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Automatic Model Generation for Speech Recognitiofi

Takatoshi Jitsuhiro

Abstract

Recently, most techniques for speech recognition have been based on stochastic
modeling, and parameters both of acoustic models and language models are estimated
by using the large quantity of available training databases. The relation between the
amount of training data and the number of parameters is very important: if the number
of parameters is too small, it isfcult to obtain sfficient performance. On the other
hand, if the number of parameters is too large, the obtained model is strongly depen-
dent on the training data, and it cannot obtain enough performance. The latter problem
is generally referred to as the over-fitting problem. Consequently, it is crucial to select
an adequate size of models for training data.

These days, most speech recognizers employ phoneme context-dependent hidden
Markov Models (HMMs). Shared-state structures of HMMs should be estimated from
training data. To create structures, phonetic decision tree clustering is widely used and
is based on the Maximum Likelihood (ML) criterion. However, when the number of
parameters increases, likelihood also increases; therefore, the ML criterion cannot be
used for a stop criterion because of the over-fitting problem. The primary objective of
this thesis is to automatically estimate an adequate number of parameters for acoustic
models.

To avoid the over-fitting problem, information criteria, especially the Minimum
Description Length (MDL) criterion and the Bayesian Information Criterion (BIC),
have been proposed for decision tree clustering. Information criteria can consider the
number of both parameters and training samples, and they can be used as stop criteria.
In this dissertation, we propose the Maximum Likelihood Successive State Splitting
(ML-SSS) algorithm based on the MDL criterion. The ML-SSS algorithm can create
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both contextual and temporal variations, whereas the decision tree clustering can create
contextual variations only. Experiments show that the proposed method, MDL-SSS,
can stop splitting automatically and obtain more appropriate models than those by the
baseline method, the ML-SSS.

However, since information criteria were derived for simple models under large
amounts of training data, theoretically speaking, it iclilt for information criteria
to evaluate complicated models like HMMs precisely. Therefore, they do not work well
for small amounts of data. To avoid this problem, we utilize the Variational Bayesian
(VB) approach, which has recently been proposed in machine learning. The VB ap-
proach is applied to the ML-SSS to automatically cre#iieient models even for small
amounts of data. In experiments, this proposed method, the VB-SSS, can stop splitting
automatically for small amounts of training data that the MDL-SSS cannot work well
for. Additionally, the VB-SSS can obtain almost the same performance for smaller
models than those by the baseline method.

Furthermore, to improve the performance of language models, we propose a model
that includes word patterns extracted from parse trees. Recently, Structured Language
Models (SLMs) have been proposed, which can represent information on sentence
structures, while word n-gram models only represent local relations of word concatena-
tion. However, conversational speech includes relatively shorter sentences, and phrase
structures are more important for short utterances. Our proposed method includes two
processes. First, each phrase is modified to a new phrase with an easier form, and
modified-word trigram models are created. Second, using relations in each parse tree,
word patterns are extracted from parse trees, and they are used as models. Experiments
demonstrate that modified-word trigram models obtained a strong improvement, and
the performance was marginally improved by adding word pattern models. In addi-
tional experiments, the word pattern models were mdiectve for long sentences.
Finally, combination of the acoustic model by the MDL-SSS and the word pattern
models was evaluated. Experiments showed that our proposed methotiseineee

Keywords:
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Chapter 1

Introduction

1.1. Current Status of Automatic Speech Recognition

People have long been dreaming of Automatic Speech Recognition (ASR) systems,
which are used for machines to talk with humans, evidenced by their presence in many
science fiction novels and movies. ASR has been studied and developed over the last
50 years. In the last decade, some applications that include ASR systems have been
brought to market, for example, dictation systems on PCs, voice-activated telephony
portal sites, and car navigation systems with voice commands. Such growth has been
made possible by not only drastic computational advancements, but also progress in
stochastic modeling techniques, and an increasing amounts of training data.

However, ASR systems that have been expected for a long time are still not fully
developed. Most current ASR systems can obtain high performance for tasks with a
small vocabulary, or read speech like the reading of newspapers if ASR systems are
used in quiet environments. On the other hand, it is stiiailt to recognize natural
speech, i.e., spontaneous speech, automatically. To innovate in ASR, further deep
consideration from many basic points is still required.

Figurell.1 shows a block diagram of automatic speech recognition. First, speech
input is analyzed by a feature extraction part, with characteristics of speech mainly
represented by frequency envelopes. Currently, noise robustness is the main problem
in feature extraction. Many methods with robust feature extraction or enhancement
methods have been investigated.

Second, for input feature parameters, a recognizer, i.e., a decoder, searches the best

1



—

cousuc

Model
e
Speech \

Feature

) .| Decoder Results
— ¥ Extraction >

\ 4

4

T
Language |
Model

\_/

Figure 1.1.Automatic Speech Recognition.

recognized candidate that fits both acoustic models and language models. A recognizer
gives isolated words or sentences as results. The multi-pass search strategy has become
the most popular for decoding. For example, in the first pass, simpler and weak models
are used, and then in the second pass, stronger models are employed for recognized
candidates obtained during the first pass.

Before recognizing speech, both acoustic and language models must be created,
and these days, stochastic models are used. Hidden Markov Models (HMMs) are used
as acoustic models, and n-gram models are used as language models.

Figure[l.2 shows an example of an HMM. It includes plural states to represent
feature sequences, for example, a phoneme. To represent speech characteristic and
dynamics by state sequences, each state has transition probabilities and a number of
distributions. Gaussian distribution is usually used for a mixture component. There-
fore, this model is referred to as a Gaussian Mixture HMM. Additionally, each Gaus-
sian distribution includes a mean vector and a covariance matrix. These parameters
included in HMMs should be estimated by using training data. Itfigodilt to find the
best set of parameters for HMMs because there are a lot of parameters and an HMM’s
performance is dependent on the parameter size and the amount of training data.

For language modeling, word n-gram models are widely used, especially word

2



State1 State2 State3

Transition probs.

Mixture model 1 Mixture model 2 Mixture model 3
Figure 1.2.Hidden Markov Model.

trigram models in the following:
P(W) ~ P(wl) P(wzlwl) P(w3|w1w2) e P(lewN_z, wN_l), (11)

whereP(W) is a probability of a word sequend® = {wq, wo,...,wyn}. A trigram is
a set of three successive words; therefore, word trigram models only represent local
constraints.

In this paper, to improve performance of speech recognition, the aim is to develop
a method to create adequate acoustic models automatically, and structured language
modeling with more phrasal constraints. In the following sections, we will describe
objectives both for acoustic modeling and language modeling.

1.2. Objective of Automatic Acoustic Modeling

One of the problems in ASR systems is how to obtain the optimal model from a given
training database. ASR’s performance is dependent on both the amount of training data

3



and the size of models for statistical models like HMMs and n-gram language models,
which have become popular techniques in last decade.

Although there are many methods to obtain models from training data automati-
cally the number of parameters is usually selected manually to obtain the best perfor-
mance. Therefore, if the amount of training data or a recognition task is changed, it is
necessary to find the optimal model manually. For example, in some telephone portal
sites, the amount of speech data is increasing while services are provided if utterances
can be collected. Using such collected data, it is possible to improve recognition per-
formance by not only re-estimation of parameters but re-design of models, especially
re-definition of the number of parameters. The re-created models can be used for up-
dating ASR’s models.

Additionally, if the number of parameters is too small, it ishdult to obtain
enough performance; on the other hand, if the number of parameters is too large,
the obtained model is strongly dependent on the training data, and it cannot obtain
suficient performance. The latter problem is generally referred to as the over-fitting
problem. It is very important to select an adequate model size for training data, and
some good methods are needed to find the optimal model without over-fitting even to
the small data.

Therefore, there is a pressing need to automatically design methods for models to
improve ASR’s performance.

1.2.1 Acoustic model generation

In most current ASR systems, a model unit represented by HMMs is a sub-word unit,
or a phoneme. Context-dependent HMMs are the most popular of these and depend
on previous units and successive units. Such a model is referred to as an “allophone
model,” especially a “ triphone model,” which depends on both only one previous unit
and only one successive unit. Each allophone is represented by one HMM.

These days, Gaussian mixture HMMs are widely used as acoustic models. Each
Gaussian mixture HMM has plural states, and each state features a number of Gaussian
mixture components and transition probabilities. Each mixture component possesses
has a mean vector and covariance matrix.

One of the greatest problems is how to decide the total number of states, the num-
ber of state per allophone, and the number of mixture components per state. Addi-

4



tionally, parameter tying should be considered to obtain robust models. If an HMM is
created for each triphone, some triphone models would not havéiaiesnt amount
of training data, and estimated parameters may over-fit the limited data. Therefore,
context-dependent models are usually created by tying contextual information. Shared
state models are the most popular for context-dependent models.

The methods of automatic generation for context-dependent models have been pro-
posed as follows.

e Bottom-up clustering by agglomerated methat]s [
e Top-down clustering based on distortions of modg]g3]
e Decision Tree Clustering] [5]

e Successive State Splitting Algorithi@][7]

1.2.2 Ciriteria for selection of acoustic models

In general, model generation can be considered as a model selection problem, and the
type of model-selection criterion is important to performance. Three criteria have been
used for acoustic modeling.

e Maximum Likelihood (ML) criterion
Decision Tree Clusteringd], or the SSS algorithm&][[7] use the ML criterion
as a clustering or splitting criterion. The ML criterion has the over-fitting prob-
lem. If the number of parameters becomes larger, likelihood increase. Therefore,
it is difficult to finish splitting and to select the best model.

¢ Information criterion
To overcome the over-fitting problem in the ML criterion, information crite-
ria have been used as split and stop criteria. The Akaike Information Crite-
rion (AIC) was used to create context-independent HM8s [For context-
dependent HMMs, decision tree clustering methods have been proposed, which
are based on the Minimum Description Length (MDL) Criteri®fj/L1J] and the
Bayesian Information Criterion (BIC)1[][[12]. Note that the MDL criterion
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Figure 1.3.A curve of BIC or MDL criterion.

and the BIC provide the same criteria as the split and stop criterion. The MDL
criterion for modek is defined in the following:

L{**9() = ~1og P(x3%) + S¥ log Nr + log K. (1.2)

wherex = {X,..., Xy, } IS Observation datay is the number of free parame-
ters, andh™ is the ML estimate of modek. The first term is the inverse sign

of the log likelihood of model. The second term and the following term are re-
lated to the number of parameters, or the number of samples. The third term is
usually constant. The BIC is the same as the MDL criterion if the third term
of the MDL is not considered. Figufe3shows how information criteria work

to avoid over-fitting to training data when the number of parameters increases
under the fixed training data. The likelihood value increases when the number
of parameters grows. It isfdlicult to select the best model only from likelihood.
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Figure 1.4. Representation of unknown parameters in (a) ML estimation, and (b)
Bayesian estimation. Each dot represents each training sample, ahdark means

a mean vector of these training samples. A ellipse with dashed lines represents the
deviation of the mean vector.

On the other hand, since the second term is also increasing, the criterion has the
smallest value for a set of parameters. This model represents the best model in
this information criterion. However, since information criteria are derived by us-
ing some assumptions, information criteria cannot exactly evaluate complicated
models like neural networks and HMMs.

e Variational Bayesian approach
The Variational Bayesian (VB) approach was proposed as an approximated so-
lution of Bayesian learning in the field of machine learnia@][ Additionally,
a general VB framework was proposed, and the EM steps of the VB approach
were defined in14][[15).

Bayesian learning considers that all unknown parameters are stochastic vari-
ables, while maximum likelihood estimation assumes that all unknown parame-
ters are deterministic variables. Figlrd shows the concept for the representa-
tion of unknown parameters in ML estimation, or Bayesian estimation. Bayesian
learning also considers that each parameter itself has a distribution, for example,
each mean vector in this figure has a mean vector and a covariance matrix, while
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each mean vector only has one vector in ML estimation. Each distribution rep-
resents the reliability of each mean vector. In Eighb), the distribution of; is
broader than that gf; because the number of samples prs smaller than that

of ;. Therefore, models in Bayesian learning can avoid the over-fitting problem
because of model representations.

The Variational Bayesian approach is one approximation method for Bayesian
learning. This approach can deal with complicated models by deriving both
posterior probabilities and VB objective functions for given models. For model
selection, the VB objective function can be used as a criterion to select models.
Recently, this approach has been applied to many research areas. For example,
in speech recognition, decision tree clustering based on the VB approach was
proposed1§).

1.2.3 Obijective of this thesis for automatic acoustic modeling

One of the objectives of this work is to create more elaborate and more suitable HMMs
automatically. These days, the decision tree clustering is widely employed to make
acoustic models, and many methods usirftedent e criteria instead of the ML. How-

ever, the decision tree clustering does NOT consider temporal variations, although the
temporal length of states for each triphone should be dependent on each triphone data.
Therefore, the proposed method is based on the SSS algo®jfifh [It can create

both contextual and temporal variations.

However, as we describe, these methods are based on the ML criterion. The ML
criterion has an over-fitting problem and cannot be used as a stop criterion; the total
number of states and the maximum length of states are usually used as stop criteria.
These parameters are empirical parameters and are dependent on speech data.

First, we introduce the MDL criterion to the SSS algorithm to determine the num-
ber of parameters automatically. Both the MDL and BIC are widely used because they
can work well for large amounts of data and can be applied easily.

Second, we combine the VB approach with the SSS algorithm. The VB approach
can evaluate complicated models more exactly than information criteria. We also apply
this approach to increase the number of mixture components for topologies generated
by the VB-based SSS algorithm.



1.3. Objective of Language Modeling Using Parse Trees

Word n-gram models are widely used as language models. They can just represent
local constraints within a few successive words but lack the ability to capture the global
structures of sentences. In general, a sentence has some structures extracted from
relations of words. In natural language processing, many methods analyzing sentences
have been proposed to extract some structures and relations among words such as
syntactic parsing, analysis of modification relations, and so on. These methods are
promising to improve language models for speech recognition.

1.3.1 Structured language modeling

Mainly, there are two types of language model imposing correlation between words
and sentence structures. Figilt& shows concepts of several language models.

e Trigger model
Trigger models have been proposed to represent word co-occurrence character-
istics beyond 2-3 gramidJ]. Figure[l.5a) shows a word trigram model. Word
n-gram models just represent relations among concatenated words. On the other
hand, trigger models can represent distant relations between preceding words
like in Figure[l.5b). S. Zhang et al. also proposed a solution called Linkgram
[18], a model that has word pairs extracted from parse trees and can represent
syntactic relations between word pairs. Such constraints, however, are weak for
the global structures of sentences.

e Structured Language Model
To represent more powerful constraints, a language model using a stochastic
parser has been proposét®][20]. This model is referred to as a Structured
Language Model (SLM). Figur&.5(c) shows the concept of this model, which
it operates by three modules: (1) WORD-PREDICTOR predicts next word from
previous word sequences and parse subtrees, (2) TAGGER predicts POS tags of
next words from word sequences, parse subtrees and predicted next words, and
(3) CONSTRUCTOR repeatedly generates a parse tree from subtrees. These
modules use conditional probabilities and these probabilities are used for lat-
tice rescoring. Furthermore, some researchers have recently proptiseendi
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types of structured language model. Mori et al. proposed an SLM based on
tree-structured histor2fl] while Akiba et al. used probabilistic generalized LR
parsing as a language mod2p]. These models require a large number of parse
trees. They represent sentence structures very strictly.

1.3.2 Obijective of this thesis for structured language modeling

It is important to introduce sentence structures into language models, especially, to
consider long relations among words in one sentence.

We propose two new types of language model that use phrasal constraints extracted
from parse trees produced by an example-based parser. For spontaneous speech, ex-
tremely strict constraints of sentence structures are not so important, but partial struc-
tures are more useful for constraints.

First, we propose n-gram models for sentences with phrase constituent boundary
markers. Second, we propose word pattern models using partial structure patterns of
parse trees. Both of these methods attach weight to constraints of partial phrase struc-
tures. These models are created from outputs of the example-based parser, called the
Constituent Boundary Parser (CBP), which was developed by Furuse et al. &3\TR[
for example-based machine translation, called Transfer-Driven Machine Translation
(TDMT). The parser analyzes sentences by example word patterns and rules produced
manually.

These proposed models extracted by the parser can represent not only intra-phrase
constraints, but also inter-phrase constraints, the latter of which appear as syntactic
long-distance constraints between words. Therefore, the proposed models can repre-
sent local structures extracted from only surface word sequences after preprocessing,
and larger structures extracted from subtrees of parse trees. Particularly in spontaneous
speech, there are so many sentences with ungrammatical global structures but with
grammatical local structures. It is more important for spontaneous speech recognition
to represent the local constraints.

11



1.4. Overview of This Thesis

In the next chapter, we will present an overview of automatic speech recognition. Fol-
lowing that, there are two topics on automatic model generation of acoustic modeling.
One is the MDL-based SSS algorithm in Chaj8ethe other is the SSS algorithm
based on the VB approach in Chagter In Chapterd, we will describe word pat-

tern language modeling, extracting from parse trees. Furthermore, the combination of
the MDL-SSS and pattern language models will be evaluated to verify our proposed
methods. Finally, this thesis will conclude in Chajiter
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Chapter 2

Automatic Speech Recognition

2.1. Introduction

This chapter describes the standard techniques of automatic speech recognition. Speech
recognition is to estimate a word sequeN¢g¢hat generates a given acoustic observa-

tion sequenc®. Using the maximum a posteriori probabiliB{W|O), speech recog-

nition can be formulated by the following equation:

P(W|O) = maxP(W|O). (2.1)
Equation[2.1) can be rewritten by Bayes’ Rule,
_ P(OW)P(W)
P(WI|O) = PO) (2.2)

SinceP(O) is independent ofV, Eq. 2.1) becomes the following:
W = argmaxP(O]W)P(W), (2.3)
w

whereP(O|W) is a probability of an acoustic model. In fact, it is the probability of an

acoustic observation sequence conditioned on the given word sequence. These days,

this probability is represented by Hidden Markov Models (HMMB{W) is a proba-

bility of a language model: it is the probability of a word sequence including relations

among words. The word n-gram models are generally used to estimate this probability.
The following section briefly describes modeling techniques to estimate these two

probabilities. First, acoustic modeling using HMMs is described in SeligdnSec-

ond, as techniques related to this thesis, topology training of acoustic modeling is
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explained in Sectio2.3 and information criteria and Variational Bayesian approach
are described in Sectid4, and Sectiof.5, respectively. In Sectiofd.6, language
modeling is explained, including conventional methods and models related to this the-
Sis.

2.2. Acoustic Modeling

Acoustic modeling needs feature extraction from speech, model units, and specific

representation of each unit. As a feature of speech, spectral envelopes are important,
especially, in speech recognition. After several decades of research, for feature extrac-
tion, the mel-frequency cepstrum dheient (MFCC) has become widely used. It is

a non-parametric representation that includes mel-filter banks and smoothing by cep-
strum codicients.

For model units, sub-words, especially phonemes, are widely used because it is
necessary in large-vocabulary speech recognition to create pronunciations of words.
Whole word models are also used for small vocabulary tasks, especially, digits.

These days, HMMs are generally employed as representations of acoustic mod-
els. There are several types of HMM, namely, discrete, continuous-density, and semi-
continuous-density HMMs. Especially, continuous-density HMMs are widely used,
and HMMs in this thesis refers to continuous-density HMMs. As shown in Figure
1.2 one HMM represents one unit, that is, a phoneme, and it has several states which
include transition probabilities and distributions of speech features.

Figurdl.2shows a Gaussian mixture HMM that is widely used for acoustic models
as we described in Secti@nl Each Gaussian mixture HMM has plural states, and
each state has a number of Gaussian mixture components and transition probabilities.
Each mixture component includes a mean vector and covariance matrix.

2.3. Topology Training of Acoustic Modeling

Context-dependent models aréeetive and are widely used, and a shared-state struc-
ture of a context-dependent model is needed to obtain robustness agaifistiersy

in the amount of training data. If the number of units, i.e., subwords, or phonemes,
is 40, then 64,000 triphone models are needed. Unfortunately, itfisulli to ob-

14



/k-a-t/ M /k-a-t/
/k-a-s/ M‘ /k-a-s/
/k-a-d/ .9%9%9%9‘ /k-a-d/ M

(a) Shared-state triphone models (b) Shared-state triphone models

Figure 2.1.Shared-state triphone models.

tain enough data for each triphone model. Fid2utshows examples of shared-state
triphone models, witf2.1(a) is illustrating unshared-state triphone models. Each tri-
phone has its own state, though it ighdiult to estimate parameters robustly because
training data is small for some triphone models. In (b), a few states are shared by the
other triphone models. Since each set of training data is shared in shared states, and
parameters can be reduced, it is possible to estimate parameters robustly.

The training to obtain shared-state structures from training data is called “Topology
Training.” In this section, two major methods to create shared-state structures are
explained. One is the decision tree clustering, and the other is the Successive State
Splitting (SSS) algorithm.

2.3.1 Decision Tree Clustering

Although many types of Phonetic Decision Tree Clustering have been proposed, the
PDT clustering proposed by S. J. Young et &] if widely used because it matches
up-to-date acoustic models, that is, continuous-density HMMs.

Here, a set of phoneme categories is needed, and each category is used as a question
to split one class into two. Before clustering, the number of states for each triphone
should be fixed, and state alignments are fixed by an initial model. A single Gaussian
is estimated for each state of each allophone, and all Gaussians are collected in one
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Initial set of united states

Is the left phoneme nasal?
Yes

Is the left phoneme vowel?
No

Is the right phoneme fricative?
Yes

Leaf nodes are tied states.

Figure 2.2.Example of phonetic decision tree clustering.

node, which is called “the root node.”

Figurel2.2 shows an example of phonetic decision tree clustering. Each question
is applied to classify distributions into two classes at each clustering. Questions are
usually related to phoneme categories, for example, “is the phone on the left of the
current phone ayg/?” Each distribution is classified according to a question. After
that, one distribution is estimated for each class, and a likelihood gain is calculated.
Finally, the question with the maximum likelihood gain is selected, and each clustering
is finished. This clustering is continued until no gain is obtained, or the total number
of nodes € states) is sflicient. The maximum number of states is usually set before
clustering and it is used as a stop criterion.

2.3.2 Successive State Splitting algorithm

The Successive State Splitting (SSS) algorithm was originally proposed by J. Takami
and S. Sagayama to create a network of HMM states of speaker-dependent Bjodels [
This method can create both contextual and temporal variations. The SSS algorithm
iteratively constructs the appropriate context-dependent model topologies by finding
a state that should be split in each iteration and then it re-estimates the parameters of
HMMs based on the ML criterion. This algorithm supposes the two types of split-
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Figure 2.3.Contextual splitting and temporal splitting.

ting shown in Fig2.3 However, it cannot be applied to generate speaker-independent
models because data-driven clustering without contextual information is used for con-
textual splitting. Therefore, it was subsequently expanded to the ML-SSS algorithm
by M. Ostendorf and H. Singer to create speaker-independent models by data-driven
clustering with contextual informatioiY]. The ML-SSS algorithm includes not only
contextual splitting by P. A. Chou'’s algorithi24], but also temporal splitting that can
extend each triphone. Therefore, this algorithm does not need to decide beforehand the
temporal length of states to split for each triphone. FighfBllustrates the basic pro-
cedure of the ML-SSS algorithm. Here, Chou’s algorithm is used to assign phoneme
contexts into two new states at the contextual splitting stage, as shown in Ei§ure
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Figure 2.4.Flow chart of the ML-SSS algorithm\s is the total number of states and
N, is the maximum number of states in one allophone.
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Design of ML contextual splitting algorithm:

1. Initialization (iteration numbem = 0): Initialize the distribution paramete
of the two hypothesized stat&’, S© for each stats;.

09(S1,) = 6(S) = (u(S), X(S1))

09(S1,) = (1 + u(S). (S),
whereu(S;) is a mean vector of the original stag&, and(S;) is a covarianc
matrix. € is a constant.
2. Splitting step(n=1,2,...)
(a) Calculate the likelihood value for each triphone and classify them
two classes considering phone contexts.

(b) Estimate the parameters of the two distributions using the standar
estimation.

(c) Test for convergence: stop if the partition does not change or if

LM — (-1
Loy -

LO = —10(S;,) log 2™ (S;,) - TO(S,,) log =™ (S),)I,

wheren is experimentally set as a convergence threshdl®(S;) =
D yt(”)(Si) is the expected frequency of transition from st&teandt
is the time frame.X™(S;) is the covariance matrix of staf at the
iteration stepn and is a diagonal covariance in this paper. Note that
algorithm requires that one state has one Gaussian distribution.

(d) Setn=n+1 and go t@

(D

Figure 2.5.Contextual splitting by using Chou’s algorithif] |
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After contextual splitting, the total expected gain, which is explained in the next
sub-section, is calculated. For temporal splitting, the ML-SSS algorithm creates one
more state and connects it to the original state. The parameters of the two distribu-
tions are estimated by the forward-backward algorithm, and the total expected gain of
temporal splitting is also calculated for the temporal split states. Since it is computa-
tionally expensive to re-estimate all of the parameters of a network at every splitting,
only the parameters of the two candidate states are re-estimated by using probabilities
weighted by the statistics of the target stale Usually, the larger the split, the greater
the likelihood it will be obtained. It is dlicult to use it as a stop criterion. Next, the
gains of both contextual and temporal splitting are calculated for all states. Finally,
these expected gains are compared with each other and the split with the best gain
among all states is selected.

For each triphone models is the total number of states aht] is the maximum
temporal length of states. These parameters must be given before starting the splitting.
Basically, contextual splitting is stopped if there are no more than two phoneme con-
texts, and temporal splitting is stopped if there are no data longer than state sequences.
However, it is dificult for these criteria to stop splitting; therefore, the number of
states and the maximum number of states per triphone have been used as stop criteria.
Nonetheless, it is still diiicult to find the optimal values of these parameters. Accord-
ingly, a sequence of experiments needs to be done to maximize the performance by
changing parameters heuristically.

2.3.3 Gain function by ML-SSS algorithm

Next, we describe the total expected gains of splitting states with the ML-SSS algo-
rithm. The total expected gain of contextual splitting for statento two new states
Si, andS;, is

G(S) = Goutpul(si) + Girand Si), (2.4)
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whereGouipu(Si) is the expected gain of output probabilities &Bgh.{S;) is the ex-
pected gain of transition probabilities;

Goutpu(Si) = _%{F(Sil) log|Z(Si,)l + I'(S;,) log [X(Si,)| - I'(Si) log IZ(SI},  (2.5)
GrandSi) = E(Si;, Siy) loga,i, + E(Si,, Si,) loga;,i,
+E2(Si,, Si,) loga,i, — E(Si, Si) log ay
= &(Si;, Siy) loga,;, +{I(Si,) — E(Si,, Siy)} log(1 - &y,)
(Si,, Si,) logaii, — E(Si, Si) log &, (2.6)

[1]

whereZ(S;) is the covariance matrix of the statandI'(S;) = Y., %(Si) is the ex-
pected frequency of transition from st&ge y:(S;) is the probability of staying i1$; at
the timet, Z(S;, Sj) = PP ACH Sj) is the expected frequency of transition fr@nto
S;, &(Si, S)) is the probability of transition fron; to S; att, anda; is the self-loop
probability. In EqI2.6 &;,;, = 1 — &;,;, and=(S;,, Si,) = ['(Si,) — E(Si,, Si,) are used.

For contextual splitting, since the transition probabilities are not re-estimated to
reduce the amount of calculation, the total expected gain related to only the obser-
vation distributions is calculated. ThuS,dS;) is omitted for contextual splitting.

For temporal splitting, the transition probabilities are considered because one transi-
tion probability is created after temporal splitting. Therefore, the splitting conditions
GMY(S)) for contextual splitting an@™"(S;) for temporal splitting are

GE:ML)(Si) = Goutput(si)’ (2.7)
GgML)(Si) = Goutpul(si) + GyrandSi)- (2.8)

Equations[Z. /) and 2.8 are calculated for each state, and the split with the maximum
gain is selected.

2.4. Information Criteria for Model Selection

The topology training methods described in the previous section are based on the Max-
imum Likelihood criterion. Because of the nature of the ML estimation, the likelihood
value for training data increases as the number of parameters increases. To overcome
this problem, information criteria have been introduced for splitting and stop criteria
[8,19,[10, 111, 12].
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S. Ikeda proposed a method using Akaike’s Information Criterion (AIC) to deter-
mine the topologies of context-independent mod8]s [However, it is now clear that
context-dependent models can improve performance more easily than other factors.

To create context-dependent models by using phonetic decision tree clustering, K.
Shinoda and T. Watanabe introduced the Minimum Description Length (MDL) cri-
terion [9][[10]. After their first paper/9] was published, the method of the Bayesian
Information Criterion (BIC) was proposed it 1][[12], although these method§, [10,

11,112 are essentially the same because thetBnce of two BIC values is the same
as the diference of two MDL values.

The next few sections describe the three most popular information criteria in brief.

2.4.1 Akaike Information Criterion

The Akaike Information Criterion (AIC)45] is the first criterion that was proposed
to select stochastic models reasonably. The definition of this problem, “how to se-
lect models reasonably,” itself was first proposed by Hirotsugu Akaike. Following his
research, many criteria have been proposed, and have been applied to many research
fields.

When a set of model@®|k = 1,..., K} is given, the AIC for modek is

LM (x) = ~21ogP(xI18¥) + 2a, (2.9)

wherex = {xq,..., Xy, } represents observation data,is the number of free parame-
ters, and® is the ML estimates of modél

The AIC was derived from the fact that a maximum likelihood estimate of a regu-
lar model approaches a normal distribution when the number of samples is increasing.
Therefore, the number of samples should be large enough for the number of parame-
ters.

2.4.2 Bayesian Information Criterion

The Bayesian Information Criterion (BIC26] was defined by considering the asymp-
totic behavior of Bayes estimation.

LEO(x) = — log P(x|A®) + % log N (2.10)
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2.4.3 Minimum Description Length Criterion

The MDL criterion R7][[28] was proposed to give the minimum coding length to de-
scribe models and data. Generally, the MDL criterion for mddil defined in the
following:

L(kMDL)(X) = —log P(Xlé(k)) + % log Nt + log K. (2.11)

Figure[l.3 shows a conceptual curve of information criteria for model selection,
especially BIC or MDL criterion. In these three popular criteria, the first term is the
inverse sign of the log likelihood of the model. The second term and the following
term are related to the number of parameters, or the number of samples, and work
as a penalty to avoid over-fitting. Therefore, the model with the smallest information
criterion is the best model.

2.5. Variational Bayesian Approach for Model Selection

The information criteria have been applied to many fields and usually work well. How-
ever, they require some assumptions, e.g., asymptotic normality, and theoretically it is
difficult to evaluate complicated models like neural networks, or HMMs, that cannot
satisfy such assumptions. The information criteria were derived by using asymptotic
normality of maximum likelihood estimates. We assume f{&iw) is a model,x is
training data, and is a model parameter. We also assume that a maximum likelihood
estimate exists and convergesut@ Whenn samples are given anidl — oo, a ran-
dom variable+/n(w — wg) converges to a normal distribution, for which the mean is 0,
and a covariance matrix I§wg)~%, wherel (wp) is the Fisher Information matrix. This
is referred to as the asymptotic normality. It is necessary that a model is statistically
regular. Moreover, this model should satisfy the following conditions:plogw) is
differentiable three times w.riu. The Fisher Information matrikw) can be defined
and should be a positive definite matrix. Some complicated models, e.g., HMMs and
neural networks, are not statistical regular models, and they cannot have asymptotic
normality.

In the field of machine learning, the Variational Bayesian (VB) method was pro-
posed by S. R. Waterhouse et @.3] and H. Attias [L4][[15] to avoid over-fitting by
ML estimation. This method is one of the approximate solutions for Bayesian learning.
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Furthermore, a method to obtain the optimal model structure by the VB framework was
proposed in order to avoid the local optimal problem for a mixture-of-experts model
[29]. The VB approach can evaluate complicated models more exactly than informa-
tion criteria and can be used for model selection.

Recently, some methods that include the VB approach have been proposed for
speech recognition. Decision tree clustering with the VB method was proposed by S.
Watanabe et all3(], and Variational Bayesian GMMs were applied to speech recogni-
tion by F. Valente and C. Welleken3]]. A VB general framework for speech recogni-
tion was proposed ir80]; however, their method of making HMM structures assumed
the alignment is given and therefore did not use any latent variables. Furthermore, in
both [30] and [31], their models did not consider any temporal structures.

2.5.1 Bayesian Learning

As described in Sectidb.2.2 Bayesian learning considers that all unknown parame-
ters are random variables. Each parameter can be represented by a distribution. The
Bayesian approach tries to estimaiasterior predictive distribution (x|O, m) for a

new observatiorx, that is, test data, defined in the following:

p(xlO,m):fp(x|®,m)p(®|O, m)do, (2.12)

whereQis all of training sample%® is a set of parameters under a fixed model structure
mwheremis the complexity of a model (for example, the number of mixture compo-
nents for a mixture modelp(x|®, m) is a likelihood ofx, andp(®|O, m) is a posterior
distribution of ®. Equation[2.12 represents an average of likelihood weighted by a
posterior distribution. Therefore, the Bayesian approach can alleviate the over-fitting
problem.

However, this approach requires estimation of posterior probabilities and calcula-
tions of integrals, and it is much toofficult to solve them directly. As approximated
calculation methods, the Laplace approximation methods and Markov-chain Monte
Carlo (MCMC) methods have been used. The Laplace approximation methods are
based on the method that posterior probabilities are approximated by a Gaussian func-
tion. These methods assume infinite samples. The MCMC methods estimate poste-
rior predictive distributions by sampling distributions under the Markov chain. These
methods need a lot of calculations for sampling.
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Recently, the Variational Bayesian approach has been proposed to solve these prob-
lems more #iciently [13|[[14][[15]. This approach can estimate posterior distributions
by analytical calculations using calculus of variations. This approximation is more ef-
ficient than Laplace approximation and produces non-trivial posteriors for any sample
size.

2.5.2 Variational Bayesian approach

First, to estimate posterior probabilities, in the Variational Bayesian approach the log
marginal likelihood with all random quantities marginalized is considered in the fol-
lowing:

£(0) = log p(O) = IogZZ f p(0, Z, ®, m)de, (2.13)
m Z

whereZ is a set of latent variables that are hidden variables. When a new distribution
q(Z, ®, m) is introduced, and Jensen’s inequality is applied’{®), and £(O) can be
bounded by the following[q]:

©.206.m
L(O)—IogZqu(ZG m22 22 1 ) mr)“

_ < p(0, Z,0, m)>
q(Z’ ®, m) q(Z,®,m)

S <|Og p(0,Z 0, m)>
(Z,0,m)

q(Z, ®, m)
3 p(O, Z,®, m)
_Zmlzzlfq(o,e),m)log Zo.m )
= ¥1[q], (2.14)

whereq is an approximation of the true posterior distribution and is referred to as the
variational posterior distribution. Furthermoke,f(X) > represents the expectation
of f(x) w.r.t. p(x):

<109 >0 = [ F(IPYCIX (2.15)
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Figure 2.6.Principle of the Variational Bayesian approach.

The diference betweef(O) and¥[q] is represented by the Kullback-Leibler di-
vergence in the following.

LORAUEDWY [ az.e.myogpo)e

_ Z Z fq(z 0, m)log p((()ZZ®® r)n)dG)

_ Zqu(Z ®, m)log c(*;z(a@ Tc)»d@

= KL(q(Z, ®, m), p(Z, ®, mO)). (2.16)
Therefore, the following relation is obtained.
L(0) = F[q] + KL(g(Z, ®, mO), p(Z, ®, mO)). (2.17)

As FigureZ.8 shows, since(O) is a constant under a givéd, maximizing#[q]
w.r.t. g is equivalent to minimizing the Kullback-Leibler divergence betwgand the
true posterior distribution. Thgbecomes the best approximation of the true posterior
when the maximum of [q] is obtained.

We assume that the joint distribution of all random quantities can be factorized in
the following:

|
p(0.Z.©,m) = Pm)p(0, ZIm) | | p(ailm), (2.18)
i=1
where® = {6}i_,. In the same manner, the variational posterior can be also factorized.

|
Az ©,m) = qma@m | | a@im. (2.19)
i=1
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¥ [q] can be derived in the following.

_ p(0. Z16, m) | < p(ei|m)> P(m)
= Zm:Q(m) {<log q(ZIm) >q<2|m),q(e|m> ’ = 9 @M [ g(am) rlog Q(m)}'

(2.20)

The optimal posteriors af and6; can be derived by the Lagrange multiplier method.
The following J[g(Z|m)] is defined forg(Z|m) in Eq. 2.19),

Ia@im)] = FLa@m] + ) aZim) - 1,
z

p(O, Z|e, m)

Flazim)] = Zmlq<m)< q(ZIm) >q(2|m),q<@|m>'

The following partial diferentials are set to zero:

0 _,
aqZm)
EN
—~_-o.

R

The optimalg(Z|m) can be derived in the following:
d(ZIm) = Cexp(log p(O, ZI®, M) yeim) » (2.21)

whereC is a normalization constant. In the same manner, the opti@aa) in Eq.
@219is
q(6ilm) = G exp(log p(O, Z|o, m)>q(Z|m),q(9_i|m) ’ (2.22)

whereC; is a normalization constant afd is a set o, except fors,.
Since Egs.[Z.2]) and .22 are dependent on each other, they can be derived
iteratively. Finally, the Variational Bayesian EM algorithm can be defined as follows:

[Variational Bayesian EM Algorithm]
1. Set initial distributiongy(®|m) = []/_, p(¢;jm), andt = 0.
2. Repeat the following process until they are convergent.
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(a) E-Step
q(ZIm)D = Cexp < log p(O, ZI®, M) >emo
(b) M-Step
Fori=1,...,1,
q(GIm)™ = Cj exp < log p(O, Z|6, M) >qzimye) ge_, im0

(c)t=t+1

Using estimated posterior probabilitig][g] can thus be calculated. For model
selection, it is necessary to select the model that maxinfifes
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2.6. Language Modeling

In Eq. 2.3, the language model can be simply represente®®y), although it is
difficult to define the probability of a word string since many expressions of sentences
usually exist to represent the same meaning. Spontaneous speech is so flexible that
expressions proper to spoken language cannot be constrained by grammar.

2.6.1 Word n-gram model

The first experimental results in large-vocabulary speech recognition were obtained in
1976 B2]. The vocabulary size included 1,000 of the most frequent words. From this
work, as a kind of simple language modeling, word n-gram models are widely used. If
we assume thaw/ is a word sequencéy;, wo, . . ., we}, P(W) may be computed in the
following:

P(W) = P(wiws . .. we) = P(w1) P(walw) P(wslwiwy) . .. Plwnlwiws ... we).  (2.23)

However, it is impossible to estimaBw;|lwiw- . . . wi_;) for all word sequences, and it
is therefore easier to use word n-gram models. This probability is approximated by the
probability of anN-word sequence.

P(wilwle e wi_l) M P(wilwi_N+1 e wi_l). (224)

In practice,N = 3 is usually enough due to the robustness of parameter estimation.
Here,P(W) is approximated by trigram models in the following:

P(W) ~ P(w1) P(walw1) Pwslwiws) . . . P(wn|wn-2, wn-1). (2.25)

2.6.2 Trigger model

Although word n-gram models are convenient, they cannot represent all language con-
straints. One promising model capitalizes on the information present in the document
history. To extract information from the document history, a “trigger pair” can be used.
If a word, or a word stringyV,, is significantly correlated with another word strividg,

(Wa — Wp) is considered a trigger pair. W3 is included in the document histoW,
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the probabilityP(W,) can be represented by using a trigger pair model is given in the
following:
P(Wa) ~ P(WalWg € W). (2.26)

In [17], R. Lau et al. proposed trigger modeling based on the Maximum Entropy
principle. This model is combined with the n-gram model. The trigger model can only
represent co-occurrences between trigger pairs; Some of such co-occurrences do not
have any syntactic relations. To constrain trigger pairs, S. Zhang et al. used trigger
pairs extracted from parse treé3]. This model is referred to as the “Linkgram”
model. However, these constraints represented by word pairs are still weak for global
structures of sentences.

2.6.3 Structured Language Model (SLM)

To represent more powerful constraints, C. Chelba and F. Jelinek proposed a language
model using a stochastic parsdi9[[l20], which is called the Structured Language
Model (SLM). Here, a stochastic model is developed for parsing, and this model it-
self is used as a language model for speech recognition, that is, parsing scores are
considered as scores of a language model. This model parses by bottom-up and left-
to-right operation and operates using three modules: (1) WORD-PREDICTOR pre-
dicts the next word from previous word sequences and parse subtrees, (2) TAGGER
predicts POS tags of next words from word sequences, parse subtrees and predicted
next words, and (3) CONSTRUCTOR repeatedly generates a parse tree from subtrees.
These modules use conditional probabilities and those probabilities are used for lattice
rescoring.

The probabilityP(W, T) of a word sequenc&/ and a complete parsk can be
calculated as follows:

n+1

POWT) = | | [PeodWic 1T 1) P 1 T, P(TE 4 Wi 1 T wio 8|, (2.27)
k=1

N

P(T W1 Tien wio ) = [ | PRIV T, wio t, B ), (2.28)

i=1
whereW,_1Ty_1 is the word-parsek(— 1)-prefix, wy is the word predicted by WORD-
PREDICTOR| is the tag assigned to, by the TAGGER, and’lf_l is the incremental
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parse structure that generafBs = Tk_1||T'k‘_1 when attached td@y_;. It is the parse
structure built on top of_; and the newly predicted woudk. The *||” notation stands
for concatenationy — 1 is the number of operations the CONSTRUCTOR executes at
positionk of the input string before passing control to the WORD-PREDICTOR, and
px denotes theth CONSTRUCTOR action carried out at positiom the word string.
Furthermore, some researchers have recently propofededit types of structured
language models. An SLM based on tree-structured history has been propd#d in [
and a probabilistic generalized LR parsing is also used as a language @&jdel [

2.7. Summary

This chapter described the outline of automatic speech recognition, acoustic modeling,
and language modeling. Both topology training and criteria of model selection were
explained, especially for acoustic modeling. We also described related works in brief
for each topic. The next chapter onward, our proposed methods will be presented and
discussed, which are the MDL-based SSS algorithm in Ch@ptbe VB-based SSS
algorithm in Chapte, and language modeling using patterns extracted from parse
trees in Chaptds.
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Chapter 3

Successive State Splitting Algorithm
Based on Minimum Description
Length Criterion

3.1. Introduction

As we described in Sectid@3 for topology training, the Decision Tree Clusterifpg[

is widely used. While this method can only create contextual variations, the Succes-
sive State Splitting (SSS) Algorithm can create both contextual and temporal varia-
tions. These method use the Maximum Likelihood (ML) criterion to choose a model.
However, owing to the nature of the ML estimation, the likelihood value for training
data increases as the number of parameters increases. Consequently, it is impossible
to stop state splitting using only the ML criterion.

Therefore, many researchers have used information criteria to avoid this problem
as we described in Secti@4 The information criterion is used as both splitting and
stop criteria. As a splitting criterion, the information criterion is calculated for split
states, and the state that provides the best improvement of the information criterion in
all states is selected. As a stop criterion, splitting is stopped when there is no state that
can improve the information criterion.

In this chapter, we propose the SSS algorithm based on the MDL criterion as the
splitting and stop criteria. This algorithm is hereinafter referred to as “the MDL-SSS
algorithm.” The MDL criterion was successfully introduced in phonetic decision tree
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clustering as a criterion of contextual clusterib@f In this chapter, the MDL criterion
is extensively used as the criterion for both contextual and temporal splitting in the
ML-SSS algorithm. We define new gain functions based on the MDL criterion.

The AIC may be used as the criteria to make context-dependent models in the same
manner asg]. The second term of the MDL criterion is dependent on both the amount
of data and the number of parameters. On the other hand, the AIC only considers
the number of parameters. For acoustic models, it is well known that recognition
performance is dependent on the amount of training data. For this reason, the MDL
criterion is more suitable for speech recognition. Therefore, we focus only on the MDL
criterion in this paper.

In Section2.3.2 we have explained the ML-SSS algorithm and the stop-splitting
problem. Also, the MDL criterion has been described in Se@dn3 We define the
MDL-SSS algorithm in SectioB.2 In Section3.3 we evaluate the performance of
the MDL-SSS algorithm and describe the results for an ATR travel arrangement task
and the results for lecture speech as an example of more spontaneous speech. We
summarize the results in Secti@r

3.2. SSS Algorithm Using MDL Criterion

Next, we introduce the MDL criterion to the ML-SSS algorithm. In this section, we
define the MDL-SSS algorithm, which uses the MDL criterion instead of the ML cri-
terion as the splitting criterion for the ML-SSS algorithm.

3.2.1 Flow of MDL-SSS algorithm

Figurel3.1 shows the flow of the MDL-SSS algorithm. Theffdrences in the MDL
values for both contextual and temporal splitting are calculated for each state, and the
split with the smallest dierence value is chosen. Splitting is finished when there is no
state that can be split and reduce the criterion by splitting. The total number of states
and the maximum number of states per triphone are not required as stop criteria.

The MDL criterion is driven theoretically and guarantees the prevention of the
over-fitting problem. On the other hand, to stop splitting in the ML-SSS algorithm,
some thresholds which can evaluate convergence of likelihood values can be used as
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Figure 3.1.Flow chart of MDL-SSS algorithm.

one of the stop criteria instead of the number of states. However, such thresholds need
to be set heuristically, and there is no guarantee that they will avoid the over-fitting
problem.

3.2.2 Gain function by MDL-SSS

First, we redefine the MDL criterion for the modehere.
LMPD(x) = — log P(x|A®) + % logT(S) + log K, (3.1)

whereay is the number of parameters for the mokledndl'(S) = Zi“fl I'(S;) represents
the expected frequency of the number of training samples for all states included in the
modelk. As the same manner as Sectla.3 we assume that a stafgin the model
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k is split into two stateS; , Si,. The MDL criterion is changed as follows.

L(kl,\/IDL)(X) - _log P(Xlé(k')) + % logI'(S) + logK, (3.2)

whereq,, is the number of parameters after splitting. The first term of the MDL crite-
rion is a negative value of likelihood. Therefore, thelience of the first term between
Egs. B.]) and B.2 is the negative value of the gain of likelihood, EG.4) or (2.9).
Therefore, we can define the criteria for contextual splitting and temporal splitting,
GMPY andGMPY)| respectively, as follows:

’
ac_ac

cMPL(s)) = —-GMY(S)) + logI'(S), (3.3)

GMPL () = —GMU(S,) + {%{ logT”(S) - % IogF(S)}, (3.4)

where the sfiixes, ¢ and t, mean that the values are related to the contextual splitting,
and the temporal splitting, respectively. represents the number of parameters after
splitting. I"(S) is the value after temporal splitting. Equatid@4) compensates the
total number of sample$|(S), because segments that are shorter than the lengths of
state sequences are discard&@S) will be decreased td”(S) if a temporal split is
selected.

In the previous work#, 10, 11,12], they introduced the scaling factors of the sec-
ond terms to control the value of criterion for their contextual clustering. We introduce
the scaling factors of the second term@g,andC,, both for contextual and temporal
splitting.

g — ac
2
cMPY(s) = -GMY(S) + C, {% logI”(S) - % log F(S)}. (3.6)

GIPI(S) = -G"I(S) + Ce logI'(S), (3.5)

The number of parameters before and after contextual splittingare 2KM and

a; = 2K(M + 1), where the order of features k§ the total number of states M,

and each state has one Gaussian distribution with a diagonal covariance matrix. For
temporal splitting, we suppose that transition probabilities do not depend on both mean
vectors and covariances of Gaussian mixtures. Each state has one Gaussian distribution
and one transition probability. Therefore, the number of parameters before and after
temporal splitting are; = (2K + 1)M anda; = (2K + 1)(M + 1), respectively.
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The scaling factorsC. andC,, are not derived from the original MDL criterion.
We experimentally found that it is filicult to stop splitting without these factors. This
problem can be considered to be caused by the approximation of the likelihood values
of temporal split states as we described in Sedidh2 In [10] and [12], a scal-
ing factor for contextual splitting was also introduced and experimentally found to be
effective.

Accordingly, Egs.[8.5) and B.6) are rewritten as follows:

GE:MDL)(Si) — _G(CML)(Si) + CcKlogI'(S), (3.7)
(2K +1)

GMPY(s)) = —-GMY(S) + C, {(M +1)logI"(S) - MlogI'(S)}.  (3.8)

The MDL-SSS algorithm selects the state with the smaB&4t- or GMPY and stops
splitting whenG{"®" > 0 andG™P" > 0 for all states.
Finally, we give the flow of the MDL-SSS algorithm in F[§.2
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MDL-SSS Algorithm:
1. Initialization.
2. For all states{S;,S,,...,S;,...}

(a) Contextual splitting:

i. Create two new states by the contextual splittingof
ii. Calculate the criteriorGMPH(S,)).

(b) Temporal splitting:
i. Create two new states by the temporal splittingpf
ii. Calculate the criteriorG{°"(S)).

(c) Select the contextual or temporal splitting with a smaller criterion.
3. Select the state which obtains the smallest criterion among all states.

4. If no state can obtain less than zero in the criterion, then stop. Othe
re-estimate parameters and g@to

rwise,

Figure 3.2.0verview of MDL-SSS algorithm.
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3.3. Experiments

3.3.1 Conditions

Experiments were carried out using the proposed acoustic models for Japanese travel
dialogues in “The Travel Arrangement Task (TRA)” of the ATR spontaneous speech
database33]. This corpus consists of role-playing pseudo-dialogs between a hotel
clerk and a customer about room reservations, cancellation, trouble-shooting, etc.

For the acoustic training set, we used the TRA database and 503 phonetically bal-
anced sentences (BLA) read by the same speakers of the TRA. These data include 407
speakers. TRA dialog data include about 5 hours of speech and BLA data include
about 25 hours of speech. For the test set, we used one side of 42 dialogues with 4,990
words that were not included in the training set and that included 42 speakers.

For analysis conditions, the frame length was 20 ms and the frame shift was 10 ms.
12 order MFCC, 12 ordekMFCC, andA log power were used as feature parameters.
The cepstrum mean subtraction was applied to each utterance. We used 26 kinds of
phonemes and one silence. A silence model with three states was built separately from
the phoneme models. Three states were used as the initial model for each phoneme.
One Gaussian distribution for each state was used during topology training. For both
the ML-SSS and MDL-SSS algorithms, phoneme alignments were not changed during
topology training.

In Section3.3.2 we used speaker-independent models with one Gaussian distri-
bution per state. These models are unable to produce high performance. Therefore,
after we obtained the topology, we increased the number of mixtures and re-estimated
the parameters of the HMMs. The final models were gender-dependent models with
five Gaussian mixtures for each state. These models were used in the experiments
described in SectioB.3.3 In these models, each gender model had the same topol-
ogy as the other gender model. We have compared them to GD models in which
topologies were dependent on gender in the preliminary experiments. The GD models
with gender-independent topologies obtained better performance than the GD models
with gender-dependent topologies. Therefore, we used the GD models with the same
topologies.

For the language training set, we used 7,195 one-side dialogues which included
1.6x 10° words. Multi-class composite bigram modedg]with 700 classes and 5,216
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composite words were used as the language models. The perplexity for the evaluation
data was about 21. The vocabulary size in the set was 27,398.

The number of mixture distributions was increased after splitting. The topology
training can obtain approximate optimal topologies represented by one Gaussian dis-
tribution for each state. Therefore, first, we evaluated speaker-independent and single
Gaussian models by using a small lexicon including 5,100 words. Second, we used
gender-dependent and five-Gaussian models by using the full lexicon including 27,398
words.

3.3.2 Comparison of gender-independent models with single Gaus-
sian

We initially investigated the performance by gender-independent models with a single
Gaussian distribution to confirm the adequacy of the model topologies obtained by our
proposed method. In this section, the lexicon had 5,100 words including the words in
the evaluation data. Figul3shows word accuracy rates comparing the performance
of the ML-SSS and MDL-SSS algorithms. This figure includes results for the ML-
SSS algorithm limited by the maximum number of states for each triphone model,
N, = 3,4,5. The models limited by, = 3 were produced by only contextual splitting
because all initial models had three states in these experiments. The performance for
models withN, = 3 is worse than that for models witly, = 4 but better than that for
models withN, = 5. This suggests that the temporal splittingfieetive but should be
controlled for each phoneme by some suitable criterion.

The MDL-SSS algorithm witlC. = 1,C; = 10,40, andC, = 2,C; = 10,20
obtained almost the same performance as the ML-SSS algorithm. For the ML-SSS
algorithm,Ns = 2,500 andN, = 4 showed the best performance.

To achieve a balance between contextual splitting and temporal splitting, the opti-
mal temporal scaling factog;, was much larger than the contextual scaling facgr,
This is because the gain by temporal splitting is evaluated as being smaller in the MDL
criterion and the likelihood value is also an approximated one as describéd in [
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Figure 3.3. Word accuracy for GI models with one Gaussian distribution per state

trained by using TRA and BLA.
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3.3.3 Comparison of gender-dependent models with five Gaussians

In this section, we used gender-dependent models with five Gaussian mixtures. Figure
[3.4shows the word accuracy rates of these models.

For the MDL-SSS algorithmC, = 2 andC; = 20 performed the best. Almost
the best model was obtained by almost the same scaling factors as described in the
previous section. On the other hand, for the ML-SSS algorithgh= 1,400 and
N, = 4 performed the best. The total number of states of the best model fiearedt
from that of the best model with one Gaussian distribution per state. Therefore, for the
ML-SSS algorithmNs needs to be carefully adjusted according to experiments to find
the best model. In contrast to the ML-SSS algorithm, the MDL-SSS algorithm can
automatically obtain the best performance with the same parameters.

We further compared the models of the MDL-SSS algorithm and the ML-SSS algo-
rithm in detail. Figuré3.5 shows the number of states for each phoneme model. Most
of the phoneme models by the MDL-SSS algorithm have larger numbers of states than
the models by the ML-SSS algorithm. Figl8& shows the maximum length of states
for each phoneme extracted from both the “ML-SSS (1,400 stitegl)” whose num-
ber of states per triphone were set to a limit of four states, and the “MDL-SSS 2,

C; = 20, 2,086 states).” All phoneme models by the ML-SSS algorithm had the same
maximum length of states as the limit number of states. On the other hand, each
phoneme model by the MDL-SSS algorithm hadféedent maximum length of states.
Although some phoneme models by the MDL-SSS algorithm have larger numbers of
states than the models by the ML-SSS algorithm, they have shorter maximum lengths
of states. These two figures suggest that more adequate path lengths are selected for
each allophone by using the MDL-SSS algorithm. Although the ML-SSS algorithm
can limit the number of states for each phoneme, itfisadilt to find the optimal set of

the maximum number of states.

3.3.4 Hfectiveness for diferent amounts of training data

To confirm whether scaling factors in the MDL-SSS algorithm are dependent on the
amount of training data, we examined the performance of acoustic models for a smaller
amount of training data by using only the TRA data. The experimental conditions
were the same as described in SecibB.3 Figure[3.4 shows word accuracy for
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models generated by the ML-SSS algorithm or the MDL-SSS algorithm. The MDL-
SSS algorithm obtained the best performance Wigh= 2 andC; = 20. Therefore,
scaling factors for both contextual and temporal splitting can be set robustly and thus
the MDL-SSS algorithm can make appropriate HMM topologies more easily than the
ML-SSS algorithm.
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3.3.5 Evaluation using lecture speech

To confirm the optimal values of the scaling factors in our proposed method, we also
evaluated our method by using the Japanese lecture speech corpus, “The Corpus of
Spontaneous Japanese (CS3|[ This corpus mainly includes monologues, such as
presentations at conferences. Therefore, the CSJ corpus is more spontaneous than the
TRA corpus.

The training data for the acoustic models include 200 lectures (about 34 hours) by
male speakers. The analysis conditions were the same as described in Bgtfion
The number of mixtures for each state was 10. The size of the lexicon distributed
with the CSJ database was 19 K words. We used multi-class composite bigram mod-
els with 700 classes and 3,466 composite words trained by using these 200 lectures.
Perplexity was about 137. For evaluation, we used four male speakers, “AO1M0007”,
“A01MO0035”, “A01MO0074", and “AO5M0031.” The average number of words in-
cluded in each speaker data was 4,388.

Figurel3.8 shows the average word accuracy rates for the four speakers. For the
MDL-SSS algorithm, performance is almost saturated by the modelQith 2 and
C: = 20. These factors are almost the same as those described in SB&i@13.3.3
and3.3.4 Therefore, the trend of the results is similar to that of the TRA task. This
shows that the MDL-SSS algorithm can automatically stop splitting and obtain almost
the best performance by arou@d = 2 andC, = 20 for other tasks.

Figure[3.9 shows the number of states for each phoneme model extracted from
both “ML-SSS (2,178 states, N@)” and “MDL-SSS C. = 2,C, = 20, 2,178 states).”
These models have almost the same number of states for each phoneme3HiQure
shows the maximum number of states for each phoneme. Although each model by
the ML-SSS algorithm had a fiierent maximum number of states, the model by the
MDL-SSS algorithm had more variety in the maximum number of states. Especially,
the phonemeée/ had a long triphongsilence - e - gwith eight states. This triphone
appears in the beginning of some Japanese filler words, for example, “eeto,” that are
very often uttered in spontaneous speech.

Compared to the TRA and BLA corpora, the maximum number of states per phoneme
in the CSJ corpus is smaller than that in the TRA corpus. Tallshows the average
speaking rate for each training database. These speaking rates were calculated from the
forced alignments of the training data. It shows that the distribution of speaking rates
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Table 3.1.Average speaking rate for each training data

Database Average | Standard deviation
[morg’sec]

CSJ (male) 8.27 2.12
TRA+BLA (male) 8.22 1.03
TRA+BLA (female) 7.76 0.94
TRA (male) 8.46 1.47
TRA (female) 7.96 1.25
BLA (male) 8.15 0.83
BLA (female) 7.69 0.80

in the CSJ corpus is faster and broader than that of the TRA and BLA corpora. The
standard deviation of the CSJ corpus is larger than that of the TRA and BLA corpora.
Therefore, the CSJ corpus has much more variation in speaking rates. It shows that the
CSJ corpus is a more spontaneous speech database than the TRA corpus. Furthermore,
these results show that the MDL-SSS algorithm can reflect the properties of a database
in HMM topologies.

3.4. Summary

We proposed a new method for automatically creating non-uniform, context-dependent
HMM topologies using the Successive State Splitting algorithm based on the MDL
criterion. The conventional methods of topology training are based on the ML criterion
and require the total number of states as the stop criterion. The ML-SSS algorithm
offers the advantage that it includes both contextual and temporal splitting, but it is
also based on the ML criterion and requires stop criteria.

We introduced the MDL criterion to the ML-SSS algorithm in order to select suit-
able models automatically. Experimental results show that the MDL criterion can stop
both contextual and temporal state splitting by the SSS algorithm. The best model can
be obtained only by changing the number of states in the ML-SSS algorithm. However,
the MDL-SSS algorithm yields almost the best performance by almost the same scal-
ing factors in spite of the amount of training data and kinds of tasks without changing
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the number of states. These scaling factors seem to be relatively consistent within the
tasks.

For the ML-SSS algorithm, there is no guarantee that the best model can be ob-
tained by using the number of states and the maximum number of temporal states per
phoneme as a stop criterion. They need to be adjusted carefully according to experi-
ments. On the other hand, almost the same scaling factors in the MDL-SSS can gen-
erate almost the best model. Lots of experiments to find a best model will no longer
be necessary. Additionally, both the maximum number of states and the maximum

number of temporal states per phoneme can be added to stop criteria in the MDL-SSS
algorithm.
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Chapter 4

Variational Bayesian Approach for the
SSS Algorithm

4.1. Introduction

In the previous chapter, we have proposed the MDL-based SSS algorithm and showed
that the MDL criterion works well for the large amount of training data. However, con-
ventional information criteria require some assumptions, e.g., asymptotic normality.
Theoretically speaking, It is flicult for information criteria to evaluate complicated
models like neural networks, or HMMs exactly because these models cannot satisfy
such assumptions.

As we described in Sectid2.5 the Variational Bayesian (VB) method was pro-
posed to avoid these problerh8][[14][15]. Recently, the VB approach have been
applied to speech recognition. Decision tree clustering with the VB method was
proposedB(], and Variational Bayesian GMMs were applied to speech recogng&ibn[
These methods do not consider any temporal structures.

We propose an automatic topology creation method using the SSS algorithm with
the Variational Bayesian method, which we call the VB-SSS algorithm, to estimate
topologies more exactly. The SSS algorithm can create contextual and temporal vari-
ations. In contrast, decision tree clustering can only create contextual variations. In
[3Q], they describe the general parameter estimation of HMMs based on the VB ap-
proach and the topology estimation by tree-clustering based on the VB approach. In
the decision tree clustering, the number of states per triphone must be decided before
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clustering, and it is never changed after clustering. That method divides utterances
into state segments and never changes state boundaries to avoid considering temporal
variations. Therefore, in the decision tree clustering, the number of states per triphone
is considered as one of the problems with initial models. However, the SSS-based al-
gorithm can consider both contextual and temporal variations. It can create a triphone
with a different number of states from the other triphones according to training data.
Therefore, our proposed method, the SSS algorithm based on the VB approach, has a
higher number of degrees of freedom than that of the decision tree clustering. Further-
more, latent variables should be employed in the SSS algorithm because the alignments
of phonemes are fixed but those of states are not. Therefore, the occupancy probabili-
ties of training samples should be considered by using latent variables to introduce the
VB method into the SSS algorithm.

We also evaluate a method for increasing the number of mixture components by us-
ing the VB approach, based on a topology obtained by the VB-SSS algorith@0]Jn [
Watanabe et al. evaluated two methods for constructing Gaussian mixture models. One
sets the same number of Gaussians per state for all states, and selects an appropriate
model by a VB objective function. The other determines the number of Gaussians for
each state by splitting and merging Gaussians in each state with the objective function.
In [31], they produced GMMs by decreasing the number of mixture components in
each phoneme. Since the VB-SSS algorithm generates HMM structures with temporal
structures, our proposed methods consider temporal structures to make mixture models
by splitting Gaussians with the VB approach.

In Section4.2, we present the VB-SSS algorithm, and in Seciio@ explain a
method for increasing the mixture components. In Se@idnwe evaluate the perfor-
mance of our proposed methods with experiments. Finally, we provide our summary
about this topic in Sectidd.B.

4.2. Variational Bayesian Approach for SSS Algorithm

4.2.1 Overview of VB-SSS

Our proposed method is based on the ML-SSS algorithmhe ML-SSS algorithm
assumes that each state has a single Gaussian distribution, and that each category can be
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represented by one Gaussian distribution when splitting is performed. This algorithm
also assumes that suboptimal models can be obtained by increasing the number of
mixture components after this topology training even if such models are not optimal
for the number of parameters. Therefore, our proposed method, the VB-SSS algorithm,
also uses only a single Gaussian model, and after this algorithm, there is a need for a
method to increase the number of mixture components.

Figureld.1 shows the flow of the VB-SSS algorithm. This section briefly explains
the VB-SSS algorithm. First, the topology of an initial model is set and its parameters
are estimated. Second, the prior parameters for each state are set, after which the
posterior parameters for each state are estimated, and the VB objective fuffgtion,

(see L5 for details) is calculated as the baseline energy.

After that, each type of splitting is performed in the same manner as with the ML-
SSS algorithm. For each splitting, after two new states are created, the posterior pa-
rameters are estimated, and the energy gains of both the contextual splitting and the
temporal splitting are calculated. Next, the state splitting with the maximum energy
gain is selected. If there is no state that can increase its energy, the splitting is stopped.
Furthermore, wheff,, decreases or converges, the splitting is stopped. Otherwise, the
parameters of HMMs are estimated, and these procedures are repeated. In this pa-
per, all of the posterior parameters are estimated by using all of the data for each test
splitting.

4.2.2 Contextual and temporal splitting

The probability density of the HMMB, which hasNg states with one Gaussian dis-
tribution andN, transitions for each state for both contextual and temporal splitting,
is

]
pOI©) = | | M(0: g Es)asrins (4.1)

t=1

whereO = {0y,...,0,...,0r} IS a set of training samples, denotes the state number
at timet, andr, represents the transition arc number at time additionu is a mean
vector ats, Xs denotes a covariance matrixst andag,,., is a transition probability.
We use a diagonal matrix as the covariance matrix. The maximuxg &fNs, andN,
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Figure 4.1.Flow of the Variational Bayesian SSS algorithm.

in this paper can be replaced by. However, this splitting algorithm can udg = 2
only.

The probability for the complete data set to which the latent variables are intro-
duced is

T Ns Na

p0.210) = [ || | ] [iV(aim Zya), (4.2)
t=1 i=1 j=1

whereZ = {7} *] _, is the set of latent variables.

The objective functiorfp, is defined as a lower bound of a marginal likelihood over
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all random quantities with a fixed structurg15]:

p(O, Z|®)p(®)
q(2)qa(®)

whereq() stands for a variational posterior probability, which approximates a true pos-
terior probability;q() becomes the closest distribution to its true posterior probability
when ¥, is maximized. An iterative procedure to find the optimal variational poste-
riors is defined by the partial derivative &f, w.r.t. eachq(). It is referred to as the
Variational Bayesian EM Steps.

When thdth state with the HMM parameté; is split into thei;th state and thigth
state, and the parame®r is estimated for the current splitting, the splitting criterion
can be represented by using the objective funcfigras follows,

Fn = f 9(2)q(®) In dzdo, (4.3)

AFE = F00(@) - F(6y), (4.4)

wheren is the iteration number.

4.2.3 Priors

We assume that the probability of parameters can be factorized as follows.

p(@) = p(NS9 Na) p(a| Ns, Na) p(Z|Ns) IO(HIZ, Ns)~ (4-5)

We also assume that the prior af= {ai,-}i’\fi"\}il,a” > O,Zijl a; = 1 is aDirichlet

distribution, and that the prior dfs, £} = {{g;},, (i)} is anormal-Gammatistri-
bution,

Ns Na

Ns
p(aNs, No) = [ | Dttty g0) o [ [ |2
i=1 i=1 j=1

Ns D
P(u, X[Ns) = n l_[ N (uix; o €50 )G (3" 110/ 2, bo/ 2),
i=1 k=1
whereD is the order of parametergy and o are thekth elements of; and X,
respectivelyN() denotes the Gaussian distributigy() represents the Gamma distri-
bution, andpg, vox, &0, 170, @andbgy are prior parameters. The definition of the Gamma
distribution isG(s; n, 1) = A7/T'(n) - " exp(1s), wherel () is the Gamma function.
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4.2.4 Posteriors

We also assume that the posterior probability of parameters can be factorized as fol-
lows.

a(®) = q(Ns, Na)a(alNs, Na)g(Z[Ns)g(ulE, Ns). (4.6)
The posterior probability can be derived from the Variational Bayesian EM algofdfim[

A(al0, Ns, No) = ]_[Z)( a Ny 1), (4.7)
i=1
_ _ T
¢ij N N Z —< Z|t >q2)>
t=1
Ns
A ZIONg) = | ]_[ N (i vie & oG (ot /2, i/ 2), (4.8)
i=1 k=
: 1 1
ZZ 4 =<7 >qp),
t=1
NiO; _ _
Vik = —OI\—:%,_& =&+ Ni, ;i =m0+ N,

_ N _
bik = bok + Cik + N f::o (Ok — vor)?,

0= Z Zo, Gk = Z Z(0x — 0K

'tl

Here,< X >¢= fxf(x)dx Is the expectation ok for f(x). The variational poste-
rior probability of latent variables is also derived in the same manner as the unknown
parametersf, can be derived from these priors and posteriors.

The variational posterior probability of latent variables is

Ns Na

Z = expol)/ D) expbr), (4.9)
ko1 1=1
N D

t R S RN L AT I

Yij P(dij) T(;¢IJ)+2\P(2) 2;"1 >
D

_%—% by L (0w — Vi), (4.10)

where¥(x) = dInT(x)/ox is the dlgamma function.
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4.2.5 Objective function

Hereafter,p(-|Ns, Ny) is simplified top(-), i.e., p(®|Ns, Na) — p(®). The variational
Bayesian objective function is

P(O, Z|®)p(®)
a(2)q(®)

i
- [a@a@n| | plo.zi0)dzd0 - [ a@)nq2)dz
t=1

?’m:fq(Z)q(G))In dZde

—fq(@)ln q(@)d@+fq(®) In p(®)de. (4.12)

A brief derivation is provided in Appendi&. 1l

4.3. Increasing Mixture Components Based on the VB
Approach

4.3.1 Splitting mixture method

After topologies are obtained by the VB-SSS algorithm, the number of mixture com-
ponents is increased by the following algorithm based on the VB approach. We define
the splitting mixture method as follows.

[Splitting mixture method]

1. Set an initial model obtained by topology trainifg©® = 1,n = 0.
2. Calculate the objective functiof.
3. Iterate the following steps for each phoneme.

(a) Split each distribution into two distributions in each sta™Y = 2M®,

(Fig.42

(b) Estimate posterior distributions, and calculate the objective fun@pit,
repeatedly.

(c) Stop splitting whem 7MY = £ _ 0 is a negative number. Other-

wise,n=n+ 1, and go to 3(a).
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Figure 4.2.Splitting each distribution into two distributions.

This algorithm splits each mixture component to two distributions, as inZ&#.In

this algorithm, the number of mixture components is estimated for each phoneme. It
obtains more suitable models than models with the same number of mixture compo-
nents for all phonemes.

We also evaluated the other algorithm that increased one distribution for each state
at a time. However, this algorithm performed a slightly worse than the above algorithm
in preliminary experiments.

4.3.2 VB approach for increasing mixture components

In [30] and [31], the authors estimated the number of mixture components for each
state because their methods are the same as those used for GMMs. On the other hand,
the VB-SSS algorithm estimates model structures by considering the transition prob-
abilities using the forward-backward algorithm. Therefore, our proposed method es-
timates the number of mixture components with the forward-backward algorithm for
phoneme periods.
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Gaussian mixture HMMs can be represented as follows.

(n)
T Mg

p(OI®) = | [ D waiN (0 e o) { st (4.12)

t=1 | k=1
wheres denotes the state index at tlme.k}M(n) Is a set of mixture weights for state
I, ug is @ mean vector, an is a covariance matrix. In addition,is an arc index at
timet, {a”}J *, Is a set of transition probabilities.
The priors and posteriors for transition probabilities, mean vectors, and precision
matrices can be defined just as those of the VB-SSS algorithm. For transition proba-
bilities,

Ns
p(aNs, No) = [ | D& 1} o),
i=1

and for mean vectors and precision matrices,

(e, SINg, (M },) = HHHN(ﬂukl,VOhfo Ti)G (T 10/ 2, boi /2).

i=1 k=1 I=1

For mixture weights, ®irichlet distribution can be used.

Ns
p@INs, {M}%) = | | Dlwihly; po),
i=1

wherepg is a prior parameter. The posterior probabilities for these probabilities and
the VB objective function, including mixture components, can be derived in the same
manner as these in the VB-SSS algorithm.

For recognition, posterior predictive probability is used for the Bayesian approach.

)
Pm0) = [ ] [ p0t/Oss.. M OP(Oss M O)dOss,.  (4.13)
t=1

Here,x = {Xy, ..., X7} is a set of test data, amdrepresents a structure indicator, that is,
the number of states, transitions, and mixture components in this work. The true pos-
terior probability p(®;;/m, O) is approximated by the variational posterior probability
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a({a; }:.\'jl|m) 1", altwid i, Im) A Zidm).

T M;
p(xim, O) =~ l—l <& >q(a,m) Z {< Wik > (i my < N X6 Higs i) >q(;4i,2i|m)},
t=1 k=1
(4.14)
< aij >qa,am= %ii/ Z iy,
j/

< Wik > gty jmy = Pik/ ;Pik',
< N(Xt; Hig> Zi) >, zim= T (Xt Vik, Pik, Ti),
fik = ik, @ik = Bi(&i + 1)/ (&ik fiw)-
7 (-) is aStudent-distribution.
T (X6 Viks ics Tik) = Cicd L+ (% = vie)' (Fic®i) (%, — i)} 720D,

L= [((fk+D)/2)
T (fiem)P/2 (i 2)| Dy

wn

Here, “” represents a transpose.

4.4. Experiments

4.4.1 Experimental conditions

In this section, we evaluated our proposed method by both segmented phoneme recog-
nition and conventional continuous speech recognition. Segmented phoneme recogni-
tion is the classification test for segments that are divided into phonemes in order to
evaluate each phoneme model’s performance. We compared our proposed method, the
VB-SSS, to the ML-SSS and the MDL-SSS algorithms. For the ML-SSS, two models
with different maximum state lengths, 3 or 4, were created. These two models are the
baseline models.

For the acoustic training set, we used Japanese dialog speech from the ATR travel
arrangement task (TRA) databa3@[uttered by 166 males. The total length of speech
was 2.1 hours. The MDL criterion is not suitable for such a small database, but the
VB approach is applicable theoretically; the VB-SSS still requires more computation.
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Therefore, in this work, we used this small amount of training data for the experiments,
in this paper.

For testing, we used dialog speech that includes 213 sentences from the TRA
database uttered by afi@irent set of 17 males. For topology training, we employed the
VB approach only for the splitting and stopping criteria. Multi-class composite bigram
models B4] were used, and the vocabulary size was 5,000. The sampling frequency
was 16 kHz, the frame length was 20 ms, and the frame shift was 10 ms. We used
12-order MFCCAMFCC, andA log power as feature parameters. In addition, cep-
strum mean subtraction was applied to each utterance. We used 26 kinds of phonemes
and one silence. Three states were used as the initial model for each phoneme, and
one Gaussian distribution for each state was used during topology training. A silence
model with three states was built separately from the phoneme models, and to increase
the number of mixture components with the VB approach, the number of Gaussians
for the silence model was determined by employing the VB approach. In these exper-
iments, we usedy = 1.0, & = 1.0, 79 = 2.0 for the prior parameters of the VB-SSS.
vox andbg, were set from the element values of the mean vectors and the covariance
matrices.

4.4.2 Evaluation for topology training

Figuresd.3and4.4show the average phoneme recognition rates for vowels and conso-
nants, respectively. The “phoneme recognition rate” means the rate of correctly clas-
sified segments in a phoneme. It includes the results by the ML-SSS with a maximum
state length of 3 or 4, by the MDL-SSS, and by the VB-SSS. To compare topologies
generated by these methods, we assigned a single Gaussian distribution for each state.
The VB-SSS obtained better performance for vowels and a slightly worse one than the
ML-SSS with a maximum state length3 for consonants. In addition, the topology
created by the MDL-SSS is too small to obtain performance comparable with the other
methods because the MDL criterion generally does not work for a small amount of
training data. Our work on the MDL-SS#]] shows that the MDL-SSS can automati-
cally obtain almost the same performance as the ML-SSS; however, the total amount of
training data in this paper is much smaller than that in the refer@6celhecking the
results in detail, the VB-SSS obtained better results for many phonemes than did the
ML-SSS, though the VB-SSS obtained worse results for a few consonants, especially,
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/f/. The reason is under investigation.

Figuredd.5shows the results by using the single Gaussian models. The performance
of the MDL-SSS was again worse than the baseline, ML-SSS, due to the small amount
of training data. On the other hand, with about 60% of the ML-SSS states, the VB-SSS
achieved a comparable recognition rate.

Next, we analyzed the dependencies of the prior hyperparameters/dTablows
word accuracy rates and the number of states of several prior parameters for the 5k-
CSR task, with the trend of results for segmented phoneme recognition being almost
the same. The fluctuation of performance is small whgis changed under almost
the optimal valuesty = 1.0 andrng = 2.0. Also, ¢ is a hyperparameter of transition
probabilities. Because transition probabilities do not have miigltteon recognition
performance, the influence @f is smaller than the other parameters. Although we
also evaluated models witly = 20, the parameters of posteriors could not be obtained
in some phonemes because the parameters diverged and no model could be obtained.
Consequently, nearly optimal valuesdgfandrg are limited to a certain range of vales.
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Table 4.1 Word accuracy rates [%] and # of states in parentheses for several hyperpa-
rameters

&=01] ¢ =10 ¢o = 10 ¢o = 100
o =02 68.87(766) | 69.14 (764)| 68.76 (775)
1o = 2.0 || 72.12 (1,361) 71.30 (1,252) 67.73 (1,246)
f=10] ¢=10 ¢o = 10 ¢o = 100
m =02 68.87(760)| 68.92(761)| 68.87 (749)
o = 2.0 || 72.77(1,419) | 72.55(1,425)| 72.17 (1,433)
&=10] ¢o=10 ¢o = 10 ¢o = 100
m =02 70.01(771)| 68.60(757) | 69.09 (780)
7o = 2.0 | 71.30 (1,315) 72.06 (1,358) 66.00 (1,211)

Table 4.2 Word accuracy rates for thirty minutes of training data
#states WA [%)]

ML-SSS | 300 57.44
564 61.61
812 61.78

MDL-SSS| 199 52.14
VB-SSS | 564 61.99

The posteriors of these prior parameteégsyo, ¢o, are updated as they are shown after
Egs. B.7), or @3, like & = & + N;. Each of these posteriors is dependent on the
number of samples belonging to each class, and the larger the number of samples, the
smaller the influence of these prior parameters.

Additionally, we also evaluated our method by using the smaller amount of training
data. Thirty minutes of utterances were extracted from the same training data used in
the previous experiments. In these experiments, we@gsed2, C, = 20 for the MDL-

SSS, andyy = 1.0, & = 1.0, 5o = 2.0 for the prior parameters of the VB-SSS. Table
[4.2 shows word accuracy rates for thirty minutes of training data. These results were
obtained by single Gaussian models. The VB-SSS can automatically obtain almost the
same performance with smaller parameters than that of the ML-SSS, indicating that
the VB approach works well even for smaller databases.

64



78

~
\o]
\
'
[}

[}

Word accuracy [%]

g
@]
~

68
2,000 7,000 12,000 17,000 22.000

Total # of mixture components

—4&- - ML-SSS + manual mix selection (500 states, max state length=3)
— - ML-SSS + manual mix selection (1,400 states, max state length=3)
— A - ML-SSS + manual mix selection (2,400 states, max state length=3)
- =~ ML-SSS + manual mix selection (500 states, max state length=4)

- -[d- ML-SSS + manual mix selection (1,400 states, max state length=4)
- -A- ML-SSS + manual mix selection (2,400 states, max state length=4)
—@— VBSSS + VB mix selection (1,419 states)

Figure 4.6.Word accuracy rates by Gaussian mixture models.

65



Table 4.3.The average number of mixture components per state, the total number of
mixture components, and word accuracy rate

#mixtures
00 /state| #mixtures| WA[%]
ML-SSS
+ manual
mix selection
(1,400 states) — 8 11,200 76.56
VB-SSS 0.001 1.87 2,652| 74.23
+ VB mix 0.01 6.74 9,564| 76.77
selection | 0.1 9.53 13,520 75.69
(1,419 states) 1.0 10.19 14,460 75.69

4.4.3 Evaluation of mixture splitting

Figured.68shows the results by using the splitting mixture method. Furthermore, Table
4.3 shows the average number of mixture components, the total number of mixture
components, and word accuracy rate for the best model of the baseline and the models
by using the VB approach with several values of the prior paramegerPosterior
predictive probabilities defined by Ed@.{3 are used for decoding by Bayesian ap-
proach, showing that the VB approach obtained almost the same performance with a
15%-smaller number of Gaussians than that obtained by using the ML based method.
These results indicate that recognition performance is dependegt ®his posterior
parameter is updated by = po + Ni. As we explained about the other prior pa-
rameters likety, the dfectiveness ofg is dependent on the number of sampllgﬁ;

the larger the number of samples, the smaller fiiece Furthermore, the amount of
training data in these experiments is too small for use as conventional training data.

In addition, we evaluated four combinations of topology training methods and de-
coding methods to examine combinations of the VB-based topology training, the VB
mixture splitting, and the decoding by the Bayesian approach. This experiment can
show that criteria both for topology training and mixture selection should be consis-
tent.

For topology training, we can select either the ML-SSS or the VB-SSS, while for
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Total # of mixture components

—=&— ML-SSS (1,400 states, max state length=3) + manual mix selection
—@— VB-SSS (1,419 states) + VB mix selection
—&— ML-SSS (1,400 states, max state length=3) + VB mix selection

--%--VB-SSS (1,419 states) + manual mix selection

Figure 4.7 Word accuracy rates by four types of combinations.
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mixture selection, we can use the ML-based manual selection or the VB-based method.
The decoding method is dependent on the parameter estimation method, and for ML-
based manual selection, it is the usual ML-based decoding (ML decoding) method. For
models trained by VB-based mixture selection, posterior predictive probabilities are
used for decoding. This is called “PPP decoding” for short in this section. Therefore,
there are four combinations as listed below.

1. ML-SSS+ manual mixture selection ML decoding
2. VB-SSS+ VB mixture selection+ PPP decoding
3. ML-SSS+ VB mixture selection+ PPP decoding

4. VB-SSS+ manual mixture selectiom ML decoding

In both methoddl and2, the criteria for both topology training and mixture selection
are the same, and their results are the same as those f&and Tabléd.3

Figurel4.7 shows word accuracy rates achieved by these four combinations. The
VB approach both for topology training and mixture selection gave the best result
among these combined methods.

4.5. Summary

We proposed using the Variational Bayesian approach to automatically create non-
uniform, context-dependent HMM topologies. We introduced the VB approach to the
SSS algorithm to create contextual and temporal variations for HMMs and then defined
posterior probability densities and the VB free energy as split and stop criteria. We
evaluated the proposed method for word-based continuous speech recognition. The
VB-SSS automatically achieved comparable performance with about 60% of states
generated by the ML-SSS. Furthermore, we evaluated a method for increasing the
number of mixture components, employing the VB approach. Experimental results
indicated that the VB approach could obtain almost the same performance with a 15%-
smaller number of Gaussians than that obtained by using the ML-based method.

We evaluated performance for combinations of several values of prior parameters
and found the almost optimal value or range for each parameter. Theoretically, their
effectiveness is dependent on the number of samples, and the obtained suboptimal
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values can be applied to other tasks. However, there are still some rooms for improving
prior parameters.

The ML-SSSY] cannot use Gaussian mixture HMMs, and iidult to extend the
production of mixture models. 118[f], Kato et al. proposed a decision tree clustering
for Gaussian mixture HMMs. It can deal with Gaussian mixture HMMs during topol-
ogy training, but the number of mixture components and the number of states for each
allophone model are fixed. For future work, we would like to develop a method to op-
timize the number of states for a whole model, the number of states for each allophone
model, and the number of mixture components for each state, simultaneously.
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Chapter 5

Language Modeling Using Patterns
Extracted from Parse Trees

5.1. Introduction

In both Chapte8 and Chapteld, we proposed the two types of automatic generation
of acoustic modeling. In this chapter, we will present our new method for language
modeling.

In large vocabulary continuous speech recognition, word n-gram models are widely
and dfectively used as language models. However, they can represent only local con-
straints within a few successive words and lack the ability to capture the global struc-
tures of sentences. Trigger models have been proposed to cope with these wedkrjesses|
They can model word co-occurrence characteristics beyond 2-3 grams. S. Zhang et al.
also proposed a solution called Linkgrd@]. This model has word pairs extracted
from parse trees and can represent syntactic relations between word pairs. Such con-
straints, however, are weak for the global structures of sentences. Chelba and Jelinek
proposed a method using a stochastic parser as a languageI8§@€J[ which called
as a Structured Language Model (SLM).

We propose two new types of language models using phrasal constraints extracted
from parse trees produced by an example-based parser. For spontaneous speech, ex-
act sentence structures are not so important, but partial structures are more useful for
constraints. First, we propose n-gram models for sentences with phrase constituent
boundary markers, and second we propose word pattern models using partial structure
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patterns of parse trees. Both of these methods attach weight to constraints of par-
tial phrase structures. These models are created from outputs of the example-based
parser, called the Constituent Boundary Parser (CBP), which was developed by Furuse
et al., ATRR3], for example-based machine translation, called Transfer-Driven Ma-
chine Translation (TDMT). The parser analyzes sentences by example word patterns
and rules made by hand.

The proposed models extracted by the parser can represent not only intra-phrase
constraints, but also inter-phrase constraints, the latter of which appear as syntactic
long-distant constraints between words. Our models can represent local structures ex-
tracted from only surface word sequences after preprocessing, and bigger structures
extracted from subtrees of parse trees. These models do not take account of represent-
ing global structures but they include local constraints, while the SLMs try to represent
global structures. In spontaneous speech, there are so many sentences whose global
structures are ungrammatical but local structures are grammatical. It is suitable for
spontaneous speech to represent local constraints.

In this paper, first, we describe phrase structure representation by our parser in
Sectionb.2 Second, our proposed language models are introduced in SEcBon
In Sections.4, we apply these new models to the task of speech recognition of ATR
travel dialogues in Japanese, and show the performance of these models. Furthermore,
we investigate thefeectiveness of word pattern models by additional experiments in
Sectior5.8

5.2. Phrase Structure Representation

The language models proposed in this paper incorporate linguistic constraints depend-
ing on the phrase structures of sentences. This section gives a brief explanation about
the phrase structure representation used in this research.

5.2.1 Phrase structure using constituent boundaries

As a parser of spoken-language translation, ATR proposed a method called Constituent
Boundary Parsing (CBP) that uses pattern matching on the surface28tmdBP
considers that every content word in a sentence is separatedyondedl from another
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content word by either a function word or an artifidRart-of-Speech-bigram marker
For example, I'go to Kyotd can be thought of as follows:

“1” “ < pronoun-verb>"  “go’
content marker content
13 toﬂ 13 Kyotdl
function content

In this example, the original sentence has three content worfs;do,” and “Ky-
oto.” Since there is no function word betweeh ‘and “go,” a POS-bigram marker
“< pronoun- verb >" is inserted to demarcate the boundary.

From the above representation, CBP builds up a tree by using “constituent pat-
terns.” A constituent patterriX-b-Y, represents a partial structure consisting of one
boundary marker (i.e., a function word or a POS-bigram marke@nd two content
words, X andY, surroundingb. For example, wheib is a function word, to,” X-

“to”-Y is a constituent pattern showing that two content words adjacemdt¢e’.g.,

“go to Kyotd) forms a partial phrase structure. Constituent patterns can be used re-
cursively in such a way that a partial structure identified as a constituent pattern can
be treated as one content word in another constituent pattern. Each pattern has one of
the constituents as the headword or “head.” The head is regarded as “representative”
of the pattern. As shown in Fig. D the phrasedo to Kyotd is an internal element

of another patternX <pron-verb> Y.” Note thatX andY have some constraints that
preclude them from matching with arbitrary words and phrases.

It may appear that a constituent pattern is similar to the right-hand side of rewriting
rules in context-free grammars. Actually, there is fiallence in that a constituent
pattern always has three elements and that the second element should be a boundary
marker.

This procedure is language independent and can be applied to Japanese. In Japanese,
function words are often omitted, especially in the case of spontaneous speech. To deal
with such cases, boundary markers are inserted into places where function words are
omitted. Therefore, the parser can make structures by analyzing only surface patterns.
Accordingly, this parsing method isfective for spoken languages.

For example, FigurB.2(a) shows a parse tree ofvatashi wa Kyoto e ikliwhich
means t go to Kyotd in English. In Japanese spontaneous speech, this sentence may
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X <pronoun-verb> Y X §<pr0n0un-verb> Y

7N 7N

! /Xfo V' [Head=go]
go Kyoto
(a) “Igo.” (b) “I go to Kyoto.”

... Function words or boundary markers.

[Head= ] .... Headwords.

Figure 5.1.Structures of (a)lI‘go” and (b) “l go to Kyota” (a) The marker, <pronoun-
verl>," is inserted betweenl" and “go,” and the structure is a patteriX“<pronoun-
verb> Y.” (b) An example structure is made by pattern¥,<pronoun-verl> Y” and
“XtoY.” “Head” means a headword that is representative of a sub-tree.

become Watashi, Kyoto e ikl The function word Wwa’ is removed in this case. To
cope with such problems, first, the parser inserts a boundary marker be twestshi

and ‘Kyoto” like “watashi<pronouns Kyoto e iku’ Second, it extracts a structure
like that in Fig.5.4b). Therefore, the same structure as (a) is obtained even if some
function words are omitted.

5.2.2 Parsing procedure

The parsing procedure receives a sentence that is segmented into words with part-of-
speech tags and outputs a phrase structure tree. The procedure consists of two major
steps: preprocessing and main processing.

The preprocessing step is responsible for the following two tasks: the first task
is to convert words in the semantic point of view. This includes combining com-
pound words, dividing a word with complex meaning into a sequence of more primitive
words, and normalizing morphological or lexical variants into a 'standard’ form. These
are done by using rules and dictionaries originally designed for machine translation.

The second task is to insert boundary markers by referring to a set of rules currently
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/ \[Head= ik | / \[Head iku ]

watashi X e Y watashi

/ \ / \

Kyoto iku Kyoto iku

e ik
Figure 5.2.Structures of example Japanese sentences. These structures are constructed
by (a) patternsX wa Y’ and “X e Y’ and (b) patterns X <pronoun> Y” and “X e Y,
respectively.

manually written. They are dependent on POS tags for both preceding and succeeding
words.

The resulting word sequences are called “modified word sequences.”

The main processing step is responsible for building a tree from analyzed sentences
including boundary markers. TDMT employs a bottom-up chart parser for this pur-
pose. Parsing ambiguity is resolved by using semantic scores of constituent patterns
[38].

5.3. Proposed Language Models

5.3.1 Modified word trigram models

A modified word trigram model is a word trigram model of a preprocessed sentence,
as shown in Figur®.3 Since boundary markers in preprocessed sentences represent
phrase boundaries, we can expect the modified trigram models to contain better struc-
tural information than the standard word n-gram models. In addition, the modified
trigram models can be considered as variable-length-unit n-gram models because units
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Preprocessed sentence with boundary markers

.......................................................

j, Extract trigram models.

Modified word trigram models

<s> I i<pronoun-verb>:

... Function words or boundary markers
<s> .... Sentence start
</s> .... Sentence end

Figure 5.3.Modified word trigram models.
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<pronoun-auxv> Level 1 Word Pattern:

P(room|reserve, < verb — det >)

1 would like to

[reserve]

et rferbetr e

<verb-det>

<noun-noun>

hotel room

Level 2 Word Pattern:
P(city|reserve, < verb — det >, room,in)

Input sentence with markers:
“I, <pronoun-auxv>, would like to, reserve, <verb-det>,
a, hotel, <noun-noun>, room, in, the, city.”

Original sentence: t

“I, would, like, to, reserve, a, hotel, room, in, the, city.”

Figure 5.4.Extraction of pattern models from a parse tree.
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of words are modified by the rules included in the preprocessing of this parser.

5.3.2 Word pattern models

Each sub-tree in these parse trees usually includes two content words and either a
function word, or a POS-bigram marker. Sub-trees that are not leaf sub-trees include
headwords instead of content words. We define these words in a sub-tree as a set of
word pattern features. If these patterns are used as models, they can represent not only
phrasal constraints, but also neighboring phrasal constraints. Because headwords are
keywords among lower sub-trees, patterns extracted from sub-trees connect headwords
to other words in the same sub-trees even if these words are not contiguous with each
other. Therefore, these pattern models can be considered as trigger models constrained
by parse trees.

Figure5.4 shows how word patterns are extracted from an English sentence. A
level 1 word pattern is defined as a set of words included in one sub-tree. The smaller
circled sub-tree in the center of the figure includes three worésele,” “ < verb —
det>,” and “room” The probability of this word set is defined &roomresene, <
verb— det>). We call it a level 1 word pattern model. Since word pattern models in-
clude headwords, which in this example aresewe,” and “room” they can represent
relations among neighboring phrases, that is, long-distance relations among words in
original sentences. Word orders are kept in pattern models.

A level 2 word pattern is defined as a set of words included in two contiguous sub-
trees.P(city|resewe, < verb— det>,room in) can be extracted from the larger circled
sub-trees as a level 2 word pattern. Since level 2 word patterns have longer word
sequences than level 1 word patterns, pattern models at level 2 have more constraints
than those at level 1.

Deeper level pattern models can be defined in the same manner. These pattern
models can represent relations among more words. Therefore, these pattern models can
be considered as variable-length n-gram models including long-distance dependency.
Furthermore, we define levBl pattern models as including levidl- 1 pattern models.
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5.3.3 Formulation

The probability of a modified trigram model is defined as the same as that of a conven-
tional trigram model.
The probability of a word pattern model is defined as an n-gram probability,

C(hi—N+l9 B hi—l’ hl)
Zhi C(hi—N+17 CIE) hi—l’ hl) ’

whereC(h_n.1, ..., hy) is the frequency of word pattefih;_n.1, ..., hj} with N words
in the training data. These words are not necessarily contiguous. Thehwoehans
any kind of word, e.g., a content word, a headword, a function word, or a boundary
marker. The numerator is the frequency of the target pattern and the denominator is
the frequency of patterns having the same left context as the target pattern.

One word in a sentence usually has some word patterns included in the word pattern
models extracted from the training data. We define the pattern probability for the
current wordw; as follows:

P(hilhi—ns1, ..., hizg) = (5.1)

. 1
I:)pattern(wi |W|1_1) = N_ Z I:)pattern(wi |Wp), (5-2)

wherew, denotes a word pattern included in the word history and
W‘l‘1 = {wy, wy, ..., wi_1}. Ny is the number of word patterns for the current word. This
equation means an average of probabilities.

Next, we define a probability combined with an n-gram probability with boundary
markers and a word pattern probability:

P(wi |Wi1_1) =41 F:'pattern(wi |Wi1_1) + (1 - /1) : Pmod—Sgram(wi|wi—2, wi—l), (5-3)

wherePpaiern IS @ probability of word patterns defined in Equati@ng, Pmod-3gram

is a modified word trigram probability, antlis a constant. The word pattern models

are used only when some pattern models can be extracted from sub-trees including a
target word in a parse tree of each candidate. Although pattern models can be applied to
patterns extracted from word histories without constraints of parse trees, some pattern
models might be irrelevant to target contexts. Therefore, we use constraints of parse
trees. Furthermore, in this papgfor each model was set to the optimal value obtained
from experimental results.
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5.3.4 Training and recognition schemes

Figure5.3 shows training and recognition schemes. For training, first, word bigram
models are extracted from the training database. Second, modified word trigram mod-
els are extracted from the modified training database analyzed by the preprocessing
of the parser. Finally, word pattern models are extracted from the parse tree database
created by the parser.

For recognition, word bigram models are used in the first pass search. The N-best
candidates of the first pass are analyzed and parsed before the second pass search. The
analyzed candidates are used for modified word trigram model, and the parse trees of
candidates are used for word pattern models. These language models in the second pass
search rescore the original candidate sentences. The final candidates are the rescored
original sentences. The modified sentences are used in only internal calculations of the
second pass search. Therefore, the rescored original sentences were evaluated in the
next experiments.

5.4. Experiments

5.4.1 Experimental conditions

Experiments were carried out using the proposed language models for the Japanese
travel dialogues in the ATR spontaneous speech daté@#jsdfirst, we used “The

Travel Arrangement Task (TRA)” for this evaluation. For analysis conditions, the sam-
pling frequency was 16 kHz, the frame length was 20 ms, and the frame shift was 10
ms. 12 order MFCC, 12 ord&yMFCC, log power, and log power were used as fea-

ture parameters. Cepstrum Mean Subtraction was also used. 407 dialogues including
about 5 hours of speech were used for training acoustic models. For acoustic models,
gender dependent HMMs with 1,403 states were made by the ML-SSS algaffithm|[
The male model had five Gaussian mixtures per state and the female model had 15
mixtures. Tabléb.J shows the amount of training data for language models and the
amount of test TRA data. It also includes the number of sentences before and after
preprocessing. There were some sentences that could not be parsed. Therefore, the
number of sentences were decreased. To compare our proposed models, traditional
word trigram models were applied to the second pass search.Hadlsleows the total
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Figure 5.5.Training and recognition schemes.
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Table 5.1.Text data

Training Test (TRA)
#dialogues 7,195 42
#sentences 1.20x 1¢° 551
before processing (1.35x 10°) (5,221)
#sentences 0.88x 10 551
after processing| (1.13x 10° [0.16 x 10°]) | (4,796 [674])
Vocabulary size 16,355
#kinds of markers 98

The values in () are the number of words included in the sentences. The valuesin []
are only the number of boundary markers.

number of entries for each model. These @inalues of pattern models were decided

by the results of experiments. In the same way, almost optimalere used in the
following results. Since models deeper than level 7 needed much more memory, we
could only use level 1 to 7 word pattern models in the experiments.

5.4.2 Evaluation by perplexity

Table5.3 shows the word and sentence perplexity for the TRA task for each language
model. The word perplexity is the perplexity per word, and the sentence perplexity
is the perplexity per sentence. Since word units are changed for the model (3) and
model (4)—(11), the word perplexity values of the models (3)-(11) cannot be com-
pared to those of both bigram models (1) and trigram models (2). Additionally, the
sentence perplexity values between models (1)—(3) before the marker insertion and
models (4)—(11) after that cannot be compared. However, they give some indications
of improvements. Modified trigram models without markers (3) had large perplex-
ity. Since the preprocessing of this parser modifies words by knowledge, analyzed
sentences include more kinds of trigrams with lower frequencies. However, after the
insertion of boundary markers, modified trigram models with markers (4) can improve
perplexity because markers work like classifiers and frequencies of trigram models are
increased. Furthermore, pattern models improved perplexity slightly.
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Table 5.2.Total number of entries
#entries | Cutof

(1) Word bigram models | 3.3x10* | 2

(2) Word trigram models | 1.1 x 10° 1
(3) Modified trigram models 9.8 x 10* 1
without markers
(4) Modified trigram models 1.1 x 10° 1
with markers
(5) (4) + Pattern (level 1) | 1.6 x 10 4
(6) (4) + Pattern (level 2) | 1.8x 10* 7
(7) (4) + Pattern (level 3) | 6.4x10°| 24
(8) (4) + Pattern (level 4) | 82x10°| 24
(9) (4) + Pattern (level 5) | 1.4x10*| 20
(10) (4)+ Pattern (level 6) | 1.4x 10* | 21
(11) (4)+ Pattern (level 7) | 1.3x10* | 26

5.4.3 Evaluation by word accuracy

Tableb.4shows the word accuracy for each language model. The 100-best sentences of
results by bigram models were rescored by another models. The 100-best accumulated
word accuracy was 92.37%. Modified trigram models both with and without markers
improved performance because these models use longer word units, where multiple
words are treated as one word. Modified word trigram models obtained significant
differences with less than 1% risk rate for word trigram models by the Wilcoxon signed
rank test. The improvements by word pattern models were slight against modified
trigram models. Our pattern models obtained significafiedénces with 12.5% risk

rate by the signed test for each word. However, the deeper level models obtained higher
accuracy. This shows that pattern models can improve performance if target sentences
have the same patterns as those included in the pattern models. These models may
obtain significant dferences with lower risk rate if the large amount of data can be
used for evaluation. This task does not have particularly long utterances. The average
length of utterances in the evaluation data is 9.6 words per sentence. Pattern models
may be suitable for longer sentences. We will investigate the characteristics of pattern
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Table 5.3.Perplexity for the TRA task
Word Sentence

Language models perplexity | perplexity
(1) Word bigram models 27.19 290.2

(2) Word trigram models 19.73 205.9
(3) Modified trigram models 27.73 235.2
without markers
(4) Modified trigram models 17.49 168.8
with markers
(5) (4) + Pattern (level 1) 17.41 168.1
(6) (4) + Pattern (level 2) 17.43 168.2
(7) (4) + Pattern (level 3) 17.44 168.3
(8) (4) + Pattern (level 4) 17.44 168.4
(9) (4) + Pattern (level 5) 17.44 168.3
(10) (4)+ Pattern (level 6) 17.44 168.3
(11) (4)+ Pattern (level 7) 17.44 168.4

models in the next section.

5.5. Evaluation of Pattern Models

In the previous experiments, pattern models could obtain only slight improvements.
Word pattern models are similar to trigram models when applied to short sentences
because they have only small structures with a few sub-trees. Therefore, pattern models
can be expected to be suitable for long sentences that have a lot of sub-trees. For
evaluation of pattern models, we used another task data set whose utterances were
much longer than those of the TRA task.

5.5.1 Performance in the APP task

For the evaluation, we used “The Appointment Scheduling Task (APP),” which con-
tains dialogues to schedule a meeting and to show the way to meeting place&.Jable
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Table 5.4.Word accuracy for the TRA task

Language models Word accuracy [%0]
(1) Word bigram models 83.64
(2) Word trigram models 85.49
(3) Modified trigram models 86.56
without markers

(4) Modified trigram models 86.64
with markers

(5) (4) + Pattern (level 1) 86.64
(6) (4) + Pattern (level 2) 86.68
(7) (4) + Pattern (level 3) 86.70
(8) (4) + Pattern (level 4) 86.70
(9) (4) + Pattern (level 5) 86.72
(10) (4)+ Pattern (level 6) 86.74
(11) (4)+ Pattern (level 7) 86.74

Table 5.5.APP Test Set
#dialogues 20

#sentences before processing 185 (3,511)
#sentences after processingl85 (3,426 [474])

lists text information of the test set. The average length of sentences for the APP task

was 13.9 words. The acoustic models were trained by using the data of the APP task

including 3,631 dialogues, about 51 hours of speech. The same language models were
used as those in the previous section. The 6.7% of sentences included in the training
data belonged to the APP task. The parser that we used for extracting models was not
configured for this task.

Table[5.6 shows perplexity for the APP task and TaBl& shows word accuracy.
The 300-best sentences by bigram models were used for rescoring by another mod-
els and the 300-best accumulated word accuracy was 85.37%. Since our parser was
designed for the TRA task, our language models which employs parse trees are not
well suited for the APP task compared with trigram models. Therefore, the absolute
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Table 5.6.Perplexity for the APP task
Language models Perplexity
(1) Word bigram models 30.96
(2) Word trigram models 20.94
(4) Modified trigram models 21.78
with markers

(11) (4)+ Pattern (level 7) 21.73

Table 5.7.Word accuracy for the APP task

Language models Word accuracy [%0]
(1) Word bigram models 74.96

(2) Word trigram models 78.57

(4) Modified trigram models 76.92

with markers

(11) (4)+ Pattern (level 7) 77.07

performances were not so good and conventional word trigram models obtained better
performances than our proposed method. However, the relative performance between
modified trigram models and pattern models for the APP task is similar to that for the
TRA task. Therefore, it is enough to evaluate the relative performance between these
models by using the APP task.

5.5.2 Evaluation for the length of sentences

We evaluated the performance of pattern models by comparing it to that of the modified
word trigram models with markers for thefidirent lengths of sentences.

Perplexity improvement rates

Figuredb.G andb. 7 show perplexity improvement rates for the TRA task and the APP
task, respectively. The horizontal axes show the number of words in one sentence. The
left vertical axes show the perplexity improvement rates from modified trigram models
with markers to level 7 word pattern models. The right vertical axes show the sentence
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Figure 5.6.Perplexity improvement rates for the TRA task.
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Figure 5.7 Perplexity improvement rates for the APP task.
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frequency rates. Some large improvements were obtained for two- to four-word-length
sentences for example, two-word-length sentences in the TRA task obtained a 43.5%
perplexity improvement rate. Since a bigram marker is dependent on POS tags of both
its preceding and succeeding words, probabilities of contiguous words around markers
usually become higher after markers are inserted. Additionally, pattern models can
give much higher probabilities if some patterns in evaluated sentences are included
in pattern models. Apart from this, small improvements were obtained for five- to
52-word-length sentences by the pattern models.

Error reduction rates

Figuresh.8 and5.9 show error reduction rates for the TRA task and the APP task,
respectively. The left vertical axes show the error reduction rates and the other axes are
the same as for the perplexity improvement rates. Some improvements were obtained
for 10- to 34-word-length sentences by the pattern models. However, some decline
in performance was observed for over 34-word-length sentences. Therefore, these
results exactly show that the pattern models are mfiegtve for long sentences, but

their models have some upper limits related to sentence length. For these results, we
performed the signed test for each word, and obtained significBiatehces with 6%

risk rate for 10- to 34-word-length sentences of both the TRA task and the APP task.
Using both of these data, we further obtained the significafergnce with 1% risk

rate. Therefore, it can be considered that longer patterns can improve performance and
improvement rates are dependent on sentence lengths.

5.6. Evaluation of ASR Using MDL-SSS and Pattern Lan-
guage Model

In this dissertation, we propose two types of topology training for acoustic modeling
and the word pattern models extracted from parse trees for language modeling. In
this section, we will evaluate performance by combination the proposed methods, the
MDL-SSS algorithm and the word pattern language models.
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5.6.1 Evaluation

To evaluate our proposed method, we tested the following four combinations:
1. Acoustic models by ML-SSS and multi-class composite bigram models.

[(d) TJand rescoring by word trigram models.
[(b) T]and rescoring by word pattern models.

2. Acoustic models by MDL-SSS and multi-class composite bigram models.

[(@) 2and rescoring by word trigram models.
[(6) 2 and rescoring by word pattern models.

These combinations were evaluated in the same manner as in GBapter

For acoustic models, we only evaluated the MDL-SSS algorithm as a proposed
method, and the ML-SSS algorithm as a baseline method. Although the VB-SSS al-
gorithm is more &ective than the MDL-SSS algorithm for small amounts of train-
ing data, our current program and algorithm of the VB-SSS hafiiedlty with large
amounts of training data. On the other hand, the MDL-SSS algorithm can also work
well for the training data used in this evaluation, which includes 30-hour speech data.
Additionally, we expect that both the VB-SSS and the MDL-SSS can obtain compara-
ble performance for sticient amounts of training data.

The multi-class composite bigram model has been proposed as the language model
that can obtain almost the same performance as that by a word trigram r8dfjel [
apparently, this language model can obtain even better performance than that by a word
bigram model. For this reason, we used the multi-class composite bigram models as
the baseline language models. These word pattern models include the modified word
trigram models and the word pattern models extracted from parse trees.

5.6.2 Experimental Conditions

These experimental conditions are almost the same as those of $&&tibrFor the
test set, we used 42 one-side dialogs extracted from the Japanese TRA database. This
evaluation set includes about 5,000 words.
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Table 5.8.Perplexity for the TRA task by several language models used in this chapter
Word

Language models perplexity

(1) Multi-class composite bigram models 21.05

(2) Word trigram models 19.73
(3) Modified trigram models 17.49
with markers

(4) (3) + Pattern (level 7) 17.44

First, we will describe the acoustic models. We used 26 kinds of phoneme and
one silence. A silence model with three states was built separately from the phoneme
models. The phoneme models were created in the same manner as in Bgtflon
In this chapter, acoustic models were generated by the ML-SSS, or MDL-SSS, and
compared. For the ML-SSS, we constructed three kinds of model with 1,000, 1,400, or
2,100 states. For the MDL-SSS, we made the model generated byQisin@, C; =
20. For the acoustic training data, both the Japanese TRA database and the BLA
database were used. The analysis conditions were a frame length of 20 ms and a frame
shift of 10 ms. Twelve-order MFCC, 12-ord&MFCC, andA log power were used as
feature parameters. The cepstrum mean subtraction was applied to each utterance.

Next, we will describe language models used in these experiments. For the lan-
guage training set, we employed 7,195 one-side dialogues which inclugled1f
words. Multi-class composite bigram mode&|] with 700 classes and 5,216 com-
posite words were used as the language models in the first pass instead of conventional
word bigram models. In the second pass, our proposed method, the word pattern mod-
els extracted from parse trees were used for rescoring. The word pattern models (level
7) were the same as those in Secftod The vocabulary size in the set was 27,398,
and 5,216 composite words were added to the vocabulary.

5.6.3 Experimental Results

Table5.8 shows perplexity for each language model used in this chapter, although
these values have already been presented in the preceding chapters. The multi-class
composite bigram models obtained slightly greater perplexity than the word trigram

91



91

90.46
90.22
89.98
90
89.68
89.4
- 89.0
&, 89
= 88.7
§ 88.6 88.6088'7 88.7(
5
[&]
[&]
[
5 87.8
o 88
=
87 —
Multi-class composite bigram models
OWord trigram models
Bl Pattern models
86 S N [ Y
ML-SSS ML-SSS ML-SSS MDL-SSS
(1,000 states) (1,400 states) (2,100 states) (2,086 states)

Figure 5.10. Performance by the ML-SSS and the MDL-SSS with the multi-class
composite bigram models, or rescoring by the word pattern models.

92



models, although the multi-class composite models have some advantages for recog-
nition. The multi-class means “multi-dimensional,” and the multi-class models rep-
resent the left- and the right-context dependency. Therefore, this method can obtain
better performance than conventional single-class models. Furthermore, like the com-
posite models, this model introduces higher order word n-gram models by regarding
frequent-variable length word sequences. These word sequences are added to a lex-
icon as new entries, and those probabilities are defined by using multi-class models.
Since the increase of parameters only corresponds to unigrams of word succession,
this composite n-gram models can maintain a compact model size.

The perplexity by the modified-word trigram models was better than that for the
original word trigram models because the modified-word trigram models include word
normalization, exact segmentations, and other knowledge produced manually. The
word pattern models obtained almost the same perplexity as the modified-word trigram
models. The average frequency of applying word pattern models was 2.6 per utterance.
Since the average length of utterances was 9.6 words per utterance for this task, the
word pattern models were not sfiective.

Figurelb.10shows experimental results. For acoustic modeling, the ML-SSS with
1,400 states and the MDL-SSS wiih = 2, C; = 20 obtained almost the same perfor-
mance when the multi-class composite bigram model was used as a language model in
the first pass. For rescoring by word trigram models, the ML-SSS with 1,400 states ob-
tained slightly better performance than that by the MDL-SSS. However, the MDL-SSS
usingC, = 2,C; = 20 obtained slightly better performance without any other experi-
ments by using the word pattern models. Although the ML-SSS can obtain almost the
same performance, the number of states should be selected carefully as we described
in Chaptefd For language modeling, the word pattern models including modified-
word trigram models obtained much better performance than that by the word trigram
rescoring. The absolute improvement rate was 1.7% from the baseline, that is, the sys-
tem using the ML-SSS with 1,400 states and the multi-class composite bigram models.
The relative error reduction rate was 15%. The score of 90.46% obtained by the MDL-
SSS and the word pattern models is the best word accuracy in several evaluations of
this task from ATR-ITL for more than five years.

Additionally, we constructed an another acoustic model by the MDL-SSS algo-
rithm from the larger training database. This training data includes TRA, BLA, and
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APP databases, giving a total length of utterances of about 85 hours, which is 2.8 times
the amount of training data used in this section. The APP database includes utterances
by about 4,000 persons from all over in Japan. Many years and a much money were
needed to collect the utterances and to make transcriptions of them.

Using both this acoustic model and multi-class composite bigram models, we ob-
tained a 90.34% word accuracy rate for the same evaluation data. This performance
is almost the same as the best performance in this section, 90.46%, indicating that
it is much more important to find better ways to extract good features from existing
databases and to create models, although increasing the amount of training data is still
important to improve performance.

5.7. Summary

We proposed two new types of language model to represent phrasal structures by pat-
terns extracted from parse trees. First, modified word trigram models were proposed
that used words modified by the knowledge of the preprocessing for parsing. These
models can represent structures of phrases by using a few words including function
words, or bigram markers that denote word boundaries. Second, we proposed word
pattern models extracted from parse trees. These models can represent phrasal struc-
tures and much longer word dependency than trigram models. Experimental results
demonstrated that modified trigram models wefieative and that pattern models
could improve performances slightly. Furthermore, additional results showed that pat-
tern models were mordfective than trigram models for long sentences.

Finally, our proposed method, which includes both the MDL-SSS and the word
pattern model, was compared with the conventional method. The word pattern lan-
guage model obtained much better performance than the multi-class composite bigram
models. The model by the MDL-SSS was automatically obtained by using optimal
parameters, and this model performed best in this evaluation. On the other hand, for
the ML-SSS, several models should be evaluated to find the best model. Thus, the
MDL-SSS algorithm with the word pattern models can automatically obtain better
performance than the conventional method since these proposed methods can extract
more dficient models.
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Chapter 6
Conclusion

This dissertation presented two new methods for automatic topology training of acous-
tic modeling and one new method for language modeling.

First, this dissertation addressed automatic generation of acoustic models, espe-
cially criteria for splitting and stopping. To create shared-state HMMs, the Maximum
Likelihood (ML) criterion is widely used, for example, in the Decision Tree Cluster-
ing [5], or in the Successive State Splitting (SSS) algoritijfig]. Unfortunately, the
ML criterion suters the over-fitting problem: likelihood usually increases, when the
parameters increase. Therefore, it iidult to stop splitting and to find the best model
automatically. Information criteria have been used for this problem, which is referred
to as “model selection.” Although the Minimum Description Length (MDL) Criterion
has already been applied to the Decision Tree Clustering to create context-dependent
HMMs [9][[1Q], this clustering method cannot deal with the number of states for tem-
poral direction. It can only create models with the same number of state lengths.

To create non-uniform, context-dependent HMM topologies automatically, we pro-
posed the SSS algorithm based on the MDL criterion in Ch&t€he ML-based SSS
algorithm requires both the total number of states and the maximum length of states
in each triphone as stop criteria. Although our proposed method, the MDL-SSS al-
gorithm, also needs two scaling factors, we confirmed that there are almost optimal
values and that this method can create suitable models by using these values.

Second, in Chaptedl, we proposed an SSS algorithm based on the Variational
Bayesian approach. Although the MDL-SSS algorithm works well for large amounts
of training data, the MDL criterion cannot evaluate HMM structures precisely, espe-
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cially for small amounts of training data. The Variational Bayesian approach, on the
other hand, can evaluate complicated models like HMMs more precisely than usual
information criteria. We applied the VB approach to the SSS algorithm for automatic
generation of acoustic models. We defined prior and posterior probabilities for the SSS
algorithm, and derived the criterion as splitting and stopping, and the VB-SSS algo-
rithm obtained more fécient models than those by the ML-SSS algorithm. We also
applied the VB approach to create Gaussian mixture HMMs for topologies obtained
by the VB-SSS algorithm. This method automatically obtained smaller models than
those by the method based on ML estimation.

Changing the subject to language modeling, although word n-gram models are
widely used, they can only represent local constraints; sentences usually have partial
relations among words. To utilize such sentence structures, the Structured Language
Model (SLM) has been proposed ih9][[20]. This model uses a stochastic parser as
one of the language models, and it requires a large amount of parse trees and is very
strict on sentence structure. To improve language models at the point of model struc-
tures by employing sentence structure, in Chditare proposed word pattern models
extracted from parse trees. The proposed method includes modified word trigram mod-
els that used words modified by the knowledge of the preprocessing for parsing, and
word patterns extracted from parse trees. The modified word trigram models can rep-
resent structures of phrases by using a few words including function words, or bigram
markers that denote word boundaries. The word pattern models extracted from parse
trees can represent phrasal structures and much longer word dependency than trigram
models. Experimental results demonstrated that modified trigram models fiece e
tive and that pattern models could marginally improve performances. Furthermore, the
word pattern models were moré&ective for long sentences than trigram models.

Additionally, in Sectiors.6, we evaluated a combinations of our proposed meth-
ods, the MDL-SSS algorithm and the word pattern models. The word pattern language
model obtained much better performance than the multi-class composite bigram mod-
els as one example of a conventional method. The model by the MDL-SSS was au-
tomatically obtained by using optimal parameters, and this model performed best in
this evaluation. In fact, we obtained better performance by using both the MDL-SSS
algorithm and the word pattern models.
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Here, we will provide suggestions for future research related to issues discussed in
this dissertation.

For automatic generation method of acoustic models, in this thesis we only pro-
posed topology training methods to create single Gaussian HMMs and a method to
increase mixture components after topology training. Methods that can automatically
create Gaussian mixture HMMs are required, since conventional topology training
methods can only create single Gaussian HMMs. Itfisadilt to find the best combina-
tion of both the number of states and the number of mixture components automatically.
This may well prove to be a challenging issue.

We only focused on standard HMMs with phoneme-contextual dependency and
temporal duration dependency, and some novel methods are still needed to create mod-
els automatically if one makes a new type of model that includes some new features.
These days, many types of Bayesian network are applied to acoustic models, and such
models also need automatic generation methods.

There is a large variety of speech corpora, for example, phonetically balanced
sentences, speech read from newspapers, conversational speech, and lecture speech,
though acoustic models are usually created for specific tasks from the same database.
To utilize many kinds of databasefiuaiently, automatic generation methods of acous-
tic models are needed. Such methods should be able to extract a lot of acoustical
features from databases automatically.

Our proposed methods only aim at acoustic modeling, but similar methods may
be developed for language modeling. A method to find the best combination both of
acoustic models and language models may be possible in future.

Additionally, we applied the VB approach to topology training. The VB approach
was used for the split criterion, the stop criterion, and the parameter estimation method.
Models derived by the VB approach are those based on the Bayesian learning, and
such models should be investigated in greater depth. Also, the VB approach is more
effective for small amounts of data than the ML estimation. Therefore, this approach
can be used for speaker adaptation like the method proposed by Watanab@¢jt al. [
The VB approach’s value is that it can be applied to many kinds of adaptation method.

For language modeling, we proposed the modified word trigram models and the
word pattern models extracted from parse trees. They can represent both phrasal struc-
tures and long-distance dependencies. However, SLMs require many parse trees, while
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our proposed method also requires knowledge constructed manually. In our labs., that
knowledge has been produced for machine translation for many years, but it is strongly
dependent on the ATR travel-arrangement task. SLMs need some common databases
that everyone can use, or some method that can extract such information automati-
cally, and such databases require a lot of human power and time. For this reason,
many groups should collaborate to produce some common databases that include a lot
of parse trees for large amounts of text, and should open them for everyone to share,
especially since computer processing power continually increasing, as is the amount
of storage available. Therefore, much larger databases can be used and are certainly
needed.

The more advanced language models should deal with local relations among words,
distance relations, sentence structures, semantic relations, and so on. Additionally,
some methods are needed to combine many kinds of language model. Since com-
puter resources are constantly improving, models should use many language features
as possible.
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Appendix A

Definitions for the VB-SSS Algorithm

A.1l. Objective Function of the VB-SSS Algorithm

The objective function can be written from EF.1J) as follows.

Ns
Fon=Fro+ ) (Faurll(a))y) + Faaoliny, i) + FaadZi)} (A1)
i=1

where¥, is the combination of the first term and the second term of EQX. F 341,

Faao, andFza3 are derived from the third term and the fourth term. For the state
(}‘341({a;j}?jl), Faaay;, Xi), and Fz43(Xi) are the terms related to the transition proba-
bilities, both the mean vector and the covariance matrix, and the covariance matrix,
respectively.

The first term and the second term can be calculated as follows.
T
7i2= [ a@a@)n| | po.zie)de - [ a@)ina@)iz
t=1

;
= Z f q(2)dZ{< In p(0, zI®) >qe) —INa(z)}

ZT] In i i exp(y (A.2)
t=1 i=1 j=1

The distribution of parameters is factorized as
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p(0) = p( aij};2 )p(u |Xi)p(Xi). Therefore, the third term is

Fo = f 9(0) In g(@)de

Ns
:Z{fq(a”jl)lnq(alj )da”
i=1

+ [ awizdaE)ymauiziduds + [ q(zi)lnq(zi)dzi}, (A3)
and the fourth term is

T = f 4(®) In p(©)de

Ns
:Z{fq(a,] =) In p(fay} e diay )=
i1

[ aul)atz) n pla=cscl + f o=)In p(zi)dzi}. (A4)

The first term with the staterelated to transition probabilities is as follows.

7:31( ai] j= 1) = fD( au j= 1 ¢|J )In@( aij ; ¢|J JNal)daJ
a Na
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(A.5)
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The free energy related to the transition probabilities is
Faa(lai?y) = —Fau(aj))=) + Farl(ayj))e)
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The second term in the left side of EB\.8) is
Faron Z) = [ 0/ I Gl e
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and the second term in the left side of BA.4) is
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The energy related to both mean vectors and covariance matrices is
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The third term in the left side of EJA(3) is
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The energy related to only covariance matrices is
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