
NAIST-IS-DD0261003

Doctoral Dissertation

Developing Integrated Services of

Networked Home Appliances

– Implementation framework with Service Oriented Architecture

and Feature Interaction Analysis –

Hiroshi Igaki

March 24, 2005

Department of Information Systems

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Hiroshi Igaki

Thesis Committee:

Professor Ken-ichi Matsumoto (Supervisor)

Professor Masatsugu Kidode (Co-supervisor)

Associate Professor Hajimu Iida (Co-supervisor)

Developing Integrated Services of

Networked Home Appliances

– Implementation framework with Service Oriented Architecture

and Feature Interaction Analysis – ∗

Hiroshi Igaki

Abstract

Recent advancements in processors and networks has allowed emerging technolo-

gies to network various home electric appliances, including TVs, air-conditioners,

lights, DVD players, and refrigerators. A system consisting of such networked home

appliances is generally called a Home Network System (HNS). A major HNS appli-

cation is the integrated service of networked home appliances (we simply call HNS

integrated service in the following). The HNS integrated service orchestrates different

home appliances to provide a more comfortable and convenient living environment for

the users. HNS is considered to be one of the next-generation value-added services in

a ubiquitous computing environment.

This dissertation presents two main contributions to the effective development of

the HNS integrated services.

∗Doctoral Dissertation, Department of Information Systems, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DD0261003, March 24, 2005.

– ii – Abstract

Design and Implementation with Service Oriented Architecture

First, we propose a novel framework to design and implement the HNS integrated

services. The proposed framework is characterized by the extensive use of a Service

Oriented Architecture (SOA).

The conventional approach to implement the HNS integrated services adopts the

Server Centralized Architecture (SCA), where an intelligent home server controls all

the networked appliances in a centralized manner. To achieve each integrated service,

the home server sends control commands to the appliances in a certain order. Thus,

the mechanism of SCA-based HNS is quite intuitive. However, due to its centralized

nature, the SCA-based HNS suffers from a concentration of load as well as a decline

in reliability, interoperability, and system extendibility.

To cope with this problem, we use the SOA for implementation of the HNS inte-

grated services. In the proposed framework, the appliances export their own features

as services. By introducing a new concept — a service layer on top of the propri-

etary interface of each appliance, the appliance can autonomously execute the services

exported by any other appliance with a standard procedure. Thus, the appliances are

loosely coupled via the exported services. This enables more flexible, balanced and

reliable HNS integrated services. We present a framework to design and implement

the integrated services based on SOA, and then illustrate a prototype system developed

with Web services.

We also propose a graph-based method to evaluate the HNS from the viewpoints of

reliability, workload and coupling. With the proposed evaluation metrics, we conduct

a comparative evaluation between the proposed and the conventional systems.

Abstract – iii –

Feature Interaction Analysis in HNS Integrated Services

The second contribution of the dissertation is to address the problem of feature in-

teractions in the HNS integrated services. The feature interaction generally refers

to inconsistent conflict between multiple services, which is never expected from sin-

gle services’ behaviors. This problem has been originally studied within the area of

telecommunication services.

The feature interaction problem occurs in the HNS integrated services as well, since

multiple home users may activate different integrated services, simultaneously. The

feature interaction decreases the total quality of services, and even leads to the system

shutting down. Therefore, efficient detection and resolution of feature interactions are

indispensable in guaranteeing the safe and comfortable living environment of home

users. However, the feature interactions in this emerging domain are not yet well

studied.

Our goal is to formulate the feature interaction problem within the HNS integrated

services and propose an efficient analysis method for it. In the formulation, we first

model each appliance as an object consisting of properties and methods, where a prop-

erty represents an internal state of the appliance, and a method abstracts a feature. Each

method consists of a pre-condition and a post-condition, and refers or updates values

of some properties. Similarly, we also construct a model for the home environment.

Within the model, we formalize two types of feature interactions: device interac-

tion and environment interaction. The device interaction is in direct conflict among

features of the same appliance device. This conflict arises when multiple HNS inte-

grated services simultaneously trigger methods that update an appliance property in a

different way. On the other hand, the interaction environment is in indirect conflict

among different appliances via the HNS environment. This conflict arises when mul-

tiple HNS integrated services simultaneously trigger different appliances so that they

– iv – Abstract

try to perform an inconsistent update of an environment property.

Based on a formulation, we implement a feature interaction detection system, and

conduct a case study of interaction detection for practical HNS integrated services.

The proposed framework is quite generic and is well applicable to any HNS, including

both SCA-based and SOA-based systems. We also discuss several resolution schemes

for the detected interactions.

Overview of Dissertation

This dissertation is organized as follows. In Chapter 1, we summarize the background

and related topics, and describe an outline of the dissertation. In Chapter 2, we present

preliminaries for the HNS integrated services with practical example scenarios. In

Chapter 3, we propose the SOA-based framework for the design, implementation and

evaluation of the HNS integrated services. Chapter 4 discusses the feature interaction

problem within the domain of the HNS integrated services. Finally, in Chapter 5, we

conclude this dissertation with a summary and future work.

Keywords:

Integrated Services, Service Oriented Architecture, Feature Interaction and Home Net-

work

List of Major Publications

Journal papers (Referred)

[1-1] Hiroshi Igaki, Masahide Nakamura, Haruaki Tamada, Ken-ichi Matsumoto,

“Implementing Integrated Services of Networked Home Appliances Using Service-

Oriented Architecture”, Journal of Information Processing Society of Japan,

Vol.46, No.2, pp.314-326, Feb. 2005 (in Japanese).

International Conference Papers (Referred)

[2-1] Masahide Nakamura, Hiroshi Igaki, Ken-ichi Matsumoto, “Feature Interactions

in Integrated Services of Networked Home Appliances -An Object-Oriented

Approach-”, Proc. of 8th International Conference on Feature Interactions in

Telecommunications and Software Systems(ICFI2005), Jun. 2005(to Appear).

[2-2] Masahide Nakamura, Hiroshi Igaki, Haruaki Tamada and Ken-ichi Matsumoto,

“Implementing integrated services of networked home appliances using service

oriented architecture”, Proc. of 2nd International Conference on Service Ori-

ented Computing (ICSOC2004), pp.269-278, Nov. 2004.

[2-3] Hiroshi Igaki, Masahide Nakamura and Ken-ichi Matsumoto, “Design and eval-

uation of the home network system using the service oriented architecture”,

Proc. of International Conference on E-business and Telecommunication Net-

works (ICETE2004), Vol.1, pp.62-69, Aug. 2004.

Domestic Workshops and Symposiums

[3-1] Hiroshi Igaki, Masahide Nakamura, Ken-ichi Ishii, Youhei Kushido, Ken-ichi

Matsumoto, “Runtime Feature Interaction Detection and Resolution in Integrated

– vi – List of Major Publications

Services of Networked Home Appliances”, Technical Report of IEICE., Vol.IN2004-

320, pp.373-378, Mar. 2005 (in Japanese).

[3-2] Hiroshi Igaki, Masahide Nakamura, Ken-ichi Matsumoto, “Detecting Feature

Interactions in Integrated Services of Networked Home Appliances” , Technical

Report of IEICE., DE2004-108, pp.11-16, Oct. 2004 (in Japanese).

[3-3] Hiroshi Igaki, Haruaki Tamada, Masahide Nakamura, Ken-ichi Matsumoto, “A

Design and Evaluation Metrics of the Home Network Systems Using the Service

Oriented Architecture” , Technical Report of IEICE., IN2003-314, pp.333-338,

Mar. 2004 (in Japanese).

Acknowledgements

During the course of this work, I have been fortunate to have received assistance

from many individuals.

First, I would like to thank my supervisor Professor Ken-ichi Matsumoto. The

many opportunities he gave me to proceed my research have stimulated many of my

interests and allowed me to gain more experience in my research field.

I am also very grateful to the members of my thesis review committee: Professor

Masatsugu Kidode and Associate Professor Hajimu Iida for their invaluable comments

and helpful criticisms of this thesis.

I would likely to deeply thank Assistant Professor Masahide Nakamura for his

support, patience and encouragement throughout my graduate studies. He led me to

the research domain of Service Oriented Architecture and Feature Interaction. I have

learned quite a lot from his extensive knowledge in my research domain and many

brilliant and creative ideas. His technical and editorial advice was essential to the

completion of this dissertation and has taught me innumerable lessons and insights on

the workings of academic research in general.

I thank also many collegues in the Graduate School of Information Science, NAIST,

who gave me many useful comments. Especially, I wish to thank Haruaki Tamada, a

member of the Web Services Research Group, who gave me invaluable assistance with

the experiments and with implementing our programs.

The other members of my Research Group likewise provided important advice

and the encouragement to expand existing boundaries about my research domain.

They included Ken-ichi Ishii, Youhei Kushido, Hiroki Yamauchi and Takahiro Kimura.

Thanks also to all members at the Software Engineering Lab. for providing a confort-

able working atmosphere.

– viii – Acknowledgements

The research in this dissertation has been supported by Grant-in-Aid for 21st cen-

tury COE Research(NAIST-IS Ubiquitous Networked Media Computing).

Abbrevations

A:
AXIS—Apache eXtensible Interaction System
API—Application Programming Interface

B:
BPEL4WS—Business Process Execution Language for Web Services

C:
CEBus—Consumer Electronic Bus

D:
DMI—Device Method Invocation

E:
ECHONET—Energy Conservation and HOmecare NETwork

F:
FSIG—Full Service Integration Graph

H:
HAVi—Home Audio/Video Interoperability
HNS—Home Network System
HNS-SCA—Home Network System based on Server Centralized Architecture
HNS-SOA—Home Network System based on Service Oriented Architecture

I:
IEEE1394—Institute of Electrical and Electronics Engineers 1394

M:
MAI—Multiple Action Interaction

S:
SCA—Server Centralized Architecture
SDK—Software Development Kit
SDP—Sum of Disjoint Products
SIG—Service Integration Graph

– x – Abbrevations

SMI—Service Method Invocation
SOA—Service Oriented Architecture
STI—Shared Trigger Interaction

U:
UDDI—Universal Description, Discovery, and Integration
UML—Unified Modeling Language
UPnP—Universal Plug and Play
URI—Uniform Resource Identifier

W:
W3C—WWW Consortium WS-CDL—Web Services Choreography Description
Language WSDL—Web Services Description Language

X:
XML—eXtensible Markup Language

Contents

1 Introduction 1

1.1. Background . 1

1.1.1 Conventional HNS architecture 2

1.1.2 Feature Interaction Problem 3

1.2. Main Results . 4

1.2.1 Implementation Framework using Service Oriented

Architecture . 4

1.2.2 Feature Interaction Analysis 5

1.3. Overview of the Dissertation . 6

2 Preliminaries 7

2.1. A Home Network System and its Applications 7

2.2. Practical Scenarios of the HNS Integrated Services 9

2.3. Assumptions on Networked Home Electric

Appliances . 9

3 HNS Integrated Services based on Service Oriented Architecture 11

3.1. Introduction . 11

3.2. Definitions . 12

3.2.1 Service Oriented Architecture and Integrated Services 12

– xii – Contents

3.2.2 Scenarios of Integrated Services 13

3.3. Design of Integrated Services . 14

3.3.1 Key Idea . 14

3.3.2 Appliance Structure . 15

3.3.3 Service Integration Graph 18

3.3.4 Designing Integrated Services with Service Oriented

Architecture (SOA) . 19

3.3.5 Designing Integrated Services with Server Centralized

Architecture (SCA) . 21

3.4. Implementation . 22

3.4.1 Implementation Framework for Service Layer 22

3.4.2 Prototype System with Web Services 27

3.4.3 Roles in the Proposed Framework 29

3.5. Evaluation . 30

3.5.1 Reliability . 30

3.5.2 Workload . 32

3.5.3 Coupling . 34

3.6. Discussion . 36

3.6.1 Advantage and Limitation 36

3.6.2 Related Work . 37

3.7. Summary . 38

4 Feature Interactions in HNS Integrated Services 41

4.1. Introduction . 41

4.2. Preliminaries . 44

4.2.1 Networked Home Appliances 44

4.2.2 HNS Integrated Services . 45

Contents – xiii –

4.2.3 Architectures for Appliance Orchestration 47

4.3. Formal Definition of HNS . 50

4.3.1 Model of Appliance . 50

4.3.2 Environment . 53

4.3.3 HNS and Integrated Services 55

4.4. Feature Interactions in the HNS Integrated Services 56

4.4.1 Appliance Interactions . 56

4.4.2 Environment Interactions . 58

4.5. Case Study: Offline Interaction Detection 59

4.6. Online Interaction Detection . 62

4.6.1 Key Idea . 62

4.6.2 Online Feature Interaction Detection in HNS-SCA 63

4.6.3 Online Feature Interaction Detection in HNS-SOA 65

4.7. Resolution of Feature Interaction . 66

4.7.1 Rebuild Scenario . 66

4.7.2 Prompt User . 68

4.7.3 Prioritize Services . 68

4.7.4 Prioritize Methods . 69

4.7.5 Prioritize Users . 69

4.7.6 Hybrid Resolution Method 70

4.7.7 Related Work . 71

4.8. Summary . 72

5 Conclusion 73

5.1. Achievements . 73

5.2. Future Research . 74

References 77

List of Figures

2.1 Example scenarios of the HNS integrated services 8

3.1 Service oriented architecture . 13

3.2 Architecture of each home appliance 16

3.3 Design of service scenario SS1(Auto Illumination Service) 18

3.4 Design of integrated services using SOA 20

3.5 Design of integrated services using SCA 22

3.6 Sequence diagram for SS1 . 23

3.7 Implementation template for the service layer 26

3.8 Class diagrams of the prototype system 28

3.9 n-reliability . 32

4.1 API Sequences for SS1 to SS7 . 48

4.2 HNS Architectures for Appliance Orchestration 49

4.3 Interactions between SS2 and SS3 61

4.4 Online Feature Interaction Detection in HNS-SCA 64

4.5 Online Feature Interaction Detection in HNS-SOA 67

List of Tables

3.1 SMI definition file for SS1 . 25

3.2 Workload . 33

3.3 Coupling . 35

4.1 Appliance Properties . 51

4.2 Appliance Models . 53

4.3 Environment Model . 55

4.4 Results of the Offline Interaction Detection 60

4.5 Comparison of resolution approach 70

Chapter 1

Introduction

1.1. Background

The Home network system (HNS) is an emerging trend in home appliances that features

built-in communication capabilities, providing us with added convenience. This HNS

provides many applications and services for home users, for instance, remote control

(outside home), group control, monitoring, etc [12][42][28]. One of the major HNS

applications is the integrated service of networked home appliances (called simply

HNS integrated service in the following). The HNS integrated service orchestrates

different home appliances via a network in order to provide a more comfortable and

convenient living environment for users.

A typical HNS integrated service includes:

Coming Home Service: When a user comes home, lights and an air-conditioner are

turned on with appropriate illumination and temperature.

DVD Theater Service: When a user turns on a DVD player, lights become dark, and

5.1ch speakers are selected while the volume is automatically adjusted [35].

– 2 – CHAPTER 1. INTRODUCTION

Problems in realizing these integrated services exist. In the following Sections

1.1.1 and 1.1.2, we present two problems of conventional HNS applications.

1.1.1 Conventional HNS architecture

The conventional approach to implementing the integrated service adopts the Server

Centralized Architecture (SCA), where a sophisticated server (called a home server)

plays the role of a conductor. The home server controls all the networked appliances in

a centralized manner, by sending control commands to the appliances in a certain order

[19, 31, 35]. Since the server undertakes all the intelligent tasks of the orchestration,

the structure of SCA is quite simple and intuitive.

However, as networked appliances get more sophisticated and diversified, the con-

ventional SCA will suffer from the following problems:

Reliability, Load Concentration: Since all appliances are controlled by a centralized

server, a crash of the server makes all the integrated services unavailable. Also,

the number of connected appliances directly reflects the heavy workload of the

server.

System Extension: Features of appliances that are not compatible with the server can-

not be used in the integrated services. This limitation will become an obstacle to

system extension for future appliances.

Interoperability: Since the home server needs to know the underlying protocols of all

networked appliances, implementation of the server middle-ware becomes com-

plex. Also, the server and the appliances are tightly coupled. Hence, guarantee-

ing interoperability between appliances is difficult, especially when the versions

of the protocols and the appliances are updated.

1.1. BACKGROUND – 3 –

The first goal of this dissertation is to address the new design of the HNS integrated

service, and its evaluation through practical integrated services.

1.1.2 Feature Interaction Problem

Various home appliances become parts of HNS integrated services (TVs, DVD players,

Phones, Lights, Air-Conditioners, etc). As a result, many new services are being de-

veloped and deployed in order to achieve the various requirements of home customers.

When such integrated services are executed simultaneously, functional conflicts

can occur between the functions of each appliance. This conflict is recognized as

feature interaction, and it becomes a serious obstacle preventing service execution.

The HNS environment has the following features regarding feature interactions.

Diversity: The appliance used in HNS differs for every user. The relation among

appliances also differs for every user. Therefore, the dependency with which

feature interactions occur beforehand is not known.

Changeability: The HNS environment is easily changed by an additional purchase

and a change of appliances. A flexible feature interaction detecting method with

the ability to follow change of HNS environment is required.

Multiple Users: When such integrated services are executed simultaneously, func-

tional conflicts may occur between the functions of each appliance.

Appliance Interactions and Environment Interactions: The HNS environment will

almost always be embedded in a physical environment, which provides responses

to a stimuli and which is not part of the actual software system. Because of this

specific role of the environment, the identification and resolution of interactions

that occur within the system are not enough. Interrelationships that are intro-

duced by interactions with the environment must also be considered [32]．

– 4 – CHAPTER 1. INTRODUCTION

The second goal of this dissertation is to formulate feature interaction problems

among HNS integrated services.

1.2. Main Results

1.2.1 Implementation Framework using Service Oriented

Architecture

This dissertation presents an alternative architecture for HNS. Specifically, we propose

to apply the service oriented architecture (SOA, for short) [18] to HNS. Basically, SOA

is architecture to integrate distributed self-contained services using loose coupling and

well-defined interfaces. We assume next-generation home electric appliances are in-

telligent enough to process service transactions with their own processors and network

devices.

In the proposed method, each appliance is divided into two layers: a service layer

and a device layer. Our key idea is to export features of each appliance as methods of

the service layer, and to make the features directly available from other appliances in an

open and standard manner (i.e., SOAP/XML). Thus, the appliances can autonomously

collaborate with each other to build the HNS integrated services. Since the proposed

SOA-based HNS(HNS-SOA) does not require a centralized server, it is expected to

be more scalable and fault-tolerant. Also, more sophisticated and flexible integrated

services can be developed.

In addition, we conducted a practical implementation and a quantitative evaluation

of the proposed architecture. We implemented practical HNS integrated services using

the Java Web Service, and we evaluated our framework and conventional HNS from

the following viewpoints.

Reliability: the probability that the integrated services are operational in the HNS.

1.2. MAIN RESULTS – 5 –

Workload: the workload of each component (service or centralized server) imposed

when performing integrated services in HNS.

Coupling: the degree of dependence of a component against other components.

The result shows that HNS-SOA is superior to SCA-based HNS(HNS-SCA) compar-

atively in every viewpoint. Therefore, we show how the HNS-SOA framework is well

applicable to practical HNS integrated services.

1.2.2 Feature Interaction Analysis

We formulate the feature interaction problem within the HNS integrated services, and

analyze it efficiently. In the formulation, we first model each appliance as an object

consisting of properties and methods, where a property represents an internal state

of the appliance, and a method abstracts a feature. Each method consists of a pre-

condition and a post-condition, and refers or updates values of some properties. Simi-

larly, we also construct a model for a home environment.

Within the model, we formalize two types of feature interactions: device interac-

tion and environment interaction. The device interaction is in direct conflict among

features of the same appliance device. This conflict arises when multiple integrated

services simultaneously trigger some methods that update an appliance property in

a different way. On the other hand, the environment interaction is in indirect con-

flict among different appliances via the HNS environment. This conflict arises when

multiple integrated services simultaneously trigger different appliances so that these

appliances try to perform an inconsistent update of an environment property.

Based on the formulation, we implement a feature interaction detection system, and

conduct a case study of interaction detection for practical HNS integrated services. The

proposed framework is quite generic and is well applicable to any HNS, including both

– 6 – CHAPTER 1. INTRODUCTION

HNS-SCA and HNS-SOA systems. We also discuss several resolution schemes for the

detected interactions.

1.3. Overview of the Dissertation

This dissertation is organized as follows: In Chapter 2, we describe preliminaries for

the HNS integrated services with practical examples. In Chapter 3, we propose the

HNS-SOA application. We give a HNS-SOA design as the Service Integration Graph

after explanation of the key idea. Next, we present an implementation template for the

HNS integrated services with Java Web Service. By means of graph-based algorithm

SDP (Sum of Disjoint Products), we evaluate both HNS-SOA and conventional HNS.

In Chapter 4, we propose a new feature interaction detection algorithm. We also

formulate the feature interaction problem in the integrated services of the home net-

work system. Specifically, we define two types of interactions: device interactions and

environment interactions. We conduct a case study of interaction detection to demon-

strate the effectiveness of the proposed method.

Finally, in Chapter 5, we conclude this disstertation with a summary and future

works.

Chapter 2

Preliminaries

2.1. A Home Network System and its Applications

Computer networks have existed for more than thirty years, but only in the last several

years have they become popular in homes. Today, many millions of households all

over the world have adopted home networking.

Moreover, the emergence of high-speed, multi-layer, in-home networks will in-

tegrate traditional home automation and control technologies (such as X10 [55] and

CEBus [8]) with media rich applications such as voice and video conferencing. As for

the devices connected to a home network, not only the PC but also various appliances

such as TVs and Air-Conditioners, are connected by LAN or wireless. Using such a

HNS environment, applications as shown below are developed and proposed.

Health Monitoring System: Remote monitoring systems of the health status of el-

derly at home are developed [36, 46, 9]. In this research domain, wearable health

sensors have been developed and embedded within a form factor of, for exam-

ple, a ring [41] or a wristwatch [30]. By combining these wearable sensors with

measurement devices embedded in home surroundings, advanced multiparamet-

– 8 – CHAPTER 2. PRELIMINARIES

ric health monitoring may be achieved [14, 26, 27, 39, 43].

Remote Control of Appliances: A home automation system like heating and cool-

ing etc., can be turned on by telephone or other network technology[3, 38, 21].

Integrated Services with Appliances: Occupancy sensor technologies save energy

and money by limiting lighting, appliances, and heating and cooling use when

rooms or zones are unoccupied for a certain length of time with photo sensors[12].

In this dissertation, we tackle the integrated services which produce added value

by orchestrating two or more appliances.

setPower
setInput

setVolume
setChannel

setPower
setBrightness

setPower
getBrightness

getDoorStatus

setPower
setInput

TV

Speaker

Light

Door

Illumino
meter

Integration
Service

Mechanism

Integrated Service 1

User

HNS integrated service 1
1.TV.setPower(ON)
2.TV.setInput(TV)
3.Speaker.setPower(ON)
4.Speaker.setInput(TV)
5.Speaker.setChannel(2)
6.Speaker.setVolume(60)

HNS integrated service 2
1.Door.getDoorStatus()
2.Illuminometer.setPower(ON)
3.Illuminometer.getBrightness()
4.Light.setPower(ON)
5.Light.setBrightness(600)

Integrated Service 2

Figure 2.1. Example scenarios of the HNS integrated services

2.2. PRACTICAL SCENARIOS OF THE HNS INTEGRATED SERVICES – 9 –

2.2. Practical Scenarios of the HNS Integrated Services

Figure 2.1 shows example scenarios of the HNS integrated services. A TV, a Speaker,

a Light, an Illuminometer, and a Door (with a sensor) are used for the appliance inte-

gration in this case. The contents of the HNS integrated service scenario surrounded

by the square, are as follows.

HNS Integrated Service 1: Auto-TV Service - When the user turns on the TV, the

TV is switched on, the speaker is set to 2ch mode, and the volume of the speaker

is automatically adjusted for the TV mode.

HNS Integrated Service 2: Coming Home Light Service - When the user comes home

and opens the door, the light is turned on, and the brightness is automatically ad-

justed based on the current intensity provided by the illuminometer.

In this example, the execution which is the sequence of each appliance shows the

HNS integrated service. In the case of the integrated service 1, setPower(ON) of

the TV method, which turns ON the power supply of the TV is executed first. Then,

other features of appliances are executed in order.

By using practical scenarios, we develop and evaluate the HNS integrated service

in this dissertation.

2.3. Assumptions on Networked Home Electric

Appliances

We assume that each networked home electric appliance satisfies the following condi-

tions.

Condition C1: Each appliance has device control interfaces that can be accessed by

software (e.g., APIs).

– 10 – CHAPTER 2. PRELIMINARIES

Condition C2: Each appliance has a storage to store application software (server and

device control application), a processor to execute the application, and a network

interface.

These conditions do not impose unrealistic assumptions. We consider that these

features are standard for next-generation home electric appliances. As for Condition

C1, standards already exist which prescribe a detailed object template for each category

of appliances [11, 12]. Condition C2 is justified by a fact that; the price and size of

processors/memories are becoming reasonable enough to embed in home appliances.

Indeed, some commercial products already exists which involve Web applications, so

that the users can configure and control the product from PCs through a Web interface

(e.g.,[40, 48]).

Chapter 3

HNS Integrated Services based on

Service Oriented Architecture

3.1. Introduction

To cope with such architecture related problems, this dissertation proposes a new

method to implement the integrated services based on the Service Oriented Architec-

ture (SOA) [18]. The SOA is a system architecture to integrate autonomous distributed

components. The components are loosely coupled with each other by strictly-typed

interfaces and standardized communication protocols.

In the proposed method, each appliance is divided into two layers: a service layer

and a device layer. In the service layer, the appliance exports its control interfaces as

a set of services. If a service is executed, then it sends a control command to the

corresponding device with a proprietary protocol. Simultaneously, the service au-

tonomously executes (uses) other services exported by other appliances. Thus, the

appliances are loosely coupled at the service layer without any centralized server. This

enables more flexible, robust and load-balanced integrated services.

– 12 –
CHAPTER 3. HNS INTEGRATED SERVICES BASED ON SERVICE ORIENTED

ARCHITECTURE

We first design the HNS-SOA with concrete service scenarios. Based on the de-

sign, we propose an implementation framework, and implement a prototype system

with Web services [10, 51]. We also present a graph-based evaluation method of the

integrated services. Using thid evaluation this, we conduct a comparative evaluation

of the proposed (SOA) and the existing (SCA) architectures, from the viewpoints of

reliability, workload, and coupling.

3.2. Definitions

3.2.1 Service Oriented Architecture and Integrated Services

The service oriented architecture (SOA) [18] is a system architecture to integrate differ-

ent systems distributed over a network with a standard procedure. Each system exports

its own features to the network as a unit of service (a set of tasks, which is coarser than

an object). The internal logic and implementation of the service are self-contained and

encapsulated in the system. The system exposes only interfaces of the service in the

form of strictly-typed exported methods.

A service user executes the remote exported method and gets the desired results.

This remote procedure call is performed by a standardized platform-independent frame-

work. Also, once an exported method is deployed, its interface definition is not allowed

to change. Therefore, the change in the internal service logic or service implementa-

tion platform do not influence the service user. Thus, a loose coupling between the

user and the service is achieved. Web Services [10, 51] are widely known as a major

SOA framework.

Figure 3.1 shows an example of a SOA. A service user with the client application

calls an exported method of Service A. Service A is implemented by tightly-coupled

objects, which internally invoke another exported method of Service B. In this exam-

3.2. DEFINITIONS – 13 –

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Tight Coupling

Loose Coupling

Tight Coupling

Loose Coupling

Object

Object

E
xp

o
rted

M
eth

o
d Object

Client

Service A

Service B

E
xp

o
rted

M
eth

o
d

Integrated
Service

Figure 3.1. Service oriented architecture

ple, the service user uses an integrated service consisting of services A and B, which

are depicted by a bold oval.

3.2.2 Scenarios of Integrated Services

For more comprehensive discussion, we introduce example scenarios of the integrated

services. In this example, we suppose that a HNS consists of the following nine kinds

of appliances (a DVD player, a TV, a speaker, a light, an illuminometer, a door (with a

sensor), a telephone, an air-conditioner and a thermometer). We also assume that one

appliance exists for each kind, and that the total nine appliances are installed in the

– 14 –
CHAPTER 3. HNS INTEGRATED SERVICES BASED ON SERVICE ORIENTED

ARCHITECTURE

same room.1

We prepare the following eight service scenarios (denoted by SSi (1 ≤ i ≤ 8)).

These scenarios are determined based on the actual HNS products [19, 42].

SS1: The brightness of the light is automatically adjusted with the illuminometer

based on the current intensity of illumination.

SS2: If the user enters a room from the door with a door sensor, the light is turned on.

SS3: When the user turns on the DVD player, the light becomes dark. Then, the TV

and the speaker start in the DVD mode.

SS4: When the user watches the TV, the speaker is turned on.

SS5: If the telephone rings while the user is watching the TV, then the volume of the

speaker becomes lower.

SS6: The air-conditioning is optimized based on the thermometer.

SS7: If the user enters the room, the air-conditioner starts and adjusts the temperature

to a comfortable degree.

SS8: When the user goes out or goes to bed, all the appliances are shut down, and the

door is securely locked up.

3.3. Design of Integrated Services

3.3.1 Key Idea

Our key idea is to use SOA to achieve the following issues, which are difficult for the

conventional server-centralized HNS.
1For multiple appliances of the same kind, we regard them as independent appliances. For example,

if there are four lights in the room, we consider four instances; Light1, Light2, Light3 and Light4.

3.3. DESIGN OF INTEGRATED SERVICES – 15 –

(A) Standard Communication and Loose Coupling among Appliances: We export

features of each appliance as a set of exported methods, which makes the features

accessible with the standard protocols in SOA. Thus, the appliances are loosely cou-

pled. This significantly improves the interoperability and extendibility of the HNS.

Achieving loose-coupling among components with SOA is not a surprising approach.

However, our contribution is to use SOA for the HNS application. For this, we present

a concrete appliance structure and implementation framework.

(B) Autonomous Orchestration without a Centralized Server: Our application of

SOA enables direct communications among appliances without any special servers.

Therefore, the orchestration of the appliances, which has been undertaken by the con-

ventional home server, can be distributed to the appliances. We present a method to

implement autonomous collaboration among appliances. Specifically, when an ex-

ported method of an appliance is executed, the appliance autonomously determines

which exported method should be executed next, and triggers a remote procedure call

to the other appliance.

3.3.2 Appliance Structure

To achieve the issues (A) and (B) in Section 3.3.1, we need to implement the following

features in each appliances.

(A) Exporting Self-Features: This feature encapsulates proprietary device interfaces,

and exports the interfaces to a network using a standardized manner.

(B) Controlling Other Appliances: This feature autonomously invokes interfaces of

other appliances, according to a given service scenario.

To implement these features, we divide each appliance into two layers: a device layer

and a service layer, as shown in Figure 3.2.

– 16 –
CHAPTER 3. HNS INTEGRATED SERVICES BASED ON SERVICE ORIENTED

ARCHITECTURE

Service Layer Device Layer

Proprietary
Protocol Device

I/Fs
Exported
Methods

Generic
Protocol

Service
Scenario

Trigger Other
Appliances

Trigger Other
Appliances

Figure 3.2. Architecture of each home appliance

The device layer refers to the hardware portion (including middle-ware) of the

appliance. According to Condition C1, each appliance can be controlled by a software

application via a set of device interfaces. Note that the control method is based on a

proprietary procedure (or protocol) that the appliance conforms to (e.g., ECHONET

for sensors and lights [12], IEEE1394 or UPnP for digital Audio/Visual appliances

[50]).

On the other hand, the service layer wraps the appliance-specific device interfaces

and exports them to the network. The service layer is our original contribution for

the HNS-SOA. We implement the layer as a software application on each appliance

conforming to Condition C2.

Specifically, we wrap each of the device interfaces (e.g., for a light device, there

should be interfaces for ON, OFF and the illumination setting) in a method in the

service layer. Then, we export the methods to the network in a generic manner, which

3.3. DESIGN OF INTEGRATED SERVICES – 17 –

does not depend on appliance-specific procedures or proprietary protocols. For the

method of exportation, we use a generic SOA framework such as Web services (with

SOAP/XML and WSDL). Thus, all interfaces are opened to a network as a set of

exported methods (i.e., a service), which achieve the above (A).

Furthermore, in each exported method, we implement a mechanism by which the

method autonomously triggers other exported methods provided by other appliances.

Thus, the appliances are orchestrated at the service layer, and the above (B) is realized.

The concrete implementation framework of the service layer will be discussed in the

next section.

For instance, we take a light and an illuminometer with Conditions C1 and C2, and

try to design the SS1 (in Section 2.3) based on the SOA. Figure 3.3 shows an example

of the design. In the figure, an oval represents a service layer of an appliance. A device

layer is depicted by an icon. A solid arrow from Service A to Service B with Label L

shows Service A invokes (uses) method L exported by B. A dotted arrow represents a

control command from a service layer to a device layer. Also, each method is indexed

by a number which hierarchically specifies its execution order (the notation follows the

one in a UML collaboration diagram [13]).

The service scenario starts when the user executes the exported method Light.ON.

Then, Light service invokes other exported methods ON provided by Illuminometer.

Then, each of Illuminometer and Light services respectively turns on the de-

vice.

Next, Light service invokes Illuminometer.getIllumination, and the

Illuminometer service internally gets the current degree of illumination from the

device. Then, Illuminometer sets the obtained illumination to Light by the

setIllumination method. Finally, based on the current degree, Light set the

optimized illumination to the light device.

– 18 –
CHAPTER 3. HNS INTEGRATED SERVICES BASED ON SERVICE ORIENTED

ARCHITECTURE

Illuminometer
Device

Light
Device

1.1.1.1:ON

1.1.1:Illuminometer.ON

1.1:Light.ON

1.1.3:Illuminometer.getIllumination

1.1.3.1:getIllumination

Illuminometer

Light

Service Layer Device layer

1.1.3.2:Light.setIllumination

1.1.2:ON
1.1.3.2.1:setIllumination

USER

Figure 3.3. Design of service scenario SS1(Auto Illumination Service)

Thus, we can make appliances autonomously orchestrate at the service layer, which

implements the integrated services without the centralized home server.

3.3.3 Service Integration Graph

As shown in Figure 3.3, an integrated service can be characterized by HNS components

(i.e., the user, services, devices, or a home server) and use/used relationships between

the components. Hence, we introduce a graph-based notation for the integrated ser-

vices.

A labeled directed graph G is defined by G = (N,L,E), where N is a set of

nodes, L is a set of labels, and E ⊆ N × L × N is a set of labeled directed edges.

For a given integrated service scenario s, a labeled directed graph Gs = (N,L,E) is

called a service integration graph, denoted by SIG(s), iff Gs satisfies the following

conditions:

3.3. DESIGN OF INTEGRATED SERVICES – 19 –

• N is a set of all HNS components appearing in s,

• L is a set of all methods appearing in s, and

• An edge (p,m, q) exists in E iff p uses method m provided by q.

Next, we extend the service integration graph to the set of scenarios. Let s1, s2, ..., sk

be a given set of integrated service scenarios. Suppose that for i (1 ≤ i ≤ k), we have

SIG(si) = (Ni, Li, Ei). Then, we define SIG({s1, s2, ..., sk}) = (∪iNi,∪iLi,∪iEi)

If s1, s2, ..., sn are all the scenarios in the HNS, then we call SIG ({s1, s2, ..., sn}) a

full service integration graph, which is denoted by FSIG. Note that any SIG is a

subgraph of FSIG by definition.

For example, Figure 3.3 can be regarded as a SIG(SS1) by mapping each of the

ovals and icons to a node, and an arrow to a labeled directed edge.

3.3.4 Designing Integrated Services with Service Oriented

Architecture (SOA)

Here we design the eight service scenarios presented in Section 3.2.2 based on SOA.

Figure 3.4 depicts an example of a full service integration graph FSIG(= SIG({SS1,

SS2, ..., SS8})) containing the scenarios from SS1 to SS8. In the figure, the number

appearing with each label corresponds to the actual method described at the left side.

Due to limited space, directed edges with the same method are represented by a single

arrow. Each label starts with a scenario number i of SSi (1 ≤ i ≤ 8). The numbers

following the scenario number hierarchically specify the execution order of the method

in SSi.

Take the scenario SS4 for instance. In Figure 3.4, we can see a possible design

of SS4 by traversing arrows prefixed by “4.”. When the user first turns on the TV

(TV.ON), the TV service autonomously collaborate with the Speaker service, and sets

– 20 –
CHAPTER 3. HNS INTEGRATED SERVICES BASED ON SERVICE ORIENTED

ARCHITECTURE

DVD
Device

TV
Device

Speaker
Device

Service Layer Device Layer

Phone
Device

DVD

TV

Speaker

Light

Illuminometer

Door

AC

Phone

Thermometer

Light
Device

Door
Device

AC
Device

Thermo
meter
Device

User

Illumino
meter
Device

8.1.2.2

8.2.2

3.1.3.2.1,4.1.2.1
8.1.2.2.1

3.1.3.4.1,4.1.4.1,5.1.2.1
3.1.3.3.1,4.1.3.1

1.1.2,2.1.2.2,3.1.4.2
8.2.1

1.1.3.2.1,2.1.2.3.2.1,
3.1.4.3.2.1

1.1.1.1,2.1.2.1.1,3.1.4.1.1
8.2.2.1

1.1.3.1,2.1.2.3.1,3.1.4.3.1

1.1

1.1.1,2.1.2.1,3.1.4.1

2.1,7.1,8.3

2.1.2

8.1

3.1.2
3.1.3

3.1.3.3,4.1.33.1.3.2,
4.1.2

3.1.4

4.1

5.1.2

6.1

6.1.1,7.1.2.1

7.1.2

3.1

8.1.2

3.1.3.4,
4.1.4

1.1.3,
2.1.2.3,3.1.4.3

8.2

8.3.2

6.1.2,7.1.2.28.3.3

2.1.1,7.1.1
8.3.1

5.1.1

6.1.3,7.1.2.3
8.3.2.1

6.1.4,7.1.2.4

3.1.1
8.1.1

3.1.2.1,4.1.1
8.1.2.1,
3.1.3.1

6.1.1.1,7.1.2.1.1
8.3.3.1

6.1.2.1,7.1.2.2.1

5.1

1.1.3.2
2.1.2.3.2
3.1.4.3.2

8.3

1.1:Light.ON
1.1.1:Illuminometer.ON
1.1.1.1:IlluminometerDevice.ON
1.1.2:Illuminometer.getIllumination
1.1.2.1:IlluminometerDevice.getIllumination
1.1.2.2:Light.setIllumination
1.1.3:LightDevice.ON
1.1.4:LightDevice.setIllumination

2.1:Door.StatusCheck
2.1.1:DoorDevice.StatusCheck
2.1.2:Light.ON
2.1.2.1:Illuminometer.ON
2.1.2.1.1:IlluminometerDevice.ON
2.1.2.2:Illuminometer.getIllumination
2.1.2.2.1:IlluminometerDevice.getIllumination
2.1.2.2.2:Light.setIllumination
2.1.2.3:LightDevice.ON
2.1.2.4:LightDevice.setIllumination

3.1:DVD.ON
3.1.1:DVDDevice.ON
3.1.2:TV.ON
3.1.2.1:TVDevice.ON
3.1.3:TV.SelectInput
3.1.3.1:TVDevice.SelectInput
3.1.3.2:Speaker.ON
3.1.3.2.1:SpeakerDevice.ON
3.1.3.3:Speaker.ChannelSelect
3.1.3.3.1:SpeakerDevice.ChannelSelect
3.1.3.4:Speaker.VolumeControl
3.1.3.4.1:SpeakerDevice.VolumeControl
3.1.4:Light.ON
3.1.4.1:Illuminometer.ON
3.1.4.1.1:IlluminometerDevice.ON
3.1.4.2:Illuminometer.getIllumination
3.1.4.2.1:IlluminometerDevice.getIllumination
3.1.4.3:LightDevice.ON
3.1.4.4:LightDevice.setIllumination

4.1:TV.ON
4.1.1:TVDevice.ON
4.1.2:Speaker.ON
4.1.2.1:SpeakerDevice.ON
4.1.3:Speaker.ChannelSelect
4.1.3.1:SpeakerDevice.ChannelSelect
4.1.4:Speaker.VolumeControl
4.1.4.1:SpeakerDevice.VolumeControl

5.1:Phone.StatusCheck
5.1.1:PhoneDevice.StatusCheck
5.1.2:Speaker.VolumeControl
5.1.2.1:SpeakerDevice.VolumeControl

6.1:AC.ON
6.1.1:Thermometer.ON
6.1.1.1:ThermometerDevice.ON
6.1.2:Thermometer.getTemperature
6.1.2.1:ThermometerDevice.getTemperature
6.1.3:ACDevice.ON
6.1.4:ACDevice.setTemperature

7.1:Door.StatusCheck
7.1.1:DoorDevice.StatusCheck
7.1.2:AC.ON
7.1.2.1:Thermometer.ON
7.1.2.1.1:ThermometerDevice.ON
7.1.2.2:Thermometer.getTemperature
7.1.2.2.1:ThermometerDevice.getTemperature
7.1.2.3:ACDevice.ON
7.1.2.4:ACDevice.setTemperature

8.1:DVD.OFF
8.1.1:DVDDevice.OFF
8.1.2:TV.OFF
8.1.2.1:TVDevice.OFF
8.1.2.2:Speaker.OFF
8.1.2.2.1:SpeakerDevice.OFF
8.2:Light.OFF
8.2.1:LightDevice.OFF
8.2.2:Illuminometer.OFF
8.2.2.1:IlluminometerDevice.OFF
8.3:Door.Lock
8.3.1:DoorDevice.Lock
8.3.2:AC.OFF
8.3.2.1:ACDevice.OFF
8.3.3:Thermometer.OFF
8.3.3.1:ThermometerDevice.OFF

Figure 3.4. Design of integrated services using SOA

3.3. DESIGN OF INTEGRATED SERVICES – 21 –

the speaker volume and channel. Also, we can see that FSIG in Figure 3.4 contains

SIG(SS1) in Figure 3.3 as a subgraph. SS3 can be designed by reusing scenarios SS1

and SS4. The user first turns on the DVD by DVD.ON. Then, the DVD service succes-

sively invokes Light.ON and TV.ON. Next, the Light and TV services respectively

execute the same scenarios as SS1 and SS4, which completes SS3.

In the following, we use the HNS-SOA to denote the proposed HNS that exten-

sively exploits SOA to achieve the autonomous and distributed collaboration of appli-

ances.

3.3.5 Designing Integrated Services with Server Centralized

Architecture (SCA)

For the purpose of comparison, we try to design the integrated services with SCA. In

this approach, a home server sends control commands to the end appliances with the

proprietary application and protocol [19, 31]. The home server directly communicates

with the communication interface of each appliance. Hence, the service layer is not

needed especially for each appliance. Instead, to orchestrate appliances with different

network protocols, the home server must implement a gateway mechanism for the

protocol conversion. Therefore, the implementation of the server tends to be more

complicated.

Figure 3.5 shows an example design. In this example, each SS1 to SS8 is imple-

mented as an application object which is tightly coupled with the gateway and other

objects. Each object sends/receives control commands through the gateway to/from

the appliances involved in the scenario. For example, when the user triggers SS3, the

server application executes the object SS3 to send appropriate control commands to

the DVD player, the TV and the speaker.

In the following, we use the HNS-SCA to denote the conventional HNS where the

– 22 –
CHAPTER 3. HNS INTEGRATED SERVICES BASED ON SERVICE ORIENTED

ARCHITECTURE

3.4,4.2:ON
8.3:OFF

3.5,4.3,5.2:VolumeControl
3.6,4.4:ChannelSelect

1.1,2.2,3.7:ON
8.4:OFF

1.4,2.5,3.10:setIllumination

1.2,2.3,3.8:ON
8.5:OFF,

1.3,2.4,3.9:getIllumination

2.1,7.1:StatusCheck
8.6:Lock

5.1:StatusCheck

6.1,7.2:ON
8.7:OFF

6.4,7.5:setTemperature

3.1:ON
8.1:OFF

3.2,4.1:ON
8.2:OFF

3.3:SelectInput

6.2,7.3:ON
8.8:OFF

6.3,7.4:getTemperature
Home Server

SS1

SS2

SS3

SS4

SS5

SS6

SS7

SS8

User

DVD
Device

TV
Device

Speaker
Device

Phone
Device

Light
Device

Door
Device

AC
Device

Thermo
meter
Device

Illumino
meter
DeviceG

at
ew

ay

SS1

SS2

SS3

SS4

SS5

SS6

SS7

SS8

A
pp

lic
at

io
n

Figure 3.5. Design of integrated services using SCA

centralized home server controls all of the appliances.

3.4. Implementation

3.4.1 Implementation Framework for Service Layer

This subsection presents an implementation framework for the proposed service layer.

By definition, a service integration graph SIG(s) for a scenario s is equivalent to the

UML collaboration diagram. Therefore, a SIG can be described as a sequence diagram

3.4. IMPLEMENTATION – 23 –

:Light :Illuminometer

ON()
ON()

HNS::User

getIllumination()

:LightDevice :IlluminometerDevice

ON()

getIllumination()

$DMI

ON()

setIllumination(illumination=$DMI)

setIllumination(illumination)

getIllumination
getIllumination

Figure 3.6. Sequence diagram for SS1

[13]. For instance, SIG(SS1) in Figure 3.3 can be represented by a sequence diagram

as in Figure 3.6. In this figure, we can see that for the autonomous integration of the

service layer, the following two types of method invocations must be implemented in

each exported method.

DMI (Device Method Invocation): DMI refers to the processing of the service layer

to send a device control command to the corresponding device layer. According

to the proposed appliance structure (see Figure 3.2), there exists a single DMI

for every exported method. DMI is constantly executed by the exported method

regardless of the service scenario performed.

– 24 –
CHAPTER 3. HNS INTEGRATED SERVICES BASED ON SERVICE ORIENTED

ARCHITECTURE

SMI (Service Method Invocation): SMI refers to processing of the service layer to

invoke remote methods exported by other services. Several SMIs are performed

before/after the DMI, depending on the current service scenario.

In Figure 3.6, each DMI is represented by a bold arrow, while each SMI appears

as a thin arrow. For instance, the Light.ONmethod, which is exported by Light ser-

vice, consists of a single DMI (LightDevice.ON), and two SMIs (Illuminomet-

er.ON, Illuminometer.getIllumination) where the former is executed be-

fore the DMI, and the latter is triggered after the DMI.

Our implementation framework of the service layer is as follows. For each control

interface d of an appliance, we create an exported method md. Then, we code md so

that md invokes d internally, which implements the DMI. If d has a return value, we

represent the return value by $DMId.

On the other hand, SMI should not be hard-coded in md, since SMI depends on the

service scenarios and can be added or modified by the user later on. Instead, for each

appliance we prepare a definition file (called SMI definition file) which specifies how

the SMIs are invoked in each service scenario. Each appliance looks up the definition

file dynamically , and invokes the appropriate SMIs at run time. For the addition or

modification of the service scenarios, we just update the SMI definition file without

modifying the implementation of the service layer.

Table 3.1(a) and (b) respectively shows SMI definition files for Light and Illum-

inometer services as shown in Figure 3.6. Each row corresponds to a single SMI,

consisting of the following entries: context (a local exported method triggering the

SMI), SSID (an ID of the service scenario being executed), service URI (a URI of

the remote service triggered), pre/post (before/after the DMI), methodName (name of

remote exported method), paramName (names of parameters of the remote method),

paramType (types of the parameters), paramValue (values of the parameters). When an

(local) exported method is triggered in SS1, each service looks up the table, then dy-

3.4. IMPLEMENTATION – 25 –

Table 3.1. SMI definition file for SS1

(a) LightService (http://light.myhome.net/service.jws)

nullnullnullnullnullnull1setIllumination()

nullnullnullgetIlluminationposthttp://illuminometer.home.net/service.jws1

nullnullnullONprehttp://illuminometer.home.net/service.jws1
ON()

paramValueparamTypeparamNamemethodNamePre/PostServiceURISSIDContext

nullnullnullnullnullnull1setIllumination()

nullnullnullgetIlluminationposthttp://illuminometer.home.net/service.jws1

nullnullnullONprehttp://illuminometer.home.net/service.jws1
ON()

paramValueparamTypeparamNamemethodNamePre/PostServiceURISSIDContext

(b) IlluminometerService (http://illuminometer.myhome.net/service.jws)

nullnullnullnullnullnull1setIllumination()

nullnullnullgetIlluminationposthttp://illuminometer.home.net/service.jws1

nullnullnullONprehttp://illuminometer.home.net/service.jws1
ON()

paramValueparamTypeparamNamemethodNamePre/PostServiceURISSIDContext

nullnullnullnullnullnull1setIllumination()

nullnullnullgetIlluminationposthttp://illuminometer.home.net/service.jws1

nullnullnullONprehttp://illuminometer.home.net/service.jws1
ON()

paramValueparamTypeparamNamemethodNamePre/PostServiceURISSIDContext

namically discovers and performs the appropriate SMI. In this example, the URIs of the

two services are assumed to be http://light.myhome.net/service.jws and http://illumino

meter.myhome.net/ service.jws, respectively.

Based on the discussion above, the service layer for each appliance can be imple-

mented in accordance with the following implementation template (as shown in Figure

3.7):

• The service layer has exported methods so that each method corresponds to a

control interface in the device layer.

• Each exported method implements deviceMethod() for the DMI. Moreover,

preProcess() and postProcess() are implemented respectively before

and after deviceMethod(). preProcess() and postProcess() are

routines that dynamically perform SMIs before and after the DMI according to

the SMI definition file. These are commonly shared by all the exported methods

in the service layer.

– 26 –
CHAPTER 3. HNS INTEGRATED SERVICES BASED ON SERVICE ORIENTED

ARCHITECTURE

SMI
Definition

DMI

Exported Method3{
preProcess();
deviceMethod();
postProcess();

}
Exported Method2{

preProcess();
deviceMethod();
postProcess();

}Exported Method1{
preProcess();
deviceMethod1();
postProcess();

}

SMI
Definition

Exported Method3{
preProcess();
deviceMethod();
postProcess();

}

Exported Method3{
preProcess();
deviceMethod();
postProcess();

}

Exported Method2{
preProcess();
deviceMethod();
postProcess();

}

Exported Method2{
preProcess();
deviceMethod();
postProcess();

}

Exported Method1{
preProcess();
deviceMethod();
postProcess();

}

Exported Method1{
preProcess();
deviceMethod();
postProcess();

}

SMI
Definition

Exported Method3{
preProcess();
deviceMethod();
postProcess();

}

Exported Method3{
preProcess();
deviceMethod();
postProcess();

}

Exported Method2{
preProcess();
deviceMethod();
postProcess();

}

Exported Method2{
preProcess();
deviceMethod();
postProcess();

}

Exported Method1{
preProcess();
deviceMethod();
postProcess();

}

Exported Method1{
preProcess();
deviceMethod();
postProcess();

}

SMI

SMI

Figure 3.7. Implementation template for the service layer

For instance, consider Figure 3.6 and Table 3.1. When the user invokes the Light.ON()

method, its method executes preProcess() and looks up pre-SMI from Table

3.1(a). As a result, Illuminometer.ON() is found and executed. Next, Light.ON()

sends an ON command to LightDevice as a DMI. After that, it executes postProce-

ss() and looks up post-SMI from Table 3.1(b). As a result, Illuminometer.getIll-

umination() is invoked.

The illuminometer service performs SMI with Table 3.1(b). Illuminometer.

ON() has no SMI processing. Illuminometer.getIllumination() executes

a post-SMI Light.setIllumination(). For this execution, a return value of the

DMI ($DMIgetIllumination) is passed to a parameter illumination. This achieves a

3.4. IMPLEMENTATION – 27 –

service scenario SS1, which sets the illumination of light based on the current intensity

obtained by the illuminometer.

3.4.2 Prototype System with Web Services

Based on the proposed implementation framework, we have implemented a prototype

system. We exploited Web Services as a means of service deployment/exportation of

the service layer. The prototype was developed under the following environment:

Web server: Jakarta Tomcat 4.1.18

SOAP library: Apache-AXIS 1.1

Language: Java2 SDK SE 1.4.1 02

Also, we implemented each device layer as a virtual device. The class diagrams of

the prototype system are shown in Figure 3.8. As seen in Figure 3.8(b), every service

commonly inherits a BaseService class, which

1. Interprets the SMI definition file and dynamically determines SMIs processed

in preProcess() or postProcess(), by using the ServiceManager

class and

2. Invokes remote WebService for the corresponding SMI, using a DynamicCal-

lerFactory class.

Next, based on the service integration graph shown in Figure 3.4, we created an SMI

definition file for each service, and uploaded the files to the prototype system. As a

result, we confirmed that all the integrated service scenarios SS1 to SS8 are executed

correctly.

An SMI definition file for a service s can be automatically generated by analyzing

the given service integration graph, specifically, examining incident edges of the node

– 28 –
CHAPTER 3. HNS INTEGRATED SERVICES BASED ON SERVICE ORIENTED

ARCHITECTURE

(a)Base classes

(b)Service classes

Figure 3.8. Class diagrams of the prototype system

3.4. IMPLEMENTATION – 29 –

s and their execution order. If the user wants to add or modify the service scenario,

the user just uploads an updated definition file to each appliance. To upload, there is

no need to restart the Web server. Also, re-configuring or re-compiling the application

itself is not necessary.

3.4.3 Roles in the Proposed Framework

In this section we discuss the roles of the user and of the vendors of appliances in the

proposed framework.

First, we assume that the service applications (at the service layer) of each appli-

ance should be developed by the vender, in accordance with the proposed implemen-

tation framework. To do this, the vender does not need to be concerned about how the

applications are used by other appliances. Instead, the vender has to specify strictly-

typed exported methods, and use a generic SOA framework such as Web services for

the service deployment/exportation. By using SOA, appliances are loosely coupled,

which enables flexible extension and modification of new appliances.

On the other hand, the service scenario development is supposed to be done by

the user (Of course, the vender can pre-install the typical default scenarios). By our

implementation framework, however, the service scenarios are completely separated

from the implementation of the service layer. Hence, the user creates the service in-

tegration graph, derives SMI definition files, and then uploads the files to appliances.

Thus, the user can easily develop integrated services consisting of any combinations

of appliances.

To create the service integration graph, the user needs to know the detailed defini-

tions of exported methods of appliances. This can be supported by an integrated ser-

vice creation environment, which exploits SOA’s service discovery techniques, such as

WSDL and UDDI of Web services. We are currently developing the tool support for

– 30 –
CHAPTER 3. HNS INTEGRATED SERVICES BASED ON SERVICE ORIENTED

ARCHITECTURE

the creation environment. Note that the addition or modification of the service scenar-

ios are not easy in the conventional HNS-SCA (see Figure 3.5), since the user needs

to update the applications of the home server. It is generally difficult for the generic

users to develop control applications. The users can only configure the setting of the

ready-made applications, which significantly limits the flexibility and extendibility of

the service scenarios.

3.5. Evaluation

In this section, we quantitatively evaluate the proposed HNS-SOA from several archi-

tectural aspects. Specifically, for the service integration graph presented in Section

3.3.3, we define three kinds of metrics: reliability, workload, and coupling. Then, we

conduct a comparative study with the conventional HNS-SCA.

3.5.1 Reliability

Assuming that each HNS component may fail, we evaluate the system-wide reliability

of HNS from the viewpoint of the availability of the integrated services. For a given

HNS with integrated service scenarios, we define n-reliability[17] as the probability

that at least n service scenarios are operational in the HNS. The n-reliability varies

depending on the HNS architecture as well as on the reliability of each (single) com-

ponent.

To compute n-reliability, we apply the Sum of Disjoint Products (SDP) approach[17,

44, 49] to the service integration graph. The SDP is a method to derive network reli-

ability based on a path-set and cut-set of the graph theory. Intuitively, when a graph

G and the reliability of each node (and edge) are given, the SDP method calculates

reliability such that at least one of specified set of subgraphs of G is operational, by

3.5. EVALUATION – 31 –

taking the overlaps among the subgraphs into account.

As discussed in Section 3.3.3, each service scenario s can be characterized by

SIG(s), and a SIG is a subgraph of FSIG. Hence, n-reliability can be computed

by SDP in such a way that some n SIGs are operational in FSIG. For instance,

in Figure 3.4, 1-reliability is calculated by SDP as a probability where at least one

of SIG(SS1), ..., SIG(SS8) is operational. Similarly, 2-reliability is derived from

SIG({SS1, SS2}), SIG({ SS1, SS3}) , ..., SIG ({SS7, SS8}). Thus, taking all com-

binations from the given set of scenarios, we can compute n-reliability with the SDP

method.

To evaluate the reliability purely relevant to the architectural differences (see Fig-

ures 3.4 and 3.5), we do not consider any faults in the network or in the devices of each

appliance. Hence, we assume that only the services (in HNS-SOA) and the home server

(in HNS-SCA) may fail. Although estimating the reliability of each HNS component

is generally difficult, we suppose that the reliability of each service in HNS-SOA is

uniformly 0.999. As for HNS-SCA, assuming that the home server consists of eight

tightly-coupled objects, we set its reliability at 0.992(= 0.9998) (Actually, the relia-

bility is expected to be lower than that, since we should consider the reliability of the

gateway, strictly speaking).

We have applied the SDP method to two service integration graphs in Figures 3.4

and 3.5. The result is shown in Figure 3.9. In the figure, the horizontal axis represents

the number of service scenarios, while the vertical axis plots n-reliability.

From the result, it can be seen that n-reliability for the HNS-SCA becomes equal

to the reliability of the home server because all service scenarios depend on the cen-

tralized server. In other words, if the home server fails, all the scenarios become un-

available. On the other hand, in HNS-SOA, the eight scenarios are executed by the dis-

tributed services. Hence, even if some services crash, some scenarios can be partially

operational. Thus, the HNS-SOA achieves a higher fault tolerance than the HNS-SCA.

– 32 –
CHAPTER 3. HNS INTEGRATED SERVICES BASED ON SERVICE ORIENTED

ARCHITECTURE

0.99

0.992

0.994

0.996

0.998

1

1 2 3 4 5 6 7 8
of scenarios(=n)

n-
R

el
ia

bi
lit

y

SOA
SCA

0.9920.9920.9920.9920.9920.9920.9920.992SCA

0.991040.991040.993020.9960.999980.999990.999990.99999SOAArchitecture
Type

87654321n

0.9920.9920.9920.9920.9920.9920.9920.992SCA

0.991040.991040.993020.9960.999980.999990.999990.99999SOAArchitecture
Type

87654321n

Figure 3.9. n-reliability

For n = 7, 8, HNS-SCA becomes slightly more reliable than HNS-SOA. Since

HNS-SOA contains more components than HNS-SCA, the probability that all the com-

ponents in HNS-SOA are operational becomes smaller than that of HNS-SCA. Thus,

a trade-off relationship between the fault-tolerance and the probability that all systems

are green exists.

3.5.2 Workload

We try to estimate the workload of each HNS component (i.e., the service layer in

HNS-SOA and the home server in HNS-SCA) imposed by the integrated services. The

workload varies depending on the appliances involved in the integrated services and

3.5. EVALUATION – 33 –

Table 3.2. Workload

17.925StandardDev

18.1Thermometer

18.1AC

3.7Phone

18.7Door

57.4Illuminometer

57.4Light

29.8Speaker

26.1TV

10.7DVD

WLElement

17.925StandardDev

18.1Thermometer

18.1AC

3.7Phone

18.7Door

57.4Illuminometer

57.4Light

29.8Speaker

26.1TV

10.7DVD

WLElement

86.3StandardDev

86.3Home Server

WLElement

86.3StandardDev

86.3Home Server

WLElement

the usage frequency of the scenarios.

Suppose that FSIG = (N,L,E), SIG(si) (1 ≤ i ≤ n) for scenarios si’s, and

usage frequency fi of scenario si are given. Now we define an appearance function

ci : N → {0, 1} such that for v ∈ N , ci(v) = 1 if v is contained in SIG(si), otherwise,

ci(v) = 0. The function ci checks if the node (component) is used in scenario si. Then,

for each component v ∈ N , the workload of v, denoted by WL(v), is defined as:

WL(v) =
n∑

i=1

fi × ci(v)

To obtain the usage frequency, we interviewed 12 users. We asked them the esti-

mated usage frequency of SS1 to SS8 per week, and obtained the average number of

usage of each scenario. Based on this, we calculated the workload of the service layer

of each appliance (in HNS-SOA) and the home server (in HNS-SCA).

Table 3.2 shows the result. The columns show the workload imposed to each ser-

vice layer (or the home server) and the standard deviation. The workload is con-

centrated on the home server in HNS-SCA. In HNS-SOA, although the Light and

Illuminometer services suffer from a relatively large workload, these services are

still smaller than that of the home server.

Next, we consider the load-balancing schemes. In HNS-SCA, the load is con-

– 34 –
CHAPTER 3. HNS INTEGRATED SERVICES BASED ON SERVICE ORIENTED

ARCHITECTURE

centrated on the home server only, and the server itself has to be load-balanced, for in-

stance, by deploying a secondary server. As a result, the load-balancing is so global and

inefficient that even unused services are load-balanced. On the other hand, HNS-SOA

is more efficient in the sense that only some services with heavy workload need to be

taken care of. For instance, in Table 3.2, if the user selects Light and Illuminometer

services for the load-balancing, only these services should be duplicated. Thus, a more

flexible and local load-balancing scheme can be applied to HNS-SOA.

3.5.3 Coupling

The coupling is a metric to estimate how strongly a HNS component relies on (or is

on relied by) the other components. If a component v with extremely high coupling

is broken or modified, many other components dependent on v are influenced, which

prevents the integrated services from working correctly.

For a given FSIG = (N,L,E), we define a coupling of node v ∈ N as the

number of nodes connected to/from v. More specifically, for v ∈ N , let use(v) =

|{v′|∃m; (v,m, v′) ∈ E}| (i.e., # of components that v uses), and let used(v) =

|{v′|∃m; (v′,m, v) ∈ E}| ((i.e., # of components that use v)). Then, the coupling

of v is defined by coup(v) = use(v) + used(v). For example, let us consider the TV

service in Figure 3.4. In that case, use(TV) = |{Speaker, TV Device}| = 2, and

used(TV) = |{User,DV D}| = 2. Hence, coup(TV) = 4.

We compute the coupling for each component in Figures 3.4 and 3.5. Table 3.3

summarizes the result. The coupling values of all services in HNS-SOA are well-

balanced. Also, the components in HNS-SCA are heavily concentrated on the home

server. This concentration implies that the crash of the server is fatal for all integrated

services, as discussed in Section 3.5.1.

Moreover, let us consider the density of each coupling (i.e., each edge in the ser-

3.5. EVALUATION – 35 –

Table 3.3. Coupling

89HS

11Thermometer

22AC

12Phone

13Door

11Illuminometer

32Light

21Speaker

22TV

13DVD

useduseElement

coup

89HS

11Thermometer

22AC

12Phone

13Door

11Illuminometer

32Light

21Speaker

22TV

13DVD

useduseElement

coup

vice integration graph). In HNS-SOA, services are loosely coupled. Hence, even if

internal implementation or device control procedures of an appliance change, the other

appliances are not affected, as long as the type definition of the exported method does

not change.

However, in HNS-SCA, the home server and each appliances are tightly coupled.

Therefore, changes in either the server or the appliance cause a significant decline

in the interoperability. For example, when adding appliances that conform to a new

device protocol to the existing HNS, we have to update the gateway implementation

of the home server. This update significantly influences all the existing appliances,

which is serious enough to cause a decline the interoperability among the new and

existing appliances. Taking these into account, it is considered that the coupling is

much stronger than the values in Table 3.3.

– 36 –
CHAPTER 3. HNS INTEGRATED SERVICES BASED ON SERVICE ORIENTED

ARCHITECTURE

3.6. Discussion

3.6.1 Advantage and Limitation

The advantages of the proposed framework are summarized as follows:

(1) Since the appliances are loosely coupled at the service layer with the SOA, the

interoperability between appliances is improved. This improvement facilitates

addition and modification of the appliances.

(2) Since the integrated services are realized by autonomous collaboration among the

appliances, the proposed framework does not need the centralized server. As a

result, the integrated services become more fault-tolerant and load-balanced.

(3) Due to the proposed implementation template, the implementation of the service

layer and the service scenarios are well separated. Therefore, the user can easily

add or modify the integrated service scenarios.

We examined the relationship between SOA and each of these advantages. First, the

above (1) is achieved by the nature of SOA, which is not limited to the HNS domain.

The above (2) is due to the proposed service layer which extensively uses the merit of

the loose coupling. We have implemented mechanisms of the exportation of the self-

features as well as implementing the control of other appliances (see Section 3.3.2)

in the service layer. These feature allow us to decentralize the service orchestration

task among the appliances themselves. The implementation template in (3) makes full

use of the characteristics of the SOA so that we can use any feature of the appliance

uniformly as an invocation of the exported method. With this advantage, the service

layer for every appliance has a common structure, where the control of other appliances

and the exportation of the self-features are achieved as SMI and DMI, respectively.

Also, the proposed implementation template looks up the content of SMI from the

3.6. DISCUSSION – 37 –

external definition file. This allows the separation of the service scenarios from the

implementation of the service layer.

Of course, the proposed framework is not perfectly superior to the conventional

one. As a drawback to the fully-distributed control of the appliances with the SOA, the

following issues are currently anticipated:

Cost of Appliances: Each appliance must be intelligent enough to satisfy Condition

C2 (see Section 2.3), in order to realize the service layer. This requirement

makes the cost of appliances more expensive than in the conventional method.

Communication Overhead: It is expected that the communication overhead required

for the service orchestration cannot be ignored. Hence, when applying to the

integrated services that require a hard-realtime response, we need careful con-

sideration of implementation.

Global Management: Since the service control is fully distributed, managing all the

appliance at once is difficult. Hence, more sophisticated mechanisms are re-

quired for detection of faulty appliances and the application of a global security

policy, etc [47].

3.6.2 Related Work

BPEL4WS [7, 53] is known as a standard service orchestration framework. BPEL4WS

is an XML-based language describing new services that integrate the existing dis-

tributed service components. Using BPEL4WS as an alternative of the service inte-

gration graph in the proposed framework might be possible. Indeed, in [29], a service

oriented method to orchestrate intelligent appliances using BPEL4WS is presented.

However, the existing BPEL4WS platform needs the orchestration server (typically

– 38 –
CHAPTER 3. HNS INTEGRATED SERVICES BASED ON SERVICE ORIENTED

ARCHITECTURE

called BPEL engines), which follows a server centralized architecture. Therefore, the

existing framework cannot be directly used for implementing the proposed HNS-SOA.

In [45],distributed networked appliance architecture “AMIDEN” is proposed. By

unitizing each function embedded in a networked appliance, an autonomous setup to

create a multi-functional service is realized. However,since creating scenarios by home

users is not assumed, flexible creation of the integrated service scenarios with original

appliance functions cannot be performed.

A new language called WS-CDL (Web Services Choreography Description Lan-

guage) [52] is currently being specified by W3C. The WS-CDL aims to strictly define

observable interactions between services from a global point of view. It adopts π-

calculus [33] as a mathematical foundation to deal with complex ordering and relation-

ships among services. The application is focused mainly on the on-line transactions

among enterprises. The WS-CDL might be used for modeling the integrated services

in our HNS-SOA. However in practice, it is difficult for end users to define rigorous

relationships among appliances. Also, the current HNS services do not require much

complex collaboration. Considering the convenience of users and the complexity of

the current integrated services, we do not envision many HNS applications making full

use of π-calculus and WS-CDL. Investigation of more sophisticated HNS services and

application of WS-CDL is left for our future research.

3.7. Summary

In this Chapter, we have proposed a framework using SOA to design and implement in-

tegrated services for home network appliances. We have also conducted a comparative

evaluation of the proposed HNS-SOA with the conventional HNS-SCA.

In our future research, we will evaluate the limitation of the proposed HNS-SOA

from a more practical viewpoint. For this, we are currently extending our prototype

3.7. SUMMARY – 39 –

systems to more appliances and more service scenarios. Based on the evaluation, we

plan to investigate the management framework and security schemes which will suit

the SOA well.

Chapter 4

Feature Interactions in HNS

Integrated Services

4.1. Introduction

Recent advancement in processors, sensors and networks enables emerging technolo-

gies to network various home electric appliances, including TVs, air-conditioners,

lights, DVD players and refrigerators [11][12][37]. A system consisting of such net-

worked home appliances is generally called a Home Network System (HNS). The HNS

provides many applications and services for home users such as, for example, group

control of appliances [19], health monitoring [46], and home security [31]. Several

HNS products have already come onto the market.

A major HNS application is the integrated service of networked home appliances

(we simply call HNS integrated service in the following). The HNS integrated service

orchestrates different home appliances to provide more comfortable and convenient

living for users. HNS is considered count as one of the next-generation value-added

services in the ubiquitous computing environment. Typical HNS integrated services

– 42 – CHAPTER 4. FEATURE INTERACTIONS IN HNS INTEGRATED SERVICES

include:

DVD Theater Service: When a user switches on a DVD player, a TV is turned on in

DVD mode, a blind is closed, the brightness of the lights is minimized, 5.1ch

speakers are selected, and the sound volume of the speaker is automatically ad-

justed.

Coming Home Light Service: When a door sensor notices that the user comes home,

lights are automatically turned on. Then, the brightness of the lights are adjusted

to an optimal value based on the current degree obtained from an illuminometer.

Feature interactions may occur in HNS integrated services as well, since multi-

ple services may be activated simultaneously. For example, the above two integrated

services interact with each other.

Interactions between DVD Theater & Coming Home Light: Suppose that a user A

activates the DVD Theater service, and simultaneously that a user B comes

home. Then, the following two interactions occur:

FI-(a): Although the DVD Theater service minimizes the brightness of the lights, the

Coming Home Light service sets a brightness comfortable for B. This may ruin

A’s desire to watch the DVD in a comfortable atmosphere.

FI-(b): If the blind is closed (by the DVD Theater) immediately after the lights read

the degree from the illuminometer (by the Coming Home Light), the lights may

fail to set the optimal illumination because the blind makes the room darker.

The feature interaction problem in the HNS integrated services was first addressed

by Kolberg et al. [25]. These authors regard each HNS component (an appliance

or an environmental variable) as a resource. In their model, each integrated service

accesses some resources in a shared or not-shared mode. An interaction is detected

4.1. INTRODUCTION – 43 –

when different services try to access a common resource with an incompatible access

mode. Thus, each appliance is simply modeled by the two-valued access attributes,

and each integrated service is characterized only by how the service sets values of the

attributes. This simple modeling enables a light-weight and realistic implementation

framework for feature interaction avoidance (see Section 4.7.7 for more discussion).

However, the future HNS appliances will have more features, and the HNS inte-

grated services will become more sophisticated and complex. The services may be

even customized and personalized by the home users. In such a situation, two slightly

different services may yield the same access pattern to the resources, which cannot be

differentiated by the conventional method. Hence, we consider it necessary to have

a finer-grained approach which can reflect features of appliances as well as concrete

scenarios of the HNS integrated services.

The goal of this chapter is to propose a more service-centric framework for feature

interactions in the HNS integrated services. In contrast to the previous resource access

model, we use an object-oriented approach extensively for higher modeling fidelity on

the HNS components. Specifically, we model each appliance as an object consisting of

properties and methods. The properties characterize the internal states of the appliance,

whereas the methods abstract features provided by the appliance. Executing a method

may refer or update some properties of the appliance. These dynamics are modeled

by a pre-condition and a post-condition, encapsulating the internal appliances-specific

implementation of the features. We similarly construct an object for the home environ-

ment. Then, a HNS is defined by a set of the appliance objects and an environment

object. Each HNS integrated service (scenario) is defined as a sequence of the appli-

ance methods.

Within the model, feature interactions are formalized by conflicts among appli-

ance methods that are concurrently invoked by different HNS integrated services. We

define two types of feature interactions: appliance interaction and environment in-

– 44 – CHAPTER 4. FEATURE INTERACTIONS IN HNS INTEGRATED SERVICES

teraction. The appliance interaction is a direct conflict between methods m and m′

of the same appliance device d. It is formulated within d as an incompatible goal

between the post-conditions of m and m′, or, as a race condition between the pre-

condition of m and the post-condition of m′. The above example FI-(a) corresponds to

an appliance interaction, where two methods, say, Light.setBrightness(5) and

Light.setBrightness(100) conflict on Light object.

On the other hand, the environment interaction is an indirect conflict between meth-

ods m and m′ of the different appliances d and d′, respectively. The conflict occurs via

the HNS environment object e, when both m and m′ write (or m reads and m′ writes)

a common property of e, simultaneously. The above example FI-(b) corresponds to

an environment interaction, where two methods, say, Blind.setGate(close) and

Illuminometer.getIllumination() conflict on the Brightness property of

the environment object.

Based on the formulation, we conduct a practical case study of offline interaction

detection. We show that the proposed framework is generic enough to formalize feature

interactions in the HNS integrated services. We also discuss the feasibility for online

detection and several resolution schemes within the proposed framework.

4.2. Preliminaries

4.2.1 Networked Home Appliances

A HNS consists of one or more networked appliances connected to a local area net-

work. In general, each networked appliance has device control interfaces by which

users or external software agents can control the appliance via a network. For exam-

ple, every air-conditioner should have interfaces for controlling power and temperature

settings. A speaker will have volume, and channel (2ch or 5.1ch) ,etc.

4.2. PRELIMINARIES – 45 –

In this chapter, we assume that the device control interfaces are provided in the

form of APIs. Thus, the appliance is supposed to own a processor, a storage (to store

device applications or middleware), and a network interface to handle the API calls.

This assumption is not unrealistic . Several standards already exist that prescribe a

detailed object template for each category of appliances (e.g., [11][12]). Also, the

price and size of processors/memories are becoming reasonable enough to embed in

home appliances. Some recent products (e.g., [48]) involve a Web application with

which the user can configure and control the appliance from external PCs.

The communication among the networked appliances is performed by an underly-

ing protocol. Various protocols for home appliances are proposed, such as X-10 [55],

HAVi [20], Jini [23] and UPnP [50]. In this chapter, we assume that a certain mech-

anism (e.g., middleware or gateway) to deal with the underlying protocol is available

in the given HNS. Hence, we do not care which underlying protocol should be used to

drive the APIs of appliances.

4.2.2 HNS Integrated Services

Controlling only a single networked appliance does not offer much added value com-

pared to traditional appliances [25]. The main advantage of the HNS lies in integrating

the control of multiple appliances together, which yield value-added and more power-

ful services. We call such services achieved by the integration of multiple networked

appliances HNS integrated services.

For a more comprehensive discussion, we introduce an example. In the example,

we suppose a HNS consisting of the following ten kinds of appliances (a DVD player,

a TV, a speaker, a light, an illuminometer, a door (with a sensor), a telephone, an air-

conditioner, a thermometer and a blind). We also assume that one appliance exists for

each kind, and that the total ten appliances are installed in the same room.1 We prepare
1For multiple appliances in the same kind, we regard them as independent appliances. For example,

– 46 – CHAPTER 4. FEATURE INTERACTIONS IN HNS INTEGRATED SERVICES

the following seven service scenarios of the HNS integrated services (denoted by SSi

(1 ≤ i ≤ 7)). These scenarios are determined based on the actual HNS products

[19][31].

SS1: Auto-TV Service - When the user turns on the TV, the speaker’s channel is set

to 2ch, and the volume of the speaker is automatically adjusted for the TV mode.

SS2: DVD Theater Service - When a user switches on the DVD player, the TV is

turned on in DVD mode, the blind is closed, the brightness of the lights is min-

imized, the 5.1ch speakers are selected, and the volume of the speaker is auto-

matically adjusted.

SS3: Coming Home Light Service - When the door (sensor) notices that the user

comes home, the light is automatically turned on. Then, the illumination of

the lights are adjusted to the optimal value based on the current degree obtained

from the illuminometer.

SS4: Coming Home Air Conditioning Service - When the door sensor registers that

the user has come home, the air-conditioner is turned on, and its temperature

setting is adjusted to the optimal based on the current degree of temperature

provided by the thermometer.

SS5: Ringing and Mute Service - When the telephone rings, the volume of the speaker

is muted.

SS6: Blind Service - When sunlight is available, the blind is opened.

SS7: Sleep Service - When the user goes to bed or goes outside, all appliances are

turned off.

if there are four lights in the room, we consider four instances; Light1, Light2, Light3 and Light4.

4.2. PRELIMINARIES – 47 –

Each service scenario can be achieved by executing the APIs of the networked

appliances in a certain order. For instance, the above SS2 would be implemented by

the following sequence of the API calls. For simplicity, we denote A.m to represent the

execution of an API m provided by an appliance A.

SS2: DVD Theater Service:

1. DVD.setPower(ON); /* DVD is turned on. */

2. TV.setPower(ON); /* TV is turned on. */

3. TV.setInput(DVD); /* Input mode is set to DVD mode. */

4. Blind.setPower(ON); /* Blind is turned on. */

5. Blind.setGate(close); /* Blind is closed. */

6. Light.setPower(ON); /* Light is turned on. */

7. Light.setBrightness(5); /* Brightness is minimized. */

8. Speaker.setPower(ON); /* Speaker is turned on. */

9. Speaker.setInput(DVD); /* Input mode is set to DVD */

10. Speaker.setChannel(5.1); /* Channel is set to 5.1ch. */

11. Speaker.setVolume(80); /* Volume is set to 80db. */

We do not pose any assumptions on who designs the HNS integrated services.

Thus, the sequence of the API calls could be constructed by appliance vendors, service

providers or even home users. Figure 4.1 shows an example of API sequences for all

service scenarios SS1 to SS7.

4.2.3 Architectures for Appliance Orchestration

As seen in the previous subsection, a HNS integrated service can be implemented as

a sequence of APIs provided by multiple appliances. To do this, it is necessary for a

HNS to have a certain mechanism to orchestrate the appliances.

– 48 – CHAPTER 4. FEATURE INTERACTIONS IN HNS INTEGRATED SERVICES

1.1. TV.setPower(ON)
1.2. TV.setInput(TV)
1.3. Speaker.setPower(ON)
1.4. Speaker.setInput(TV)
1.5. Speaker.setChannel(2)
1.6. Speaker.setVolume(60)

3.1.Door.getDoorStatus()
3.2.Illuminometer.setPower(ON)
3.3.Illuminometer.getBrightness()
3.4.Light.setPower(ON)
3.5.Light.setBrightness(600)

5.1.Phone.ringing()
5.2.Phone.connected()
5.3.Speaker.setVolume(30)

2.1. DVD.setPower(ON)
2.2. TV.setPower(ON)
2.3. TV.setInput(DVD)
2.4. Blind.setPower(ON)
2.5. Blind.setGate(Close)
2.6. Light.setPower(ON)
2.7. Light.setBrightness(5)
2.8. Speaker.setPower(ON)
2.9. Speaker.setInput(DVD)
2.10.Speaker.setChannel(5.1)
2.11.Speaker.setVolume(80)

7.1.DVD.setPower(OFF)
7.2.TV.setPower(OFF)
7.3.Speaker.setVolume(0)
7.4.Speaker.setPower(OFF)
7.5.Illuminometer.setPower(OFF)
7.6.Light.setBrightness(0)
7.7.Light.setPower(OFF)
7.8.AC.setPower(OFF)
7.9.Thermometer.setPower(OFF)
7.10.Blind.setGate(Close)
7.11.Blind.setPower(OFF)

6.1.Blind.setPower(ON)
6.2.Blind.setGate(Open)

4.1.Door.getDoorStatus()
4.2.Thermometer.setPower(ON)
4.3.Thermometer.getTemperature()
4.4.AC.setPower(ON)
4.5.AC.setTemperature(26)

SS1:Auto-TV SS2:DVD Theater SS3:Coming Home Light

SS4:Coming Home Air-ConSS5:Ringing and Mute

SS6:Blind Service

SS7:Sleep Service

Figure 4.1. API Sequences for SS1 to SS7

A straightforward way to orchestrate the appliances is to deploy a powerful home

server in the HNS [19][29][31]. The home server takes centralized control of all appli-

ances in the HNS, which we call Server Centralized Architecture (SCA). Figure 4.2(a)

depicts the HNS-SCA, implementing the integrated services SS1 to SS7. In the fig-

ure, an arrow represents a trigger of a service or an API call indexed by the number

in Figure 4.1. Upon a request from the user, the home server executes the APIs of

the appliances in a pre-determined order, which achieves the integrated service re-

quested. The underlying protocols of the appliances may be different from each other

(e.g., ECHONET [12] for lights, blinds and sensors, and a UPnP for Audio/Visual ap-

pliances [50]). Therefore, the home server requires a sophisticated gateway [37] to

achieve the interoperability among the appliances.

Delegating the appliance control to the appliances themselves is another way to

have appliance orchestration. In Section 3, we proposed an autonomous-decentralized

architecture based on the Service Oriented Architecture (HNS-SOA) [29], which is

shown in Figure 4.2(b). Attaching an application adaptor (called a service layer, de-

picted by an oval) to each appliance, an appliance can autonomously trigger other ap-

4.2. PRELIMINARIES – 49 –

DVD
Player

TV

Speaker

Phone

Light

Door

AC

Thermo
meter

Illumino
meter

BlindBlind

SS1

SS2

SS3

SS4

SS5

SS6

SS7

G
at

ew
ay

SS1

SS2

SS3

SS4

SS5

SS6

SS7

A
pp

lic
at

io
n

In
te

rf
ac

e

2.1,7.1

1.1,1.2,2.2
2.3,7.2
1.3,1.4,1.5
1.6,2.8,2.9
2.10,2.11
7.3,7.4

2.6,2.7,3.4
3.5,7.6,7.7

3.2,3.3,7.5

3.1,4.1

5.1,5.2

4.4,4.5,7.8

4.2,4.3,7.9

6.1,6.2
7.10,7.11

DVD
Player

TV

Speaker

Phone

Light

Door

AC

Thermo
meter

Illumino
meter

BlindBlind

SS1

SS2
SS7

SS3,SS4
SS7

SS5

SS6,SS7

User

DVD

TV

Speaker

Light

Illuminometer

Door

AC

Phone

Thermometer

Blind

2.1,7.1

1.1,1.2,2.2
2.3,7.2
1.3,1.4,1.5
1.6,2.8,2.9
2.10,2.11
7.3,7.4

2.6,2.7,3.4
3.5,7.6,7.7

3.2,3.3
7.5

3.1,4.1

5.1,5.2

4.4,4.5,7.8

4.2,4.3
7.9

6.1,6.2
7.10,7.11

(a) HNS-SCA (b) HNS-SOA

Figure 4.2. HNS Architectures for Appliance Orchestration

pliances, with a generic protocol (such as XML/SOAP), for a given service scenario.

This architecture requires no centralized home server, which improves the reliability,

flexibility, and scalability of the HNS.

Note that whatever architecture is taken for the appliance orchestration, the HNS

integrated service can be implemented basically as a sequence of API calls of the ap-

pliances. This research proposes a generic framework independent of the HNS archi-

tecture.

– 50 – CHAPTER 4. FEATURE INTERACTIONS IN HNS INTEGRATED SERVICES

4.3. Formal Definition of HNS

4.3.1 Model of Appliance

Each appliance can be regarded as an object consisting of properties (also called at-

tributes) and methods. The properties characterize the current status of the appliance.

On the other hand, the methods represent public application interfaces through which

some properties are referred or updated from outside [12] 2. In this chapter, the meth-

ods correspond to the APIs discussed in Section 4.2.1. For instance, every appliance

has a property Power whose value is basically either ON or OFF. An air-conditioner

generally has a property TemperatureSetting by which the air-conditioner pro-

duces air with an appropriate temperature. The air-conditioner may have a method

(thus, an API), setTemperature(), by which the user or an external software agent

can update the current value of TemperatureSetting. Each property has a type to

define an allowable range of the property value. For a property Prop, we denote tProp

to represent the type of Prop. We assume that for each appliance, properties with cor-

responding types and methods are given by the vendor of the appliance (e.g., with a

manual).

Table 4.1 summarizes an example of properties and types for the ten appliances in-

troduced in Section 4.2.2. Due to limited space, properties irrelevant to the SS1 to SS7

are omitted from the table. For example, the air-conditioner has properties Power and

TemperatureSetting, where tPower = {ON, OFF} and tTemperatureSetting

= unsigned int. Also, the air-conditioner may implement methods such as setPower

(tPower onoff) and setTemperature(tTemperatureSetting temp). The

air-conditioner is controlled from the network by executing the methods with parame-

ters such as: setPower(ON) and setTemperature(25).

2Several standardizations of the appliance object model are currently under way. For example,

ECHONET prescribes detailed properties required for each appliance class.

4.3. FORMAL DEFINITION OF HNS – 51 –

Table 4.1. Appliance Properties

{Open,Close}BlindStatus

{ON,OFF}Power
Blind

{TV,DVD}Input

{ON,OFF}Power
TV

{ON,OFF}PowerDVD player

{Received,
Calling,
Connected,
Waiting}

PhoneStatusPhone

{ON,OFF}Power

{Open,Close}DoorStatus
Door

unsigned int (lx)CurrentBrightness

{ON,OFF}Power
Illuminometer

unsigned int (lx)BrightnessSetting

{ON,OFF}Power
Light

unsigned int (dB)VolumeSetting

{2,5.1}Channel

{TV,DVD}Input

{ON,OFF}Power

Speaker

unsigned int (℃)CurrentTemperature

{ON,OFF}Power
Thermometer

unsigned int (℃)TemperatureSetting

{ON,OFF}Power
AirConditioner

PropertyTypePropertyAppliance

{Open,Close}BlindStatus

{ON,OFF}Power
Blind

{TV,DVD}Input

{ON,OFF}Power
TV

{ON,OFF}PowerDVD player

{Received,
Calling,
Connected,
Waiting}

PhoneStatusPhone

{ON,OFF}Power

{Open,Close}DoorStatus
Door

unsigned int (lx)CurrentBrightness

{ON,OFF}Power
Illuminometer

unsigned int (lx)BrightnessSetting

{ON,OFF}Power
Light

unsigned int (dB)VolumeSetting

{2,5.1}Channel

{TV,DVD}Input

{ON,OFF}Power

Speaker

unsigned int (℃)CurrentTemperature

{ON,OFF}Power
Thermometer

unsigned int (℃)TemperatureSetting

{ON,OFF}Power
AirConditioner

PropertyTypePropertyAppliance

The details of each method are usually encapsulated in an appliance-specific fea-

ture implementation. Therefore, several abstraction levels can be considered to model

the method. In this chapter, for the generality of the model, we simply characterize

each method as a pair of pre-conditions and post-conditions. The pre-condition is a

condition required before the execution of the method, while the post-condition is a

condition that holds after the method is executed.

We specify each pre(or post)-condition by a property formula constructed with

some properties of the appliance. For example, consider the method setTemperature

(tTemperature Setting temp). Suppose that the implementation of this method

is as follows: “When the power is on, if the method is executed, the temperature is

set to the value specified by temp”. Then the method can be specified with a pre-

condition:Power == ’ON’ and a post-condition: TemperatureSetting == temp.

More generally, we specify each pre(or post)-condition as a conjunction of Boolean

– 52 – CHAPTER 4. FEATURE INTERACTIONS IN HNS INTEGRATED SERVICES

formulas with properties.

Definition 4.3.1 (Property Formula) Let P = {p1, p2, ..., pn} be a given set of prop-

erties. A formula c = fp1 ∧ fp2 ∧ ... ∧ fpn , where fpi is any Boolean formula with

respect to pi, is called a property formula over P . CondP denotes a set of all property

formulas over P . For c = fp1 ∧ fp2 ∧ ... ∧ fpn ,
∏

pi
(c) = fpi

is called a projection of c

with respect to property pi.

Let us consider the example of the air-conditioner. In this case then, a formula

c = [Power==’ON’ ∧ TemperatureSetting > 20] is a property formula, which is

supposed to become true when the power is on and the value of the temperature setting

is greater than 20 degree. Note that c is a conjunction of Boolean formulas, each of

which depends on only a single property. Also,
∏

Power(c) = [Power==’ON’], which

is a projection of c onto Power. Next, we define each networked appliance as follows.

Definition 4.3.2 (Networked Home Appliance) A networked home appliance d is de-

fined as a quad tuple d = (Pd,Md, P red, Postd), where

• Pd is a set of all properties of d.

• Md is a set of all methods of d.

• Pred is a pre-condition function Md → CondPd
, which maps each method m ∈

Md into a property formula. m can be executed only when Pred(m) is true.

• Postd is a post-condition function Md → CondPd
, which maps each method

m ∈ Md into a property formula. Postd(m) becomes true immediately after m

is executed.

To avoid confusion, a method m ∈ Md of an appliance d is denoted by d.m.

4.3. FORMAL DEFINITION OF HNS – 53 –

Table 4.2. Appliance Models

BlindStatus=gateStatusPower='ON'setGate(tGate gateStatus)

Power=onoffsetPower(tPower onoff)
Blind

PhoneStatus='Connected'PhoneStatus='Calling'connected()

PhoneStatus='Calling'PhoneStatus='Recieved'ringing()
Phone

Power='ON' Ù DoorStatus=*getDoorStatus()Door

Power='ON' Ù CurrentBrightness=*getBrightness()

Power=onoffsetPower(tPower onoff)
Illuminometer

BrightnessSetting=lxPower='ON'setBrightness(tBrightness lx)

Power=onoffsetPower(tPower onoff)
Light

Power=onoffsetPower(tPower onoff)DVD

Input=tvInputPower='ON'setInput(tInput tvInput)

Power=onoffsetPower(tPower onoff)
TV

VolumeSetting=spVolumePower='ON'setVolume(tVolume spVolume)

Channel=spChannelPower='ON'setChannel(tChannel spChannel)

Input=spInputPower='ON'setInput(tInput spInput)

Power=onoffsetPower(tPower onoff)

Speaker

Power='ON' Ù CurrentTemperature=*getTemperature()

Power=onoffsetPower(tPower onoff)
Thermometer

TemperatureSetting=tempPower='ON'setTemperature(tTemperature temp)

Power=onoffsetPower(tPower onoff)
AirConditioner

Post-ConditionPre-ConditionMethodAppliance

BlindStatus=gateStatusPower='ON'setGate(tGate gateStatus)

Power=onoffsetPower(tPower onoff)
Blind

PhoneStatus='Connected'PhoneStatus='Calling'connected()

PhoneStatus='Calling'PhoneStatus='Recieved'ringing()
Phone

Power='ON' Ù DoorStatus=*getDoorStatus()Door

Power='ON' Ù CurrentBrightness=*getBrightness()

Power=onoffsetPower(tPower onoff)
Illuminometer

BrightnessSetting=lxPower='ON'setBrightness(tBrightness lx)

Power=onoffsetPower(tPower onoff)
Light

Power=onoffsetPower(tPower onoff)DVD

Input=tvInputPower='ON'setInput(tInput tvInput)

Power=onoffsetPower(tPower onoff)
TV

VolumeSetting=spVolumePower='ON'setVolume(tVolume spVolume)

Channel=spChannelPower='ON'setChannel(tChannel spChannel)

Input=spInputPower='ON'setInput(tInput spInput)

Power=onoffsetPower(tPower onoff)

Speaker

Power='ON' Ù CurrentTemperature=*getTemperature()

Power=onoffsetPower(tPower onoff)
Thermometer

TemperatureSetting=tempPower='ON'setTemperature(tTemperature temp)

Power=onoffsetPower(tPower onoff)
AirConditioner

Post-ConditionPre-ConditionMethodAppliance

Table 4.2 shows a simplified model of all the appliances in our example. In the ta-

ble, ‘*’ denotes a don’t care value. For example, the condition CurrentTemperature

== * in Pred of Thermometer.getTemperature() becomes true, as long as a cer-

tain value of the property is available.

4.3.2 Environment

Each appliance deployed in a HNS shares a home space with other appliances. There-

fore, the appliances are tightly coupled with the environment of the home. For instance,

the air-conditioner tries to keep a comfortable room temperature, which implicitly up-

dates the temperature of the environment. Also, the thermometer refers to the current

temperature of the environment. Thus, the air-conditioner and thermometer are indi-

rectly connected via the environment, which can impact the comfortableness of the

HNS users.

– 54 – CHAPTER 4. FEATURE INTERACTIONS IN HNS INTEGRATED SERVICES

Thus, the environment of the home is an important factor in feature interaction

analysis (cf. [25][32]). In this chapter, we formalize the environment as a global

object which can be referred to or updated by all appliances in the HNS. Specifically,

an environment object has a set of global properties such as temperature, brightness,

and sound volume.

When a method m of an appliance is executed, these environment properties are

indirectly referred to or updated by m. For the environment, we adopt a loose model-

ing such that we only care whether the method m reads or writes some environment

properties or not. This modeling is because the impact of a method to the environment

properties are not as direct and explicit as the impact to the appliance properties 3.

Therefore, we cannot specify strict pre/post conditions with the environment proper-

ties before/after the execution of m.

Definition 4.3.3 (Environment) Let D = {d1, d2, ..., dk} be a set of all appliances

deployed in the HNS. Also, let M = ∪di∈DMdi
be a set of all methods of all appliances.

Then, an environment e is defined as a tuple e = (Pe, Re,We), where

• Pe is a set of all environment properties.

• Re is an environment read function M → 2Pe , which maps each method m ∈ M

into a set of environment properties that are read by m.

• We is the environment write function M → 2Pe , which maps each method m ∈
M into a set of environment properties that are written by m.

In our example HNS, we assume the following environment properties:

Temperature: the current degree of temperature of the home.
3For instance, the temperature setting of an air-conditioner is not always equal to the temperature of

a room.

4.3. FORMAL DEFINITION OF HNS – 55 –

Table 4.3. Environment Model

Brightness,TemperaturesetGate()

setPower()
Blind

Volumeconnected()

Volumeringing()
Phone

getDoorStatus()Door

BrightnessgetBrightness()

setPower()
Illuminometer

BrightnesssetBrightness()

setPower()
Light

setPower()DVD

setInput()

setPower()
TV

VolumesetVolume()

setChannel()

setInput()

setPower()

Speaker

TemperaturegetTemperature()

setPower()
Thermometer

TemperaturesetTemperature()

setPower()
AirConditioner

WeReMethodAppliance

Brightness,TemperaturesetGate()

setPower()
Blind

Volumeconnected()

Volumeringing()
Phone

getDoorStatus()Door

BrightnessgetBrightness()

setPower()
Illuminometer

BrightnesssetBrightness()

setPower()
Light

setPower()DVD

setInput()

setPower()
TV

VolumesetVolume()

setChannel()

setInput()

setPower()

Speaker

TemperaturegetTemperature()

setPower()
Thermometer

TemperaturesetTemperature()

setPower()
AirConditioner

WeReMethodAppliance

Brightness: the current intensity of brightness in the home.

Volume: the current sound volume in the home.

Table 4.3 shows an environment model for our example HNS. The columns Re

and We, respectively, show which environment properties are read or written by each

appliance method. For example, environment property Temperature is designated in

We(AirConditioner.setTemperature(...)). This property implies that setting

the temperature of the air-conditioner can write (update) the current temperature degree

of the home.

4.3.3 HNS and Integrated Services

We are now ready to formalize the HNS. The HNS consists of a set of appliances

deployed and an environment.

– 56 – CHAPTER 4. FEATURE INTERACTIONS IN HNS INTEGRATED SERVICES

Definition 4.3.4 (Home Network System) A home network system is defined as HNS =

(D, e), where

• D = {d1, d2, ..., dn} is a set of appliances.

• e = (Pe, Re,We) is an environment where the HNS is deployed.

Therefore, our example HNS consists of the ten appliances defined in Tables 4.1

and 4.2 and an environment defined in Table 4.3. Next, as mentioned in Section 4.2.2,

we assume that a HNS integrated service is given by a scenario without branches.

Specifically, we define the service as a sequence of appliance methods.

Definition 4.3.5 (HNS Integrated Service Scenario) Let HNS = (D, e) be a given

HNS. Then, a sequence of any appliance methods ssi = di1.mi1, di2.mi2, ..., dik.mik

(dij ∈ D,mij ∈ Mdij
) is called a HNS integrated service scenario.

Thus, the API sequences shown in Figure 4.1 are finally formalized as the HNS

integrated service scenarios.

4.4. Feature Interactions in the HNS Integrated Services

If multiple integrated service scenarios are simultaneously executed in a HNS, unex-

pected conflicts between the scenarios may occur. In this chapter, we propose two

kinds of feature interactions for the HNS integrated services, specifically appliance

interactions and environment interactions.

4.4.1 Appliance Interactions

When multiple service scenarios simultaneously invoke incompatible methods of a

common appliance, one method conflicts with another, which results in a feature in-

4.4. FEATURE INTERACTIONS IN THE HNS INTEGRATED SERVICES – 57 –

teraction on the appliance. We formalize the conflict among methods on the same

appliance as appliance interactions.

Let us consider SS1 and SS2 in Figure 4.1 as an example. SS1 invokes Speaker.

setChannel(2), while SS2 invokes Speaker.setChannel(5.1). Hence, if SS1

and SS2 are simultaneously executed, a race condition occurs in which channel 2 or 5.1

should be set to the speaker. According to Table 4.2, the simultaneous execution of SS1

and SS2 updates the value of the property Channel of the speaker into two different

values 2 and 5.1. This situation is characterized by two unsatisfiable post-conditions

on the common appliance property Channel; [Channel==2] ∧ [Channel==5.1]

= ⊥ (unsatisfiable). Similarly, SS1 and SS2 cause an appliance interaction on the

property Input of the TV.

Let us introduce another example with SS1 and SS7. TV.setInput(TV) of SS1

requires in the pre-condition that the TV is switched on ([power==ON]). However,

TV.Power(OFF) of SS7 updates the value of the property power into OFF as defined

in its post-condition, which disables TV.setInput(TV) of SS1. This situation can

be explained by the fact that a pre-condition and a post-condition are unsatisfiable

simultaneously.

From the above observations, we define the appliance interactions as conflicts

among methods on a common property of an appliance.

Definition 4.4.1 (Appliance Interactions) Let HNS = (D, e) be a given HNS, and

ssi and ssj be a pair of integrated service scenarios defined on HNS. Suppose that for

an appliance d ∈ D, ssi contains a method d.mi and ssj contains a method d.mj . We

say that ssi and ssj cause an appliance interaction on d iff at least one of the following

conditions is satisfied:

Condition D1: There exists an appliance property p ∈ Pd such that
∏

p Post(mi) ∧
∏

p Post(mj) = ⊥ (unsatisfiable), or

– 58 – CHAPTER 4. FEATURE INTERACTIONS IN HNS INTEGRATED SERVICES

Condition D2: There exists an appliance property p ∈ Pd such that
∏

p Post(mi) ∧
∏

p Pre(mj) = ⊥ (unsatisfiable).

4.4.2 Environment Interactions

The environment interaction refers an indirect conflict among appliances via the HNS

environment. This interaction arises when different appliance methods try to access

common environment properties at the same time. Note that the methods causing the

interaction are not always executed in the same appliance.

Definition 4.4.2 (Environment Interactions) Let HNS = (D, e) be a given HNS,

and ssi and ssj be a pair of integrated service scenarios defined on HNS. Suppose

that for a pair of appliances d, d′ ∈ D (d
= d′), ssi contains a method d.mi and ssj

contains a method d′.mj . We say that ssi and ssj cause an environment interaction iff

at least one of the following conditions is satisfied:

Condition E1: We(mi) ∩ We(mj)
= φ, or

Condition E2: Re(mi) ∩ We(mj)
= φ.

Condition E1 reflects a race condition between two ’writes’ on the common envi-

ronment properties. Condition E2 specifies non-interchangeable ’read’ and ’write’ on

the common environment properties.

For example, suppose that SS3 and SS6 in Figure 4.1 are executed simultane-

ously. In SS3, the light must be optimally adjusted based on the illuminometer. On the

other hand, SS6 opens the blind, which ruins the optimal light adjustment. This situa-

tion can be explained as follows. As shown in Table 4.2, Light.setBrightness()

of SS3 and Blind.setGate() of SS6 try to write the common environment prop-

erty Brightness. Moreover, Illuminometer.getBrightness() of SS3 reads

Brightness as well. That is, We(Light.setBrightness()) ∩ We(Blind.set

4.5. CASE STUDY: OFFLINE INTERACTION DETECTION – 59 –

Gate())∩Re(Illuminometer.getBrightness()) = {Brightness}
= φ. Thus,

these three methods cause an environment interaction on brightness in the home.

4.5. Case Study: Offline Interaction Detection

We have conducted a case study of an offline interaction detection. For this experiment,

we have implemented a tool. The tool takes a specification of a HNS based on the

proposed framework, and detects all possible interactions in the specification. The

case study here is formulated as follows:

Offline feature interaction detection

Input: A home network system HNS = (D, e) specified in Tables 4.1, 4.2 and 4.3. A

set of HNS integrated service scenarios SS1, SS2, ..., SS7 shown in Figure 4.1.

Output: All possible pairs of appliance methods that cause appliance or environment

interactions.

Procedure: For any pair of methods m and m′ contained in SSi and SSj , respectively,

evaluate Conditions D1 and D2 for appliance interactions, and Conditions E1

and E2 for environment interactions.

Table 4.4(a) shows a total of 43 appliance interactions, whereas Table 4.4(b) enu-

merates 24 environment interactions. Each entry represents a set of pairs of conflicting

methods.

For example, let us look at feature interactions between SS2 (DVD Theater) and

SS3 (Coming Home Light). Figure 4.3 depicts the detailed scenario of the interactions

showing how each method in a service updates or refers a property of an appliance

(shown as a solid arrow), or indirectly accesses the environment object (shown as a

– 60 – CHAPTER 4. FEATURE INTERACTIONS IN HNS INTEGRATED SERVICES

Table 4.4. Results of the Offline Interaction Detection

(a) Appliance Interactions

SS7

(6.1,7.11)(6.2,7.10)(6.2,7.11)SS6

(5.3,7.3)(5.3,7.4)SS5

(4.2,7.9)(4.3,7.9)(4.4,7.8)(4.5,7.8)SS4

(3.2,7.5)(3.3,7.5)(3.4,7.7)(3.5,7.6)
(3.5,7.7)

SS3

(2.1,7.1)(2.2,7.2)(2.3,7.2)(2.4,7.9)
(2.5,7.8)(2.5,7.9)(2.6,7.7)(2.7,7.6)
(2.7,7.7)(2.8,7.4)(2.9,7.4)(2.10,7.4)
(2.11,7.3)(2.11,7.4)

(2.5,6.2)(2.11,5.3)(2.7,3.5)SS2

(1.1,7.2)(1.2,7.2)(1.3,7.4)
(1.4,7.4)(1.5,7.4)(1.6,7.3)(1.6,7.4)

(1.6,5.3)
(1.2,2.3)(1.4,2.9)
(1.5,2.10)(1.6,2.11)

SS1

SS7SS6SS5SS4SS3SS2SS1

SS7

(6.1,7.11)(6.2,7.10)(6.2,7.11)SS6

(5.3,7.3)(5.3,7.4)SS5

(4.2,7.9)(4.3,7.9)(4.4,7.8)(4.5,7.8)SS4

(3.2,7.5)(3.3,7.5)(3.4,7.7)(3.5,7.6)
(3.5,7.7)

SS3

(2.1,7.1)(2.2,7.2)(2.3,7.2)(2.4,7.9)
(2.5,7.8)(2.5,7.9)(2.6,7.7)(2.7,7.6)
(2.7,7.7)(2.8,7.4)(2.9,7.4)(2.10,7.4)
(2.11,7.3)(2.11,7.4)

(2.5,6.2)(2.11,5.3)(2.7,3.5)SS2

(1.1,7.2)(1.2,7.2)(1.3,7.4)
(1.4,7.4)(1.5,7.4)(1.6,7.3)(1.6,7.4)

(1.6,5.3)
(1.2,2.3)(1.4,2.9)
(1.5,2.10)(1.6,2.11)

SS1

SS7SS6SS5SS4SS3SS2SS1

(b) Environment Interactions

SS7

(6.2,7.6)SS6

(5.1,7.3)(5.2,7.3)SS5

(4.3,7.10)(4.5,7.10)(4.3,6.2)(4.5,6.2)SS4

(3.3,7.6)(3.3,7.10)(3.5,7.10)(3.3,6.2)(3.5,6.2)SS3

(2.5,7.6)(2.7,7.10)(2.7,6.2)(2.11,5.1)(2.11,5.2)(2.5,4.3)(2.5,4.5)(2.5,3.3)(2.5,3.5)(2.7,3.3)SS2

(1.6,5.1)(1.6,5.2)SS1

SS7SS6SS5SS4SS3SS2SS1

SS7

(6.2,7.6)SS6

(5.1,7.3)(5.2,7.3)SS5

(4.3,7.10)(4.5,7.10)(4.3,6.2)(4.5,6.2)SS4

(3.3,7.6)(3.3,7.10)(3.5,7.10)(3.3,6.2)(3.5,6.2)SS3

(2.5,7.6)(2.7,7.10)(2.7,6.2)(2.11,5.1)(2.11,5.2)(2.5,4.3)(2.5,4.5)(2.5,3.3)(2.5,3.5)(2.7,3.3)SS2

(1.6,5.1)(1.6,5.2)SS1

SS7SS6SS5SS4SS3SS2SS1

4.5. CASE STUDY: OFFLINE INTERACTION DETECTION – 61 –

SS2:DVD Theater

SS3:Coming Home Light

2.1 DVD.setPower(ON)
2.2 TV.setPower(ON)
2.3 TV.setInput(DVD)
2.4 Blind.setPower(ON)
2.5 Blind.setGate(Close)
2.6 Light.setPower(ON)
2.7 Light.setBrightness(5)
2.8 Speaker.setPower(ON)
2.9 Speaker.setInput(DVD)
2.10 Speaker.setChannel(5.1)
2.11 Speaker.setVolume(80)

3.1 Door.getDoorStatus()
3.2 Illuminometer.setPower(ON)
3.3 Illuminometer.getBrightness()
3.4 Light.setPower(ON)
3.5 Light.setBrightness(600)

BlindStatus
Close

Power
ON

Illuminometer
Object

Power
ON

CurrentBrightness
300

Blind Object

Power
ON

BrightnessSetting
5 600

Light Object

Brightness
Environment

Object

Environment
Interaction

Appliance
Interaction

2.42.5

2.5

2.6

2.7

3.5

3.5

3.3

3.3 3.2

3.4

2.7

Figure 4.3. Interactions between SS2 and SS3

dotted arrow) 4. SS2 and SS3 cause an appliance interaction on the Light. Specifi-

cally, methods 2.7 and 3.5 conflict on the property BrightnessSetting, since both

methods try to modify the property in different ways. This interaction is detected by

Condition D1 (see Definition 4.4.1), which is exactly the same way that FI-(a) was in-

troduced in Section 4.1. The services also cause an environment interaction, where the

methods 2.5 and 3.3 make a race-condition between read and write of the environment

property Brightness. The interaction is detected by Condition E2 (see Definition

4.4.1), by which we can reasonably explain FI-(b) as explained in Section 4.1. Two

4Objects and properties that are not related to the interaction scenario are omitted from the figure.

– 62 – CHAPTER 4. FEATURE INTERACTIONS IN HNS INTEGRATED SERVICES

other environment interactions occur as well between 2.5 and 3.5, and between 2.7 and

3.3.

4.6. Online Interaction Detection

As seen in Section 4.5, the offline interaction detection shows all potential interactions

among HNS integrated service scenarios. When a pair of service scenarios ssi and ssj

are shown to cause a feature interaction (by the offline detection), the safest solution

is to uninstall either ssi or ssj from the HNS. However, this solution would signifi-

cantly limit flexible creation and deployment of the service scenarios. Preferably, the

interaction should be managed during runtime only when it occurs.

Therefore, we propose an online interaction detection method which is performed

during runtime of service scenarios.

4.6.1 Key Idea

In the HNS integrated service, when one of the following conditions are satisfied,

feature interactions occur.

(a) In HNS, suppose that for d.mi contained by ssi and d.mj contained by ssj . Both

d.mi and d.mj are executed, and one of the conditions D1, D2 are satisfied.

(b) In HNS, suppose that for d.mi contained by ssi and d′.mj contained by ssj . Both

d.mi and d′.mj are executed, and one of the conditions E1, E2 are satisfied.

Based on these conditions, an online feature interaction detection is shown, as fol-

lows.

STEP 1: The name of the runtime appliance method and service scenario containing its

method are acquired.

4.6. ONLINE INTERACTION DETECTION – 63 –

STEP 2: As condition evaluation and feature interaction detection are performed for a set

of appliance methods in a newly executed scenario and in the information of

STEP 1.

We prepare an execFlg(execution flag) and a history information per every appli-

ance method for STEP 1. The value of the flag ’1’ shows under operation of the method

and ’0’ shows that the method is not operating. The history information has detailed

information of the executed appliance method (arguments of the method, service sce-

nario ID etc.), and this information is related to the execFlg.

For STEP 2, an application module evaluating conditions of D1, D2, E1 and E2 is

implemented. If this module detects interactions, then the feature interaction detection

process moves to the process of replying its results or replying with an interaction

resolution. If no interaction is detected, the service scenario is executed normally.

We describe concrete designs of online interaction detection for multiple HNS in-

tegrated service architectures.

4.6.2 Online Feature Interaction Detection in HNS-SCA

In the HNS-SCA, detecting both appliance and environment interactions can be un-

dertaken by the home server. The home server takes global control of all appliances.

Therefore, the home server can monitor the current values of all properties of every ap-

pliance, as well as an environment object. That is, the home server can track a global

state of the HNS. Thus, every time the home server invokes a method in a service, the

server evaluates Conditions D1, D2, E1 and E2 to detect appliance and environment

interactions.

Figure 4.4 shows the example of online interaction detection. In this case, SS2 is

under execution, and SS6 is going to be performed. First, the home server receives

the requirements of SS6 and checks the name of the runtime appliance method in

– 64 – CHAPTER 4. FEATURE INTERACTIONS IN HNS INTEGRATED SERVICES

(1). Next, the information(arguments and service scenario ID, etc) about the runtime

appliance method is acquired in (2). Furthermore, condition evaluation and interac-

tion detection are performed for the information on the runtime appliance method and

SS6 in (3). Finally, the appliance interaction (SS2 : Blind.setGate(Close)，SS6 :

Blind.setGate(Open)) and the environment interaction (SS2 : Light.setBrightness(5)，

SS6 : Blind.setGate(Open)) are replyed to a user as the detection result in (4).

execFlg

Runtime method
:DVD.setPower
:TV.setPower
:TV.setInput
:Blind.setPower
:Blind.setGate
:Light.setPower
:Light.setBrightness
:Speaker.setPower
:Speaker.setInput
:Speaker.setChannel
:Speaker.setVolume

DVD
Player

TV

Speaker

Light

BlindBlind
History information
SS2:DVD.setPower(ON)
SS2:TV.setPower(ON)
SS2:TV.setInput(DVD)
SS2:Blind.setPower(ON)
SS2:Blind.setGate(Close)
SS2:Light.setPower(ON)
SS2:Light.setBrightness(5)
SS2:Speaker.setPower(ON)
SS2:Speaker.setInput(DVD)
SS2:Speaker.setChannel(5.1)
SS2:Speaker.setVolume(80)

User

SS6

SS6(Blind Service)
SS6:Blind.setPower(ON)
SS6:Blind.setGate(Open)

Home Server

(1)Get runtime method name

(2)Get detailed information
about runtime method

(3)Detect feature
interactions

(4)Reply detected interaction

SS6:Blind.setGate(Open)
SS2:Blind.setGate(Close)

SS6:Blind.setGate(Open)
SS2:Light.setBrightness(5)

Detection
Module

Figure 4.4. Online Feature Interaction Detection in HNS-SCA

4.6. ONLINE INTERACTION DETECTION – 65 –

4.6.3 Online Feature Interaction Detection in HNS-SOA

HNS-SOA requires a sophisticated mechanism for runtime detection, because of its

fully-distributed appliance control. Detecting the appliance interactions during run-

time is not very hard, since evaluation of Conditions D1 and D2 can be done locally

within a single appliance. The appliance interactions can be detected by installing an

application module for each appliance. Its interaction detection module continuously

monitors all properties of the appliance. Then, it warns an interaction (by Conditions

D1 and D2) when multiple services try to invoke conflicting methods.

In the HNS-SOA, detecting the environment interactions is possible but is a bit

harder without having a global server simulating the environment object. To achieve

this, each appliance first communicates with every appliance causing potential environ-

ment interactions, using the result of offline detection. If any method conflicting on the

environment is being executed, then the appliance reports an environment interaction.

We present the detecting process of environment interactions in HNS-SOA.

(Prior setup) For all appliances, offline environment interactions are detected. Every

appliance gets to know the combination of appliance-method occurring environ-

ment interactions.

(Runtime1:) Whenever a method is executed newly, the running states of all the ap-

pliance methods that can conflict with each other are checked.

(Runtime2:) Based on the execFlg and history information, environment interactions

are detected by comparing a new invoked method and the runtime method.

Figure 4.5 shows an example of online environment interaction detection. This

figure indicates the case where SS6 is newly performed to SS2 under execution like

Section 4.6.2. In HNS-SOA, the service layer of the Blind receives a requirement of

SS6(SS6 : setPower(ON)，SS6 : setGate(Open)) execution directly.

– 66 – CHAPTER 4. FEATURE INTERACTIONS IN HNS INTEGRATED SERVICES

First, the runtime method of Blind is checked in (1). Next, Blind service acquires

a history of the runtime method in (2). Then appliance interactions are detected be-

tween SS2 and SS6 in (3). In this example, when SS6 : setPower(ON) is executed,

no interaction is detected. And in the case of execution SS6 : setGate(Open), the

appliance interaction(SS6 : setGate(Open) and SS2 : Blind.setGate(Close)) are

detected and replied to in (4).

The Online environment interaction detection process proceeds after (2). The run-

ning states of the appliance methods are checked based on the combination of the ap-

pliance method, which can cause environment interactions　 in (3’). In this case, SS6 :

Blind.setGate and SS2 : Light.setBrightness are a pair of potential environment

interaction. So, the runtime method information of Light Service is required in (4’),

and environment interactions (SS2 : setBrightness(5)，and SS6 : setGate(Open))

are detected in (5’)(6’).

Thus, in HNS-SOA, implementation which is different in each environment inter-

action and appliance interaction is needed.

4.7. Resolution of Feature Interaction

Once a feature interaction is detected in a pair of HNS integrated services, it should be

resolved. For this, several approaches can be considered.

4.7.1 Rebuild Scenario

Based on the result of the offline detection, rebuild the service scenarios(update , delete

etc.) so that any interaction is avoided. This approach is available only in the environ-

ment where the services can be flexibly rebuilt. However, the number of interaction

also increases with diversification of appliances of service scenarios. Resolving all

4.7. RESOLUTION OF FEATURE INTERACTION – 67 –

Light Service

Runtime method
:Light.setPower
:Light.setBrightness

Runtime method
:Light.setPower
:Light.setBrightness

History information
SS2:Light.setPower(ON)
SS2:Light.setBrightness(5)

History information
SS2:Light.setPower(ON)
SS2:Light.setBrightness(5)

Blind Service

Runtime method
:Blind.setPower
:Blind.setGate

Runtime method
:Blind.setPower
:Blind.setGate

History information
SS2:Blind.setPower(ON)
SS2:Blind.setGate(Close)

History information
SS2:Blind.setPower(ON)
SS2:Blind.setGate(Close)

User

Environment interaction info
Light.setBrightness<>Blind.setGate
Environment interaction info
Light.setBrightness<>Blind.setGate

Environment interaction info
Light.setBrightness<>Blind.setGateSS6

SS6(Blind Service)
SS6:Blind.setPower(ON)
SS6:Blind.setGate(Open)

(1)Get runtime
method name

(2)Get detailed information
about runtime method

(3)Detect appliance
interactions (3’)Check runtime method

for environment interaction
detection

(4’)Get detailed information
about runtime method

SS6:Blind.setGate(Open)
SS2:Blind.setGate(Close)

SS6:Blind.setGate(Open)
SS2:Light.setBrightness(5)

(5’)Detect environment
interactions

execFlg

Light

Blind

(4)Reply appliance interactions

(6’)Reply environment
interactions execFlg

Detection
Module

Figure 4.5. Online Feature Interaction Detection in HNS-SOA

– 68 – CHAPTER 4. FEATURE INTERACTIONS IN HNS INTEGRATED SERVICES

potential interactions is difficult for users.

4.7.2 Prompt User

When an interaction is detected during runtime, ask the home user(s) to determine

manually how the interaction should be dealt with. A user probably would be more

comfortable if the prompt message is delivered with appropriate choices of resolution,

e.g., (Choice 1:) Give up the whole service execution, (Choice 2:) Compromise some

functionalities (i.e, methods) of the service, or (Choice 3:) Automatically retry later.

In this approach, we need the following 2 new functions for our system.

(a) Display the results of interactions detection

(b) Dynamic updating and execution of the service scenarios(as we described in chap-

ter 3)

Resolution of interaction is possible only for the integrated services which a user(s)

execute. Resolving those interactions of the integrated services which a sensor device(a

thermometer and a illuminometer etc.) triggers is difficult for users to do.

4.7.3 Prioritize Services

Assign static priorities to services [25]. If a pair of service scenarios cause an inter-

action, then all conflicting methods in the service with lower priority are aborted. As

prioritizing methods, partial order(between a potential interaction scenario pair) and

total order(among all service scenarios) are considered. The partial order needs a large

quantity of prioritizing. The total order needs sensitive prioritizing to resolve all inter-

actions. In this approach, the feature interactions which a user cannot control are also

solvable(unlike Section 4.7.2). Note in this approach that the execution of the service

4.7. RESOLUTION OF FEATURE INTERACTION – 69 –

with a higher priority is always guaranteed. As we call, the resolution method of a

service unit is influenced by interaction resolution sequence.

For example, suppose that 3 service scenarios: SSa(priority high),SSb(priority

middle), and SSc(priority low) are given. And SSb conflicts with SSa and SSb. SSa

and SSc are under execution, and SSb is newly performed. In this case, the resolution

sequence affects the final state of the HNS integrated services.

1. If SSa and SSb are evaluated with those interaction conditions first, SSb cannot

be executed. Therefore, the HNS runtime scenarios are SSa and SSb.

2. If SSb and SSc are evaluated first, SSb can be executed and SSc is stopped.

Next, SSa and SSb are evaluated, and SSb is stopped. Thus, the HNS runtime

scenario includes only SSa.

4.7.4 Prioritize Methods

Assign static priorities to methods. When a pair of methods conflict with each other,

methods with a lower priority are aborted. Although functionalities of the services are

partially limited, both conflicting services may be run through without being aborted.

Compared with Section 4.7.3, this approach needs more workload for prioritizing.

It is remarkably harder for users to give the total order of all appliance methods without

using offline detection results. A possibility that the service scenarios will change to

what a user does not intend exists.

4.7.5 Prioritize Users

Assign static priorities to users. A user with a higher priority can take precedence in

executing services over the one with a lower priority.

In this approach, our system needs the following mechanism.

– 70 – CHAPTER 4. FEATURE INTERACTIONS IN HNS INTEGRATED SERVICES

Table 4.5. Comparison of resolution approach

A user with lower priority

cannot always execute services.

Service without user control

isn't resolved

Automated

resolution

Easy prioritizing

Prioritizing users

Interace to

prioritize,Runtime

automated resolution

OnlinePrioritize Users

It is difficult for users to

prioritize. A possibility which the

service scenarios change to

what a user does not intent

exists.

Automated and

flexible resolution

per method

Prioritizing methods

Interface to

prioritize,Runtime

automated resolution

OnlinePrioritize Methods

It is difficult for users to

prioritize,resolution sequence

affects final state of HNS

Automated

resolution
Prioritizing services

Interface to

prioritize,Runtime

automated resolution

OnlinePrioritize Services

Complex required function is

needed.Service without user

control isn't resolved

Most flexible

interaction

resolution

Runtime scenario

updating in case of

interactions occur

Interaction result

display,Runtime

scenario updating

OnlinePrompt User

To resolve all interactions is

harder
No required functionScenario rebuildingNothingOfflineRebuild Scenario

DemeritMeritEmployment CostRequired Function
Resolution

Approach

A user with lower priority

cannot always execute services.

Service without user control

isn't resolved

Automated

resolution

Easy prioritizing

Prioritizing users

Interace to

prioritize,Runtime

automated resolution

OnlinePrioritize Users

It is difficult for users to

prioritize. A possibility which the

service scenarios change to

what a user does not intent

exists.

Automated and

flexible resolution

per method

Prioritizing methods

Interface to

prioritize,Runtime

automated resolution

OnlinePrioritize Methods

It is difficult for users to

prioritize,resolution sequence

affects final state of HNS

Automated

resolution
Prioritizing services

Interface to

prioritize,Runtime

automated resolution

OnlinePrioritize Services

Complex required function is

needed.Service without user

control isn't resolved

Most flexible

interaction

resolution

Runtime scenario

updating in case of

interactions occur

Interaction result

display,Runtime

scenario updating

OnlinePrompt User

To resolve all interactions is

harder
No required functionScenario rebuildingNothingOfflineRebuild Scenario

DemeritMeritEmployment CostRequired Function
Resolution

Approach

(a) An interface which can acquire the user information executing the service scenario.

(b) An interface for prioritizing users and a databse to store them.

(c) An application module to evaluate executing service scenarios with users and re-

solve their interactions.

The workload of the pre-configuration process(prioritizing users) is low. This ap-

proach is also possible only for the services executing by a user.

4.7.6 Hybrid Resolution Method

As shown above, much granularity can be considered for interaction resolution. Each

resolution approach has its merits and demerits(Table 4.5). Using multiple resolution

schemes together achieves fine interaction management for each of system, service,

method and user levels.

In user level resolution, priority settings for parent and child are usable. Services

such as a security management which have the highest-priority, need service level pri-

4.7. RESOLUTION OF FEATURE INTERACTION – 71 –

ority management. Method level resolution contributes flexible customizing scenarios

on other level resolution. For example, in service level resolution, lower priority sce-

nario can be executed flexibly with method level scenario updating.

Indeed, more approaches for the interaction resolution within the HNS integrated

service domain may exist. Further discussion on the interaction resolution schemes is

left to our future research.

4.7.7 Related Work

Compared to the existing method [25], the proposed method enables finer-grained in-

teraction analysis and resolution on the concrete service scenarios. However, the pro-

posed method contains some similar parts, which can be regarded as a specialization of

conventional methods. For example, Condition D1 and E1 can characterize Kolberg’s

MAI and STI interactions respectively, in a more detailed level of abstraction. Also,

Conditions D2 and E2 cover SAI and MTI. Thus, the proposed method can be used

to implement their runtime interaction avoidance [25], by converting each appliance

method into a nameless action or trigger and gathering appropriately the appliance

properties into the two-valued access attributes.

As far as is reported, explicit consideration of the environmental factor in the con-

trol application was first introduced by Metzger [32]. Within the domain of embedded

control systems, their method captures the static structures of requirements and sys-

tems by dependency graphs, and conducts offline interaction detection for systems

under development. Our method differs in targeting the HNS where the appliances

and services can be dynamically added and modified. Hence, the proposed framework

took into careful consideration the modularity. Specifically, all features provided by

a device (appliance) should be encapsulated a self-contained object, which is loosely

coupled with other objects.

– 72 – CHAPTER 4. FEATURE INTERACTIONS IN HNS INTEGRATED SERVICES

We are also investigating the conventional techniques in the telephony domain.

We found some techniques quite promising for implementation using the proposed

method. For example, the approaches with logic programming (e.g., [15]) and/or

structural analysis of rule-based methods (e.g., [56]) would enable efficient pre/post-

conditions checking of the appliance methods. A negotiating agent approach [16]

would also help to implement an automatic interaction resolution for the scheme (h) in

Section 4.7.

4.8. Summary

In this chapter, we have presented a service-centric framework for feature interactions

in the HNS integrated services. First, we proposed a formal model of the HNS in an

object-oriented fashion. Within the model, two types of feature interactions were de-

fined. A feature interaction occurs on an appliance object or an environment object

when multiple methods in different services try to refer/update common properties of

the object. The interactions were formalized as unsatisfiable pre/post conditions. We

conducted a case study of offline interaction detection among concrete service scenar-

ios. Also, topics on online detection and several resolution schemes were discussed.

Several research directions present themselves. We are currently implementing

concrete methodologies for online detection and resolution with the proposed frame-

work. Especially, important is evaluating the feasibility of the suggested resolution

schemes from several viewpoints; system-view, service-view, user-view, and so forth.

Adaptation of the conventional techniques in telephony to the HNS integrated services

is also interesting topic for further study.

Chapter 5

Conclusion

5.1. Achievements

In this dissertation, we addressed two issues in developing the HNS integrated services.

Our first achievement is the HNS-SOA framework. In this research, we have pre-

pared service specifications for practical services. With these scenarios, we designed

and implemented the HNS-SOA.

In the proposed HNS-SOA, all appliances have a service layer which enables ser-

vice integration without a centralized server. In addition, the implementation template

for separating the integrated service scenario from implementation of the service layer

realized a dynamic change of scenarios, and easy implementing.

Moreover, we evaluated the proposed framework by the graph-based method. By

this evaluation, the HNS-SOA has a several advantages compared with the conven-

tional HNS-SCA. In our proposed HNS application framework, features of SOA, such

as loose-coupling and autonomous orchestration without a centralized server, improve

the HNS integrated services at points of the reliability, interoperability, and load-

balancing. Extendibility is also improved by the proposed implementation template

– 74 – CHAPTER 5. CONCLUSION

since the implementation of the service layer and the service scenarios are well sepa-

rated.

A second contribution is the feature interaction detection. We modeled the HNS

environment (including each device and environmental property) as a set of objects

consisting of properties and methods in order to detect feature interactions. Within

our model, we formalize device interaction and environment interaction. The device

interaction is in direct conflict among features of the same appliance device. This

interaction arises when multiple integrated services simultaneously trigger methods

that update an appliance property in different ways. The environment interaction is in

indirect conflict among different appliances via the HNS environment. The interaction

arises when multiple integrated services simultaneously trigger different appliances so

that they try to perform an inconsistent update of an environment property.

In order to detect such interactions, we defined the HNS integrated services as a

set of the relations between properties (appliance and environment) and methods of

appliances. We actually created the program adopting our algorithm to detect feature

interactions with practical integrated service scenarios.

5.2. Future Research

The proposed HNS-SOA framework is not perfectly superior to the conventional one.

As possible drawbacks in the fully-distributed control of the appliances with SOA, the

following issues are currently anticipated:

Cost of Appliances: Each appliance must be intelligent enough to satisfy Condition

C2 (see Section 2.3), in order to realize the service layer. This makes the cost of

appliances more expensive than the conventional ones.

Communication Overhead: It is expected that the communication overhead required

5.2. FUTURE RESEARCH – 75 –

for the service orchestration cannot be ignored. Hence, when applying to the

integrated services that require hard-realtime response, we need careful consid-

eration.

Global Management: Since the service control is fully distributed, it is hard to man-

age all the appliance at once. Hence, managing the appliances all at onve re-

quires more sophisticated mechanisms for the detection of faulty appliances and

the application of global security policy, etc [47].

As to the cost of the appliances, as we explained in Section 2.3, some commer-

cial products already exists involving Web applications so that the users can configure

and control the product from PCs through a Web interface (e.g.,[40, 48]). Therefore,

creating the appliance which filled the required functions for our proposal is easy.

Although HNS integrated services which need a hard-realtime response do not

require communication overhead presently, this overhead should be taken into con-

sideration regarding the practical service scenarios which need it, and the method of

realization in our future research.

Global management is the most significant issue in the HNS-SOA. We have to cor-

respond also about the appliance management of those other than integrated services,

such failure detection of appliances, user authentication management and connection

management with an external network, etc. The global management is required also in

feature interactions detection, for practical implementation, especially in SOA. In con-

ventional HNS-SCA, since a centralized server exists, interactions are detectable by its

server. However, in HNS-SOA without a centralized server, the independent services

to detect interactions are required.

In this dissertation, we proposed interaction detection by static analysis, which is

the detecting approach at the time of the integrated service design. As for the interac-

tion detection, a run-time interaction detection which is the detecting approach at the

– 76 – CHAPTER 5. CONCLUSION

time of the integrated service operation, also exists.

In the run-time interaction detection of the integrated services, a framework which

supervises execution of each appliance is needed. In order to perform the run-time

detection in HNS-SOA, we consider adding a function to report the service operation

to the service layer of each appliance as a new implementation template.

In this dissertation, we developed the prototype of HNS-SOA. We are planning

to add static / dynamic detection of the service interaction to our prototype, and to

advance research on developing more a practical and complicated HNS application.

References

[1] D.Amyot, L.Charfi, N.Gorse et al. “Feature Description and Feature Interaction

Analysis with Use Case Maps and LOTOS” Sixth International Workshop on Fea-

ture Interactions in Telecommunications and Software Systems FIW ’00. Glas-

gow, Scotland, 2000.

[2] D.Amyot, L.Logrippo (Eds.), “Feature Interactions in Telecommunications and

Software Systems VII,” IOS Press,Amsterdam, 2003.

[3] Bluetooth, https://www.bluetooth.org/

[4] R.J.A.Buhr, “Use Case Maps as Architectural Entities for Complex Systems,”

IEEE Transactions on Software Engineering, Special Issue on Scenario Manage-

ment, Volume 24, Issue 12, 1998, pp.1131-1155.

[5] T.Bolognesi, E.Brinksma. “Introduction to the ISO Specification Language LO-

TOS” Computer Networks and ISDN Systems , 14, 1986, pp.25-29.

[6] L. du Bousquet, “Feature Interaction Detection using Testing and Model-

checking - Experience Report” World Congress in Formal Methods, Toulouse,

France, 1999.

[7] Business Process Execution Language for Web Services, Version 1.1,

– 78 – REFERENCES

http://www-106.ibm.com/developerworks/library/ws-bpel/

.

[8] CEBus, SmartHome Forum, http://www.smarthomeforum.com/start/

cebus.asp

[9] B.G. Celler, W. Earnshaw, E.D. Ilsar, L. Betbeder-Matibet, M.F. Harris, R. Clark,

　 T. Hesketh, and N.H. Lovell, “Remote monitoring of health status of the el-

derly at home. A multidisciplinary project on aging at the University of New

South Wales,” Int. J. Bio-Med. Comp., vol. 40, pp. 147-155, 1995.

[10] E. Cerami, “Web Services Essentials – First Edition,” O’Reilly & Associates Inc.,

United Stated of America, 2002.

[11] Digital Living Network Alliance, http://www.dlna.org/

[12] ECHONET Consortium, http://www.echonet.gr.jp/

[13] M. Fowler, K. Scott, “Uml Distilled: A Brief Guide to the Standard Object Mod-

eling Language,” Addison-Wesley, Boston, 1999.

[14] M. van Gils, J. Parkka, R. Lappalainen, A. Ahonen, A. Maukonen, T. Tuomisto,

J. Lotjonen, L. Cluitmans, and I. Korhonen, “Feasibility and user acceptance of a

personal weight management system based on ubiquitous computing,” Proc. 23rd

Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, Istanbul,

Turkey, Oct. 25-28, 2001 (CD-ROM, paper #581).

[15] N. Gorse, “The feature interaction problem: Automatic filtering of incoherences

& generation of validation test suites at the design stage”, Master’s Thesis, Uni-

versity of Ottawa, Ottawa, Ontario, Canada, 2001.

REFERENCES – 79 –

[16] N. D. Griffeth and H. Velthuijsen, “The Negotiating Agents Approach to Run-

time Feature Interaction Resolution,” Proc. Second Int’l Workshop Feature Inter-

actions in Telecommunications Systems, pp. 217-235, 1994.

[17] S. Hariri, and C. S. Raghavendra, “SYREL:A Symbolic Reliability Algorithm

Based on Path and Cutset Methods,” IEEE Transactions on Computers, October,

pp.1224-1232, 1987.

[18] H. He, “What is Service-Oriented Architecture?,”

http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html

[19] Hitachi Home & Life Solutions inc., “horaso network,”

http://www.horaso.com/

[20] Home Audio/Video Interoperability, http://www.havi.org/

[21] HomePlug Powerline Alliance, http://www.homeplug.com/

[22] iReady, http://www.sharp.co.jp/corporate/news/031217-2.

html

[23] Jini - http://www.jini.org/

[24] D.O.Keck, P.J.Kuehn, “The feature and service interaction problem in telecom-

munications systems: A survey,” IEEE Transactions on Software Engineering

Vol. 24, No.10, pp.779-796, 1998.

[25] M. Kolberg, E. H. Magill, and M. Wilson, “Compatibility issues between services

supporting networked appliances”, IEEE Communications Magazine, vol. 41, no.

11, pp. 136-147, Nov. 2003.

[26] I. Korhonen, J. Parkka, M. van Gils, “Health monitoring in the home of the fu-

ture,” IEEE Eng Med Biol Mag. Vol. 22(3), pp.66-73, 2003.

– 80 – REFERENCES

[27] I. Korhonen, T. Iivainen, R. Lappalainen, T. Tuomisto, T. Koobi, V. Pentikainen,

M. Tuomisto, and V. Turjanmaa, “TERVA: System for long-term monitoring of

wellness at home,” Telemed. J. e-Health, vol. 7, no. 1, pp. 61-72, 2001.

[28] LG Electronics, “Home Network” http://www.lge.com/products/home

network/homenetwork.jsp

[29] S. W. Loke, “Service-Oriented Device Echology Workflows,” Proc. of 1st Int’l

Conf. on Service-Oriented Computing (ICSOC2003), LNCS2910, pp.559-574,

Dec. 2003.

[30] J. Lotjonen, I. Korhonen, K. Hirvonen, S. Eskelinen, M. Myllymaki, and M.

Partinen, “Automatic sleep/wake and nap analysis with a new wrist worn online

activity monitoring device Vivago WristCare,” Sleep, vol 26, no. 1, pp. 86-90,

2003.

[31] Matsushita Electric Industrial Co., Ltd., Kurashi net,

http://national.jp/appliance/product/kurashi-net/

[32] A.Metzger, “Feature Interactions in Embedded Control Systems,” Computer Net-

works, Volume 45, Issue 5, Special Issue on Directions in Feature Interaction

Research, Elsevier Science, 2004, pp.625-644.

[33] R. Milner, “Communicating and Mobile Systems: the Pi-Calculus,” Cambridge

University Press, 1999.

[34] Mitsubishi Rayon Co., Ltd., “Home network,”

http://pofeska.com/tec/homenet1/homenet1.htm

[35] Nippon Telegraph and Telephone Corporation, “Home Service Harmony,”

http://www.ntt.co.jp/news/news04/0403/040308.html

REFERENCES – 81 –

[36] M. Ogawa, T. Tamura, and T. Togawa, “Automated acquisition system for routine,

noninvasive monitoring of physiological data,” Telemed. J., Vol. 4, no. 2, pp.177-

195, 1998.

[37] OSGi Alliance, http://www.osgi.org/

[38] Home Phoneline Networking Alliance, “HomePNS Specification 3.0,”

http://www.homepna.org/

[39] J. Parkka, M. van Gils, T. Tuomisto, R. Lappalainen, and I. Korhonen, “A wire-

less wellness monitor for personal weight management,” Proc. 2000 IEEE EMBS

Int. Conf. Information Technology Applications in Biomedicine, ITAB-ITIS 2000,

Arlington, VA, pp. 83-88.

[40] PLANEX COMMUNICATIONS Inc., BRC-14V, http://www.planex.

co.jp/product/broadlanner/brc14v.shtml

[41] S. Rhee, B-H. Yang, and H. Asada, “The Ring Sensor: A new ambulatory

wearable sensor for twenty-four hour patient monitoring,” Proc. 20th Annu. Int.

Conf.IEEE Engineering in Medicine and Biology Society, Hong Kong, Oct. 1998,

pp.1906-1909.

[42] Samsung, “Home Network,” http://www.samsung.com/HomeNetwork/

index.htm

[43] N. Saranummi, I. Korhonen, M. van Gils, and S. Kivisaari, “Barriers limiting the

diffusion of ICT for proactive and pervasive health care,” IFMBE Proc. Medicon

2001, 9th Mediterranean Conf. Med. Biological Engineering and Computing.,

Part 1, Pula, Croatia, pp. 23-26, 2001.

– 82 – REFERENCES

[44] S. Soh, and S. Rai, “CAREL: Computer aided reliability evaluator for dis-

tributed computing networks,” IEEE Trans. Parallel and Distributed Systems,

July, pp.199-213, 1991.

[45] Y. Tajika, D. Ajitomi, M. Nakamura, M. Minoh, “Novel Networked Appliance

Architecture designed for the Integration of Distributed Monotypic Functions on

a Home Network,” Journal of IPSJ, Vol.44, No.9, pp.2320-2333, Sep. 2003.

[46] T. Tamura, T. Togawa, M. Ogawa, and M. Yoda, “Fully automated health moni-

toring system in the home,” Med. Eng. Phys., Vol. 20, No. 8, pp. 573-579, 1998.

[47] F. Tartanoglu, V. Issarny, N. Levy, and A. Romanovsky, “Dependability in the

Web Service Architecture,” Proc. of the ICSE Workshop on Architecting Depend-

able Systems, Orlando, USA, May 2002.

[48] Toshiba Corporation, “net de navi,” http://www.rd-style.com/

[49] T. Tsuchiya, T. Kajikawa, and T. Kikuno, “Parallelizing SDP (Sum of Disjoint

Products) Algorithms for Fast Reliability Analysis,” IEICE Transactions on In-

formation and Systems, Vol.E83-D, No.5, May , pp.1183-1186, 2000.

[50] UPnP Forum, http://www.upnp.org/

[51] W3C Web Service Activity, http://www.w3.org/2002/ws/

[52] W3C, “Web Services Choreography Description Language, Version 1.0,”

http://www.w3.org/TR/ws-cdl-10/

[53] S. Weerawarana, and F. Curbera, “Business process with BPEL4WS:

Understanding BPEL4WS, Part1,” http://www-106.ibm.com/

developerworks/webservices/library/ws-bpelcol1/ .

REFERENCES – 83 –

[54] M. Weiss, “Feature Interactions in Web Services,” Proc. of Seventh Int’l. Work-

shop on Feature Interactions in Telecommunication Networks and Distributed

Systems (FIW’03), pp.149-156(2003).

[55] X10, http://www.x10pro.com/

[56] Yoneda, T. and Ohta, T., “A formal approach for definition and detection of fea-

ture interactions,” Proc. of Fifth Workshop on Feature Interactions and Software

Systems (FIW’98), pp.165-171, IOS Press 1998.

