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A Framework for Software Function Recommendation 

Based on Collaborative Filtering ∗ 

 

Naoki Ohsugi 
 

Abstract 

 

High-Functionality Applications (HFAs) contain a large number of functions. However, 

most HFA users use only a few functions and are not aware of other useful functions. To 

let users discover other useful, not previously known (or: previously unknown) functions 

efficiently, this dissertation proposes a framework for software function recommendation 

based on Collaborative Filtering (CF). The proposed framework includes an abstract 

design of a function recommender system and an automated process for producing a 

recommendation, as well as system implementation techniques and new CF algorithms. 

To produce a recommendation for a target HFA user, first, histories of software function 

executions (called usage histories) are collected from many HFA users via the Internet. 

Next, similarities among users are calculated using the frequencies of the function 

executions of each user. Then, the potential execution frequencies of the target user ’s 

previously unknown functions are predicted based on similar users’ already known 

frequencies. Finally, a list of functions ranked by their potential frequency is given as a 

recommendation to the target user. Since this framework does not require a previously 

constructed “user model” to make a recommendation, it is easily applicable to many 

HFAs. Typically, the CF algorithm consists of a similarity computation algorithm and a 

prediction algorithm. This dissertation describes three simple prediction algorithms 

(lacking similarity computation), ten similarity computation algorithms including two 
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new algorithms, and seven prediction algorithms. Prediction accuracies of these CF 

algorithms were empirically evaluated using usage histories collected from 23 Microsoft 

Office Application users. To evaluate the recommendation accuracy, ARE (Average 

Relative Error) and NDPM (Normalized Distance-based Performance Measure ) were 

used. The results showed that the average NDPM and the average ARE of all the CF 

algorithms were better than that of randomly generated recommendations. In particular, 

Rank Correlation, which is one of the proposed similarity computation algorithms, 

outperformed the other nine algorithms. Also, Weighted Sum, one of the conventional 

prediction algorithms, outperformed the other six prediction algorithms. 

 

Keywords: Recommender System, Filtering Algorithms, Usage History, HFA (High 

Functionality Application), and CSCW 
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1. Introduction 

Currently, application software provides a large number of functions to satisfy 

various users’ demands and needs [12]. For instance, Figure 1 shows the number of 

software functions provided by Microsoft Office applications, which are popular HFAs 

(High-Functionality Applications). In this dissertation, the number of functions is 

considered to be equal to the number of menu items because each function is executed by 

clicking a corresponding menu item in these applications. In summary, Excel 2002 had 

the largest number of functions, 792. Power Point 2000 contained the smallest number of 

functions, 565, which is still large. On average, these applications had 690 different 

functions. 

However, most users use only a few functions. Figure 1 also shows the number of 

functions actually used (executed) by 32 Microsoft Office users in 22 months. The bars 
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Figure 1. The Number of Functions Actually Used in High-Functionality Applications 
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in the figure show the maximum, minimum, and average number of functions actually 

used by these users. In summary, most users used approximately only 10% of all 

functions, i.e., over 90% of all functions remained unused. Morisaki et al., through an 

empirical study with 6 users of Microsoft Word 2000 and PowerPoint 2000 [28], [29], 

confirmed that many of these unused functions were indeed useful to users. Morisaki et 

al. let each user investigate a set of unused functions, which had not been executed by 

the user but had been executed by other users. As a result, users found 24.7 functions 

useful out of 63.7 investigations on average. 

Nevertheless, although useful functions are involved in the set of unused functions, 

it is also pointed out that users do not spend the time and effort necessary to finding out 

these functions for the following reasons [57]: 

- Users may not be aware of the existence of new functions. 

- Users may not be motivated to learn if they think learning requires too much time 

and effort [5], [7]. 

- Users may not be able to find the new functions. 

- Users may not be able to understand and apply the new functions. 

In fact, in our preliminary analysis, some “diligent” users had continued discovering 

previously unknown functions, but others had stopped learning new functions. Figure 2 

shows the relationship between the number of function executions and the number of 

executed functions of 22 Microsoft PowerPoint 2002 users. Typically, the number of 

function executions will increase as the user continues using an application. On the other 

hand, the number of executed functions will not increase unless the user continues 

discovering new functions. As shown in Figure 2, although the average number increased 

slowly, the minimum number almost did not. This suggests there were some users who 

were not motivated to seek previously unknown functions. 

In order to promote the discovery of new functions, Morisaki et al. [28], [29], 

developed a system for sharing knowledge of useful, but previously unknown functions 

of a HFA in a small community whose members are doing similar tasks using the HFA. 

The system first collects records of the used functions (usage history) from all users in a 
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community. Then, the system provides (shows) each user a set of unused functions, 

which have not been executed by the user, but have been executed by the other users.  

The users in a small community can share each other ’s knowledge by looking at other 

people’s executed functions provided by this system. However, in the case of a large 

community whose members are doing various kinds of tasks by using the HFA, this 

system is not feasible because the number of each user ’s unused functions, which have 

been executed by other users, becomes too large. 

For efficiently discovering useful functions of HFAs, we need a system that can 

predict and recommend useful, previously unknown functions for individual users. In 

such a system, the efficiency of function discovery may depend on the accuracy of 

predictions. To achieve higher accuracy, each user’s individual needs as well as the 

similarity (in needs) between users have to be taken into account because obviously each 
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user has a different set of useful functions due to the distinctive tasks they select when 

using the HFA. 

This dissertation proposes a framework for function recommendation based on a 

Collaborative Filtering (CF) that helps an individual user efficiently discover useful 

functions of HFAs. The CF was originated as a method of information filtering, which 

predicts individual users’ preferences to filter out undesirable items. To date, the CF has 

been applied to implementing recommender systems as a prediction engine. Generally, 

the CF-based prediction consists of two steps: (1) first,  the CF evaluates similarities 

between users from the preferences (e.g. a rating to an item on a 1 through 5 scale) given 

by the users themselves on already known (aware) items; (2) next, the CF predicts a 

target user ua’s preference of each unknown (unused) item ij by using a similar users’ 

preferences of the item i j and their similarities to the user ua, where the user ub is a user 

who knows item ij [4]. Since this process takes the user ’s individual needs into account, 

the CF can “individually” provide each user a prediction of preferred items. 

The proposed framework includes an abstract design of a function recommender 

system and an automated process for making recommendations, as well as system 

implementation techniques and new CF algorithms suitable for function recommendation. 

Novel technology makes the proposed system differ from conventional CF-based 

recommender systems in that the proposed framework employs frequencies of function 

executions (execution frequencies) instead of the preferences (ratings) on the functions, 

in computing similarities and predictions. Since the execution frequency of HFA’s 

functions can be automatically measured from HFA users’ execution histories in this 

framework, users do not need any additional time or effort to “rate” the software 

functions they have used. By using CF algorithms, the usefulness of each function is 

individually predicted for each user. Based on the prediction, a list of functions ranked 

with their relative usefulness is provided to each user as a recommendation. Note that in 

this dissertation, a “useful” function means a function that has been “frequently used” by 

a user, or a function not previously known to a user, but will be “frequently used” when 

the user becomes aware of the functions. 
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This dissertation also describes two case studies for evaluating the accuracies of 

the predictions by applying the six algorithms including the Rank Correlation Algorithm 

and the Magnitude Relation Algorithm , which are newly proposed in this dissertation. 

Although researchers have developed many CF algorithms [1], [4], [41], [46], [48], 

whether or not these algorithms are suitable for recommending “software functions” is 

not clear since they do not consider the effect of “outlying” values. In software function 

recommendation, a CF algorithm has to avoid negative effects caused by outlying values 

in calculating similarities while the execution frequency of some HFA functions (such as 

“undo”, “copy”, “paste”) can be considered “outliers” since they are used much more 

frequently than other functions. The proposed two algorithms are designed to avoid the 

negative effects of such outliers. 

The remainder of this dissertation is structured as follows: Chapter 2 gives an 

overview of CF. Chapter 3 reviews conventional CF-based recommender systems. 

Chapter 4 explains the proposed framework including the design of a function 

recommender system and a process for producing a recommendation. Chapter 5 provides 

the details of the CF algorithms which can be employed by the proposed framework. 

Chapter 6 reports experiments for evaluating the CF algorithms described in Chapter 5. 

Chapter 7 discusses the results of the experiments. Chapter 8 compares the proposed 

method with related work. Finally, Chapter 9 concludes the dissertation and provides 

outlooks on future research activities. 
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2. Collaborative Filtering 

Collaborative Filtering (CF) was originated by Goldberg et al. [14] for 

implementing “Tapestry”, which is a Usenet article filtering system. Tapestry stores 

Usenet articles in the database and analyzes whether or not each article received replies.  

Tapestry users can search “interesting” articles in a certain newsgroup even if they did 

not know how to write a search query expressing what is “interesting”. By using 

Tapestry, the users can retrieve “well-replied” articles, which might be more interesting 

than other articles. Tapestry is the most rudimentary style of CF because it uses the 

knowledge (Collaborative) of many users to find out preferable items (Filtering) 

although it does not employ any algorithmic procedures. 

CF is one of the key techniques for implementing a recommender system which 

recommends to the user a set of candidate items which may be preferable or useful to 

individual users [19]. Typically, the recommended items are selected from a large 

number of items such as Usenet articles, Web pages, books, or movies.  CF predicts the 

preferences (ratings) of previously unknown items for a particular user, called an active 

user. Thus, the CF-based recommender system can recommend a set of candidate items 

with a high possibility of being preferred by the active user. 
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Figure 3. Overview of the Recommendation with Collaborative Filtering 
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The main feature of the CF is to employ other similar users’ preferences to predict 

the active user’s preferences [46]. Figure 3 shows the overview of the recommendation 

with CF.  As described in the figure, an environment applying the CF consists of some 

items and some users. All users express their preferences about the items they have used. 

First, the CF finds a set of users who are similar to the active user.  In Figure 3, the CF 

has evaluated user u1 and u2 as similar users because they have expressed similar 

preferences with user ua who is the active user. Then, the CF predicts preferable items 

based on similar users’ preferences. In Figure 3, the CF predicted that items i3 and i6 
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were preferable because users u1 and u2 have preferred them as well as items i1 and i2, 

which were preferred by user ua. 

As described in Figure 4, the CF is systematically conducted through three phases: 

the preference preparation phase,  the similarity computation phase and the prediction 

phase. First, in the preference preparation phase, a CF conductor (i.e., a system which 

conducts CF) prepares the users’ preferences.  Each user’s preferences are data 

expressing which items are preferred and how they are preferred. Typical CF systems 

prepare users’ preferences by constructing a particular data object extracted from a 

database. Next, in the similarity computation phase, the CF conductor evaluates the 

similarities between the active user and the other users. Finally, in the prediction phase, 

the conductor predicts the active user’s preferences of previously unknown items, using 

the similarities computed in the previous process.  Generally, these three phases are 

implemented separately. Combining the processes at the similarity computation phase 

and the prediction phase is an important factor affecting the system’s performance, for 

example, in terms of the accuracy of the prediction and the processing speed. 

In the remainder of this dissertation, the systematic processes performed in the 

similarity computation phase and the prediction phase are called a similarity 

computation algorithm and a prediction algorithm, respectively. Likewise, a combination 

of a similarity computation algorithm and a prediction algorithm is simply called a CF 

algorithm. There are many CF algorithms which have been proposed in the conventional 

literature (for example, [4], [13], [41], [45], [46], [48] etc.); however, there is no perfect 

CF algorithm which achieves the best performance all the time because the system’s 

performance is also affected by other factors such as characteristics of data of users’ 

preferences. Thus, in developing a CF system, experimental evaluations of the 

performances are very important. The system developers should use data actually 

employed in the system for these evaluations. Then, based on the evaluations, the 

developers should choose the most suitable CF algorithm.  Chapter 5 describes each CF 

algorithm precisely. Furthermore, Chapter 6 reports on the experimental evaluation of 

these CF algorithms. 
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3. CF-based Recommender Systems 

3.1 Classification Categories 

Figure 5 shows an input and output of a conventional CF-based recommender 

system. The system collects users’ preferences from potential recommenders and the 

active user who gets recommendation. Next, the system generates recommendations to 

the active user by using CF.  CF-based recommender systems can be classified into 

several categories based on their characteristics related to input and output. This chapter 

introduces some typical conventional systems and describes how these are classified. 

The classification categories are as follows: 

- Type of Items: “What does the system recommend for users?” The answer to this 

question is a class of this classification category. Currently, many CF systems 

recommend various types of items. 

- Type of Recommenders: “Who are the actual recommenders in the system?” The 
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answer to this question is a class of this classification category. Although the 

CF system itself is an immediate recommender, the recommended items given 

to an active user are computed based on other users’ preferences. In this sense, 

some users are indirect recommenders. In this category, CF systems are 

classified according to the type of such indirect recommenders. 

- Type of Data Collection: “Do the users have to enter their preference into the 

system explicitly?” The answer to this question is a class of this classification 

category. There are two types of CF systems in data collection. If the users of 

the system have to enter their preferences explicitly into the system, then, the 

system is classified as an Explicit Data Collection . Otherwise, the system is 

classified as an Implicit Data Collection. The latter system collects the users’ 

preferences implicitly using sophisticated methods (e.g. examining the users’ 

purchase records). 

- Type of Data Values: “What kind of values are employed for expressing the users’ 

preferences?” The answer to this question is a class of this classification 

category. The users’ preferences are expressed with different types of values, 

depending on the implementation of the CF system. For example, some 

systems employ binary values: 1 (prefer) or 0 (do not prefer). However, other 

systems employ the discrete values of a five grade scale: 5 (prefer) to 1 (do not 

prefer).  

3.2 Conventional Recommender Systems 

Table 1 shows the classification of conventional recommender systems based on 

the categories described in Section 3.1. In the Table, columns indicate the categories; 

and, each row indicates a classification result of each system. 

Tapestry proposed by Goldberg et al. [14] is the origin of the CF-based 

recommender systems. Tapestry is classified in the “Usenet articles” class in the “Type 

of Items” category in Table 1, because it is a Usenet article filtering system as described 

in Chapter 2. In the “Type of Recommenders” category, Tapestry is classified in the  
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“System outsiders” class because Usenet users who replied to articles are on the outside 

of the system. A Tapestry user can retrieve Usenet articles that have been replied to by 

someone else. If retrieved articles are preferable for a Tapestry user, the repliers to the 

articles indirectly recommended them to the users.  In the “Type of Data Collection” 

category, Tapestry is classified in the “Implicit” class because the users do not need to 

enter any preferences into the system.  Instead, Tapestry analyzes whether or not each 

article got replies for tracking interesting articles. In the “Type of Data Values” category, 

Table 1. Classification of Conventional CF-Based Recommender Systems 

 
Type of 

Items 

Type of 

Recommenders 

Type of Data 

Collection 
Type of Data Values 

Tapestry 
Usenet 

articles 
System outsiders Implicit Binary values: Replied (1) or Not (0) 

GroupLens 
Usenet 

articles 
Similar users Explicit Discrete values: 5 (Good) to 1 (Bad) 

Siteseer URLs Similar users Implicit Binary values: Bookmarked(1) or Not(0) 

Fab URLs Similar users Explicit 
Discrete values: 

7 (Excellent) to 1 (Terrible) 

PHOAKS URLs System outsiders Implicit Binary values: Mentioned (1) or Not (0) 

Beehive 
Text 

messages 

Topic group 

participants 
Explicit Text Messages 

Ringo 
Pieces of 

music 
Similar users Explicit 

Discrete values: 

7 (BOOM!) to 1 (Pass the earplugs) 

MovieLens Movies Similar users Explicit 
Discrete values: 

Must See(5) to Awful(1) 

ReferralWeb People System outsiders Implicit Online Text Resources 

PTVPlus TV Program Similar users Explicit 
User Profile and Binary Values: 

Positive (1) or Negative (0) 
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Tapestry is classified into the “Binary Values” class because it records an analyzed result 

of each article with a binary value: 1 (replied article) and 0 (not replied). 

GroupLens proposed by Resnick et al. [41] is also a Usenet article recommender 

system. GroupLens originated a basic form of the CF algorithm to help users to focus on 

interesting items.  It draws on a simple idea; people who agreed in their subjective 

evaluation of past articles are likely to agree again in the future. After reading articles, 

users explicitly assign numeric ratings to the articles. GroupLens uses the ratings in two 

ways. First, it correlates the ratings in order to determine which users’ ratings are most 

similar to each other. Second, it predicts how well users will like new articles, based on 

the ratings from similar users. As described in Table 1, it is clear that GroupLens is 

classified in the “Usenet articles” class in the “Type of Items” category; “Similar users” 

class in the “Type of Recommenders” category; and “Explicit” class in the “Type of Data 

Collection” category. In the “Type of Data Values” category, GroupLens is classified as 

“Discrete Values” because the numeric rating assigned to each article is a discrete value 

of the five grade scale: 5 (it is a good article) to 1 (it is a bad one). 

Siteseer proposed by Rucker and Marcos [43] is a URL recommender system. 

Siteseer uses the findings of one user as implicit recommendations for other users, based 

on the URLs bookmarked by the users qualified as trusted recommenders. Siteseer looks 

at each user’s bookmarks and measures the degree of overlap (i.e., common URLs) of 

each user’s bookmark with the other user’s bookmarks. Then, Siteseer determines the 

similarities between the users by using an overlap of the URLs (not: titles and the 

contents of Web pages). Siteseer provides as recommendations those pages which have 

been bookmarked by the user’s virtual neighbors, giving preference to pages drawn from 

multiple bookmarks in the neighborhood. Siteseer contextualizes its recommendations 

by delivering them to each user’s bookmarks.  As described in Table 1, it is clear that 

Siteseer is classified in the “URLs” class in the “Type of Items” category; and in the 

“Similar users” class in the “Type of Recommenders” category. In the “Type of Data 

Collection” category, Siteseer is classified as “Implicit” because users’ preferences are 

automatically examined from bookmarks. In the “Type of Data Values” category, 
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Siteseer is classified in the “Binary Values” class because it analyzes preferences on each 

URL as a binary value: 1 (it is bookmarked) and 0 (it is not bookmarked). 

Fab proposed by Balabanovic and Shoham [1] is a URL recommender system. Fab 

combines a content-based approach and a CF-based approach to make recommendations.  

As a content-based approach, Fab recommends URLs based on comparisons between 

user profiles and text-contents of the Web pages specified with the URLs. When a Web 

page is shown to a user, the user can put feedback into the system to improve the user 

profile. If the user liked the Web page, weights for the words extracted from it can be 

added to track the user’s interests. In contrast to a content-based approach, Fab 

recommends URLs that have been preferred by other similar users. The users’ feedback, 

which is used for improving the users’ profiles in the content-based approach, is also 

used for evaluating similarities between the users.  Scores for URLs related to the unread 

Web pages are predicted based on a combination of the scores known from some similar 

users. As described above, it is clear that Fab is classified in the “URLs” class in the 

“Type of Items” category; “Similar users” class in the “Type of Recommenders” 

category; and “Explicit” class in the “Type of Data Collection” category. In the “Type of 

Data Values” category, Fab is classified as “Discrete values” because the users can put 

feedback to Fab as a discrete value of a seven grade scale: 7 (it is an excellent page) and 

1 (it is a terrible one). 

PHOAKS proposed by Terveen et al. [52] is a URL recommender system.  

PHOAKS uses Usenet articles as recommenders of the URLs.  Some Usenet users often 

post their impressions and opinions about all sorts of items, including Web pages. They 

may state what a page is useful for and how useful it is. PHOAKS searches messages for 

mentions of Web pages (URLs) and counts a mention as a recommendation. The URLs 

are recommended according to the frequency of the mentions. As described above, 

PHOAKS is classified in the “URLs” class in the “Type of Items” category. In the “Type 

of Recommenders” category, PHOAKS is classified in the “System outsiders” class 

because all Usenet users can be potential recommenders. In the “Type of 

Recommenders” category, PHOAKS is classified in the “Implicit” class because it 
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counts previously mentioned URLs on the Web. PHOAKS users do not need to enter any 

preferences into the system. In the “Type of Data Values” category, PHOAKS is 

classified in the “Binary Values” class because it counts each URL as a binary value: 1 

(it is mentioned in an article) and 0 (it is not mentioned). 

Beehive proposed by Huberman and Kaminsky [23] is a text message 

recommender system. Beehive users join in various topic groups to receive 

recommended text messages. A text message posted to a group is delivered to the 

participants of the group. A user, who receives the recommended text messages, must 

also recommend text messages to the other users in order to keep on joining the group. If 

the user does not recommend any information for a certain period, that user will be 

removed from the group. As described above, Beehive is classified in the “Text 

messages” class in the “Type of Items” category. In the “Type of Recommenders” 

category, Beehive is classified in the “Topic group participants” class. The topic group is 

managed manually by the operator. In the “Type of Recommenders” category, Beehive is 

classified in the “Explicit” class because Beehive users have to explicitly post a text 

message to continue to receive the recommendations. In the “Type of Data Values” 

category, Beehive is classified in the “Text messages” class because it does not use any 

numeric values for making recommendations. Beehive only delivers the posted text 

messages to the group participants. 

3.3 Advantages and Limitations of Conventional Systems 

All conventional recommender systems have both advantages and limitations.  

These can be summarized and explained according to their classification results.  Each 

class also has its own advantages and limitations, which are commonly seen in 

recommender systems belonging to each particular class. 

The classes in the “Type of Items” category strongly reflect the ability of the 

system because the system cannot recommend any other types of items. For instance, a 

TV program recommender system cannot recommend any Usenet articles.  This is not 

only because the implementation has been specified to a certain type of items, but also 
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because the CF procedure strongly depends on the characteristics of the type of items.  

For instance, it is difficult to modify Fab, which is a URL recommender system, so as to 

become a movie recommender system. Fab provides a hybrid recommendation based on 

a content-based approach and a CF-based approach; however, Fab cannot conduct a 

content-based approach for movies because the contents of movies are not text data. It is 

important for a developer of a recommender system to design a CF procedure after 

carefully examining the characteristics of the particular type of recommended items. 

The classes in “Type of Recommenders” category were either “Similar users” or 

“System outsiders” as in existing recommender systems. Here, “Similar users” class 

indicates that recommenders are a part of the system subscribers (i.e. not system 

outsiders) selected according to their similarities to an active user. This class has the 

advantage that the system can provide accurate recommendations (i.e. is desirable for the 

users) since the system evaluates similarities between users by a reasonable method. 

However, the disadvantage is that the system may produce poor recommendations if the 

number of users is much smaller than the number of items. In such a case, the system 

cannot find similar users among the system subscribers because there are few items rated 

by more than two users. MovieLens [45] challenged this problem in that the number of 

the users is much smaller than the number of the movies. Few movies were co-rated by 

more than two users because most users rated at most 50 movies although millions of 

movies exist. In such a case, the item-based CF, which computes the similarity between 

items instead of users, is suitable for making recommendations. However, the item-based 

CF is outside the scope of this dissertation. On the other hand, for the “System outsiders” 

class, recommenders are not subscribers of the system.  The system extracts their 

knowledge from public information such as Usenet news or Web resources. The system 

simply reuses their knowledge to make recommendations. This class has the advantage, 

nonetheless, of allowing the system to provide recommendations even if there are few 

system subscribers. In addition, the recommendation accuracy does not depend on the 

number of users and items. However, the disadvantage to this system is that the accuracy 

of the recommendation is liable to be lower than in the systems that follow the “similar 
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users” class because the system cannot make a “personalized” recommendation to each 

user. 

The class of “Type of Data Collection” must be either “Explicit” or “Implicit”. A 

system in the “Explicit” class explicitly collects data, which are used for working 

recommendations. In other words, each user manually rates the items the user already 

used. This class has the advantage that the data contain completely accurate preferences 

of the users because these preferences are entered by the users themselves. However, the 

disadvantage is that the users have to spend time and effort to rate items. In addition, 

even if the users do not mind spending time and effort to manually rate items, the users 

sometimes cannot express their preferences (ratings) explicitly. For instance, 

ReferralWeb [24], which is a recommender system for human relations, implicitly 

collects data from online Web resources because some users do not recognize their own 

human relations clearly. On the other hand, a system in the “Implicit” class implicitly 

collects data used for making recommendations. In other words, the system analyzes 

users’ preferences automatically from data sources such as users’ purchase records. This 

class has the advantage that the users do not need to spend the time and effort needed to 

rate items manually. However, the disadvantage is that collected data might be different 

from the users’ real preferences. 

The class of “Type of Data Values” typically includes either “Binary values” or 

“Discrete quantities”. A system in the “Binary values” class employs binary values (i.e. 1 

and 0) to express the users’ preferences. This class has the advantage that it is easy for a 

user to decide a value to be entered. If the system employs explicit data collection, users 

may enter 1 for the items, which represents a positive feeling, otherwise, 0. The user 

does not have to consider a grade of preference for the items. The disadvantage of this 

class is that since the binary values have less information than the “Discrete quantities” 

described below, these values might lower the accuracy of the recommendations. On the 

other hand, a system in the “Discrete quantities” class employs discrete quantities for 

expressing users’ preferences. Typically, integer values are used, and their range is 

limited (e.g. 5 (good) to 1 (bad)). This class has the advantage that the system can track 
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the grades of the users’ preferences.  Due to this, the system is liable to make more 

accurate recommendations than the systems employing “Binary values”. The 

disadvantage is that deciding grades for their preferences might be difficult for users. In 

addition, users might be annoyed by the limitation of the range of values if the user 

wants to rate an item higher than the highest score ever rated. For instance, in using 

MovieLens [45], users cannot enter a score higher than the best score 5. 
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4. Framework for Software Function Recommendation 

4.1 Design Concept 

Figure 6 shows the input and output of a software function recommender system in 

the proposed framework. Obviously, the system belongs to the “Software functions” 

class in the “Type of Items” category. It is desirable that the type of recommender 

represent the “Similar users” (i.e. not the “System outsiders”) because accurate 

recommendations are especially needed for software function discovery.  Horvitz et al.  

[22] argued that poor recommendation could be quite costly to users. In their experiment, 

even when a recommendation was off the mark, the users would often become distracted 

by the recommendation and begin to use the recommended functions. This would give 

the system false confirmation of successful recommendations, and would bolster the 

system to continue giving recommendations, thus pushing the user down a distracting 

path. Such patterns of poor guesses and “confirmatory” feedback could lead to focusing 
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Figure 6. Input and Output of a Software Function Recommender System 



19 

on the wrong problem and a loss in efficiency. A system of “Similar users” can provide 

an accurate recommendation if the system employs a reasonable similarity computation 

method. Also, in the context of the function recommendation, the limitation of the 

“Similar users” class (i.e. the system cannot find similar users if the number of users is 

much smaller than the number of items) might not affect the system because the number 

of items (i.e. software functions) is at most 800 (see, Figure 1). It is easier for a software 

function recommender system to find similar users than for the conventional 

recommender systems, such as movie recommender systems, to do so because the 

number of items is not large in a software recommendation system. 

Also, it is desirable that “Type of Data Collection” is “Implicit” because users do 

not want to spend time and effort entering the ratings of executed functions while they 

are working. Conveniently, frequently used functions can be automatically detected by 

collecting records of used functions (usage histories) [17]. In fact, some HFAs such as 

Microsoft Office applications themselves observe usage of the software. In laying out 

menus and toolbars, these applications relocate frequently used functions into places 

which can be easily recognized and accessed. In our framework, a recommender system 

automatically collects usage histories, and observes the frequency of executions 

(execution frequency) of each function. 

Obviously, the “Type of Data Values” represents “Continuous quantity” because 

the execution frequency of a software function is a continuous quantity. To date, no 

system belongs to this class. In the proposed framework the execution frequency of 

function fj is defined as: 

Usera by  Executions ofNumber  Total
f of Executions ofNumber 

f ofFrequency  Execution j
j =  (1) 

The value defined by (1) takes a range of 0.0 to 1.0. A larger value denotes that the 

function fj is more frequently used. Continuous quantity can track levels of users’ 

preferences in detail. Thus, a system in this class has the potential to make more accurate 

recommendations than the systems employing “Binary values” or “Discrete quantities”.  
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In addition, in the proposed framework, execution frequency is relativized by 

comparison with the other functions’ execution frequencies. 

4.2 Architectural Design 

The proposed framework defines the basic architecture of the system described in 

the previous section. Figure 7 shows basic architecture of a software function 

recommender system. As shown in the figure, the system consists of a client software 

installed in each user ’s computer, and a function recommender server. Each user ’s 

computer has a HFA, which is a target of function recommendation. Users’ computers 

are connected to the server via a network such as the Internet. Each user ’s computer 

contains two software components: the Usage History Collector and the 

Recommendation Receiver. The Usage History Collector is a software component that 

observes used functions in using HFA, and records the functions as usage history. The 

Recommendation Receiver is a software component that receives recommendations sent 

from the server, and shows them to the user. These components are installed into all 
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computers whose users want to get recommendations through the system. 

The function recommender server contains three software components and two 

databases: the Usage History Receiver, the Recommendation Generator, the 

Recommendation Sender, the Usage History DB,  and the Recommendation DB. The 

Usage History Receiver is a software component that receives usage histories sent from 

the users’ computers and stores them to the Usage History DB. The Recommendation 

Generator is a software component that produces recommendations (a set of candidate 

functions given priorities) for individual users by using CF, and stores them to the 

Recommendation DB. The Recommendation Sender is a software component that sends 

each recommendation to each user when the user requests the recommendation to be sent. 

The Usage History DB and the Recommendation DB store the usage histories collected 

from the users and the recommendations produced for the individual users, respectively.  

The system needs at least one server computer. If the system needs higher scalability, the 

system must be built on two or more server computers. One reasonable implementation 

of the multi-server system is to deploy each server component into each server computer 
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separately. Figure 8 shows an example of the server components deployment on the 

multi-server system.  As described in the figure, the Usage History DB is deployed into 

the computer with the Usage History Receiver. The Recommendation DB is deployed 

into the computer with the Recommendation Sender.  Due to this, these server computers 

do not have to synchronize their databases with each other. In addition, they can share 

the process load for producing recommendations and sending them. 

4.3 Recommendation Process 

The proposed framework defines the recommendation process of the system 

architecture described in the previous section. Figure 9 shows the entire process of the 

recommendation. This process consists of the following five completely automated 

steps. 

Step 1: Collecting usage histories 

Step 2: Preparing usage matrix 

Step 3: Applying CF algorithm 

Step 4: Sorting recommended functions 

Step 5: Delivering recommendation 

The remainder of this section describes how each step is processed by the software 

components shown in Figure 7. 

Step 1: Collecting usage histories 

The Usage History Collector on each user ’s computer and the Usage History 

Receiver on the server collect usage history through the network. The data flows in 

collecting usage histories are drawn as the solid lines in Figure 7. Each usage history is 

collected as follows: 

1. The Usage History Collector inspects executed functions of the HFA on each user’s 

computer, and temporally records them in the client’s hard disk as a usage history. 
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Figure 9. Recommendation Process of a Software Function Recommender System 
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2. The Usage History Collector sends the temporally recorded usage history to the 

server when the user shuts down the HFA. 

3. The Usage History Receiver on the server receives the sent usage history from the 

user’s computer, and stores it into the Usage History DB. 

Figure 10 shows an instance of a usage history collected from the Microsoft Office 

XP applications (Word2002, Excel2002 or PowerPoint2002). In this instance, each row 

corresponds to each function execution. Each row is made from the following elements: 

the identification number of the executed function, the time and date of the execution 

and the function’s label on the software. These elements are arranged as a row, from left 

to right, respectively. In addition, the pushed shortcut keys are put as the last element if 

the user used the shortcut keys to access the function. For example, in Figure 10, the first 

row shows the user executed the function 122 labeled “Standard->Centering” at 6:50:41 

PM February 3, 2004, by pushing the shortcut keys Ctrl+E. 

Step 2: Preparing usage matrix 

The Recommendation Generator on the server prepares a usage matrix containing 

the execution frequencies as its elements. In Figure 9, suppose the system has been used 

by a set of users U = {u1, u2, ..., um} and the system is making a recommendation for an 

active user ua who is included in U. Each user ui has used each function fj included in the 

set of total functions F = {f1, f2, ..., fn}. By using these mathematical symbols, The Usage 

 

122 2004/02/03 18:50:41 Standard->Centering Ctrl+E 

253 2004/02/03 18:50:45 Format->Font... 

1731 2004/02/03 18:50:59 Formatting->Font Size 

3 2004/02/03 18:51:16 File->Save As... Ctrl+S 

752 2004/02/03 18:51:23 File->Exit 

Figure 10. Example of Usage History 
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History Receiver calculates each execution frequency qi, j of a function fj contained in 

each user’s usage history, by the following equation: 

∑
∈

=

ik Ff
ki

ji
ji e

e
q

,

,
,  (2) 

where, e i,j denotes the number of the function fj executions by the user ui, and Fi denotes 

the set of executed functions by user ui.  Note that the Usage History Receiver does not 

calculate the execution frequencies of the unexecuted functions. For instance, if the 

active user ua has not executed function fj, the execution frequency qa, j must be an empty 

element in the usage matrix rather than 0.0. 

Step 3: Applying CF algorithm 

The Recommendation Generator on the server applies a CF algorithm to the usage 

matrix in order to predict each potential execution frequency the active user ua will 

execute for the function fj after the function is recommended. Note that the Usage 

History Receiver does not calculate the execution frequencies of the already executed 

functions. For instance, if the active user ua has executed function f1, the potential 

execution frequency pa,1 is not predicted. The user perhaps knows the already executed 

functions. Because the user may not want to get recommendations which include the 

functions the user already knows, these functions will not be included in the 

recommendation. In order to reduce processing time, the Recommendation Generator 

ignores these already executed functions in applying the CF algorithm. The concrete 

equations of the CF algorithms are described in the next chapter. 

Step 4: Sorting recommended functions 

The Recommendation Generator sorts the unexecuted functions according to the 

predicted potential frequencies, in descending order. Next, the sorted functions and the 

predicted potential frequencies are stored into the Recommendation DB as a 

recommendation. Figure 11 shows an instance of a recommendation for Microsoft Office 

XP applications. In this instance, each row corresponds to each unexecuted function. 
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Each row is made from the following elements: the order of recommendation, the 

identification number of the function, the function's label and the predicted potential 

execution frequency. These elements are arranged as a row, from left to right. For 

example, in Figure 11, the first row shows that the most recommendable function has the 

identification number 768. The function is labeled as “Insert->Date/Time...”. The 

potential execution frequency of the function 768 is predicted to be 0.2344 (23.44%). 

Typically, Steps 2, 3, and 4 are processed to produce recommendations for all 

users individually. These processes might spend the largest processing resources in the 

system. One reasonable implementation is that the Recommendation Generator updates 

recommendations in its spare time periodically. This implementation can improve 

response time to the users’ requests because producing recommendations requires some 

time if the number of the users is very large. 

Step 5: Delivering recommendations 

The Recommendation Sender on the server and the Recommendation Receiver on 

each user’s computer delivers the recommendations to each user. The data flows in 

delivering recommendations are drawn as the broken lines in the Figure 7. Technically, 

each recommendation is delivered as follows: 

1. The Recommendation Sender on the server sends the recommendation stored in 

Recommendation DB to each user when the user requests the recommendation. 

2. The Recommendation Receiver on each client receives the sent recommendation 

from the server. 

1 768 Insert->Date/Time... 0.2344 

2 792 Tools->Word Count… 0.2276 

3 2566 Tools->Spelling... 0.2162 

4 2185 Tools->Thesaurus... 0.2110 

5 3365 Insert->Footnote... 0.1978 

Figure 11. Example of a Recommendation 
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3. The Recommendation Receiver displays the recommendation to the user with 

suitable format and timing for support, while not disturbing the user’s work. 

Note that the system should use a suitable timing when displaying the 

recommendations in order not to disturb the users’ primary tasks [27]. Generally, users 

work to complete their primary tasks such as writing documents and making 

spreadsheets. The effectiveness of the system is reduced if it disturbs the users by 

displaying recommendations, even if it can make helpful recommendations. Thus, the 

system should take into account a suitable timing when displaying recommendations. For 

example, a suitable timing exists when the users have no interaction with their computers.  

In this case, the system can display the recommendations through various protocols such 

as the e-mail systems and the Web pages. 

The system can adjust the visual format by converting the predicted frequencies to 

the scores indicating the usefulness of the recommended function, in order to improve 

the system’s effectiveness. It is possible that users cannot interpret the predicted 

frequencies as the usefulness of the functions. In general, the execution frequency of a 

function is invisible to the users, so that the frequency of execution is not a familiar 

concept for the users. The system can help users’ understanding of the usefulness of the 

recommended functions by converting the predicted frequencies to the scores indicating 

usefulness. 
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5. Collaborative Filtering Algorithms 

5.1 A Common Computation Process 

Figure 12 shows the computation process defined by the CF algorithm. Input to 

this computation process is a usage matrix containing the execution frequencies q1,1 ... qm, 

n as its elements. qi,  j denotes the execution frequency of which user ui has executed the 

function fj. Output from this computation process is a predicted potential execution 

frequency of the unexecuted function pa, j,  which denotes the potential execution 

frequency the active user ua will execute for the function fj after the function is 

recommended. Note that pa, j is one of the empty elements of the usage matrix. 

A CF algorithm consists of a similarity computation algorithm and a prediction 

algorithm which define equations to process the similarity computation phase and the 

prediction phase respectively [41]. In the similarity computation phase, similarity sim(ua,  

ui) is calculated with the known execution frequencies of ua and ui, where sim(ua, ui) 

denotes similarity between active user ua and the other user ui.  In the prediction phase, 

the potential execution frequency pa, j is calculated with the known execution frequencies 

of k-similar users and their similarities, where k is called neighborhood size. The 

neighborhood size decides how many similar users’ are used in the prediction phase. 

This size affects the accuracy of the recommendation. 

To date, many CF researchers have proposed similarity computation and prediction 

algorithms. The remainder of this section describes three simple prediction algorithms, 

ten similarity computation algorithms, and seven prediction algorithms. Simple 

prediction algorithms lack the similarity computation phase. These algorithms are liable 

to make lower accuracies; however, they have the advantage that few processing 

resources are needed because similarity computation is skipped. These algorithms can be 

used as baseline in evaluating the other CF algorithms. Ten similarity computation 

algorithms include two new algorithms suitable for function recommendation. Their 

accuracy is evaluated and compared to the other CF algorithms in the next Chapter 6. 
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Figure 12. Computation Process Defined by CF Algorithm 
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5.2 Simple Prediction Algorithms 

5.2.1 Random Algorithm 

The Random Algorithm recommends the functions randomly. Accuracy of the 

recommendations made by the Random Algorithm must be the lowest border the CF 

algorithm should achieve because this algorithm has no prediction mechanism. This 

algorithm can be used as one of the evaluation baselines of the other algorithms. The 

system predicts the potential execution frequency pa, j, as: 

( )01 ... 00 ..randomp j,a =  (3) 

where the term random(0.0 ... 1.0) generates a real number between 0.0 to 1.0 randomly. 

5.2.2 User Count Algorithm 

The User Count Algorithm preferentially recommends the functions executed by 

many users. This algorithm was employed by Terveen et al. [52] for implementing a Web 

page recommender system PHOAKS. Let U denote the set of users who have used the 

system, and |U| denote the number of users in U.  Also, let qi,j denote the execution 

frequency of which user ui has executed the function fj. Therefore, the system predicts 

the potential execution frequency pa,j as: 

( )
U

qbinaryOf

p Uu
ji

ja
i

∑
∈=

,

,  (4) 

where the term binaryOf(qi,j) is calculated as: 

( ) ( )
( )




=
otherwise01

elementempty a  is 00
.

q.
qbinaryOf j,i

j,i . (5) 

The term binaryOf(qi,j) of the numerator of equation (5) will be 0.0 if user ui has not 

executed the function fj, and 1.0 otherwise. Therefore, equation (4) will be the ratio of 

the users who used the function fj. As a result, the predicted value pa, j of the function 

used by more users will be larger, and give larger priority in recommending the function. 
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5.2.3 User Average Algorithm 

The User Average Algorithm preferentially recommends the functions frequently 

used among all users. This algorithm was employed by Shardanand et al.  [48] to evaluate 

the accuracy of the recommendations of a music recommender system Ringo. Using this 

algorithm, the system predicts the potential execution frequency pa, j, as: 

U

q
p Uu

ji

ja
i

∑
∈=

,

,  (6) 

The numerator of equation (6) calculates the sum of all users’ frequencies about the 

function fj. Then, the sum divided by the denominator which is the number of users |U|.  

As a result, the calculated value pa, j of the function used more frequently will be larger, 

and give larger priority in recommending the function. 

5.3 Similarity Computation Algorithms 

5.3.1 Cosine Similarity 

The Cosine Similarity evaluates the similarity using the traditional information 

retrieval method. In the field of information retrieval, the similarity between two 

documents is often measured by treating each document as a vector of word frequencies 

and by computing the cosine of the angle formed by the two frequency vectors [44]. The 

Cosine Similarity adopts this formalism to collaborative filtering, where users take the 

role of documents, functions take the role of words, and execution frequencies take the 

role of word frequencies. If qi,j denotes the execution frequency of which user ui has 

executed function fj, the system evaluates the similarity sim(ua, ui) between the active 

user ua and the other user ui, as: 

( )
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where the squared terms in the denominator serve to normalize execution frequencies so 

that users who have executed more functions will not a priori be more similar to the 

other users. 

5.3.2 Adjusted Cosine Similarity with Average 

The Adjusted Cosine Similarity with Average extends the Cosine Similarity by 

assuming that smaller execution frequencies indicate users’ negative feelings on the 

functions [48]. Under the Cosine Similarity, all execution frequencies indicate users’ 

positive feelings of the functions. No role exists for indicating negative feelings. The 

Adjusted Cosine Similarity with Average employs the average of execution frequencies 

about each function as the threshold to decide both positive and negative feelings. 

Execution frequencies below the average are negative, while frequencies above the 

average are positive. The Adjusted Cosine Similarity with Average will increase the 

similarity, only when there is an instance where both users have a positive feeling for a 

function or both of them have a negative feeling. More specifically, equation (7) was 

altered to become: 

( )
( )( )

( ) ( )∑∑
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−−

=

iajiaj

iaj

FFf
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II

I

22
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where F i denotes the set of functions executed by ui, and |Fi| denotes the number of 

functions included in Fi. jq  denotes the average of the execution frequencies about a 

function fj. If U j denotes a set of users who have executed function fj, and |U j| denotes the 

number of users included in U j, jq  is calculated as: 

∑
∈

=
jk Uu

j,k
j

j q
U

q
1

. (9) 
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5.3.3 Adjusted Cosine Similarity with Median 

The Adjusted Cosine Similarity with Median is an alternative implementation of 

the Adjusted Cosine Similarity with Average. The Adjusted Cosine Similarity with 

Median employs the median of execution frequencies about each function as the 

threshold to decide positive and negative feelings. The arithmetic average is affected by 

extreme values in the data. If there are several very large values in the data, the average 

is affected so that it becomes larger. On the other hand, if there are several very small 

values in the data, the average is affected so that it becomes smaller.  The affected 

average might be not suitable for the threshold. The Adjusted Cosine Similarity with 

Median avoids this issue by using the median instead of the average. In using this 

algorithm, equation (7) was altered to become: 

( )
( )( ) ( )( )

( )( ) ( )( )∑∑

∑

∈∈

∈

−−

−−

=

iajiaj

iaj

FFf
jj,i

FFf
jj,a

FFf
jj,ijj,a

ia
UmedianOfqUmedianOfq

UmedianOfqUmedianOfq

u,usim

II

I

22
 (10) 

where medianOf(U j) denotes the median of the execution frequencies related to Uj. If Uj 

denotes a set of users who have executed function fj, and |Uj| denotes the number of users 

included in U j, medianOf(U j) is calculated by: 

- sorting the execution frequencies related to U j in ascending order. 

- if |U j| is odd, then the median is the {(|U j|+1)/2}th user ’s execution frequency. 

- if |U j| is even, then the median is 

{(|Uj| / 2)t h user’s frequency + (|U j| / 2 + 1)th user ’s frequency} / 2. 

5.3.4 Correlation Coefficient 

The Correlation Coefficient evaluates similarity as an arithmetic correlation 

coefficient.  This algorithm was proposed by Resnick et al. [41] for implementing an 

e-mail filtering system GroupLens. This algorithm can be considered an alternative 

implementation of the Adjusted Cosine Similarity with Average. The Correlation 
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Coefficient employs the average of execution frequencies about each user as the 

threshold to decide positive and negative feelings. The numbers of functions users have 

executed are different from each other. These numbers affect execution frequency. When 

the user has executed more functions, each execution frequency tends to become smaller; 

when the user has executed less functions, each execution frequency tends to become 

larger. If the system employs the average of execution frequencies about each function as 

a threshold, the former execution frequency is liable to be decided as a positive feeling, 

while the latter is liable to be decided as negative. To avoid this issue, this algorithm 

calculates the threshold about each user individually. In using this algorithm, the system 

evaluates the similarity sim(ua, ui) between active user ua and the other user ui, as: 
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where F i denotes the set of functions executed by ui, and |Fi| denotes the number of 

functions included in F i. In addition, iq  denotes the average of the execution 

frequencies by user ui and is calculated as: 
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5.3.5 Correlation Coefficient with Median 

The Correlation Coefficient with Median is an alternative implementation of the 

Correlation Coefficient. This algorithm employs the median of execution frequencies 

about each user as the threshold to decide positive and negative feelings, thus avoiding 

the issue of the average described in section 5.3.3. Equation (11) was altered to become: 
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where medianOf(Fi) denotes the median of the execution frequencies related to Fi.  If Fi 

denotes the set of functions executed by ui, and |Fi| denotes the number of functions 

included in F i, memdianOf(F i) is calculated by: 

- sorting the execution frequencies related to F i in ascending order. 

- if |F i| is odd, then the median is the execution frequency of {(|F i|+1)/2}th function. 

- if |F i| is even, then the median is 

{frequency of (|Fi| / 2)th function + frequency of (|Uj| / 2 + 1)th function} / 2. 

5.3.6 Binary Cosine Similarity 

The Binary Cosine Similarity is a variant of the Cosine Similarity. This algorithm 

was employed by O’Sullivan et al. [36] for implementing a TV program recommender 

system PTVPlus. This algorithm is used by many CF recommender systems as well as 

PTVPlus because the data interpretation is simpler and more accurate than the other 

algorithms. Binary Cosine Similarity ignores the value of execution frequency, and only 

focuses on whether the function has been executed or not. Even if execution frequency 

has valuable information about the usage of a software function, if the system 

misinterprets such usage, the accuracy of recommendation will be lower than in 

conventional systems. This algorithm avoids this misinterpretation and debasement of 

accuracy. More specifically, the equation (7) was altered to become: 
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where F i denotes the set of executed functions by user ui, and the term binaryOf(qi,j) is 

calculated by the equation (5). 

5.3.7 Rank Correlation 

The Rank Correlation evaluates similarity as Spearman’s Rank Correlation [20]. 

This algorithm is a new algorithm defined by this Framework for improving the accuracy 
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of the recommendations. This algorithm reduces the impacts of the outliers in evaluating 

similarity [32]. Outliers are observations that deviate so much from other observations 

that they can impact the result of the Correlation Coefficient [42]. The proposed 

framework has to take into account the outliers because the system based on the 

framework evaluates similarities between the execution frequencies which containing 

outliers as shown in Table 2. In the table, each column indicates the HFAs. Each row 

indicates the Range of the frequencies where 
iq  and 

i∂  denote the average and 

standard deviation of the frequencies of user ui, respectively. Each element has the 

percentage of execution frequencies included in the range of the corresponding row, 

regarding each HFA user. Table 2 indicates that the unignorable outliers deviate more 

than 
i∂3  from the average. As a result, these outliers can be dominative in calculating 

correlation coefficients. In other words, they tend to generate extremely high similarities.  

Conventional recommender systems such as GroupLens do not consider the outliers 

since these systems employ data limited by range of values to track the users’ 

preferences. In using this algorithm, the system evaluates the similarity sim(ua, ui) 

between the active user ua and the other user ui, as: 
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where F i denotes the set of executed functions by user ui, and n denotes the number of 

functions included in ia FF I . In addition, T and d2 are calculated as: 

( ) 21 /nnT +=  (16) 
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where the term rankOf(qi,j) denotes the descending order of frequency qi,j in the sorted 

frequencies of the functions included in F i. For instance, if fj is the most frequently used 

function by user ui, rankOf(qi,j) must be the smallest (i.e., 1). On the other hand, if fj is 

used only once by user ui, rankOf(qi,j) must be the largest. 
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5.3.8 Magnitude Relation 

The Magnitude Relation evaluates similarity as Yao’s Distance-based Performance 

Measure (DPM) [56]. This algorithm is a new algorithm defined by this Framework for 

improving the accuracy of the recommendations [30], [31]. The Magnitude Relation 

reduces the impact of the outliers in evaluating similarity as well as in evaluating the 

Rank Correlation. Also, this algorithm avoids the issue of using the Rank Correlation. 

The Rank Correlation converts execution frequencies to the ranks in its computation 

process. The value of a rank has equal distance to the other ranks’ values. If many 

execution frequencies have few differences, some execution frequencies might be 

converted to some much distanced ranks. As a result, the similarity between users may 

be evaluated as relatively smaller than the actual difference. The Magnitude Relation 

avoids this problem by using Yao’s DPM instead of the Rank Correlation. The system 

evaluates each similarity sim(ua, ui) between the active user ua who gets the 

Table 2. Distribution of the Execution Frequencies 

(Subjects: 19 users in our lab --- Consultation Period: average 9.44 months) 

Range of the Frequencies Word2002 PowerPoint2002 Excel2002 Average 

 
iii qq ∂−≤ 4  0.00% 0.00% 0.00% 0.00% 

iiiii qqq ∂−≤<∂− 34  0.00% 0.00% 0.00% 0.00% 

iiiii qqq ∂−≤<∂− 23  0.00% 0.00% 0.00% 0.00% 

iiiii qqq ∂−≤<∂− 2  0.00% 0.00% 0.00% 0.00% 

 
iiii qqq ≤<∂−  87.05% 86.04% 84.42% 85.84% 

 
iiii qqq ∂+≤<  8.41% 6.84% 7.61% 7.62% 

iiiii qqq ∂+≤<∂+ 2  1.10% 3.06% 2.61% 2.26% 

iiiii qqq ∂+≤<∂+ 32  1.08% 1.03% 2.27% 1.46% 

iiiii qqq ∂+≤<∂+ 43  0.84% 0.99% 0.93% 0.92% 

iii qq <∂+ 4  1.53% 2.03% 2.15% 1.90% 

Total 100.00% 100.00% 100.00% 100.00% 
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recommendation and each other user ui, as: 
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where, Fa and Fi denotes the set of executed functions by user ua and ui respectively. In 

addition, the terms dpm(qa,j, qa,k, qi,j,  qi,k) and dpmNormalizer(qa,j, qa,k) are calculated as: 
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DPM calculated with the equation (19) compares magnitude relations between each 

couple of the execution frequencies (qa,j, qa,k ) and (qi,j, qi,k), corresponding to each couple 

of functions (fk, fl) included in the intersection ia FF I . DPM must be 0 when the 

magnitude relations between (qa,j, qa,k) and (qi,j, qi,k) are equal.  Also, the DPM must be 2 

when the magnitude relations between (qa,j, qa,k ) and (qi,j,  qi,k) are different from each 

other. In addition, the DPM must be 1 when either (qa,j, qa,k) or (qi,j, qi,k) has no 

difference in magnitude relation. This algorithm is not affected by the outliers since the 

DPM does not use the values of execution frequencies directly. Furthermore, this 

algorithm is not affected by the functions with few differences in the execution 

frequencies since each execution frequency is not converted to any rank. The second 

term of the equation (18) is a variant of the NDPM (Normalized Distance-based 

Performance Measure ) calculated with the equation (32) as described later.  NDPM can 

be considered a similarity computation method because it evaluates the difference 

between “user ua’s ideal recommendation Ra required to the system” and the “system’s 

actual recommendation Ra’ generated to user ua”. The second term of the equation (18) 
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evaluates the difference between user ua and user ui by assigning the execution 

frequencies of the functions included in the intersection ia FF I  instead of the 

recommendations. 

5.3.9 Average Squared Difference 

The Average Squared Difference measures the degree of dissimilarity between two 

users’ frequencies. This algorithm was employed by Shardanand et al. [48] for 

implementing a music recommender system Ringo. The basic idea of this algorithm is to 

calculate non-similarity among users by Euclidean distance. The numerator and 

denominator of calculated non-similarity are inverted for converting as a similarity. In 

using this algorithm, the system evaluates the similarity sim(ua,  ui) between active user 

ua and the other user ui as: 
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The numerator of the equation normalizes squared difference with the number of 

execution frequencies used in calculation, so that users who have executed more 

functions will not a priori  be more similar to the other users. 

5.3.10 Median of Squared Difference 

The Median of Squared Difference is an alternative implementation of the Average 

Squared Difference. This algorithm employs the median to normalize squared difference, 

thereby avoiding the issue of the average described in section 5.2.3. More specifically, 

the equation (21) was altered to become: 
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where ( ) 
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function fj included in ia FF I . If F i denotes the set of functions executed by ui, and |F i| 

denotes the number of functions included in Fi, ( ) 
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2
j,ij,aFFf qqresultsmedianOf
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 is 

calculated by: 

- sorting the the results of the equation ( )2
j,ij,a qq −  in ascending order. 

- if ia FF I  is odd, then the median is the ( ){ }21+ia FF I
th result. 

- if ia FF I  is even, then the median is 

{ ( )2ia FF I
th result + ( )12 +ia FF I

th result} / 2. 

5.4 Prediction Algorithms 

5.4.1 Weighted Sum 

The Weighted Sum calculates the active user’s potential execution frequencies with 

the weighted sum of similar users’ execution frequencies. This algorithm uses similarity 

sim(ua,  ui) between the active user ua and user ui as the weights. If qi, j denotes the 

execution frequency of which user ui has executed function fj, and sim(ua, ui) denotes the 

similarity between the active user ua and user ui, the system predicts the potential 

execution frequency pa,j, as: 
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where k-NearestNeighbors denotes the set of k-users who have executed function fj and 

are the most similar to the active user ua. k is a natural number specifying the number of 

similar users whose execution frequencies are used for prediction. k affects the result and 

accuracy of the prediction, so it should be decided by empirical evaluation by using 

actually collected data. The potential frequency pa, j of the function more frequently used 

by similar users will be larger, and give larger priority in recommending the function. 



41 

5.4.2 Adjusted Weighted Sum with Average of Column 

The Adjusted Cosine Similarity with Average of Column extends the Weighted Sum 

by introducing the idea of a user ’s negative and positive feelings as described in section 

5.3.2. This algorithm calculates the deviation from the average execution frequency 

regarding each function. The calculated deviation is summed with the average execution 

frequency regarding the function. The “column” in the algorithm name indicates that 

each average is calculated from the column of the usage matrix shown in the Figure 12. 

The system predicts the potential execution frequency pa,j as: 
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where k-NearestNeighbors denotes the set of k-users who have executed function fj and 

are the most similar to active user ua.  jq  denotes the average of the execution 

frequencies about a function fj. jq  is calculated with equation (9). 

5.4.3 Adjusted Weighted Sum with Median of Column 

The Adjusted Weighted Sum with Median of Column is an alternative 

implementation of the Adjusted Weighted Sum with Average of Column. This algorithm 

employs the median of execution frequencies regarding each function as baseline in 

calculating deviation, thereby avoiding the issue of the average described in section 

5.3.3. More specifically, equation (24) was altered to become: 

( ) ( )( )
( )∑

∑

∈

∈

−
+=

ghborsNearestNei-ku
ia

ghborsNearestNei-ku
jj,iia

aj,a

i

i

u,usim

UmedianOfqu,usim
qp  (25) 

where k-NearestNeighbors denotes the set of k-users who have executed function fj and 

are the most similar to active user ua.  medianOf(U j) denotes the median of the execution 

frequencies related to U j. medianOf(U j) is calculated as described in section 5.3.3. 
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5.4.4 Adjusted Weighted Sum with Average of Neighbors 

The Adjusted Weighted Sum with Average of Neighbors is an alternative 

implementation of the Adjusted Weighted Sum with Average of Column. This algorithm 

employs the average execution frequencies calculated among k-similar users as the 

baseline in calculating deviation. Under the Adjusted Weighted Sum with Average of 

Column, although deviation of the active user ’s potential frequency is predicted from 

similar users’ execution frequencies, the baseline for calculating deviation is decided 

from all users’ execution frequencies. This inconsistency might debase the accuracy of 

prediction. The Adjusted Weighted Sum with Average of Neighbors avoids this issue by 

calculating the average from k-nearest neighbors. More specifically, the equation (24) 

was altered to become: 
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where k-NearestNeighbors denotes the set of k-users who have executed function fj and 

are the most similar to active user ua. averageOf(k-NearestNeighbors) denotes the 

average of the nearest neighbors’ execution frequencies about a function fj.  

averageOf(k-NearestNeighbors) is calculated as: 
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5.4.5 Adjusted Weighted Sum with Median of Neighbors 

The Adjusted Weighted Sum with Median of Neighbors is an alternative 

implementation of the Adjusted Weighted Sum with Median of Column. This algorithm 

employs the median of execution frequencies among k-similar users as the baseline in 

calculating deviation. This algorithm can avoid the issue of inconsistency described in 
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the section 5.4.4. More specifically, equation (25) was altered to become: 

 ( )ghborsNearestNei-kmedianOfp j,a =  
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where k-NearestNeighbors denotes the set of k-users who have executed function fj and 

are the most similar to active user ua.  medianOf(U j) denotes the median of the execution 

frequencies related to U j. medianOf(U j) is calculated as described in section 5.3.3. 

medianOf(k-NearestNeighbors) denotes the median of the nearest neighbors’ execution 

frequencies about a function fj. medianOf(k-NearestNeighbors) is calculated by: 

- sorting the execution frequencies related to function fj executed by users included 

in k-NearestNeighbors, in ascending order. 

- if k is odd, then the median is the {(k+1)/2}th neighbor ’s execution frequency. 

- if k is even, then the median is 

{(k / 2)th neighbor ’s frequency + (k / 2 + 1)th neighbor ’s frequency} / 2. 

5.4.6 Adjusted Weighted Sum with Average of Row 

The Adjusted Cosine Similarity with Average of Row extends the Weighted Sum by 

introducing the idea of a user’s negative and positive feelings as described in section 

5.3.2. This algorithm can be considered an alternative implementation of the Adjusted 

Weighted Sum with Average of Column described in the section 5.4.2. In contrast to the 

Adjusted Weighted Sum with Average of Column, this algorithm calculates the deviation 

from the average execution frequency regarding each “user”. Likewise, the calculated 

deviation is summed with the average execution frequency regarding the “user”. The 

“row” in the algorithm name indicates each average is calculated from the row of the 

usage matrix shown in the Figure 12. The system predicts the potential execution 

frequency pa,j, as: 
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where, k-NearestNeighbors denotes the set of k-users who have executed function fj and 

are the most similar to active user ua.  iq  denotes the average of the execution 

frequencies by user ui. iq  is calculated with equation (12). 

5.4.7 Adjusted Weighted Sum with Median of Row 

The Adjusted Weighted Sum with Median of Row is an alternative implementation 

of the Adjusted Weighted Sum with Average of Row. This algorithm employs the median 

of execution frequencies regarding each user as the baseline in calculating deviation, 

thereby avoiding the issue of the average described in section 5.3.3. More specifically, 

equation (29) was altered to become: 
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where, medianOf(F i) denotes the median of the execution frequencies related to F i. If Fi 

denotes the set of functions executed by ui, and |Fi| denotes the number of functions 

included in F i, memdianOf(F i) is calculated as described in section 5.3.5. 
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6. Empirical Evaluation 

6.1 Overview 

In order to evaluate the effectiveness of the proposed framework, two 

experimental evaluations (Experiments 1 and 2) have been executed [30], [31], [32]. 

Furthermore, in order to make clear which algorithms are suitable for recommending 

software functions, an experimental evaluation (Experiment 3) has been executed. The 

purpose of Experiments 1 and 2 is to compare the accuracy of some CF algorithms and 

the accuracy of the three simple prediction algorithms. The purpose of Experiment 3 is to 

compare the accuracy of the CF algorithms to each other. 

In order to simulate a real situation in operating the function recommender system, 

the usage histories were collected from the users who had used Microsoft Office 

Table 3. Collected Usage Histories in the Experiments 

Experiment #1 #2 #3 

HFA Word 
2000 

Word 
2002 

PPT 
2002 

Excel 
2002 

Word 
2002 

PPT 
2002 

Excel 
2002 

# of users 6 23 21 20 19 22 16 

Max Collection Period 
(months) 

22 14 10 14 25 21 25 

Min Collection Period 
(months ) 

3 1 1 1 1 1 1 

Avg. Collection Period 
(months) 

12.0 5.0 4.6 5.5 8.9 7.9 11.5 

Max # of Functions Used 108 143 162 77 226 249 157 

Min # of Functions Used 62 16 29 15 26 46 30 

Avg.  # of Functions Used 90.0 67.3 90.9 42.0 87.9 115.0 64.2 

# of Tota l Functions 
Used 

209 227 254 132 387 397 256 
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Applications for various objectives. Table 3 shows the usage histories collected in 

Experiments 1, 2 and 3. In Experiment 1, usage histories were collected in an academic 

environment. In Experiment 2 and 3, usage histories were collected in an academic 

environment and in an industrial environment. In the academic environment, subjects 

were the students and staff of the Graduate School of Information Science, Nara Institute 

of Science and Technology. In the industrial environment, subjects were the employees 

of a Japanese software development company. The subjects in the academic environment 

had used mainly MS Word for writing academic papers, MS PowerPoint for crafting 

presentations, and MS Excel for carrying out statistical work. The subjects in the 

industrial environment had used mainly MS Word for writing software specifications, 

MS PowerPoint for crafting presentations, and MS Excel for writing software 

specifications. The usage histories were collected from these subjects from 1 to 25 

months. 

Using the collected usage histories, each CF algorithm was evaluated with two 

kinds of evaluation criteria (NDPM: Normalized Distance-based Performance Measure  

and ARE: Average Relative Error) in two kinds of procedures (Interview-based 

Procedure and History-based Procedure). The remainder of this chapter describes the 

employed evaluation criteria, the evaluation procedures, and the evaluation results, in 

the sections 6.2, 6.3 and 0 respectively. 

6.2 Evaluation Criteria 

Two basic classes of recommendations based on CF exist. In the first class [4], 

individual items are recommended one-at-a-time to the users along with a score 

indicating the potential user ’s preference. For example, GroupLens [41] was in this 

category. Each article is recommended with a GUI Netnews reader interface that 

includes an ASCII bar-chart indicating the system’s prediction regarding the user ’s 

potential interest in that article. Thus, each piece of content has an associated estimated 

score, and the user interface displays this score along with a recommendation of the item.  

The second class of the recommendation presents the user with a ranked list of 
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recommended items.  For example, PHOAKS [52] and Siteseer [43] are in this category.  

Likewise, the Internet search engine provides a ranked list of items (URLs) according to 

scores indicating the potential user ’s preferences. In the experiments, two kinds of 

scoring metrics were employed for evaluating the accuracy of both classes of 

recommendations. In both cases, the basic evaluation sequence proceeds as follows. The 

usage matrix is prepared from the collected usage histories. An execution frequency in 

the usage matrix is picked out and hidden. The other execution frequencies are used as 

the CF database to predict the hidden execution frequency. After this cycle is repeated 

through all execution frequencies, for each user, the following metrics are calculated 

with the predicted execution frequencies. regarding each user. The calculated metrics are 

averaged among all users, then used as an evaluation criteria indicating the accuracy of 

recommendations. 

In order to evaluate the accuracy of individual scoring, the Average Relative Error 

(ARE) is calculated between the predicted execution frequency and the actual execution 

frequency.  ARE has been widely employed for the evaluation accuracy of various 

prediction algorithms [6], [25], [50]. ARE takes the value of the real number of the range 

[0.0, 1.0]. A smaller value of ARE indicates that there is a smaller error between pa, j and 

qa, j, i.e., the accuracy of the individual scoring is high. If qa,j denotes the execution 

frequency of which the active user ua has executed with function fj, and the pa,j denotes 

the predicted potential execution frequency, ARE is calculated as: 

( ) ∑
∈

−
=

aj Ff j,a

j,aj,a

a
a q

qp

F
uARE

1  (31) 

An implicit assumption in using ARE as a measure of accuracy is that the error is 

proportional to the size of the actual value. For example, an overestimation of 0.01 for 

the actual value of 0.05 is more serious than an over estimation of 0.01 for the actual 

value of 0.5. The denominator of the equation (31) normalizes size of the actual value, so 

that larger execution frequency will not a priori make a larger error. 

In order to evaluate the accuracy of the ranked items, the Normalized 
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Distance-based Performance Measure (NDPM) [56] is calculated by comparing the 

ranked functions regarding the predicted potential execution frequencies to the ranked 

functions regarding the actual execution frequencies. NDPM has been widely employed 

for evaluating accuracies of the CF algorithms or information retrieval algorithms [1], 

[2], [40]. NDPM measures the difference between “the user ua’s ideal recommendation 

Ra” and “the system’s recommendation Ra’ for the user ua”. NDPM takes the value of a 

real number in the range of [0.0,  1.0]. A smaller value of NDPM indicates there is less 

difference between Ra and Ra’, i.e. the accuracy of the ranked items is high. The 

intermediate value 0.5 indicates the theoretical accuracy of the Random Prediction 

algorithm [56]. Accuracy of the Random Prediction algorithm is the same when the 

system displays all candidate functions, without any ranks or scores indicating the 

usefulness of the recommended function. Thus, the value of NDPM 0.5 is the lowest 

border of accuracy the CF algorithms should achieve in making recommendations. If ra,j 

and ra,j’ denote the ranks (priority for recommending) of the function fk in the 

recommendation Ra and Ra’ respectively, NDPM is calculated as: 

( )
( )

( )∑ ∑

∑ ∑

∈ ∈

∈ ∈=

'RRr 'RRr
k,aj,a

'RRr 'RRr
k,aj,ak,aj,a

aa

aaj aak

aaj aak

r,rzerdpmNormali

'r,'r,r,rdpm

'R,RNDPM

U U

U U  (32) 

where, the term dpm and the term dpmNormalizer are calculated with equations (19) and 

(20) respectively. 

6.3 Evaluation Procedure 

6.3.1 Interview-based Evaluation 

Figure 13 shows the procedure of the first type of evaluation called the 

Interview-based Evaluation. In this evaluation, each user’s ideal recommendation is 

obtained by questioning to the user directly through an interview. The ideal 

recommendation Ra is examined by asking each user ua the rank of each function fj with 

the following criteria: 
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・ If user ua knows the function fj and has used it before for collecting the usage 

histories, user ua should choose the lowest rank for function fj. 

・ If user ua knows the function fj but has not used it, user ua should choose the second 

lowest rank for function fj. 

・ If user ua does not previously know the function fj, then the experiment conductor (in 

this case interviewer) gives user ua a brief description about function fj. Next, user ua 

decides the ideal rank ra,j of function fj, according to the expected future execution of 

function fj.  In other words, I asked user ua the following: how frequently does the 

user uses function fj after the function is recommended? The user was able to choose 
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Figure 13. Procedure of Interview-based Evaluation 
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the same level rank for more than two functions if the user thought these were used 

with the same frequency. 

The evaluation criteria described in section 6.2 are calculated by comparing each Ra and 

the system’s recommendation Ra’. Note that ARE cannot be calculated in the 

Interview-based Evaluation because the subjects cannot decide the actual execution 

frequency for functions that have not been used. The Interview-based Evaluation has the 

advantage that the users’ real needs affect the evaluation; however, finding a lot of 

subjects to answer questions is difficult because both the interviewer (i.e. experimenter) 

and interviewee have to spend a lot of time and effort in the interviewing process. 

6.3.2 History-based Evaluation 

Figure 14 shows the procedure of the second type of evaluation called the 

History-based Evaluation. In this evaluation, each user ’s ideal recommendation Ra is 

obtained by examining actual execution frequencies from the user’s usage histries. Note 

that the system’s recommendation Ra’ is obtained by calculating potential execution 

frequencies of already executed functions; however, some algorithms can make perfect 

predictions if the actual value is available. In order to avoid this type of prediction 

obtained by cheating, the Jackknife method [8] is used. The actual execution frequency 

pa,j is temporally hidden when the potential execution frequency qa,j is predicted. In other 

words, each algorithm assumes that each user ua has not executed the function fj so that 

the actual execution frequency is not available. Next, the algorithm predicts the potential 

execution frequency pa,j without using the actual frequency qa,j. The jackknife method 

has been widely used in various literatures evaluating the accuracies of CF algorithms 

[4], [41], [46], [48]. The History-based Evaluation has the advantage that it can query 

many of the subjects because evaluation can be automated without a face-to-face 

interview with the subjects;  however, an inconsistency between the users’ real needs and 

the actual execution frequencies might exist. 
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6.4 Evaluation Results 

Experiment 1: Interview-based Evaluation of the Proposed Framework 

In Experiment 1, usage histories were collected from 6 users of MS Word 2000 in 

approximately 12 months as shown in Table 3. Two simple prediction algorithms (User 

Count and User Average) and two similarity computation algorithms (Correlation 
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Figure 14. Procedure of History-based Evaluation 
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Coefficient and Magnitude Relation) were evaluated by the Interview-based Evaluation. 

Only the Adjusted Weighted Sum with Average of Row with the neighborhood size k = 6 

(all users) was employed as the prediction algorithm. 

Figure 15 shows the result of Experiment 1. In the graph, the vertical axis indicates 

NDPM; and the horizontal axis indicates each algorithm. Note that the algorithm names 

are written with the abbreviations for convenience of description (for the abbreviations, 

see Appendix A). Each NDPM calculated with the recommendation for each user is 

marked with a symbol “ ”; each average NDPM of the six users is marked with a 

symbol “ ”, and its each average value is written at the right of the symbol. These 

NDPMs represent the accuracy of each algorithm; NDPM 0.5 is emphasized with a 

broken line “ ” because it is the theoretical accuracy of the Random Prediction 

Algorithm and is the lowest border the CF algorithm should achieve. As described in 6.2, 

a smaller NDPM (i.e. the symbols closer to bottom of the graph) indicates a higher 

accuracy. Therefore, if certain algorithms outperformed other algorithms, the average 

NDPM is lower than the other’s average NDPM. The algorithms are ranked in 
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Figure 15. Result of Experiment 1: NDPM  
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descending order of the average NDPMs from left to right below the horizontal axis, so 

that the algorithms closer to the right side of graph achieved better accuracy. In addition, 

the average NDPM written with emphasized letters (italic, underlined, boldface) and an 

emphasized vertical line indicate the paired Student’s t-test statistically observed 

significant differences to the left algorithm’s NDPM, at the level of p < 0.05. 

As a result, all average NDPMs of the CF algorithms are lower than the 0.5. These 

algorithms were specially sorted according to the average NDPMs as: Magnitude 

Relation (Best), Correlation Coefficient, User Average, and User Count (Worst). The 

paired Student’s t-test statistically observed significant difference between the 

Correlation Coefficient and the User Average at the level of p < 0.018. For more detail of 

the evaluation results, see Appendix C.1. 

Experiment 2: History-based Evaluation of the Proposed Framework 

In Experiment 2, usage histories were collected from 20 to 23 users of MS Word 

2002, PowerPoint 2002, and Excel 2002 in approximately 5 months as shown in Table 3. 
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Three simple prediction algorithms (User Count and User Average) and four similarity 

computation algorithms (Correlation Coefficient, Binary Correlation, Rank Correlation, 

and Magnitude Relation) were evaluated by the History-based Evaluation. Only the 

Adjusted Weighted Sum with Average of Row was employed as the prediction algorithm.  

In this evaluation, all the users’ execution frequencies were employed by the prediction 

algorithm. In other words, the neighborhood size k was the number of users. 

Figure 16 shows the calculated AREs of Experiment 2. In the graph, the vertical 

axis indicates ARE; the horizontal axis indicates each algorithm. The algorithm names 

are written with the abbreviations for convenience of description (for the abbreviations, 

see Appendix A). AREs of Word 2002 (the average AREs of 23 users having Word 2002 

usage histories) are marked with a symbol “ ”; AREs of PowerPoint 2002 (the average 

AREs of 21 users having PowerPoint 2002 usage histories) are marked with a symbol 

“ ”; AREs of Excel 2002 (the average AREs of 20 users having Excel 2002 usage 

histories) are marked with a symbol “ ”; the average AREs of three kinds of AREs are 

marked with a symbol “ ” , and each average ARE is written at the right of the 

symbol. As described in 6.2, smaller AREs (i.e. the symbols closer to bottom of the 

graph) indicate higher accuracy. Therefore, if a certain algorithm outperformed others, 

its average ARE must be lower than the other algorithm’s average ARE. The algorithms 

are ranked in descending order of the average AREs from left to right below the 

horizontal axis, so that the algorithms closer to the right side of graph achieved better 

accuracy. In addition, the average AREs written with emphasized letters (italic 

underlined boldface) and emphasized with a vertical line indicate the paired Student’s 

t-test statistically observed significant difference in contrast to the left algorithm’s AREs, 

at the level of p < 0.05. Note that the letters are emphasized when the statistical 

difference is observed when using at least one of the three kinds of usage histories. 

As a result, the evaluated algorithms were sorted by the average AREs as follows: 

User Average (Best), Binary Correlation, Correlation Coefficient, Rank Correlation, 

Magnitude Relation, and User Count (Worst). The paired Student’s t-test statistically 

observed significant difference between the User Average and the Binary Correlation, 
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the Correlation Coefficient and the Rank Correlation, and the Magnitude Relation and 

the User Count at the level of p < 0.05. For more detail of the evaluation results, see 

Appendix C.2. 

Figure 17 shows the calculated NDPMs of Experiment 2. This graph is plotted in 

the same manner as the graph in Figure 16, where the NDPMs are marked instead of the 

AREs. As a result, the evaluated algorithms were sorted by the average NDPMs as: Rank 

Correlation (Best), Magnitude Relation, Binary Correlation, User Average, Correlation 

Coefficient, and User Count (Worst). The paired Student’s t-test observed a statistic 

significance in difference among some algorithms, at the level of p < 0.05. The 

difference between the Correlation Coefficient and the User Count was observed using 

every usage history. The difference between the Binary Correlation and the User Average 

was observed using the Word 2002 and PowerP oint 2002 usage history. The difference 

between the Rank Correlation and the Magnitude Relation was observed using the Word 

2002 usage history. The difference between the Magnitude Relation and the Binary 

Correlation was observed using the PowerPoint 2002 usage history. For more detail of 
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the evaluation results, see Appendix C.3. 

Experiment 3: History-based Evaluation of Accuracy of Various CF Algorithms 

In Experiment 3, usage histories were collected from 16 to 22 users of MS Wo rd 

2002, PowerPoint 2002, and Excel 2002 during approximately 9.5 months as shown in 

Table 3. In order to make clear which algorithms are suitable for recommending software 

functions, all simple prediction algorithms, all similarity computation algorithms except 

the Binary Correlation and the Magnitude Relation, and all prediction algorithms were 

evaluated. In Experiment 3, History-based Evaluation was executed with the CF 

algorithms composed by the combinations of the similarity computation and the 

prediction algorithms. In this evaluation, each neighborhood size from k = 1 up to k = 10, 

and k = |U| (i.e. the number of users) was evaluated. Then, an appropriate neighborhood 

size, which achieved the highest accuracy, was chosen regarding each algorithm 

(Appendix B shows the evaluation results for selecting appropriate neighborhood sizes). 

The highest accuracy of each CF algorithm with the selected neighborhood size was 

compared to the accuracy of the other CF algorithms. 

Figure 18 shows the calculated AREs of Experiment 3. This graph is plotted in the 

same manner as the graph of Figure 16. Note that this graph is rotated 90 degrees to the 

right and separated into left and the right parts, because the graph needs an extremely 

long horizontal axis in order to describe all evaluated CF algorithms. As a result, the 

evaluated algorithms were sorted by the average AREs, as shown in Figure 18. The 

paired Student’s t-test statistically observed significant difference among some 

algorithms, at the level of p < 0.05. The difference between the combination of the 

Median of Squared Difference and the Adjusted Weighted Sum with Average of Row, 

and the Random Prediction was observed using every usage history. The difference 

between the Random Prediction and the User Count Prediction was observed using the 

Word 2002 and Excel 2002 usage histories.  In addition, when using one particular kind 

of usage history, the differences were observed between the following CF algorithms: 
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- Between the combination of the Adjusted Cosine Similarity with Average and the 

Adjusted Weighted Sum with Average of Column, and the combination of the 

Correlation Coefficient with Median and the Weighted Sum 

- Between the combination of the Adjusted Cosine Similarity with Median and the 

Adjusted Weighted Sum with Median of Neighbors, and the combination of the 

Adjusted Cosine Similarity with Median and the Weighted Sum 

- Between the User Average Prediction and the combination of the Correlation 

Coefficient with Median and the Adjusted Weighted Sum with Average of Row 

For more detail, see Appendix C.4. 

Figure 19 shows the calculated NDPMs of Experiment 3. This graph is plotted in 

the same manner as the graph of Figure 16, where the NDPMs are marked instead of the 

AREs. Note that this graph is rotated 90 degrees to the right and separated into left and 

the right parts as in Figure 18. As a result, the evaluated algorithms were sorted by the 

average NDPMs, as shown in Figure 19. The paired Student’s t-test statistically observed 

significant difference among some algorithms, at the level of p < 0.05. The difference 

between the User Count Prediction and the Random Prediction was observed using every 

usage history. The difference between the combination of the Rank Correlation and the 

Adjusted Weighted Sum with Median of Neighbors, and the combination of the Median 

of Squared Difference and the Weighted Sum was observed using the PowerPoint 2002 

and Excel 2002 usage histories.  Likewise, the difference between the combination of the 

Rank Correlation and the Adjusted Weighted Sum with Average of Row, and the 

combination of the Adjusted Cosine Similarity with Median and the Adjusted Weighted 

Sum with Median of Row, was observed using the Word 2002 and Excel 2002 usage 

histories.  In addition, when using one particular kind of usage history, the differences 

were observed between the following CF algorithms: 

- Between the combination of the Rank Correlation and the Adjusted Weighted Sum 

with Median of Row, and the combination of the Median of Squared Difference and 

the Adjusted Weighted Sum with Median of Row 

- Between the combination of the Adjusted Cosine Similarity with Median and the 

Adjusted Weighted Sum with Average of Neighbors, and the Adjusted Cosine 
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Similarity with Median and the Adjusted Weighted Sum with Median of Column 

- Between the combination of the Cosine Similarity and the Adjusted Weighted Sum 

with Median of Row, and the combination of the Average Squared Difference and 

the Adjusted Weighted Sum with Average of Row 

- Between the combination of the Correlation Coefficient and the Adjusted Weighted 

Sum with Average of Row, and the combination of the Rank Correlation and the 

Adjusted Weighted Sum with Average of Row 

- Between the User Average and the combination of the Adjusted Cosine Similarity 

with Median and the Adjusted Weighted Sum with Average of Row 

For more detail of the evaluation results, see Appendix C.5. 
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7. Discussion 

Experiments 1 and 2 were executed to evaluate the effectiveness of the proposed 

framework. Through Experiments 1 and 2, all CF algorithms and two simple prediction 

algorithms (the User Count and the User Average) achieved smaller NDPM than the 

Random Prediction Algorithm’s theoretical NDPM (i.e., 0.5). Thus, these algorithms 

achieved at least the lowest accuracy the CF algorithm has to have. In focusing on the 

calculated NDPMs, the Rank Correlation, the Magnitude Relation, and the Binary 

Correlation consistently outperformed the User Average Algorithm. This suggests these 

similarity computation algorithms worked well, and could produce recommendations 

corresponding to each user’s individual needs. These users’ personal needs had to be 

taken into account because the users’ objectives and the useful functions are different 

from each other as described in the section 6.1. In Experiment 2, the Correlation 

Coefficient did not achieve higher accuracy than the User Average Algorithm. This 

suggests that the correlation coefficients did not work enough in the similarity 

computation phase because the outliers gave bad influences to the evaluated similarities 

[42]. In fact, there were some frequently used functions (Clear, Save, Undo, or Paste, 

etc.) in the collected usage histories, as described in Table 4. These functions brought 

outliers which gave dominative impact in calculating similarities, so that the frequencies 

of the other functions were not reflected. On the other hand, the Rank Correlation, the 

Magnitude Relation, and the Binary Correlation were not influenced by the outliers 

because these algorithms did not directly use the execution frequencies. 

In focusing on the calculated AREs, calculated AREs indicated inconsistent results 

with the NDPMs. The NDPM of every CF algorithm was larger than the User Average 

Algorithm. This suggests these algorithms could not predict the potential execution 

frequencies accurately.  One of the reasons was that the neighborhood size was not 

appropriate. In Experiment 2, all users’ execution frequencies were used in the 

prediction phase; i.e., “the number of users” was assigned as neighborhood size k. If this 

neighborhood size was not appropriate, then a larger number of relative errors were 



62 

made although there is still need to improve the prediction accuracy of potential 

execution frequencies, the results of Experiment 1 and 2 suggest that the proposed 

framework can be effective for discovering useful the functions of HFAs. 

Experiment 3 was executed to make clear which algorithms are suitable for 

recommending software functions. Through Experiment 3, most CF algorithms 

outperformed the three simple prediction algorithms (Random, User Count, and User 

Average). This result is not inconsistent with the result of Experiment 2. However, in 

Experiment 2, these algorithms made larger AREs than in the User Average Algorithm 

because an appropriate neighborhood size was selected for every CF algorithm in 

Experiment 3. Another important observation through Experiment 3 is that the following 

five prediction algorithms consistently outperformed the other prediction algorithms: 

Weighted Sum, Adjusted Weighted Sum with Average of Column, Adjusted Weighted 

Sum with Median of Column, Adjusted Weighted Sum with Average of Neighbors, and 

Adjusted Weighted Sum with Median of Neighbors. This result suggests these prediction 

Table 4. Frequently Used Functions of Microsoft Office Applications 

(Examined from the Usage Histories shown in Table 3) 

 Word 2002 (Frequency) PowerPoint 2002 (Frequency) Excel 2002 (Frequency) 

1st Clear->Clear All  (43.21%) Slide Show->Next (17.16%) Edit->Paste  (16.26%) 

2nd File ->Save  (17.30%) Screen->Erase Pen (15.69%) Clear->Contents (14.15%) 

3rd Edit->Undo (12.13%) Screen->Stop (12.89%) Edit->Copy (14.11%) 

4th Edit->Paste  (4.76%) Edit->Clear (11.31%) File ->Save  (10.99%) 

5th Edit->Copy (3.80%) Edit->Undo (6.40%) Edit->Undo (9.29%) 

6th Edit->Redo (2.13%) File ->Save  (5.46%) Edit->Redo (3.63%) 

7th Edit->Cut (1.05%) Slide Show->Help  (5.25%) Format->Format Cells  (2.52%) 

8th File ->Print (0.83%) Edit->Paste  (3.43%) Edit->Cut (2.35%) 

9th Edit->Paste Special(0.82%) Edit->Copy (3.03%) Edit->Paste Special (1.98%) 

10th Formatting->Italics(0.77%) Slide Show->Previous (2.59%) Edit->Find (1.90%) 

Total   (86.80%)  (83.21%)  (77.19%) 
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algorithms were appropriate for the software function recommendation. One reason for 

this appropriateness is that these algorithms did not use the average or the median of 

execution frequencies regarding each user, in contrast to the other two prediction 

algorithms (Adjusted Weighted Sum with Average of Row and Adjusted Weighted Sum 

with Median of Row). The average and the median of execution frequencies regarding 

each user gave bad influences to the accuracy, so that these two algorithms created a 

lower accuracy.  As shown in Table 4, there were some extremely large execution 

frequencies regarding each user, while other execution frequencies were relatively 

smaller.  If the prediction algorithm employed the average of execution frequencies, the 

small execution frequencies were given bad influences by the average affected by the 

outliers. As a result, the prediction algorithm overestimated these small frequencies. On 

the other hand, if the prediction algorithm employed the median of execution frequencies, 

the large execution frequencies were given bad influences by the median which took a 

much smaller value. As a result, the prediction algorithm underestimated these large 

frequencies. In the context of software function recommendation, the system should 

avoid using the average and the median of execution frequencies regarding each user 

because these are liable to cause problems. 

In focusing on the calculated NDPMs, most CF algorithms outperformed three 

simple prediction algorithms. In particular, the combination of the Rank Correlation 

Algorithm and the above “appropriate” five prediction algorithms (Weighted Sum, 

Adjusted Weighted Sum with Average of Column, Adjusted Weighted Sum with Median 

of Column, Adjusted Weighted Sum with Average of Neighbors, and Adjusted Weighted 

Sum with Median of Neighbors) achieved the smallest NDPM. The paired Student’s 

t-test statistically observed significant difference between these CF algorithms and the 

other algorithms, at the level of p < 0.05. In addition, the Rank Correlation consistently 

outperformed the other algorithms in Experiments 1, 2, and 3. This suggests that the 

Rank Correlation is the appropriate similarity computation algorithm. 

In focusing on the calculated AREs, most CF algorithms outperformed three 

simple prediction algorithms.  In particular, four similarity computation algorithms 
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(Adjusted Cosine Similarity with Average, Adjusted Cosine Similarity with Median, 

Rank Correlation, and Average Squared Difference) achieved the smallest NDPM; 

however, the most accurate algorithm was different, depending on the employed usage 

histories. For example, in employing Word 2002 usage histories, the Adjusted Cosine 

Similarity with Average achieved the smallest ARE; in employing Excel 2002 usage 

histories, the Rank Correlation achieved the smallest ARE. In addition, the paired 

Student’s t-test did not reveal a statistically significant difference among the Adjusted 

Cosine Similarity with Average and the Rank Correlation, at the level of p < 0.05. This 

result suggests that all of these algorithms can be the appropriate prediction algorithm. 

In context of the software function recommendation, the following CF algorithm 

can be considered suitable from a comprehensive evaluation of Experiment 3. The Rank 

Correlation is a suitable similarity computation algorithm because this algorithm 

achieved the smallest NDPMs in every usage history, and the smallest ARE using Excel 

2002 usage histories. The Weighted Sum is a suitable prediction algorithm because this 

algorithm consistently achieved the smallest NDPMs and AREs in every usage history.  

Moreover, the Weighted Sum is simpler than the other appropriate algorithms (Adjusted 

Weighted Sum with Average of Column, Adjusted Weighted Sum with Median of 

Column, Adjusted Weighted Sum with Average of Neighbors, and Adjusted Weighted 

Sum with Median of Neighbors), so that its throughput (processing capacity) is larger 

than the other algorithms. Although there is a possibility for improving the 

recommendation accuracy, the combination of the Rank Correlation and the Weighted 

Sum has enough accuracy to generate software function recommendations for practical 

use. 
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8. Related Work 

8.1 Usage History Collection 

In order to achieve richer usability of the software, systems that collect software 

usage histories have been developed [18]. According to people who use mainly the 

collected histories, these conventional systems can be classified into the following two 

types: 

- System for software developers: This type of system helps developers improve the 

usability of the software they are developing. 

- System for software users: This type of system helps users enhance the usability of 

the software they are using. 

Finlay and Harrison [9] proposed a system for software developers. Their system 

collects software usage histories to improve the usability of the software’s user interface. 

Improvement can be achieved as follows. First, the developer of the software records an 

ideal usage history by operating the user interface, which is a target of the improvement.  

Next, the system collects some actual usage histories from people who actually use the 

targeted software. The system compares ideal usage history and actual usage histories to 

detect different points between them. In these instances, it is possible that users could 

have operated the user interface with erroneous usage. Developers can improve the 

detected bad parts so that the users will not give erroneous usages. Hilbert and Redmiles 

[16] proposed a large-scale collection system of usage histories for software developers.  

They took a similar approach to the system proposed by Finlay and Harrison, which 

collects usage histories to improve software usability.  However, unlike Finlay and 

Harrison, Hilbert and Redmiles’ system collects usage histories from real users of the 

software. If software users make different usage histories than the ideal usage histories, 

the system will sends the users’ usage histories to the developers. The developers can 

collect usage histories from a large amount of the users and can use such histories to 

improve user interfaces. 
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In contrast to the above systems for software developers, this dissertation proposes 

a framework for systems for the users; however, collected usage histories with the 

systems based on the proposed framework are extremely important for improving the 

usability of the software because the developers can recognize frequently used functions 

and unused functions. In developing the next version of the software, the developers 

should enhance the accessibility of these frequently used functions (e.g. by assigning 

shortcut keys). In addition, the developers should consider the possibility of discarding 

unused functions. Or, if these functions are still considered important, the developers 

should consider the reasons why these were not used. 

Yano et al. [55] proposed Sharlok, which is a system for software users. Sharlok 

collects software usage histories to provide opportunities to begin collaboration among 

users. Sharlok automatically collects each user’s usage history with the background 

process. Each user can see the other users’ usage histories anytime, and therefore each 

user will be aware of the other users’ operations. Due to this openness of histories the 

users will have the opportunity to ask or discuss about the other users’ behavior. 

Morisaki et al. [28], [29] proposed a system for users to support software function 

discovery. They took a similar approach with the Sharlok system for discovering new 

software functions. First, the system collects usage histories from users via the network. 

The system summarizes the collected usage histories by extracting information about the 

names of the executed functions, the time of the executions, the people who executed the 

functions and frequencies of the executions. Next, the system displays to each user a 

summary of the other users’ usage histories. Each user is therefore aware of what 

functions have been used by other users. 

The above systems for software users collect usage histories from the users to 

make users aware of the each others’ behaviors. Software function recommender systems 

based on the proposed framework are similar in approach to the above systems; however, 

the above systems are information sharing systems rather than recommender systems 

because these work as a bridge to the users’ behaviors and knowledge. The above 

systems just bring each user the other users’ usage histories. Users of these systems have 
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to choose preferable information from the displayed usage histories by themselves.  

However, when the systems are operated by a small number of users in small closed 

community, it is possible that these systems cannot be used as open systems to serve a 

large number of users because the users are given a large amount of information at a time 

by these systems. On the other hand, the systems based on the proposed framework 

generate personalized information to individual users using usage histories, and also 

recommend information. The proposed framework can be operated as an open system 

because the users are given a small amount of individual information made especially for 

each user. 

8.2 User Assistant for High-Functionality Applications 

In order to make users aware of useful previously unknown software functions, an 

HFA user assistant  that suggests useful functions has been developed. According to a 

method for predicting useful unaware functions, these conventional user assistants can 

be classified into the following three types: 

- User assistant without prediction method: This type of assistant does not predict, 

but just displays certain functions pre-specified by developers of HFA. This type 

of assistant can be implemented as a stand-alone. The accuracy of the prediction is 

liable to be poor. 

- User assistant with a method based on user stereotypes: This type of assistant 

predicts useful functions based on user stereotypes (the so-called Standard User 

Models) predefined by developers of HFA. This type of assistant can be 

implemented as a stand-alone. The accuracy of the prediction depends on the 

defined user stereotypes. 

- User assistant with a method based on CF: This type of assistant predicts useful 

functions based on CF.  This type of assistant cannot be implemented as a 

stand-alone. The accuracy of the prediction depends on the data collected from the 

users. 

Owen [37] proposed the DYK (Did You Know) system and Horvitz [21] mentioned 
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the idea of a Tip of the Day. These are user assistants that have no prediction method. 

These assistants display a previously unknown function randomly when the user 

launches the HFA.  In contrast to an online help assistant or an information retrieval 

assistant, the user does not have to choose a query to get the functions. If a chance 

should serve, however, the user can be made aware of useful previously unknown 

functions. In theory, NDPM of these assistants’ recommendation (i.e. randomly 

displayed function) must be 0.5. Although the accuracy of the prediction is not high, 

Owen and Horvitz provided the basic idea to support software function discovery. On the 

other hand, the recommender systems based on the proposed framework can provide 

more accurate recommendations which achieves NDPMs smaller than 0.5. 

Fischer et al. [10] proposed Active Help; Winkels et al. proposed EURO-HELP  

[54]; and Horvitz et al. [22] proposed Microsoft Office Assistant.  These assistants collect 

usage histories from each HFA user, and construct a user model from the collected usage 

histories.  A user model is an inner data representation of the user’s behaviors [12]. These 

assistants compare the constructed user model to the user stereotypes to find a similar 

stereotype. User stereotypes (the so-called Standard User Models) are predefined by the 

HFA developers and represent typical users’ behaviors and objectives [38]. Generally, 

the user stereotypes are defined by observing the behaviors of the user representatives 

and giving them questionnaires [3]. The assistants infer the user’s objective based on 

similar stereotypes with the current user’s model.  Then, the assistants recommend the 

functions which are helpful to complete the objective. These assistants are very effective 

when the developers can define accurate and numerous kinds of stereotypes; however, if 

the number of functions of the HFA is extremely large, defining accurate and numerous 

kinds of stereotypes is difficult because the number of potential stereotypes is liable to 

be extremely large [11]. On the other hand, the recommender systems based on the 

proposed framework do not use any user stereotypes to predict useful previously 

unknown functions. Thus, these recommender systems can provide accurate 

recommendations regardless of the number of functions of the HFA. 

To date, no user assistant with a method based on CF has been developed. This 
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dissertation proposes a novel framework for providing systems which are classified as 

this type of user assistants. As previously discussed in this dissertation, one of the big 

advantages of this type of user assistants is that recommendations without the user 

stereotypes can be made. The developers do not have to spend time and effort to define 

the stereotypes, so they can cut cost.  In addition, developers do not have to challenge 

many difficult issues [11] related to the accuracy of the user stereotypes. One of the 

different points of this type of user assistants from the other type of assistants is that in 

this case, the users’ computers need to be connected to the server via a network, while 

the other type of assistants can make the users’ computers stand-alone. However, this 

different point is not a disadvantage because, in using HFA, the users’ computers must be 

connected anyway to use other features, such as product activation or automated 

software deployment [51]. 
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9. Conclusion 

This dissertation proposed a framework for software function recommendation 

based on CF to allow users to discover useful, but previously unknown functions 

efficiently. The proposed framework included a concept design and the architectural 

design of system which makes software function recommendations. In order to produce 

accurate recommendations to a target HFA user, this dissertation described three simple 

prediction algorithms (lacking similarity computation), ten similarity computation 

algorithms including two new algorithms, and seven prediction algorithms. Prediction 

accuracies of these CF algorithms were empirically evaluated by using usage histories 

collected from actual Microsoft Office Application users. The result of the experiments 

suggested that the proposed framework can be effective for discovering useful functions 

of HFAs. In particular, a combination of the Rank Correlation and the Weighted Sum is a 

suitable algorithm in the context of software function recommendation because this 

combination has enough accuracy to generate software function recommendations for 

practical use. 

Other CF algorithms such as Item-based CF algorithms [46] and Model-based CF 

algorithms [4] exist. Furthermore, some enhancement methods of the CF algorithm such 

as Inverse User Frequency and Case Amplification [4] are available. Investigating the 

effectiveness of these other CF algorithms and the enhancement methods in context of 

software function recommendation is a project for the future. Currently, Item-based CF 

algorithms are used on various Websites such as Amazon.com and CDNow [47]. These 

Item-based algorithms have a high likelihood to be able to improve the accuracy of the 

recommendations. Nonetheless, several challenging issues in actually implementing the 

system based on the proposed framework still exist. One of these issues is the scalability 

of the system. Typically, a CF-based recommender system has thousands of users, and 

should provide recommendations quickly as a reply to the users’ requests. In order to 

achieve accurate and faster services, implementation efforts in an open source project,  

NAIST Collaborative Filtering Engines, will be ongoing [34]. 
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Traditional CF systems have been employed for accelerating knowledge sharing in 

the entertainment environments. Today, some working environments such as software 

engineering need to share knowledge in organizations such as companies. For instance, 

Ohsugi et al. [33] proposed an estimation method of software development effort using 

CF-based knowledge sharing. CF has the possibility to conquer strong obstacles in 

today’s working environments. When researchers begin to research these methods, this 

dissertation will provide one of the early experiences in applying CF to the issues in the 

working environments. 



72 

Acknowledgements 

I would especially like to thank my supervisor Professor Ken-ichi Matsumoto for 

his continuous support, encouragement, and guidance for this work. 

I am also very grateful to the members of my dissertation review committee: 

Professor Masaki Koyama, Professor Hiroyuki Seki, and Associate Professor Hajimu 

Iida for their invaluable comments and helpful criticism of this dissertation. 

I also would like to thank Dr. Dee A. Worman of Edit Science, Inc. She edited this 

dissertation, and gave me valuable comments and suggestions to improve the quality of 

this dissertation. 

Many of the courses that I have taken during my graduate career have been helpful 

in preparing this dissertation. I would especially like to acknowledge the guidance of 

Assistant Professor Akito Monden and Assistant Professor Masahide Nakamura. 

I would like to express my gratitude to President Koji Torii of Nara Institute of 

Science and Technology, Professor Katsuro Inoue of Osaka University, Professor 

Kumiyo Nakakoji of University of Tokyo, Professor Hideo Kudo of Osaka Seikei 

University, Associate Professor Yasuhiro Takemura of Osaka University of Arts, 

Associate Professor Kazuyuki Shima of Hiroshima City University and Dr. Kazuaki 

Yamada of the University of Tokyo. They gave me valuable suggestions and provided 

stimulating discussions throughout my graduate career. 

I would also like to acknowledge the valuable comments of Dr. Makoto Sakai of 

Software Research Associates Key Technology Laboratory, Inc., Mr. Koji Kondo and Mr. 

Yasushi Tanaka of Sony Corporation. I also acknowledge the helpful support of Dr. 

Toshihiro Kamiya of PRESTO Japan Science and Technology Corporation, Dr. Shuji 

Morisaki of Internet Initiative Japan, Inc. and Dr. Masatake Yamato of Red Hat, Inc. 

Special thanks are due to many friends in the Graduate School of Information 

Science, Nara Institute of Science and Technology. I especially would like to thank Ms. 

Junko Inui, Mr. Yuichiro Kanzaki, Mr. Masateru Tsunoda, and Mr. Takeshi Kakimoto 

who gave me invaluable assistance throughout my graduate career. 



73 

Finally, special thanks go to my grandfather Eitaro Ohsugi and Tsunesaburo 

Kawakami, my grandmother Yoshiko Ohsugi and Yoshie Kawakami, my father Eiichi 

Ohsugi, my mother Hatsuko Ohsugi, and my sister Chinatsu Ohsugi. Without their help, 

I would not have finished this dissertation. They have given me love and power to live 

any time. All of my work is built upon my family’s contributions. 



74 

References 

[1] Balabanovic, M., and Shoham, Y., “Fab: Content-based Collaborative 

Recommendation,” Communications of the ACM, Vol.40, No.3, pp.66-72, 1997. 

[2] Balabanovic, M., “An Adaptive Web Page Recommendation Service,” Proceedings 

of the First International Conference on Autonomous Agents (Agents’97), pp. 

378-385, 1997. 

[3] Brajnik, G. , and Tasso, C., “A Shell for Developing Non-monotonic User Modeling 

Systems. International Journal of Human-Computer Studies,” Vol.40, pp.31-62, 

1994. 

[4] Breese, J. S., Heckerman, D., and Kadie, C., “Empirical Analysis of Predictive 

Algorithms for Collaborative Filtering,” Proceedings of the 14th Conference on 

Uncertainty in Artificial Intelligence, pp.43-52, 1998. 

[5] Carroll, J. M., and Rosson, M. B., “Paradox of the Active User,” Interfacing 

Thought: Cognitive Aspects of Human-Computer Interaction, MIT Press, 1987. 

[6] Conte, S. D., Dunsmore, H. E., and Shen, V. Y., “Software Engineering Metrics and 

Models,” The Benjamin/Cummings Publishing Company, Inc., Menlo Park, 

California, 1986. 

[7] Cypher, A., “Eager: Programming Repetitive Tasks by Example,” Proceedings of 

the CHI’91 Conference on Human Factors in Computing Systems, pp.33-39, 1991. 

[8] Efron, B., “The Jackknife, the Bootstrap, and Other Resampling Plans,” 

Philadelphia: SIAM, 1982. 

[9] Finlay, J., and Harrison, M., “Pattern Recognition and Interaction Models,” 

Proceedings of the 3rd IFIP International Conference on Human Computer 

Interaction (INTERACT’90), pp.149-154, 1990. 

[10] Fischer, G., Lemke, A. C., and Schwab, T., “Knowledge-based Help Systems,” 

Proceedings of the CHI’85 Conference on Human Factors in Computing Systems, 

pp.161-167, 1985. 

[11] Fischer, G., “User Modeling: the Long and Winding Road,” Proceedings of the User 



75 

Modeling Conference ’99, pp.349-355, 1999. 

[12] Fischer, G., “User Modeling in Human-Computer Interaction,” User Modeling and 

User-Adapted Interaction (UMUAI), Vol.11, No.1/2, pp 65-86, 2001. 

[13] Good, N., Schafer, J., Konstan, J., Borchers, A., Sarwar, B., Herlocker, J., and Riedl, 

J., “Combining Collaborative Filtering with Personal Agents for Better 

Recommendations,” Proceedings of the 6th National Conference on Artificial 

Intelligence (AAAI-99), pp.439-446, 1999. 

[14] Goldberg, D., Nichols, D., Oki, B. M., and Terry, D., “Using Collaborative Filtering 

to Weave an Information Tapestry,” Communications of the ACM, Vol.35, No.12, 

pp.61-70, 1992. 

[15] Hawkins, S., He, H., Williams, G., and Baxter, R., “Outlier Detection Using 

Replicator Neural Networks,” Proceedings of the 4th International Conference, 

Data Warehousing and Knowledge Discovery (DaWaK2002), pp.170-180, 2002. 

[16] Hilbert D. M., and Redmiles, D. F. , “An Approach to Large-Scale Collection of 

Application Usage Data Over the Internet,” Proceedings of 20th International 

Conference on Software Engineering (ICSE’98), pp.136-145, 1998. 

[17] Hilbert D. M., and Redmiles, D. F., “Collecting Usage Data and User Feedback on a 

Large Scale to Inform Software Development,” Technical Report UCI-ICS-99-41, 

Department of Information and Computer Science, University of California, Irvine, 

1999. 

[18] Hilbert, D. M., and Redmiles, D. F., “Extracting Usability Information from User 

Interface Events,” ACM Computing Surveys, Vol.32, No.4, pp.384-421, 2000. 

[19] Hill, W., Stead, L., Rosenstein, M., and Furnas, G., “Recommending and Evaluating 

Choices in a Virtual Community of Use,” Proceedings of the 1995 Conference on 

Human Factors in Computing Systems (CHI’95), pp.194-201, 1995. 

[20] Hogg, R.V. , and Craig, A.T., “Introduction to Mathematical Statistics,” 5th edition, 

New York: Macmillan, 1995. 

[21] Horvitz, E., “Agents with Beliefs: Reflections on Bayesian Methods for User 

Modeling,” Proceedings of the 16th International Conference on User Modeling 



76 

(UM’97) , pp.441-442, 1997. 

[22] Horvitz, E., Breese, J., Heckerman, D., Hovel, D., and Rommelse, K., “The Lumière 

Project: Bayesian User Modeling for Inferring the Goals and Needs of Software 

Users,” Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, 

pp.256-265, 1998. 

[23] Huberman, B. A., and Kaminsky, M., “Beehive: A System for Cooperative Filtering 

and Sharing of Information,” Computer Human Interaction , pp.210-217, 1996. 

[24] Kautz, H., Selman, B., and Shah, M., “Referral Web: Combining Social Networks 

and Collaborative Filtering,” Communications of the ACM, Vol.40, No.3, pp.63-65, 

1997. 

[25] Khoshgoftaar, T. M., Munson, J. C., Bhattacharya, B. B., and Richardson, G. D. 

“Predictive Modeling Techniques of Software Quality from Software Measures,” 

IEEE Transaction on Software Engineering, Vol.18, Bo.1, pp.979-987, 1992. 

[26] Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., and Riedl, J., 

“Grouplens: Applying Collaborative Filtering to Usenet News,” Communications of 

the ACM, Vol.40 pp.77–87, 1997. 

[27] Mathe, N., and Chen, J., “A User-Centered Approach to Adaptive Hypertext based 

on an Information Relevance Model,” Proceedings of the 4th International 

Conference on User Modeling (UM’94), pp. 107-114, 1994. 

[28] Morisaki, S., Monden, A., Matsumoto, K., Inoue, K., and Torii, K., “Sharing Usage 

Knowledge for Application Software Using Function Execution History,” IPSJ 

Journal，Vol.41, No.10, pp.2770-2781, 2000 (in Japanese). 

[29] Morisaki, S., Shiraishi, Y., Yamato, M., Monden, A., Matsumoto, K., and Torii, K., 

“A Support System for Software Function Discovery Using Histories of Function 

Executions,” Transactions of the Institute of Electronics, Information and 

Communication Engineers, D-I, Vol.J84-D-I, No.6, pp.755-767, 2001 (in Japanese). 

[30] Ohsugi, N., Monden, A., and Matsumoto, K., “A Recommendation System for 

Software Function Discovery,” Proceedings of the 9th Asia Pacific Software 

Engineering Conference (APSEC2002), pp.248-257, 2002. 



77 

[31] Ohsugi, N., Monden, A., and Morisaki, S., “Collaborative Filtering Approach for 

Software Function Discovery,” Proceedings of the 2002 International Symposium 

on Empirical Software Engineering (ISESE2002), Vol.2, pp.29-30, 2002. 

[32] Ohsugi, N., Monden, A., Morisaki, S., and Matsumoto, K., “Software Function 

Recommender System Based on Collaborative Filtering,” Journal of Information 

Processing Society of Japan, Vol.45, No.1, pp.267-278, January 2004 (in Japanese). 

[33] Ohsugi, N., Tsunoda, M., Monden, A., and Matsumoto, K., “Effort Estimation 

Based on Collaborative Filtering,” Proceedings of the 5th International Conference 

on Product Focused Software Process Improvement (PROFES2004), pp.274-286, 

2004. 

[34] Ohsugi, N., “Naist Collaborative Filtering Engines”, Open Source Development 

Network Japan, https://sourceforge.jp/projects/ncfe/, 2004. 

[35] O’Sullivan, D., Wilson, D., and Smyth, B., “Improving Case-Based 

Recommendation: A Collaborative Filtering Approach,” Proceedings of the 6th 

European Conference on Case Based Reasoning (ECCBR2002), pp.278-291, 2002. 

[36] O’Sullivan D, Smyth, B., Wilson D. C., Mcdonald K., and Smeaton, A., “Improving 

the Quality of the Personalized Electronic Program Guide,” User Modeling and 

User-Adapted Interaction (UMUAI), Vol.14, No.1, pp.5-36, 2004. 

[37] Owen, D., “Answers First, Then Questions,” User-Centered System Design, New 

Perspectives on Human-Computer Interaction, Lawrence Erlbaum Associates, Inc., 

pp.361-375, 1986. 

[38] Paliouras, G., Karkaletsis, V., Papatheodorou, C., and Spyropoulos, C. D., 

“Exploiting Learning Techniques for the Acquisition of User Stereotypes and 

Communities,” Proceedings of the 17th International Conference on User Modeling 

(UM’99), pp.169-178, 1999. 

[39] Pennock, D. M., Horvitz, E., Lawrence, S., and Giles, C. L., “Collaborative 

Filtering by Personality Diagnosis: A Hybrid Memory- and Model-based 

Approach,” Proceedings of the Sixteenth Conference on Uncertainty in Artificial 

Intelligence (UAI-2000), pp.473-480, 2000. 



78 

[40] Pretschner, A., and Gauch, S., “Ontology Based Personalized Search,” Proceedings 

of the 11th IEEE International Conference on Tools with Artificial Intelligence, 

pp.391-398, 1999. 

[41] Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J., “GroupLens: An 

Open Architecture for Collaborative Filtering of Netnews,” Proceedings of ACM 

1994 Conference on Computer Supported Cooperative Work (CSCW’94) pp.175-186, 

1994. 

[42] Robert G., and Dawson, T.B., “Basic & Clinical Biostatistics,” McGraw-Hill, 3rd 

Edition, 2001. 

[43] Rucker, J., and Marcos, J. P., “Siteseer: Personalized Navigation for the Web,” 

Communications of the ACM, Vol.40, No.3, pp.73-75, 1997. 

[44] Salton, G., and McGill, M., “Introduction to Modern Information Retrieval, ” 

McGraw-Hill, New York, 1983. 

[45] Sarwar, B., Karypis, G., Konstan, J., and Riedl, J., “Analysis of Recommendation 

Algorithms for E-Commerce,” Proceedings of the ACM Conference on ECommerce 

(EC00), pp.158-167, 2000. 

[46] Sarwar, B., Karypis, G., Konstan, J., and Riedl, J., “Item-based Collaborative 

Filtering Recommendation Algorithms,” Proceedings of the 10th International 

World Wide Web Conference (WWW10), pp.285-295, 2001. 

[47] Schaefer, J. B., Konstan, J., and Riedl, J., “Recommender Systems in 

E-Commerce,” Proceedings of the 1st ACM Conference on Electronic Commerce, 

pp.158-166, 1999. 

[48] Shardanand, U., and Maes, P., “Social Information Filtering: Algorithms for 

Automating ‘Word of Mouth’,” Proceedings of the CHI’95 Conference on Human 

Factors in Computing Systems, pp.210-217, 1995. 

[49] Smyth, B., and Cotter, P. , “Personalized Electronic Programme Guides,” Artificial 

Intelligence Magazine, Vol.21, 2001. 

[50] Strike, K., El Eman, K., and Madhavji, N., “Software Cost Estimation with 

Incomplete Data,” IEEE Transaction on Software Engineering, Vol.27, No.10, 



79 

pp.890-908, 2001. 

[51] Tallman, O. H., “Project Gabriel: Automated Software Deployment in a Large 

Commercial Network,” Digital Technical Journal, Vol.7, No.2, pp.56-70, 1995. 

[52] Terveen, L., Hill, W., McDonald, D., and Creter, J., “PHOAKS: A System for 

Sharing Recommendations,” Communications of the ACM, Vol.40, No.3, pp.59-62, 

1997. 

[53] Wilensky, R., Arens, Y., and Chin, D., “Talking to UNIX in English: An Overview 

of UC,” Communications of the ACM, Vol.27, No.6, pp.574-593, 1984. 

[54] Winkels, R., Breuker, J., and den Haan, N., “Principles and Practice of Knowledge 

Representation in EURO-HELP,” Proceedings of the International Conference on 

the Learning Sciences, pp.442-448, 1991. 

[55] Yano, Y., Ogata, H., and Qun, J., “Sharlok: Combining a Collaborative Learning 

Environment and an Active Database,” Advanced Database Systems for Integration 

of Media and User Environments, World Scientific, Vol.9, pp.329-332, 1998. 

[56] Yao, Y. Y., “Measuring Retrieval Effectiveness Based on User Preference of 

Documents,” Journal of the American Society for Information Science, Vol.46, No.2, 

pp.133-145, 1995. 

[57] Ye, Y., Fischer, G., “Information Delivery in Support of Learning Reusable Software 

Components on Demand”, Proceedings of 2002 International Conference on 

Intelligent User Interface (IUI’02), pp.159-166, 2002. 



80 

Appendix 

A. Abbreviations of CF Algorithm Names 

In the figures and the tables for summarizing evaluation results, each algorithm 

name is described with the following abbreviations for convenience of description. 

Table 5. Abbreviations of CF Algorithm Names 

Algorithm Type Abbreviation Formal Nomenclature 

Random Random Algorithm 

UC User Count Algorithm 
Simple Prediction 

Algorithms 
UA User Average Algorithm 

CS Cosine Similarity 

ACSA Adjusted Cosine Similarity with Average 

ACSM Adjusted Cosine Similarity with Median 

CC Correlation Coefficient 

CCM Correlation Coefficient with Median 

BCS Binary Cosine Similarity 

RC Rank Correlation 

MR Magnitude Relation 

ASD Average Squared Difference 

MSD Median of Squa red Difference 

CS Cosine Similarity 

Similarity Computation 

Algorithms 

ACSA Adjusted Cosine Similarity with Average 

WS Weighted Sum 

AWSAC Adjusted Weighted Sum with Average of Column 

AWSMC Adjusted Weighted Sum with Median of Column 

AWSAN Adjusted Weighted Sum with Average of Neighbors 

AWSMN Adjusted Weighted Sum with Median of Neighbors 

AWSAR Adjusted Weighted Sum with Average of Row 

Prediction Algorithms 

AWSMR Adjusted Weighted Sum with Median of Row 
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B. Evaluation Results for Selecting Appropriate 
Neighborhood Sizes 

B.1 Evaluation Results with Usage Histories of MS Word 2002 

The following graphs show evaluation results for selecting appropriate 

neighborhood size for each CF algorithm when the evaluation was executed with the 

usage histories of MS Word 2002. Each graph shows the evaluation results of each CF 

algorithm composed by certain combinations of a similarity computation algorithm and a 

prediction algorithm. Recommendation was generated by using each CF algorithm with 1 

to 10 nearest neighbors and all users. In other words, neighborhood size was moved from 

1 up to 10 and |U| (the number of users).  Next, the AREs and NDPMs were calculated 

with the generated recommendations. In the graph, the vertical axis indicates ARE and 

NDPM, and their scales are written in the left side and the right side of the graph, 

respectively. The horizontal axis indicates each neighborhood size of 1 to 10 or All (i.e. 

the number of users |U|). Each ARE is marked with a symbol “ ”, while each NDPM is 

marked with a symbol “ ”, at the corresponding neighborhood size. As described in 6.2, 

smaller ARE and smaller NDPM (i.e. the symbols closer to the bottom of the graph) 

indicate higher accuracy.  Appropriate neighborhood sizes which achieving the highest 

accuracy, were chosen regarding each CF algorithm for ARE and NDPM, respectively. In 

the graph, the broken vertical line and the heavy vertical line indicate selected 

neighborhood sizes for ARE and NDPM, respectively. 
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B.2 Evaluation Results with Usage Histories of MS PowerPoint 2002 

The following graphs show the evaluation results for selecting appropriate 

neighborhood size for each CF algorithm when the evaluation was executed with the 

usage histories of MS PowerPoint 2002. The following graphs are written in the same 

manner as the graphs written in Appendix B.1. 
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 B.2. 39. RC & AWSAN B.2. 40. RC & AWSMN 
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B.3 Evaluation Results with Usage Histories of MS Excel 2002 

The following graphs show the evaluation results for selecting appropriate 

neighborhood size for each CF algorithm when the evaluation was executed with the 

usage histories of MS Excel 2002. The following graphs are written in the same manner 

as the graphs written in Appendix B.1 and B.2. 
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C. Detailed Evaluation Results 

C.1 Detailed Result of Experiment 1: NDPM 

Table 6 shows the result of Experiment 1. Each entry of the table contains a value 

of NDPM indicating the accuracy of recommendation which was made for the user of the 

corresponding column by the algorithm of the corresponding row. The rightmost column 

indicates the average NDPM among six users in each algorithm. The algorithms in the 

rows are sorted in ascending order by the average NDPMs from top to the bottom in the 

table. The average NDPM written with emphasized letters (italic underlined boldface) 

indicates the paired Student’s t-test statistically observed significant difference to the 

other value written below, at the level of p < 0.05. In other words, the emphasized value 

indicates that the corresponding row’s algorithm outperformed the algorithms written 

below. 

C.2 Detailed Result of Experiment 2: ARE 

Table 7 shows the calculated AREs of Experiment 2. Each entry of the table 

contains the average ARE indicating the accuracy of prediction made for the users of 

HFA of the corresponding column by the algorithm of the corresponding row. The 

algorithms in the rows are sorted in ascending order by the average AREs of the row 

from the top to the bottom of the table. The average ARE written with emphasized letters 

Table 6. Detailed Result of Experiment 1: NDPM 

NDPM of Each User 
Algorithm 

#1 #2 #3 #4 #5 #6 
Avg. NDPM 

MR & AWSAR 0.2811 0.4268 0.3373 0.3873 0.3454 0.3497 0.3546 

CC & AWSAR 0.2654 0.5553 0.3288 0.4179 0.3533 0.3778 0.3831 

UA 0.2702 0.5868 0.3371 0.4401 0.3532 0.3894 0.3961 

UC & AWSAR 0.2701 0.5868 0.3358 0.4388 0.3664 0.4243 0.4037 

Random 0.5241 0.5058 0.5244 0.5103 0.4918 0.5258 0.5137 
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indicates the paired Student’s t-test statistically observed significant difference to the 

other value written below, at the level of p < 0.05. 

C.3 Detailed Result of Experiment 2: NDPM 

Table 8 shows the calculated NDPMs of Experiment 2. This table is written in the 

same manner as the table written in Appendix C.2 where the calculated NDPMs instead 

of the AREs are written. 

C.4 Detailed Result of Experiment 3: ARE 

Table 9 shows the calculated AREs of Experiment 3. Each row indicates a CF 

algorithm composed by a combination of a similarity computation algorithm and a 

prediction algorithm written in the leftmost two columns. The other right columns 

contain the average AREs of the corresponding row’s CF algorithm where such CF 

algorithm used the corresponding columns’ HFA usage histories. In the left of each 

Table 7. Detailed Result of Experiment 2: ARE 

ARE of Each HFA 
Algorithm 

Word 2002 PowerPoint 2002 Excel2002 
Avg. ARE 

UA 2.3978 2.0812 1.6232 2.0341 

BC & AWSAR 18.1429 17.5288 10.2658 15.3125 

CC & AWSAR 18.5338 17.8290 10.5655 15.6428 

RC & AWSAR 23.3142 19.5541 12.0022 18.2901 

MR & AWSAR 23.6369 19.4104 12.1713 18.4062 

UC 614.4649 1260.2588 236.3690 703.6975 

 

Table 8. Detailed Result of Experiment 2: NDPM 

NDPM of Each HFA 
Algorithm 

Word 2002 PowerPoint 2002 Excel2002 
Avg. NDPM 

RC & AWSAR 0.2842 0.2345 0.2618 0.2602 

MR & AWSAR 0.2858 0.2345 0.2619 0.2607 

BC & AWSAR 0.2883 0.2366 0.2638 0.2629 

UA 0.2891 0.2374 0.2666 0.2644 

CC & AWSAR 0.291 0.2376 0.2664 0.2650 

UC 0.3109 0.2758 0.2912 0.2926 
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average ARE, neighborhood sizes (k) selected in calculating the ARE are written. For 

example, the top-and-rightmost cell containing the value “1.871800913” indicates the 

average ARE of the combination of the Adjusted Cosine Similarity with Average and the 

Weighted Sum, when using the usage histories of Excel 2002. The neighborhood size k 

was 10, which is written in the left cell of “1.871800913”. The sorting and the 

emphasizing manner of each ARE is the same as the table written in Appendix C.2. 

C.5 Detailed Result of Experiment 3: NDPM 

Table 10 shows the calculated NDPMs of Experiment 3. This table is written in the 

same manner as the table written in Appendix C.4e same manner as the table written in 

Appendix C.4 where the calculated NDPMs are written instead of the AREs. For 

example, the top-and-rightmost cell containing the value “0.156034739” indicates the 

average NDPM of the combination of the Rank Correlation and the Weighted Sum, when 

using the usage histories of Excel 2002. The neighborhood size k was 3, which is written 

in the left cell of “0.156034739”. 
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Table 9. Detailed Result of Experiment 3: ARE 
Word 2002 Power Point 2002 Excel2002 Similarity Computation 

Algorithm 
Prediction Algorithm 

k ARE k ARE k ARE 
Avg. ARE 

ACSA WS 1 1.527299844 10 1.197950996 10 1.871800913 1.532351 

ACSA AWSMC 1 1.527299844 0 1.03841677 0 2.052638333 1.539452 

ACSA AWSMN 1 1.527299844 0 1.03841677 0 2.052638333 1.539452 

RC WS 2 1.871011255 6 0.940172895 1 1.853342471 1.554842 

RC AWSAC 2 1.871011255 6 0.940172895 1 1.853342471 1.554842 

RC AWSMC 2 1.871011255 6 0.940172895 1 1.853342471 1.554842 

RC AWSAN 2 1.871011255 6 0.940172895 1 1.853342471 1.554842 

RC AWSMN 2 1.871011255 6 0.940172895 1 1.853342471 1.554842 

ACSM AWSMC 1 1.697091183 0 1.002602929 0 2.113788872 1.604494 

ACSM AWSMN 1 1.697091183 0 1.002602929 0 2.113788872 1.604494 

ACSM WS 10 1.6590 33776 10 1.16327919 10 2.056881268 1.626398 

ASD AWSAC 1 1.571011397 1 0.788076189 3 3.034641375 1.79791 

ASD AWSAN 1 1.571011397 1 0.788076189 3 3.034641375 1.79791 

ASD AWSMN 1 1.571011397 1 0.788076189 3 3.034641375 1.79791 

ASD WS 1 1.571011397 1 0.788076189 3 3.034641375 1.79791 

ASD AWSMC 1 1.571011397 1 0.788076189 3 3.034641375 1.79791 

ACSM AWSAN 1 1.697091183 9 1.301888086 2 2.604740186 1.867906 

ACSM AWSAC 1 1.697091183 9 1.302705597 2 2.604740186 1.868179 

ACSA AWSAN 1 1.527299844 9 1.34563553 3 2.733597381 1.868844 

ACSA AWSAC 1 1.527299844 0 1.348265681 3 2.733002907 1.869523 

CCM WS 2 2.166792582 8 1.075290188 3 2.908669402 2.050251 

CCM AWSMC 2 2.166792582 8 1.075290188 3 2.908669402 2.050251 

CCM AWSAN 2 2.166792582 8 1.075290188 3 2.908669402 2.050251 

CCM AWSMN 2 2.166792582 8 1.075290188 3 2.908669402 2.050251 

CCM AWSAC 2 2.166792582 8 1.075290188 3 2.908669402 2.050251 

CS WS 2 2.226395848 8 1.079794754 3 2.892912748 2.066368 

CS AWSAC 2 2.226395848 8 1.079794754 3 2.892912748 2.066368 

CS AWSMC 2 2.226395848 8 1.079794754 3 2.892912748 2.066368 

CS AWSAN 2 2.226395848 8 1.079794754 3 2.892912748 2.066368 

CS AWSMN 2 2.226395848 8 1.079794754 3 2.892912748 2.066368 

RC AWSMR 2 2.455606019 2 1.006964551 3 2.780492463 2.081021 

CC AWSAC 2 2.353294107 7 1.080598324 3 2.8850008 2.106298 

CC AWSMC 2 2.353294107 7 1.080598324 3 2.8850008 2.106298 

CC AWSAN 2 2.353294107 7 1.080598324 3 2.8850008 2.106298 

CC AWSMN 2 2.353294107 7 1.080598324 3 2.8850008 2.106298 

CC WS 2 2.353294107 7 1.08059832 4 3 2.8850008 2.106298 

ASD AWSMR 3 1.794129162 1 0.942044553 8 3.65039598 2.128857 

MSD WS 6 3.009644569 2 0.814343325 8 2.793375757 2.205788 

MSD AWSAC 6 3.009644569 2 0.814343325 8 2.793375757 2.205788 

MSD AWSMC 6 3.009644569 2 0.814343325 8 2.79337575 7 2.205788 

MSD AWSAN 6 3.009644569 2 0.814343325 8 2.793375757 2.205788 

MSD AWSMN 6 3.009644569 2 0.814343325 8 2.793375757 2.205788 

ACSM AWSMR 2 1.877346099 0 1.226419591 4 3.703519889 2.269095 

ACSA AWSMR 10 1.901390083 10 1.283558463 3 3.629309573 2.271419 

CS AWSMR 5 2.045663731 8 1.165067875 9 3.637096479 2.282609 

CCM AWSMR 5 2.059370841 8 1.163040415 9 3.635689017 2.286033 

CC AWSMR 4 2.046978972 7 1.190034576 8 3.647900115 2.294971 

MSD AWSMR 0 3.171170293 1 1.038370746 8 3.64351212 2.617684 

– UA – 3.323785323 – 2.468225192 – 2.696767408 2.829593 

CCM AWSAR 5 3.067383114 7 1.761033888 9 4.781150052 3.203189 

CS AWSAR 5 3.078850363 7 1.767189202 9 4.812251478 3.21943 

CC AWSAR 5 3.044225633 10 1.822700153 8 4.798880066 3.221935 

ASD AWSAR 3 3.3323 43064 0 1.877218246 0 5.085645564 3.431736 

ACSM AWSAR 2 3.350644172 5 2.152147036 2 4.926534028 3.476442 

ACSA AWSAR 4 3.374610122 5 2.184205949 3 5.121541469 3.560119 
RC AWSAR 5 4.085148681 9 1.843856098 8 4.783344952 3.570783 

MSD AWSAR 0 4.289858113 0 1.844689871 10 4.826765367 3.653771 

– Random – 639.9408194 – 1319.160835 – 305.120526 754.7407 

– UC – 795.2954119 – 994.5097597 – 499.4964732 763.1005 
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Table 10. Detailed Result of Experiment 3: NDPM 
 Word 2002  Power Point 2002  Excel2002  Similarity Computation 

Algori thm 
Prediction Algorithm 

k NDPM k NDPM k NDPM Avg. NDPM 

RC WS 5 0.178345952 5 0.157157881 3 0.156034739 0.163846 

RC AWSAC 5 0.178345952 5 0.157157881 3 0.156034739 0.163846 

RC AWSMC 5 0.178345952 5 0.157157881 3 0.156034739 0.163846 

RC AWSAN 5 0.178345952 5 0.157157881 3 0.156034739 0.163846 

RC AWSMN 5 0.178345952 5 0.157157881 3 0.156034739 0.163846 

MSD WS 5 0.195382302 7 0.164847524 3 0.18118463 0.180471 

MSD AWSAC 5 0.195382302 7 0.164847524 3 0.18118463 0.180471 

MSD AWSMC 5 0.195382302 7 0.164847524 3 0.18118463 0.180471 

MSD AWSAN 5 0.195382302 7 0.164847524 3 0.18118463 0.180471 

MSD AWSMN 5 0.195382302 7 0.164847524 3 0.18118463 0.180471 

ASD WS 6 0.205436187 7 0.165914561 8 0.18876585 0.186706 

ASD AWSAC  6 0.205436187 7 0.165914561 8 0.18876585 0.186706 

ASD AWSMC 6 0.205436187 7 0.165914561 8 0.18876585 0.186706 

ASD AWSAN 6 0.205436187 7 0.165914561 8 0.18876585 0.186706 

ASD AWSMN 6 0.205436187 7 0.165914561 8 0.18876585 0.186706 

CC WS 0 0.208730345 0 0.168026978 10 0.190454586 0.189071 

CC AWSAC 7 0.208887856 0 0.168026978 10 0.190454586 0.189123 

CC AWSMC 7 0.208887856 0 0.168026978 10 0.190454586 0.189123 

CC AWSAN 7 0.208887856 0 0.168026978 10 0.190454586 0.189123 

CC AWSMN 7 0.208887856 0 0.168026978 10 0.190454586 0.189123 

CCM WS 7 0.20815032 9 0.168233325 10 0.191309623 0.189231 

CCM AWSAC 7 0.20815032 9 0.168233325 10 0.191309623 0.189231 

CCM AWSMC 7 0.20815032 9 0.168233325 10 0.191309623 0.189231 

CCM AWSAN 7 0.20815032 9 0.168233325 10 0.191309623 0.189231 

CCM AWSMN 7 0.20815032 9 0.168233325 10 0.191309623 0.189231 

CS WS 7 0.208655822 9 0.168081938 10 0.191199341 0.189312 

CS AWSAC 7 0.208655822 9 0.168081938 10 0.191199341 0.189312 

CS AWSMC 7 0.208655822 9 0.168081938 10 0.191199341 0.189312 

CS AWSAN 7 0.208655822 9 0.168081938 10 0.191199341 0.189312 

CS AWSMN 7 0.208655822 9 0.168081938 10 0.191199341 0.189312 

RC AWSMR 7 0.221721456 8 0.178050824 6 0.182641971 0.194138 

MSD AWSMR 6 0.208975944 8 0.174892109 8 0.204977856 0.196282 

ACSM AWSAC 8 0.221593687 0 0.173231161 7 0.195132286 0.196652 

ACSA AWSAC 8 0.221428627 0 0.174799059 7 0.194681001 0.19697 

ACSA AWSAN 6 0.222001074 0 0.174799059 5 0.196657715 0.197819 

ACSM AWSAN 8 0.223381372 0 0.173231161 7 0.197674231 0.198096 

ACSM AWSMC 5 0.223092828 5 0.182281224 0 0.193186435 0.19952 

ACSM AWSMN 5 0.223978394 5 0.181829388 0 0.193186435 0.199665 

ACSM WS 5 0.225246164 5 0.183950057 6 0.198610257 0.202602 

ACSA AWSMC 6 0.223771973 6 0.188397964 7 0.195824642 0.202665 

ACSA AWSMN 6 0.224587394 6 0.188182553 5 0.195496944 0.202756 

ACSA WS 3 0.224807105 4 0.188619023 3 0.197825729 0.203751 

ASD AWSMR 7 0.222121772 7 0.177661519 8 0.212296164 0.204026 

MSD AWSAR 7 0.220849201 6 0.190895427 4 0.205519532 0.205755 

CC AWSMR 9 0.234564 807 9 0.184095277 10 0.216417721 0.211693 
CCM AWSMR 7 0.235414788 9 0.185088841 10 0.216151782 0.212218 

CS AWSMR 10 0.235912426 9 0.185250606 10 0.21600504 0.212389 

ASD AWSAR 6 0.231862404 8 0.201455765 8 0.208831199 0.21405 

CC AWSAR 0 0.240647534 6 0.215805847 8 0.214825541 0.22376 

RC AWSAR 8 0.233534192 10 0.245972244 6 0.198731862 0.226079 

ACSM AWSMR 3 0.252151783 5 0.201003323 6 0.228354416 0.22717 

ACSA AWSMR 3 0.248292742 5 0.205041777 5 0.229246043 0.227527 

CCM AWSAR 0 0.244116879 10 0.23536655 10 0.215861842 0.231782 

CS AWSAR 0 0.243973137 9 0.235963669 10 0.215783083 0.231907 

– UA – 0.271476443 – 0.223442063 – 0.209384784 0.234768 

ACSM AWSAR 4 0.263874148 3 0.25741506 4 0.246929283 0.256073 

ACSA AWSAR 4 0.259560093 3 0.265621045 3 0.243441405 0.256208 

– UC – 0.337214222 – 0.266874878 – 0.255487634 0.286526 

– Random – 0.517314685 – 0.499935814 – 0.503179714 0.50681 
 


