NAIST-IS-DD0261018

Doctoral Dissertation

Efficient Key Management Schemes

in Broadcast Encryption

Ryo Nojima,

March 5, 2005

Department of Information Processing
Graduate School of Information Science
Nara Institute of Science and Technology

A Doctoral Dissertation
submitted to Graduate School of Information Science,
Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of
Doctor of ENGINEERING

Ryo Nojima

Thesis Committee:
Professor Hiroyuki Seki
Professor Minoru Ito
Associate Professor Akito Monden
Associate Professor Yuichi Kaji

Efficient Key Management Schemes

in Broadcast Encryption®

Ryo Nojima

Abstract

Recent devélopment of technology enables us to realize services which deliver digital
content to users through a high-speed network or a large-capacity (and low-cost) storage
media such as DVD. In such a service, it is essential to protect the content from malicious
users and eavesdroppers who try to obtain the content without paying. Animportant aspect
of such services is that the delivery of the digital content can be regarded as “broadcasting”;
one center distributes identical information (possibly encrypted content) to all the users. To
protect digital content, we need to encrypt the content so that only valid users can decrypt
it. This kind of problem is sometimes called broadcast encryption. In broadcast encryption,
there are two efficient methods, called the complete subtree (CS) method, and the subset
difference (SD) method. However, the straightforward uses of the key management parts
in these methods cause a problem in practical implementations, since when the number of
users’ terminals becomes huge, the size of secret information which must be secretly stored
by each terminal becomes non-negligibly large.

In this thesis, we show two key management schemes in the CS method, and two other
" schemes in the SD method, respectively. These four schemes share the same approach,
which is to reduce the size of secret information in each terminal while preserving the
security. |

For the CS method, two key management schemes which reduce the secret information
in each terminal from O(log N) to O(1) are proposed, where N is the number of all the
terminals. The essential idea behind the proposed schemes is to use a trapdoor permutation.
Using the trapdoor information, the key management center computes and assigns a key to

* Doctoral Dissertation, Department of Information Processing, Graduate School of Information Science,
Nara Institute of Science and Technology, NAIST-IS-DD0261018, March 5, 2005.

each terminal so that the terminal can derive all information necessary in the CS method.
In the first scheme, two trapdoor permutations are used. We show that the permutations
to be used need to satisfy a certain property which is similar to but slightly different from
the claw-free property. The needed property, named strongly semi-claw-free property, is
formalized in terms of a probabilistic polynomial time algorithm, and its relation to the
claw-free property is discussed. It is also shown that if the used permutations fulfill the
strongly semi-claw-free property, then the proposed scheme is secure against attacks of
malicious users. Next, we show another scheme which uses a general one-way trapdoor
permutation and a hash function. This scheme is efficient if we use an “idealized” hash
function for the hash function. However, the scheme can be proven secure even if we use a
“non-idealized” hash function.

We also propose two secure and efficient key management schemes under a reasonable
assumption on the ability of malicious users in the SD method. Under this assumption,
it is possible to reduce the size of secret information from O(log? N) to O(log N) in each
terminal in the original SD method. This result remedies the main drawback of the SD
method that requires users’ terminals to keep a large amount of the secret information.

In this thesis, the detailed comparison between the proposed schemes and other similar
schemes is presented and we believe that the proposed schemes are especially suitable for
practical implementations of broadcast encryption.

Keywords:

digital right management, user revocation, broadcast encryption, key management scheme,

one-way trapdoor permutation

i

Acknowledgements

I would like to thank all of the people involved in my thesis for their invaluable suggestions
and help. Without their effort the result of my doctoral thesis would have been far less
satisfactory.

Professor Seki gave me an excellent research environment especially in studying groups of
the Vtheory of computation, the cryptography, and the model checking. I consider that this
improved my ability, and made me interested in foundation of computer science. Clearly
this is one of the biggest achievement during my doctoral course. I am grateful to Professor
Ito for providing me with valuable and beneficial suggestion in my research. I would like
to thank Associate Professor Monden for noteworthy comments in the research. Associate
Professor Kaji gave me a nice research direction which I consider was adequate to my
ability. Also he continuously supported me throughout my study, which results in almost
all the parts of the thesis. It is clear that without his help I could not accomplish the
doctoral thesis at all. I would like to thank Assistant Professor Yoshiaki Takata for the
careful teaching in studying group. His observing ability always helps my understanding
in the theory of computation. I also want to express my gratitude to Assistant Professor

Naoya Nitta for the valuable suggestions including foundation of computer science.

iii

List of Publications

Journal Papers

1 R. Nojima and Y. Kaji, “Using Trapdoor Permutations in a Complete Subtree
Method for Broadcast Encryption,” IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences, E88-A (2), pp. 568-574, Feb. 2005.

2 R. Nojima and Y. Kaji, “Secure, Efficient and Practical Key Management Scheme in
the Complete-Subtree Method,” IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E88-A (1), pp. 189-194, Jan. 2005.

International Conferences (Reviewed)

3 R. Nojima and Y. Kaji, “Key Management Scheme in the Complete Subtree Method,”
Proceedings of the 2004 International Symposium on Information Theory and Its
Applications (ISITA’04), Paper Number 123, Full Paper: CD-ROM, pp. 1110-1115,
Parma, Italy, Oct. 2004.

4 R. Nojima and Y. Kaji, “Using Trapdoor Permutations in a Complete Subtree
Method,” Proceedings of the Ninth International Conference on Distributed Mul-
timedia Systems (DMS’03), pp. 691-697, Florida, USA, Sep. 2003.

Workshops

5 R. Nojima and Y. Kaji, “Efficient Tree-Based Key Management Using One-Way
Functions,” Proceedings of the 2004 Symposium on Cryptography and Information
Security (SCIS’04), pp. 189-194, Jan. 2004.

6 R. Nojima and Y. Kaji, “Tree-Based Key Management System for Weak Attackers,”
Proceedings of the Computer Security Symposium 2003 (CSS’03), pp. 289-294, Oct.
2003.

7 R. Nojima and Y. Kaji, “Tree Based Key Management Using Trapdoor One-Way
Function,” Proceedings of the 2003 Symposium on Cryptography and Information
Security (SCIS’03), pp. 131-136, Jan. 2003.

iv

Contents

'Acknowledgements
List of Publications

1 Introduction

1.
2.

.................

..............

.................

...................

2 Key management schemes in the Complete Subtree method

1.

2.
3.
4

6.
7
8.

Imtroduction

4.1 Construction of the TP scheme . . .

.................

.................

.................

.................

4.2 Properties required for the permutations

4.3 Security of the TP scheme
4.4 The uniqueness of keys -

- 5.1 Construction of the OH scheme . . .
5.2 Security of the OH scheme
Comparison with other schemes
Evaluation in realistic settings
Concluding remarks for this chapter

.................

.................

.................

.................

.................

.................

3 Key management schemes in the Subset Difference method

1.
2.

Introduction

.................

i
v

10
12
14
14
15
21
22
25
25

- 26

33
35
36

3. The simplified-SD (SSD) SCREMES . + + v v v v v e e e e 42

3.1 Assumption on the ability of malicious users 42

3.2 Construction of the SSD1 scheme 43

3.3 Security of the SSD1scheme 44

3.4 Construction of the SSD2scheme 46

3.5 Security of the SSD2scheme 47

4. Concluding remarks for thischapter 47

4 Conclusion : 48
References i i e e e e e e e e e e e e e e e e 50

vi

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
34
3.5

An example of the primary method e e e e e e e 3
Revocation of the terminals in the CS method 11
An example of generating the keys with the TP scheme 16
Relation of a claw (z,y) e e e e e e e e 17
Relation among claw-free variants L. 21
An example of generating the keys with the OH scheme 26
Relation of the nodes in a relative-label 39
Relation of the nodes satisfying conditions 40
Revocation of the terminals in the SD method 41
An example of assigning salts and labels with the SD1 scheme 44
Relation of the nodes p, pgr, 7, and v in Lemma 4 . . e e 45

vii

List of Tables

1.1
1.2

2.1
2.2
2.3
24

3.1

Comparison of the CS and SDmethods

Comparison of our proposals and the others 8
The upper and the lower bound of pupigne + « =+ - -+« . . . PR 24
Comparison of the three schemes e e B cee ., M
Comparison to CPRM i, ... 36
The concrete size of secret information 36
Comparison of the SSD schemes and the SD method 47

viii

Chapter 1

Introduction

1. Broadcast encryption

The infrastructure of information network today has enabled us to realize commercial based

| distribution of digital content. For example, we already have pay-TV systems and satellite
broadcastings, and more sophisticated distribution of copyright-protected materials is also
investigated. In this kind of services, there are malicious users (or adversaries) who try
to receive the service without paying proper charge, or who try to eavesdrop the content.
Therefore, it is essential to realize a mechanism with which a content provider (or simply a
center) can enforce the malicious users not to use digital content. Such a mechanism is often
called a broadcast encryption [17]; it is a broadcast because the center sends an identical
message (digital content) to many users simultaneously, and it is an encryption because
only intended users can retrieve valuable information from the broadcasted message.

In broadcast encryption, we usually assume that adversaries are passive, and do not
consider an active adversary who modifies the content on the network. Active adversaries
are surely more pfoblematic than passive adversaries because he/she prevents users from
obtaining the proper content. However, it is technically very difficult to modify the content
on the broadcast network. For example, to modify a message in the satellite broadcastings,
the adversary needs to set up his/her base station or satellite, which is too expensive.
Consequently the most common problem in broadcast encryption is eavesdropping of digital
content caused by a passive adversary. Therefore, it is mandatory to encrypt the content

by a sufficiently strong symmetric (or private) encryption scheme such as DES or AES.

Informally, in a symmetric encryption scheme, we need to set up two parties to share a secret
key beforehand. By using the pr‘e—shared key, two parties can communicate securely with
each other. We can easily construct broadcast encryption from the symmetric encryption
scheme as follows (called the primary method). ,

Before distributing the content, the center embeds a different secret key in each terminal.
That is, the center shares a secret key with each user (or user’s terminal) beforehand. When
the center wants to distribute the content to the “intended” valid users, it first encrypts
the content with each key which corresponds to a valid user and then distributes every
encrypted content simultaneously. , ’ |

Figure 1.1 illustrates an example of this primary method. The center embeds a key k;
in a terminal 1, a key k2 in a terminal 2, and a key k3 in a terminal 3, respectively. If
the center wants to distribute the content ¢ to only the terminals 1 and 3, then the center
computes E(k;,c) and E(ks,c), and distributes them simultaneously. Here, F(z,y) is a
ciphertext of a plaintext y using z as a key. The terminals 1 and 3 can obtain the content
since each terminal has the proper key to decrypt the ciphertext. But the terminal 2 can
not since it knows neither k; nor k;.

This primary method works efficiently if the number of terminals is small. However, if
the number of terminals becomes huge, e.g., one billion [30], then the method is terribly
inefficient since the center has to compute the same number of ciphertexts as non-revoked
terminals and to distribute them one by one. From this observation, we can understand
that smart methods to manage a huge number of terminals is a very important task in
broadcast encryption. We are especially interested in exploring efficient key management
schemes since the assumption that the center holds so many number of keys is not realistic.

A more practical method for broadcast encryption is to renew keys periodically [37, 38].
In this case, the center delivers a new key to valid users individually, and the old key in
a valid user’s terminal is replaced by the new key. This method is simple and secure, and
many pay-TV systems employ this method. However, there are some problems in this
method. For example, users must keep their terminals “online” to receive new keys° This
assumption is not serious in services such as pay-TV and satellite broadcasting, but it is
unacceptable in many other applications. For example, we can not force users to always
connect their CD/DVD players to a computer network. Other problems include the cost of

terminals. Terminals which are capable of renewing keys are more expensive than simple

E(kla C)’ E(kiia C)

terminal 1: k; center: ki, ks, ks

/

terminal 2: ko

terminal 3: k3

Figure 1.1. An example of the primary method

stateless terminals.

In [33], broadcast encryption which is explicitly concentrated on this scenario is consid-
" ered. The authors of [33] presented the subset cover framework as a formal environment
within which one can define and ana,lyze the security of a broadcast encryption method.
In the subset cover framework, we consider partitioning the set of recipients of content as
a union of predifined subsets of terminals. Let N be the set of terminals and let S C 2V
be a collection of “predifined subsets” of A such that, for any subset N7 C N, there ex-
ist disjoint subsets 51,82, ..., Siw € S satisfying N = U, ¢, Sij> that is, any subset
N' C N is exactly “covered” by elements in S. The center assigns a key k; to every S; € S
and.embeds each key k; in a terminal u € NV if and only if u € &; in advance. To broadcast
digital content to a subset NV C N, the center encrypts the content by a randomly chosen
key r (which is called a content key), and broadcasts the encrypted content. Also the center
partitions N’ into disjoinf subsets S;1,8;2,. .- ,S,-,m € 8§ so that " = Ui<j<w Sisj» com-
putes E(k;1,7), E(ki2,7),..., E(kim,7), and broadcasts these encryptions simultaneously.
When a terminal in S;; (for 1 < j < w) receives the eﬁcrypted content and the encrypted
keys, it can retrieve r using k; ;, and can obtain the content using r. As specific methods
for constructing S and associating keys to elements in S, the complete subtree (CS) method
and the subset difference (SD) method were formalized and proven secure within the subset
cover framework. Extensions of these methods are eagerly discussed [2, 6, 20, 21, 27, 31].

To evaluate broadcast encryptibn in the subset cover framework, we need to pay attention
to at least three points; (1) the size of secret information (key) which is embedded in a
user’s terminal, (2)the size of encryptions of a chosen key r which are broadcasted together

‘Table 1.1. Comparison of the CS and SD methods
secret message terminal

information | overhead computation
CS method || O(log N) O(RlogX) |0
(in [33])
| SD method || O((log N)2) | O(R) O(log N)

(in [33])
N: the number of terminals, R: the number of revoked terminals.

with the encrypted content (the size is sometimes called a message overhead), and (3) the
amount of computation necessary in each terminal to retrieve r. It seems that there exist
certain kinds of trade off relation among the above three quantity [14, 32]. For example,
in the CS method, terminals do not have to keep so large a number of keys inside, but
the message overhead is relatively large. In the SD method, the message overhead can
be reduced but each terminal has to store large number of keys, and also some additional

operations are necessary at the terminal (see Table 1.1).

2. Contribution of this thesis

The purpose of this thesis is to reduce the number of keys which are embedded in a user’s
terminal in both CS and SD methods. There are two reasons why the author would like to
investigate this problem. First, it is usually very expensive to store secret information in
users’ terminals. A malicious user may disassemble, analyze and reverse-engineer his/her
terminal, and thus we need a certain tamper-resistant hardware to protect secret informa-
tion. To minimize such cost, it is desired that the secret information is as small as possible.
The second reason is that certain kinds of hardware, such as mobile phones and PDAs, do
not have large storage to store so many keys. Making the secret information smaller makes
the method more suitable for such hardware.

In Chapter 2, we show two key management schemes in the CS method, which we call
the TP scheme and the OH scheme. The key idea behind the proposed schemes is to
use trapdoor permutations. In the original CS method, asymptotically O(log N) keys are

4

embedded in each terminal, where IV is the total number of terminals. We consider to
assign keys so that a terminal can derive all of the keys from just one secret information by
using one-way trapdoor permutations. Consequently, each terminal needs to possess just
one information regardless of the number of the terminals. In Section 4 of Ché,pter 2, we
propose a new scheme named the two permutations (TP) scheme which uses two trapdoor
permutations. To make the scheme secure, the one-way trapdoor permutations to be used
need to satisfy a certain property. To discuss the property in a theoretical framework, we
define new primitives which we call semi-claw-free and strongly semi-claw-free properties
since they are similar to the well studied claw-free property [19]. Informally, we say that
a pair of permutations f and g, whose domains are the same has the claw-free property
if computing (z,y) with f(z) = g(y) is intractable for any probabilistic polynomial time
algorithm. We first present the formal definitions of the above two properties, and clarify
the relation among the three properties. It is formally shown that if strongly semi-claw-free
permutations are used in the proposed key assignment, then the system is secure against
attacks of malicious users. In Section 5 of Chapter 2, we propose another scheme named
one-way hash (OH) scheme which uses just one trapdoor permutation and a hash function.
In this scheme, we can use any family of trapdoor permutations, e.g., a family of the Rabin
functions and a family of the RSA permutations. Also we investigate two security levels
concerning the key management scheme in the CS method, called key intractability and key
indistinguishability. Informally, the key intractability is a property that malicious users can
not compute a secret key embedded in a valid user’s terminal. Also, the key indistinguisha-
bilify is a.property that malicious users can not compute any partial information about
a secret key which is embedded in a valid user’s terminal. Thus, the key indistinguisha-
bility is stronger notion (more secure) than the key intractability. It is known that if the
key management scheme fulfills the key indistinguishability, then the broadcast encryption
with the scheme is secure [33]. But if the scheme satisfies the key intractability only then
the broadcast encryption using the scheme is not always secure. We prove that the OH
scheme satisfies the key intractability. Also we show how to modify the scheme to satisfy
the key indistinguishability using the ideal hash function [10], the hard-core predicate [18],
or the decisional dependent RSA problem [35]. _
Some recent studies [2, 5, 34] use methodology similar to ours. In [2], Asano considered
to embed a “master-key” in each terminal, where all of O(log N) keys are computable from

the master key. Each terminal has just one master key, and therefore it is as efficient as the
schemes proposed in Chapter 2 of this thesis with respect to the number of keys. However,
it must be noted that, to use the master key scheme, the center needs to prepare a large
- number of prime numbers, and each terminal needs to perform rather heavy computation
to retrieve the content key. In fact, each terminal needs to perform O((log N)®) operations
in the master key scheme while O(log V) operations are sufficient in the scheme proposed
in this thesis. In [5], Attrapadung et al. propose d a scheme which is based on [2]. This
scheme is very efficient but its security proof is done in the ideal cipher model [12] and
based on the strong RSA assumption [9]. It is widely believed that the ideal cipher model
is not realistic since the fact that the security of a certain scheme can be proved in the
ideal cipher model implies that the scheme is secure against a weak adversary but is not
always secure against a general probabilistic polynomial time adversary. Also, the strong
RSA assumption is in fact a much stronger assumption than the general RSA assumption.
In contrast to these results, the OH scheme proposed in this thesis can be proven secure
on the general RSA assumption, so that we can say that our proposal is more adequate in
terms of the security assumption. In [34], Ogata et al. investigated an implementation of
the OH scheme based on the RSA assumption.

In Chapter 3, we investigate efficient key management schemes in the SD method. To
reduce the secret information, we restrict the attacking ability of the malicious users. In the
original SD method, malicious users are considered to be powerful enough to extract secret
information from their terminals. This ability allows the malicious user to make a powerful
attack on the system. That is, malicious users collude each other, share their information,
and attack the system based on the shared information. To prevent this kind of attacks,
intuitively, each terminal needs to store large sized secret information in the SD method.
The recent work in [3, 4] reduces the secret information from i(log N)* + 1log N + 1
to %(log N)2 - %logN + 1 in the SD method. However, we consider that the scenario
that a malicious user retrieves secret information from his/her terminal is less likely to
occur if the terminal is made from a hardware device, since the recent development of -
the technology enables us to construct tamper-resistant part in the terminal, in which the
secret information is stored [1, 23]. Therefore, we consider rather weak assumption that
. the malicious users can not extract the secret information from their terminals. Under the

assumption we reduce the secret information from O((log N)?) to O(log N).

To make our results clear, we summarize the efficiency of ours and the others in Table 1.2
before we discuss the proposed schemes. Note that we denote the scheme in [4] as SD-OH
scheme in the table.

Table 1.2. Com

parison of our proposals and the others

secret message terminal assumptions
information | overhead computation
CS method O(log N) O(RlogX) |0
(in [33])
Method 1 0o(1) O(Rlog %) | O((log N)®) | RSA assumption
(in [2])
TP scheme 0O(1) O(Rlog %) | O(log N) existence of strongly
(in Chapter 2) semi-claw-free
permutations
OH scheme 0(1) O(Rlog X) | O(log N) existence of trapdoor
(in Chapter 2) permutations
SD method O((logN)}) | O(R) O(log N) existence of one-way
(in [33]) functions
SD-OH scheme || O((log N)?) | O(R) O(log N) existence of trapdoor
(in [4]) permutations
SD1 scheme O(log N) O(R) O(log N) existence of one-way
(in Chapter 3) functions,
tamper-resistant devices
SD2 scheme O(log N) O(R) O(Rlog N) -| one-way functions,

(in Chapter 3)

tamper-resistant devices

N: the number of terminals, R: the number of revoked terminals.

Chapter 2

Key management schemes in the
Complete Subtree method

1. Introduction

The complete subtree (CS) method [33] is one of the most efficient methods in broadcast
encryption, but there remains a problem: if the number of terminals increases, then the
size of the secret information in each terminal increases. More precisely, each terminal
needs to store O(log V) keys. In general, the purpose of broadcast encryption is to manage
a-i;ige number of users, and therefore this can be problematic in the real world. There are
many schemes which reduce the size of the secret information to O(1) [1, 5, 34, 26]. These
schemes have some problems unsolved; the time complexity at the terminal being large,
the security proof being not presented, and so on. Therefore, it is desirable that there is
a key management scheme whose time complexity is relatively small and whose security
proof is givéﬁ theoretically. In this chapter, we show two such schemes which are secure
and efficient.

Organization of this chapter is as follows. In Section 2, we provide a brief review of the CS
method. In Section 3, we introduce some formal notions to discuss the security of the key
management scheme in the CS method. These notions are originally considered in v[33] but
they were not formal enough to provide security proofs. We formalize the notion by means
of a probabilistic polynomial time algorithm which is considered as “standard model” for
discussing security. In Section 4, the key management scheme, named the TP scheme,

which uses two one-way trapdoor permutations is proposed. In Section 5, we propose
another scheme, named the OH scheme, which uses one one-way trapdoor permutation
and one hash function. We compare the OH scheme with other schemes in Section 6, and

then conclude this chapter in Section 8.

2. Backgrounds: The complete subtree method

In the CS method [33], a trusted center (or simply center) uses structure of a binary tree
to manage the set of keys which are distributed to users’ equipments (ferminals). Let N
be the set of all terminals, and assume for simplicity that A contains N = 2¢ terminals
with ¢ a positive integer. Also we assume that N is bounded by some polynomial (in a
security parameter A). The center first constructs a complete binary tree T (with height
t), and associates each terminal with a leaf of 7. We write n € T to mean that 7 is a node
of T', and write n; < ns if n; € T is an ancestor of ny € T. The center assigns keys of a
symmetric key cryptosystem to nodes of T so that each node has a unique key, where we
assume keys are chosen from a set {0,1}*.

We write k(n) to represent the key which is assigned to n € T, and p(n) to represent
the parent node of n € T. The center embeds a set of keys sk[l] = {k(n) | n € T,n < I}
in a terminal which corresponds to the leaf [, where we call skli] secret information. The
center also provides each terminal with the address of the terminal so that the terminal
can realize which position in the tree 7" the terminal locates. .

Consider the case that the center would like to deliver digital content ¢ to a subset
N' C N of terminals. Here R = N \ A" is the set of revoked terminals. (We also write
the number of revoked terminals by R.) In this case, the center randomly chooses a key r
of a symmetric key cryptosystem, and broadcasts E(r, ¢) which is an encryption of ¢ using
the key 7. To allow terminals in A" to obtain 7, the center also distributes some additional

information which is determined as follows.

1. Calculate T(R) = {n | n € T,3l € R,n < I}. T(R) is the set of all ancestors of

leaves in R.

2. Calculate P(R) = {n | n € T,n ¢ T(R),p(n) € T(R)}. That is, P(R) is the set
of all nodes whose parent nodes belong to T(R), but the nodes themselves do not

10

Z/ @\@”’3
e N
A A A AN
L L l A Is le I; I

3

Figure 2.1. Revocation of the terminals in the CS method

belong to T(R).
3. Calculate K(R) = {(n, E(k(n),r)) | n € P(R)} and distribute all elements in K(R).

Since each terminal is provided with keys of its ancestor nodes, k(n) with n € T(R) is
embedded in at least one revoked terminal, and k(n) with n € P(R) is not embedded
in any revoked terminal. Also remark that each valid terminal in A’ has exactly one
. ancestor in P(R). Therefore, every valid terminal can obtain r by finding and decrypting
an appropriate pair in K (R), while no revoked terminal can obtain .

Figure 2.1 shows an example of a terminal revocation, where h,-(l <i<7) and l;
(1 £j < 8) arenodes. The keys {k(n,), k(n3), k(n7), k(I7)} have been given to the terminal
Iz beforehand. When the revoked terminals are {l3, s, lg} (the black nodes in the figure),
the :set of all ancestors of the revoked terminals is T(R) = {ny,ny,ns, ns,ng, ls, s, le}.
In this case, P(R) = {n4,nr,ls}, and the keys for the calculation of K(R) become
{k(n4), k(nz), k(ls)}. This time, terminal I; carries out the decryption using k(n;).

As for the CS method, the following problems have been pointed out.

1. The problem of the message overhead: it is necessary to broadcast |P(R)| encryptions
of r. Analysis in [33] shows that |P(R)| is Rlog, N/R in the worst case, and grows
too rapidly in R.

2. The problem of the secret size in a terminal: Each terminal needs to store log, N +1
keys. Generally, the cost for storing information secretly is not small. If NV is big,

then the cost of each terminal increases.

11

‘This chapter is devoted to solving problem 2 above. To reduce the secret size in a terminal,
we propose schemes which apply trapdoor permutations to assigning a key to each node in
T. It is remarked that the key assignment is rather independent topic in the CS method.
Even if we use a key assignment scheme which is different from the original one, we can
do the encryption and decryption of content in exactly the same way as the original CS
method, as far as terminals have (or, are able to compute) the node keys of their ancestors.

3. Definitions

In this section, we consider notions and notations which will be used later to discuss the
security of key management schemes in a formal manner. The notions were considered in
[33] but they were not formal enough and it seems difficult to discuss the security using
the original notion in [33]. Instead, in this section, we redefine the notions by means of
probabilistic polynomial time algorithms. It is remarked that formalizations by means of
probabilistic polynomial time algorithms is widely used to discuss the security of public-
key cryptosystems, and is regarded to be the “standard” to discuss the security of crypto-
graphic primitives. In the discussion of key management in the CS method, we consider
two probabilistic polynomial time algorithms; a key generation algorithm CS-Gen and a
key extracting algorithm CS-Ext. Formally the probabilistic polynomial time algorithm
CS-Gen(1*,1") takes -a (unary) security parameter 1*, and the (unary) number of ter-
minals 1V as input. It outputs N sets of terminal keys sk[1],...,sk[N] and a system
parameter sp. Note that the system parameter will include the number of terminals N
and public information such as a trapdoor permutation. We set SK as sk[1] || ... || sk[N],
where || stands for the concatenation of strings. Generally, this algorithm is used by the
center. We also define the polynomial time algorithm CS-Ext(sp, sk[l],n) which takes the
system parameter sp, the secret information sk|[l] for the terminal /, and the address of the
node n as input. The output of CS-Ext(sp, sk[i],n) is k(n) if n is an ancestor of the leaf
l, or L otherwise. In construct to CS-Gen, this algorithm is used by the terminal. In the
original CS method, CS-Gen first builds a binary tree which has N leaves and then assigns
random keys to nodes of the tree. Assuming that each leaf is labeled by an integer from 1
to N, the output of CS-Gen is sk[l] = {k(n) | n € T,n < I}. If n < [, then CS-Ext simply
returns k(n) which must be included in sk[l].

12

To analyze the security of the key management scheme in the CS method, there are two
different levels concerning the security of the schemes. One is key indistinguishability, and

the other is key intractability. To discuss these security levels, we define
K(n) = {{n',k(n')) | n' is a node with n £ n'}

for a node 7 of the tree. K(n) is the set of pairs of the address and the key of a node which
is not a descendent of the node n. '

The key intractability is a property such that even if we give the adversary the set K(n),
an adversary can not compute the key k(n). This models the scenario such that k(n) is
used as a key to encrypt r (r is the key to encrypt the content), and all users except all
the descendents of n collude to reveal k(n). To formalize this property, we consider an
adversary as a pair of probabilistic polynomial time algorithms B = (B;, B;). B, the
first part of the algorithm outputs a node n (target node) and an internal state s which
might be helpful for B,. B, receives K(n) and the internal state s, and tries to find k(n).
If the success probability of B is negligible, then the key management scheme has the
key intractability. The following definition is derived analogously to the definition of key

intractability for access control in [7].

Definition 1: [key intractability]Consider a key management scheme KM in the CS
method which uses a pair of (probabilistic) polynomial time algorithms (CS-Gen, CS-Ext).
For.an adversary B = (B, B;) which attacks the scheme, define

| (SK, sp) < CS-Gen(1*,1%)
Advgiu()) =Pr | k(n) =z | (n,s) + B.(1*,sp),
: Z 4 .Bz(s, I_{(n))

We say that the key management scheme has key intractability with (CS-Gen, CS-Ext) if
Adv%‘fKM (A) is negligible for any polynomial time adversary B and any N. O

In the original CS method, the adversary B can compute the key k(n) with probability
1/2* since the keys are chosen uniformly from the set {0,1}* and adversary can compute
it no better than the coin flipping. Therefore, Advics(A) = 1/2.

The stronger security notion is the key indistinguishability considered in [33], in which,

intuitively, a polynomial time adversary can not distinguish %(n) from a random sequence

13

if m is not an ancestor of the adversary. Similarly to the definition of key intractability, we
consider an adversary as a pair of probabilistic polynomial time algorithms B = (B, Bs).
B, the first part of the algorithms outputs a node n (target node) and an internal state s.
B, receives K(n) and a bit sequence k; of length A with b € {0,1}, where ko = k(n) and
ky is a truly random sequence, and tries to guess b. If guessing b is difficult, then the key

management scheme has the key indistinguishability in the CS method.

Definition 2: [key indistinguishability]Consider a key management scheme KM in the
CS method which uses a pair of (probabilistic) polynomial time algorithms (CS-Gen, CS-Ext).
For an adversary B = (B;, B,) which attacks the scheme, define -

(SK, sp) + CS-Gen(1*,1V),]
(7_7‘7 3) — Bl(lAy 3p)7
AdvEGMA) =2xPr | b=V | ky = k(n), k; «+ {0,1}*, | —1.
b+ {0,1},
Y < By(s, K(n), k) |

We say that the key management scheme has key indistinguishable with (CS-Gen, CS-Ext)
if Adv%‘f}(M (A) is negligible for any polynomial time adversary B and any N. Without loss

of generality we assume Advii,(X) > 0. O

Again in the original CS scheme, the keys assigned to the nodes are truly random bit of
length A so that guessing b is impossible for any algorithm no better than half probability,

that is, Advigcs(}) = 0.

4. The two-permutations (TP) scheme

In this section, we propose the TP scheme which uses two trapdoor permutations. Since
discussion of needed property for the permutations is quite complicated, we show its con-

struction before we give the precise definitions.

4.1 Construction of the TP scheme

The center uses the CS-Gen to assign the secret information to the terminal. When 1* and

1V are given, it first builds the binary tree which has N leaves, and chooses two one-way

14

trapdoor permutations hy, and hg. Here we suppose that hy and hz have the same domain.
The permutations hy and hg are the part of the system parameter sp, but the trapdoor
information of Az, and hp is only used inside the algorithm CS-Gen. For each node in T,

the keys are assigned recursively as follows.

e The key which is assigned to the root node is randomly decided.

e When the key of a node n is &,

— h7'(k) is assigned to the left child of 7 as a key.
— hg'(k) is assigned to the right child of n as a key.

The center sets sk[l] = {k(l)}, the secret information which is delivered to the terminal
!, and distributes sk[l], the address information ! and sp = N || hz, || hg to each terminal
l. Therefore, the information which each terminal should store safely is only one key k(D).
Using the address information, the key k(l), and the system parameter sp, each terminal
can deduce the keys {k(n) | n < I} which are assigned to the ancestors of the terminal.
The algorithm CS-Ext works in the same way as this. An example of the key generation
is shown in Figure 2.2. The terminal at the leaf I3 receives Rz (kg (A7 (x))) beforehand,
where z is a key of a root node.

The security of the proposed method depends on the choice of the one-way trapdoor
permutations. For example, if we choose permutations which are easily invertible, then a
user can obtain keys which are assigned to non-ancestor nodes, and the proposed method
becomes meaningless. Therefore, we must choose permutations that are difficult to invert.
We also need to pay attention to the relation of the two permutations. For example, careless
construction of permutations may result in a property such that hz(hz(z)) = hg(hz(z)).
In this case, a user can obtain keys which are assigned to non-ancestor nodes without
inverting the permutations. To make the system secure against attacks of malicious users,
the permutations to be used must satisfy certain kinds of properties. In the next section,

we will discuss what kind of properties are necessary for the permutations.

4.2 Properties required for the permutations

The property which is required for the permutations in our scheme is similar to the well-
known claw-free property, but slightly different. To start with, we first review the definition

15

/\
/\ns nﬁ/\nv
TN J\

l

k(nl)=x

k(r)=h; ' (x)

k(ns)=hg ' (h; ' (x))
L k=R (B (L (%)

Figure 2.2. An example of generating the keys with the TP scheme

of claw-free permutations. The following definition is a special case of Definition 2 in [16]

such that g; is also a permutation (thus the case of F; = D; in [16]).

Definition 3: [claw-free permutation]For a collection of pairs of functions C = {(f; :
D; — D;,g;: D; — D;) | i € I} over some index set I C {0,1}*, assume the followings:

1. There is an efficient sampling algorithm CF-Gen(1*) which outputs a random index
i € I and trapdoor information TK and TK' of f; and g;, respectively.

2. There are efficient sampling algorithms which, on input 4, output a random z € D;
and z € D;. We write z < D; and z < D; as a short hand.

- 3. Each f; (resp. gi) is efficiently computable given index i and input z € D; (resp.
FAS Dz)

4. Each f; (resp. g;) is a permutation which is efficiently invertible given the trapdoor
information TK (resp. TK') and output y € D;. Namely, using TK (resp. TK'), one
can efficiently compute (unique) z = f;*(y) (resp. z = g;*(y)).

16

filz) = gi(y)
O

Figure 2.3. Relation of a claw (z,7)

5. (Claw-freeness) For any probabilistic algorithm ‘A, define the advantage of A as

AdvgZ(A) =Pr [fz-(x) = () | O TETK) = CF-Gen(1),

(,2) - A(1%,4)

A is said to (()), €(A))-break C if A runs in time at most ¢()) and Advﬂfg’()\) > €(A).
C is said to be (t(A), e(X))-secure if no adversary A can (¢£()), e()\))-break it.

~ We say that C is a family of claw-free permutations if C is (#(A), €(1))-secure for any poly-

nomial #(A\) and any non-negligible function €()). In other words, it is difficult to find a
“ claw (z,z) (meaning f;(z) = g;(2)) without the trapdoor TK or TK' (see Figure 2.3). O

" The property which is required for the permutations in our method is similar to the claw-

free property, but different in the following two points.

1. An adversary in the TP scheme, considered in terms of claw-free permutations, needs
to find a counterpart, say z, of a given (fixed) information, say z, satisfying f;(z) =
gi(2). (Here z corresponds to the key kept by a revoked terminal, and z corresponds
to the key which is used to encrypt r.) This is more difficult task than finding a pair
(z, 2) satisfying fi(z) = g;(2) with neither z nor z bounded. To discuss this property

formally, we introduce the concept of a semi-claw-free property.

2. The collusion of users reveals some information on the inverse permutation. Remark
that, in the TP scheme, each user has information which is obtained by applying the

17

permutations inversely to the root key. It can happen that a collection of information
on inverse permutations may give adversaries any clue on the trapdoor of permuta-
tions. To formalize this situation, we augment an adversary with an oracle which

computes the inverse permutation.

The semi-claw-free property is slightly weaker property than the claw-free property, and

defined as follows.

Definition 4: [semi-claw-free permutation]For a collection of pairs of functions C =
{(fi : D; = D;,g; : D; = D;) | @ € I} over some index set I C {0,1}*, assume 1-4 in

Definition 1 hold. Also assume:

5. (Right-semi-claw-freeness) For any probabilistic algorithm B, define the advan-
tage of B as

(i, TK, TK') + CF—Gen(l")
Advrlsféaw()\) Pr fz(x) = gz(z) z + D;,
z + B(i,z)

B is said to (¢()), €(A))-right-break C if B runs in time at most ¢(\) and Adv“daw()\) >
e(A). C is said to be (t()), €(\))-right-secure if no adversary B can (£()), e()))-right-
break it.

. 'We say that C is a family of right-semi-claw-free permutations if C is (t(}), e()))-right-secure
for any polynomial ¢(\) and any non-negligible function (). A family of left-semi-claw-free
permutations is defined in a similar way except that the advantage is defined as

(3, TK, TK') + CF-Gen(1*),
lscla‘W(A) Pr | fi(z) = gi(2) | z + D,
z + B(i,2)

We say that C is a family of semi-claw-free permutations if C is a family of right- and
left-semi-claw-free permutations. We denote the advantage of adversary B for the family
of semi-claw-free permutations by Adva" ()). O

Lemma 1: A family of claw-free permutations includes a family of semi-claw-free permu-

tations.

18

Sketch of proof: Let B be an probabilistic polynomial time algorithm which finds z with
fi(z) = gi(z) for a given z. A claw-finder A is constructible by feeding B a random z € D;,

where B will return z with f;(z) = g;(2). Now (z, 2) is a claw pair which A should output.
O

Let O; be an oracle whose input (query) is a tuple (z,p1, ..., Pm) With m > 0, z € D; and
pj € {fi,9:} for 1 < j < m. The output of O;(z,ps,...,pn) is pl(---p7 () ---). Thus,
the oracle computes the inverse permutations for given information z. A family of semi-
claw-free permutations is said to be strongly semi-claw-free if it is even secure against the
more powerful adversary with the oracle. Formally, the family of strongly semi-claw-free

permutations is given as follows.

Definition 5: [strongly semi-claw-free permutation]For a collection of pairs of func-
tions C = {(f; : D; = D;,9; : D; = D;) | i € I} over some index set I C {0, 1}*, assume
1-4 in Definition 1 hold. Also assume:

5. (Strongly right-semi—(claw—freeness) For any probabilistic algorithm C, define the
advantage of C as

(i, TK, TK) + CF-Gen(1%),
AdvEZ™ (N) = Pr | fi(z) = gi(2) | = + D,
z 4+ CY%(i,1)

We insist that C is not allowed to make a query of the form (fi(z), gi,...) to the
oracle O;. C is said to (¢()), e(A\))-right-break C if C runs in time at most t(A) and
AdvEE™(X) > €()). C is said to be (¢()), €(A))-right-secure if no adversary C can
(¢(A), e(A))-right-break it.

We say that C is a family of strongly right-semi-claw-free permutations if C is (t(A), e(N))-
right-secure for any polynomial ¢(X) and any non-negligible function €(A). A family of
strongly left-semi-claw-free permuiatz’ons and a family of strongly semi-claw-free permuta-
tions are defined in a natural way. We denote the advantage of the adversary C for the
family of strongly semi-claw-free permutations by Advscs’céaw(/\). O

Remark that the adversary C in the above definition is allowed to ask the oracle to invert
any information except to invert f;(z) with respect to g;. This simulates the situation that

19

S0 many adversaries collude and so much information has been leaked to the adversary C,
but none of his/her malicious colleague have had information on z with f;i(z) = g:(2).
It is obvious that a family of strongly semi-claw-free permutations is also semi-claw-free.

Also we have the following two separation results.

Lemma 2: If there exists a family C of claw-free permutations, then there exists a family
C' of permutations which is claw-free but not strongly semi-claw-free.

Proof: For C = {(fi,9:)}, define C' = {(f;,9;)} where fi(z) = fi(fi(z)) and gj(2) =
gi(fi(2)). If C is a family of claw-free permutations, then C’ is also claw-free. Indeed, we
can construct a claw-finder A for C from a claw-finder A’ for C': A’ will find a claw (#',2")
with f;(f;(2)) = gi(fi(?')), and A would output (z,z) = (fi(z'), fi(#')) which satisfies
fi(z) = gi(z). C' is not strongly semi-claw-free since we can construct an adversary A’
which finds o’ with f/(z') = g}(#') for given 2 utilizing the oracle: A’ first computes
y1 = fi(9:(fi(2'))), asks the oracle to compute y» = f;*(f* (1)), and again asks the oracle
to compute y3 = £;1(f7 (1)) A’ outputs fi(ys) as z’. Remark that '

o = LU (s (EED)))
= U @A)

and therefore f(z') = gi(#'). , O

Lemma 3: If there exists a family C of strongly semi-claw-free permutations, then there
exists a family C’ of permutations which is strongly semi-claw-free but not claw-free.

Proof: For C = {(f;, 9:)}, define C' = {(f], g;)} where the domain Dj of f; and g; is defined
as D} = D;U{L} with | a fresh symbol, f/ = fiU{L — L} and g} =gU{L+ 1}. IfC
is a family of strongly semi-claw-free permutations, then C’ is also strongly semi-claw-free.
An intruder A for C feeds its input to A’ and A’ finds the counterpart of the input. A
needs to simulate the oracle O’ for A’, but it is not difficult; if the query from A’ is L then
simply return 1 as the answer from ¢ , otherwise, make the same query to A’s own oracle
O and pass the answer from O as the answer from O'. (' is not claw-free since (L, L) is

always a claw pair which is known to every claw-finder. O

The relation among the claw-free, semi-claw-free, and strongly semi-claw-free properties

evaluated in this section is shown in Figure 2.4.

20

4.3

semi-claw-free

claw-free trivial

Lemma 2

Lemma 3
strongly semi-claw-free -

Figure 2.4. Relation among claw-free variants

Security of the TP scheme

The following theorem says that the strongly semi-claw-free property is essential in the TP

scheme.

Theorem 1: If the pair (f;, g;) is chosen randomly from a family of strongly semi-claw-free
permutations C, then the TP scheme satisfies key-intractability, where we regard A and

hg as f; and g;, respectively. |
Proof: Let B be an algorithm attacking the proposed key management system. By utilizing
B, we construct a strongly semi-claw finder A® which finds z satisfying hz(z) = h r(z) for

- given z. The finder A® works as follows.

2.

Build a binary tree T which has 2N — 1 nodes.

Set sp = N || hr || hr and let (n,s) < Bi(1*,sp). Without loss of generality, we
assume that n is the left-child of its parent.

Define k(n) = z, and compute k(n') for each ancestor n' of n using Az, and hp.
Use the oracle O which is augmented to the algorithm A, and compute K (n).
Feed B with s and K(n) and receive 2.

Let 2’ be the output of A.

21

If B succeeds in the attack with non-negligible probability, then A succeeds in finding the
counterpart of given z with non-negligible probability. Therefore, the probability becomes

AdvEZT(N) > Advigte(R).

4.4 The uniqueness of keys

In the CS method, it is essential that different nodes in T have different keys. However,
key assignments given by the TP scheme does not always satisfy this property. Keys of
nodes are automatically determined for the chosen root key, but the center can not predict
which key is assigned to which node. That is to say, as a result of calculating the inverse
of one-way permutations, a same key may be assigned to different nodes. If a same key is
assigned for multiple nodes, then revocation does not always work appropriately. Therefore,
a duplicated assignment of a key must be absolutely avoided.

In the rest of this section, we evaluate the probability paup that a same key happens to be
assigned to multiple nodes. Remark that the key assignment is executed only once at the
initialization step of the system. Therefore, if pyyp is rather a small valﬁe, then there is no
problem from a practical viewpoint. Indeed, the center can determine the root key, derive
all other keys and then check the duplication of keys. With the probability 1 —paup, the key
assignment is unique, and with the probability py.p, the center finds the duplication of keys.
In the latter case, the center can retry using another root key. From the expeéted value of
the geometric random variable, the expected number of tries is) .-, z'pfi;;(l — Paup), Which
is 2 if paup = 0.5, and 1.1 if pgyp = 0.1.

The precise evaluation of pay, is not easy. The probability depends on the one-way
permutations to be employed, and practical one-way permutations have rather complicated
structure which is difficult to analyze. Therefore, in this section, we approximate the
behavior of oﬁe—way permutations so that the derived keys distribute uniformly. That is to
say, we evaluate pg,p assuming that the keys of nodes are chosen randomly and uniformly.

The following discussion is quite similar to the treatment of so-called “birthday paradox.”
Let m be the number of possible keys of the symmetric key cryptosystem. That is to say, the
keys are expressed in log, m bit. When the number of users is NV, there exists 2V — 1 nodes

22

in the tree T for the key management. This number is written as k in the following. There
exist m* ways in all for assigning the keys to each node. Among these m* assignments, the

number of assignments in which the keys are unique is
mPr =m(m—1)(m—2)---(m—k+1).

Therefore, the probability pusique(= 1 — Paup) that all the assigned keys are unique is

m—-1 m-—2 m-—k+1
X Xoeoe X —m—— =

k
Duni = o Pp/m" =
unique m /

_ (1—%)x(1—%)x---x(1—k—ﬂ—%—1)
k-1 .
= H(l—%).

2
If £ < m, then it is widely known that Dunique iS approximately e~%. In the following, we
derive precise upper bound and lower bound of Dunique- Remind a well-known inequality

In1-z)+1<1-z<e® (0<z<1).

First the upper bound becomes

k-1 . k~1
IIa- %) <[Jem= i (-i/m) — g—k(k=1)/2m
=1 i=1

and the lower bound becomes

T(a(1 - L) +1)< Tc- o)

i=1 i=1

By applying inequality In(1 — 2)+1>In(1— £1) +1 at the left-hand-side, we have

(In(1 - k—ﬂ?) +1)¥1 < 1:[(1 - 3%)‘

i=1
The upper and the lower bounds are obtained as
k-1

T) -+ 1)k—1 < Dunique < e~ kk—1)/2m

(In(1 -

23

Table 2.1. The upper and the lower bound of pupique
64bit 128bit 256bit
Upper bound | 0.88 | 1 —0.677 x 10720 | 1 —0.199 x 10758
Lower bound | 0.81 | 1 —0.129 x 10719 | 1 —0.398 x 10~%8

Generally, if we increase the bit length of the keys, then pa,, decreases and pypique increases.
Table 2.1 shows the lower and upper bounds of Punique With 2% (approximately 1 billion)
terminals and the bit length of the keys 64, 128, 256. From this table we can see that when
the number of terminals is 1 billion, 128 bit key length is sufficient to avoid the duplicated

assignment of keys.

24

5. The one-way hash (OH) scheme

The TP scheme considered in the previous section reduces the size of secret information in
the user’s terminals, but we need to choose permutations so that they are strongly semi-
claw-free. Unfortunately, to the author’s knowledge, there is no permutations which have
been proven to be strongly semi-claw-free. Therefore, in this section, we consider another
key management scheme for the CS method. The scheme considered in this section uses
just one trapdoor permutation. The permutation does not have to satisfy an additional
condition such as the strongly semi-claw-free property. The scheme is named the one-way
hash (OH) scheme.

5.1 Construction of the OH scheme

In the OH scheme, the CS-Gen algorithm assigns the secret information to the terminals
as follows. Given 1* and 1V, it first builds the binary tree which has N leaves, chooses an
one-way trapdoor permutation f : {0,1}* — {0,1}*, and assigns a label L, to each node n
of the tree where labels are chosen randomly from the set {0, 1}*. The permutation f and
the labels of nodes are the part of the system parameter sp, but the trapdoor information
of f is only used inside the algorithm CS-Gen. As stated later, for the practical use, the
label of node n can be defined as L, = h;(n), where h; is a hash function, and is included

in sp. According to the following rule, the algorithm computes the keys of nodes in the

tree.

® The key which is assigned to the root node is randomly chosen from the set {0, 1}".

o If the key of a node n is k(n), then the key of its child n' is defined as
k(n') = {7 (k(n) © Lu), | (2.1)
where L, is the label of n/'.

By using the above rule, the center can determine the keys of nodes uniquely. We set sk[l] =
{k(1)}, the secret information which is delivered to the terminal I. Thus, the information
which must be kept securely by a terminal is just k(). Each terminal additionally needs

to remember sp, but this information need not be kept secret.

25

IV\
"l4/\”5 n6/\”7
/\ /\ /\ /\

2 13 l4 lS l6 l7 l8

4)

k(ny)=x

k(m)=f" (k(ny) ®L,,)
k(ns)=f" (k(n,) ®L,,)

\ k(13)=f" (k(ns) ®L,) |

Figure 2.5. An example of generating the keys with the OH scheme

Remark that if a terminal knows the key k(n'), then the terminal can compute the key

k(n) of the parent node n of n' as
k(n) = f(k(n")) ® Ly

since f and labels are in the system parameter sp. By applying the above equations
iteratively, a terminal which corresponds to a leaf I can compute the key k(n) for any
n < [. The algorithm CS-Ext works in the same way as this.

Figure 2.5 shows an example of the key assignment. The terminal at the leaf I3 receives
Y (2® Ln,)® Ly,)® Ly,) from the center beforehand. When the center distributes

digital content, the keys defined as above are used in the same way as in the CS method.

5.2 Security of the OH scheme

To discuss the security of the OH scheme, we need to clarify what trapdoor permutations

are. The following is a standard definition of the trapdoor permutations [25].

26

Definition 6: [trapdoor permutation]A family of trapdoor permutations is a tuple of
probabilistic polynomial time algorithms (P-Gen, P-Eval, P-Invert) such that:

1.

2.

P-Gen(1*) outputs a pair (f, /1), where f is a permutation over {0,1}*.

P-Eval(1%, | f, %) is a deterministic algorithm which outputs some y € {0,1}* (assuming
J was output by P-Gen and y € {0,1}*). We will often simply write f(z) instead of
P-Eval(1*, f, z).

P-Invert(1*, f,y) is a deterministic algorithm which outputs some 7 € {0,1}* (assum-
ing f~' was output by P-Gen and y € {0,1}*). We will often simply write y)
instead of P-Invert(1*, f~1, 7). ‘

(Correctness) For all), all (f, 1) output by P-Gen and all z € {0,1}*, we have
fHf(@) ==

(One-wayness) For all probabilistic polynomial time algorithm A, the following is
negligible:

| (FF7Y) = P-Gen(1),
AV (M) =Pr| f@)=y | y+{0,1},
‘ T A(IA: fa y)

O

In this section, it is assumed that the one-way permutation f in the OH scheme is chosen

by executing P-Gen(1%)

Key intractability of the scheme

Note that if labels are chosen randomly then all keys assigned to the nodes distribute uni-
formly. Therefore, from the definition of trapdoor permutations, we can say that computing
non-ancestor keys is as hard as breaking the trapdoor permutations since the non-ancestor

keys distribute uniformly as well.

Theorem 2: If the labels are chosen randomly from the set {0, 1}*, then the OH scheme
has the key intractable property.

27

Proof: The proof is by contraposition. We construct a probabilistic polynomial time al-
gorithm A which inverts a given (randomly and uniformly chosen) value ¢ by making use
of a pair of algorithms B = (B, B,) attacking the proposed scheme in the sense of the
key-intractability. To utilize B, the algorithm A needs to provide the labels and some keys.

The following is the construction of A.

1. Build a binary tree T which has 2N — 1 nodes .

2. Determine one target node n, € {ni,...,nay-1} randomly, and define Q as the set

of leaves which are not descendents of 7.

3. The labels and keys are determined so that keys and labels satisfy the relation (2.1),
and the parent of n, has ¢ ® L,, as a key. Remark that if the parent of n. has
c® Ly, as a key, then k(n.) = f~(c). For this sake, a label L, (the value of h(n)) is
determined for each node n € T, and a key k(n) is determined for each node n with
ne A n. The computation is performed in a bottom-up manner using the following

rule.

e For each node n with n, < n, let L, be a randomly chosen value.

e For each leaf 1 € Q, let k(n) be a randomly chosen value.

If n; and n; are sibling nodes in T and both of k(n;) and k(n;) have been
determined, then choose L, and Ly, randomly but to satisfy f(k(n;)) @ Ln, =
f(k(n;))® Ly, . Furthermore, let the key of the parent of ; and n; be f(k(n;)) @
Ln; = f(k(n;)) @ Ln;.- |

e If n; and n, are sibling nodes in T (remark that n, is the designated target node
chosen in the step 2) and k(n;) has been determined, then choose L,, to satisfy
f(k(n;)) ® Ly, = ¢ ® Ly,. Furthermore, let the key of the parent of n; and n,
be f(k(n;)) ® Ln, = c® Ly,.

e The label of the root node is determined randomly.
The above construction defines pairs (n, Ly,) for every node 7 in the tree.

4. Define sp=w || {(n,L,)} || f and let (n, s) + B;(1*, sp).

28

5. If n # ne, then halt. In this case, the algorithm fails. If n = Tc, then proceed to the

next step.

6. Let z < By(s, K(n)), and use z as the output of this inverter A.

Note that if By did not choose the target node N in the step 4, then A has few chance
to find f~*(c). For example, if n £ n,, then K(n) includes the keys of descendants of Te
but A can not compute such keys. If n < 7e, on the other hand, then A can construct
- K(n) but the result z returned from B, in the step 6 is rather “obvious information for A”
which does not help computing f~(c). Therefore, A has chance to compute f~1(c) only if
B; chooses 1 = n,, which happens with probability EVITI’ and therefore

Advy,(A) > Adv?tOH (A).

2N 1 .
We regard the number of terminals as polynomial in the security parameter. Thus, if
Advy;(A) is negligible, then Advg',,()) is negligible. This implies that the proposed
scheme is secure in the standard model if f is randomly chosen from a family of one-way

trapdoor permutations. O

For the practical use of the proposed scheme, the labels can be defined by a hash function
~modeled as the random oracle. That s, consider the hash function hy : {0,1}* — {0,1}*,
“and define the label of node n as L, = hy(n). It is easy to prove that the proposal
‘has key intractability in the random oracle model since the random oracle i is just another
representation of the “uniformly distributed” labels. The sécurity proof below is almost

the same as Theorem 2, since the number of labels is in polynomial.

Theorem 3: The proposed scheme has the key intractable property in the random oracle
model.

Proof: The proof is by contraposition. We construct a probabilistic polynomial time al-
gorithm A which inverts a given (randomly and uniformly chosen) value ¢ by making use
of a pair of algorithms B = (B, B,) attacking the proposed scheme in the sense of the
key-intractability. A needs to provide the hash function h; and some keys, and h; can be
regarded as an oracle for the viewpoint of B. Thus we write B (1%, sp) and B (s, K(n))
instead of By (1%, sp) and B, (s, K(n)), respectively. The following is the construction of A.

29

1. Build a binary tree T which has 2N — 1 nodes .

2. Determine one target node n, € {ny,...,nay—_1} randomly, and define Q as the set

of leaves which are not descendents of n,.

3. The hash function and keys are determined so that keys and labels satisfy the relation
(2.1), and the parent of n, has ¢® Ly, as a key. Remark that if the parent of n, has
c® Ly, as a key, then k(n.) = f~1(c). For this sake, a label L, (the value of h;(n)) is
determined for each node n € T, and a key k(n) is determined for each node n with
n. A n. The computation is performed in a bottom-up manner using the following

rule.

e For each node n with n, < n, let L, = h;(n) be a randomly chosen value.
e For each leaf n € Q, let k(n) be a randomly chosen value.

e If n; and n; are sibling nodes in T' and both of k(n;) and k(n;) have been
determined, then choose Ly, and Ly, randomly but to satisfy f(k(n;)) @ La, =
f(k(n;))® Ly;. Furthermore, let the key of the parent of n; and n; be f(k(n;))®
L, = f(k(n3)) ® Ln,.

e If n; and n, are sibling nodes in T’ (remark that n. is the designated target node
chosen in the step 2) and k(n;) has been determined, then choose Ly, to satisfy
f(k(n;)) ® Ly, = ¢® Ly,. Furthermore, let the key of the parent of n; and n,
be F(k(1)) @ Ln, = ¢ ® L.

e The label of the root node is determined randomly.

The above construction defines pairs (n, L,) for every node 7 in the tree. The pairs
are hold by A and used to answer to queries (on h;) from B. Remark that since the

keys of leaf nodes are chosen uniformly, labels also distribute uniformly.
4. Define sp=w || f and let (n, s) + BM (1%, sp).

5. If n # n,, then halt. In this case, the algorithm fails. If n = n,, then proceed to the

next step.

6. Let 7 + BM(s, K(n)), and use z as the output of this inverter A.

30

Note that if B; did not choose the target node 7, in the step 4, then A has few chance
to find f~!(c) , as in the proof of Theorem 2. Therefore, A has chance to compute f~(c)
only if B; chooses n = n,, which happens with probability m, and therefore

AGVT, () > Nl T AdviEo, ().

We regard the number of terminals as polynomial in the Security parameter. Thus, if
Advy";()) is negligible, then Adv}‘g‘tOH (A) is negligible. This implies that the OH scheme
is secure in the random oracle model if f is randomly chosen from a family of one-way

trapdoor permutations. o

There are a number of cryptographic schemes whose security are proven in the random
oracle model. In general, we can classify the usage of the oracles with respect to the
significance of the random oracle in a security proof; the one in which the random oracle
plays an essential role in the security proof, and the one in which the random oracle is
not essential for the security proof. The distinction should be made according to whether
the random oracle can be repla,cedi by a polynomial time computable function or not. For
example, some proofs in [11, 29] uses the random oracle, and it is also shown that if we
replace the random oracle with any polynomial time computable function, then the scheme
is no more secure. Therefore the random oracle plays very essential role in the security
proof of [11, 29]. On the other hand, [13] gives a security proof by using a polynomial time
computable function but the same proof is possible even if the function is replaced by the
random oracle. The random oracle in this context is used to make the scheme efficient,
and is not essential for the security proof. |

Fortunately, the proof of Theorems 2 and 3 is of the latter type. We can replace the
random oracle by a polynomial time computable function. In the OH scheme, the random
oracle is used to determine 2N — 1 labels. Remark that N and the size of a label are in
polynomial and linear order in the security parameter, respectively. Consider a function
that remembers which label is assigned to which node, then the function is polynomial
time computable and can be used instead of the random oracle. The proposed scheme is

secure even without the random oracle.

31

Key indistinguishability of the scheme

Unfortunately, the scheme proposed in the previous section does not have the property of

‘the key-indistinguishability. For example, assume that an adversary who corresponds to a
leaf [is given a sequence z € {0,1}*, and asked if z = k(n) where n 4 [. The adversary can
compute the key of the root node, say k(r), by using his/her own key &(I). On the other
hand, the adversary can “simulate” the computation of keys of ancestors of n assuming
that k(n) = z. If the root key obtained by this simulation coincides with k(r), then the
assumption k(n) = z was correct. Thus the adversary can distinguish k(n) and a random
sequence.

We can make the proposed scheme so that it satisfies the key indistinguishability by
simple means. Namely, the generation of the keys k(n) is the same as proposal but a
key used in the symmetric—key encryption is £'(n) = ha(k(n)) for some polynomial time
function hy. There are several candidacies which can be used as this h;. Three examples

are described below.

From the hash function: The first example is to adopt a key-less hash function such as
SHA-1. If we regard such a function as a random oracle [10], then the security proof still

remains correct.

From the hard-core predicate: Informally we call a function b : {0,1}* — {0,1} a
hard-core predicate [18] for a one-way permutation g if it is hard to deduce b(z) from g(z),
where z is randomly chosen from the set {0,1}*. It is well known that b(g?®-1(z)) ||
... || b(g(z)) || b(z) is pseudorandom, where ¢ is a polynomial in security parameter.
Let g be a trapdoor permutation whose hard-core predicate is b, and define the trapdoor
permutation in the proposed scheme as f(z) = g?™(z), and also define the key k'(n) =
ha(k(n)) = b(g®™1(k(n))) || ... || 8(g(k(n))) || b(k(n)), then the scheme satisfies the key
indistinguishability.

From the D-DRSA assumption: If we assume that the decisional dependent-RSA |
(D-DRSA) [35] problem is hard for any probabilistic polynomial time algorithm, then we
can construct efficient scheme which satisfies key indistinguishability. Informally, D-DRSA
problem is that the algorithm takes RSA modulus M, public RSA exponential e, z° where

z is randomly chosen from the set Zj,, and z as input, and tries to distinguish z being

32

(z +1)*mod M or a (same length) random number. If we define K(n) = hao(k(n)) =
(k(n) +1)° mod M, and use z° mod M for the trapdoor permutation f, then the scheme
satisfies the key indistinguishability.

6. Comparison with other schemes

We need to compare the proposed schemes with other improved schemes for the CS method.
However, it is difficult to evaluate the TP scheme since the actual construction of the
strongly semi-claw-free permutation is not given yet. Therefore, we only compare the OH
scheme with other schemes.

We consider the naive scheme originally considered in [33] (we call the scheme an “original
scheme” in the following) and the master-key [15] based key-management scheme considered
in [2]. In [2], the master-key based scheme is discussed with a general a-ary tree with a > 1.
The OH scheme can be extended to the a-ary tree easily, though, we consider the case with
a = 2 to make the comparison clearer. In this case, the “Method 2” in [2] is essentially the
same as the CS method, and we refer the “Method 1” in [2] as just a master-key scheme.

The first point for the comparison is the size of the secret information which must be
kept secretly in a terminal. Generally speaking, the cost for storing information secretly is

very expensive. It is strongly desired that the amount of secret information is as small as
possible. In the original scheme, each terminal needs to remember the keys of its ancestor
nodés, and the keys must be kept secretly. Each key is rather short since it is used as a,
key of a symmetric cryptosystem, but a terminal needs to hold log N + 1 keys where N is
the total number of terminals. Thus the size of the secret information is O(log N). In the
master-key scheme, a terminal holds just one master-key. Though the master-key is usually
longer than a key for symmetric cryptosystems, the length of the key can be regarded as
a constant. The size of the secret information is therefore O(1) in the master-key scheme.
With a similar discussion, the size of the secret information in the OH scheme is 0(1). In
the OH and master-key schemes, the size of the secret information is .independent of the
number of terminals. This property is especially favorable when the number of terminals
is very large.

The next point for the comparison is the size of the non-secret information which must

be képt by a terminal. The cost for storing non-secret information is not so large since it

33

Table 2.2. Comparison of the three schemes

secret info. | non-secret info. | terminal computation
original scheme O(log N) 0 0
(CS method in [33])
master-key scheme 0(1) 0(1) O((log N)®)
(Method 1 in [2])
OH scheme 0(1) o(1) O(log N)

can be recorded in a usual ROM, and the size of non-secret information is not as significant
issue as that of secret information. However, it will be problematic if the size of non-secret
information increases as the number of terminals increases. In the original scheme, there
is no non-secret information since all the necessary information is hold by a terminal as
secret keys. In the master-key scheme, a terminal needs to refer prime numbers which are
associated to nodes of a tree. Instead of storing the prime numbers in a terminal directly,
Asano proposes to compute them in an on-the-fly manner [2]. In this case, the non-secret
information will be the description of the on-the-fly computation. In the OH scheme, each
terminal needs to have the one-way trapdoor permutation f and the hash function h;.
Therefore the non-secret information in the OH scheme is the descriptions of f and h;.
In general, it is difficult to estimate the size of descriptions of f, h; and the “on-the-fly
~-.computation” in the master-key scheme, though, it seems natural to consider that the
descriptions are in constant order to the number of terminals. Therefore, we can say that,
in the master-key and the OH schemes, the size of non-secret information is unfortunately
increased for the expense to decrease the secret information, but the increase is minimum
in the sense that it is independent of the number of terminals.

Next we consider the amount of computation needed in a terminal to derive the key r
which is used to encrypt the content. No computation is necessary in the original scheme
because possible keys are directly stored in a terminal. In the master-key scheme, a terminal
needs to generate prime numbers, multiply them and compute one modular exponentiaﬁon.
The dominant phase in this computation is the prime number generation, whose complexity
is O((log N)®) [2]. As for the OH scheme, a terminal need to compute the permutation f
and the hash function h; at most log IV times each. The actual complexity thus depends
on the choice of f and h;, but we can say that it is O(log N).

34

Table 2.2 summarizes the above comparison. We can see that the master-key scheme
and the OH scheme require terminals to hold small amount of secret information. Though
terminals need to store non-secret information in these schemes, the size of non-secret
information is independent of the number of terminals, and therefore the additional burden
to terminals is minimum. Indeed, the cost for storing non-secret information would be much
smaller than that for secret information, and this will not be problematic. The OH scheme
has an advantage against the master-key scheme in the computational complexity issue:
It requires a terminal to perform O(log N) computation, while O((log N)®) computation is

needed in the master-key scheme.

7. Evaluation in realistic settings

The CS method is efficient broadcast encryption for stateless terminals such as DVD play-
ers. Thus, the TP and the OH schemes which are the key management schemes in the CS
method also suit to the stateless terminals. For the purpose of digital rights management
of DVD, the 4C (IBM, Intel, Matsushita, and Toshiba) proposes mechanisms which are
called CPPM (Content Protection for Prerecorded Media) and CPRM (Content Protection
for Recordable Media) [39]. The primal objective of these mechanisms is to prevent illegal
copy of digital content, but the technique employed in these mechanisms is essentially the
same one as the broadcast encryption such as the CS method. That is, we consider a
class of subsets of terminals, and assign a unique key to each subset in the class. The
center embeds in each terminal keys assigned to the subsets which include the terminal.
If the center wants to distribute the content, then the content is encrypted so that only
non-revoked terminals can decrypt it. Unfortunately, specific key management schemes for
CPPM and CPRM are not published, and it is difficult to compare our schemes with these
mechanisms. [33] shows rough estimation of CPRM’s efficiency, as illustrated in Table 2.3.

We compare the proposed schemes with the CS method in more realistic settings. For
the symmetric key encryption scheme, we set the lengths of keys to 64 or 128 bit. These
lengths are meaningful in the real world since the key length of 64 bit is slightly longer than
the keys of DES, and the key length of 128 bit is considered to be secure. On the other
hand, we set the lengths of keys in the TP and the OH schemes by 512 and 1024 bit. This

comes from the observation that one-way permutations usual have certain mathematical

35

Table 2.3. Comparison to CPRM

secret info. | message overhead | terminal computation
TP scheme 0O(1) O(Rlog X) O(log N)
OH scheme . ‘
CS method | O(log N) O(Rlog %) 0
CPRM O(log N) O(RlogN) 0
' N-: the number of terminals, R: the number of revoked terminals.

Table 2.4. The concrete size of secret information

| length of a key (bit) | secret info. (bit)

TP scheme 512 ' 512 x 1 =512
OH scheme 1024 1024 x 1 =1024
CS method 64 64 X 31=1,984
128 128 x 31 = 3,968

structure which can help adversaries to attack the permutation. It is widely considered
that, to make the permutations secure, we need to set the key length much longer than
that for symmetric key encryption. The key length 512 and 1024 bit are considered to be
secure parameters if we use the RSA permutations. In [30], it is said that the number of all
terminals being 2%° and it will be practical to assume that the number of revoked terminals

is about 10 thousand. Using these values, the actual sizes of secret information are shown

in Table 2.4.

8. Concluding remarks for this chapter

New schemes for assigning keys in the complete subset method are considered. The pro-
posed schemes make use of trapdoor permutations, and the secret information to be stored
in each terminal is reduced to just one key. The property which the permutations in the
TP scheme must satisfy is formalized as strongly semi-claw-free property. We clarified
the relation between the strongly semi-claw-free property and the claw-free property, and
found that no implication results hold between the two properties. We also showed that if
strongly semi-claw-free permutations are used, then the TP scheme is secure. The issue of

36

strongly semi-claw-free permutations is theoretically interesting by itself. In fact, construc-
tion examples of claw-free permutations presented in [19] are not strongly semi-claw-free
unfortunately The actual construction of strongly semi-claw-free permutations will be sig-
nificant from both of the theoretical and practical Vlewpomts since the reduction cost in
the security proof of Theorem 1 is very tight.

In the OH scheme, we show that the efficient key management scheme can be constructed
from any family of trapdoor permutations in the standard model and in the random oracle
model. Currently the reduction cost of the security proofs of Theorems 2 and 3 are not

tight, but this can be improved in the future work.

37

Chapter 3

Key management schemes in the
Subset Difference method

1. Introduction

The subset difference (SD) method [33] realizes broadcast encryption with much smaller
message overhead than the CS method. However, for that expense, the size of secret
information in each terminal increases to O((log N)?) with N the number of terminals.
Compared to O(log N) of the original CS method and O(1) of the schemes considered in
the previous chapter, O((log N)?) is considerably large. In this chapter, we consider to
reduce the size of secret information under some reasonable assumptions. Namely, under
the assumption that secret information is stored in a tamper-resistant hardware, the size
of secret information is reduced to O(log N).

The SD method is reviewed in Section 2. In Section 3, we introduce the assumption
considered in this thesis and then propose two key management schemes SD1 and SD2
both of which reduce the size of secret information of the SD method under the assumption.

Section 4 concludes this chapter.

2. Backgrbunds: The subset difference method

We introduce the subset difference (SD) method [33] briefly since the schemes proposed in
this chapter are regarded as variants of the SD method. (See [33] for the detail of the SD

38

Figure 3.1. Relation of the nodes in a relative-label

method.)
In the SD method, the secret information in each terminal is defined by the structure of

a binary tree. Let A be the set of all terminals, and assume for simplicity that M contains
N = 2! terminals with ¢ a positive integer. The center builds a binary tree T (with height
t), and associates each terminal with a leaf of T. For a node i of T, we write T; for the
subtree of T whose root is the node i, and S; for the set of terminals which are descendants
of the node ¢ in 7. That is, S; is the set of leaves of T;. Also we write Sii = Si\S;,
where a node 4 is an ancestor node of a node J. The center assigns a key of a symmetric
key cryptosystem to each S; j, where we write Li,j‘ to represent the key which is assigned
to S; ;. The keys which are embedded in a terminal is determined by the center to satisfy

the following property.

Property 1: A terminal is in a set Sij if and only if the terminal can compute the key
Lij: | » | m
To realize this property, a pseudorandom bit generator [18] is employed in the SD method.
We denote)\ to be a security parameter of the system and ¥ = {0,1}. We assume the
existence of the “cryptographically secure” pseudorandom bit generator G : {0,1}P — =3,
When the output of G on a seed w is G(w), then we denote the left third of it by Gr(w),
the right third of it by Gr(w), and the middle third of it by @ m(w).

Assignment of keys

"To define the secret information to be stored in each terminal, the center assigns a randomly
chosen A bit length sequence, called a label, to each internal nodes in T Here, the label of
a node i is denoted by LABEL;. The center also computes the sequence LABEL;; € *

39

The black nodes can be taken as j

Figure 3.2. Relation of the nodes Satisfying conditions
with i < j, called the relative-label of j for 4, iteratively to each S;; as follows (also see
Figure 3.1):
e Define LABEL;; = LABEL,;.

e Assume that LABEL;; has been computed and that the left child of j is j;, and the
right child of j is jg. In this case, define

LABEL;;, = Gi(LABEL;;).
LABEL;;, = Gg(LABEL,;).

The key L;; of S;; is defined by L; ; = Gy (LABEL; ;). To realize Property 1, the cen-
ter delivers to a terminal u every LABEL;; satisfying the following three conditions (see
Figure 3.2), '

e i is an ancestor node of u,
e j is a descendant node of 4, and
e j is not an ancestor node of u, but its parent node is an ancestor node of u.

Using the pseudorandom bit generator G iteratively, each terminal u can compute LABEL; ;
for any pair of nodes (3,5) with u € S;;. Consequently, u can compute a key L;; =
Gu(LABEL;;) if and only if w € Sj;. Remark that the total number of labels each

terminal needs to store safely becomes 0.5(log, N)? [33].

40

2/\3
N\ vV
/\ /\ I\ /\

Figure 3.3. Revocation of the terminals in the SD method

Distribution of content

Consider the situation that the center distributes content c to the set A"\ R, where R ¢ N/
is the set which the center wants to revoke. The center firstly chooses r uniformly at
random, and broadcasts encrypted content E(r,c). Also the center computes the set of

pairs of nodes I satisfying
N\R=] 8 3 (3.1)
G.g)el
and broadcasts (4,7, E(Lij, k)) for every (,7) € I.

Figure 3.3 shows an example of a terminal revocation. When the revoked terminals are
nodes 10, 12, and 13 (the black nodes in the figure), the keys used in encryptions are Lsg
and Ly .

If the number of revoked terminals is R (= [R|), then I contains 2R — 1 pairs at most
[33]. That is, the message overhead of the SD method is upper-bounded by 2R — 1.

Decryption of content

A terminal u finds (4, j, h) satisfying u € S; ; from the set of broadcasted triplets. From the
construction of I in the content distributio_n phase, if u € A"\ R, then there is one triplet
which satisfies u € S; ;, and, therefore, u can obtain proper h = E(L;j,r). The terminal
u finds the appropriate relative-label from the secret information, and can deduce L;; by
computing G at most log, N times. That is, the terminal u decrypts h using the key L;,
gets the content key r, and decrypts the encrypted content using r as a key.

41

3. The simplified-SD (SSD) schemes

3.1 Assumption on the ability of malicious users

In the original discussion of the SD method, malicious users are considered to be very
powerful. We need to assume that they can retrieve secret information from their terminals,
collude with each other, and construct pirate terminals which can have wrong combination
of secret keys. The SD method is designed to be secure against such powerful attacks,
though, we can investigate for other options from the practical viewpoints.

Here we would like to consider tamper-resistant mechanisms which protects important
information against attacks from the outside. It might be difficult to realize a “theoreti-
cally secure” tamper-resistant mechanism, but it seems that a “practically secure” tamper-
resistant mechanism has been already realized and widely used [1, 23]. For example, current
mobile phones are designed and used based on the assumption that the telephone terminal
(or the SIM device in the terminal) is tamper-resistant. If malicious users can modify infor-
mation in the mobile phone, then the current business model of mobile phones will collapse.
Another example is smart-cards. A number of electric money systems use IC-embedded
smart-cards as wallets, and the tamper-resistant assumption of smart-cards are essential
in those systems. In summary, we can assume that we already have the sufficiently secure
tamper-resistant hardware mechanism which protects information from malicious users. In
some applications, users’ terminals might be realized as computer software. Unfortunately,
the tamper-resistant mechanism for software has not been widely recognized, but there
are fundamental studies on program obfuscation [8, 28]. The program obfuscation is a
technique to protect data and algorithm in a computer program from réverse—engineering.
The author conjectures that the tamper-resistant software mechanism will be established
in near future by using program obfuscation.

Based on this observation, we assume the following in this chapter.

Assumption 1: Malicious users can not extract secret information from their terminals.
O

If we assume that secret information in users’ terminals are protected by tamper-resistant

mechanisms, then we can relax the security requirement for the SD method. This may allow

42

us to improve the efficiency, that is to say, to reduce the size of secret information in a
terminal, of the SD method.

3.2 Construction of the SSD1 scheme

In the SD method, we need to realize a key management scheme so that the terminal u
can compute the key L;; of the set S;; if and only if u € Sij. In this section, we propose
an efficient scheme in terms of the size of the secret information in the terminal under the

Assumption 1.

Distribution of keys

Analogously to the SD method, consider a binary tree T whose leaf corresponds to a
terminal. The center assigns a random value of length), called a salt, to each node in T.
Also the center defines labels of length A in a similar way to the relative labels in the SD

method. That is, the center assigns labels according to the following rule.
e A label which is assigned to the root node is randomly chosen from the set 5.
e When the label of a node 7 is LABEL,

— Gr(LABEL) is assigned to the left child of 4-as the label, and
— Gr(LABEL) is assigned to the right child of i as the label.

We write the salt and the label of a node i by SALT; and LABEL;, respectively. For
simplicity, we often call the salt which is assigned to an ancestor node as the ancestor salt,
and the label which is assigned to a non-ancestor node as a non-ancestor label.

In the SSD1 scheme, we define the key I; jofasetS;;as |

Lij = Gu(SALT; ® LABEL;). | (3.2)

To realize Property 1, the center embeds in a terminal u all the ancestor salts of . Also,
the center embeds each LABEL; in the terminal u if and only if the node J is not an
ancestor of u, but the parent of the node j is an ancestor node of . Figure 3.4 illustrates

an example of assignment of labels and salts.

43

Information stored in terminal u:
SALT;, LABELs;,

SALT,, LABEL,,

SALTs, LABEL.,

SALTs, LABELg

Figure 3.4. An example of assigning salts and labels with the SD1 scheme

Since the number of ancestors of a leaf node is log, N + 1, the terminal u only needs
to store log, N + 1 salts and log, IV labels. Thus, the total number of secret information
each terminal has to store is 2log, IV 4 1. This is obviously much smaller than the SD
method which needs 0.5(log, N)?. Also if the salts are defined by the OH scheme (in
Chapter 2), then we can compress salts to information of size O(1). In this case, we need
some additional computation to retrieve salts, but the number of the secret information

can be compressed to 1+ log, V.

Distribution of content

Distribution of content is almost the same as in the SD method, except that the key of S; ;
becomes L;; = Gy (SALT; @ LABEL;) as shown in Equation (3.2). The size of message
overhead is the same as in the SD and is at most 2R — 1 [33].

Decryption of content

Decrypting content is almost the same as in the SD method as well. As we will see in the
next section, a terminal u can compute L; ; if and only if u € S; ;. The terminal u finds the
triplet (4,4, h) with u € S;; which is received from the center, and decrypts the encrypted

content using r after decrypting A.

3.3 Security of the SSD1 scheme

In this section, we prove that all the terminals but the revoked terminals can decrypt the
content under Assumption 1. To prove this, it suffices to show that the SSD1 scheme

44

Figure 3.5. Relation of the nodes p, pg, 7, and v in Lemma 4

satisfies Property 1.

Lemma 4: A terminal u can compute a label LABEL; for any non-ancestor node j.
Proof If j is a non-ancestor node of u, then there exists a node p such that p is a common
ancestor of u and j, and u and j are descendants of different children of p. Without loss
of generality, we assume that u is a descendant of the left child of P, and j is a descendant
of the right child pp of p (see Figure 3.5). Remark that pg itself is not an ancestor node of
u but the parent node of pp is an ancestor node of . Therefore, u must have LABEL,,
at the key assignment phase of the SSD1 scheme. Since J is an descendant node of DR,
LABEL; can be computed from LABEL,,. O

Usmg this lemma, we can show the followings.

Lemma 5: A terminal u can compute the key L; ; if u € S; ;.

Proof: If u € S;;, then i must be an ancestor node of . Therefore, the terminal u has
SALT;. On the other hand, since if u € S;; = ; \ Sj, j is a non-ancestor node of u,
and, therefore, from Lemma 4, u can compute LABEL;. Consequently, u can compute
L;; = Gu(SALT; & LABEL;). : : o

Lemma 6: A terminal u can not compute the key L;;ifu & S;;.

Proof: There are two cases that u & S;; holds: (1) { is a non-ancestor node of u, or (2) j
is an ancestor node of u. In the former case, u does not have SALT;. In the latter case, u
can not compute LABEL;. In both cases, u can not compute G4, (SALT; @ LABEL;). O

Property 1 follows from Lemmas 5 and 6. That is, the user revocation works properly in
the SSD1 scheme.

45

In the SSD1 scheme, Assumption 1 is essential. From the proof of Lemma 6, it is easy
to see that the security of the SSD1 scheme depends on each terminal not knowing the
non-ancestor salts or the ancestor labels. If Assumption 1 does not hold, then the malicious
users may extract labels or salts from their terminals, and share the information. If such

collusion occurs, then there is possibility that revoked users can decode the content.

3.4 Construction of the SSD2 scheme

A little modification of the SSD1 scheme can realize another type of key management
system. In the SD method and the SSD1 scheme, a key is assigned to each S;;, and we
consider how to manage the keys to satisfy Property 1. But in SSD2, we do not assign a
key to each set S;;. Instead, we define a unique key L for each revoked set R so that
a terminal 4 can compute Lz if and only if u ¢ R. In the following, we only show the
difference of the SSD1 and the SSD2 schemes.

Distribution of keys

The labels are assigned in the same way as in the SSD1 scheme. But in the SSD2 scheme,
we do not use salts. The number of secret keys in each terminal becomes log, N, and
therefore the numer of the secret keys of the scheme becomes slightly smaller than that of
the SSD1 scheme.

Distribution of content

As in the SSD1 scheme, a key r is randomly chosen, and the content is encrypted with r.
Then the center computes L = D, LABEL;, and distributes F(Lg,7) and all elements

in R. Therefore, the message length becomes R.

Decryption of content

A terminal u finds the labels which correspond to all elements in R, and, then computes
Ly. The terminal can obtain r using Lg, and decrypt the encrypted content. Since
time complexity of computing each label is O(log V), the whole time-complexity becomes

O(RlogN).

46

Table 3.1. Comparison of the SSD schemes and the SD method

secret message terminal | assumptions
information | overhead | computation
SD method [33] || 0.5(log, N)? | 2R —1 O(log N) one-way
functions
SSD1 scheme | 2log, N+1| 2R—1 | . O(log N) | Assumption 1
SSD2 scheme log, N R+1 | O(RlogN) | Assumption 1

3.5 Security of the SSD2 scheme

To show that the SSD2 scheme is secure under Assumption 1, we prove the following lemma.

Lemma 7: A terminal u is not in R, if and only if u can compute L.

Proof: Since assignment of labels is the same as in the SSD1 scheme, Lemma, 4 holds for
the SSD2 scheme as well. If u ¢ R, then u can compute LABEL; for any j € R, and
therefore it can compute Ly = @jeR LABEL;. On the other hand if u € R, then u does

not know LABEL, and it can not compute L. O

4. ,,Concluding remarks for this chapter

In this chapter, we show that if we restrict the ability of the malicious users, then we can
construct efficient SD variants. Since the assumption is sufficiently realistic and adequate,
the proposed schemes are useful in practice.

We show the comparison between the SD method and ours in Table 3.1. In the SD
method, the size of the secret information stored in each terminal is 0.5(log, N)?, while in
our schemes, the number becomes 2log, N +1 and log, N, respectively. This is obviously
better than the SD method. Also there are trade-off relationships between the SSD1 and
SSD2 schemes. That is, the message length of SSD2 is smaller than that of the SSD1
scheme, but time-complexity of SSD2 is bigger than that of the SSD1 scheme.

47

Chapter 4
Conclusion

In this thesis, we show two key management schemes in the CS method and in the SD
method, respectively. In all four schemes, our aim was to reduce the size of the secret in-
formation in each terminal. To reduce the size of the secret information, we design schemes
to perform some additional operations or assume a special hardware. More precisely, in
the CS method, each terminal needs to compute a one-way permutation. Also in the SD
method, we need to assume that there exists a tamper-resistant device. However, we be-
lieve these overheads bring little problem in practical implementations, since nowadays
even small terminals whose computational power is restricted can compute the one-way
permutation (e.g., the RSA permutation), and the hash function (e.g., SHA-1). Also the
security of very serious systems is in fact supported by tamper-resistant devices such as
smart-cards. Therefore, the assumption of the tamper-resistant devices is practical.

There are several works [3, 4, 7, 26, 34] which follow the schemes proposed in Chapter 2.
For example, the author of [26] constructs the key management scheme in the CS method
based on the TP scheme using a pair of the Rabin functions. We also believe that the
proposed scheme described in Chapter 3 can give a useful design principle in practical
implementations of the SD method.

Since there are many applications in broadcast encryption and the key management
part is the most important component of the encryption procedure, exploring a good key
management scheme results in various derivations. For example, in [3] the hybrid key
management scheme is designed by combining the Asano’s scheme [2] and the SD method.
Also based on the scheme in [2] the online broadcast encryption scheme is proposed in [24].

48

It is an interesting future work to construct the hybrid key management scheme or the
online broadcast encryption scheme based on the schemes proposed in this thesis.

For possible improvement of the results in Chapter 2, we have to make clear what have
been done and what have not. In the TP scheme, we show that if there exists a family
of strongly semi-claw-free permuté,tions, then the TP scheme becomes secure. However,
we do not know how to theoretically construct such permutations. We conjecture that
constructing such permutations is rather difficult, since constructing a family of claw-free
permutations, which is similar to the strongly claw-free permutations family is reported to
be very difficult [36, 22]. In the OH scheme, we show that the scheme can be constructed
from any family of one-way trapdoor permutations. The difficulty lies in how to construct
an efficient hash function without using random oracles. Currently, the proof of showing
the security of the efficient execution of the OH scheme assumes the existence of random
oracles. That is, if we do not use random oracles, then the OH scheme might become
inefficient. Thus, constructing the efficient hash function which preserves the security
is an important task in the OH scheme. This is a basic pioblem, so that not showing
such function theoretically reflects us very much. All we can say now is that since it is
impossible to compress a randomly chosen sequence, we have to construct a hash function
which produces a statistically close sequence to uniform one.

For more general framework for the future work, researchers of broadcast encryption
have to theoretically explore what kind of relation exists among the three parameters of
the broadcast encryption: the size of the secret information in each terminal, the size of the
message overhead, and the time complexity at each terminal. It will be very challenging but
interesting to clarify the relation among the parameters from the viewpoint of information

theory and complexity theory.

49

References

[1]
[2]

[3]

[4]

[5]

R. Anderson, “Security Engineering,” John Wiley & Sons Inc., 2001

T. Asano, “A Revocation Scheme with Minimal Storage at Receivers,” Advances in
Cryptology - Proceedings of ASTACRYPT’02, volume 2501 of Lecture Notes in Com-
puter Science, pp. 433-450, Springer-Verlag, 2002.

T. Asano, “Reducing Storage at Receivers in SD and LSD Broadcast Encryption
Scheme,” Proceedings of the Fourth International Workshop on Information Sgcurity
Applications (WISA’03), volume 2908 of Lecture Notes in Computer Science, pp. 317-
332, Springer-Verlag, 2003.

T. Asano, “Secure and Insecure Modifications of the Subset Difference Broadcast En-
cryption Scheme,” Proceedings of the Ninth Australasian Conference on Information
Security and Privacy (ACISP’04), volume 3108 of Lecture Notes in Computer Science,
pp. 12-23, Springer-Verlag, 2004. '

N. Attrapadung, K. Kobara and H. Imai, “Broadcast Encryption with One Storage
Key at Each Receiver in One Transmission Message,” Proceedings of the 2003 Sym-
posium on Cryptography and Information Security (SCIS’03), pp. 315-320, 2003.

N. Attrapadung, K. Kobara and H. Imai, “Sequential Key Derivation Patterns for
Broadcast Encryption and Key Predistribution Schemes,” Advances in Cryptology -
Proceedings of ASTACRYPT’03, volume 2894 of Lecture Notes in Computer Science,
pp- 374391, Springer-Verlag, 2003.

N. Attrapadung, K. Kobara and H. Imai, “Efficient Broadcast Encryption from Trap-
door One-Way Accumulators,” Proceedings of the 2004 Symposium on Cryptography
and Information Security (SCIS’04), pp. 201-206, 2004.

B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan and K.
Yang, “On the (Im)possibility of Obfuscating Programs,” Advances in Cryptology -
Proceedings of CRYPTO’01, volume 2139 of Lecture Notes in Computer Science, pp.
1-18, Springer-Verlag, 2003. |

50

[9]

[10]

[11]

[12]

[13]

N. Baric and B. Pfitzman, “Collision-Free Accumulators and Fail-Stop Signatures
Schemes Without Trees,” Advances in Cryptology - Proceedings of EUROCRYPT’97,
volume 1233 of Lecture Notes in Computer Science, pp. 480-494, Springer-Verlag,
1997.

M. Bellare and P. Rogaway, “Random Oracles Are Practical: A Paradigm for Design-
ing Efficient Protocols,” Manuscript, 1998.
Available from http://www-cse.ucsd.edu/ucsd.edu/users/mihir/.

M. Bellare, A. Boldyreva and A. Palacio, “An Uninstantiable Random Oracle Model
Scheme for a Hybrid Encryption Problem,” Advances in Cryptology - Proceedings of
EUROCRYPT’04, volume 3027 of Lecture Notes in Computer Science, pp. 171-188,
Springer-Verlag, 2004.

M. Bellare, D. Pointcheval and P. Rogaway, “Authenticated Key Exchange Se-
cure a.gaiﬁst Dictionary Attacks,” Advances in Cryptology - Proceedings of EURO-
CRYP'T’00, volume 2807 of Lecture Notes in Computer Science, pp. 139-155, Springer-
Verlag, 2000.

R. Canetti, S. Halevi and J. Katz, “A Forward-Secure Public-Key Encryption Scheme,”
Advances in Cryptology - Proceedings of EUROCRYPT03, volume 2656 of Lecture

- Notes in Computer Science, pp. 255-271, Springer-Verlag, 2003.

R. Canetti, T. Malkin and K. Nissim, “Efficient Communication-Storage Tradeoffs for

" Multicast Encryption,” Advances in Cryptology - Proceedings of EUROCRYPT’99,

[15]

[16]

volume 1592 of Lecture Notes in Computer Science, pp. 459-474, Springer-Verlag,
1999.

G. C. Chick, and S. E. Tavares, “Flexible Access Control with Master Keys,” Advances
in Cryptology - Proceedings of CRYPTQ’89, volume 435 of Lecture N otes in Computer
Science, pp. 316-322, Springer-Verlag, 1989.

Y. Dodis and L. Reyzin, “On the Power of Claw-Free Permutations,” Proceedings of
the Third International Conference on Security in Communication Networks (SCN’02),
volume 2576 of Lecture Notes in Computer Science, pp. 55-73, Springer-Verlag, 2002.

51

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

A. Fiat and M. Naor, “Broadcast Encryption,” Advances in Cryptology - Proceedings
of CRYPTO’93, volume 773 of Lecture Notes in Computer Science, pp. 480-491,
Springer-Verlag, 1993.

O. Goldreich, “Foundation of Cryptography: Basic Tools,” Cambridge University
Press, 2001.

S. Goldwasser, S. Micali and R. L. Rivest, “A Digital Signature Scheme Secure Against
Chosen Message Attack,” Manuscript, 1988.
Available from http://theory.lcs.mit.edu/ joanne/

M. Goodrich, J. Z. Sun and R. Tamassia, “Efficient Tree-Based Revocation in Groups
of Low-State Devices,” Advances in Cryptology - Proceedings of CRYPTO’04, volume
3152 of Lecture Notes in Computer Science, pp. 511-527, Springer-Verlag, 2004.

D. Halevy and A. Shamir, “The LSD Broadcast Encryption Scheme,” Advances in
Cryptology - Proceedings of CRYPTO02, volume 2442 of Lecture Notes in Computer
Science, pp. 47-60, Springer-Verlag, 2002.

C. Hsiao and L. Reyzin, “Finding Collisions on a Public Road, or Do Secure Hash
Functions Need Secret Coins?,” Advances in Cryptology - Proceedings of CRYPTO’04,
volume 3152 of Lecture Notes in Computer Science, pp. 92-105, Springer-Verlag, 2004.

Y. Ishai, A. Sahai and D. Wagner, “Private Circuits: Securing Hardware against
Probing Attacks,” Advances in Cryptology - Proceedings of CRYPTOQ’03, volume
2729 of Lecture Notes in Computer Science, pp. 463—481, Springer-Verlag, 2003.

S. Jiang and G. Gong, “Hybrid Broadcast Encryption and Security Analysis,” Cryp-
tography ePrint Archive, 2003.
Available from eprint.iacr.org/2003/241.ps

J. Katz, “Advanced Topics in Cryptography,” Lecture Notes, 2004.
Available from http://www.cs.umd.edu/ jkatz/

H. Kikuchi, “Rabin Tree and Its Application to Group Key Distribution,” Proceedings
of the Second International Conference on Automated Technology for Verification and

52

[27]

[28]

[29]

[30]

/3]

[32]

[33]

Analysis (ATVA’04), volume 3299 of Lecture Notes in Computer Science, pp. 384-391,
Springer-Verlag, 2004.

H. Kikuchi and S. Sakata, “Modified Subset Difference Method with Reduced Storage
of Secret Key at Users,” Proceedings of the 2004 Symposium on Cryptography and
Information Security (SCIS’04), pp. 83-87, 2004.

B. Lynn, M. Prabhakaran and A. Sahai, “Positive Results and Techniques for Obfus-
cation,” Advances in Cryptology - Proceedings of EUROCRYPT’04, volume 3027 of
Lecture Notes in Computer Science, pp. 20-39, Springer-Verlag, 2004.

U. Maurer, R. Renner and C. Holenstein, “Indifferentiability, Impossibility Results
on Reductions, and Applications to the Random Oracle Methodology,” Proceedings
of the First Theory of Cryptography Conference (TCC’04), volume 2951 of Lecture
Notes in Computer Science, pp. 21-39, Springer-Verlag, 2004.

T. Nakano, M. Ohmori, N. Matsuzaki and M. Tatebayashi, “Key Management System
for Digital Content Protection: Tree Pattern Division Method,” Proceedings of the
2002 Symposium on Cryptography and Information Security (SCIS’02), pp. 715-720,
2002.

M. J. Mihaljevic, “Key Management Schemes for Stateless Receivers Based on Time
Varying Heterogeneous Logical Key Hierarchy,” Advances in Cryptology - Proceedings

“of ASIACRYPT"04, volume 2894 of Lecture Notes in Computer Science, pp. 137-154,
Springer-Verlag, 2004.

D. Micciancio and S. Panjwani, “Optimal Communication Complexity of Generic Mul-
ticast Key Distribution” Advances in Cryptology - Proceedings of EUROCRYPT’04,
pp. 153-170, volume 3027 of Lecture Notes in Computer Science, Springer-Verlag,
2004.

D. Naor, M. Naor and J. Lospiech, “Revocation and Tracing Schemes for Stateless
Receivers,” Advances in Cryptology - Proceedings of CRYPTO’01, volume 2139 of
Lecture Notes in Computer Science, pp. 41-62, Springer-Verlag, 2001.

53

[34] W. Ogata, T. Hiza and D. V. Quang, “Efficient Tree Based Key Management Based
on RSA Function,” Proceedings of the 2004 Symposium on Cryptography and Infor-
mation Security (SCIS’04), pp. 195199, 2004.

[35] D. Pointcheval, “New Public Key Cryptosystems Based on the Dependent-RSA Prob-
lems,” Advances in Cryptology - Proceedings of EUROCRYPT’99, volume 1592 of
Lecture Notes in Computer Science, pp. 239-254, Springer-Verlag, 1999.

[36] D.R. Simon, “Finding Collisions on a One-Way Street: Can Secure Hash Functions Be
Based on General Assumptions?,” Advances in Cryptology - Proceedings of EURO-
CRYPT’98, volume 1403 of Lecture Notes in Computer Science, pp. 334-345, Springer-
Verlag, 1998.

[37] D. Wallner, E. Harder and R. Agee, “Key Management for Multicast: Issues and
Architecture,” RFC 2627, 1999.
Available from ftp://ftp.ietf.org/rfc/rfc2627.txt.

[38] C. Wong, M. Gouda and S. Lam, “Secure Group Communications Using Key Graphs,”
Manuscript, 1998.
Available from http://www.cs.utexas.edu/users/lam/Vita/ACM/WGL98.pdf. -

[39] 4C Entity, “Content Protection for Recordable Media.”
Available from http://www.4centity.com/tech/cprm/.

o4

