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Blind Source Separation Based on Multistage

Independent Component Analysis∗

Tsuyoki Nishikawa

Abstract

A hands-free speech recognition system and a hands-free telecommunication

system are essential for realizing an intuitive, unconstrained, and stress-free

human-machine interface. In real acoustic environments, however, the speech

recognition performance and a speech recording performance significantly de-

graded because we cannot detect the user’s speech with a high signal-to-noise

ratio (SNR) owing to the interference signals such as noise. In this thesis, we

introduce blind source separation (BSS), which is an approach for estimating

original source signals only from the information of the mixed signals observed

in each input channel. Many BSS methods based on independent component

analysis (ICA) have been proposed for the acoustic signal separation. However,

the performances of these methods degrade seriously particularly under extreme

reverberant conditions.

The ICA-based BSS can be classified into two groups in terms of the process-

ing domain, i.e., frequency-domain ICA (FDICA) and time-domain ICA (TDICA)

From the experimental study using the conventional FDICA, the source-separation

performance is saturated because the independence assumption collapses in each

narrow-band. In TDICA, the convergence degrades because the iterative learning

rule becomes more complicated as the reverberation increases. In order to resolve

the problems, I newly propose multistage ICA (MSICA), in which FDICA and

TDICA are cascaded. In the proposed method, the separated signals of FDICA
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are regarded as the input signals for TDICA, and we can remove the residual

crosstalk components of FDICA by using TDICA. The experimental results in

the convolutive speech mixtures reveal that the separation performance and the

speech recognition performance of the proposed method are superior to those of

TDICA- and FDICA-based BSS methods.

In the original MSICA, we assume the specific mixing model, where the num-

ber of microphones is equal to that of sources. However, additional microphones

are required to achieve an improved separation performance. This leads to al-

ternative problems, e.g., a complication of the permutation problem. In order

to solve them, we propose a new extended MSICA using subarray processing,

where the number of microphones and that of sources are set to be the same in

every subarray. The experimental results reveal that the separation performance

of the proposed MSICA using subarray processing is improved as the number of

microphones is increased.

In the speech recognition system and telecommunication system, not only

a high SNR but also a high speech quality is required. For speech signals, we

must use TDICA with a nonholonomic constraint to avoid the decorrelation effect

caused by the holonomic constraint. However, the stability cannot be guaranteed

in the nonholonomic case. To solve the problem, the linear predictors estimated

from the roughly separated signals by FDICA are inserted before the holonomic

TDICA as a prewhitening processing, and the dewhitening is performed after

TDICA. The stability of the proposed algorithm can be guaranteed by the holo-

nomic constraint, and the pre/dewhitening processing prevents the decorrelation.

Moreover, to achieve a stable learning and low-distortion in the model where the

number of microphones is larger than that of sources, an extended learning al-

gorithm is newly proposed. The experimental results revealed that the proposed

algorithm provides the higher stability and the higher separation performance.

Keywords:

hands-free, microphone array, blind source separation, frequency-domain inde-

pendent component analysis, time-domain independent component analysis, con-

volutive mixture
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多段型独立成分分析に基づくブラインド音源分離∗

西川 剛樹

内容梗概

ユーザーに優しいヒューマンマシンインタフェースとして，ハンズフリー音
声認識システムやハンズフリー通話システムの実現が期待されている．実環境下
では，種々の背景雑音や反射・残響が存在するため，接話型マイクロホンを用い
た場合に比べユーザーの音声を高い信号対雑音比 (Sigal-to-Noise Ratio: SNR)で
集音できなくなる．そのため高精度な音声認識を実現することが困難になる．本
論文では，目的音の到来方位や適応処理のための非発話区間情報といった事前情
報が不要であるという利点を有するブラインド音源分離 (BSS)を導入する．BSS

とはマイクロホンアレーで受音された観測信号のみから目的音を分離する技術で
あり，音源信号同士の独立性を用いた独立成分分析 (ICA)に基づく手法が広く用
いられている．しかし，ICAの研究では通常の室内環境下での評価が十分にされ
ていなかった．そこで本論文では，従来 ICAの実環境下における性能評価を行い
適用限界を調査する．そしてさらに高精度かつ高品質に目的音を分離するための
新たな分離手法の提案を行う．

BSSは分離フィルタを推定する領域の違いで，周波数領域において分離する
周波数領域 ICA（FDICA）と時間領域において分離する時間領域 ICA（TDICA）
に分類される．実環境下における実験結果より，FDICAに基づくBSSでは，帯
域分割数を過度に増やすと狭帯域信号間の独立性の仮定が成立しなくなるという
問題により，長い残響を含む音の分離は困難であることが新たに確認された．一
方，TDICAに基づくBSSにおいては，分離フィルタの反復学習における低収束
性により，長い残響時間を有する混合系へ適用することは非常に困難であること
が確認された．そこで，本提案手法においては，FDICAによって分離された信
号をTDICAの入力とみなし，FDICAにおける残留クロストーク成分をTDICA

によって分離することによりこれらの問題を解決する．実環境下での音源分離実
∗ 奈良先端科学技術大学院大学 情報科学研究科 情報処理学専攻 博士論文, NAIST-IS-

DD0261017, 2005年 3月 24日.
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験より，提案手法は TDICA及び FDICAに比べ高い音源分離性能及び音声認識
率を実現できた．よって，残響環境下において，MSICAに基づくBSSはTDICA

及び FDICAに基づくBSSよりも有効であることが確認された．
提案した元のMSICAでは，マイクロホンと音源は同数であるというモデルを

仮定していた．残響環境下において，さらに高精度な音源分離を実現するために
は，マイクロホン数を増やす必要がある．しかし，素子数を増やすことで，FDICA

部において音源の入れ替わり問題が複雑になる，などの問題が生じる．この問題
を解決するために，音源と同数のマイクロホンにより構成されたサブアレーを用
いたMSICAに基づく優決定BSSを提案する．提案法では，サブアレーは音源と
マイクロホンは同数であるのでこの問題が生じない．実環境下における音源分離
実験より，提案法はマイクロホン数を増やすことで分離性能が向上するというこ
とが確認された．
ハンズフリー音声認識やハンズフリー通話では，妨害音の抑圧性能だけでなく

分離信号の音質もまた重要となる．音声信号のように時間的に相関のある信号に
対しては，ホロノミック拘束による無相関化を避けるために，非ホロノミック拘
束のTDICAを適用しなければならない．しかしながら，非ホロノミックの場合，
安定性は保証されない．この問題を解決するために，ホロノミックTDICAの前
に FDICAによってある程度分離された信号から推定された線形予測器を挿入し
prewhiteningを行う．そしてTDICAの出力信号に対し，dewhiteningを行う．提
案手法はホロノミック拘束により安定性が保証されており，pre/dewhitening処
理により無相関化を防ぐことができる．本提案手法では，マイクロホンと音源は
同数であるというモデルを仮定していたため優決定 BSSに適用することが困難
であった．この問題を解決するために，ホロノミック拘束のTDICA による分離
信号の白色化に寄与する成分を推定し，推定された処理歪み成分を用いて分離信
号の音質を改善する．残響環境下における実験結果より，提案手法は従来のホロ
ノミック拘束やノンホロノミック拘束に基づくTDICAに比べ高い安定性を有し，
高い分離性能を実現できることが確認された．
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1. Introduction

1.1 Background

A hands-free speech recognition system [1] (see Fig. 1) and a hands-free telecom-

munication system (see Fig. 2) are essential for realizing an intuitive, uncon-

strained, and stress-free human-machine interface. In the system, not only the

user’s speech but also interference such as interfering speech, background noise

and music, is detected by the microphone of the system. Thus, we cannot de-

tect the user’s speech with a high signal-to-noise ratio (SNR) compared with the

case in that we use a close-talking microphone such as a headset microphone (see

Fig. 3 (a)) and a hand microphone (see Fig. 3 (b)).

The methods for establishing a noise-robust speech recognition system can be

classified into two groups: methods based on a single-channel input, and those

based on multichannel inputs. As single-channel types of source separation and

speech enhancement techniques [2], a method of tracking a formant structure [3],

the organization technique for hierarchical perceptual sounds [4], and a method

based on auditory scene analysis [5] have been proposed. As multichannel-type

source separation, the method based on array signal processing, e.g., a microphone

array system (see Fig. 4), is one of the most effective techniques [6]. In this system,

the directions of arrival (DOAs) of the sound sources are estimated and then each

of the source signals is separately obtained using the directivity of the array. The

delay-and-sum (DS) array [7] and the adaptive beamformer (ABF) [8, 9, 10] are

conventional and popular microphone arrays currently used for source separation

and noise reduction.

While the DS array has a simple structure, it nevertheless requires a large

number of microphones to achieve high performance, particularly in the low-

frequency regions. Thus, the degradation of separated signals at low frequencies

cannot be avoided in these array systems. The ABF has the following drawbacks.

(1) The look direction for each signal separated is necessary in the adaptation

process. Thus, the DOAs of the separated sound source signals must be previ-

ously known. (2) The adaptation procedure should be performed during breaks

in the target signal to avoid any distortion of separated signals. However, we can-

not previously estimate signal breaks in conventional use. The above-mentioned
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Figure 1. Configuration of hands-free speech recognition system.

requirements arise from the fact that the conventional ABF is based on super-

vised adaptive filtering, and this significantly limits the applicability of the ABF

to source separation in practical applications.

In recent years, alternative source-separation approaches have been proposed

by researchers using not array signal processing but a specialized branch of in-

formation theory, i.e., information-geometry theory [11, 12]. Blind source sep-

aration (BSS) is the approach for estimating original source signals using only

the information of the mixed signals observed in each input channel, where the

independence among the source signals is mainly used for the separation. This

technique is based on unsupervised adaptive filtering [12], and provides us with

extended flexibility in that the source-separation procedure requires no training

sequences and no a priori information on the DOAs of the sound sources. The

early contributory works on BSS were performed by Cardoso and Jutten [13, 14],

where high-order statistics of the signals are used for measuring the independence.

Common has clearly defined the term independent component analysis (ICA), and

presented an algorithm that measures independence among the source signals [15].

This report on ICA was later followed by Bell and Sejnowski, where ICA extended

to the informax (or the maximum-entropy) algorithm for BSS which is based on

a minimization of mutual information of the signals [16].
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1.2 Thesis Scope

1.2.1 Problems of Conventional ICAs

The BSS methods based on ICA [15, 16] can be classified into two groups in

terms of the processing domain, i.e., frequency-domain ICA (FDICA) in which

the complex-valued inverse of the mixing matrix is calculated in the frequency

domain [17, 18, 19, 30, 31, 20], and time-domain ICA (TDICA) in which the

separation system of the FIR-filter matrix is calculated in the time domain

[11, 21, 22, 23, 24]. The recently developed BSS techniques can achieve a good

source-separation performance under artificial or short reverberant conditions.

However, the performances of these methods under extreme reverberant condi-

tions significantly degrade because of the following problems. (1) In conventional

FDICA, the source-separation performance is saturated before reaching a suffi-

cient performance because we transform the fullband signals into the narrow-band

signals and the independence assumption collapses in each narrow-band [25]. (2)

In TDICA, the convergence degrades because the iterative learning rule becomes

more complicated as the reverberation increases.
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(a) Headset microphone (b) Hand microphone

Figure 3. Close-talking microphones. (a) a headset microphone, (b) a hand

microphone.

1.2.2 New combination framework using FDICA and TDICA

In order to achieve a superior separation performance, we propose a new BSS

algorithm called multistage ICA (MSICA), in which FDICA and TDICA are

combined. In the proposed method, the separated signals of FDICA are regarded

as the input signals for TDICA, and we can remove the residual crosstalk com-

ponents of FDICA by using TDICA. By using the proposed method, we can

achieve a superior source-separation performance and an improvement of the

speech recognition performance even under extreme reverberant conditions.

In the original MSICA, we assumed the specific mixing model, where the num-

ber of microphones is equal to that of sources. However, additional microphones

are required to achieve an improved separation performance under reverberant

environments. This leads to alternative problems, e.g., a complication of the per-

mutation problem. In order to solve them, we propose a new extended MSICA

using subarray processing, where the number of microphones and that of sources

are set to be the same in every subarray. By using the proposed method, the

separation performance of the proposed MSICA is improved as the number of

microphones is increased.

1.2.3 Improvement of Stability of Learning and Sound Quality

For temporally correlated signals such as speech signals, we must use TDICA with

a nonholonomic constraint to avoid the decorrelation effect from the holonomic
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(a) Linear type microphone array (b) Cross type microphone array

(c) Circle type microphone array (b) Plain type microphone array

Figure 4. Various types of microphone arrays. (a) a linear type microphone array,

(b) a cross type microphone array, (c) a circle type microphone array, and (d) a

plain type microphone array.

constraint. However, the stability cannot be guaranteed in the nonholonomic

case. To solve this problem, linear predictors estimated from the roughly sepa-

rated signals by FDICA are inserted before the holonomic TDICA as a prewhiten-

ing processing, and the dewhitening is performed after TDICA. The stability of

the proposed algorithm can be guaranteed by the holonomic constraint, and the

pre/dewhitening processing prevents the decorrelation. By using the proposed

method, we can achieve higher stability and separation performance.

We cannot apply the original BSS combining MSICA and linear prediction to

overdetermined BSS based on MSICA because the specific mixing model, where

the number of microphones is equal to that of sources, was assumed. To solve

the problem, we estimate the distortion components by the holonomic constraint

and we compensate the sound qualities by using the estimated components. By

using the proposed method, we can achieve higher stability and higher separation
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performance compared with the conventional TDICA algorithm even when we use

many microphones.

1.3 Thesis Overview

The thesis is organized as follows.

First, the sound mixing model of the microphone array is introduced in Sect. 2.

Next, we introduce two types of ICA for the convolutive mixture i.e., FDICA and

TDICA. In addition to the advantages and disadvantages in FDICA and TDICA

are explained.

In Sect. 3, the experimental results of FDICA and TDICA in the real acoustic

condition are presented and the experimental analyses of both ICAs are also

described.

In Sect. 4, we propose a novel algorithm for BSS, in which FDICA and TDICA

are combined to achieve a superior source-separation performance under rever-

berant conditions. Moreover, we provide a comparison results for the separation

performance of FDICA, TDICA, and the proposed method under the real acoustic

condition.

In Sect. 5, we proposed a novel extended MSICA using subarray processing,

where the number of microphones and that of sources are set to be the same in

every subarray to achieve an improved separation performance. Also, we provide

comparison results for the separation performance of the conventional FDICA,

MSICA, and the proposed method under the real acoustic condition.

In Sect. 6, we newly proposed a stable and low-distortion algorithm com-

bining MSICA and linear prediction for BSS in the case where the number of

microphones is equal to that of sources. Moreover, we proposed a novel al-

gorithm with a stability and low-distortion for overdetermined BSS based on

MSICA using subarray processing in the case where the number of microphones

to be larger than that of sources. Also, we provide comparison results for the

separation performance and the sound quality performance of the conventional

MSICA including H-TDICA or NH-TDICA and the proposed method under the

real acoustic condition.

Finally, we summarize the contributions of this thesis and provide suggestions

for future work in Sect. 7.
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2. Principle of Blind Source Separation

2.1 Introduction

In this section, first, we explain the sound mixing model of microphone array to

define the problem of BSS. Next, we introduce two types of BSS methods based

on ICA, i.e., FDICA and TDICA.

In the Sect. 2.2, we explain the sound mixing model of microphone array in

a real acoustic environment with a long reverberation. In the Sect. 2.3, first,

we describe ICA based on a minimization of Kullback-Leibler divergence (KLD)

for instantaneous mixture models. Next, we extend this algorithm into FDICA

for convolutive mixture models. Furthermore, we represent the advantages and

disadvantages of FDICA. In the Sect. 2.4, we describe two types of TDICA,

i.e., TDICA methods based on minimization of KL divergence and simultaneous

decorrelation of nonstationary signal. Furthermore, we represent the advantages

and disadvantages of TDICA.

2.2 Sound Mixing Model of Microphone Array

In this study, a straight-line array (see Fig. 4 (a)) is assumed. In general, the ob-

served signals in which multiple source signals are convoluted with room impulse

responses are obtained by the following equation:

x(t) =
P−1∑
τ=0

a(τ)s(t − τ) = A(z) · s(t), (1)

where x(t) is the observed signal vector, s(t) is the source signal vector, and a(τ)

is the mixing filter (the impulse response) matrix; these are given as

x(t) = [x1(t), · · · , xK(t)]T, (2)

s(t) = [s1(t), · · · , sL(t)]T, (3)

a(τ) =

⎡
⎢⎢⎢⎣

a11(τ) · · · a1L(τ)
...

. . .
...

aK1(τ) · · · aKL(τ)

⎤
⎥⎥⎥⎦ , (4)

where P is the length of the impulse response which is assumed to be an FIR-filter

of thousands of taps because we introduce a model to deal with the arrival lags
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Figure 5. Configuration of microphone array and signals.

among the elements of the microphone array and the room reverberations. Also,

K is the number of array elements (microphones), L is the number of multiple

sound sources, dk (k = 1 · · · K) denotes the coordinates of the elements, and θl

(l = 1 · · · L) denotes DOAs for the l-th source sl(t). A(z) is the z-transform of

the mixing filter a(τ) (τ = 0, · · · , P − 1); these are given as

A(z) =
P−1∑
τ=0

a(τ)z−τ , (5)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P−1∑
τ=0

a11(τ)z−τ · · ·
P−1∑
τ=0

a1L(τ)z−τ

...
. . .

...
P−1∑
τ=0

aK1(τ)z−τ · · ·
P−1∑
τ=0

aKL(τ)z−τ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

where z−1 is used as the unit-delay operator for convenience, i.e., z−τ · x(t) =

x(t − τ).

We can simplify the convolutive mixture (Eq. (1)) down to the following si-

multaneous mixtures by the frequency transform;

X(f) = A(f)S(f), (7)

where X(f) is the observed signal vector which is discrete Fourier transform

(DFT) of x(t), S(f) is the source signal vector which is DFT of s(t), and A(f)
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is the mixing matrix which is DFT of a(τ); these are given as

X(f) = [X1(f), · · · , XK(f)]T , (8)

S(f) = [S1(f), · · · , SL(f)]T , (9)

A(f) =

⎡
⎢⎢⎢⎣

A11(f) · · · A1L(f)
...

. . .
...

AK1(f) · · · AKL(f)

⎤
⎥⎥⎥⎦ , (10)

where f is arbitrary frequency bin. In this case, A(f) is the mixing matrix

which is assumed to be complex-valued because we introduce a model to deal the

room reverberations. Generally speaking, the reverberation time (RT) (the time

interval in which the decay level drops down by 60 dB) of a typical small room is

about 300 ms and large halls have reverberation times between 700 ms and 2.0 s

[26]. Also, reverberation times of conference rooms are about 800 ms and Tatami

rooms have reverberation times between 400 ms and 600 ms [27]. For instance,

we show the impulse responses recorded in a real room with the reverberation

time of 300 ms (see Fig. 6).

Figure 7 shows the general sound mixture procedure in a real acoustic envi-

ronment. In this environment, there are two speakers and we use a two-element

array. Figure 8 (a) and (b) show the source waveforms of two speakers. In

real acoustic (reverberant) environments, multiple source signals are convoluted

with room impulse responses which include reverberant components and reflec-

tion components and the interference signals are mixed. The observed signal

recorded by the microphone in this situation is shown in Fig. 9.
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2.3 FDICA-Based BSS

2.3.1 Calculation of Separation Matrices

We investigate the procedure to optimize the separation matrices based on the

minimization of the KLD. In this section, we describe the procedure for real-

valued time series in Sect. 2.3.2 preliminarily, and then extend it to the complex-

valued case in Sect. 2.3.3.

2.3.2 Minimization of KLD [17]

In this study, we can obtain the separated signals ŝ(t) by multiplying the observed

signal vector x̂(t);

ŷ(t) = wx̂(t), (11)

where ŷ(t) is the separated signal vector, w is the separation matrix formed

by real-valued coefficients, x(t) is the observed signal vector obtained by the

instantaneous mixture model;

x̂(t) = as(t). (12)

where s(t) is the source signal vector (Eq. (3)) and a is the mixing matrix formed

by real-valued coefficients. These are given as

x̂(t) = [x̂1(t), · · · , x̂K(t)]T, (13)

ŷ(t) = [ŷ1(t), · · · , ŷL(t)]T, (14)

a =

⎡
⎢⎢⎢⎣

a11 · · · a1K

...
. . .

...

aL1 · · · aLK

⎤
⎥⎥⎥⎦ , (15)

w =

⎡
⎢⎢⎢⎣

w11 · · · w1L

...
. . .

...

wK1 · · · wKL

⎤
⎥⎥⎥⎦ . (16)

Under the assumption that each sl(t) (l = 1, · · · , L) is stationary and a non-

Gaussian process, the separation matrix w is optimized so that ŷl(t) is mutually

independent.
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In the case that the joint probability density function (p.d.f) p(ŷ(t)) of ŷ(t)

is given by

p(ŷ(t)) = p(y1(t), · · · , yL(t)). (17)

When ŷ(t) is mutually independent, the following equation holds:

p(ŷ(t)) =
L∏

l=1

q(ŷl(t)), (18)

where q(ŷl(t)) represents the marginal p.d.f of ŷl(t). The KLD of the joint p.d.f

from the product of marginal p.d.f is given as

KL(w) =
∫

p(ŷ(t)) log
p(ŷ(t))

L∏
l=1

q(ŷl(t))

dŷ(t). (19)

As we assume that the sources are non-Gaussian, KL(w) vanishes if and only

if reconstructed signals ŷl(t) are mutually independent. Thus, we estimate w

by minimizing KL(w). The partial differentiation of KL(w) by the separation

matrix w is given by the following equation:

∂KL(w)

∂w
= −w−T +

∫
p(x̂(t))ϕ(ŷ(t))x̂(t)Tdx̂(t), (20)

ϕ(ŷ(t)) = −
(

∂ log p(ŷ1(t))

∂ŷ1(t)
, · · · , ∂ log p(ŷL(t))

∂ŷL(t)

)T

= −
(

1

p(ŷ1(t))

∂p(ŷ1(t))

∂ŷ1(t)
, · · · , 1

p(ŷL(t))

∂p(ŷL(t))

∂ŷL(t)

)T

, (21)

thus, using the following gradient,

∆w ∝ −∂KL(w)

∂w
=
[
w−T − E[ϕ(ŷ(t))x̂(t)T]

]
=
[
I − E[ϕ(ŷ(t))ŷ(t)T]

]
w−T, (22)

we can obtain the optimal w based on the steepest decent method. E[·] de-

notes the expectation operator. Practically, this expectation is replaced as the
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time average. Thus we optimize the w by using the following off-line iterative

equations:

wi+1 = wi + α
[
I − 〈ϕ(ŷ(t))ŷ(t)T〉t

]
w−T

i , (23)

where 〈·〉t denotes the time-averaging operator, i is used to express the value of

the i-th step in the iteration, and α is the step size parameter.

Here, the important problem which remains with this approach is how to de-

fine the function ϕ(ŷ(t)). In general, in the case that the amplitude distributions

of the source signals such as speech are super-Gaussian (kurtosis ≤ 0), the l-th el-

ement of ϕ(ŷ(t)) is approximated by the following sigmoid function with respect

to ŷl(t) [16, 17];

ϕ(ŷl(t)) =
1

1 + exp(−ŷl(t))
. (24)

2.3.3 Extension to Complex-Valued Signal

In the case of the instantaneous model, we can estimate the separation matrix

w easily using the iterative equation (Eq. (23)). However, the model in a real

acoustic environment with reverberation is a convolutive mixture and we cannot

estimate the separation matrix w by Eq. (23). Therefore we simplify the convolu-

tive mixture down to the simultaneous mixtures of the complex-valued coefficients

by the frequency transform and we extend the iterative equation (Eq. (23)) into

the complex-valued case.

In this procedure, first, the short-time analysis of observed signals is conducted

by frame-by-frame DFT. By plotting the spectral values in a frequency bin of each

microphone input frame by frame, we consider them as time series. Hereafter, we

designate the narrow-band time series as

X(f, m) = [X1(f, m), · · · , XK(f, m)]T, (25)

where m is the short-time analysis frame. We apply ICA for these narrow-band

observed signals and perform this procedure with respect to all frequency bins.

This procedure is called FDICA (see Fig. 10). The signal separation using the

complex-valued separation matrix W (f) is performed by the following equation:

Y (f, m) = W (f)X(f, m), (26)
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where Y (f, m) is the separated signal vector; these are given as

Y (f, m) = [Y1(f, m), · · · , YL(f, m)]T, (27)

W (f) =

⎡
⎢⎢⎢⎣

W11(f) · · · W1K(f)
...

. . .
...

WL1(f) · · · WLK(f)

.

⎤
⎥⎥⎥⎦ (28)

Furthermore, the iterative equation (23) and ϕ(y(t)) in the Eq. (23) are replaced

as

W i+1(f) = α
[
I −

〈
Φ(Y (f, m))Y (f, m)H

〉
m

]
W i(f)−H + W i(f), (29)

Φ
(
Y (f, m)

)
= [Φ(Y1(f, m)), · · · , Φ(YL(f, m))]T, (30)

Φ
(
Yl(f, m)

)
= Φ

(
Re[Yl(f, m)]

)
+ j · Φ

(
Im[Yl(f, m)]

)
=

1

1 + exp(−Re[Yl(f, m)])
+ j

1

1 + exp(−Im[Yl(f, m)])
, (31)

where −H denotes the inverse of the Hermitian transposition. Also, Re[Yl(f, m)]

and Im[Yl(f, m)] are the real and the imaginary parts of Yl(f, m), respectively．
In the recent work, the following alternative approximation is mainly used;

Φ(Zl(f, m)) = tanh(Re[Zl(f, m)]) + j · tanh(Im[Zl(f, m)]). (32)
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This nonlinear function vanishes the bias component which occurs during the

calculation of the time-averaging operation.

In the case in which the signals are real-valued, if wi in the iterative equation

(23) converges in the correct value, the following equation holds:

〈ϕ(y(t))y(t)T〉t = I, (33)

that is,

〈ϕ(yp(t))yq(t)〉t = δpq, (34)

where δpq is the Kronecker’s delta. Based on the relationship in Eq. (34), we

consider the average of the matrices 〈Φ(Y (f, m)) Y (f, m)H〉m in Eq. (30). The

element of p-th row and q-th column in the matrix can be written as〈[
Φ(Y (f, m))

]
p

[
Y (f, m)H

]
q

〉
m

=
〈
{Φ (Re[Yp(f, m)]) + j · Φ (Im[Yp(f, m)])}
· {Re[Yq(f, m)] − j · Im[Yq(f, m)]}

〉
m

=
[
〈Φ (Re[Yp(f, m)]) Re[Yq(f, m)]〉m
+ 〈Φ (Im[Yp(f, m)]) Im[Yq(f, m)]〉m

]
+ j ·

[
〈Φ (Re[Yp(f, m)]) Im[Yq(f, m)]〉m

− 〈Φ (Im[Yp(f, m)]) Re[Yq(f, m)]〉m
]
, (35)

where [·]p is the p-th element of argument vector. In the case that p �= q holds,

from the assumption that signals are mutually independent, each term on the

right-hand side of Eq. (35) converges in 0. On the other hand, in the case that

p = q holds, from the Eq. (23), the first and second terms of the real parts

converge in 1, respectively. However, in the imaginary part, we don’t give a par-

ticular constraint because we don’t care whether Re[Yp(f, m)] and Im[Yp(f, m)]

are mutually independent. For the realization of such convergences, Murata et

al. proposed a new constraint in which I in the right-hand side of the Eq. (33) is

replaced as diag
(
〈Φ(Y (f, m))Y (f, m)H

)
[17], where diag(·) is the operation for

setting every off-diagonal element of matrix as zero. From this, the condition for

the diagonal elements becomes soft. In this improvement, it occurs the problem
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of the gain arbitrariness, because the arbitrariness remains in the diagonal ele-

ments. However, since all of the off-diagonal elements converge in 0, the mutual

independence of Yp(f, m) and Yq(f, m) can be achieved in the technique. Since

the gain arbitrariness can be solved by the method using the directivity pattern

of the separation matrix [28] and the method using the inverse matrix of the

separation matrix [17], we introduce the above technique. Thus, we obtain the

following equation:

W i+1(f)

= α
[
diag

(〈
Φ(Y (f, m))Y (f, m)H

〉
m

)
−
〈
Φ(Y (f, m))Y (f, m)H

〉
m

]
· W i(f)−H + W i(f). (36)

To achieve a fast convergence and a stable learning, Murata et al. proposed

following FDICA [17] based on natural gradient [29]:

W i+1(f)

= α
[
diag

(〈
Φ(Y (f, m))Y (f, m)H

〉
m

)
−
〈
Φ(Y (f, m))Y (f, m)H

〉
m

]
· W i(f)H + W i(f). (37)

In the recent FDICA work, Sawada et al. has been proposed the alternative

nonlinear function based on polar coordinate to resolve the problem of the conver-

gence point [20]. To achieve a fast-convergence, BSS methods combining FDICA

and beamforming has been proposed by Saruwatari et al. [19, 30, 31]. In the

conventional method, a specific case of two sources and two microphones is as-

sumed [19]. Therefore this algorithm cannot be applied to the source-separation

problem of multiple sources and multiple microphones (more than 2 sources with

more than 2 microphones). To resolve this problem, we propose a extended algo-

rithm in which ICA and beamforming are combined for the blind separation of

multiple sources (see Appendix A).
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2.4 TDICA-Based BSS

2.4.1 Calculation of Separation Filter Matrices

Figure 11 shows the procedure of TDICA. The separated signals y(t) from TDICA

can be given as

y(t) =
Q−1∑
τ=0

w(τ)x(t − τ) = W (z) · x(t), (38)

where w(τ) is the separation filter matrix for TDICA, W (z) is the z-transform

of the separation filter coefficient w(τ) (τ = 0, · · · , Q− 1), and Q is the length of

the separation filter of TDICA; these are given as

y(t) = [y1(t), · · · , yL(t)]T, (39)

w(τ) =

⎡
⎢⎢⎢⎣

w11(τ) · · · w1K(τ)
...

. . .
...

wL1(τ) · · · wLK(τ)

⎤
⎥⎥⎥⎦ , (40)

W (z) =
Q−1∑
τ=0

w(τ)z−τ , (41)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q−1∑
τ=0

w11(τ)z−τ · · ·
Q−1∑
τ=0

w1K(τ)z−τ

...
. . .

...
Q−1∑
τ=0

wL1(τ)z−τ · · ·
Q−1∑
τ=0

wLK(τ)z−τ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (42)

We investigate the procedures of two types of TDICA to optimize the sepa-

ration filter matrices. In Sect. 2.4.2, we describe the procedure of TDICA based

on simultaneous decorrelation of nonstationary signal. In Sect. 2.4.3, we describe

the procedure of TDICA based on the minimization of the KLD for convolutive

mixtures.

2.4.2 Simultaneous Decorrelation of Nonstationary Signal [21, 22]

In this section, we introduce the TDICA based on the simultaneous decorrelation

of nonstationary signal. We separate the sources by minimizing the nonnegative
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Figure 11. Blind source separation procedure performed in TDICA.

cost function which takes the minimum value only when the second-order cross-

correlation becomes zero if the source signals are nonstationary. The cost function

can be given as [21]

Q(w(τ)) =
1

2B

B∑
b=1

log

⎛
⎝det diagR(b)

y (0)

det R(b)
y (0)

⎞
⎠ , (43)

where B is the number of local analysis blocks. R(b)
y (τ) is the correlation matrix

of the separated signals:

R(b)
y (τ) = 〈y(t)y(t − τ)T〉(b)t , (44)

where 〈·〉(b)t denotes the time-averaging operator for the b-th local analysis block,

y(t) is the output signal vector. Equation (43) becomes zero only when yp(t) and

yq(t) are uncorrelated for all of the local analysis blocks. The iterative equation

of the separation filter w(τ) to minimize the cost function Q(w(τ)) is given as

(hereafter we designate the iterative equation as “SD-TDICA”) [21]:

[SD-TDICA]

wi+1(τ) = wi(τ) + β∆wi(τ)

= wi(τ) +
β

B

B∑
b=1

Q−1∑
d=0

{
I

−
(
diag〈y(t)y(t)T〉(b)t

)−1〈y(t)y(t − τ + d)T〉(b)t

}
wi(d), (45)
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where β is the step-size parameter. This derivation of learning rule Eq. (45)

by Kawamoto includes mathematical error [32]) and we will propose a TDICA

algorithm based on the correct derivation in Sect. 3.3.1.

2.4.3 Minimization of KLD [29]

Amari proposed the TDICA algorithm which optimizes the separation filter by

minimizing the KLD between the joint probability density function and the

marginal probability density function of the separated signals [29]. The KLD

is given by

KLD(w(τ)) =
∫

p(y(t)) log
p(y(t))

L∏
l=1

T−1∏
t=0

q(yl(t))

dy(t), (46)

where p(·) is the joint probability density function, q(·) is the marginal probabil-

ity density function, and T is the length of the separated signals. The iterative

equation of the separation filter w(H)(τ) to minimize the KLD is given as (here-

after we designate the iterative equation as “H-TDICA”):

[H-TDICA]

w
(H)
i+1(τ) = w

(H)
i (τ) + β

Q−1∑
d=0

{
Iδ(τ − d) − 〈φ(y(t))y(t − τ + d)T〉t

}
w

(H)
i (d),

(47)

where I is the identity matrix and δ(τ) is delta function, where δ(0) = 1 and

δ(τ) = 0 (τ �= 0). Also, we define the nonlinear vector function φ(·) as

φ(y(t)) ≡ [ tanh(y1(t)), · · · , tanh(yL(t))]T. (48)

The H-TDICA forces the separated signals to have the characteristic that their

higher-order autocorrelation is δ(τ), i.e., the signals are temporally decorrelated.

This performance might have a negative influence on the source separation. In

order to solve the problem, Choi proposed a modified TDICA algorithm with a

nonholonomic constraint [40]. In this algorithm, the constraint for the diagonal

component of {·} part in Eq. (47), i.e., the higher-order autocorrelation of sep-

arated signals, is set to be arbitrary. The iterative equation of the separation
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filter w(NH)(τ) is given as (hereafter we designate the iterative equation as “NH-

TDICA”):

[NH-TDICA]

w
(NH)
i+1 (τ) = w

(NH)
i (τ) + β

Q−1∑
d=0

{
diag

(
〈φ(y(t))y(t − τ + d)T〉t

)

−〈φ(y(t))y(t − τ + d)T〉t
}
w

(NH)
i (d). (49)

2.5 Initial Value for ICA

As for the initial value of ICA, various coefficients have been applied. Major

initial values are listed as follows:

1. FIR-filter which elements are random values [33]

2. FIR-filter only though the straight pass [22]

w(τ) =

⎧⎪⎨
⎪⎩

δ
(
τ − Q

2

)
(diagonal components)

0 (off-diagonal components)
, (50)

where δ(0) = 1 and δ(τ) = 0, (τ �= 0). Also, Q is the length of the separation

filter.

3. DS array [28, 30]

4. NBF [34, 35]

In this case that the look direction is θ1 and the directional null is steered

to θ2, the elements of the matrix for signal separation are given as

W11(f) = − exp [ − j2π(ffs/N)d1 sin θ2/c]

·
{
− exp [j2π(ffs/N)d1(sin θ1 − sin θ2)/c]

+ exp [j2π(ffs/N)d2(sin θ1 − sin θ2)/c]
}−1

, (51)

W12(f) = exp [ − j2π(ffs/N)d2 sin θ2/c]

·
{
− exp [j2π(ffs/N)d1(sin θ1 − sin θ2)/c]

+ exp [j2π(ffs/N)d2(sin θ1 − sin θ2)/c]
}−1

, (52)
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where where c is velocity of sound, fs is sampling frequency and N is a

DFT size. Also, in the case that the look direction is θ2 and the directional

null is steered to θ1, the elements of the matrix are given as

W21(f) = exp [ − j2π(ffs/N)d1 sin θ1/c]

·
{
exp [j2π(ffs/N)d1(sin θ2 − sin θ1)/c]

− exp [j2π(ffs/N)d2(sin θ2 − sin θ1)/c]
}−1

, (53)

W22(f) = − exp [ − j2π(ffs/N)d2 sin θ1/c]

·
{
exp [j2π(ffs/N)d1(sin θ2 − sin θ1)/c]

− exp [j2π(ffs/N)d2(sin θ2 − sin θ1)/c]
}−1

. (54)

2.6 Conclusion

In this section, the sound mixing model of the microphone array is explained.

Next, we introduced two types of ICA for the convolutive mixture. The first one

is FDICA based on the minimization of KLD and the other one is TDICA. We also

described two types of TDICA, i.e., TDICA based on simultaneous decorrelation

of nonstationary signal and TDICA based on the minimization of KLD. Moreover,

the advantages and disadvantages in FDICA and TDICA are explained.
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3. Experimental Analyses of FDICA and TDICA

3.1 Introduction

FDICA and TDICA have the disadvantages as shown in the Sect. 3.2.4 and 3.3.4.

In this section, we verify these problems by source-separation experiments under

the real acoustic (reverberant) conditions and we newly describe the experimen-

tal analyses of FDICA and TDICA. In Sect. 3.2, we describe the experimental

analysis of FDICA. In Sect. 3.3, we describe the experimental analysis of TDICA.

3.2 Experimental Analysis of FDICA

The performances of traditional noise reduction methods and dereverberation

methods are improves as the filter length (the number of subbands) is increased.

We speculate that the source-separation performance is also improved as the

number of subbands is increased in FDICA. Then, we investigate the relationship

between the separation performance and the number of subbands.

3.2.1 Experimental Setup

A two-element array with the interelement spacing of 4.0 cm is assumed. The

speech signals are assumed to arrive from two directions, −30◦ and 40◦. (direc-

tion normal to the array is set to be 0◦). The distance between the microphone

array and the loudspeakers is 1.15 m (see Fig. 12). Two sentences spoken by two

male and two female speakers selected from the ASJ continuous speech corpus

for research [44] are used as the original speech samples. The sampling frequency

is 8 kHz and the length of speech is limited to within 3 seconds. Using these

sentences, we obtain 12 combinations with respect to speakers and source direc-

tions. In these experiments, we use the following signals as the source signals:

the original speech convolved with the impulse responses specified by the rever-

beration times of 300 ms. These sound data which are artificially convolved with

the real impulse responses have the following advantages: (1) we can use the

realistic mixture model of two sources and neglect the effect of background noise,

and (2) since the mixing condition is explicitly measured, we can easily calculate

a reliable objective score for evaluating the separation performance as described
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Figure 12. Layout of reverberant room used in experiments.

in Sect. 3.2.2.

3.2.2 Objective Evaluation Score; Noise Reduction Rate

Noise reduction is a necessary task for achieving a noise-robust hands-free speech

recognition and a high-quality hands-free telecommunication system. To evaluate

the degree of the noise reduction, we introduce the Noise reduction rate (NRR).

NRR defined as the output SNR in dB minus input SNR in dB, is used as the

objective evaluation score in this experiment. The SNRs are calculated under the

assumption that the speech signal of the undesired speaker is regarded as noise.

The NRR is defined as

NRR ≡ 1

L

L∑
l=1

(
SNR

(O)
l − SNR

(I)
l

)
, (55)

SNR
(O)
l = 10 log10

∑
f |Hll(f)Sl(f)|2∑
f |Hln(f)Sn(f)|2 , (56)

SNR
(I)
l = 10 log10

∑
f |All(f)Sl(f)|2∑
f |Aln(f)Sn(f)|2 , (57)
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Table 1. Analysis conditions of FDICA

Number of Subbbands 32, 64, 128, 256, 512, 1024, 2048, 4096 [points]

(4, 8, 16, 32, 64, 128, 256, 512 [ms])

Frame Shift 16 [points] (2 [ms])

Window Hamming window

Number of Iterations 30

Step Size Parameter alpha 1.0 × 10−5

where SNR
(O)
l and SNR

(I)
l are the output SNR and the input SNR, respectively,

and l �= n. Also, Sl(f) is the frequency-domain representation of the source

signal, sl(t), Hij(f) is the element in the i th row and the j th column of the

matrix H(f) = W (f)A(f) where A(f) is the mixing matrix which corresponds

to the frequency-domain representation of the room impulse responses described

in Sect. 2.2, and W (f) is the frequency-domain representation of the separation

filter matrix of ICA, w(τ).

3.2.3 Relation between Separation Performance and Number of Sub-

bands in FDICA

In order to confirm the independence problem of narrow-band signals in FDICA

((F3) described in Sect. 3.2.4), we carried out the preliminary experiment under

the analysis conditions shown in Table 1. As for the initial value of W (f), we

apply the NBF [31] Eqs. (51) to (54). In this experiments, we apply the NBF in

which the null steered toward ±60◦.

Figure 13 shows the NRR results for different numbers of frequency bins in

FDICA. As shown in Fig. 13, the NRR of FDICA obviously degrades when the

number of frequency bins becomes too large, and the separation performance is

saturated before reaching a sufficient performance. This is because we transform

the fullband signals into the narrow-band signals and the independence assump-

tion collapses in each frequency bin, particularly when the number of frequency

bins is large.

In order to confirm the fact, we newly define the following objective measure
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Figure 13. Relation between separation performances and the number of sub-

bands in conventional FDICA.

to quantify an independence, and investigate the relation between the number of

frequency bins and the independence among subband signals.

J =
〈∥∥∥diag

(
〈Φ(Y (f, m))Y H(f, m)〉m

)
− 〈Φ(Y (f, m))Y H(f, m)〉m

∥∥∥〉
f
, (58)

where ‖ · ‖ is frobenius norm of matrix. This measure J is a part of the itera-

tive equation (37) and has no dimension. Therefore the absolute value of J is

meaningless itself, however, the relative value between the different numbers of

frequency bins is important. If narrow-band signals become mutually indepen-

dent, the measure J becomes zero. Also we can consider that the independence

of subband signals is high when J is small. In order to evaluate the independence

of real narrow-band speech signals, we carried out the experiment in which the

input signal, Y (f, m), in Eq. (58) is regarded as the perfectly separated sources,

i.e., original speech samples. Figure 14 shows the relation between the number

of frequency bins and the value of J which corresponds to the independence of

subband signals. Figure 14 shows that the independence decreases as the number

of frequency bins increases, especially when the number of frequency bins is large.

Next, to compare the correlation among source signals, we compare the wave-

form of the narrow-band signals of sources. Figures 15 and 16 are the narrow-band

signals of the source 1 and the source 2 analyzed in the conditions in which the

number of subbands is set to be 32 points and 2048 points, respectively. In these
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Figure 14. Relation between the number of subbands and the value of J defined

by Eq. (58), which corresponds to the independence of subband signals.

figures, (a) and (b) are the real part and the imaginary part of the narrow-band

signal of the source 1, respectively. (c) and (d) are the real part and the imag-

inary part of the narrow-band signal of the source 2, respectively. Compared

Fig. 15 with 16, we can also confirm the following characteristic: (1) the corre-

lation among narrow-band signals is low when the number of subbabds becomes

small, (2) the correlation among narrow-band signals is high when the number of

subbabds becomes large.

Above-mentioned experimental results clarify the disadvantage that the sep-

aration performance is saturated in FDICA because we transform the fullband

signals into the narrow-band signals. We should lengthen the separation filter

(or FFT length for analysis) when we confront with a long reverberation. In

this case, however, the independence of subband signals decreases. Thus, there

is a trade-off relation among the independence of subband signals and robustness

against reverberation as shown in Figure 17. On the basis of these results, we

should cascade another signal processing analysis, e.g., TDICA, with FDICA to

obtain the further separation performances.

3.2.4 Advantages and Disadvantages of FDICA

We can conclude that FDICA has the following advantages and disadvantages.
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Figure 15. Narrow-band signals of source signals analyzed under the conditions

in which the number of subbands is set to be 32 points and 1 kHz. (a) and

(b) are the real part and the imaginary part of the narrow-band signal of the

source 1, respectively. (c) and (d) are the real part and the imaginary part of the

narrow-band signal of the source 2, respectively.
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Figure 16. Narrow-band signals of source signals analyzed under the conditions

in which the number of subbands is set to be 2048 points and 1 kHz. (a) and

(b) are the real part and the imaginary part of the narrow-band signal of the

source 1, respectively. (c) and (d) are the real part and the imaginary part of the

narrow-band signal of the source 2, respectively.
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Advantages:

(F1) We can simplify the convolutive mixture down to simultaneous mixtures

by the frequency transform.

(F2) It is easy to converge the separation filter in iterative ICA learning with

high stability.

Disadvantages:

(F3) The separation performance is saturated before reaching a sufficient perfor-

mance because the independence assumption collapses in each narrow-band

[25] (see Sect. 3.2.3).

(F4) Permutation among source signals and indeterminacy of each source gain

in each subband.

As for disadvantage (F4), various solutions have already been proposed [17, 28,

36, 37, 38]. However, the collapse of the independence assumption, (F3), is a

serious and inherent problem, and this prevents us from applying FDICA in a

real acoustic environment with a long reverberation.
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3.3 Experimental Analysis of TDICA

First, we drive the TDICA algorithm based on the simultaneous decorrelation of

nonstationary signal. The cost function is defined as Eq. (43) (this cost function

has been already proposed by Kawamoto et al. [21], but their derivation of

learning rule Eq. (45) includes mathematical error [32]) and we proposed a TDICA

algorithm based on the correct derivation.

We speculate that the source-separation performance is also improved as the

number of subbands is increased in TDICA. Then, we investigate the relationship

between the separation performance and the filter length. Since H-TDICA (see

Eq. (47)) causes the distortion effect by whitening effect, we do not investigate

the separation performance by H-TDICA and we compare SD-TDICA 1 (see

Eq. (63)) , SD-TDICA 2 (see Eq. (64)), and NH-TDICA (see Eq. (49)).

3.3.1 TDICA Based on Simultaneous Decorrelation of Nonstationary

Signal and Its Extension

The optimal separation filter is found by minimizing the cost function Q. In order

to achieve the minimization, we consider the following natural gradient [29]:

∆w(τ) = −∂Q(w(τ))

∂w(τ)
W (z−1)TW (z), (59)

where

W (z−1) =
Q−1∑
τ=0

w(τ)zτ . (60)

The standard gradient, ∂Q(w(τ))/∂w(τ), on the right-hand side in Eq. (59) is

rewritten as

∂Q(w(τ))

∂w(τ)

=
1

B

B∑
b=1

{(
diagR(b)

y (0)
)−1

R(b)
y (τ) −

(
R(b)

y (0)
)−1

R(b)
y (τ)

}
W (z−1)−T, (61)

where −T represents transpose of inverse matrix. The derivation of Eq. (61) is

given by Appendix B. Substituting Eq. (61) into Eq. (59) and using the relation-

ship Eq. (41), ∆w(τ) is obtained the following equation (the derivation is given
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by Appendix C);

∆w(τ) =
1

B

B∑
b=1

Q−1∑
d=0

{(
〈y(t)y(t)T〉(b)t

)−1〈y(t)y(t − τ + d)T〉(b)t

−
(
diag〈y(t)y(t)T〉(b)t

)−1〈y(t)y(t − τ + d)T〉(b)t

}
w(d). (62)

From Eq. (62), the iterative equation of the separation filter (hereafter we desig-

nate the iterative equation as “SD-TDICA 1”):

[SD-TDICA 1]

wi+1(τ) = wi(τ) + β∆wi(τ)

= wi(τ) +
β

B

B∑
b=1

Q−1∑
d=0

{(
〈y(t)y(t)T〉(b)t

)−1〈y(t)y(t − τ + d)T〉(b)t

−
(
diag〈y(t)y(t)T〉(b)t

)−1〈y(t)y(t − τ + d)T〉(b)t

}
wi(d), (63)

where β is the step-size parameter. In this equation, when d is larger than τ ,

we calculate the future correlation between the separated signals. On the other

hand, when τ is larger than d, we calculate the past correlation. Therefore we can

achieve the iterative leaning for a both-side filter, and we can treat the mixing

condition even including the non-minimum phase systems [39].

Since the Eq. (63) evaluates only off-diagonal of R(b)
y (0), we confirmed that

the iterative equation of Eq. (63) could not achieve a superior separation per-

formance under the reverberant condition (see Sect. 3.3.2). Namely, the source

separation is not achieved by only using nonstationarity of signals. Therefore

we use not only nonstationarity of signals but also time-delayed decorrelation ap-

proach. We expand Eq. (63) to the following equation to evaluate the off-diagonal

of R(b)
y (τ) for all time delays τ (hereafter we designate the iterative equation as

“SD-TDICA 2”):

[SD-TDICA 2]

wi+1(τ) = wi(τ) +
β

B

B∑
b=1

Q−1∑
d=0

{(
diag〈y(t)y(t)T〉(b)t

)−1
diag〈y(t)y(t − τ + d)T〉(b)t

−
(
diag〈y(t)y(t)T〉(b)t

)−1〈y(t)y(t − τ + d)T〉(b)t

}
wi(d). (64)

We confirmed that the separation performance was improved by using both non-

stationarity and time-delayed decorrelation approach (see Sect. 3.3.2).
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Table 2. Analysis conditions of SD-TDICA 1 and SD-TDICA 2

Filter Length Q 16, 32, 64, 128, 256, 512, 1024, 2048 [taps]

(2, 4, 8, 16, 32, 64, 128, 256 [ms])

Local Analysis Block B 1, 2, 3, 4, 5, 6, 8, 10

(3.0, 1.5, 1.0, 0.8, 0.6, 0.5, 0.4, 0.3 [s])

Maximum Iterations 500

Step Size Parameter β 1 / Q

3.3.2 Fundamental Limitation of SD-TDICA 1 Based on Simultaneous

Decorrelation of Nonstationary Signal

To evaluate the effectiveness of the simultaneous decorrelation of nonstation-

ary signal, we compare the source-separation performances of SD-TDICA 1 (see

Eq. (63)) and SD-TDICA 2 (see Eq. (64)) under reverberant conditions.

We carried out the experiments under the condition as shown in Fig. 12. The

analysis conditions of these experiments are shown in Table 2. As for the initial

value of w(τ), we apply the filter matrix Eq. (50). As for the local analysis

block for SD-TDICA1 and SD-TDICA2, we divided the signals equally into B

parts (B = 1 ∼ 10). We chose the optimal B and number of iterations for each

combination of speaker because the convergence is different for every combination.

Figure 18 (a) and (b) show the NRR results in the SD-TDICA 1 and SD-

TDICA 2. Figure 18 (a) shows that SD-TDICA 1 can not achieve a signal separa-

tion under the reverberant condition. Comparing SD-TDICA 1 with SD-TDICA 2

in Fig. 18, we confirm that SD-TDICA 2 can achieve a superior separation per-

formance to SD-TDICA 1. These results show that it is necessary to evaluate

correlations of different times to achieve a superior performance.

3.3.3 Relation between Separation Performance and Filter Length in

TDICA

We carried out the experiments using SD-TDICA 1 (see Eq. (64)) and NH-TDICA

(see Eq. (49)), to evaluate the contribution of these TDICAs for improving the

separation performances under reverberant conditions. The analysis conditions
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Figure 18. Separation performances in (a) SD-TDICA 1, and (b) SD-TDICA 2.

of these experiments are as shown in Table 3. As for the initial value of w(τ),

we apply the filter matrices Eq. (50) and the inverse DFT of NBF Eq. (51) ∼
(54). We chose the optimal B and number of iterations for each combination of

speaker because the convergence is different for every combination.

Figure 19 shows the NRR results in the SD-TDICA 2 and NH-TDICA for

different filter lengths. These results reveal that both TDICAs can not achieve

a signal separation under the reverberant condition compared with conventional

FDICA (see Fig. 13). This reason is that (1) the iterative rule for FIR-filter

learning is complicated and (2) the convergence degrades under reverberant con-

ditions. Therefore we can conclude that the conventional TDICA cannot achieve

a superior separation performance because of the problems (1) and (2).
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Table 3. Analysis conditions of SD-TDICA 2 and NH-TDICA

Filter Length Q 32, 64, 128, 256, 512, 1024, 2048, 4096 [taps]

(4, 8, 16, 32, 64, 128, 256 [ms])

Local Analysis Block B 1, 2, 3, 4, 5, 6, 8, 10

(SD-TDICA 2) (3.0, 1.5, 1.0, 0.8, 0.6, 0.5, 0.4, 0.3 [s])

Maximum Iterations 500

Step Size Parameter β 5.0 × 10−1 ∼ 1.0 × 10−7

The separation performances of NH-TDICA and SD-TDICA 2 using the op-

timal B are not so different (see Fig. 19) [45, 46]. In SD-TDICA 2, we utilize the

nonstationarity of the signals. The separation performance is not monotonic as

the parameter B is changed because the nonstationarity for every source signal is

different [47]. However, it is difficult and impractical to estimate the optimal B

because the quantification of nonstationarity for source signal is the difficult task.

Therefore, NH-TDICA is more feasible than SD-TDICA 2 because NH-TDICA

does not require the estimation of the optimal B.

The estimation of the separation filter becomes complicated when we use the

initial value far from the optimal solution, i.e, Eq. (50) compared with the initial

value Eq. (51) ∼ (54). This phenomenon is distinguished especially when the

filter length is increased. From this results, the use of the effective initial value

is important to achieve a superior separation performance in BSS. On the basis

of these results, we should perform useful preprocessing, e.g., FDICA and NBF

before TDICA to obtain the further separation performances.

3.3.4 Advantages and Disadvantages of TDICA

We can conclude that TDICA has the following advantages and disadvantages.

Advantages:

(T1) We can treat the fullband speech signals where the independence assump-

tion of sources usually holds.
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Figure 19. Relation between separation performance and filter length in SD-

TDICA 2 and NH-TDICA. “I” and “NBF” denote that the initial value for

TDICA are Eq. (50) and Eq. (51) ∼ (54), respectively.

(T2) High-convergence possibility near the optimal point.

Disadvantages:

(T3) The iterative rule for FIR-filter learning is complicated.

(T4) The convergence degrades under reverberant conditions.

It is known that TDICA works only in the case of mixtures with a short-tap FIR

filter, i.e., less than 100 taps. Also, TDICA fails to separate source signals under

real acoustic environments because of disadvantages (T3) and (T4).

3.4 Conclusion

In this section, we performed the experimental analyses of FDICA and TDICA

and we described the experimental analyses of both ICAs under the real acoustic

conditions.
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First, the results of the signal separation experiment with FDICA reveals that

the separation performance of FDICA obviously degrades when the number of

subbands becomes too large, and is saturated before reaching a sufficient perfor-

mance. We can conclude that this is because the independence assumption of the

narrow-band signals collapses.

Secondly, the results of the signal separation experiment with TDICA re-

veals that the separation performance of TDICA is not sufficient compared with

FDICA. We can conclude that this is because the iterative learning rule becomes

more complicated as the reverberation increases. Also, we confirmed that not only

the simultaneous decorrelation of nonstationary signals but also the utilization of

correlations of different times is required to achieve a superior performance.
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4. MSICA-Based BSS

4.1 Introduction

In the above section, we described some specific disadvantages and the applicable

limitations of the conventional ICAs. In this section, to resolve the problems of

the conventional ICAs, we propose MSICA-based BSS.

In Sect. 4.2, we describe the procedure of the proposed MSICA. Next, in

Sect. 4.3, we carry out source-separation experiments under reverberant con-

ditions and we describe the effectiveness of the proposed MSICA. Finally, in

Sect. 4.4, we compare the source-separation performance by the proposed MSICA

with those by the conventional ICAs.

4.2 Motivation and Strategy

As described in Sect. 3.2 and 3.3, the conventional ICA methods have some

disadvantages. However, note that the advantages and disadvantages of FDICA

and TDICA are mutually complementary (see Fig. 20), i.e., (F3) can be resolved

by (T1) and (T2), and (T3) and (T4) can be resolved by (F1) and (F2). Hence,

in order to resolve the disadvantages, we propose a new algorithm, MSICA, in

which FDICA and TDICA are combined (see Fig. 21).

MSICA is conducted with the following steps. In the first stage, we perform

FDICA to separate the source signals to some extent with the high-stability

advantages of FDICA, (F1) and (F2). The output signals z(t) = [z1(t), · · · ,
zL(t)]T from FDICA can be given as

z(t) =
Q−1∑
τ=0

v(τ)x(t − τ), (65)

where v(τ) is the separation filter matrix for FDICA , Q is the length of the

separation filter of FDICA, and we optimize v(τ) by Eq. (37);

V i+1(f)

= α
[
diag

(〈
Φ(Z(f, m))Z(f, m)H

〉
m

)
−
〈
Φ(Z(f, m))Z(f, m)H

〉
m

]
· V i(f)H + V i(f), (66)
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(F1) We can simplify the convolutive mixture 
        down to simultaneous mixtures by the 
        frequency transform.
(F2) It is easy to converge the separation 
        filter in iterative ICA learning with high 
        stability.

(F3) The separation performance is saturated
        before reaching a sufficient performance
        because the independence assumption 
        collapses in each narrow-band. 

(T1) We can treat the fullband speech signals 
        where the independence assumption of 
        sources usually holds.
(T2)  High-convergence possibility near the 
         optimal point.

(T3) The iterative rule for FIR-filter learning is 
        complicated.
(T4) The convergence degrades under 
        reverberant conditions.

FDICA TDICA
 Advantages 

 Disadvantages Complement

 Advantages 

 Disadvantages 

Figure 20. Complementary relation between the advantages and the disadvan-

tages of FDICA and TDICA.

where V (f) is the DFT of v(τ) and Z(f, m) is the narrow-band signals for time-

domain signals z(t). In the second stage, we regard the output signals z(t) of

FDICA as the input signals for TDICA, and we remove the residual crosstalk

components of FDICA by using TDICA. The output signals y(t) = [y1(t), · · · ,
yL(t)]T of TDICA can be given as

y(t) =
R−1∑
τ=0

w(τ)z(t − τ), (67)

where w(τ) is the separation filter matrix for TDICA and R is the length of the

separation filter of TDICA. In this procedure, we optimize w(τ) by Eq. (49);

wi+1(τ) = wi(τ) + β
R−1∑
d=0

{
diag

(
〈φ(y(t))y(t − τ + d)T〉t

)

−〈φ(y(t))y(t − τ + d)T〉t
}
wi(d). (68)

Finally, we regard the output signals of TDICA as the resultant separated signals.

MSICA can achieve a high stability and a superior separation performance to that

of conventional FDICA and TDICA.

4.3 Effectiveness for Cascading TDICA

We carried out the experiments using MSICA to evaluate the contribution of

increments of separation-filter length for improving the separation performances
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Figure 21. Blind source separation procedure performed in MSICA.

under reverberant conditions. The experimental condition is the same as that

given in Sect. 3.2.1. The analysis conditions of these experiments are shown in

Table 4. As for the initial value of the separation filter of FDICA is the NBF

in which the null steered toward ±60◦. Figures 22 shows the NRR results in the

MSICA for different filter lengths.

As shown in Fig. 19, when we use the initial value Eq. (50) and the long sep-

aration filter, the separation performance of the TDICA degrades. This implies

that the estimation of the separation filter becomes complicated when we use

the initial value far from the optimal solution. This phenomenon is distinguished

especially when the filter length is increased. On the other hand, in Fig. 22, the

separation performance of MSICA is improved when the filter length is longer.

This reveals that the TDICA part in MSICA can separate the source signals

even with the reverberation components, and the TDICA is still useful near the

optimal point.
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Table 4. Analysis conditions of MSICA

FDICA part

Number of Subbbands Q 1024 points

Frame Shift 16 points

Window Hamming window

Number of Iterations 30

Step Size Parameter α 1.0 × 10−5

TDICA part

Filter Length R 16, 32, 64, 128, 256, 512, 1024, 2048 taps

Maximum Iterations 500

Step Size Parameter β 5.0 × 10−1 ∼ 1.0 × 10−7

0

2

4

6

8

10

12

14

N
oi

se
 R

ed
uc

tio
n 

R
at

e 
[d

B
]

Filter Length of TDICA Part [taps]
16 32 64 128 256 512 1024 2048FDICA

Figure 22. Relation between the separation performance and filter length in

TDICA part in MSICA.
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Table 5. Analysis condition of TDICA

Filter Length R 1024 taps

Number of Iterations 500

Step Size Parameter β 2.0 × 10−6

Table 6. Analysis condition of FDICA

Number of Subbbands 1024 points

Frame Shift 16 points

Window Hamming window

Number of Iterations 30

Step Size Parameter α 1.0 × 10−5

4.4 Comparison between Conventional ICAs and MSICA

We compared the performance of the proposed MSICA with those of the conven-

tional ICAs under the reverberant condition. The experimental condition is the

same as that given in Sect. 3.2.1. As for TDICA, FDICA, MSICA, the analysis

conditions are shown in Tables 5, 6, 7. As for the initial value of the separation

filter of FDICA is the NBF in which the null steered toward ±60◦.

Figure 23 shows the NRRs of the conventional FDICA, TDICA, and MSICA.

In this figure, we separately plot the NRRs for different combination of speakers,

and the averages of their NRRs. The results reveal that the separation perfor-

mances of the proposed MSICA are superior to those of the conventional FDICA

and TDICA. Specifically, compared with the conventional ICA, the proposed

method can improve the NRR by about 2.7 dB over that of FDICA and by about

4.3 dB over that of TDICA, for an average of 12 combinations.

As described in Sect. 3.2, the FDICA in this study showed the saturation of

NRR when we used the 1024-subband analysis. As described in Sect. 3.3, the sim-

ple TDICA could not separate the source signals accurately under the reverberant

condition. These findings indicate the practical limitations of the separation per-
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Table 7. Analysis condition of MSICA

FDICA part

Number of Subbbands 1024 points

Frame Shift 16 points

Window Hamming window

Number of Iterations 30

Step Size Parameter α 1.0 × 10−5

TDICA part

Filter Length R 2048 taps

Number of Iterations 500

Step Size Parameter β 1.0 × 10−6

formances of conventional ICA-based BSS methods. From the results of Fig. 23,

however, we can confirm that the proposed MSICA can inherently remove these

limitations, and is effective for improving the separation performance and con-

vergence under reverberant conditions.

4.5 Discussion on Combination Order in MSICA

As described in the previous section, the combination of FDICA and TDICA can

contribute to the improvement of separation. In this combination, the advantage

(F2) of FDICA is useful in the initial step of separation procedure and the ad-

vantage (T2) of TDICA is also useful in the later step. Therefore we use FDICA

as the first-stage ICA and TDICA as the second-stage ICA. In order to confirm

the availability of this combination order, we compare the proposed combination

(hereafter we designate this combination as ”MSICA1”) with the combination in

which TDICA is used in the first stage and FDICA is used in the second stage

(hereafter we designate this swapped combination as ”MSICA-SWAP”).

The experiment of MSICA-SWAP was carried out in the following manner.

As for TDICA part in MSICA-SWAP, the number of iterations is 400 and and

the filter length is 10 taps. As for FDICA part in MSICA-SWAP, the analysis

conditions are the same as those given in Table 6. Figure 24 shows the comparison
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Figure 23. Comparison of noise reduction rates obtained by MSICA, conventional

FDICA and TDICA.

of noise reduction rates obtained by simple TDICA, simple FDICA not using

the beamforming technique [19], proposed MSICA, and MSICA-SWAP. As the

result, the NRR of 7.5 dB is obtained in MSICA-SWAP and this performance

is better than that of simple TDICA but is poorer than that of the original

MSICA and simple FDICA. In MSICA-SWAP, the separation performance is

still improved by using FDICA in the second stage, however, the separation

performance is saturated because of the disadvantage (F3) of FDICA. MSICA-

SWAP can not achieve the separation performance of 9.4 dB which corresponds

to NRR of simple FDICA. This reason is that FDICA in this section uses the

beamforming technique and the directivity pattern of the array which provide

a good initial value of the separation matrix to improve the convergence [19],

however, such kind of information is no longer valid in the combination order

of MSICA-SWAP because we can not know the effective positions of the array

elements after the first-stage TDICA and can not depict the directivity pattern.

Thus the separation performance of MSICA-SWAP is almost equal to that of a

raw FDICA without the beamforming technique (from [19] we can see the NRR
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Figure 24. Comparison of noise reduction rates obtained by simple TDICA,

simple FDICA, proposed MSICA, and MSICA-SWAP.

of about 7.5 dB at the 30-iteration point). This fact indicates that the swapped

combination order of MSICA-SWAP has no contribution to the improvement of

the separation performance, and the proposed combination order of the original

MSICA (FDICA in the first stage and TDICA in the second stage) is essential.

4.6 Application of MSICA to Speech Recognition in Room

Environment

4.6.1 Experimental Conditions

One of the applications of BSS is a hands-free speech recognition system. In this

section, we provide a experimental evaluation with a large vocabulary continuous

speech recognition task. Figures 25 and 26 show the layouts of the reverberant
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Table 8. Analysis conditions of MSICA

FDICA part

Number of Subbbands Q 2048 points

Frame Shift 128 points

Number of Iterations 100

TDICA part

Filter Length R 4096 taps

Maximum Iterations 200 (interference speech)

500 (PC noise)

room (RT=200 ms) used in the experiment. A two-element array with interele-

ment spacing of 2.1 cm is used. The target speech arrive from the direction 30◦;

a loudspeaker is placed on the right-hand side (30◦) and the distance between

the loudspeaker and the microphone array is 1.15 m. We consider the following

two situations where several noises are added: (1) interference speech of female

selected from ASJ database [44] with 0 dB SNR which is placed on the left-hand

side (−50◦) (see Fig. 25), (2) a tower-type personal computer (PC) with 10 dB

SNR which is placed on the left-hand side (−60◦) (see Fig. 26). The analysis con-

ditions of these experiments are shown in Table 8. Table 9 shows the experimental

conditions for speech recognition.

4.6.2 Experimental Results

In order to valuate the speech recognition performance, we adopt the Word Ac-

curacy (WA) and the Word Correct (WC) as an evaluation score. WA and WC

are given by

WA[%] =
W − S − D − I

W
× 100, (69)

WC[%] =
W − S − D

W
× 100, (70)

where W is the total number of words in the test speech, S is the number of

substitution errors, D is the number of deletion errors, and I is the number of

insertion errors. We average each WA and WC obtained from 200 speech in total.
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Figure 25. Layout of reverberant room used in real recording experiment. We

use the interference speech as the noise signal.
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Figure 26. Layout of reverberant room used in real recording experiment. We

use the personal computer as the noise signal.
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Table 9. Experimental conditions for speech recognition

Database JNAS [48],306 speakers

(150 sentences / 1 speaker)

Task 20-k newspaper dictation

Acoustic model phonetic tied mixture (PTM) [49]

(clean model)

Number of training speakers 260 speakers (150 sentences / 1 speaker)

Number of testing speakers 46 speakers (200 sentences)

Decoder JULIUS ver.3.4.2 [50]

Sampling frequency 16 kHz

Frame size 20 ms (400 sample)

Figure 27 and 28 show the results in terms of word accuracy and word correct

under different noise conditions. In these figures, the black bars represent the

speech recognition results for the observed signals at the single microphone, the

gray bars represent the results by conventional FDICA, the white bars represent

the results of the proposed MSICA, and the black line represent the results by

a observed signal without noise components which correspond the upper limit

in this evaluation, respectively. The word accuracy in the experiments with the

interference speech is far more inferior compared with that of using the PC noise.

This phenomenon occurs due to the fact that the insertion errors are increased

because the interference noise is a speech signal.

The improvements of word accuracy and word correct can be found in Fig. 28

in both FDICA and MSICA compared with the results using a single microphone.

Regarding the reduction of the interference speech, we can confirm that MSICA

outperformed FDICA about 35 % for word accuracy and 10 % for word correct

from FDICA. As for the reduction of the PC noise, there are no obvious improve-

ments in the proposed MSICA compared with FDICA, but also no deterioration;

this means that the proposed MSICA has no serious side-effects.

In summary, these results indicate that the proposed MSICA is applicable to

the hands-free speech recognition system, particularly when confronted with the
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Table 10. Experimental conditions for speech recognition

Task 69 isolated word recognition

with network grammar

Acoustic model diphone HMM by single Gaussian mixture

(speaker-independent)

Number of testing speakers 23 speakers (69 sentences / 1speaker)

17 male and 5 female

Decoder VORERO Ver.4.3 [51]

Sampling frequency 11 kHz

Processing for noise-robust (1) continuous spectral subtraction [52]

(2) normalized least mean square error

with frame-wise voice activity detection [53]

(3) exact cepstrum mean normalization [52]

interference speech.

4.7 Application of MSICA to Speech Recognition in Car

Environment

4.7.1 Experimental Conditions

One promising application of BSS is a navigation system in a car environment,

where many kinds of noises, e.g., interfering speech from the assistant seat, engine

noise and air-conditioner noise exist. The objective of this section is to provide a

experimental evaluation of applicabilities of BSS in car environments.

Table 10 shows the experimental conditions for speech recognition. A two-

element array with the interelement spacing of 4 cm is used to record the sounds

in a real car environment as shown in Fig. 29. The target signal is set to a

driver’s speech, and the interference noise to be reduced is (a) assistant speech or

(b) air-conditioner noise. As for the background noise, we consider the following

situations where several diffuse noises are added: (1) engine noise at idle (idling),

(2) engine noise and road noise from the car tires at a speed of 60 km/h with the
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Figure 29. Layout of a real car environment used in experiments.

car window close (60km/h(C)), (3) engine noise and road noise from the car

tires at a speed of 60 km/h with the car window open (60km/h(O)), and (4)

engine noise and road noise from the car tires at a speed of 100 km/h with the

car window close (100km/h(C)). The analysis conditions of these experiments

are shown in Table 11.

4.7.2 Experimental Results

Figures 30 and 31 show the results in terms of word accuracy under different

noise conditions. In these figures, the black bars represent the speech recognition

results for the observed signals at the single microphone, the gray bars repre-

sent the results by FDICA, and the white bars represent the results by MSICA,

respectively.

The remarkable improvements of word accuracy can be found in Fig. 30 in

both FDICA and MSICA compared with the results using a single microphone.

Regarding the reduction of the assistant speech, we can confirm an MSICA’s
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Table 11. Analysis conditions of MSICA

FDICA part

Number of Subbbands Q 256 points

Frame Shift 32 points

Number of Iterations 100

TDICA part

Filter Length R 512 taps

Maximum Iterations 100

slight outperformance from FDICA in all situations for the background noise. As

for the reduction of the air-conditioner noise, there are no obvious improvements

in the proposed MSICA compared with FDICA, but also no deterioration; this

means that the proposed MSICA has no serious side-effects. Figure 32 shows

the results of the assistant speech reduction in the case that a defroster noise is

further added into the background noises. We can see the same tendency as in

Fig. 30.

In summary, these results indicate that the proposed MSICA is applicable to

the speech recognition system, particularly when confronted with the assistant

speech.

4.8 Conclusion

In this section, we propose a new algorithm for BSS, in which FDICA and TDICA

are combined to achieve a superior source-separation performance under rever-

berant conditions. Also, we provide a comparison results for the separation per-

formance of FDICA, TDICA, and the proposed method under the real acoustic

condition.

The results of the signal separation experiment with the proposed method

reveals that the separation performance and the speech recognition performance

of the proposed algorithm are superior to that of conventional ICA-based BSS

methods, and the combination of FDICA and TDICA is inherently effective for

improving the separation performance. Specifically, the proposed method can
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conventional FDICA and the proposed MSICA under the condition that the as-
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improve the SNR by about 2.7 dB over that of FDICA and by about 4.3 dB over

that of TDICA, for an average of 12 speaker-combinations.
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5. Overdetermined BSS on MSICA Using Sub-

array Processing

5.1 Introduction

In order to improve the separation performance, we have proposed MSICA (see

Sect. 4), in FDICA [17, 18, 19] and time-domain ICA (TDICA) [11, 22, 29, 40]

are cascaded (see Fig. 33). In the original MSICA research, the specific mixing

model is assumed where the number of microphones is equal to that of sources.

However, additional microphones are required to achieve an improved separation

performance because of the existence of the reflection and the reverberation com-

ponent. In this section, we set the number of microphones to be larger than that

of sources and we extend the conventional MSICA into a new MSICA method

using a large microphones. We point out that the following problems arise in the

simple extension of MSICA: (1) the permutation problem [17, 38] in FDICA part

becomes very complicated, and (2) the solution of FDICA is likely to be trapped

within a trivial solution as described in Sect. .

In this section, as a robust method against these problems, we propose a new

MSICA method using subarray processing, where the number of each subarray’s

microphones is set to be equal to that of the sources, and the outputs of FDICA

performed in every subarray are weighted to be inserted into TDICA.

The rest of this section is organized as follows. In Sect. , the simple extensions

of the original MSICA algorithm and their problems are explained. In Sect. , the

proposed MSICA using the subarray processing is described in detail. In Sect. ,

from the signal-separation experiments, the problems in the simply extended

MSICA are described and the superiority of the proposed subarray technique

over the conventional method is shown.

5.2 Simple Extension of Conventional MSICA

In the original MSICA, the specific mixing model is assumed, where the number

of microphones is equal to that of sources (see Fig. 33). However, additional

microphones are required to achieve an improved separation performance because

of the reflection and the reverberation component. Thus, we should set the
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Figure 33. BSS procedure performed in original MSICA.

number of microphones to be larger than that of sources (i.e., K > L), and we

extend the original MSICA into a new MSICA method by using a large number of

microphones. First, as the simple extension of MSICA, we consider the following

two methods in the specific case of K > L.

[Method 1]

Figure 34 shows the BSS procedure performed in Method 1-based MSICA. In this

method, the K output signals are obtained from FDICA and L separated signals

are obtained from TDICA:

zK(t) =
Q−1∑
τ=0

vKK(τ)xK(t − τ), (71)

yL(t) =
R−1∑
τ=0

wLK(τ)zK(t − τ). (72)

There is a permutation problem [17] of sources in every frequency bin in FDICA.

By using recently proposed techniques [28, 36, 37, 38], we can easily solve the

problem only in the case of K = L. However, (P1) the permutation prob-

lem in FDICA becomes very complicated as the number of microphones is in-

creased. Also, (P2) the discrimination of the output signals corresponding to

the true sources is needed because there exist K − L imaginary outputs. There-

fore Method 1 is not applicable to separating sources in the real environment.

[Method 2]

Figure 35 shows the BSS procedure performed in Method 2-based MSICA. In

this method, the L output signals are obtained from FDICA and the L separated

56



Source
signals

Observed
signals

y (t) =    w   (τ)z  (t-τ)  
τ

Output signals
from FDICA

TDICA

Mixing
system

1y  (t)

2y  (t)

Separated
signals

ΣL LK K

1s  (t)

2s  (t)

a  (τ)KL

1x  (t)

2x  (t)

Kx  (t)
z (t) =    v   (τ)x  (t-τ)  

τΣ KKK Kx (t) =     a   (τ)s (t-τ)
τΣ KLK L

FDICA

1z  (t)

2z  (t)

Kz  (t)

Figure 34. BSS procedure performed in Method 1-based MSICA.

signals are obtained from TDICA:

zL(t) =
Q−1∑
τ=0

vLK(τ)xK(t − τ), (73)

yL(t) =
R−1∑
τ=0

wLL(τ)zL(t − τ). (74)

There still exist some problems as follows. (P3) In the iterative learning of

FDICA, the solution is likely to be trapped within a trivial solution as described

in Sect. 5.3.2. (P4) We cannot utilize all the information of the observed signals

at K microphones in TDICA because the number of the input signals for TDICA

is decreased to L by FDICA.

Due to these problems, a new extension algorithm of MSICA which is not

affected by (P1)–(P4) is desired to achieve a superior separation performance.

Therefore, in the next section we propose a new BSS algorithm based on the

extended MSICA using subarray processing.
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5.3 Simulation Experiments Using Simply Extended MSICA

Based on Method 2

5.3.1 Experimental Setup

A 14-element array with the interelement spacing of 2.83 cm is assumed. The

speech signals are assumed to arrive from two directions, −40◦ and 20◦ (direction

normal to the array is set to be 0◦). The distance between the microphone array

and the loudspeakers is 2.0 m (see Fig. 36). Two sentences spoken by two male and

two female speakers selected from the ASJ continuous speech corpus for research

[44] are used as the original speech samples. The sampling frequency is 8 kHz

and the length of speech is limited to within 3 seconds. Using these sentences,

we obtain 12 combinations with respect to speakers and source directions. In

these experiments, we use the following signals as the source signals: the original

speech convolved with the impulse responses specified by the reverberation times

of 300 ms. We use the impulse responses recorded in a real room selected from the
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Figure 36. Layout of reverberant room [27] used in experiments.

Real World Computing Partnership (RWCP) sound scene database [27]. These

sound data are artificially convolved with the real impulse responses. In order to

evaluate the performance, we used the NRR defined in Sect. 3.2.2.

5.3.2 Problems in Simply Extended Method 2-Based MSICA

As the analysis conditions, the filter length of FDICA is 1024 taps and the initial

value of FDICA is the DS beamformer in which the beam steered toward ±60◦.

Also, the number of iterations of FDICA is 150.

In order to visually evaluate the convergence by FDICA of Method 2, we

plot the directivity pattern of the separation filter vLK(τ) provided by FDICA

of Method 2 (Eq. (73)). Figure 37 shows the directivity pattern for a different

number of microphones (K = 2 or 12), where “Filter 1” is extracting source 1,

and “Filter 2” is extracting source 2. In Fig. 37 (a), the directional nulls of the

separation filters given by FDICA steer in the direction of interference when two

microphones are used. However, in Fig. 37 (b) where 12 microphones are used,

the nulls of separation filter 2 steer not only in the direction of interference but

59



also in the target speech direction. Therefore, the output signal from separation

filter 2 becomes a zero signal.

In FDICA, the separation filters are updated so that the output signals are

mutually independent and the separated signal from FDICA can be generally

given as

Zl(f, m) = cl(f)Sl(f, m), (75)

where Sl(f, m) is the source signal in the time-frequency domain and cl(f) is

the arbitrary complex-valued coefficient. The coefficient cl(f) is not determined

because we evaluate only the independence between the output signals in FDICA.

The coefficient c1(f) in Fig. 37(b) becomes approximately zero and the output

signal from filter 1 becomes the zero signal. The speech signal and the zero signal

are mutually independent and consequently, the independence assumption holds.

However, needless to say, this solution is trivial with respect to the separation

of source signals. This phenomenon occurs due to the fact that the degree of

freedom of the separation filter becomes high when we use many microphones.

We can conclude that the separation filter with a low degree of freedom is desirable

in FDICA. This is the motivation behind proposing the extended MSICA using

subarray processing in which the number of each subarray’s microphones is equal

to that of sources.
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5.4 Proposed MSICA Using Subarray Processing

5.4.1 Source Separation Algorithm

In the proposed extended MSICA, we regard the K observed signals as combi-

nations of the L(< K) observed signals, and we regard this combination as a

subarray (see Fig. 38). First, we divide the whole inputs into K − 1 subarrays,

and we perform FDICA in every subarray. The output signals z
(n)
L (t),

z
(n)
L (t) = [z

(n)
1 (t), · · · , z(n)

L (t)]T, (76)

from FDICA in the n-th subarray can be given as

z
(n)
L (t) =

R−1∑
τ=0

v
(n)
LL(τ)x

(n)
L (t − τ), (77)
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where v
(n)
LL(τ) is the separation filter matrix of FDICA in the n-th subarray and

x
(n)
L (t) = [xn(t), xn+1(t), · · · , xn+L−1(t)]

T. (78)

which consists the adjoining microphones. In this study, we construct the subar-

ray consisting of microphones in which the spatial aliasing effect does not arise.

As the FDICA algorithm for optimization of the separation filter v
(n)
LL(τ), we in-

troduce the fast-convergence FDICA proposed by one of the authors [19]. In the

FDICA, the optimal v
(n)
LL(τ) is obtained by the following iterative equation (37)

[17] :

V
(n)
LL(f)[i+1] = α

[
diag

(
〈Φ(Z

(n)
L (f, m))Z

(n)
L (f, m)H〉m

)
−〈Φ(Z

(n)
L (f, m))Z

(n)
L (f, m)H〉m

]
V

(n)
LL(f)[i] + V

(n)
LL(f)[i], (79)

where V
(n)
LL(f) is a Fourier transform result of v

(n)
LL(τ) and Z

(n)
L (f, m) is the

narrow-band output signal in the time-frequency domain. Also, f is frequency,

m is the analysis frame of short-time DFT, 〈·〉m denotes the frame-averaging

operator. We define the nonlinear vector function Φ(·) as Eq. (32).

Next, we regard all output signals from FDICA in K − 1 subarrays as the

input signals for TDICA, and we remove the residual crosstalk components from

FDICAs. The resultant separated signals y
(n)
L (t) can be given as

yL(t) =
R−1∑
τ=0

wLL·(K−1)(τ)zL×K−1(t − τ), (80)

where wLL·(K−1)(τ) is the LL · (K − 1) separation filter matrix and

zL·(K−1)(t) = [z
(1)
1 (t), z

(2)
1 (t), · · · , z(K−1)

1 (t),

z
(1)
2 (t), z

(2)
2 (t), · · · , z(K−1)

2 (t), · · · ,
z

(1)
L (t), z

(2)
L (t), · · · , z(K−1)

L (t)]T. (81)

In the TDICA, the optimal wLL·(K−1)(τ) is obtained by the following iterative

equation (49) [40]:

wLL·(K−1)(τ)[i+1] = β
R−1∑
d=0

{
diag

(
〈φ(yL(t))yL(t − τ + d)T〉t

)

−〈φ(yL(t))yL(t − τ + d)T〉t
}
wLL·(K−1)(d)[i]
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+wLL·(K−1)(τ)[i]. (82)

We can easily solve the permutation problem by using the conventional meth-

ods [28, 36, 38] because the number of microphones is equal to that of sources in

every subarray. Also, the discrimination of the output signals corresponding to

the true sources is not required because the number of output signals from FDICA

is equal to that of sources, i.e., there are no imaginary outputs. The separation

filter of FDICA is likely to converge on the optimal point, particularly in the case

of K = L (see Sect. 5.3.2). Therefore, in the proposed MSICA, the problems

(P1)–(P3) described in Sect. 5.2 do not arise. In addition, we can utilize the

information of all the element of the microphone array in the TDICA because we

use the output signals from FDICA in all subarrays with the information from

all microphones. Therefore, (P4) is also solved by the proposed MSICA.

5.4.2 Initial Value for TDICA Part in Proposed MSICA

As the initial value of the TDICA part in the proposed MSICA, we introduce the

following coefficient:

wLL×K−1(τ)[0] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
c−γ
k−(l−1)×K−1∑K−1

n=1 c−γ
n

· IDFT[exp(−jωdlk)]

]
lk

if (l − 1) × K − 1 < k ≤ l × K − 1,

[0]lk otherwise,

(83)

cn =
T∑

τ=−T

{
|〈φ(z

(n)
i (t))z

(n)
j (t − τ)〉t| + |〈φ(z

(n)
j (t))z

(n)
i (t − τ)〉t|

}
,

(84)

where [·]lk denotes the matrix in which the lk-th element is [·], IDFT[·] denotes

an inverse DFT of ·, T is the length of the output signals from FDICA, ω is an

angular frequency, and dlk is the phase delay of input signals for TDICA so that

the correlation between the input signal zl
(i) and zl

(j) is maximum. Also, γ is

the enhancement parameter to weight with the correlation cn. cn corresponds

to the Frobenius norm of the update term {·} in the TDICA algorithm given

by Eq. (49), and we estimate the degree of the separation performance by using

this value. We introduce this filter (Eq. (83)) as the initial value of the TDICA

part in MSICA. If γ = 0 in Eq. (83), this filter corresponds to a conventional
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Figure 39. Configuration of the microphone array and the subarray used in

experiments.

delay-and-sum beamformer. On the other hand, highly separated output signals

from specific FDICAs are strongly weighted as the γ is increased. We compare

the separation performances of the initial value and the proposed MSICA by

changing γ and the number of microphones.

5.5 Simulation Experiments Using Subarray Processing

5.5.1 Separation Results of FDICA and Conventional MSICA in Each

Subarray

The experimental condition is the same as that given in Sect. 5.3.1. Figure 39

shows the numbers of the microphone array and the subarray used in the ex-

periments. We determined the subarrays so that the spatial aliasing effect does

not arise. That is, the interelement spacing should be smaller than half of the

minimum wavelength to avoid the spatial aliasing effect. In this experiment, this

spacing is 8.5/2 cm because the sampling frequency is 8 kHz. The interelement

spacing is 2.83 cm in this experimental condition and we used the adjoining mi-

crophones for constructing a subarray. As the analysis conditions, the filter length

of FDICA is 1024 taps and the initial value of FDICA is the null beamformer in

which the null steered toward ±60◦. The separation filter length of the TDICA

part in MSICA is 2048 taps. Also, the number of iterations of FDICA is 150 and

that of TDICA is 500.

Figure 40 shows the NRR results of FDICA and the conventional MSICA

for different subarrays. For example, “2+3 (2)” denotes the experimental result

in subarray #2 which consists of microphones #2 and #3 (see Fig. 39). These
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Figure 40. Comparison of the source-separation performance by FDICA and

conventional MSICA in every subarray. For microphone number and subarray

number see Fig. 39.

separation performances are averaged for 12 combinations of speakers. From

Fig. 40, we can confirm that the source-separation performances in each subarray

are disperse. We speculate the reason as being that there are differences in the

standing wave condition, the reflection component, and reverberant component

at each microphone. The blind determination of the subarray which can achieve

a superior separation performance is a difficult problem. Also, we must perform

the conventional MSICA in all subarrays and huge amounts of calculations are

required. Therefore, it is unreasonable to perform the original MSICA in each

subarray.

5.5.2 Separation Results of Proposed MSICA for Different Initial Val-

ues in TDICA Part

In the proposed MSICA using subarray processing, the microphones which are

selected symmetrically with respect to the array center (see the black circle in

Fig. 39) are used. For example, the “four-element array” consists of microphones

#5, #6, #7, and #8.

Figures 41 and 42 show the NRR results of the initial value and the proposed
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MSICA for different γ and numbers of microphones. From Fig. 41, the separation

performances of the initial value for the proposed MSICA are improved as γ is

increased in all microphones. Therefore, the weighting equation (Eq. (83)) with

the input signals for TDICA works effectively. The final separation performance

is improved as the number of microphones is increased (see Fig. 42). However, the

separation performances of the proposed MSICA which are improvements from

the initial values using different γ are not very different in all microphones. We

can conclude that the proposed MSICA does not depend on the initial value in

the TDICA part and we can achieve a superior separation performance by using

the information from many microphones.
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Figure 41. Comparison of the initial values in the TDICA part of the proposed

MSICA for different γ and numbers of microphones.
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Figure 42. Comparison of the proposed MSICA for different γ and numbers of

microphones.
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Figure 43. Relationship between the source-separation performance and the num-

ber of microphones or filter length of TDICA part.

5.5.3 Relationship between Separation Performance and the Number

of Microphones or Filter Length

Figure 43 shows the NRR results of the proposed extended MSICA for different

numbers of microphones or filter lengths of the TDICA part. In Fig. 43, the

horizontal axis shows the number of microphones, the vertical axis shows the

filter length and the tone shows the separation performance.

We investigate the relationship between the source-separation performance

and the number of microphones or the filter length. On observing the horizon-

tal axis in Fig. 43 it is seen that the separation performance is improved as the

number of microphones is increased. Moreover, on observing the vertical axis

we note that the separation performance is also improved as the filter length is

increased. These results show the same tendencies as those for the conventional

microphone array processing, e.g., in terms of delay and sum beamformer. How-

ever, in the proposed MSICA, huge amounts of calculations are required. The

increase in the number of microphones corresponds to an increase in the number

of FDICAs. Therefore, as a future work, we should propose the MSICA with an

effective subarray structure.
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Figure 44. Layout of reverberant room used in real recording experiment.

5.6 Illustrative Experiment with Real Recordings

5.6.1 Conditions for Experiment

In this section, the BSS experiment is performed using actual devices in a real

acoustic environment. The experiment was carried out in an ordinary room, which

has the RT of 200 ms, as shown in Fig. 44. A 14-element array with interelement

spacing of 2.1 cm is used. The source signals arrive from two directions, −60◦ and

30◦; a loudspeaker is placed on the right-hand side (30◦) to sound a target female

speech, and a tower-type personal computer (PC) is placed on the left-hand side

(−60◦) as an interference (noise) sound generator.

As the analysis conditions for these experiments, the sampling frequency is

16 kHz, the filter length of FDICA and TDICA are 2048 taps and the initial

value of FDICA is the null beamformer in which the null steered toward −30◦

and 50◦. Also, the number of iterations of FDICA is 200, that of TDICA is 200,

and γ = 0.0.
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Figure 45. Noise reduction rates for different numbers of microphones under real

recording condition. RT is 200 ms, and the background noise level is 37 dB(A).

The level of background noise, which is not the PC noise but an ambient

noise, and the target speech level measured at the array origin, were 37 dB(A)

and 54 dB(A), respectively. The levels of the target speech and the PC noise are

almost even. It also should be mentioned that all of the experimental apparatus

may include possible sensor noise, environment noise, and/or nonlinear error

which is produced in, for example, amplifiers.

5.6.2 Results

Figure 45 shows NRR results in the proposed MSICA. Note that we only de-

pict the NRR with regard to the target speech in this figure because we consider

the PC noise as an uninteresting and hence undesired sound source. The re-

sults reveal that the separation performance is also improved as the number of

microphones is increased, like the simulation results in Sect. 5.5. This indicates

encouraging evidence for the feasibility of the proposed algorithm for real-world

applications such as a robust hands-free speech communication system and a

hands-free telecommunication system.
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5.7 Conclusion

In this section, we proposed a MSICA, by setting the number of microphones to

be larger than that of sources to achieve an improved separation performance.

In the FDICA part in the simple extension of MSICA, the use of additional

microphones led to alternative problems: the solution is likely to be trapped

within a trivial solution and the permutation problem in FDICA becomes very

complicated. In order to solve these problems, we proposed a new extended

MSICA using subarray processing, where the number of microphones and that

of sources are set to be the same in every subarray. The experimental results

obtained under real acoustic environmental conditions reveal that the separation

performance of the proposed MSICA is improved as the number of microphones

is increased.
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6. Stable and Low-Distortion Algorithm Based

on Blind Separation of Temporally Correlated

Acoustic Signals

6.1 Introduction

In order to achieve a superior separation performance, we have proposed an effi-

cient BSS algorithm called MSICA, in which FDICA and TDICA are combined.

In this method, first, FDICA can find an approximate solution to separate the

sources to a certain extent, and finally TDICA can remove the residual crosstalk

components from FDICA. Therefore, the improvement of TDICA is a primary

issue because the quality of resultant separated signals is determined by TDICA.

In this section, we discuss the stability of the TDICA algorithm, and newly pro-

pose two stable algorithms for temporally correlated signals, e.g., speech signals.

First, the following points are explicitly noted: (1) The stability of learning in

conventional TDICA with a holonomic constraint [29] is highly acceptable. The

stability of learning used in this thesis is defined as, “The separation performance

is improved monotonically and the solution of ICA converges in the optimal point

or the local minimum point and stays of this point when we use small step-size

parameter which is not affected by the divergence or the vibration.”. However,

the method cannot work well for speech signals due to the deconvolution prop-

erty; i.e., the separated speech is harmfully distorted by the whitening process.

(2) To decrease the whitening effect, TDICA with a nonholonomic constraint has

been proposed [40]. This method, however, includes the inherent drawback that

the stability of learning cannot be guaranteed.

In order to resolve these problems, The method to compensate the sound

qualities has been proposed by Murata [17]. In this method, the inverse matrix

of the separation matrix is used for the compensation. However, the stability of

the inverse matrix is not guaranteed (see Sect. 6.4.3). Also, the affection of the

circular convolution causes serious deterioration when we use this method [54].

As a method without the inverse matrix, Matsuoka et al. have proposed a ICA

based on the Minimal Distortion Principle in which the ICA’s outputs should

be the single components in observed signals at a specific microphone point [55].
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However, there is a problem that the cost function for the constraint of the ICA’s

outputs does not become zero even in the optimal point. The blind determi-

nation of the optimal point is difficult because of this problem. Takatani et al.

have proposed a ICA based on single-input multiple-output (SIMO) model for

solving this problem on the cost function [56, 57, 58]. The ICA’s outputs are

constrained to the SIMO model at specific microphone points. However, a huge

number of calculations are required because we have to estimate all SIMO-model

signals at all microphone points in this method. Abe et al. have proposed a ICA

based on multiple-input single-output (MISO) model [59]. The ICA’s outputs are

constrained to the MISO model at a specific microphone point. However, in this

method, the optimization of the separation filter becomes complicated because

we determined not only step-size parameter for ICA but also the additional pa-

rameter for the minimization of the cost function to constrain separates source

signals.

In order to solve both problems simultaneously, we propose two stable and

low-distortion algorithms for the two cases, i.e., (Case 1) the number of micro-

phones is equal to that of sources, and (Case 2) the number of microphones to

be larger than that of sources. For the Case 1, we propose the novel approach

in which the linear predictors estimated from the roughly separated source sig-

nals by FDICA are inserted before TDICA with a holonomic constraint as a

prewhitening processing (after TDICA, the dewhitening is also performed). The

stability of the learning in TDICA can be guaranteed by the holonomic constraint,

and it is still possible to separate the temporally correlated signals because the

pre/dewhitening processing prevents the ICA from performing the decorrelation.

For the Case 2, to avoid the distortions, we estimate the distortion components

by TDICA with the holonomic constraint and we compensate the sound quali-

ties by using the estimated components. The stability of the proposed algorithm

can be guaranteed by the holonomic constraint, and the proposed compensation

method prevents the ICA from performing the decorrelation. The experimental

results under a reverberant condition reveal that the proposed algorithm results

in the higher stability and higher separation performance than the conventional

MSICA.

The rest of this section is organized as follows. In Sect. and , conventional
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MSICA algorithms and their problems are explained. In Sect. and , the proposed

ICA is described in detail. In Sect. and , the signal-separation experiments are

described and the results are compared with those of the conventional methods.

6.2 Conventional MSICA and Their Problems

In this section, we above the procedure of conventional MSICAs (see Fig. 46) and

their problems. The separated signals of the conventional MSICA can be given

as

y(t) =
R−1∑
τ=0

w(τ)z(t − τ), (85)

where y(t) is the resultant separated signal vector of MSICA and z(t) is the

input signal vector for the TDICA part in MSICA (i.e., the output signals from

FDICA). Also, w(τ) is the separation filter matrix of TDICA. In this proce-

dure, we optimize w(τ) so that the separated signals are mutually independent.

The selection of TDICA is an important issue because the quality of resultant

separated signals is determined by TDICA. We have following two choices for

TDICA algorithms; TDICA with a holonomic constraint [29] and TDICA with a

nonholonomic constraint [40].

In the TDICA with a holonomic constraint (see Eq. 47), the separation filter

is optimize by following iterative equation;

[H-TDICA]

w
(H)
i+1(τ) = w

(H)
i (τ) + β

R−1∑
d=0

{
Iδ(τ − d) − 〈φ(y(t))y(t − τ + d)T〉t

}
w

(H)
i (d).

(86)

Here, we note the convergence point of H-TDICA. In the convergence point, the

term inside the braces {·} becomes zero matrix. This results to the convergence

point of off-diagonal elements when the higher-order cross-correlation becomes

zero. However this is also the convergence point of the diagonal elements in which

the higher-order autocorrelation becomes delta function. This diagonal conver-

gence means that the separated signal from H-TDICA is harmfully distorted by

whitening effect and this is the disadvantage of H-TDICA. Thus, this method

75



Source
signals

Observed
signals

y (t) =    w  (τ)z (t-τ)  
τ

FDICA
1

Output signals
from FDICA

1z  (t)

2z  (t)

Holonomic

TDICA

Mixing
system

1y  (t)

2y  (t)

Separated
signals

Σ

FDICA
2

FDICA
K-1

(1)

(1)

1z  (t)

2z  (t)

(2)

(2)

2z   (t)
(K-1)

1z   (t)
(K-1)

1s  (t)

2s  (t)

a(τ)

1x  (t)

2x  (t)

Kx  (t)
z (t) =    v  (τ)x (t-τ)  

τΣ
(n) (n) (n)x (t) =     a  (τ)s (t-τ)

τΣ

Source
signals

Observed
signals

y (t) =    w  (τ)z (t-τ)  
τ

FDICA
1

Output signals
from FDICA

1z  (t)

2z  (t)

Non-
holonomic

TDICA

Mixing
system

1y  (t)

2y  (t)

Separated
signals

Σ

FDICA
2

FDICA
K-1

(1)

(1)

1z  (t)

2z  (t)

(2)

(2)

2z   (t)
(K-1)

1z   (t)
(K-1)

1s  (t)

2s  (t)

a(τ)

1x  (t)

2x  (t)

Kx  (t)
z (t) =    v  (τ)x (t-τ)  

τΣ
(n) (n) (n)x (t) =     a  (τ)s (t-τ)

τΣ

(a) Conventional MSICA1 (TDICA part is H-TDICA)

(b) Conventional MSICA2 (TDICA part is NH-TDICA)

(H)

(NH)

Figure 46. Blind source separation procedures performed in (a) conventional

MSICA 1 (TDICA part is H-TDICA) and (b) conventional MSICA 2 (TDICA

part is NH-TDICA) .
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cannot work well for speech signals due to the deconvolution property. In order

to solve the problem of the H-TDICA, Choi proposed a modified TDICA algo-

rithm with a nonholonomic constraint [40]. In the TDICA with a nonholonomic

constraint (see Eq. 49), the separation filter is optimize by following iterative

equation;

[NH-TDICA]

w
(NH)
i+1 (τ) = w

(NH)
i (τ) + β

R−1∑
d=0

{
diag

(
〈φ(y(t))y(t − τ + d)T〉t

)

−〈φ(y(t))y(t − τ + d)T〉t
}
w

(NH)
i (d). (87)

In this algorithm, Choi changed the first term inside the braces {·}, Iδ(τ −d), to

be only diagonal components of the second term inside the braces {·}. By chang-

ing this term, the convergence point of diagonal elements becomes an arbitrary

value. This arbitrary value will give us freedom to minimize whitening effect,

i.e., NH-TDICA is applicable to speech signals. This method, however, includes

the inherent drawback that the stability of learning cannot be guaranteed only if

we use small step-size parameter which is not affected by the divergence or the

vibration. That is, the convergence in an optimal point or a local minimum point

and the halt at a balanced point cannot be guaranteed because this algorithm is

made artificially without the mathematical derivation from H-TDICA.

The advantage and disadvantage of conventional TDICAs can be summarized

as follows. (1) The stability of learning in H-TDICA is satisfactory because H-

TDICA is based on direct and correct differentiation from KLD. However, the

method cannot work well for speech signals due to the deconvolution property;

i.e., the separated speech is harmfully distorted by the whitening process. (2) On

the other hand, NH-TDICA possibly performs no deconvolution, i.e., NH-TDICA

is applicable to speech signals. This method, however, includes the inherent

drawback that the stability of learning cannot be guaranteed as described in

Sect.6.4.3. Thus, the separation of temporally correlated signals such as speech

cannot be achieved only using the conventional TDICAs.
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Figure 47. BSS procedure performed in the proposed algorithm combining

MSICA and linear prediction. In this system, the stability of the learning in

TDICA can be guaranteed by the holonomic constraint, and it is still possible to

separate the temporally correlated signals because the pre/dewhitening process-

ing prevents the ICA from performing the decorrelation.

6.3 Proposed Algorithm Combining MSICA and Linear

Prediction

This section describes a new stable algorithm combining the linear prediction

technique with an original MSICA (see Fig. 46) for the case where the number

of microphones is equal to that of sources. In the proposed algorithm, the linear

predictors estimated from the roughly separated source signals by FDICA are

inserted before TDICA with a holonomic constraint as a prewhitening processing

(see Fig. 47). After TDICA, the dewhitening is also performed. The stabil-

ity of the learning in TDICA can be guaranteed by the holonomic constraint,

and it is still possible to separate the temporally correlated signals because the

pre/dewhitening processing prevents the ICA from performing the decorrelation.

The detailed process using the proposed algorithm is as follows.

[STEP 1. FDICA]

First, we perform FDICA to separate the source signals to some extent, where

we apply the iterative equation (37). For example, the typical separation perfor-

mance in FDICA is about 8 to 10 dB under the condition that the reverberation

time is 300 ms [19, 22, 35]. Also, the mel cepstral distortion [63] between the ob-
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served signal with the single source component at the microphone and the output

signals from FDICA is about 2 to 3 dB [60]. The separation filter of FDICA has

spectrally flat characteristics in the direction of each sound source [19, 61]. From

this, we can estimate the approximate spectra of the sources blindly.

[STEP 2. Prewhitening by Linear Prediction]

In the linear prediction, the auto-regressive model of the generation process of

the output signals z(t) from FDICA is given as

zl(t) = −
D∑

d=1

pl(n)zl(t − n) + el(t) (l = 1, · · · , L), (88)

where pl(n) is a linear prediction coefficient for the l-th input signal, el(t) is the

input signal of this model, and D is the order of the linear prediction coefficient.

The linear prediction coefficient is obtained by calculating the following Yule-

Walker’s simultaneous equations:

⎡
⎢⎢⎢⎣

rl(0) · · · rl(N − 1)
...

. . .
...

rl(N − 1) · · · rl(0)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

pl(1)
...

rl(D)

⎤
⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎣

rl(1)
...

rl(D)

⎤
⎥⎥⎥⎦ , (89)

where rl(τ) is the autocorrelation of zl(t), i.e.,

rl(τ) = 〈zl(t)zl(t − τ)〉t. (90)

Solving Eq. (89) basically involves the inversion of the matrix on the left-hand

side. However, this can be simplified because the matrix is Toeplitz, i.e., all

elements on each superdiagonal are equal and all elements on each subdiagonal

are equal. Based on this property, we can easily and efficiently determine pl(n)

by using Levinson-Durbun’s recursive algorithm [62].

The whitened signal el(t) is obtained by convolving the linear prediction co-

efficient pl(n) with zl(t) as

el(t) =
D∑

n=0

pl(n)zl(t − n). (91)

[STEP 3. TDICA with Holonomic Constraint]
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H-TDICA is performed with whitened signals. The output signals of H-TDICA

can be given as

o(t) =
R−1∑
τ=0

w(H)(τ)e(t − τ), (92)

where o(t) = [o1(t), · · · , oL(t)]T is the separated signal vector of H-TDICA, and

e(t) = [e1(t), · · · , eL(t)]T is the input signal vector whitened by the linear predic-

tion for the H-TDICA part in MSICA. We optimize w(H)(τ) by H-TDICA (see

Eq. (47)):

w
(H)
i+1(τ) = w

(H)
i (τ) + β

R−1∑
d=0

{
Iδ(τ − d)

− 〈φ(o(t))o(t − τ + d)T〉t
}
w

(H)
i (d). (93)

[STEP 4. Dewhitening]

The dewhitening process is performed by using the linear prediction coefficients

pl(n) obtained in STEP 2. The resultant separated signals yl(t) can be obtained

by the following IIR filtering:

yl(t) = −
D∑

n=1

pl(n)yl(t − n) + vl(t) (l = 1, · · · , L). (94)

Note that the stability of the filtering is guaranteed because pl(n) is calculated

from Levinson-Durbun’s algorithm [62].

6.4 Experiments and Results in Case 1

In this section, we compare the proposed algorithm combining MSICA and linear

prediction with the conventional MSICAs under the condition where the number

of microphones K is equal to that of sources L and K = L = 2.

6.4.1 Postprocessing for Spectral Compensation

In order to compare the various ICAs fairly, we perform postprocessing for the

spectral compensation of the separated signals in this experiment. This processing
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is based on the utilization of the inverse of the separation filter matrix for the

normalization of gain [17]. In this method, the following operation is performed:

Ỹl(f) =
[
W (f)−1[ 0, · · · , 0 , Yl(f), 0, · · · , 0 ]T

]
l
,

(95)

where Yl(f) denotes the frequency-domain component of the l-th estimated source

signal by the TDICA part in MSICA, Ỹl(f) denotes the l-th resultant separated

source signal in the frequency domain after the spectral compensation ([·]l denotes

the l-th element of the argument), and W (f) is the frequency-domain represen-

tation of the separation filter matrix in the TDICA part, w(H)(τ) or w(NH)(τ).

After the operation, we can obtain the spectrally compensated output signals in

the time domain by applying the inverse DFT. In this experiment, we use the

DFT and the inverse DFT of 218 points.

By using W (f)−1, the gain arbitrariness vanishes in the separation procedure.

However, this procedure often fails and yields harmful results for signal recon-

struction, particularly when the condition number of W (f) is large because the

invertibility of W (f) cannot be guaranteed.

6.4.2 Objective Evaluation Score; Mel Cepstral Distortion

Aside from noise reduction, low-distortion is a necessary task to achieve a noise-

robust hands-free speech recognition and a high-quality hands-free telecommuni-

cation system. To evaluate the degree of the distortion of the separated signal,

we introduce the 16-order Mel cepstral distortion (MelCD) [63]. The MelCD for

l-th source signal is defined as

MelCDl ≡ 20

ln 10

√√√√2
16∑
i=1

(
m

(ref)
l (i) − m

(target)
l (i)

)
, (96)

where m
(ref)
l (i) is the i-th mel cepstral coefficient for the observed signal with the

single source component at the microphone and m
(target)
l (i) is that for the output

signal from ICA.

6.4.3 Experimental Results and Discussion

In this study, we compare the following MSICAs:
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MSICA1: FDICA is followed by NH-TDICA,

MSICA2: FDICA is followed by NH-TDICA with spectral compensation,

MSICA3: FDICA is followed by H-TDICA,

MSICA4: FDICA is followed by H-TDICA with spectral compensation, and

MSICA5: FDICA is followed by the proposed method combining H-TDICA and

linear prediction.

The experimental condition is the same as that given in Sect. 3.2.1. The analysis

conditions of FDICA in these experiments are shown in Table 6. The length of

the separation filters of TDICAs, w(H)(τ) or w(NH)(τ), is 2048. In the proposed

algorithm, the order N in the linear predictor is 1024.

Figures 48, 49, and 50 show the NRR results of MSICA1–MSICA5 for different

iteration points. These values were averages of all of the combinations with

respect to speakers and source directions. The step-size parameters are chosen

independently for each of the NH-TDICA, H-TDICA, and the proposed algorithm

so that the NRR scores at the early iterations are almost the same in Figs. 48, 49,

and 50. From these results, the following are revealed. (1) In the conventional

MSICA1 and MSICA2 in which the NH-TDICA is used, the behavior of the NRR

is not monotonic and there are remarkably consistent deteriorations, even when

the step-size parameter is changed. (2) In the proposed algorithm, MSICA5,

there are no deteriorations of NRRs. Therefore, the separation performances are

almost completely retained during all of the iterations.

Regarding the separation performance of MSICA3 and MSICA4 in which the

H-TDICA is used, the following are revealed. (1) The separation performance of

MSICA3 is obviously superior to that of the proposed MSICA5. (2) However,

its effective separation performance, i.e., the performance of MSICA4, is inferior

to that of MSICA5. We speculate that the specious performance in MSICA3 is

due to the exceeding emphasis of high-frequency components by the whitening

effect of H-TDICA. Figure 51 shows the MelCD between the observed signal with

the single source component at the microphone and the output signals from (a)

conventional MSICA3 or (b) proposed MSICA5. Also, Fig. 52 shows the typical

long-time averaged spectra of the separated signals obtained by MSICA3 and
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Figure 48. Comparison of the noise reduction rates in (a) conventional MSICA1:

FDICA is followed by NH-TDICA and (b) conventional MSICA2: FDICA is

followed by NH-TDICA with spectral compensation.
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Figure 49. Comparison of the noise reduction rates in (a) conventional MSICA1:

FDICA is followed by H-TDICA and (b) conventional MSICA2: FDICA is fol-

lowed by H-TDICA with spectral compensation.
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Figure 50. The noise reduction rates in (e) proposed MSICA5: FDICA is followed

by the proposed method combining H-TDICA and linear prediction.

MSICA4. From these results, we can confirm the spectral distortion in MSICA3.

In general, the separation in the high-frequency region is easier than that in the

low-frequency region [64, 65] because the reverberation is shorter as the frequency

increases [26]. Thus, MSICA3 gains the improvement of the NRR only in the

high-frequency region, and consequently we can conclude that MSICA3 is useless

for separating the speech signals from the practical viewpoint.

In order to confirm the convergence of each MSICA learning, we evaluate the

frobenius norms of {·} parts on the right-hand side in Eqs. (49) and (47), which

are defined as

FN (NH) =
1

Q2

Q−1∑
τ=0

Q−1∑
d=0

∥∥∥diag
(
〈φ(y(t))y(t − τ + d)T〉t

)

−〈φ(y(t))y(t − τ + d)T〉t
∥∥∥, (97)

FN (H) =
1

Q2

Q−1∑
τ=0

Q−1∑
d=0

∥∥∥Iδ(τ − d) − 〈φ(v(t))v(t − τ + d)T〉t
∥∥∥. (98)
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Figures 53(a) and (b) show FN (NH) of the conventional MSICA1 and FN (H) of

the proposed MSICA5. These scores correspond to the stability of the iterative

learning; it should be monotonically decreased. As shown in these figures, the

conventional ICA loses its stability under the nonholonomic constraint. However,

the proposed method can converge in every situation and consequently, we can

conclude that the proposed algorithm is effective for improving the stability of

the learning.
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6.5 Proposed Stable and Low-Distortion Algorithm for Overde-

termined BSS

6.5.1 Problems in Original Stable and Low-Distortion Algorithm

To solve the problems for stability and the distortion of conventional TDICA, we

have already proposed the algorithm combining MSICA and linear prediction in

Sect. 6.3. However this method does not apply to the model, where the number

of microphones larger than that of the sources because the compensation to the

sound qualities of separated signals become difficult. Thus, we should propose

a new algorithm, in which the source-separation of temporally correlated signals

such as speech is free of distortion caused by the decorrelation effect in the model

where the number of microphones larger than that of the sources.

6.5.2 Proposed Stable and Low-Distortion MSICA for Case 2

This section describes a new algorithm with stable and low-distortion property

based on MSICA using subarray processing. Figures 54 (a) and (b) show the

procedure performed in the proposed stable and low-distortion MSICA using

subarray processing. The proposed method consists of two steps, i.e., the itera-

tive learning process of H-TDICA (see Fig. 54 (a)) and the compensation process

(see Fig. 54 (b)). In the iterative learning of the proposed algorithm, we perform

H-TDICA. However the separated signals are distorted by the decorrelation effect

as described in Sect. 6.4.3. Therefore we estimate the the components which con-

tribute to the distortion and we compensate the sound qualities of the separated

signals.

First, we explicate the mechanism of H-TDICA algorithm. The iterative

learning of H-TDICA Eq. (47) can be decomposed into the components which

contribute to the separation and decorrelation given; these are given as

w
(H)
i+1(τ) = w

(H)
i (τ) + β

R−1∑
d=0

{
Iδ(τ − d) − 〈φ(y(t))y(t − τ + d)T〉t

}
w

(H)
i (d)

= w
(H)
0 (τ) +

i∑
j=0

[
β

R−1∑
d=0

{
Iδ(τ − d) − 〈φ(y(t))y(t − τ + d)T〉t

}
w

(H)
j (d)

]

= w
(H)
0 (τ)
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Figure 54. Procedure performed in the proposed stable and low-distortion MSICA

using subarray processing. The proposed method consists of following two steps,

i.e., (a) the iterative learning process of H-TDICA and (b) the compensation

process.

+
i∑

j=0

[
β

R−1∑
d=0

{
Iδ(τ − d) − diag(〈φ(y(t))y(t − τ + d)T〉t)

}
w

(H)
j (d)

−β
R−1∑
d=0

{
off-diag(〈φ(y(t))y(t − τ + d)T〉t)

}
w

(H)
j (d)

]

= w
(H)
0 (τ) +

i∑
j=0

(
∆w

(D)
j (τ) + ∆w

(S)
j (τ)

)
, (99)

∆w
(D)
j (τ) = β

R−1∑
d=0

{
Iδ(τ − d) − diag(〈φ(y(t))y(t − τ + d)T〉t)

}
w

(H)
j (d), (100)

∆w
(S)
j (τ) = −β

R−1∑
d=0

{
off-diag(〈φ(y(t))y(t − τ + d)T〉t)

}
w

(H)
j (d), (101)

where w
(H)
0 (τ) is the initial filter for the iterative learning, w

(D)
j (τ) is the compo-

nent which contributes to the decorrelation, and w
(S)
j (τ) is the component which

contributes to the separation. The iterative learning of NH-TDICA is the al-

gorithm in which w
(D)
j (τ) = 0. This modification yields the source separation

without the decorrelation effect, but, the stability in the iterative learning de-

grades shown in Sect. 6. We note that the only source separation is performed

by the nonholonomic constraint; indeed it is experimentally proved that w
(S)
j (τ)

is the component which contribute to the separation. Also, we can understand
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that w
(D)
j (τ) is the component which contribute to the decorrelation. Therefore

we estimate the distortion components by using w
(D)
j (τ) and we compensate the

sound quality of the separated signal. The desired optimized separation filter

w(S)(τ) is obtained by subtracting the component to the distortion from w
(H)
N (τ):

w(S)(τ) = w
(H)
N (τ) −

N−1∑
i=0

∆w
(D)
i (τ), (102)

where N is the number of iterations for TDICA.

The compensation in the proposed method is achieved by recovering the

higher-order autocorrelation of the separated signal to be that of the input sig-

nals for TDICA. If we apply the conventional simple TDICA, the higher-order

autocorrelation of the separated signal approximates to that of the mixed signal.

The distortion occurs because the autocorrelation of the mixed signal and that of

the desired source signal at the microphone point are completely different. There-

fore the application of this algorithm to the conventional simple TDICA is not

effective. On the other hand, in the application of this algorithm to MSICA, the

input signals for TDICA is the output signals from FDICA. The typical separa-

tion performance in FDICA using subarray processing is about 8 to 10 dB under

the condition that the reverberation time is 300 ms as shown in Sect. 5.5.2 [35]

and the MelCD between the observed signal with the single source component

at the microphone and the output signals from FDICA using subarray process-

ing is about 2 to 3 dB [66]. From this, we can infer that the autocorrelation of

the output signal from FDICA which corresponds to the input signal for TDICA

part in MSICA and that of the desired source signal at the microphone point are

similar. Therefore it is possible that the autocorrelation of the separated signal

approximates to that of the output signal from FDICA even in the case where the

number of microphones to be larger than that of sources, and we can compensate

the distortion effectively in the proposed method

6.5.3 Experiments and Results in Case 2

In this section, we compare the proposed MSICA shown in Sect. 6.5.2 with the

conventional MSICAs Eqs. (86) and (87) (see Fig. 46) under the condition where

the number of microphones K to be larger than that of sources L, i.e., L > K.

91



The experimental condition is the same as that given in Sect. 5.3.1. The analysis

conditions of FDICA in these experiments are shown in Table 6. The filter length

in FDICA is 1024 taps and the filter length in TDICA is 2048 taps.

In this study, we compare the following MSICAs:

Conventional MSICA1: FDICA is followed by NH-TDICA,

Conventional MSICA2: FDICA is followed by H-TDICA,

Proposed MSICA: FDICA is followed by the proposed TDICA algorithm,

Figures 55 (a) and (b) show the NRR results of the conventional MSICA1,

MSICA2, and the proposed MSICA for different iteration points. Figures 56 (a)

and (b) show the MelCD between the observed signal with the single source

component at the microphone and the output signals from (a) the conventional

MSICA1 and the proposed MSICA or (b) the conventional MSICA2.

These values were averages of all of the combinations with respect to speak-

ers and source directions. From these results, the following are revealed. First,

in the conventional MSICA1 in which the NH-TDICA is used, the behavior of

the NRR is not monotonic (see Fig. 55 (a)) and there is remarkably consistent

deterioration. The MelCD of the conventional MSICA1 in the initial step of the

iterative learning is superior, but, the MelCD degrades as the number of iterations

is increased (see Fig. 56 (a)). Secondly, regarding the separation performance of

the conventional MSICA2 in which the H-TDICA is used, the separation perfor-

mance of the conventional MSICA2 is obviously superior to that of the proposed

MSICA (see Fig. 55 (b)). However, the MelCD degrades as the number of itera-

tions is increased (see Fig. 56 (b)). We speculate that the specious performance

in MSICA2 is due to the exceeding emphasis of high-frequency components by

the whitening effect of H-TDICA. MSICA2 gains the improvement of the NRR

only in the high-frequency region as shown in Sect. 6.4.3 , and consequently we

can conclude that MSICA2 is ineffective in separating the speech signals from the

practical viewpoint.

On the other hand, in the proposed MSICA, there is no deterioration of NRR

(see Fig. 56 (a)). Therefore, the separation performances are almost completely

retained during all of the iterations and the proposed MSICA is effective for
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Figure 55. Comparison of the noise reduction rates in (a) conventional MSICA1

and proposed MSICA, and (b) conventional MSICA2.
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Figure 56. Comparison of the mel cepstral distortion in (a) conventional MSICA1

and proposed MSICA, and (b) conventional MSICA2.
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the stability in the iterative learning. Also, there are almost no degradation

of the MelCD in the proposed MSICA than that of the conventional MSICA2.

From these results, we can conclude that the proposed algorithm is effective for

improving the stability of the learning.

6.6 Conclusion

We newly proposed a stable and low-distortion algorithm combining MSICA and

linear prediction for BSS in the case where the number of microphones is equal

to that of sources. In the proposed algorithm, the linear predictors estimated

from the roughly separated signals by FDICA are inserted before the holonomic

TDICA as a prewhitening processing, and the dewhitening is performed after

TDICA. The stability of the proposed algorithm can be guaranteed by the holo-

nomic constraint, and the pre/dewhitening processing prevents the decorrelation.

Moreover, we proposed a new algorithm with a stability and low-distortion for

overdetermined BSS based on MSICA using subarray processing in the case where

the number of microphones to be larger than that of sources. In the proposed

algorithm, to solve the problem of the stability, we perform TDICA with the

holonomic constraint. Also, to avoid the distortions, we estimate the distor-

tion components by TDICA with the holonomic constraint and we compensate

the sound qualities by using the estimated components. The stability of the pro-

posed algorithm can be guaranteed by the holonomic constraint, and the proposed

compensation method prevents the distortion. The experimental results under a

reverberant condition revealed that the proposed algorithm provides the higher

stability and the higher separation performance, compared with the conventional

MSICA including H-TDICA or NH-TDICA.
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7. Conclusion

7.1 Summary of the Thesis

We addressed to the blind source separation (BSS) to realize a high-quality hands-

free speech recognition system and a hands-free telecommunication system. BSS

is an approach for estimating original source signals only from the information of

the mixed signals observed in each input channel. Many BSS methods based on

independent component analysis (ICA) have been proposed for the acoustic signal

separation. However, the performances of these methods degrade particularly

seriously under extreme reverberant conditions.

In order to improve the separation performance, we proposed two novel BSS

algorithms, i.e., (1) BSS based on multistage ICA (MSICA), in which frequency-

domain ICA (FDICA) and time-domain ICA (TDICA) are cascaded and (2)

Overdetermined BSS based on MSICA using subarray processing. Also, in order

to achieve a stability in the iterative learning of ICA and the separated signal with

low-distortion, we proposed two novel BSS algorithms, i.e., (1) BSS combining

MSICA and linear prediction and (2) Overdetermined BSS based on MSICA using

the new compensation method.

In Sect. 2, first, the sound mixing model of the microphone array is explained.

Next, we introduced two types of ICA for the convolutive mixture, i.e., FDICA

and TDICA. Moreover, the advantages and disadvantages in FDICA and TDICA

was explained.

In Sect. 3, we investigated the disadvantages of FDICA and TDICA and we

newly described the applicable limitations of both ICAs under the real acoustic

conditions. First, the results of the signal separation experiment with FDICA

revealed that the separation performance of FDICA obviously degrades when

the number of subbands become too large, and was saturated before reaching a

sufficient performance. We can conclude that this is because the independence

assumption of the narrow-band signals collapses. Secondly, the results of the sig-

nal separation experiment with TDICA revealed that the separation performance

of TDICA was not sufficient compared with FDICA. We can conclude that this is

because the iterative learning rule become more complicated as the reverberation

increases.
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In Sect. 4, we proposed a new algorithm for BSS, in which FDICA and TDICA

were combined to achieve a superior source-separation performance under rever-

berant conditions. Also, we provided a comparison results for the separation per-

formance of FDICA, TDICA, and the proposed method under the same acoustic

condition. The results of the signal separation experiment with the proposed

method revealed that the separation performance and the speech recognition of

the proposed algorithm were superior to that of conventional ICA-based BSS

methods, and the combination of FDICA and TDICA was inherently effective for

improving the separation performance.

In Sect. 5, we proposed a MSICA, by setting the number of microphones to be

larger than that of sources to achieve an improved separation performance. In the

FDICA part in the simple extension of MSICA, the use of additional microphones

led to alternative problems: the solution was likely to be trapped within a trivial

solution and the permutation problem in FDICA become very complicated. In

order to solve these problems, we proposed a new extended MSICA using subarray

processing, where the number of microphones and that of sources were set to

be the same in every subarray. The experimental results obtained under real

acoustic environmental conditions revealed that the separation performance of

the proposed MSICA was improved as the number of microphones is increased.

In Sect. 6, we newly proposed a stable and low-distortion algorithm com-

bining MSICA and linear prediction for BSS in the case where the number of

microphones was equal to that of sources. In the proposed algorithm, the linear

predictors estimated from the roughly separated signals by FDICA were inserted

before the holonomic TDICA as a prewhitening processing, and the dewhiten-

ing was performed after TDICA. The stability of the proposed algorithm can

be guaranteed by the holonomic constraint, and the pre/dewhitening process-

ing prevents the decorrelation. Moreover, we proposed a novel algorithm with

a stability and low-distortion for overdetermined BSS based on MSICA using

subarray processing in the case where the number of microphones to be larger

than that of sources. In the proposed algorithm, to solve the problem of the

stability, we performed TDICA with the holonomic constraint. Also, to avoid the

distortions, we estimated the distortion components by TDICA with the holo-

nomic constraint and we compensated the sound qualities by using the estimated
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components. The stability of the proposed algorithm can be guaranteed by the

holonomic constraint, and the proposed compensation method prevents the dis-

tortion. The experimental results under a reverberant condition revealed that the

proposed algorithm provides the higher stability and the higher separation per-

formance, compared with the conventional MSICA including holonomic TDICA

or nonholonomic TDICA.

In summary, we confirmed that the proposed MSICA-based BSS and overde-

termined BSS based on MSICA using subarray processing are effective for improv-

ing the source-separation performance. In addition, the proposed BSS combining

MSICA and linear prediction and overdetermined BSS based on MSICA using

the novel compensation method are also effective for achieving a stable learning

and low-distortion.

7.2 Future Work

Although we have improved the source-separation performance, the stability in

the learning of ICA, and the distortion of the separated signal, a number of

problems still remain to be solved.

Reduction of the degree of the calculation for ICA

In the application of FDICA, we can achieve a real-time processing except that

about 3 s is required for the adaptation of the initial separation filter. MSICA

could improve the source separation performance compared with the conventional

ICAs. However, the degree of the calculation in the proposed method is more

expensive compared with that of the conventional FDICA (about one minute).

We have to reduce the degree of calculation by improving the convergence of

MSICA and optimizing the combination of FDICA and TDICA. In recent work,

Mukai et al. propose the BSS using ICA and residual crosstalk subtraction [69].

In the future work, the combination with another noise reduction technique and

speech enhancement technique, e.g., spectral subtraction [67, 68], is required to

assist ICA and reduce the degree of the calculation.

Dereverberation

For achieving a superior speech recognition performance, not only the separation

of the user’s speech but also the reduction of the reverberant components is an

important task because the speech recognition performance is degraded as the
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reverberation time is lengthened. Our research members have been proposing a

new blind source separation and deconvolution of MIMO-FIR system with colored

sound inputs using SIMO-model-based ICA [70]. However, in the case of mixtures

with a long-tap FIR filter, the performance of the blind source separation and

deconvolution obviously degrades. Also, various type of dereverberation meth-

ods and improvements of acoustic model in the speech recognition system have

proposed [71, 72, 73]. A new approach combining ICA and this dereverberation

method is desired to achieve superior speech recognition performance.

Discrimination of the user’s speech

In the real applications of the hands-free speech recognition and a hands-free

telecommunication system, we have to discriminate the user’s speech from sepa-

rated signals. However, the discrimination of the user using only speech informa-

tion is very difficult. In the future, we will require a novel discrimination method

using not only the speech information but also the image information captured

by the image sensor is required.

Estimation of the number of source signals

In general, the number of sound sources is about 3 in typical environments that

a hands-free system is applied. Therefore we only use the 3-elements array in the

application of BSS. However the improvement of the separation performance is

desired by combining with the estimation method of the number of sound sources

[41, 42, 43] because of the effect for the convergence point mentioned in Sect.5.3.2.

99



Acknowledgements

I would like to express my deepest appreciation to Professor Kiyohiro Shikano

of Nara Institute of Science and Technology, my thesis adviser, for his constant

guidance and encouragement through my master’s course and doctral course.

I would also like to express my gratitude to Professor Kenji Sugimoto of Nara

Institute of Science and Technology for his invaluable comments to the thesis.

I would especially like to express my sincere gratefulness to Associate Pro-

fessor Hiroshi Saruwatari of Nara Institute of Science and Technology, for his

continuous support and valuable advice through the master’s course and the doc-

tral course. The core of this work originated with his pioneering ideas in blind

source separation. This work could not have been accomplished without his di-

rection. I could learn many lessons from his attitude toward study. I have always

been happy to carry out research with him.

I would like to thank Assistant Professor Akinobu Lee and Assistant Profes-

sor Hiromichi Kawanami of Nara Institute of Science and Technology, for their

beneficial comments.

I want to thank all members of the Speech and Acoustics Laboratory in Nara

Institute of Science and Technology for providing fruitful discussions. I would

especially like to thank Dr. Takanobu Nishiura, who is currently Associate Pro-

fessor at Ritsumeikan University, Dr. Yosuke Tatekura, who is currently Assistant

Professor at Shizuoka University, Dr. Tomoki Toda, who is currently a Research

Fellow of the Japan Society for the Promotion of Schience in Graduate School

of Engineering, Nagoya Institute of Technology, Dr. Ryuichi Nisimura, who is

currently Assistant Professor at Wakayama University, for providing thoughtful

advice and discussions on my research. I owe a great deal to Mrs. Noriko Abe

and Mrs. Kyoko Yoshida, secretary of Speech and Acoustics Laboratory, for their

support in the laboratory.

I would sincerely like to thank Dr. Shoji Makino, Executive Manager at Media

Information Laboratory of NTT Communication and Science Laboratories, Miss

Shoko Araki, Mr. Ryo Mukai, Dr. Hiroshi Sawada, of NTT Communication

and Science Laboratories, for providing livily and fruitful discussions about blind

source separation and microphone array processing. I would also like Dr. Shigeru

Katagiri, Deputy Directer of NTT Communication and Science Laboratories, Dr.

100



Shoji Makino, and Miss Shoko Araki, for their support when I was a student

intern at NTT Communication and Science Laboratories. I would sincerely like

to thank Dr. Atsunobu Kaminuma, NISSAN MOTOR CO., LTD., for fruitful

discussions about speech enhancement and blind source separation in the car

environments.

I would like to express my gratitude to Professor Noboru Nakasako and Pro-

fessor Hisanao Ogura of Kinki University, for their support, guidance, and having

recommended that I enter Nara Institute of Science and Technollogy.

I would like to thank Mr. Toshiya Kawamura (who is currently a Researcher

at DENSO Corporation), Mr. Tomoya Takatani, doctoral candidate of Nara

Institute of Science and Technology, Mr. Yoichi Hinamoto, doctoral candidate

of Kyoto University, Mr. Hiroaki Yamajo and Mr. Hiroshi Abe, former mas-

ter’s cource of Nara Institute of Science and Technology, Mr. Satoshi Ukai, Mr.

Yasuaki Ohashi, Miss Sachiko Obara, and Mr. Masayuki Shimada, master’s

cource of Nara Institute of Science and Technology, and Mr. Robert Aichner,

doctoral candidate of University of Erlangen-Nuremberg, for their fruitful discus-

sions about blind source separation and speech enhancement. I would also like

to thank Mr. Randy Gomez, doctoral candidate of Nara Institute of Science and

Technology, for his English support.

I am indebted to many Researchers and Professors. I would especially like

to express my gratitude to Dr. Futoshi Asano, Group Reader at Media Interac-

tion Group of National Institute of Advanced Industrial Science and Technology,

and Dr. Mitsuru Kawamoto, Associate Professor at Shimane University, for their

valuable advice and discussions. I would like to thank Mr. Akira Baba, a Re-

searcher at Matsushita Electric Works, Ltd., Dr. Manabu Otsuka, a Researcher

at DENSO Corporation, and Mr. Daisuke Saitoh, a Researcher at NISSAN MO-

TOR CO., LTD., for providing fruitful discussions.

I would like to acknowledge my friends for their support. I would especially like

to thank Mr. Miichi Yamada, Mr. Takashi Uchida, Mr. Hidekazu Kamiyanagida,

Mr. Yuu Nagata, Mr. Goshu Nagino, Mr. Keisuke Noma, Mr. Tsuyoshi Masuda,

Miss Kanako Matsunami, Mr. Koichi Mino, Mr. Yuichiro Mera, Mr. Katsuyuki

Sawai, and Sahoko Hata.

Finally, I would like to acknowledge my family for their support.

101



References

[1] B. H. Juang and F. K. Soong, “Hands-free telecommunications,” Proc. Inter-

national Conference on Hands-Free Speech Communication, pp.5–10, April

2001.

[2] J. S. Lim, Speech enhancement, Prentice-Hall, Inc., New Jersey, 1994.

[3] T. W. Parsons, “Separation of speech from interfering speech by means of

harmonic selection,” J. Acoust. Soc. Am., Vol.60, pp.911–918, 1976.

[4] K. Kashino, K. Nakadai, T. Kinoshita, and H. Tanaka, “Organization of

hierarchical perceptual sounds,” Proc. 14 th Int. Conf. Artificial Intelligence,

Vol.1, pp.158–164, 1995.

[5] M. Unoki and M. Akagi, “A method of signal extraction from noisy signal

based on auditory scene analysis,” Speech Communication, Vol.27, pp.261–

279, 1999.

[6] G. W. Elko, “Microphone array systems for hands-free telecommunication,”

Speech Communication, Vol.20, pp.229–240, 1996.

[7] J. L. Flanagan, J. D. Johnston, R. Zahn, and G. W. Elko, “Computer-steered

microphone arrays for sound transduction in large rooms,” Acoustical Society

of America, Vol.78, pp.1508–1518, Nov. 1985.

[8] O. L. Frost, “An algorithm for linearly constrained adaptive array process-

ing,” Proceedings of IEEE , Vol. 60, No. 8, pp.926–935, 1972.

[9] L. J. Griffiths and C. W. Jim, “An alternative approach to linearly con-

strained adaptive beamforming,” IEEE Transactions on Audio Processing,

Vol. 30, No. 1, pp.27–34, 1982.

[10] Y. Kaneda and J. Ohga, “Adaptive microphone-array system for noise re-

duction,” IEEE Transactions on Speech and Audio Processing, Vol. 34, No.

6, pp.1391–1400, 1986.

[11] T. W. Lee, Independent component analysis, Kluwer academic publishers,

1998.

102



[12] S. Haykin, Unsupervised adaptive filtering, John Wiley & Sons, Inc., 2000.

[13] J. F. Cardoso, “Eigenstructure of the 4th-order cumulant tensor with appli-

cation to the blind source separation problem,” Proc. ICASSP ’89, pp.2109–

2112, 1989.

[14] C. Jutten and J. Herault, “Blind separation of sources part I: An adaptive

algorithm based on neuromimetic architecture,” Signal Processing, Vol.24,

pp.1–10, 1991.

[15] P. Common, “Independent component analysis, a new concept?,” Signal

Processing, Vol.36, pp.287–314, 1994.

[16] A. Bell and T. Sejnowski, “An information-maximization approach to blind

separation and blind deconvolution,” Neural Computation, Vol.7, pp.1129–

1159, 1995.

[17] N. Murata and S. Ikeda, “An on-line algorithm for blind source separation

on speech signals,” Proc. of 1998 International Symposium on Nonlinear

Theory and Its Application (NOLTA98), pp.923–926, Sep. 1998.

[18] P. Smaragdis, “Blind separation of convolved mixtures in the frequency do-

main,” Neurocomputing, Vol.22, pp.21–34, 1998.

[19] H. Saruwatari, T. Kawamura, and K. Shikano, “Blind source separation for

speech based on fast-convergence algorithm with ICA and beamforming,”

Proc. Eurospeech2001, pp. 2603–2606, Sep. 2001.

[20] H. Sawada, R. Mukai, S. Araki, and S. Makino, “Polar coordinate based

nonlinear function for frequency-domain blind source separation,” IEICE

Trans. Fundamentals, Vol.E86-A, No.3, pp.590–595, March 2003.

[21] M. Kawamoto, K. Matsuoka, and N. Ohnishi, “A method of blind separa-

tion for convolved non-stationary signals,” Neurocomputing, 22, pp.157–171,

1998.

[22] T. Nishikawa, H. Saruwatari, and K. Shikano, “Blind source separation

of acoustic signals based on multistage ICA combining frequency-domain

103



ICA and time-domain ICA,” IEICE Trans. Fundamentals, Vol.E86-A, No.4,

pp.846–858, April, 2003.

[23] M. Kawamoto and Y. Inouye, “Generalized deflation algorithms for the blind

source-factor separation of MIMO-FIR channels,” Proc. International Sym-

posium on ICA and BSS, pp.561–566, April 2003.

[24] S. Araki, S. Makino, R. Aichner, T. Nishikawa, and H. Saruwatari,

“Subband-based blind source separation for convolutive mixtures of speech,”

IEEE Transactions on Speech and Audio Processing, (accepted).

[25] S. Araki, S. Makino, R. Mukai, T. Nishikawa, and H. Saruwatari, “The

fundamental limitation of frequency domain blind source separation for con-

volutive mixtures of speech,” IEEE Transactions on Speech and Audio Pro-

cessing, Vol. 11, No. 2, pp.109–116, March 2003.

[26] H. Kuttruff, Room acoustics (Fourth Ed.), Spon Press, London, 2000.

[27] S. Nakamura, K. Hiyane, F. Asano, T. Nishiura, and T. Yamada, “Acousti-

cal sound database in real environments for sound scene understanding and

hands-free speech recognition,” Proc. International Conference on Language

Resources and Evaluation, pp.965–968, June 2000.

http://tosa.mri.co.jp/sounddb/indexe.htm

[28] S. Kurita, H. Saruwatari, S. Kajita, K. Takeda, and F. Itakura, “Evaluation

of blind signal separation method using directivity pattern under reverberant

conditions,” Proc. ICASSP2000, Vol.5, pp.3140–3143, June 2000.

[29] S. Amari, S. C. Douglas, A. Cichocki, and H. H. Yang, “Multichannel blind

deconvolution and equalization using the natural gradient,” Proc. SPAWC97,

pp.101–104, April 1997.

[30] H. Saruwatari, S. Kurita, K. Takeda, F. Itakura, T. Nishikawa, and

K. Shikano, “Blind source separation combining ICA and beamforming,”

EURASIP Journal on Applied Signal Processing, Vol.2003, No.11, pp.1135-

1146, 2003.

104



[31] H. Saruwatari, T. Kawamura, and K. Shikano, H. Saruwatari, T. Kawamura,

T. Nishikawa, and K. Shikano, “Fast-convergence algorithm for blind source

separation based on array signal processing,” IEICE Trans. Fundamentals,

Vol.E86-A, No.3, pp.286–291, March 2003.

[32] M. Kawamoto and Y. Inoue, “Blind deconvolution of MIMO-FIR systems

with colored inputs using,” IEICE Trans. Fundamentals, Vol.E86-A, No.3,

pp.597–604, March 2003.

[33] L. Parra and C. V. Alvino, “Geometric source separation: merging convo-

lutive source separation with geometric beamforming,” IEEE Trans. Speech

& Audio Process., Vol.10, No.6, pp.352–362, 2002.

[34] S. Araki, S. Makino, Y. Hinamoto, R. Mukai, T. Nishikawa, and

H. Saruwatari, “Equivalence between frequency domain blind source sep-

aration and frequency domain adaptive beamforming for convolutive mix-

tures,” EURASIP Journal on Applied Signal Processing, Vol.2003, No.11,

pp.1157–1166, 2003.

[35] T. Nishikawa, H. Abe, H. Saruwatari, K. Shikano, and A. Kaminuma,

“Overdetermined blind separation for real convolutive mixtures of speech

based on multistage ICA using subarray processing,” IEICE Trans. Funda-

mentals, Vol.E87-A, No.8, pp.1924–1932, Aug. 2004.

[36] L. Parra and C. Spence, “Convolutive blind separation of non-stationary

sources,” IEEE Trans. Speech and Audio Processing, Vol.8, No.3, pp.320–

327, May 2000.

[37] F. Asano, S. Ikeda, M. Ogawa, H. Asoh, N. Kitawaki, “A combined approach

of array processing and independent component analysis for blind separation

of acoustic signals,” Proc. ICASSP2001, pp.2729–2732, May 2001.

[38] H. Sawada, R. Mukai, S. Araki, and S. Makino, “A robust and precise method

for solving the permutation problem of frequency-domain blind source sep-

aration,” IEEE Transactions on Speech and Audio Processing, Vol. 12, No.

5, pp.530–538, Sep. 2004.

105



[39] M. Kawamoto, A. K. Barros, A. Mansour, K. Matsuoka, and N. Ohnishi,

“Blind signal separation for convolved nonstationary signals,” Electronics

and Communications in Japan, Part 3, Vol. 84, No.2, 2001.

[40] S. Choi, S. Amari, A. Cichocki, and R. Liu, “Natural gradient learning with a

nonholonomic constraint for blind deconvolution of multiple channels,” Proc.

International Symposium on ICA and BSS, pp.371–376, Jan. 1999.

[41] M. Wax and T. Kailath, “Detection of signals by information theoretic cri-

teria,” IEEE Trans. Acoustics, Speech, and Signal Processing, Vol.33, No.2,

pp.387–392, April 1985.

[42] K. Yamamoto, F. Asano, W. F. G. Rooijen, E. Y. L. Ling, T. Yamada,

and N. Kitawaki, “Estimation of the number of sound sources using sup-

port vector machines and its application to sound source separation,” Proc.

ICASSP2003, pp.485–488, April 2003.

[43] H. Sawada, S. Winter, R. Mukai, S. Araki, and S. Makino, “Estimating

the number of sources for frequency-domain blind source separation,” Proc.

International Symposium on ICA and BSS, pp.610–617, Sep. 2004.

[44] T. Kobayashi, S. Itabashi, S. Hayashi, and T. Takezawa, “ASJ continuous

speech corpus for research,” J. Acoust. Soc. Jpn., Vol.48, No.12, pp.888–893,

1992 (in Japanese).

[45] T. Nishikawa, T. Takatani, H. Saruwatari, K. Shikano, S. Araki, and

S. Makino, “Comparison of time-domain ICA methods based on minimiza-

tion of KL divergence and simultaneous decorrelation of nonstationary sig-

nal,” The 2002 Autumn Meeting of the ASJ, pp.545–546, Sep. 2002 (in

Japanese).

[46] T. Nishikawa, H. Saruwatari, K. Shikano, S. Araki, and S. Makino, “Multi-

stage ICA for blind source separation of real acoustic convolutive mixture,”

Proc. International Symposium on ICA and BSS, pp.523–528, April 2003.

[47] T. Nishikawa, H. Saruwatari, and K. Shikano, “Blind source separation using

frequency-domain ICA and time-domain ICA in real acoustic environment,”

The 2001 Autumn Meeting of the ASJ, pp.625–626, Oct. 2001 (in Japanese).

106



[48] K. Itou, M. Yamamoto, K. Takeda, T .Takezawa, T. Matsuoka,

T. Kobayashi, K. Shikano, and S. Itahashi, “JNAS : Japanese speech corpus

for large vocabulary continuous speech recognition research,” J. Acoust. Soc.

Jpn. (E), Vol.20, No.3, pp.199–206, 1999.

[49] A. Lee, T. Kawahara, K. Takeda, K. Shikano, “A new phonetic tied-mixture

model for efficient decoding,” Proc. ICASSP2000, Vol.III, pp.1269–1272,

2000.

[50] A. Lee, T. Kawahara, K. Shikano, “Julius – An open source real-time large

vocabulary recognition engine,” Proc. EUROSPEECH2001, pp.1691–1694,

2001.

[51] M. Shozakai, “Development of automatic speech recognition middleware

VORERO for embedded appliances,” The 2004 Spring Meeting of the ASJ,

pp.31–32, March 2004 (in Japanese).

http://www.vorero.com

[52] M. Shozakai, S. Nakamura, and K. Shikano, “An evaluation of speech en-

hancement approach E-CMN/CSS for speech recognition in car environ-

ments,” IEICE Trans., Vol.J81-DII, No.1, pp.1–9, Jan. 1998 (in Japanese).

[53] M. Shozakai, S. Nakamura, and K. Shikano, “A robust speech recognition

using adaptive filter based on frame-wise voise activity detection in car en-

vironments,” IEICE Trans., Vol.J81-DII, No.6, pp.1074–1083, June 1998 (in

Japanese).

[54] H. Sawada, R. Mukai, S. Ryhove, S. Araki, and S. Makino, “Spectral

smoothing for frequency-domain blind source separation,” Proc. Interna-

tional Workshop on Acoustic Echo and Noise Control, pp.311–314, Sep. 2003.

[55] K. Matsuoka and S. Nakashima, “Minimal distortion principle for blind

source separation,” Proc. Int. Symp. on ICA and BSS (ICA2001), pp.722–

727, Dec. 2001.

[56] T. Takatani, T. Nishikawa, H. Saruwatari, and K. Shikano, “High-fidelity

blind separation of acoustic signals using SIMO-model-based indepen-

107



dent component analysis,” IEICE Trans. Fundamentals, Vol.E87-A, No.8,

pp.2063–2072, Aug. 2004.

[57] T. Takatani, T. Nishikawa, H. Saruwatari, and K. Shikano, “High-fildeity

blind separation of acoustic signals using SIMO-model-based ICA with

information-geometric learning,” Proc. International Workshop on Acoustic

Echo and Noise Control, pp.251–254, Sep. 2003.

[58] T. Takatani, T. Nishikawa, H. Saruwatari, and K. Shikano, “Compari-

son between SIMO-ICA with least squares criterion and SIMO-ICA with

information-geometric learning,” Proc. International Congress on Acoustics,

Vol.I, pp.329–332, April 2004.

[59] T. Nishikawa, H. Abe, H. Saruwatari, and K. Shikano, “Overdetermined

blind separation of acoustic signals based on MISO-constrained frequency-

domain ICA,” Proc. International Congress on Acoustics, Vol.IV, pp.3143–

3146, April 2004.

[60] T. Nishikawa, H. Saruwatari, and K. Shikano, “Stable learning algorithm for

low-distortion blind separation of real speech mixture combining multistage

ICA and linear prediction,” ISCA tutorial and research workshop on non-

linear speech processing, pp.31–34, May 2003.

[61] T. Nishikawa, H. Saruwatari, and K. Shikano, “Stable learning algorithm for

blind separation of temporally correlated acoustic signals combining multi-

stage ICA and Linear Prediction,” IEICE Trans. Fundamentals, Vol.E86-A,

No.8, pp.2028–2036, Aug. 2003.

[62] A. Papoulis and S. U. Pillai, Probability, random variables and stochastic

processes (Fourth Ed.), McGraw-Hill Series in Electrical and Computer En-

gineering, New York, 2002.

[63] S. Furui, Digital speech processing, synthesis, and recognition (Second Ed.),

Signal Processing and Communications Series in Marcel Dekker, Inc., New

York, 2000.

108



[64] T. Nishikawa, T. Kawamura, H. Saruwatari, and K. Shikano, “Overdeter-

mined source separation with blind beamformer,” The 2000 Autumn Meeting

of the ASJ, pp.447–448, Sep. 2000 (in Japanese).

[65] R. Aichner, S. Araki, S. Makino, T. Nishikawa, and H. Saruwatari, “Time

domain ICA blind source separation of non-stationary convolved signals by

utilizing geometric beamforming,” Proc. IEEE International Workshop on

Neural Networks for Signal Processing, pp.445–454, Sep. 2002.

[66] T. Nishikawa, H. Saruwatari, K. Shikano, and A. Kaminuma, “Stable and

low-distortion algorithm based on overdetermined blind separation for con-

volutive mixtures of speech,” Proc. International Symposium on ICA and

BSS, pp.881–888, Sep. 2004.

[67] S. F. Boll, “Supression of acoustic noise in speech using spectral subtraction,”

IEEE Transactions on Speech and Audio Processing, Vol. 27, No. 2, pp.113–

120, 1979.

[68] M. Mizumachi and M. Akagi, “Noise reduction by paired microphones using

spectral subtraction,” Proc. ICASSP ’98, pp.1001–1004, 1998.

[69] R. Mukai, H. Sawada, S. Araki, and S. Makino, “Blind source separation for

moving speech signals using blockwise ICA and residual crosstalk subtrac-

tion,” IEICE Trans. Fundamentals, Vol. E87-A, No. 8, pp. 1941–1948, Aug.

2004.

[70] H. Saruwatari, H. Yamajo, T. Takatani, T. Nishikawa, and K. Shikano,

“Blind separation and deconvolution of MIMO-FIR system with colored

sound inputs using SIMO-model-based ICA,” 2003 IEEE Workshop on Sta-

tistical Signal Processing (SSP2003), pp.421–424, Sep. 2003.

[71] A. Baba, A. Lee, H. Saruwatari, and K. Shikano, “Speech recognition by

reverberation adapted acoustic models,” The 2002 Autumn Meeting of the

ASJ, pp.27–28, Sep. 2002 (in Japanese).

[72] T. Takiguchi and M. Nishimura, “Acoustic model adaptation using first order

prediction for revereberant speech ,” Proc. ICASSP2004, pp.869–872, May

2004.

109



[73] A. Baba, D. Matsumoto, A. Lee, H. Saruwatari, and K. Shikano, “Recog-

nition of speech with dereverberation by spectrum subtraction in home en-

vironment,” The 2004 Autumn Meeting of the ASJ, pp.9–10, Sep. 2004 (in

Japanese).

[74] A. Gersho and R. M. Gray, Vector quantization and signal compression.

Norwell, MA: Kluwer Academic Publishers, 1998.

[75] D. H. Johnson and D. E. Dudgeon, Array signal processing: concepts and

techniques. Englewood Cliffs, NJ: Prentice-Hall, 1993.

[76] J. Allen and D. Berkley, “Image method for efficiently simulating small-room

acoustics,” J. Acoust. Soc. Am., Vol.65, No.4, pp.943–950, 1979.

[77] M. Athans, “The matrix minimum principle,” Information Control, Vol. 11,

pp.592–606, 1967.

[78] S. Kodama, Matrix theory for systems and control, Corona publishing CO.,

LTD., p.30, p.46, 1978 (in Japanese).

110



Appendix

A. Fast-Convergence FDICA for More Than Two

Sources Combining ICA and Beamforming

A.1 Introduction

In this section, we address to the complex-valued ICA i.e., FDICA [17, 18, 19,

20, 28, 30, 31]. The FDICA-based BSS approach seems to be a very flexible and

effective technique for the source separation, but it has an inherent disadvantage

in that there is difficulty with the slow convergence of the optimization in ICA

[30].

Saruwatari et al. have solved this problem in a specific case of two sources and

two microphones by introducing the fast-convergence algorithm combining ICA

and beamforming [19]. However, this algorithm cannot be extended to the source-

separation problem of multiple sources and multiple microphones (more than 2

sources with more than 2 microphones). To resolve this problem, in this section,

we describe a new extended algorithm [19] in which ICA and beamforming are

combined for the blind separation of multiple sources. The proposed method

consists of the following three parts: (a) frequency-domain ICA with estimation

of the DOA of the sound source using a Lloyd clustering algorithm [74], (b) null

beamforming based on the estimated DOA, and (c) integration of (a) and (b)

based on the algorithm diversity in both iteration and frequency domain. The

temporal utilization of null beamforming through ICA iterations can realize fast-

and high-convergence optimization. The results of the signal separation experi-

ments reveal that the signal separation performance of the proposed algorithm is

superior to that of the conventional ICA-based BSS method, and the utilization

of null beamforming in ICA is effective for improving the separation performance

and convergence, even under reverberant conditions.
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A.2 Proposed Algorithm

A.2.1 Motivation and Strategy

The conventional FDICA method inherently has a significant disadvantage which

is due to slow and poor convergence through nonlinear optimization in ICA,

particularly when introducing a poor initial setting of the separation matrix.

Meanwhile, we has recently provided an insight into the close relationship

between ICA and the fixed null beamformer [34]. It is reported that, after the

filter update has been completed, ICA with the small number of sensors (e.g.,

K = 2) often provides directional nulls against the undesired source signals, unlike

the traditional DS array which enhances the target signal via the directional lobe.

Indeed, the null beamforming is approximately optimal for the signal separation

when the effect of the room reverberation is negligible, but this optimality cannot

hold under reverberant conditions because the exact signal reduction cannot be

achieved by using only the directional nulls. The null-beamforming approach,

however, still has the advantage that there is no difficulty with respect to the

slow convergence of optimization because the null beamformer is determined by

using only DOA information without independence between sound sources.

The above-mentioned findings motivate us to combine FDICA and null beam-

forming. That is, a specific separation matrix which is designed on the basis of

null beamforming can assist FDICA in the convergence and yield a good initial

value of W (f) with regard to an advance removal of the direct sound of the

interference. In this section, we propose an algorithm based on the temporal

alternation of learning between FDICA and null beamforming; the separation

matrix W (f) obtained through FDICA is temporally substituted by the matrix

based on null beamforming for a temporal initialization or acceleration of the

iterative optimization.

It is worth noting that even in the proposed algorithm, DOA information for

each source is needed before the construction of the null beamformer, similarly to

other beamforming techniques. However, this DOA estimation was considered as

a tough problem under common BSS tasks where the number of sources, L, equals

that of sensors, K. For instance, the traditional high-resolution DOA estimator,

e.g., MUSIC and minimum variance methods [75] cannot be applied because these
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methods require the condition that K > L. To achieve the DOA estimation

blindly in the case of K=L, we introduce a new combination in which the DOA

estimation follows one-time FDICA iteration and can be performed by using the

separation matrix obtained from FDICA. This DOA estimation method is mainly

based on our earlier finding that the directional null is steered to the DOA of the

suppressed source in FDICA. Consequently, we can approximately estimate the

DOAs only to find the null directions in the directivity patterns obtained from

FDICA. Although the proposed combination approach partly includes heuristics

with no guarantee of mathematically exact convergence, the effectiveness will be

experimentally discussed in Sect. A.3. The proposed algorithm is conducted by

the following steps with respect to all frequency bins in parallel (see Fig. 57).

A.2.2 Procedure of Proposed Algorithm

[Step 1: Initialization] Set the initial W i(f), i.e., W 0(f), to a conventional

DS array, where the subscript i is set to be 0.

[Step 2: 1-time ICA iteration] Optimize W i(f) using the one-time FDICA

iteration (see Eq. (37)), where the superscript “(ICA)” is used to express the fact

that the separation matrix is obtained by ICA, whereas W i(f) originated from

either ICA or null beamforming, as described in step 5.

[Step 3: DOA estimation] Estimate DOAs θ = {θ1, · · · θL} of the sound

sources by utilizing the directivity pattern of the array system. The directivity

pattern for the l th output is designated by Fl(f, θ), which is generally obtained

by the multiplication of array weights and a steering vector as [75]

[F1(f, θ), · · · , FL(f, θ)]T = W (ICA)(f)e(f, θ), (103)

where e(f, θ) is the steering vector which is defined by

e(f, θ) = [ exp [j2π(ffs/N)d1 sin θ/c] ,

· · · , exp [j2π(ffs/N)dK sin θ/c] ]T, (104)

where c is velocity of sound, fs is sampling frequency and N is a DFT size.

In the case of K = L = 2, directional nulls in the directivity patterns exist in

only two particular directions, and thus we can heuristically drop the directions

θl into two categories “large (max)” or “small (min)” [19]. This procedure is very
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Figure 57. Proposed algorithm combining FDICA and beamforming.
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simple and has the benefit of the low computational cost, but obviously the rule

cannot be available in K = L > 2. To overcome the problem, we newly introduce

an extended DOA estimation algorithm based on a directional null clustering

technique, which can work even in the general case of K = L > 2.

In the l th directivity pattern Fl(f, θ) at the f th frequency bin, at most L−1

directional nulls can be found. We define the set of DOAs corresponding to the

directional nulls as Θ(l)(f); which is given by

Θ(l)(f) =
{
θ| [Fl(f, θ) − Fl(f, θ − ∆θ)] ≤ 0;

[Fl(f, θ + ∆θ) − Fl(f, θ)] > 0
}
, (105)

where ∆θ is a positive small value, and {θ| A; B} represents a set of θ which

satisfies the conditions A and B simultaneously.

Θ(l)(f) is evidently a good candidate of source directions. To estimate the

DOAs of sources, we classify Θ(l)(f) with all f and l into L categories, and then

regard the centroids as the estimated DOAs. This classification can be carried

out by using a Lloyd clustering algorithm [74] as follows.

(a) Make the whole set of Θ(l)(f) to be classified, as

Θ =
{
θ1, θ2, · · · , θQ

}
=

L∑
l=1

N/2∑
f=1

Θ(l)(f), (106)

where Q is the total number of detected directional nulls and at most Q =

(L − 1) · L · N/2.

(b) Set initial L centroids θ(C) = {θ(C)
1 , · · · θ

(C)
L } to the DOAs estimated in the

previous ICA iteration, i.e., θ(C) = θ̂i. In the first iteration (i = 0), we set θ(C)

to an arbitrary value.

(c) Set L − 1 partitions θ(P)
p as θ(P)

p = (θ(C)
p + θ

(C)
p+1)/2 where p = 1, · · · , L − 1.

Also, the terminal partitions θ
(P)
0 and θ

(P)
L are fixed at −90 and 90, respectively,

throughout the algorithm.

(d) Given the partitions, calculate the L centroids θ
(C)
l (l = 1, · · · , L) as

θ
(C)
l =

1

Ql

{ ∑
θ
(P)
l−1

≤θq<θ
(P)
l

θq

}
, (107)

where Ql denotes the number of θq under θ
(P)
l−1 ≤ θq < θ

(P)
l .
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(e) Go back to (c) for updating the new partitions by using the new centroids,

and repeat the loop in (c)∼(e) with an appropriate number of iterations. The

final centroids θ(C) are regarded as the resultant estimated DOAs θ̂i+1 in the

(i + 1) th iteration, i.e., θ̂i+1 = θ(C).

[Step 4: Beamforming] Construct an alternative matrix for signal separation,

W (BF)(f), based on the null-beamforming technique where the DOA information

obtained in the ICA section is used. The separation matrix W (BF)(f) can be

obtained as

W (BF)(f) =
[
e(f, θ̂1), e(f, θ̂2), · · · , e(f, θ̂L)

]−1
. (108)

[Step 5: Diversity using cost function] In order to integrate the FDICA

with null beamforming, we introduce the following strategy for selecting the most

suitable separation matrix in each frequency bin and at each iteration point, i.e.,

algorithm diversity in both iteration and frequency domain. As a cost function

for achieving the diversity, we introduce a coherence function among L separated

signals:

C(W (f))

=
1

LC2

L∑
l=2

∑
l′<l

|〈Yl′(f, t)Yl(f, t)∗〉t|√
〈 |Yl′(f, t)|2 〉t〈 |Yl(f, t)|2 〉t

, (109)

where Yl(f, t) and Yl′(f, t) are the separated signals. We calculate the estimated

coherence function once for W (f) = W (ICA)(f) and once for W (f) = W (BF)(f);

these are written as C(W (ICA)(f)) and C(W (BF)(f)), respectively. In fact, the co-

herence function cannot indicate the exact independence between sources, unlike

ICA. However, we use this function to assess the source independence approx-

imately because of the feasible advantage that the coherence function does not

include any nonlinear calculations which often entail large computational com-

plexity.

If the expected separation performance of beamforming is superior to that

of ICA, the following condition holds, C(W (ICA)(f)) > C(W (BF)(f)); otherwise,

C(W (ICA)(f)) ≤ C(W (BF)(f)). Thus, an observation of the conditions yields the

following algorithm:

W i+1(f)
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=

⎧⎨
⎩W (ICA)(f), (C(W (ICA)(f)) ≤ C(W (BF)(f)))

W (BF)(f), (C(W (ICA)(f)) > C(W (BF)(f))).

(110)

If the (i + 1) th iteration is the final iteration, go to step 6; otherwise, go back

to step 2 and repeat the ICA iteration, inserting W i+1(f) as given by (110) into

W i(f) in (37) with an increment of i.

[Step 6: Ordering and scaling] Using the DOA information obtained in step

3, we can detect and correct the source permutation and the gain inconsistency

[28]. From the directivity patterns in all frequency bins, we approximate the

degree of the noise reduction by the differences between the gain at the direction

of the target and those of the interferences. By comparing the degree of the

estimated noise reduction, we can resolve the permutation problem. The gain in-

consistency problem is resolved by normalizing the directivity patterns according

to the gain in each source direction after the classification.

A.3 Experiments and Results

A.3.1 Experimental Setup

The source separation experiment with K = L = 3 is conducted. In this thesis,

we assume that the number of sound sources is known in advance. Regarding

the estimation of the number of sound sources, many methods are available,

e.g., [41, 42, 43]. In order to generate the room impulse responses, we use the

image method [76] assuming the artificial room as shown in Fig. 58, where the

reverberation time is set to be 300 ms. A three-element array with interelement

spacing of 4 cm is used. Three sound sources are placed at three directions,

−60◦, 0◦, and 70◦ to sound the speech signals. Two sentences spoken by two

male and two female speakers are used as the original speech samples and the

sampling frequency is 8 kHz. Using these sentences, we obtain 12 combinations

with respect to speakers and source directions. We use the DS-array-based initial

value W 0(f) which steers the look directions to −90◦, 20◦, and 90◦. The frame

length is 128 ms and the frame shift is 2 ms. The step-size parameter α is

2.0× 10−6. In order to evaluate the performance, we used the NRR as described

in Sect. 3.2.2.
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Figure 58. Layout of reverberant room used in image method.

A.3.2 DOA Estimation Results

Figure 59 shows the DOA estimation results (averaged DOAs for 12 combinations)

for different number of loops in the Lloyd clustering algorithm (see Sect. A.2,

Step 3 (e)). We compared four patterns, in which the number of Lloyd loops is

1, 3, 5, and 10 times. These results reveal that the performances of the DOA

estimation using 5 and 10 Lloyd loops are equivalent. From these results, the

Lloyd clustering converges at 5 times. In the next source-separation experiment,

we set the number of loops for the Lloyd clustering algorithm to be 5 times.

A.3.3 Source-Separation Result

Figure 60 shows the NRR results (averaged NRR for 12 combinations) of the

proposed method and the conventional BSS. This figure contains the following

three curves.

Proposed Method : Our proposed BSS method described in Section A.2.

Conventional ICA : The conventional FDICA-based BSS method described
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Figure 59. Results of DOAs estimated by the Lloyd clustering algorithm for

different number of loops in the proposed method.

in Section 2.3. This also corresponds to the special case that ICA is al-

ways (wrongly) chosen in step 5 of the proposed algorithm, i.e., always

W i+1(f) = W (ICA)(f) in (110).

Null Beamformer : The iteratively optimized null beamformer which corre-

sponds to the special case that the null beamformer is always (wrongly) cho-

sen in step 5 of the proposed algorithm, i.e., always W i+1(f) = W (BF)(f)

in (110).

These results reveal that the proposed method obviously outperforms both the

conventional FDICA-based BSS and null beamformer at every iteration point.

Thus, it can be asserted that the proposed method is feasible for the case of

K = L = 3 as well as K = L = 2 [19].

In addition, Figure 61 shows the example of alternation results between ICA

and null beamforming through iterative optimization by the proposed algorithm.

As shown in Fig. 61, the proposed algorithm can function automatically as follows.
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Figure 60. Noise reduction rates for different iteration points in proposed method,

conventional ICA, and iteratively optimized null beamformer.

• Null beamforming is used for the acceleration of learning early in the itera-

tions because W (BF)(f) is a rough approximation of the separation matrix.

• ICA is used after the early part of the iterations because it can update the

separation matrix more accurately.

• The separation matrix obtained by ICA is substituted by the matrix based

on null beamforming through all iteration points at particular frequency

bins where the independence between the sources is low.

From these results, although null beamforming is not suitable for signal separa-

tion under the condition that direct sounds and their reflections exist, we can

confirm that the temporal utilization of null beamforming for algorithm diversity

through ICA iterations is effective for improving the separation performance and

convergence.
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Figure 61. Result of alternation between ICA and null beamforming through

iterative optimization by the proposed algorithm. The symbol “-” indicates that

the null beamforming is used at the iteration point and frequency bin.
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A.4 Conclusion

In this section, we described a fast- and high-convergence blind separation al-

gorithm for multiple source signals where null beamforming is temporally used

for algorithm diversity through ICA iterations. The simulation results of the

signal separation experiments reveal that the signal separation performance of

the proposed algorithm is superior to that of the conventional FDICA-based BSS

method, and the utilization of null beamforming in ICA is effective for improving

the separation performance and convergence, even under reverberant conditions.

B. Derivation of Eq. (61)

The cost function Eq. (43) is

∂Q(w(τ))

∂w(τ)
=

1

2B

B∑
b=1

∂

∂w(τ)
log

⎛
⎝det diagR(b)

y (0)

det R(b)
y (0)

⎞
⎠

=
1

2B

B∑
b=1

{ ∂

∂w(τ)
log(det diagR(b)

y (0))

− ∂

∂w(τ)
log(det R(b)

y (0))
}
. (111)

In this thesis, we give the derivation of the case in which the number of the source

signals and that of the observed signals are 2, i.e., the separation filter matrix

w(τ) is 2 × 2 matrix.

The partial differentiation ∂ log(det R(b)
y (0))/∂w(τ) is given by the following

equation (the differentiation of matrix were refered from [77, 78]).

∂ log(det R(b)
y (0))

∂w(τ)
=

∂ log(det R(b)
y (0))

∂ det R(b)
y (0)

· ∂ det R(b)
y (0)

∂w(τ)

=
(
det R(b)

y (0)
)−1 ∂ det R(b)

y (0)

∂w(τ)
. (112)

Here, R(b)
y (0) is rewritten as the following equation:

R(b)
y (0) = 〈y(t)y(t)T〉(b)t

= 〈(W (z)x(t))(W (z)x(t))T〉(b)t

= 〈W (z)x(t)x(t)TW (z)T〉(b)t
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= W (z−1)〈x(t)x(t)T〉(b)t W (z−1)T

= W (z−1)R(b)
x (0)W (z−1)T, (113)

where

R(b)
x (0) = 〈x(t)x(t)T〉(b)t . (114)

Also, the elements of R(b)
y (0) are given as the following equation by using the

elements of R(b)
x (0) and W (z−1):

[R(b)
y (0)]11 = [W (z−1)]211[R

(b)
x (0)]11 + [W (z−1)]11[W (z−1)]12

·
(
[R(b)

x (0)]21 + [R(b)
x (0)]12

)
+ [W (z−1)]212[R

(b)
x (0)]22, (115)

[R(b)
y (0)]12 = [W (z−1)]11[W (z−1)]21[R

(b)
x (0)]11

+[W (z−1)]12[W (z−1)]21[R
(b)
x (0)]21

+[W (z−1)]11[W (z−1)]22[R
(b)
x (0)]12

+[W (z−1)]12[W (z−1)]22[R
(b)
x (0)]22, (116)

[R(b)
y (0)]21 = [W (z−1)]11[W (z−1)]21[R

(b)
x (0)]11

+[W (z−1)]11[W (z−1)]22[R
(b)
x (0)]21

+[W (z−1)]12[W (z−1)]21[R
(b)
x (0)]12

+[W (z−1)]12[W (z−1)]22[R
(b)
x (0)]22, (117)

[R(b)
y (0)]22 = [W (z−1)]221[R

(b)
x (0)]11 + [W (z−1)]21[W (z−1)]22

·
(
[R(b)

x (0)]21 + [R(b)
x (0)]12

)
+ [W (z−1)]222[R

(b)
x (0)]22, (118)

where [·]ij denotes the ij-th element of the argument. The partial differentia-

tion ∂ det R(b)
y (0)/∂w(τ) in Eq. (112) is expanded as the following equation by

substituting Eq. (113):

∂ det R(b)
y (0)

∂w(τ)
=

∂

∂w(τ)

(
[R(b)

y (0)]11[R
(b)
y (0)]22 − [R(b)

y (0)]12[R
(b)
y (0)]21

)
=
{
[W (z−1)]211[R

(b)
x (0)]11 + [W (z−1)]11[W (z−1)]12

·
(
[R(b)

x (0)]21 + [R(b)
x (0)]12

)
+ [W (z−1)]212[R

(b)
x (0)]22

}
·
{
[W (z−1)]221[R

(b)
x (0)]11 + [W (z−1)]21[W (z−1)]22

·
(
[R(b)

x (0)]21 + [R(b)
x (0)]12

)
+ [W (z−1)]222[R

(b)
x (0)]22

}
−
{
[W (z−1)]11[W (z−1)]21[R

(b)
x (0)]11

+ [W (z−1)]12[W (z−1)]21[R
(b)
x (0)]21
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+ [W (z−1)]11[W (z−1)]22[R
(b)
x (0)]12

+ [W (z−1)]12[W (z−1)]22[R
(b)
x (0)]22

}
·
{
[W (z−1)]11[W (z−1)]21[R

(b)
x (0)]11

+ [W (z−1)]11[W (z−1)]22[R
(b)
x (0)]21

+ [W (z−1)]12[W (z−1)]21[R
(b)
x (0)]12

+ [W (z−1)]12[W (z−1)]22[R
(b)
x (0)]22

}
. (119)

Hereafter, we resolve Eq. (119) into the partial differentiation for each element of

w(τ) as

∂ det R(b)
y (0)

∂[w(τ)]11
= zτ

(
[R(b)

y (0)]22
{
2[W (z−1)]11[R

(b)
x (0)]11

+ [W (z−1)]12
(
[R(b)

x (0)]21 + [R(b)
x (0)]12

)}
− [R(b)

y (0)]21
{
[W (z−1)]21[R

(b)
x (0)]11

+ [W (z−1)]22[R
(b)
x (0)]12

}
− [R(b)

y (0)]12
{
[W (z−1)]21[R

(b)
x (0)]11

+ [W (z−1)]22[R
(b)
x (0)]21

})

= 2zτ
(
[R(b)

y (0)]22
{
[W (z−1)]11[R

(b)
x (0)]11

+ [W (z−1)]12[R
(b)
x (0)]21

}
− [R(b)

y (0)]12
{
[W (z−1)]21[R

(b)
x (0)]11

+ [W (z−1)]22[R
(b)
x (0)]21

})
, (120)

where we used the partial differentiation as

∂[W (z−1)]ij
∂[w(τ)]ij

=
∂

∂[w(τ)]ij

(Q−1∑
τ ′=0

[w(τ ′)]ijzτ ′)
= zτ , (121)

and the following relation defined from the symmetry of correlation matrix,

[R(b)
x (0)]12 = [R(b)

x (0)]21, (122)

[R(b)
y (0)]12 = [R(b)

y (0)]21. (123)

By calculating the other elements, we obtain

∂ det R(b)
y (0)

∂[w(τ)]12
= zτ

(
[R(b)

y (0)]22
{
2[W (z−1)]12[R

(b)
x (0)]22
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+ [W (z−1)]11
(
[R(b)

x (0)]21 + [R(b)
x (0)]12

)}
− [R(b)

y (0)]21
{
[W (z−1)]21[R

(b)
x (0)]21

+ [W (z−1)]22[R
(b)
x (0)]22

}
− [R(b)

y (0)]12
{
[W (z−1)]21[R

(b)
x (0)]12

+ [W (z−1)]22[R
(b)
x (0)]22

})

= 2zτ
(
[R(b)

y (0)]22
{
[W (z−1)]11[R

(b)
x (0)]12

+ [W (z−1)]12[R
(b)
x (0)]22

}
− [R(b)

y (0)]12
{
[W (z−1)]21[R

(b)
x (0)]12

+ [W (z−1)]22[R
(b)
x (0)]22

})
, (124)

∂ det R(b)
y (0)

∂[w(τ)]21
= zτ

(
[R(b)

y (0)]11
{
2[W (z−1)]21[R

(b)
x (0)]11

+ [W (z−1)]22
(
[R(b)

x (0)]21 + [R(b)
x (0)]12

)}
− [R(b)

y (0)]21
{
[W (z−1)]11[R

(b)
x (0)]11

+ [W (z−1)]12[R
(b)
x (0)]21

}
− [R(b)

y (0)]12
{
[W (z−1)]11[R

(b)
x (0)]11

+ [W (z−1)]12[R
(b)
x (0)]12

})

= 2zτ
(
−[R(b)

y (0)]21
{
[W (z−1)]11[R

(b)
x (0)]11

+ [W (z−1)]12[R
(b)
x (0)]21

}
+ [R(b)

y (0)]11
{
[W (z−1)]21[R

(b)
x (0)]11

+ [W (z−1)]22[R
(b)
x (0)]21

})
, (125)

∂ det R(b)
y (0)

∂[w(τ)]22
= zτ

(
[R(b)

y (0)]11
{
2[W (z−1)]22[R

(b)
x (0)]22

+ [W (z−1)]21
(
[R(b)

x (0)]21 + [R(b)
x (0)]12

)}
− [R(b)

y (0)]21
{
[W (z−1)]11[R

(b)
x (0)]12

+ [W (z−1)]12[R
(b)
x (0)]22

}
− [R(b)

y (0)]12
{
[W (z−1)]11[R

(b)
x (0)]21

+ [W (z−1)]12[R
(b)
x (0)]22

})

= 2zτ
(
−[R(b)

y (0)]21
{
[W (z−1)]11[R

(b)
x (0)]12
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+ [W (z−1)]12[R
(b)
x (0)]22

}
+ [R(b)

y (0)]11
{
[W (z−1)]21[R

(b)
x (0)]12

+ [W (z−1)]22[R
(b)
x (0)]22

})
. (126)

Here, the elements of W (z−1)R(b)
x (0) are given as the following equation by using

the elements of R(b)
x (0) and W (z−1):

[W (z−1)R(b)
x (0)]11 = [W (z−1)]11[R

(b)
x (0)]11 + [W (z−1)]12[R

(b)
x (0)]21, (127)

[W (z−1)R(b)
x (0)]12 = [W (z−1)]11[R

(b)
x (0)]12 + [W (z−1)]12[R

(b)
x (0)]22, (128)

[W (z−1)R(b)
x (0)]21 = [W (z−1)]21[R

(b)
x (0)]11 + [W (z−1)]22[R

(b)
x (0)]21, (129)

[W (z−1)R(b)
x (0)]22 = [W (z−1)]21[R

(b)
x (0)]12 + [W (z−1)]22[R

(b)
x (0)]22. (130)

Substituting Eqs. (127)–(130) into Eqs (120)–(126), the following equations are

obtained:

∂ det R(b)
y (0)

∂[w(τ)]11
= 2zτ

(
[R(b)

y (0)]22[W (z−1)R(b)
x (0)]11

−[R(b)
y (0)]12[W (z−1)R(b)

x (0)]21

)
, (131)

∂ det R(b)
y (0)

∂[w(τ)]12
= 2zτ

(
[R(b)

y (0)]22[W (z−1)R(b)
x (0)]12

−[R(b)
y (0)]12[W (z−1)R(b)

x (0)]22

)
, (132)

∂ det R(b)
y (0)

∂[w(τ)]21
= 2zτ

(
−[R(b)

y (0)]21[W (z−1)R(b)
x (0)]11

+[R(b)
y (0)]11[W (z−1)R(b)

x (0)]21

)
, (133)

∂ det R(b)
y (0)

∂[w(τ)]22
= 2zτ

(
−[R(b)

y (0)]21[W (z−1)R(b)
x (0)]12

+[R(b)
y (0)]11[W (z−1)R(b)

x (0)]22

)
. (134)

Thus, Eq. (119) is rewritten as the following matrix form:

∂ det R(b)
y (0)

∂w(τ)
= 2zτ

⎡
⎣ [R(b)

y (0)]22 −[R(b)
y (0)]12

−[R(b)
y (0)]21 [R(b)

y (0)]11

⎤
⎦

·
⎡
⎣ [W (z−1)R(b)

x (0)]11 [W (z−1)R(b)
x (0)]12

[W (z−1)R(b)
x (0)]21 [W (z−1)R(b)

x (0)]22

⎤
⎦
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= 2zτadj
[
R(b)

y (0)
]
W (z−1)R(b)

x (0), (135)

where adj[·] is adjoint matrix. By substituting Eq. (135) into Eq. (112),

∂ log(det R(b)
y (0))/∂w(τ) is rewritten as

∂ log(det R(b)
y (0))

∂w(τ)
= 2zτ

(
det R(b)

y (0)
)−1

adj
[
R(b)

y (0)
]
· W (z−1)R(b)

x (0)

= 2zτ
(
R(b)

y (0)
)−1

W (z−1)R(b)
x (0)

·W (z−1)TW (z−1)−T. (136)

By using relation Eq. (113), Eq. (136) is expanded as

∂ log(det R(b)
y (0))

∂w(τ)
= 2

(
R(b)

y (0)
)−1

zτ 〈y(t)y(t)T〉(b)t W (z−1)−T

= 2
(
R(b)

y (0)
)−1〈z−τy(t)y(t)T〉(b)t W (z−1)−T

= 2
(
R(b)

y (0)
)−1〈y(t)y(t − n)T〉(b)t W (z−1)−T

= 2
(
R(b)

y (0)
)−1

R(b)
y (τ)W (z−1)−T. (137)

On the other hand, ∂ log(det diagR(b)
y (0))/∂w(τ) is also derived as the same

manner in the above derivation:

∂ log(det diagR(b)
y (0))

∂w(τ)
=

∂ log(det diagR(b)
y (0))

∂ det diagR(b)
y (0)

· ∂ det diagR(b)
y (0)

∂w(τ)

=
(
det diagR(b)

y (0)
)−1∂ det diagR(b)

y (0)

∂w(τ)
. (138)

The elements of ∂ det diagR(b)
y (0)/∂w(τ) are obtained by

∂ det diagR(b)
y (0)

∂[w(τ)]11
= 2zτ

(
[R(b)

y (0)]22
{
[W (z−1)]11[R

(b)
x (0)]11

+ [W (z−1)]12[R
(b)
x (0)]21

})
, (139)

∂ det diagR(b)
y (0)

∂[w(τ)]12
= 2zτ

(
[R(b)

y (0)]22
{
[W (z−1)]11[R

(b)
x (0)]12

+ [W (z−1)]12[R
(b)
x (0)]22

})
, (140)

∂ det diagR(b)
y (0)

∂[w(τ)]21
= 2zτ

(
[R(b)

y (0)]11
{
[W (z−1)]21[R

(b)
x (0)]11
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+ [W (z−1)]22[R
(b)
x (0)]21

})
, (141)

∂ det diagR(b)
y (0)

∂[w(τ)]22
= 2zτ

(
[R(b)

y (0)]11
{
[W (z−1)]21[R

(b)
x (0)]12

+ [W (z−1)]22[R
(b)
x (0)]22

})
. (142)

Thus, ∂ det diagR(b)
y (0)/∂w(τ) is given by the following matrix form:

∂ det diagR(b)
y (0)

∂w(τ)
= 2zτ

⎡
⎣ [R(b)

y (0)]22 0

0 [R(b)
y (0)]11

⎤
⎦

·
⎡
⎣ [W (z−1)R(b)

x (0)]11 [W (z−1)R(b)
x (0)]12

[W (z−1)R(b)
x (0)]21 [W (z−1)R(b)

x (0)]22

⎤
⎦

= 2zτadj
[
diagR(b)

y (0)
]
W (z−1)R(b)

x (0). (143)

∂ log(det diagR(b)
y (0))/∂w(τ) is rewritten as following equation by substituting

Eq. (143) into Eq. (138):

∂ log(det diagR(b)
y (0))

∂w(τ)
= 2zτ

(
det diagR(b)

y (0)
)−1

adj
[
diagR(b)

y (0)
]

· W (z−1)R(b)
x (0)

= 2zτ
(
diagR(b)

y (0)
)−1

W (z−1)R(b)
x (0)

· W (z−1)TW (z−1)−T

= 2
(
diagR(b)

y (0)
)−1

R(b)
y (τ)W (z−1)−T. (144)

As a result, ∂Q(w(τ))/∂w(τ) is obtained by following equation by substitut-

ing Eqs. (137), (144) into Eq. (111):

∂Q(w(τ))

∂w(τ)
=

1

2B

B∑
b=1

{
2
(
diagR(b)

y (0)
)−1

R(b)
y (τ)W (z−1)−T

− 2
(
R(b)

y (0)
)−1

R(b)
y (τ)W (z−1)−T

}

=
1

B

B∑
b=1

{(
diagR(b)

y (0)
)−1

R(b)
y (τ)

−
(
R(b)

y (0)
)−1

R(b)
y (τ)

}
W (z−1)−T. (145)
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C. Derivation of Eq. (62)

Substituting Eq. (61) into Eq. (59) we obtaine the following natural gradient:

∆w(τ) = − 1

B

B∑
b=1

{(
diagR(b)

y (0)
)−1

R(b)
y (τ) −

(
R(b)

y (0)
)−1

R(b)
y (τ)

}
W (z )

=
1

B

B∑
b=1

{(
R(b)

y (0)
)−1

R(b)
y (τ)W (z )

−
(
diagR(b)

y (0)
)−1

R(b)
y (τ)W (z )

}
. (146)

The convolution operation R(b)
y (τ)H(z) is defined as

R(b)
y (τ)H(z) ≡

Q−1∑
d=0

R(b)
y (τ)h(d)z−d

=
Q−1∑
d=0

R(b)
y (τ − d)h(d)

=
Q−1∑
d=0

〈y(t)y(t − τ + d)T〉(b)t h(d), (147)

where H(z) is the z-transform of an arbitrary FIR-filter matrix h(τ). Using the

definition Eq. (147) and Eq. (44) , Equation (146) is rewritten as

∆w(τ) =
1

B

B∑
b=1

{(
R(b)

y (0)
)−1(Q−1∑

d=0

〈
y(t)y(t − τ + d)T

〉(b)
t

w(d)
)

−
(
diagR(b)

y (0)
)−1(Q−1∑

d=0

〈
y(t)y(t − τ + d)T

〉(b)
t

w(d)
)}

=
1

B

B∑
b=1

Q−1∑
d=0

{(
R(b)

y (0)
)−1〈

y(t)y(t − τ + d)T
〉(b)

t

−
(
diagR(b)

y (0)
)−1〈

y(t)y(t − τ + d)T
〉(b)

t

}
w(d)

=
1

B

B∑
b=1

Q−1∑
d=0

{(〈
y(t)y(t)T

〉(b)
t

)−1〈
y(t)y(t − τ + d)T

〉(b)
t

−
(
diag

〈
y(t)y(t)T

〉(b)
t

)−1〈
y(t)y(t − τ + d)T

〉(b)
t

}
w(d). (148)
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