological information such as part of speech. ChaSen is reported to have the

accuracy of over 98% (Matsumoto et al., 1999). For index terms, we used everything except

for punctuation marks, non-linguistic symbols, particles such as case marker. Furthermore,

we did not use any stop-list except for those elements already excluded from the set of index

terms.

Inspired in part by a finding (Morris et al., 1999) that 20% and 30% extracts are

reasonably informative and comparable to the full-length text in the reading comprehension
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setting, we looked at compression rates ranging from 10% to 50%. We ran a test procedure

which consists of two steps.

1. At each compression rate, run Z-model, DBS/K, DBS/XM , and LEAD on the entire

BMIR-J2 collection, to produce respective pools of extracts.

2. For each query from BMIR-J2, perform a search on each pool generated, and score

performance with the uninterpolated average F-measure.

Since we have two relevance schemes to consider, we did the testing under each scheme,

which brought the total of retrieval sessions to somewhere around 1,200.

One problem with the use of a summary as a surrogate of its full length source in

document retrieval is that the condensation process usually destroys statistical properties

of a source text such as term frequency: thus for instance, terms X and Y, which may have

different frequencies in the source, could end up having the same number of occurrences

in a summary, which would leave us with no way of distinguishing between them in terms

of term weight. One way to go about the problem is to extrapolate frequencies of index

terms in a summary in order to estimate their true frequencies in its source, which we did

using the following formula from Katz (1996).

E(k | k ≥ m) =
∑
r≥m

(
pr∑

j≥m pj

)
·r (6-2)

=

∑
r≥m prr∑
r≥m pr

,

where pr denotes the probability of a given word occurring r times in the document and

m ≥ 0. Formula 6-2 (= (6.4) in Katz (1996)) estimates the average number of occurrences

of a word in the documents, each of which contains at least m occurrences of that word.

With Formula 6-2 it is possible to estimate the average frequency in the source of a word

observed in a summary. For example, if we observe m occurrences of a word w in a

summary, its expected frequency in its source text is given as E(k | k ≥ m).

In our experiments, we restricted ourselves to index terms with two or more occurrences

in the document, so their extrapolated estimates would be E(k | k ≥ 2).

The df values of index terms in a summary are obtained directly from a pool of sum-

maries.
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Table 6-3 Average Performance of Z, DBS/K, DBS/XM and LEAD under SRS. ‘Full’
represents a full-length document retrieval system, which runs a query on full-length doc-
uments. Figures below are in F-measure. α indicates compression rate.

α full z dbs/k dbs/xm lead
10% 0.230 0.203 0.211 0.227 0.230
20% 0.230 0.231 0.208 0.225 0.244
30% 0.230 0.225 0.220 0.220 0.260
40% 0.230 0.240 0.222 0.225 0.252
50% 0.230 0.234 0.227 0.235 0.258

Table 6-4 Average Performance of Z, DBS/K, DBS/XM and LEAD under MRS.

α full z dbs/k dbs/xm lead
10% 0.170 0.145 0.185 0.206 0.178
20% 0.170 0.178 0.191 0.208 0.187
30% 0.170 0.194 0.209 0.223 0.203
40% 0.170 0.214 0.213 0.234 0.221
50% 0.170 0.227 0.228 0.233 0.225

6.5 Results and Discussion

Tables 6-3 and 6-4 give us a detailed picture of how Z0, DBS/K, DBS/XMand LEAD

compare among themselves under the two relevance schemes, i.e., moderate and strict rel-

evance schemes. How much of a text is selected is determined by a particular compression

rate set for a summary. Note however that the idea of compression rate has little conse-

quence for a full-length retrieval system (or full), as it is meant to use an entire body

of text, not any part of it, to determine its relevance to a query, In the tables, we put

performance of full along with those of others for the sake of comparison. All the figures

reported there are averaged F-measures over the primary queries.

Let us turn to Table 6-3. We are somewhat struck by the absence of differences in per-

formance among the systems, which makes an interesting contrast with their performance

under MRS, where the differences are more apparent. Table 6-5 and 6-6 look at p-values

for pair-wise differences in performance among the summarizers. The null hypothesis here

is that there is no difference in how any two systems perform. We tested the hypothesis
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Table 6-5 Significance scores (P-values) for SRS. The asterisk indicates 5% significance
level. We are concerned here about how much a given pair of summarizers differ in their
performance on the primary queries. L denotes LEAD, X DBS/XM K DBS/K and Z the
Z model. l:x reads ‘l is compared to x.’

10% 20% 30% 40% 50%
l:x 0.9067 0.3978 0.0779 0.0666 0.1662
l:z 0.1712 0.6704 0.0189∗ 0.4802 0.1992
l:k 0.2832 0.0784 0.2470 0.1609 0.1058
k:z 0.5953 0.4751 0.8732 0.0605 0.3744
z:x 0.2778 0.8460 0.7368 0.1842 0.8722
k:x 0.2577 0.1788 0.9952 0.7924 0.1773

Table 6-6 Significance scores (P-values) for MRS. Refer to Table 6-5 for legends.

10% 20% 30% 40% 50%
l:x 0.0017∗ 0.0116∗ 0.0253∗ 0.0778∗ 0.1368
l:z 0.0005∗ 0.6834 0.3490 0.3494 0.6801
l:k 0.4276 0.6217 0.8193 0.3511 0.5448
k:z 0.0001∗ 0.5791 0.5931 0.8746 0.7410
z:x 0.0000∗ 0.2033 0.0002∗ 0.0154∗ 0.0469∗

k:x 0.0007∗ 0.0017∗ 0.6106 0.0061∗ 0.3517
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by running a two-tailed t-test on each pair of summarizers. Table 6-5 gives results for SRS

and Table 6-6 those for MRS. P-values breaking 5% level are marked with an asterisk.

What we find in the tables is that in MRS most of p-values at 10% are statistically sig-

nificant, meaning that there is a substantial difference in performance among the systems,

while in SRS none of them are, indicating that the systems perform more or less equally

there. Take LEAD and DBS/XM . Their results for MRS find that the two summarizers

produce significantly different performance at compression rates from 10% to 30%, whereas

in SRS the difference between the two is marginal at best.

The MRS results also show a particularly significant difference in performance between

DBS/K and Z at compression rate of 10%, whose p-value is as small as 0.0001. In terms of

machinery they employ, their difference comes down to the use of clustering in DBS/K and

non-use of it in Z. Therefore, it is arguable that whatever difference there is in performance

has been caused by clustering.

Notice also a general superiority of DBS/XM over Z in MRS. We believe the reason

has to do with a particular way DBS/XM pulls out sentences: unlike Z, which looks at

the entire text space for summary sentences, DBS/XM is designed to search each of topic

clusters or subtexts for a potential sentence to be included in summary. As a consequence,

Z is more likey than DBS/XM to fail to notice those sentences which though not on primary

subjects of the text, may still be relevant to a query. We believe that B-labeled documents

typically contain sentences of this kind, dealing with secondary concerns of the text which

are marginally relevant to a query.

Another point about DBS/XM and Z-model is that their differences in performance

become smaller with the compression rate. This is because the Z-model selects more of

the diverse sentences in the text, as the compression rate increases.

Table 6-7 and Table 6-8 break down performance of DBS/XM by query type under SRS

and MRS, respectively. The general picture is that in either scheme, DBS/XM performs

best on average for queries of type B, and moderately well for queries of type A and C. The

results are somewhat contrary to our expectation since a retrieval with a query of type B

is supposedly more difficult than with an A-type query.

(Gong & Liu, 2001)(G&L, hereafter) is worthy of some mention here, as it provides an

interesting alternative to the present approach. In it, the authors discuss two approaches

to representing the diversity of content in text: one involves selecting a representative
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Table 6-7 Breakdown of average performance of DBS/XM by query type under SRS.

query 10% 20% 30%
A 0.230 0.230 0.233
B 0.381 0.372 0.399
C 0.245 0.248 0.248
D 0.161 0.162 0.151
E 0.078 0.072 0.074
F 0.040 0.037 0.043

Table 6-8 Breakdown of average performance of DBS/XM by query type under MRS.

query 10% 20% 30%
A 0.139 0.141 0.145
B 0.273 0.279 0.333
C 0.193 0.197 0.213
D 0.101 0.101 0.116
E 0.081 0.080 0.085
F 0.074 0.070 0.090

sentence in such a way that it may not contain any term mentioned in a pool of sentences

already chosen; and another relies on singular value decomposition (SVD).

Now let us see how they compare to DBSs. As G&L find no significant difference in

performance between SVD and non-SVD summarizers, we try here a simpler, non-SVD

summarizer, which takes the following steps to create a summary.

1. Rank sentences in a text, according to how similar they are to the document they

belong to, using a weighting scheme such as tfidf.

2. Add a top scoring sentence to a summary.

3. Remove terms mentioned in the sentence from the document.

4. Halt if the summary reaches a predefined number of sentences. If not, go to step 1.

We consider three summarizers which G&L call ATC, ATN, and ANN. Which are re-

ported in G&L to consistently produce performance better than or equal to SVD based
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Table 6-9 Average Performance of ATC, ATN, and ANN in SRS.

α atc atn ann
10% 0.072 0.110 0.139
20% 0.062 0.150 0.150
30% 0.113 0.211 0.211
40% 0.182 0.209 0.209
50% 0.221 0.219 0.219

summarizers. ATC and ATN both make use of what they call the augmented term weight-

ing scheme, along with the inverse document frequency or idf.3 ATC further normalizes

term weights by the length of sentence, a feature not shared by ATN. ANN also adopts

the augmented scheme but does not take into account idf or normalization.

Table 6-9 gives results for SRS and 6-10 those for MRS. In either table, we find that

ATC, ATN, and ANN are all defeated by DBSs, and somewhat surprisingly also by Z and

LEAD. The results indicate that going for a summary with as mutually distinct sentences

as possible is not a good idea when working on IR tasks such as one here. Note that G&L’s

approach does not allow lexical overlap among sentences in summary. This assumption

may have caused havoc to the summarizers.

To sum up, we have examined how the diversity based methods (DBSs) compare in

performance to the relevance based model (Z-model) and LEAD under two paradigms,

SRS and MRS. It was found that they differ more widely in MRS than in SRS: DBSs

consistently outperform Z and LEAD in MRS, but does not in SRS, indicating that the

diversity based methods are more sensitive to marginally relevant documents than the

relevance based model.

3For a given term i, its augmented weight is given as 0.5 + 0.5 ∗TF (i)/MAX TF, where TF (i) denotes
the frequency of term i in a text, MAX TF denotes the maximum term frequency for terms in that text.
Note that they give a somewhat unorthodox definition for the inverse document frequency, which they
define as log(N/n(i)). N is the total number of sentences in a text and N(i) the number of sentences that
contain i.
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Table 6-10 Average Performance of ATC, ATN, and ANN in MRS.

α atc atn ann
10% 0.015 0.109 0.122
20% 0.051 0.152 0.152
30% 0.100 0.191 0.191
40% 0.141 0.234 0.214
50% 0.186 0.227 0.227

6.6 Summary

We have proposed a novel summarization paradigm where evaluation does not rely

on matching extracts against human-made summaries but measuring the loss of infor-

mation in extracts in terms of retrieval performance. Under this scheme, the diversity

based summarization (DBS/XM) was found to be superior to relevance based (tfidf based)

summarization i.e., Z and LEAD, a standard baseline for text summarization.

We have seen that the improvement by the diversity component is more prominent

under the moderate relevance scheme (MRS) than the strict relevance scheme (SRS). But

this is just what is expected of performance of the diversity-based approach, because under

the moderate relevance scheme, the system has to be more sensitive to marginally relevant

sentences.



Chapter 7 Learning Human-Created Summaries

7.1 Introduction

In the following, we are going to turn to an interesting question of how well the diversity

based summarizer models subjective judgments by humans on which sentence to include

in a summary. In particular, we will explore how DBS compares to a supervised approach

for summarization, which is a natural choice when the training data are available. To

our knowledge, no prior work on automatic summarization addressed the question of how

supervised and unsupervised approaches compare in performance when they are set to the

same task. A general perception seems to be that a learning based approach works better,

since it is able to exploit information about the grand truth provided by humans, which

is not available to an unsupervised approach. But it is well known that learning based

approaches to summarization inherently suffer from the problem of “lack of uniqueness of

a summary” (Mani et al., 1998) and the cost of creating a corpus large enough to train

algorithms on. Besides, it is far from clear whether the supervised approach is superior to

unsupervised approach in our current concern.

Against this backdrop, we set out to empirically investigate how supervised and un-

supervised approaches compare, by directly matching one against the other in the same

summarization task.

7.2 Decision Tree Based Summarization

As a baseline for learning based paradigm, we consider C4.5 decision tree algorithm

(Quinlan, 1993), with some modifications to accommodate an MDL based pruning.1 An-

other modification involved the way the decision tree classifies data. In order to deal with

a variable length summary, it was modified to output a class probability rather than a

label, which allows us to rank sentences according to the probabilistic strength.

1We had a promising result from our earlier work (Nomoto & Matsumoto, 2000) that the extension
of the decision tree with MDL pruning does improve performance to the degree comparable to AdaBoost
(Freund & Schapire, 1996). See Appendix for technical details about harnessing C4.5 with MDL.

89
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Given a set of sentences (encoded in features) that comprise a document, the decision

tree outputs the probabilities of each sentence being included in a summary, which are

exploited to generate a summary of a particular length. A feature description of a sentence

contains information such as length, position, and linguistic cues. Listed in the following

are a set of features used to encode a sentence. (Some of them are devised to specifically

deal with Japanese as we use a Japanese corpus for evaluation.)

<LocSen> Location of sentence X, defined by:

#S(X)− 1

#S(Last Sentence)

‘#S(X)’ denotes an ordinal number indicating the position of X in a text, starting with

one, e.g., #S(kth sentence) = k. ‘Last Sentence’ refers to the last sentence in a text.

LocSen takes values between 0 and N−1
N

. N is the number of sentences in the text.

<LocPar> Location of paragraph in which sentence X occurs, given by:

#Par(X)− 1

#Last Paragraph

‘#Par(X)’ denotes an ordinal number indicating the position of a paragraph containing

X. ‘#Last Paragraph’ is the position of the last paragraph in a text, represented by the

ordinal number.

<LocWithinPar> Location of sentence X within a paragraph in which it appears.

#S(X)−#S(Par Init Sen)

Length(Par(X))

‘Par Init Sen’ refers to the initial sentence of a paragraph in which X occurs, ‘Length(Par(X))’

denotes the number of sentences that occur in that paragraph. LocWithinPar takes con-

tinuous values ranging from 0 to 1. A paragraph initial sentence would have 0 and a

paragraph final sentence 1.

<LenText> Text length in Japanese characters, i.e., kana, kanji.

<LenSen> Sentence length in kana/kanji.

Following some work in Japanese linguistics, we assume that sentence endings are rele-

vant for identifying semantic relations among sentences. Some of the sentence endings refer
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Table 7-1 Classes of sentence final forms.

code description
1 non-past tense verbs/verbal adjectives
2 past tense verbs/verbal adjectives
3 non-past tense copula
4 nominals
5 non linguistic symbols
6 sentence final particles
0 none of above

to inflectional categories of verbs such as past/non-past, interrogative, and others

to morphological categories like nouns and particles, e.g. question-markers. Along with

Ichikawa (1990), we identified a set of sentence-ending cues and marked a sentence as to

whether it contains a cue from the set.2 Included in the set are inflectional forms of the

verb and the verbal adjective, past/non-past, morphological categories such as copula,

and noun, parentheses (quotation markers), and sentence-final particles such as -ka. We

use the following attribute to encode a sentence-ending form.

<EndCue> encodes one of sentence-ending forms described above. It is a discrete valued

feature. The value ranges from 0 to 6. See Table 7-1 for the description of codes.

Finally, one of two class labels, ‘Select’ and ‘Don’t Select’, is assigned to a sentence,

depending on whether it is to be included in a summary. The ‘Select’ label is for a sentence

which would be included in a summary, and the ‘Don’t Select’ label for other cases.

One problem with the use of a decision tree as a summarizer is that it is not able to rank

sentences in the document, which would be required for the generation of a variable-length

summary. To deal with this we modified the way the decision tree classifies data, i.e. we

re-designed it to produce, instead of a class label, the probability of a sentence being of

‘Select’ class, which is given as the ratio of instances of class ’Select’ to the total number

of instances found at a leaf node the decision tree associates with a sentence, whether or

not the sentence is actually labeled as ‘Select.’ The ratio was further modified using the

Laplace’s law. Consult Appendix A.3 for further details.

2Word tokens are extracted by using ChaSen, a Japanese morphological analyzer which is reported to
achieve the accuracy rate of over 98% (Matsumoto et al., 1999).
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Table 7-2 The test data.

text type #sentences #paragraphs #articles
column 17.04 4.28 25
editorial 22.32 7.48 25
news 17.60 6.40 25

7.3 Clustering based Summarization

A specific approach we adopt for the unsupervised paradigm basically follows the tri-

partite model we discussed in the previous chapter, namely, the diversity based summarizer

(DBS/XM), which operates by breaking a text into topically related groups of sentences and

then selecting sentences from each such group. As in the previous chapter, the approach

here has each sentence in the text represented as a vector of tf.idf weights representing the

importance of terms in the sentence.3 In the following, we write ‘DBS’ to mean DBS/XM .

7.4 Evaluation

7.4.1 The Test Data

We asked each of 112 naive subjects (students at graduate and undergraduate level) to

extract 10 % of sentences in a text which he or she considers most important in making

its summary. The number of choices to make varied from two to four, depending on the

length of a text. The age of subjects varied from 18 to 45. The experiments used 75 texts

from three different genres (25 for each); column, editorial and news wire. The texts

were of about the same size in terms of character counts and the number of paragraphs,

and were selected randomly from articles that appeared in a Japanese economics daily

in 1995 (Nihon-Keizai-Shimbun-Sha, 1995). Table 8-1 provides some information on the

corpus from which extraction tests are constructed. For the ease of reference, we refer to

the judgments data for columns as ‘G1,’ those for editorials as ‘G2’ and those for news

wire texts as ‘G3.’ And we refer to them collectively as ‘JFD-1995.’

3See Equation 6-1.
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Table 7-3 Human agreement in κ on summary extraction.

column editorial news wire average
K1 0.225 (24) 0.202 (25) 0.338 (25) 0.255
K2 0.355 (24) 0.336 (25) 0.455 (25) 0.383
K3 0.468 (23) 0.441 (25) 0.589 (25) 0.500
K4 0.556 (22) 0.541 (22) 0.686 (25) 0.598
K5 0.669 (15) 0.680 (15) 0.770 (21) 0.714

The number of subjects assigned to one extraction task varied from 4 to 9. However,

96% of the time, we had over 6 subjects working on a same task. The average number of

subjects per text was 7.33. What we find in Table 8-1 is somewhat discouraging as there

is only marginal agreement among subjects.

Table 7-3 shows genre-wise agreement (in κ statistic) among humans on summary

extraction.4 It also shows how the κ statistic is affected by varying agreement thresholds.

By agreement threshold, we mean the minimum number of votes a sentence need to get

in order to qualify for a summary sentence: thus if the agreement threshold is set to 2

(indicated by K2), we will assume as a summary sentence, one with two or more subjects

voting for it and consider everything else a non-summary sentence. Note that at K1, any

sentence with one or more votes is qualified for a summary sentence (we abuse the term

slightly and call a corpus of sentences so marked ‘K1.’) and similarly for other cases. The

parenthetical figures are the number of texts from a particular genre which contain one or

more sentences with the number of votes above or equal to a given threshold. Note that

we have less and less relevant texts as the threshold goes up: more and more texts are

thrown out because none of the sentences they contain meets the rising threshold. Note

that the agreement increases with the threshold, as we might expect.

The average agreement among subjects was 0.255 at K1. Which is in a way consistent

with Salton et al. (1999), who report a low inter-subject agreement on paragraph extracts

from encyclopedias, and also with Gong and Liu (2001), who find a low inter-subject

agreement in news wire summarization. While there are some work (Marcu, 1999b; Jing

4The kappa statistic (κ) represents one of measures of agreement for nominally scaled data, which takes
the form: P (A)−P (E)

1−P (E) . It is the ratio P (A) of pairwise agreement among subjects adjusted for the expected
agreement ratio P (E) (Siegel & Castellan, 1988).



7 LEARNING HUMAN-CREATED SUMMARIES 94

et al., 1998), which find high agreement rates, their success may be attributed to particulars

of texts used, as suggested by Jing et al. (1998). Thus, the question of whether it is possible

to establish an ideal summary based on agreement is far from clear. In the face of this, it

would be interesting and perhaps more fruitful to explore another view on summary: that

the variability of a summary is the norm rather than the exception.

One consequence of the view is that a sentence marked as important by any one of

the subjects becomes a potential summary sentence, however marginal it may be. We

decided to adopt this view, and consequently regarded as correct, every sentence marked

as important by one or more subjects.

7.4.2 Procedure

We have measured performance of the decision tree based summarizer by the usual

10-fold cross validation, whereby we split the test data into 10 blocks, reserve one for the

test and use others for training. Table 7-4 gives some idea of what the test data which we

call JFD-1995 looks like: the number of positive instances plummets and the value of κ

climbs with the agreement threshold. (A ‘positive’ instance refers to that humans marked

as important enough to be included in a summary.) Table 7-5 lists performance in binary

(i.e., positive versus negative) classification, averaged over ten folds, of the decision tree

on K1 to K5. Note that Table 7-5 is concerned with the accuracy of classification, not

summarization. As shown in the table, the accuracy of classification for the test data was

60% without the pruning (CF=25%) but increased to 63% with MDL. Though the figures

are low, either is well above the baseline performance, which is 51%.

Table 7-6 shows genre-wise precision (averaged over 10 folds) of the decision tree clas-

sifier (again, not the summarizer version of it) at K1 to K5. Precision here is defined

as the ratio of the number of sentences correctly labeled correct over the total number of

sentences the decision tree labeled correct (or ‘Select’). We refer to this particular use of

the term as micro-precision to distinguish it from its normal use, i.e., precision across all

labels or categories. A dominant pattern seems to be that performance of the classifier

drops with the agreement threshold, regardless of the domain it is working with.

For DBS, the only training involved was the estimation of the document frequency of

a term used in sentence weighting, which was done using a collection of 14,391 articles

selected from the same news paper corpus the test data came from. Also for the purpose
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Table 7-4 JFD-1995．N represents the number of sentences in JFD-1995.

N positive negative
K1 1424 707 717
K2 1424 392 1032
K3 1424 236 1188
K4 1424 150 1274
K5 1424 72 1352

Table 7-5 Effect of MDL on a two-class decision tree. Figures in the table indicate error
rates. The baseline here labels everything as negative. The testing and training data are
constructed with K = 1.

C4.5 (CF=100%) C4.5(CF=25%) MDL pruned baseline
K1 0.411 0.396 0.369 0.49

of comparison, we prepared other sorts of unsupervised methods. Among them is LEAD,

which works simply by selecting an initial portion of text.

7.5 Results and Discussion

Tables 7-7 through 7-11 show performance in F-measure of summarizers at varying

compression rates, where F = 2·P ·R
P+R

for precision P and recall R.5 (Each performance figure

Table 7-6 Classificatory accuracy in micro-precision

K column editorial news wire
1 0.488 0.516 0.480
2 0.265 0.276 0.286
3 0.157 0.167 0.173
4 0.101 0.098 0.118
5 0.049 0.038 0.068

5Some caveat about recall. Giving recall as the ratio of correct sentences to the total number of sentences
in text would unfairly underrate it for summaries with low compression rate. Imagine that you wish to
have a summary 10% the size of its source text. Assume in addition that 50% of the source are marked
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Table 7-7 Genre-wise performance of DT, DBS, and LEAD on K1.

column (G1) editorial(G2) news wire(G3)
α dt dbs lead dt dbs lead dt dbs lead

10% 0.573 0.694 0.667 0.507 0.637 0.773 0.707 0.707 0.787
20% 0.510 0.711 0.630 0.520 0.650 0.720 0.600 0.687 0.740
30% 0.491 0.594 0.569 0.547 0.617 0.600 0.571 0.636 0.678
40% 0.514 0.583 0.551 0.541 0.611 0.557 0.548 0.631 0.598
50% 0.541 0.596 0.584 0.543 0.628 0.554 0.546 0.631 0.591

indicates an F score averaged over 10 cross validation folds, with α indicating compression

rate.)

It is interesting to note that while DBS prevails over DT and LEAD in G1, it is

outperformed by LEAD on G3. On G2, DBS tends to pick up with larger compression

rates. At α ≥ 30%, DBS performs superior to either DT or LEAD, apparently regardless

of level of agreement or K, with the notable exception of K5, where LEAD dominates DBS

and DT. Also we find that on the news data set, LEAD significantly outperforms DBS and

DT on K1 through K5.

Now the question is why we don’t have one particular summarizer consistently outper-

forming others across the data sets. LEAD works best on G3 but not on G2 or on G1,

while DBS works best on G1 and not on other domains. Why is this so?

To get some insight into possible relations between domain and performance of sum-

marizers, we split a text into 10 equal-sized contiguous segments of sentences and counted

votes won collectively by sentences in each segment. Each panel in Figure 7-1 and 7-2

shows on the horizontal axis the position of a given segment, and on the vertical axis a

normalized count of votes for that segment, i.e., the ratio of votes it has won over the total

count of votes. Thus for a text of 20 sentences, the first segment starts with the initial

as correct. The problem is, even if you are right about every sentence you put in the 10% summary, you
are still left with recall of 25%. That is, there is no way that a 10% summary could achieve 100% recall.
A way out would be to use the following denominator for recall.

D =
{

α · |T | if α · |T | < |CT | (α > 0)
|CT | otherwise (7-1)

α denotes compression ratio, |T | is the length of text T and CT the number of correct sentences in T . We
use the modified recall throughout the section.
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Table 7-8 Genre-wise performance of DT, DBS, and LEAD on K2.

column (G1) editorial(G2) news wire(G3)
α dt dbs lead dt dbs lead dt dbs lead

10% 0.376 0.392 0.416 0.227 0.383 0.520 0.560 0.493 0.627
20% 0.355 0.406 0.408 0.273 0.442 0.473 0.456 0.475 0.560
30% 0.349 0.372 0.358 0.280 0.417 0.368 0.428 0.485 0.517
40% 0.410 0.415 0.323 0.320 0.412 0.328 0.429 0.506 0.484
50% 0.408 0.413 0.345 0.348 0.422 0.350 0.425 0.494 0.472

Table 7-9 Genre-wise performance of DT, DBS, and LEAD on K3.

column (G1) editorial(G2) news wire(G3)
α dt dbs lead dt dbs lead dt dbs lead

10% 0.208 0.229 0.253 0.168 0.213 0.341 0.444 0.385 0.500
20% 0.212 0.272 0.261 0.203 0.296 0.312 0.374 0.365 0.473
30% 0.237 0.282 0.235 0.203 0.317 0.273 0.350 0.424 0.444
40% 0.304 0.307 0.206 0.213 0.300 0.233 0.342 0.407 0.386
50% 0.302 0.295 0.220 0.240 0.302 0.238 0.333 0.367 0.351

Table 7-10 Genre-wise performance of DT, DBS, and LEAD on K4.

column (G1) editorial(G2) news wire(G3)
α dt dbs lead dt dbs lead dt dbs lead

10% 0.191 0.142 0.194 0.126 0.130 0.295 0.412 0.357 0.460
20% 0.211 0.181 0.207 0.129 0.211 0.269 0.340 0.336 0.441
30% 0.193 0.215 0.186 0.118 0.217 0.214 0.284 0.366 0.390
40% 0.234 0.218 0.156 0.145 0.196 0.181 0.264 0.317 0.313
50% 0.225 0.203 0.152 0.188 0.195 0.166 0.266 0.290 0.268

Table 7-11 Genre-wise performance of DT, DBS, and LEAD on K5.

column (G1) editorial(G2) news wire(G3)
α dt dbs lead dt dbs lead dt dbs lead

10% 0.144 0.147 0.175 0.093 0.113 0.273 0.402 0.271 0.441
20% 0.163 0.158 0.167 0.098 0.159 0.222 0.328 0.260 0.392
30% 0.136 0.153 0.136 0.071 0.134 0.162 0.276 0.268 0.311
40% 0.188 0.154 0.107 0.070 0.117 0.141 0.228 0.228 0.246
50% 0.165 0.136 0.099 0.093 0.137 0.128 0.212 0.213 0.204
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Figure 7-1 Each panel here shows the ratio of votes won by a block of sentences over the
total number of votes cast, for various Ks and domains. The rows (from top to bottom)
represent K1 and K2. The columns represent various domains.

sentence and continues until the second, followed by the second segment which starts with

the third sentence and lasts until the fourth, and so on.

In Figure 7-1 we find two rows each consisting of three panels. The top row gives results

for K1 texts, namely, those texts where any sentence with one or more votes is marked

as correct, and the bottom row results for K2 texts. Each panel in a row shows how the

popularity changes over successive segments of text from a particular domain: left panel

represents G1, center G2 and right G3. Analogously, Figure 7-2 gives results for K3 (top),

K4 (center), and K5 (bottom).

What is striking about these results is that the distribution of votes (or DOV for short)

has a shape specific to a particular domain and remains stable over K1 to K5: the DOV

for G1 on K5, for instance, remains similar to that on K1, with characteristic features in

tact such as high peak at the beginning and lower hill towards the end, though it looks

like a somewhat meager version of the latter. The DOV for the news articles (G3), in

contrast, has a sharp peak at the beginning and then tapers off, features shared by all
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Figure 7-2 Continued from Fig.7-1. We are looking at results for K3 (top row), K4
(center row), and K5 (bottom row).
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of its versions for K2 to K5. The DOV of the editorials or G2 looks similar to that for

the columns, featuring a text-initial peak and bumps at the end but distinguishes itself by

having a ragged hump in the middle.

Interestingly enough, DOVs help us see why we do not have a single summarizer pre-

vailing on all of the domains, i.e., G1 to G3. Take DBS. As we noted earlier, DBS generally

outperforms DT and LEAD in the columns domain. It happens probably because votes in

columns are more evenly distributed or more widely scattered over segments than, say, in

news articles. Therefore, it pays more to search various parts of text for candidate sum-

mary sentences, as DBS does, than to look at a particular region of text (which is what

LEAD does). By contrast, if one turns to the editorial domain, the converse holds, that

is, it pays more to stick to one particular region than to look everywhere, as text initial

segments take most of votes. This is why LEAD beats DBS in that domain.

It is more difficult to explain why DT is performing as it does. DT tends to fare worse

than DBS and LEAD. However, at K4 on the columns domain, DT is generally better off

than the other two. It is not clear at the moment why DT does not do as well on the

editorial domain as on the columns domain, despite the similarity of the corresponding

DOVs.

7.6 Summary

We ran experiments using summary judgments elicited from human subjects, and found

DBS and LEAD to be superior in performance to DT, which is somewhat unexpected given

that DT is allowed to use through learning information on human judgments, an issue we

continue to discuss in chapter 8. Then we asked whether the level of agreement among

humans on their judgments as well as the type of domain have any effect on performance

of the summarizers. The results suggest that the type of domain, or a particular shape it

has for the distribution of votes (DOV) is more likely to affect how the summarizers would

perform. In chapter 9 we will return to the issue of DOVs, and examine an approach to

summarization that directly exploits DOVs by modeling them through probability distri-

butions.



Chapter 8 Supervised Ranking in Summarization

8.1 Introduction

In chapter 7, we found that an unsupervised method based on clustering (DBSXM)

sometimes better approximates human created extracts than a supervised, decision tree

based approach (ProbDT). That appears somewhat contradictory given that a supervised

approach should be able to exploit human supplied information about which sentence to

include in an extract and which not to, whereas an unsupervised approach blindly chooses

sentences according to some selection scheme. An interesting question is, why this should

be the case.

The reason may have to do with variation in human judgments on sentence selection

for a summary. In a study to be described below, we asked students to select 10% of a text

which they find most important for making a summary. If they agree perfectly on their

judgments, then we will have only 10% of a text selected as most important. However,

what we found was that about a half of text were marked as important, indicating that

judgments vary widely among humans.

Curiously, though, (Nomoto & Matsumoto, 2001a) also found that ProbDT fares much

better when tested on data exhibiting high agreement among humans than an unsupervised,

clustering based system, i.e., DBSXM or DBS for short. Their finding suggests that there

are indeed some regularities (or biases) to be found (and exploited).

Results so far on human summaries illuminate two aspects to judgments humans make

when summarizing texts; their judgments vary but exhibit some consistent biases which

could be usefully exploited. The issue is then how we might model them in some coherent

framework.

In this chapter, we will take a look at a possible integration of ProbDT and DBS as a

way of resolving apparently conflicting properties of human summaries. We will show how

coupling both paradigms provides us with a better way of approximating human judgments

than either of the two considered alone. To our knowledge, no prior work on summarization,

e.g., Kupiec et al. (1995) explicitly tackled the issue of the variability inherent in human

101
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judgments in summarization. The details of DBS and ProbDT can be found either in

previous chapters or appendices.

8.2 Combining ProbDT and DBS

Combining ProbDT and DBS is a straightforward business. All that it involves is to

replace Reduce-Redundancy with ProbDT. Thus instead of picking up a sentence scoring

highest in tfdif, DBS/ProbDT attempts to find a sentences with the highest score for

P (Select | ~u,DT). We consider here two variations on ProbDT. One extends a DT with

MDL based pruning, and the other relies on a particular decision tree known as Subspace

Splitting Decision Tree, or SSDT. We start with the MDL version.

8.2.1 MDL-DT

MDL-DT stands for a decision tree with MDL based pruning. It strives to optimize

the decision tree by pruning the tree in such a way as to produce the shortest (minimum)

description length for the tree. The description length refers to the number of bits required

for encoding information about the decision tree. MDL ranks, along with Akaike Infor-

mation Criterion (AIC) and Bayes Information Criterion (BIC), as a standard criterion

in machine learning and statistics for choosing among possible (statistical) models. As

shown empirically in Nomoto and Matsumoto (2000) for discourse domain, pruning DT

with MDL significantly reduces the size of tree, while not compromising performance.

8.2.2 SSDT

SSDT or Subspace Splitting Decision Tree represents another form of decision tree

algorithm.(Wang & Yu, 2001) The goal of SSDT is to discover patterns in highly biased

data, where a target class, i.e., the class one likes to discover something about, accounts

for a tiny fraction of the whole data. Note that the issue of biased data distribution is

particularly relevant for summarization, as a set of sentences to be identified as wis usually

account for a very small portion of the data.

SSDT begins by searching the entire data space for a cluster of positive cases and grows

the cluster by adding points that fall within some distance to the center of the cluster. If

the splitting based on the cluster offers a better Gini index than simply using one of the

attributes to split the data, SSDT splits the data space based on the cluster, that is, forms
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Figure 8-1 SSDT in action. Filled circles represent positive class, white circles represent
negative class. SSDT starts with a small spherical cluster of positive points (solid circle)
and grows the cluster by ‘absorbing’ positive points around it (dashed circle).

one region outside of the cluster and one inside.1 It repeats the process recursively on each

subregions spawned until termination conditions are met. Figure 8-1 gives a snapshot of

SSDT at work. SSDT locates some clusters of positive points, develops spherical clusters

around them.

With its particular focus on positive cases, SSDT is able to provide a more precise

characterization of them, compared, for instance, to C4.5.

8.3 Test Data and Procedure

We asked 112 Japanese subjects (students at graduate and undergraduate level) to

extract 10% sentences in a text which they consider most important in making a summary.2

The number of sentences to extract varied from two to four, depending on the length of

a text. The age of subjects varied from 18 to 45. We used 75 texts from three different

categories (25 for each category); column, editorial and news report. Texts were of about

the same size in terms of character counts and the number of paragraphs, and were selected

randomly from articles that appeared in a Japanese financial daily (Nihon-Keizai-Shimbun-

Sha, 1995). There were, on average, 19.98 sentences per text.

1For a set S of data with k classes, its Gini index is given as: Gini(S) = 1−∑k
i p2

i , where pi denotes
the probability of observing class i in S.

2The test data we will be using is same as one we described in Chapter 7, i.e., JFD-1995. We are
repeating here the description of how it came about for the convenience’s sake only.
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Table 8-1 Test Data. N denotes the total number of sentences in the test data. The
figures under K mean the minimum number of votes a sentence need to get in order to be
considered a wis (positive) sentence.

K N positive negative
1 1424 707 717
2 1424 392 1032
3 1424 236 1188
4 1424 150 1274
5 1424 72 1352

The kappa agreement among subjects was 0.25. The result is in a way consistent with

Salton et al. (1999), who report a low inter-subject agreement on paragraph extracts from

encyclopedias and also with Gong and Liu (2001) on a sentence selection task in the cable

news domain. While there are some work (Marcu, 1999b; Jing et al., 1998) which do

report high agreement rates, their success may be attributed to particulars of texts used,

as suggested by Jing et al. (1998). Thus, the question of whether it is possible to establish

an ideal summary based on agreement is far from settled, if ever. In the face of this, it

would be interesting and perhaps more fruitful to explore another view on summary, that

the variability of a summary is the norm rather than the exception.

In the experiments that follow, we decided not to rely on a particular level of inter-coder

agreement to determine whether or not a given sentence is wis. Instead, we used agreement

threshold to distinguish between wis and non-wis sentences: for a given threshold K, a

sentence is considered wis (or positive) if it has at least K votes in favor of its inclusion

in a summary, and non-wis (negative) if not. Thus if a sentence is labeled as positive

at K = 1, it means that there are one or more judges taking that sentence as wis. In

particular, we write ‘K1’ to mean a version of JFD-1995 with K = 1. We examined K

from 1 to 5. (On average, seven people are assigned to one article. However, one would

rarely see all of them unanimously agree on their judgments.)

Table 8-1 shows how many positive/negative instances one would get at a given agree-

ment threshold. On K1, out of 1424 instances, i.e., sentences, 707 of them are marked

positive and 717 are marked negative, so positive and negative instances are evenly spread

across the data. On the other hand, on K5, there are only 72 positive instances. This

means that there is less than one occurrence of wis case per article.
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In the experiments below, each probabilistic rendering of the DTs, namely, C4.5, MDL-

DT, and SSDT is trained on the corpus, and tested with and without the diversity extension

(Find-Diversity). When used without the diversity component, each ProbDT works on

a test article in its entirety, producing the ranked list of sentences. A summary with

compression rate γ is obtained by selecting top γ percent of the list. When coupled with

Find-Diversity, on the other hand, each ProbDT is set to work on each cluster discovered

by the diversity component, producing multiple lists of sentences, each corresponding to

one of the clusters identified. A summary is formed by collecting top ranking sentences

from each list.

Evaluation was done by 10-fold cross validation. For the purpose of comparison, we also

ran the diversity based model as given in Chapter 6 and a tfidf based ranking model (call it

Z model), which simply ranks sentences according to the tfidf score and selects those which

rank highest. Also recall from Chapter 6 that the diversity based model (DBS) consists in

Find-Diversity and the tfidf based ranking model, called Reduce-Redundancy.

8.4 Results and Discussion

Tables 8-2-8-6 show performance of each ProbDT and its combination with the diversity

(clustering) component. It also shows performance of Z model and DBS. In the tables, the

slashed ‘V’ after the name of a classifier indicates that the relevant classifier is diversity-

enabled, meaning that it is coupled with the diversity extension. Notice that each decision

tree here is a ProbDT and should not be confused with its non-probabilistic counterpart.

Also worth noting is that DBS is in fact Z/V, that is, diversity-enabled Z model.

Returning to the tables, we find that for most of the times, the diversity component has

clear effects on ProbDTs, significantly improving their performance. All the figures are in

F-measure, i.e., F = 2∗P∗R
P+R

. In fact this happens regardless of a particular choice of ranking

model, as performance of Z is also boosted with the diversity component. Not surpris-

ingly, effects of supervised learning are also evident: diversity-enabled ProbDTs generally

outperform DBS (Z/V) by a large margin. What is surprising, moreover, is that diversity-

enabled ProbDTs are superior in performance to their non-diversity counterparts (with a

notable exception for SSDT on K1), which suggests that selecting marginal sentences is

an important part of generating a summary.
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Table 8-2 Performance at varying compression rates for K1. mdl-dt denotes a sum-
marizer based on C4.5 with the MDL extension. dbs (=z/v) denotes the diversity based
summarizer. z represents the Z-model summarizer. Performance figures are in F-measure.
‘V’ indicates that the relevant classifier is diversity-enabled. α indicates compression rate.
Note that dbs =z/v.

α c4.5 c4.5/v mdl-dt mdl-dt/v ssdt ssdt/v dbs z
0.2 0.371 0.459 0.353 0.418 0.437 0.454 0.429 0.231
0.3 0.478 0.507 0.453 0.491 0.527 0.517 0.491 0.340
0.4 0.549 0.554 0.535 0.545 0.605 0.553 0.529 0.435
0.5 0.614 0.600 0.585 0.593 0.639 0.606 0.582 0.510

Another observation about the results is that as one goes along with a larger K, dif-

ferences in performance among the systems become ever smaller: on K5, Z performs

comparably to C4.5, MDL, and SSDT either with or without the diversity component.

The decline of performance of the DTs may be caused by either the absence of recurring

patterns in data with a higher K or simply the paucity of positive instances. At the

moment, we do not know which is the case here.

It is curious to note, moreover, that MDL-DT is not performing as well as C4.5 and

SSDT on K1, K2, and K3. The reason may well have to do with the general properties of

MDL-DT. Recall that MDL-DT is designed to produce as small a decision tree as possible.

Therefore, the resulting tree would have a very small number of nodes covering the entire

data space. Consider, for instance, a hypothetical data space in Figure 8-2. Assume that

MDL-DT bisects the space into region A and B, producing a two-node decision tree. The

problem with the tree is, of course, that point x and y in region B will be assigned to the

same probability under the probabilistic tree model, despite the fact that point x is very

close to region A and point y is far out. This problem could happen with C4.5, but in

MDL-DT, which covers a large space with a few nodes, points in a region could be far

apart, making the problem more acute. Thus the poor performance of MDL-DT may be

attributable to its extensive use of pruning.
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Table 8-3 Performance on K2

α c4.5 c4.5/v mdl-dt mdl-dt/v ssdt ssdt/v dbs z
0.2 0.381 0.441 0.343 0.391 0.395 0.412 0.386 0.216
0.3 0.420 0.441 0.366 0.418 0.404 0.431 0.421 0.290
0.4 0.434 0.444 0.398 0.430 0.415 0.444 0.444 0.344
0.5 0.427 0.447 0.409 0.437 0.423 0.439 0.443 0.381

Table 8-4 Performance on K3

α c4.5 c4.5/v mdl-dt mdl-dt/v ssdt ssdt/v dbs z
0.2 0.320 0.354 0.297 0.345 0.328 0.330 0.314 0.314
0.3 0.300 0.371 0.278 0.350 0.321 0.338 0.342 0.349
0.4 0.297 0.357 0.298 0.348 0.325 0.340 0.339 0.337
0.5 0.297 0.337 0.301 0.329 0.307 0.327 0.322 0.322

Table 8-5 Performance on K4

α c4.5 c4.5/v mdl-dt mdl-dt/v ssdt ssdt/v dbs z
0.2 0.272 0.283 0.285 0.301 0.254 0.261 0.245 0.245
0.3 0.229 0.280 0.234 0.284 0.249 0.267 0.269 0.269
0.4 0.238 0.270 0.243 0.267 0.236 0.248 0.247 0.247
0.5 0.235 0.240 0.245 0.246 0.227 0.233 0.232 0.232

Table 8-6 Performance on K5

α c4.5 c4.5/v mdl-dt mdl-dt/v ssdt ssdt/v dbs z
0.2 0.242 0.226 0.252 0.240 0.188 0.189 0.191 0.191
0.3 0.194 0.220 0.197 0.231 0.171 0.206 0.194 0.194
0.4 0.184 0.189 0.189 0.208 0.175 0.173 0.173 0.173
0.5 0.174 0.175 0.176 0.191 0.145 0.178 0.167 0.167

A

y

B

x

Figure 8-2 Hypothetical Data Space
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8.5 Summary

As a way of exploiting human biases towards an increased performance of the sum-

marizer, we have explored approaches to embedding supervised learning within a general

unsupervised framework. In the paper, we focused on the use of decision tree as a plug-in

learner. We have shown empirically that the idea works for a number of decision trees,

including C4.5, MDL-DT and SSDT. Coupled with the learning component, the unsuper-

vised summarizer based on clustering significantly improved its performance on the corpus

of human created summaries. More importantly, we found that supervised learners perform

better when coupled with the clustering than when working alone. We argued that that

has to do with the high variation in human created summaries: the clustering component

forces a decision tree to pay more attention to sentences marginally relevant to the main

thread of the text.

While ProbDTs appear to work well with ranking, it is also possible to take a different

approach: for instance, we may use some distance metric in instead of probability to

distinguish among sentences. It would be interesting to invoke the notion like prototype

modeler (Kalton, Langely, Wagstaff, & Yoo, 2001) and see how it might fare when used as

a ranking model.

Moreover, it may be worthwhile to explore some non-clustering approaches to repre-

senting the diversity of contents of a text, such as Gong and Liu (2001)’s summarizer 1

(GLS1, for short), where a sentence is selected on the basis of its similarity to the text it

belongs to, but which excludes terms that appear in previously selected sentences. While

our preliminary study indicates that GLS1 produces performance comparable and even

superior to DBS on some tasks in the document retrieval domain, we have no results avail-

able at the moment on the efficacy of combining GLS1 and ProbDT on sentence extraction

tasks.

Finally, we note that the test corpus used for evaluation is somewhat artificial in the

sense that we elicit judgments from people on the summary-worthiness of a particular

sentence in the text. Perhaps, we should look at naturally occurring abstracts or extracts

as a potential source for training/evaluation data for summarization research. Besides

being natural, they usually come in large number, which may alleviate some concern about

the lack of sufficient resources for training learning algorithms in summarization.



Chapter 9 Bayesian Learning in Text Summarization

9.1 Introduction

Consider Figure 9-1. What is shown there is the proportion of the times that sentences

at particular locations are judged as relevant to summarization, or worthy of inclusion in a

summary. Each panel shows judgment results on 25 Japanese texts of a particular genre;

columns (G1K3), editorials (G2K3) and news stories (G3K3). All the documents are from

a single Japanese news paper, and judgments are elicited from some 100 undergraduate

students. While more will be given on the details of the data later (Section 9.3.2), we can

safely ignore them here.

Each panel has the horizontal axis representing location or order of sentence in a doc-

ument, and the vertical axis the proportion of the times sentences at particular locations

are picked as relevant to summarization. Thus in G1K3, we see that the first sentence (to

appear in a document) gets voted for about 12% of the time, while the 26th sentence is

voted for less than 2% of the time.

Curiously enough, each of the panels exhibits a distinct pattern in how votes are spread

across a document: G1K3 has the distribution of votes (DOV) with sharp peaks around

1 and 14; in G2K3, the distribution is peaked around 1 and has some dull swell around

19; in G3K3, the distribution is sharply skewed to the left, indicating that the majority

of votes went to the initial section of a document – an interesting parallel to news schema

(Van Dijk, 1988). A natural question is then, can we somehow exploit the DOV to the

service of summarization? In this chapter, we will be talking about about how we could

do this under a Bayesian modeling framework, which allows us to explicitly represent and

make use of the DOV by way of Dirichlet posterior (Congdon, 2003).

9.2 Bayesian Model of Summaries

Let us begin by some preliminaries. Take a document D of n sentences. Suppose that

we want to do extractive summarization on D, and knew the probability that each i-th

109
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Figure 9-1 Genre-by-genre vote distribution

Pr(s;D, l) =

{ 1

Z

∏
i∈s Pr(Y = i|D,S,V ,U) if |s|= l and s contains no duplicates.

0 otherwise
(9-2)

sentence (1 ≤ i ≤ n) is judged as relevant to (and thus included in) a possible summary,

which we might just as well represent by Pr(Y = i|D), i.e., the probability of a multinomial

variable Y taking i as its value, given D. Then we could regard a summary as a set of

random draws Y (1), . . . , Y (k) from this multinomial distribution, i.e.,

Y (j)|D ∼ Mult(ξ) (9-1)

where ξ = (ξi, . . . , ξn), ξi = Pr(Y = i|D), and
∑

i ξi = 1. ‘X ∼ Z’ is read as ‘X

is distributed as according to Z.’ ‘Mult(ξ)’ represents a multinomial distribution with

parameters ξ1, . . . ξn. Y (j) represents the j-th random draw. To make the DOV part of the

story, we extend the distribution model 9-1 to include, among others, a parameter that

represents it. In particular we define the probability distribution of summaries with length

l, for document D, by Equation 9-2, where S represents whatever information we already

have about sentences; V stands for the DOV; U is a hyperparameter explained later; and

Z is a normalizing constant. For convenience, we write yi to mean ‘Y = i,’ hereafter.

Now one useful, and perhaps enlightening way to look at the DOV in the current

framework is by analogy to collaborative filtering (CF) (Yu, Tresp, & Yu, 2004); part of
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the deal with CF is to invoke and exploit a notion of user profile, which usually means a set

of particular ratings or choices made by the user – here we could think of it as representing

particular positional preferences a person may have when working on a summary. We

could then take the probability of a given sentence i being part of a summary as the sum

of ξi over user profiles that gave rise to the DOV, which is an amalgam of them. Since

however we know nothing about each individual profile, we marginalize over them, which

would give us:

Pr(yi|D,S,V ,U) =∫
Pr(yi|D,S,V , θ,U) Pr(θ |V ,U) dθ. (9-3)

Here θ = (p1, . . . , pn) stands for some user profile with
∑

i pi = 1. (Think of pi as a

probability measure indicating how much a particular person, whose profile θ is, is inclined

to pick the i-th sentence as part of a summary.) Note also that equation 9-3 gives a

ξi averaged over a possibly infinite number of profiles. As finding an exact solution to

the integral in equation 9-3, however, is a practical impossibility, we will fall back to

a somewhat degenerate, though efficient, approximation method suggested by Yu et al.

(2004) and Cowans (2004), where one seeks a solution at a particular θ, namely, posterior

mode or MAP (maximum a posterior) estimate of θ – which translates into expectation

E[θ|V ,U ] in the Bayesian paradigm, which happens to permit an exact solution. (See

Appendix A.4.) As for V , we take it as as a vector (v1, . . . , vn) of observed counts of the

times a sentence at each i-th place (1 ≤ i ≤ n) is picked by people. We take U as a vector

(u1, . . . , un) of uniform parameters, where ui > 0. Therefore equation 9-3 reduces to:

Pr(yi|D,S,V ,U)

≈ Pr(yi|D,S,V ,U , θ̂) Pr(θ̂ |V ,U)

= Pr(yi|D,S, θ̂) Pr(θ̂ |V ,U) (9-4)

where θ̂ = E[θ|V ,U ].

We have yet to work out the likelihood function and the prior that are part of equation 9-

4. Let Pr(θ|V ,U) be given by Dirichlet(θ|V ,U), i.e., a Dirichlet posterior of θ, given V and

U .1 By noting that Dirichlet(θ|V ,U) = Dirichlet(θ|V + U), we have

Pr(θ|V ,U) = Dirichlet(θ|V + U).

1The Dirichlet distribution is known as a ‘natural’ prior for a multinomial distribution which ξi is
(Congdon, 2003).
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Figure 9-2 Ziph plot of random samples from Dirichlet distributions with λ =
1, 10, 100, and 1000.

We may rewrite U as λu for some positive scalar λ, such that ui = 1/n and u =

(u1, . . . , un). λ is known to influence the shape of distribution; i.e., small λ tends to

produce a distribution over u sharply peaked around some u’s (MacKay & Peto, 1994).

Figure 9.2 shows a Ziphian plot of random samples from Dirichlet distributions Pr(p|λu)

with various values for λ (‘b’ in the figure), where p = (p1, . . . , p100), and u is given as

before except that we have ui = 1/100.2 On the x-axis we have an array of parameters pi

ranked by the magnitude of their probabilities, which are given on the y-axis. It is readily

seen in the figure that a larger value of λ gives a more leveled distribution.

As for the likelihood function in equation 9-4, i.e., Pr(yi|D,S,V ,U , θ̂), it could be any

probability function. Indeed, any discriminative (pattern) classifier will do, as long as it

produces the probability of yi conditioned on D, S and θ̂.

Now here is how we may work with a classifier. We begin by randomly resampling

data with replacement from the training data S according to θ̂. We then move on to train

a classifier on the resampled data, and run it on the test document D to find, for each

sentence in D, its probability of being a ‘pick’ sentence. Because resampling does not in

general lead to a unique set of data, we take Pr(yi|D,S, θ̂), for a given classifier f , to be

2Here p1, . . . , p100 are generated using the GNU Scientific Library which samples and renormalizes each
value from a Gamma distribution with α = λui and β = 1.
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the average likelihood f produces for Y = i over 100 samples drawn from Mult(θ̂). Note

an interesting parallel to boosting (Freund & Schapire, 1996); the Dirichlet posterior forces

classifiers to attend to some specific parts of text, and ignore others. How narrowly focused

they are is largely controlled by the value of λ.

Having equation 9-4 worked out, we are ready to deliver a summarizer based on it, which

we call the ‘Bayesian summarist’ or simply ‘BAYS.’ For document D and compression

length l, the Bayesian summarist produces a summary or a subset of D according to:

G(D, l) = arg max
s⊆D

Pr(s;D, l), (9-5)

to which dynamic programming provides a straightforward solution.

9.3 Working with Bayesian Summarist

9.3.1 Pattern Classifiers

We couple BAYS with some of the well known classifiers to see how it leverages their

performance. In particular we compare two versions of each classifier; one with BAYS

and one without. Classifiers we study here include: Adtree (alternating decision tree)

(Freund & Mason, 1999), Naive Bayes, Kstar (an instance-based classifier with a particular

distance measure) (Cleary & Trigg, 1995), and C45 (classical decision tree) (Quinlan, 1993).

We used Weka implementations of the algorithms (with default settings) in experiments

described below (Witten & Frank, 2000).

The attributes are broadly intended to represent some aspects of a sentence in a docu-

ment, an object of interest here. Thus for each sentence ψ, its encoding involves reference

to the following set of attributes or features. ‘LocSen’ gives a normalized location of ψ

in the text, i.e., a normalized distance from the top of the text; likewise, ‘LocPar’ gives a

normalized location of the paragraph in which ψ occurs, and ‘LocWithinPar’ records its

normalized location within a paragraph. Also included are a few length-related features

such as the length of text and sentence. Furthermore we brought in some language specific

feature which we call ’EndCue.’ It records the morphology of a linguistic element that

ends ψ, such as inflection, part of speech, etc.

In addition, we make use of the weight feature (‘Weight’) for a record on the importance

of ψ based on tf.idf. Let ψ = w1, . . . , wn, for some word wi. Then the weight W (ψ) is
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Table 9-1 N represents the number of sentences in G1K3 to G3K3. K is an agreement
threshold. K = n means that sentences with votes ≥ n are marked positive.

K N Positive Negative κ
3 1424 236 1188 0.500

given as:

W (ψ) =
∑

w

(1 + log(tf(w))) · log(N/df(w)).

Here ‘tf(w)’ denotes the frequency of word w in a given document, ‘df(w)’ denotes the

’document frequency’ of w, or the number of documents which contain an occurrence of

w. N represents the total number of documents used to define ‘df(w).’

The ‘Pos’ feature is also among a battery of features used here, intended to record the

position or textual order of ψ, given by how many sentences away it occurs from the top

of text, starting with 0.

Finally we note that each classifier does a binary (positive/negative) classification, but

runs in ‘distributional’ mode, meaning that it produces the probability of a sentence being

positive, i.e., a pick sentence, not the category it thinks it belongs to.

9.3.2 Test Data and Procedure

We created three pools of texts, columns, editorials and news stories from a Japanese

financial paper (Nihon-Keizai-Shimbun-Sha, 1995), each consisting of 25 articles, and asked

112 Japanese students to extract 10% worth of sentences from each text which they consider

most important in creating a summary; the number of sentences to extract varied from

two to four, depending on the length of text. (The corpus is something we dubbed ‘JFD-

1995’ in previous chapters.) We ran experiments on each pool. On average, we had about

seven people working on each text. Sentences are marked ‘positive’ if three or more people

nominated them for inclusion in a summary, and ‘negative’ otherwise. For convenience, let

us call the data set for columns G1K3, the editorials G2K3 and the news stories G3K3.

Additional details are found in Table 9-1, which also gives the κ statistics, a measure of

agreement among humans on their judgments.
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Table 9-2 ADTREE on G1K3

nonbays bays
α TP FP PR TP FP PR

0.10 0.1507 0.0473 0.3958 0.1924 0.0482 0.3958
0.15 0.2271 0.1040 0.3056 0.2271 0.1085 0.2708
0.20 0.2549 0.1612 0.2458 0.2840 0.1598 0.2653
0.25 0.2549 0.2109 0.1938 0.3049 0.2069 0.2090
0.30 0.3361 0.2614 0.2001 0.4090 0.2502 0.2344

Table 9-3 NB on G1K3

nonbays bays
α TP FP PR TP FP PR

0.10 0.0903 0.0646 0.1875 0.0833 0.0650 0.1875
0.15 0.1597 0.1217 0.1875 0.1993 0.1123 0.2500
0.20 0.2965 0.1616 0.2493 0.2896 0.1644 0.2389
0.25 0.3417 0.2020 0.2333 0.3764 0.2018 0.2424
0.30 0.4042 0.2540 0.2237 0.3382 0.2677 0.1876

9.4 Results and Discussion

Tables 9-2 through 9-13 show how Bayesian summarists perform on G1K3, G2K3,

and G3K3. The tables list results in three categories, true positive (TP), false positive

(FP) and precision (PR), at compression rates (α) of interest. The figures thereof indicate

performance averaged over leave-one-out cross validation folds. TP denotes the ratio of true

Table 9-4 KSTAR on G1K3

nonbays bays
α TP FP PR TP FP PR

0.10 0.1458 0.0534 0.3542 0.1333 0.0555 0.3333
0.15 0.2757 0.1013 0.3472 0.2722 0.1001 0.3472
0.20 0.3590 0.1534 0.2847 0.3069 0.1548 0.2778
0.25 0.3937 0.1955 0.2597 0.2965 0.2077 0.2111
0.30 0.4368 0.2522 0.2340 0.3604 0.2587 0.2076
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Table 9-5 C45 on G1K3

nonbays bays
α TP FP PR TP FP PR

0.10 0.1389 0.0541 0.3125 0.1958 0.0453 0.4583
0.15 0.2028 0.1070 0.2917 0.2931 0.0967 0.3611
0.20 0.2458 0.1604 0.2514 0.3069 0.1582 0.2757
0.25 0.3167 0.1954 0.2437 0.4056 0.1854 0.2931
0.30 0.3271 0.2570 0.2108 0.4333 0.2497 0.2369

Table 9-6 ADTREE on G2K3

nonbays bays
α TP FP PR TP FP PR

0.10 0.1660 0.0605 0.3667 0.2287 0.0491 0.5067
0.15 0.3013 0.0917 0.4033 0.3093 0.0896 0.4233
0.20 0.3893 0.1381 0.3627 0.4247 0.1289 0.4060
0.25 0.4620 0.1839 0.3343 0.4840 0.1791 0.3493
0.30 0.4880 0.2362 0.2931 0.5373 0.2278 0.3189

Table 9-7 NB on G2K3

nonbays bays
α TP FP PR TP FP PR

0.10 0.1487 0.0651 0.3267 0.1573 0.0663 0.2933
0.15 0.2680 0.0994 0.3567 0.2320 0.1080 0.3033
0.20 0.3687 0.1426 0.3393 0.2833 0.1583 0.2707
0.25 0.4467 0.1871 0.3203 0.3033 0.2170 0.2184
0.30 0.5200 0.2337 0.3010 0.3940 0.2593 0.2286

Table 9-8 KSTAR on G2K3

nonbays bays
α TP FP PR TP FP PR

0.10 0.1407 0.0655 0.3067 0.2153 0.0534 0.4733
0.15 0.2147 0.1101 0.2800 0.2980 0.0956 0.3800
0.20 0.3633 0.1434 0.3367 0.3420 0.1484 0.3140
0.25 0.4233 0.1936 0.3000 0.4373 0.1889 0.3152
0.30 0.4747 0.2404 0.2808 0.4573 0.2436 0.2726



9 BAYESIAN LEARNING IN TEXT SUMMARIZATION 117

Table 9-9 C45 on G2K3

nonbays bays
α TP FP PR TP FP PR

0.10 0.1853 0.0575 0.4133 0.2220 0.0501 0.5133
0.15 0.2633 0.0987 0.3667 0.2800 0.0964 0.3800
0.20 0.2947 0.1552 0.2833 0.3840 0.1417 0.3513
0.25 0.3447 0.2079 0.2501 0.4307 0.1938 0.3010
0.30 0.3960 0.2578 0.2338 0.4793 0.2400 0.2831

Table 9-10 ADTREE on G3K3

nonbays bays
α TP FP PR TP FP PR

0.10 0.3513 0.0186 0.8200 0.3513 0.0186 0.8200
0.15 0.4960 0.0457 0.7133 0.5027 0.0462 0.7067
0.20 0.5640 0.0856 0.5967 0.5973 0.0833 0.6067
0.25 0.6340 0.1404 0.4953 0.6407 0.1421 0.4900
0.30 0.6573 0.1920 0.4240 0.6607 0.1948 0.4153

Table 9-11 NB on G3K3

nonbays bays
α TP FP PR TP FP PR

0.10 0.3313 0.0228 0.7600 0.3613 0.0164 0.8400
0.15 0.4427 0.0572 0.6267 0.4493 0.0584 0.6200
0.20 0.5493 0.0920 0.5667 0.5227 0.0983 0.5333
0.25 0.6273 0.1431 0.4860 0.5693 0.1590 0.4293
0.30 0.6607 0.1912 0.4227 0.6640 0.1916 0.4227

Table 9-12 KSTAR on G3K3

nonbays bays
α TP FP PR TP FP PR

0.10 0.3213 0.0240 0.7400 0.3647 0.0165 0.8400
0.15 0.4413 0.0608 0.6067 0.4613 0.0560 0.6400
0.20 0.5460 0.0960 0.5467 0.5560 0.0956 0.5500
0.25 0.5960 0.1560 0.4433 0.6227 0.1503 0.4647
0.30 0.6627 0.1977 0.4113 0.6627 0.1992 0.4080



9 BAYESIAN LEARNING IN TEXT SUMMARIZATION 118

Table 9-13 C45 on G3K3

nonbays bays
α TP FP PR TP FP PR

0.10 0.3080 0.0245 0.7400 0.3647 0.0165 0.8400
0.15 0.4660 0.0511 0.6667 0.4827 0.0485 0.6867
0.20 0.5127 0.0975 0.5367 0.5607 0.0877 0.5867
0.25 0.5573 0.1547 0.4420 0.6307 0.1442 0.4840
0.30 0.5707 0.2093 0.3700 0.7140 0.1831 0.4500

positives retrieved over their total, FP the ratio of true negatives retrieved over their total.

TP together with FP defines a point on the ROC (Receiver Operating Characteristic), and

they are included here to give a general idea of what it looks like. Since however the ROC

in general does not allow an easy and accurate comparison among competing systems, we

fall back here to working with PR. Thus when we say classifier X outperforms classifier Y,

what we mean is that X performs better on PR than Y. PR is defined by the ratio of hits

(positive sentences) over the number of sentences retrieved.

In each table, figures to the left of the vertical line are for classifiers without BAYS and

those to the right are for classifiers with BAYS. Let us note that we run cross validation

on a document basis, which means we test on one document, using the rest for training.

After a number of dry runs, we settled for the following settings for λ: λ = 10 for G1K3

and G2K3, and λ = 20 for G3K3.

Results for G3K3 (Tables 9-10-9-13), which contains news stories, find that BAYS

significantly boosts performance of the classifiers. Its effect is more pronounced when

they are run with smaller compression rates; it tends to fade off as the compression rate

increases, except for C45 where BAYS remains effective throughout. On G2K3 (editorials;

Tables 9-6-9-9), BAYS is generally effective except for Naive Bayes (NB), which registers

no improvement at all. The Bayesian Kstar comfortably outperforms its non-Bayesian

version at 0.10 and 0.15, but loses to the latter with larger compression rates. However, in

G1K3 (columns; Tables 9-2-9-5), Bayesian classifiers are doing just about as good as their

non-Bayesian counterparts except for the Bayesian C45, which enjoys a huge increase in

performance.
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Table 9-14 Performance in precision of LEAD on G1K3, G2K3 and G3K3.

α PR (G1K3) PR (G2K3) PR (G3K3)
0.10 0.3000 0.4533 0.8400
0.15 0.2800 0.3733 0.6200
0.20 0.2413 0.2920 0.4867
0.25 0.2340 0.2497 0.4233
0.30 0.2024 0.2205 0.3780

Now why is BAYS not as effective on G1K3 as on G2K3 and G3K3? Some insight into

the puzzle comes from the vote distributions in Figure 9-1. Compared to G3K3 and G2K3,

G1K3 has the DOV somewhat ragged with sudden dips and rises. We suspect this is what

makes the focused learning with BAYS less effective on G1K3. Also worthy of mention is

that C45 responds remarkably well to the Dirichlet resampling, providing a huge boost in

performance across the three domains.

Finally let us note that Bayesian summarists generally compare favorably to the lead

based summarizer (LEAD); C45 outdoes the latter by a large margin, and Kstar to a lesser

extent. However, how much better BAYS’s perform than LEAD apparently depends on

the domain they work on; we see them comfortably beat LEAD on G3K3 and G2K3, and

moderately so on G1K3. An obvious loser here is NB or Naive Bayes, whose performance,

BAYS-enabled or not, lags far behind not only those of competing classifiers but also of

LEAD. Why it fails is something we do not have a ready answer to, but apparently NB

does not work well with the biased statistics that BAYS gives rise to. It is interesting to

note how its performance drops when coupled with the BAYS; it fares better without the

enhancement most of the time.

9.5 Concluding Remarks

We have discussed a Bayesian approach to text summarization and gains it delivers to

a usual variety of summarization models based on pattern classification. We also identified

some of the properties of domains on which the Bayesian model tends to fail. A possible
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future direction would include exploring the use of gradient algorithms for automatically

finding optimal values of λ (MacKay & Peto, 1994).



Chapter 10 Conclusions

10.1 Summing up

Before we conclude, let us run through some of the major points of the thesis. The

discourse part of the thesis focused on formulating learning based approaches towards

recovering a linguistic model of discourse for a possible use with text summarization. In

chapter 2, we constructed a DT based generic discourse parser which one could adapt for

any language given a training corpus. Among features used for a DT parser, we found

that distance-, location- and length-related features contribute most to performance of the

parser.

Chapter 3 addresses the issue of annotating texts with concepts from discourse theories

such as Rhetorical Structure Theory (RST) (Mann & Thompson, 1987a). Initially we

worked with RST, but it soon became clear that human annotators disagree widely on

rhetorical relations they provide. This made us turn to an alternative scheme which we

call ‘ITDR’ (Ichikawa, 1990), where rhetorical relations are explicitly tied with discourse

connectives, therefore easier to mark a text for. All this eventually resulted in improved

agreement among humans.

Chapter 6 marks a major shift in the sort of approach we take to summarization; we

found out from previous chapters that judgments on discourse relations are not reliably

elicited from humans, which could compromise the integrity of a linguistic corpus they

are part of. Chapter 6 responds by exploring a unsupervised approach to summarization,

which we call the diversity based summarization or DBS. DBS proved particularly effective

in retrieving marginally relevant documents.

Chapter 7 turns an eye on an question of how well DBS serves as a model of humans

extracted summaries. Curiously enough, we found that DBS generally outperforms DT. It

is curious because the DT has to its avail information on various aspects of data, such as

location, length, etc. A closer look at the results reveals, however, that each of the data

sets we are working with has the distribution of votes (DOV) with a shape specific to it;

votes are more widely spread across the whole text in columns and editorials than in news

121



10 CONCLUSIONS 122

articles. We argued that they would provide some useful clues to understanding why the

summarizers are behaving as they do.

Picking up on this issue, the paper explores a Bayesian approach in chapter 9, where

we aim at explicitly encoding and exploiting DOVs through a statistical modeling. It turns

out that the Bayesian approach, when coupled with a usual variety of pattern classifiers,

significantly improves performance of the classifiers.

10.2 Gold standard for summarization?

One of the long-standing issues in summarization is an apparent variability of human

judgments; people disagree on what they like to see in a summary as often as, possibly

more often than they agree, which is amply demonstrated in the literature and also by the

present study (chapter 8–9).

A unique feature of the Bayesian approach espoused in chapter 9 lies in the view it

takes that summarization is a particular form of collaborative filtering (CF), wherein we

regard a summary as a set of sentences favored by a particular user or a group of users

just like any other things people may have particular preference for, such as CDs, books,

paintings, emails, news articles, etc. Importantly, under CF, we would not be asking, what

is the ‘correct’ or gold standard summary for document X? – the question that consumed

much of the past research on summarization.

Indeed the fact that there could be as many summaries as angles to look at the text

from may favor a CF view of summary: that what constitutes a good summary may vary

and depend on a particular set of profile data we are working with, which may come from

a single user or a group of users with various interests and concerns. There are some

recent efforts along the similar lines. One notable is the Pyramid scheme (Nenkova &

Passonneau, 2004) where one does not declare a particular human summary a absolute

reference to compare summaries against, but rather makes every one of multiple human

summaries at hand bear on evaluation; Rouge (Lin & Hovy, 2003) represents another such

effort. The Bayesian summarist (chapter 9) represents yet another wherein one strives to

find a summary most typical of those created by humans.

One could talk about a particular translation being right or wrong, but probably not

with a summary, as it involves a subjective interpretation (and prioritizing) of events

described in the text, and could come out quite unlike any of the corresponding reference
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(or ‘correct’) summaries we happen to have. Perhaps a lesson to take home is, ‘no standard’

is a gold standard for summarization.



APPENDIX A.

A.1 Split Criterion

The gain criterion measures the effectiveness of partitioning a data set T with respect

to a test X, and is defined as follows.

gain(X) = info(T )− infoX(T )

Define info(T ) to be an entropy of T , that is, the average amount of information generated

by T . Then we have:

info(T ) = −
k∑

j=1

freq(Cj, T )

| T | × log2

freq(Cj, T )

| T |

freq(C, T ) is the number of cases from a class C divided by the sum of cases in T . Now

infoX(T ) is the average amount of information generated by partitioning T with respect

to a test X. That is,

infoX(T ) =
n∑

i=1

| Ti |
| T | × info(Ti)

Thus a good classifier would give a small value for infoX(T ) and a large value for infoX(T ).

The gain ratio criterion is a modification to the gain criterion. It has the effect of

making a splitting of a data set less intense.

gain ratio(X) = gain(X)/split info(X)

where:

split info(X) = −
n∑

i=1

| Ti |
| T | × log2

| Ti |
| T |

The ratio decreases with an increase in the number of splits.
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Table A-1 Assignments Matrix

1 2 · · · j · · · m
1 n11 n11 · · · n1j · · · n1m S1

2 n21 n22 · · · n2j · · · n2m S2
...

...
...

i ni1 ni2 · · · nij · · · nim Si
...

...
...

N nN1 nN2 · · · nNj · · · nNm SN

C1 C2 · · · Cj · · · Cm

A.2 The Kappa Statistic

The kappa coefficient (K) of agreement measures the ratio of observed agreements to

possible agreements among a set of raters on category judgments, correcting for chance

agreement:

K =
P (A)− P (E)

1− P (E)
(A-1)

where P (A) is the proportion of the times that raters agree and P (E) is the proportion

of the times that we would expect them to agree by chance. K = 1 if there is complete

agreement among the raters. K = 0 if there is no agreement other than that which is

expected by chance. Consider a set of k raters and a group of N objects, each of which is

to be assigned to one of m categories. Each of the raters assigns each object to a category.

We represent the assignments data as an N ×m matrix (Table A-1), where the value (nij)

at each celli,j (0 < i ≤ N , 0 < j ≤ m) denotes the number of raters assigning the ith

object to the jth category. Let Cj be the total number of times that objects are assigned

to the jth category, i.e., Cj =
N∑

i=1

nij. We give Si by Def. A-2.

Si =

m∑
j=1

(
nij

2

)

(
k
2

) =
1

k(k − 1)

m∑
j=1

nij(nij − 1) (A-2)
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Table A-2 Probabilistic Classification with DT. ~u is a vector representation of sentence
u. α is a smoothing function. t(~u) is some leaf node assigned to ~u by DT.

P (Select | ~u,DT) = α

(
the number of “Select” sentences at t(~u)

the total number of sentences at t(~u)

)

Si measures the proportion of pairwise agreements among the raters on category assign-

ments for a particular object i. Agreement frequencies nij on each row must sum to k, the

total number of raters. Note that 0 < Si ≤ 1. Si = 1 when there is total agreement among

the raters for a given category j on the ith row. P (A), or the proportion of the times that

the raters agree, is given as the average of Si across all objects (Def. A-3).

P (A) =
1

N

N∑
i=1

Si (A-3)

The probability that a category is chosen at random is estimated as pj = Cj/Nk. Then,

the probability that any two raters agree on the jth category by chance would be p2
j . P (E)

is defined as the sum of chance agreement for each category (Def A-4), representing the

overall rate of agreement by chance.

P (E) =
m∑

j=1

p2
j (A-4)

The values of P (A) and P (E) are then combined to give the kappa coefficient K.

A.3 Supervised Ranking with Probabilistic DT

One technical problem associated with the use of a decision tree as a summarizer is that

it is not able to rank sentences, which it must be able do, to allow for the generation of a

variable-length summary. In response to the problem, we explore the use of a probabilistic

decision tree as a ranking model. First, let us review some general features of probabilistic

decision tree (ProbDT, henceforth) (Yamanishi, 1997; Rissanen, 1997).

ProbDT works like a usual decision tree except that rather than assigning each instance

to a single class, it distributes each instance among classes. For each instance xi, the
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Figure A-1 Probabilistic Decision Tree (Same as Figure 4-1).

strength of its membership to each of the classes is determined by P (ck | xi) for each class

ck.

Consider a binary decision tree in Fig A-1. Let X1 and X2 represent non-terminal

nodes, and Y1 and Y2 leaf nodes. ‘1’ and ‘0’ on arcs denote values of some attribute at

X1 and X2. θ
i
y and θi

n represent the probability that a given instance assigned to the node

i is labeled as yes and no, respectively. Abusing the terms slightly, let us assume that

X1 and X2 represent splitting attributes as well at respective nodes. Then the probability

that a given instance with X1 = 1 and X2 = 0 is labeled as yes (no) is θ2
y (θ2

n). Note that∑
c θ

j
c = 1 for a given node j.

Now to rank sentences with ProbDT simply involves finding the probability that each

sentence is assigned to a particular class designating sentences worthy of inclusion in a

summary (call it ‘Select’ class) and ranking them accordingly. (Hereafter and throughout

the rest of the paper, we say that a sentence is wis if it is worthy of inclusion in a summary:

thus a wis sentence is a sentence worthy of inclusion in a summary.) The probability that a

sentence u is labeled as wis is expressed as in Table A-2, where ~u is a vector representation

of u, consisting of a set of values for features of u; α is a smoothing function, e.g., Laplace’s

law; t(~u) is some leaf node assigned to ~u; and DT represents some decision tree used to

classify ~u.
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A.3.1 Features

The following lists a set of features used for encoding a sentence in ProbDT.1 Most of

them are either length- or location-related features.2

<LocSen> The location of a sentence X defined by:

#S(X)− 1

#S(Last Sentence)

‘#S(X)’ denotes an ordinal number indicating the position ofX in a text, i.e. #S(kth sentence) =

k. ‘Last Sentence’ refers to the last sentence in a text. LocSen takes values between 0 and
N−1

N
. N is the number of sentences in the text.

<LocPar> The location of a paragraph in which a sentence X occurs given by:

#Par(X)− 1

#Last Paragraph

‘#Par(X)’ denotes an ordinal number indicating the position of a paragraph containing

X. ‘#Last Paragraph’ is the position of the last paragraph in a text, represented by the

ordinal number.

<LocWithinPar> The location of a sentence X within a paragraph in which it appears.

#S(X)−#S(Par Init Sen)

Length(Par(X))

‘Par Init Sen’ refers to the initial sentence of a paragraph in which X occurs, ‘Length(Par(X))’

denotes the number of sentences that occur in that paragraph. LocWithinPar takes con-

tinuous values ranging from 0 to l−1
l

, where l is the length of a paragraph: a paragraph

initial sentence would have 0 and a paragraph final sentence l−1
l

.

<LenText> The text length in Japanese character i.e. kana, kanji.

<LenSen> The sentence length in kana/kanji.

1The features are same as those given in chapter 7, repeated here for the convenience’s sake
2Note that one may want to add tfidf to a set of features for a decision tree or, for that matter, to use

features other than tfidf for representing sentences in clustering. The idea is worthy of consideration, but
not pursued here.
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Table A-3 Linguistic cues

code category
1 non-past
2 past /-ta/
3 copula /-da/

4 noun
5 symbols, e.g., parentheses
6 sentence-ending particles, e.g., /-ka/
0 none of the above

Some work in Japanese linguistics found that a particular grammatical class a sentence

final element belongs to could serve as a cue to identifying summary sentences. These in-

clude categories like past/non-past, interrogative, and noun and question-marker.

Along with Ichikawa (1990), we identified a set of sentence-ending cues and marked a

sentence as to whether it contains a cue from the set.3 Included in the set are inflec-

tional classes past/non-past (for the verb and verbal adjective), copula, and noun,

parentheses, and question-marker -ka. We use the following attribute to encode a

sentence-ending form.

<EndCue> The feature encodes one of sentence-ending forms described above. It is a

discrete valued feature. The value ranges from 0 to 6. (See Table A-3 for details.)

Finally, one of two class labels, ‘Select’ and ‘Don’t Select’, is assigned to a sentence,

depending on whether it is wis or not. The ‘Select’ label is for wis sentences, and the

‘Don’t Select‘ label for non-wis sentences.

3Word tokens are extracted by using ChaSen, a Japanese morphological analyzer which is reported to
achieve the accuracy rate of over 98% (Matsumoto et al., 1999).
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A.4 MAP

Let θ, U , V and λu be as they are given above, and E[ θ | U ] be an expectation of θ

given U . Let u = (u1, . . . , un), with ui = 1/n. Note that

E[ θ | U ]

=

∫
Dirichletn(θ |λu) θ dn θ

=

(∫
u1 p1 dp1, . . . ,

∫
un pn dpn

)

= u.

where
∫
pidpi = 1. Therefore we have

E[ θ | V ,U ]

=

∫
Dirichletn(θ |V + λu) θ dn θ

=

(
. . . ,

vi + λ/n∑
j vj + λ

, . . .

)
= θ̂.

where θ̂ = (θ̂1, . . . , θ̂n). Thus θ̂i =
vi + λ/n∑

j vj + λ
.
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