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Abstract
Speech signal separation and enhancement under blind setup is one of the
challenging areas of practical apblication. Excellent solutions to these problems are
always required for the spoken communication between man and machine in {:he real
world. The problem of speech separation arises in the presence of multiple speakers
and that of enhancement pertains to reduce the effect of noise and other interfering
signals. In the real world applications these two problems are often occurring
simultaneously and their solutions are urgently required in the development of
full-fledged conversational interface. The aims and scope of our work is also in the
same context. Recently, Blind Signal Separation (BSS) based on the Independent
Component Analysis (ICA) has emerged as a potential engineering solution for
speech separation problem. Such algorithms work with the assumption of statistical
independence of each sources and estimate original sources as the independent or
least dependent components. This thesis also addresses development and application
of ICA based algorithm for the blind separation of convoluted mixture of speech,
observed by a two element linear microphone array, under the over-determined
situation. The proposed ICA algorithm is based on the non-Gaussianization, by
negentropy maximization, of the Time-Frequency Series of Speech (TFSS) signal.
The functioning of ICA by non-Gaussianization is based on the heuristic idea of
Central Limit Theorem (CLT) under which it happens that the mixed speech signals
become more Gaussian than the individual signal and thus by reversing the process
of non-Gaussianization individual signals can be estimated with arbitrary scale and

permutation. Under such a framework a cost function is required to measure the



degree of non-Gaussianization and maximally non-Gaussian signals are taken as the
independent components which are original sources. There are various measures
such as kurtosis, entropy, negentropy for measuring non-Gaussianization but
negentropy provides much better robustness to outlier and is widely used. However,
direct measure of negentropy is cumbersome and it is approximated in terms of
cumulants or non-linear functions. In this thesis various approximations of
negentropy of TFSS by the higher order statistics of the non-linear, non-quadratic
functions and their separation performances have also been investigated. The nature
of nonlinear function used to approximate negentropy of the data depends on its
statistical characteristics of the daf;a. The detailed study on the probability density
of TFSS has been presented to test the relative proximity of underlying distribution
of TFSS with that of Gaussian distribution, Laplacian distribution and Generalized
Gaussian Distribution (GGD). The results of different statistical tests such as
moment test, Chi-square test, and Quantile-Quantile (QQ) plots - have been found
to favour closeness of distribution of TFSS with that of GGD. Accordingly, a GGD
function based non-linear function has been proposed for negentropy approximation
and its use in ICA algorithm. Also, it has been found that the proposed non-linear
function gives less error in approximation of the negentropy than the conventional
functions. The separation performances of conventional and proposed non-lineai‘
functions have also been studied with the fixed-point Frequency Domain
Independent Component Analysis (FDICA) algorithm and have been found that GGD
bésed non-linear function improves rate of convergence of the algofithm.

The problem of speech enhancement has also been addressed in the frequency
domain. The speech enhancement in the frequency domain is done by manipulating
spectral component of the noisy signal in accordance with noise suppression rule.
This thesis also proposes the development of noise suppression rule based on the
Maximum A Posteriori (MAP) estimation. The proposed MAP estimator uses flexible
statistical models, based on GGD, for the TFSS of the speech as well as noise signals.
Thus the noise suppression rule is adaptive with the statistics of the noise and the
same can be used to reduce effect of different types of noise such as Gaussian and

super-Gaussian or spiky signals. The noise suppression characteristic of the
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estimator depends on the type of noise. In contrast to this, most of the conventional
methods such as Wiener filter show same noise suppression characteristics to
Gaussian and spiky noise signals. The statistics of the noise signal and clean speech
signal are also estimated from noisy signal. First the statistics of noise signal is
estimated from the noise only segments of the noisy signal and are used to estimate
statistics of the clean signal from the higher order statistics of the noisy signal and
noise signals. In order to demark noise-only portions of the noisy signal, a novel voce
activity detector based on the organization measure of the spectral components has
been proposed. Again, negentropy has been used as the measure of organization of
the spectral components which is different for noise-only frames and noisy speech
frames. The experimental results of enhancement of speech contaminated by
different noise signals shows its superiority over the conventional Wiener filter. The
flexibility in the noise suppression characteristics of the proposed MAP estimator ig
suitable for doing post processing of the speech signal separated by FDICA
algorithms. The problem is difficult in the sense that the residual noise is also
speech. The separated signals from an FDICA algorithm contain components of
undesired sources in the residual form. Since these residual signals are speech like
noise, it can be further reduced using proposed MAP estimator by using one
separated component as the target speech while others as the source of the noise.
However, for the proposed post-processing the knowledge of the level of residual
noise present in the target speech is required and can be determined from the
information about noise reduction done by the FDICA algorithm. However, this
method is not blind as it requires original contribution of each source to each
microphone. The experimental results show that the post processing by the MAPS

estimator gives appreciable improvements in the noise reduction.
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Chapter 1

Introduction

“The knower, knowledge and object of knowledge; these three motivate action. Even so the doer,

the organs and activity, these three are the constituent of action”

verieeen...The Geeta,Peached by Lord Krishna , Chapter 18.

1.1. Background and Problem

Recently, researches on conversational interface [1] for intelligent
machines such as a robot and computer have received much research attention
because it renders facility to users to command and converse with machines in a
vefy natural and easy way despite huge intrinsic sophistication in the system.
The origin of research goals in science and engineering to develop such systems
that can listen, understand and speak in a natural language are not new rather it is
rooted in antiquity [2], however, in the last two decades related research topics
have been moving from fringe area to focus along with due modifications. In fact
the advancements in the artificial techniques for speech recognition and
developments of efficient Automatic Speech Recognizer (ASR) software, a
central module in conversational interface, have accelerated demand and
development of voice activated system. Of course valuable contributions from
other very closely related areas such as dialog management, computational
linguistics, speech synthesis, etc., can not be inevitably undervalued in the
integrated system.

The concept of spoken communication with a machine has been inspired
by the speech communication mechanism in humans. However, the state of art in
this technology does not model and implement the auditory system in toto. The
establishment of vocal communication between human and machine seems easy
and enjoyable but the mathematical modeling and physical implementation of the
underlying myths have been proven to be one of the grand challenges for the



modern computing technologies. One of the most important causes for this is that
the fundamentals of underlying processes of speech communication are still not
crystal clear or undiscovered. However, efforts are underway but problems are
numerous. Here only a surfacial touch to some of them will be given while
focusing on the problem of blind separation of speech in hot pursuit.

As said above an ASR plays central role in the conversational interface,
but only after fulfillment of many constraints its efficient use in the real world
applications is possible. The most important thing is the quality of speech signal
being feed. If the signal being feed is clean and undistorted like training data it is
the best case but as the quality of test signal degrades, dramatic degradation in
recognition accuracy of an ASR is well-known [3]. The journey of speech from
mouth of a speaker to the speech pick-up device is not scot-free. The chances of
getting it contaminated by background noise, or acoustic signals from other
sources or the reflected and delayed version of itself are very common and are
always possible in real world applications. It depends on the characteristics such
as availabilit'y of different sound sources or nose signals and reverberation of
acoustic environment shared by speaker and sensor. In Figure 1.1 some of the
most frequent aberrations, a speech signal may suffer have been depicted. Any of
such possible aberration in speech signal becomes problematic to speech
recognizer because such signals produce new acoustic patterns to the system for
which it is not trained and may lead to invalid recognition. Since every
subsequent processing steps starting from speech signal pick-up and their
performance depend upon the quality of speech signal, it is important to pick-up
signal with the best possible quality. Since the impinging of undesired signal on
the microphone can not be avoided completely there is always need of algorithms
for cleaning the captured speech from noise signals, for minimizing the effect of
reverberation and for separating the speech from other speech in the
pre-processing stage of recognition. In real world applications chances of
occurrence of these problems in alone are rare and their simultaneous appearance
is very common situation which makes the problem complicated and challenging.

As said above the idea of equipping a machine with vocal-activity is inspired by
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Figure 1.1. Degradation of speech in journey from speaker to ASR.

the natural system, it becomes important to implement special anthropomorphic
capabilities required for ordinary conversation. The problem of speech signal
separation arises in the multiple speaker environment where one is interested in
hearing to a particular speaker for example hearing in crowd. Humans do it
easily in everyday life. In the engineering sense humans are able in steering
their hearing attention to a particular speaker! This anthropomorphic capability
has been well-documented as Cocktail Party Effect in the scientific community
[4]. This was recognized much before, howeve:, still very little is known about
underlying processing of simultaneous speech signals in human brain [5]. In the
engineering sense problem is depicted in Figure 1.2, where there are many
Sources of acoustic signals and signals from all of them give very confused
mixture to microphone. The signal recorded by microphone under such situation
is garbage, if feed as it is, for an ASR. Thus in the artificial conversational

interface imitation and implementation of human like capability of steering



Figure 1.2. Cock-Tail Party situation. For humans it is not very difficult to pay
their hearing attention to a particular speaker or sound. But the speech signal
captured by microphone is confusing for ASR. The BSS problem is how to
extract signal of interest from the signal observed at microphones without using

any other information (in very strict sense).

hearing attention is essential for its usefulness in real world applications
Whatever may be the signal representation in the human brain for the perception
of individual speech signals from their hotchpotch [6][7], the engineering
translation of Cock Tail Part Effect is the separation or extraction of individual
signals from the cacophony of sounds. The problems becomes challenging and
complicated because in the real situation one has only access to mixed signals
observed by a microphone, or many microphones or by a microphone array and
estimation of original sources under such conditions seems 'magical. However,
there have been development of many approaches for the same and can be

broadly categorized into two groups, namely, method based on single channel




input and those based on multichannel inputs. In the first category algorithms
like tracking of formant structure [8], the organization technique for hierarchical
perceptual sounds [9], methods based on Computational Auditory Scene
Analysis (CASA)[10] have been proposed. In the second category various
geometrical methods exploiting spatial and temporal information provided by a
microphone array, have been proposed. In such methods Direction of Arrival
(DOA) of the signal sources are estimated then separation system is computed by
adjusting directivity pattern of the microphone array e.g. delay and sum (DS)
beamformer and Adaptive Beamformer (ABF)[11][12][13][14]. The most
important task in beamforming algorithms is DOA estimation and the separation
performance deteriorate with inaccuracy in DOA estimation. In contrast to these
source separation techniques, BSS algorithms do not need priori information like
DOA. It is based on the higher order statistics of the signal which is used to
segregate signals by restoring their statistical independence. It is called blind in
the sense that there is no access to mixing process and estimation has to start
from garbage (mixed signal). Thus it is process of estimation from nothing to
something. In reality, the unique estimation of original signals is not possible
without some prior knowledge; however, with certain indeterminacies such as
scaling, permutation, and delay it is possible. It is also, practically, not
problematic because in large number of applications, except for applications
involving dynamical modeling, such arbitrariness in estimation are acceptable
because useful information are available in the estimated waveform. In this
formulation the Cock tail party effect totally fits. In general the BSS problem can
be formulated as estimation, subject to aforesaid indeterminacies, of R original
sources  from their M miXed observations; from a MIMO system. However, it
is not essential that the signai is coming from MIMO system in special cases it
may be SIMO or SISO too. Among the solutions to this problem Independent
Component Analysis (ICA) [17] based approaches are so much dominating, the
use of term ICA seems a synonym for the BSS, however, it is one of the powerful
tools for BSS. The ICA based BSS algorithms estimates original sources as the

independent components of the mixed signal assuming all sources are



_statistically independent[15][16]. This is the only prior assumption imposed on
the sources, despite method is called blind. The details for different ICA
algorithms will be discussed in the next chapter. ICA based algorithms for
separation of speech signal have been developed both in time-domain and in
frequency domain. However, separation of the convoluted mixture is easier in
frequency domain because convolution is converted into multiplication and
' mixing in each frequency bin become instantaneous, but such ease is
accompanied by other problems of permutation and scaling which must be fixed
to get separated signal [18]. In this dissertation too, an ICA based BSS algorithm
based on non-Gaussianization of the mixed signal has been studied for its
application in separation of convoluted mixture of speech in frequency domain.
The non-Gaussianization based ICA algorithm works under the assumption of

Central Limit Theorem (CLT) which states that if N independent and identically
distributed standardized random variables X, X,,.....X, with arbitrary

Probability Density Function (PDF) are combined to form another variable ZzZ,

given by

il (1.1)
Zy=> Xy,
1

the distribution of Z, converges to Gaussian distribution. The effect is
reversible i.e. if the resulting random variable Z, is non-Gaussianized, addend
independent variables X,.X,,.....X, can be estimated. This gives one of the
backbone techniques for the estimation of independent components. In the
mixing process the mixed signals gain Gaussianity in similar way and can be
separated by non-Gaussianization. Different algorithms, based on this working
principle, have been developed using different measures such as kurtosis and
negentropy for the non-Gaussianization. Since negentropy based measure
provides better robustness to outliers in the data, its separation performance is
better than that of the kurtosis based algorithms [19].

In this thesis we have used negentropy based measure for non-Gaussianity

measure, as proposed in [27], and applied for the separation of convoluted




mixture of speech signal, captured by a two-element linear microphone array
from two speakers. The application of fixed-point ICA for speech signal
separation calls for many important points such as choice of non-linear function
for negentropy approximafion of Time Frequency Series of Speech (TFSS),
solution for permut&tioh and scaling problems, and removal of residual
interfering signal after separation by ICA. The choice of non-linear function
depends on the underlying PDF of the TFSS. Here we have made study on the
statistical modeling of the TFSS and accordingly propose a new non-linear
function, based on Generalized Gaussian function, for speech signal separation
by fixed-point Frequency Domain ICA (FDICA) algorithm. The validity of basic
idea of CLT has also been checked in case of speech mixing process. The
combination of Null beamforming and fixed-point ICA has been studied to
mitigate the effect of CLT non-compliance by TFSS. This thesis also proposes a
novel method for denoising speech signal based on proposed statistical model.
The study on application of proposed noise suppression rule in speech
enhancement and in removal of interfering signal from separated signal has also

been discussed.

1.2.  Organization of Thesis

Rest of this dissertation is organized as follows:

In Chapter-2, the problem of blind signal separation has been defined under
general framework. It also describes functioning and different approaches of ICA
based BSS algorithms. Our main emphasis in this chapter is on the fundamental
of non-Gaussianization, by negentropy maximization, based ICA algorithm for
BSS. .

Chapter-3 deals with the application of ICA by negentropy
maximization, in frequency domain, for the separation of convoluted mixture of
speech observed by a linear microphone array. It rationalizes the application of
non-Gaussianization based ICA algorithm on the frequency sub-banded speech
data in the light of CLT. It presents development of a deflationary learning rule

to extract independent components from mixed signal by the negentropy
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maximization. The separation performances of the algorithm under
non-reverberant and reverberant conditions have been investigated. This chapter
also explores how the non-compliance with the CLT by mixed speech signal
affects the separation performance of the algorithm.

In Chapter-4, probabilistic modeling of TFSS has been described.

Starting from Short-Time Fourier Transform (STFT) analysis, different
statistical tests such as moment test, Chi-Square( 3*) test , have been performed
to check and compare closeness of the underlying PDF of the TFSS with
Laplacian, Gaussian and Generalized Gaussian Distribution (GGD) functions.
This chapter also deals with the parameter estimation of GDD using
maximum-likelihood method. This chapter ends with the blind detection of CLT
disobeying bins using GGD modeling and its application in combining null
beamformer and fixed-point FDICA to mitigate the effect of CLT
non—compliance on signal separation.
The work presented in Chapter-5 have their bearings on Chapter-4. A GGD
based non-linear function has been used to approximate negentropy of TFSS and
has been compared with the approximation by other conventional non-linear
function. Accordingly, the same has been used in the FDICA algorithm and its
performances have been investigated with proper explanation for the
experimental outcomes.

In Chapter-6, a general method for speech enhancement based on the
GGD modeling of the speech and noise spectral components has been discussed.
A MAP estimator, using GGD a priori, for this purpose has been derived. The
experimental results for enhancement of speech, noised to different SNR levels
by Gaussian and super-Gaussian noise signals, have been presented. The same
technique has been applied to enhance output of FDICA and related results have
been presented.

Chapter-7 contains summary of the thesis and related topics for future
research. This is followed by references and my publications related to this

thesis.
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Chapter 2

Blind Signal Separation

2.1. Introduction

Blind Signal Separation (BSS), a very hot topic of research among
digital signal processing groups since a decade, is the general framework to
estimate signal contribution of latent sources only from their observed
mixtures without knowing the mixing process. In the BSS problem we are
given with the observation x(n) =[x,(n), x,(n)...x,, (n)]" at M sensors produced by
some unknown interaction function F among the R original sources
s(m) =[s,(n),s,(n).....s;(m)I  given as ‘

x(n) = F[s(n)], where r is time index. 2.1)

The task of BSS is to estimate the optimal 7!, the inverse of the interaction
function, so that the underlying original sources can be optimally estimated, i.e,

. (2.2
5 =[3,(n),8,(n).....5,, (W] = F'[x(n)]. (2.2)

The interaction function depends on the physical situation such as on the
geometry of sources and sensors, the number of sources and sensors, and the
Source to sensor transfer function. Hereafter, we will refer to interaction
function F as the mixing matrix and inverse interaction function £-! as the
demixing matrix. For the simplest condition F can generate linear instantaneous
mixture. However, in this dissertation we will consider for the convolutive
mixing system.

Because the method is blind and unsupervised in functioning [15], it has
gained wide areas of applicability such as in speech processing, image

processing, bio-informatics, cosmo- informatics [20], etc. BSS techniques have
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emerged as one of the potential solutions for the extraction or segregation of
hidden signals only from their observed mixtures. In the area of speech signal
separation it provides one of the feasible solutions for the extraction of speech

signal from the cacophony of the sounds.

2.2. ICA based BSS

The complete lack of a mixing process in the estimation of the original
sources is compensated by pivoting computation on the assumption of the
statistical independence of each latent source. However, the observed mixtures
of signals are not statistically independent due to the unknown mixing process.
The principle of statistical independence is brought into play by looking for
either non-Gaussianity of or spectral dissimilarity among the sources [21]. The
process of taking out hidden sources as the most independent components of the
mixed data is called Independent Component Analysis (ICA) and there have been
developments of numerous ICA-based BSS algorithms in the different areas of
practical applications involving multisensor signal processing, such as, speech
recognition and enhancement, biomedical signal analysis and classification,
source localization and tracking by RADAR and SONAR equipments,
cosmological image classification, and data mining [191[221[23][20]. The basic
furictioning of the ICA based BSS algorithms are shown in Figure 2.1. The
observed mixed signals x(n) =[x,(n),x,(n)...... xR(n)]T=As(n) , where A is the
‘mixing system, are passed through a tentative initial demixing system w
(randomly chosen or based on some heuristic guess and subject to further
modification) and then the mutual independence among the estimated
independent component signals y(n) is evaluated by some cost function J(W,y),
usually based on the statistics of the signal and candidate demixing system. That
in turn goes on modifying demixing system unless and until the cost function is
not optimized for the maximum mutual independence among the separated ICs.
So, paradigmatically, most of the known ICA-based BSS algorithms exhibit such '
functional similarities, but basic differences occur in the choice of the cost

function, the domain of operation and the process of optimization.
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Figure 2.1 Block diagram showing basic working principle of the ICA based
BSS algorithms.

The cost function may be based on the joint distribution or the marginal
distribution of the signal. The most popular example of the first category is the
Kullback-Liebler Divergence (KLD) metric, which measures deviation between
the joint distribution of the signal and a pre-assumed source distribution. The
second category of cost functions exploit only statistical properties of the
marginal distribution and non-Gaussianity of the data. The most important
examples of such cost functions are kurtosis and negentropy. The method of
optimizations also differs, e.g., gradient based algorithm, evolutionary
algorithms, fixed-point algorithms, etc. These cost function require prior
knowledge of the source distribution which is not always feasible, however,
some good approximations of their PDFs are used. The cost functions essentially
measures degree of independence obtained in the process of optimization and
there are many ways to measure the statistical independence which in turn has
led to development of many ICA algorithms. Thus in an ICA based BSS
algorithm ICA algorithm plays central role.An ICA process can be summarized

as follows:
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ICA Process= Objective function (Independence measure) +Optimization.

Here too I will give some elementary level description of well-known methods
however ICA by non-Gaussianization and its application in speech signal

separation is focal theme of this thesis.

2.2.1. Statistical Independence and Uncorrelatedness

As mentioned above the form of cost function depends upon the fact how
independence is measured. Thus it will be not out of place to present some
fundamentals of concept of statistical independence. Uncorrelatedness and
independence are related terms but distinct in the statistical sense. Later is
known as orthogonality or linear independence. Two random variables x and

~x, are said to be decorrelated if
COV(xl,xz) =E{x1x2}_E{x1}E{x2}=0 (2.3)

where E{x}is the expected value of x and cov(x,x,) represents covariance of
xand x,. In the case of correlated variables it becomes non-zero, may be
positive or negative depending on the fact if x is inéreasing with increase in
x, or decreasing. It is symmetric relation as cov(x,,x,) =cov(x,,X) .

In general decorrelation or uncorrelateness does not imply independence

(eXcept for Gaussian random variables).The set of N variables x, are said to be

statistically independent if

u 2.4
p(xl,xz....xN)=Hp(xi) (2.4)

i=1

where p(x) represents PDF of x. The more tractable form of the above condition

is expressed in terms of non-linear decorrelation of the involved random
variables. Accordingly, two random variables x and x, are independent if
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Figure 2.2 These figures illustrate assumption of statistical independence
described in Eq.(2.4). The 1000 samples of random variables x andx, from

exponential distribution with marginal density functions
P(x)=7e™ and p(x,) =7, were used. The joint PDF
0.5
P(x,x,) = Uiz exp{ — (6% +%,%) I, ApTTy%,) is Downton’s bivariate
I-p 1-p 1-p

€xponential PDF in which p represents correlation coefficient between them
and X5%,,7,7,>0;0< p<1 and Iy(@) is modified Bessel function of o of first

kind. Plots in first row show scatter plot, joint PDF and product of marginal PDFs
for independent x andx, while plots in second row show the same when random

Variables x, andx, are dependent, as is obvious from their scatter plot.
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Table 3.1 Measure of non-Gaussianity

Name , Definition
Differential Entropy H(x)=- [ p(x)log p(x)dx
Kurtosis K(x) = E{x*}-3(E{x"})"
Negentropy J(x) = H (X5, ) —H (%)

Mutual Information n
I®)=Jx)-) J(x)

2.5
E{g(x)h(x)} = E{g ()} E{h(x,)}. (2.5)

where g() and f() are some non-linear transformation over x and x,. It can
be imbued from Eq.(2.4) that extraction of independent components calls for a
non-linear decorrelation of the variables such that variables are uncorrelated in
the transformed space too. Thus the independence condition is stronger than the
simple uncorrelatedness or linear independence of the variables.

The ICA algorithms separated independent components by looking for
such independence in the mixed observation. There are several ways of
measuring independence between set of random variables. One of the most
straightforward methods is the use of Kullback-Leibler Divergence(KLD) as a
measure of distance between two PDF p(x) and p(y) given by

KLD(x1 y)= | () log 2Py . (2.6)
| p(y)

Use of definition of independence in Eq.(2.4) can lead to the KLD between the
joint distribution of x and product of its independent constituents x, given by

KLD(xll y)=I(x) = [ p(x)log| =& @) b 2.7

[1rG
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This is also known as mutual information I(x) and is zero if the components x,
are mutually independent. This requires knowledge of p(x) which is very hard to
estimate and estimations are not fully reliable. However, several computational
methods such as approximation by polynomials involving cumulants for the
approximation of p(x) have been developed and used in ICA algorithms [19]. In
the area of speech signal such algorithms has been applied and developed but are
computationally extensive and takes huge amount of iterations to learn

separation matrix.
2.2.2. ICA by Non-Gaussianization

The other way of identifying hidden independent components in the data
is to look for maximally non-Gaussian components [19]. This is based on the
CLT which states that the mixing of two or more non-Gaussian signals pushes
the distribution of mixed signal towards Gaussian distribution. Thus reverse of
the same i.e. non-Gaussianization of the mixed signal can yield independent
components. The different objective functions used to measure non-Gaussianity
are shown in the Table 3.1.The non-Gaussianity measures like kurtosis and
ncgentropy are based on the marginal distribution of the signal, however,
negentropy is more robust to outlier than the kurtosis. In this thesis too
negentropy will be used as an objective function. v

A lot of algorithms using such cost functions have also been developed
and is main concern of this paper. Examples of  algorithms based on such cost
functions and non-Gaussianization of the signals are fixed-point ICA by the
kurtosis or negentropy maximization [191[23][24][25]. Such an algorithm was
first developed and proposed in [26] for the separation of the instantaneous
mixture. The key feature of this algorithm is that it converges faster than other
algorithms, e.g., natural gradient-based algorithms, with almost the same
Separation quality. In [27] , the fixed-point algorithm of has been extended for
complex-valued signals; however, this algorithm has no strategy for solving the
problem of permutation and scaling arising in speech signal separation in the
frequency domain. The fixed-point algorithm for audio source separation can be
found in [28][29]. In [28], authors have proposed the application of the
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fixed-point  algorithm  for  speech  signal  separation with  the
time-frequency-model-based likelihood ratio jump scheme as a solution for
permutation. In order to combine array signal processing techniques with
fixed-point ICA by negentropy maximization, we proposed in [29] an algorithm
for the audio source separation of convolutive mixtures using a
directivity-pattern-based technique [30] to solve the permutation and scaling
problem. Also, fixed-point-iteration-based ICA is very sensitive to the initial
value from which iteration starts. The fixed-point FDICA algorithm for audio
source separation works on the time-frequency series of speech (TFSS), and thus
assumes obeyance of CLT from the TFSS in each frequency bin. However, in
[31] it has been shown that TFSS of the mixed speech signal fails to follow CLT
in every frequency bin and the separation perfoimance of the algorithm too falls
in such frequency bins. In general, any ICA algorithm based on the
non-Gaussianization of the signal in the light of CLT can face a similar adverse
situation and may fight to loose its performance in the same way because of
non-compliance with CLT by the TFSS. Such disobedience of CLT by the TFSS
pops up many hooked-up questions such as regarding suitability of negentropy
based method for speech signal separation, why such failure occurs and how to
get rid of it? These novel points will be discussed in coming chapters. The other
important point in the marginal statistics based cost function is the statistical
model used for marginal PDF of the data. In the context of speech signal
statistical modeling of its spectral components will be explored with aim to use

its best approximation in the non-Gaussianization based FDICA algorithm.
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Chapter 3

Speech Signal Separation by

non-Gaussianization bas»ed FDICA

3.1. Introduction

In the previous chapter how non-Gaussianization can be used in obtaining
hidden independent components from the mixed data has been presented. This
chapter applies the same technique for separation of speech signal observed by a
linear microphone array. It is important to mention here that it is not necessary to
use microphone array in multi-channel algorithm by BSS. It can be done by the
distributed microphones, not with a fixed geometry such as linear, and circular,
that can pick-up spatial variation of the signal. However, in our approach we
have combined array processing technique with fixed-point FDICA to solve the
permutation and scaling problems. Also, it has been investigated in [29] the
fixed-point FDICA algorithms is sensitive to initial separation matrix and better
Separation can be obtained using some good initial guess for separation matrix
such as null beamformer based initial separation matrix. In this regard use of
microphone array is beneficial over randomly distributed many microphones. In
this chapter the convolutive mixing model of the speech signal will be
considered and separation will be done in the frequency domain using
- fixed-point ICA by negentropy maximization. _

The origin of the BSS technique in audio signal separation can be traced

- back to the contributions of Cardoso [32] and Jutten [33] for practical signal
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separation algorithms based on the aforementioned principle of statistical
independence of the sources [34]. These algorithms are based on higher order
statistics of the signals mutual independences measure among the independent
components (IC). Recently, there have been development of many excellent
algorithms, in the time domain and in the frequency domain or mutualistically
combined in both while weighing their pros and cons, for audio source separation
based on ICA [35] [36][37]. In fact, in the list of BSS methods for the audio
source separation, ICA-based BSS algorithms have been dominating due to the
emergence of several algorithms. However, due to their computational
complexities and slow convergence there hardly exists any algorithm that can
handle the general class of BSS problems for real world applications in real time
[38]?

3.2. Speech Signal Mixing and Demixing

In the real recording environment, signals reaching each microphone are
not only direct-path signals, but also delayed and attenuated versions of the
source signals, which gives thought of existence of virtual or mirror sources, and
noise signals. Therefore, in the real world mixin’g model is best approximated by
the convolution of the source s(zn) to sensor transfer function and the source
signal components reaching microphones. Accordingly, the speech signals
picked up by a microphone array with M microphones are modeled as a linear
convolutive mixture of R impinging source signals s(n) such that the

M-dimensional signal vector picked-up by the array is given by

x;(n) = § > hy(p)s,(n—p+) +d(n); (j=1,2,...M), 3.1)
i=l p=1
where 5,5 =[5,(t),5,(),......s, (O represents the original source signals,k; is the
P-point impulse response between the source i and the microphone j, d,(n)is the
noise signal, and n is the time index. The mixing model given here is for the
arbitrary number of speakers and microphones, however, in this thesis we

consider the case of two microphones and two sources, i.e., M=R=2, for
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- Figure 3.1 Convolutive mixing and demixing models for speech signal at the
two element linear microphone array. The mixed signals x(n) and x,n) at
microphones were obtained by adding the speech signals refii, refia, refs;, and
ref2; reaching each microphones from each source. The speech signals refy;, ref;,,

ref21, and ref22 reaching each microphone from each speaker are called as the
reference signals. The right half ( after microphones M,and M,) of the figure

shows demixing process, a reverse of the mixing process.

simplicity and convenience and no noise condition. For such a situation the
signal mixing and demixing models are shown in Figure 3.1. Accordingly, the

observed signals x;(n) and *2(n) at the microphones are given by

x| by By o| 5 |_| refii+ref, (3.2)
xz(n) B h21 hzz sz(n) B ref21+ref22

2

where  ref, =h, ®5,(n); refiu=h, ®5,(n); ref,=h, ®s,(n);  ref,=h,®s,(n) are called

reference signals and ‘ ®’ represents convolution operation.
3.3.1. Frequency domain model

As stated earlier that an FDICA algorithm separates signal independently
19



in each frequency bin. The signal is decomposed into frequency bins by
time-frequency analysis. The notion of time-frequency analysis, which has
been analogically developed from the concept of coherence states in quantum
mechanics [39][40], grew in the field of signal processing for the analysis of
speech signal. The technique of time-frequency processing of signal, especially
suitable for the processing of non-stationary signals, captures both the static and
dynamic aspects of spectral information in a single feature vector. Thus the
time-frequency series not only gives spectral information but also reflects the
time dependence of the spectral components. It has a wide range of applications
such as acoustic analysis, radar tracking, and adaptive filtering. Since the speech
signal is also non-stationary, more accurate analysis of it is possible by means of
time-frequency processing. During the last 50 years there have been
developments of many powerful time-frequency analysis methods for speech
signal with comparable merits and demerits. Details of some of these methods
can be found in [40][41][42][43]. The two most widely used methods; Short-time
Fourier Transform (STFT) and Linear Predictive Analysis (LPC) make the
implicit assumption that speech signals are stationary over a very short time
interval called the analysis window size. This assumption leads to trade off
between the achievable frequency and time resolution due to uncertainty
principle. The other methods such as Cohen’s class of generalized time
frequency representation [40] and Winger distribution analysis [43] provide high
time-frequency resolution without any trade off but are complicated by the
inference terms [44]. We will consider in this study time frequency analysis of a
speech signal by the STFT method for analysis in the joint domain of time and
frequency. The whole process of STFT analysis is depicted in Figure 3.2.The
arbitrary speech signal x(n) is divided into M quasi-stationary frames by using
overlapping analysis windows (hanning/hamming) a(n) of the fixed length (say

20 ms), called as frame length such that

x,(n,A)=x(mh(n—A¢), 1=1,2,...M; (3.3)
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Time-Series of a speciral component

Figure 3.2 Process of the generation of time-series of speech spectral

components by STFT analysis.

where A= is frame no. and ¢ is step size. Then N-point DFT of each such

segment is taken to produce short-time spectrum
X4 )=[X(L f,), X (A4 £)sn X (4, £,)] Of N frequency components in which each is

given by

‘ N-1 _ 2 4
XA, f)=) x,(ne’ NV ,0<k<N. (34
n=0

The complex samples of the same frequency from each x(4,s)are chosen and
stacked in time succession (in accordance with the frame no. which corresponds
to time) to form a time series of spectral components or TFSS. Thus the time
series of the kth frequency component (also known as frequency bin) is
€xpressed as

ZF) =X, ), Xi2s £ X (o £ Xy (M, £, (3.5)
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The idea of using the short time spectra for the separation was first proposed in
[18] because the impulse response between source and microphone are assumed
to be stationary over short time due to which mixing process in each frequency
bin does not remain convolutive rather it can be assumed to be instantaneous.

Thus in the frequency domain formulation the mixing model in Eq.(3.1) can be

expressed by taking its STFT as follows

R (3.6)
X},(ﬂ, f) = .Z Hjib(ﬂ‘sf)si(ﬂ':f)'l—l)i(l? f); (] = 1> 2: ""M)!

=

where symbols in capital represents STFT of the quantity represented by lower
case letters. For the case of two speakers and two microphones mixing model

under the clean condition ( no noise) is given as

[Xxf)

H, (f) Hm(f)}[sl(f)]
X,(f) .

]zH(f)S(f )z[ﬂmm Hy () |L5,(F)

3.7)

This equation revels that the mixed signal in any frequency bin is composition of
the contribution from each sound source. Thus under the light of CLT the
Gaussianity of either of mixed signal will exceed that of individual contribution
signal in any frequency bin (However, later in this thesis it will be shown, of
course that is also a part of contribution of the thesis, that this is not always true
and is problematic for the ICA algorithm). This forms the basis for spectral
separation of the speech signal by ICA methods based on non-Gaussianization.
The FDICA separates the signal in each frequency bin independently, and this

separation process is given by

S | _[R W () Wuo(f) || X,(f)
= =W X =
L‘;(f)} [Yz(f)} DX [Wmm %(f)][xz(f)l (3.8)
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where  [Y(£), %,(N)] are ICs ; s(f)=[5,(s) S,(f)Y are estimated TFSS of the
sources, and W(f)= separation matrix in frequency bin f. Any one row of the

separation matrix is called separation vector for a particular source.

3.3.  BSS Algorithm for Spectral Separation

FDICA algorithm works on the TFSS of the mixed speech data to sieve out TFSS
of the independent components in each frequency bin. Fixed-point ICA was first
developed and proposed in [26] for the separation of the instantaneous mixture.
The key feature of this algorithm is that it converges faster than other algorithms,
like natural gradient-based algorithms, with almost same separation quality.
However, the algorithm in [22][26] is not applicable to TFSS as these are
complex valued. In [27] [45], fixed-point ICA algorithm of [26] has been
extended for the complex-valued signals, however, this aigorithm has no strategy
for solving the problem of permutation and scaling arising in FDICA for speech
signal separation. The fixed-point ICA algofithm [22] is based on the heuristic
assumption that when the non-Gaussian signals get mixed it becomes more
Gaussian and thus its non-Gaussianization can yield independent 'components.
The frequency domain mixing model for the speech signal invK.(3.7) revels that
the TFSS in any frequency bin is superposition of spectral contributions of each
source. Thus, in the light of CLT,TFSS of mixed speech signal in any frequency
bin is more Gaussian than that of any independent source.

Obviously, non-Gaussianization of TFSS can give TFSS of independent
Sources from which original signals can be reconstructed. The process of
non-Gaussianization consists of two-steps approaches, namely, pre-whitening or
 sphering and rotation of the observation vector as shown in Figure 3.3. Sphering
is half of the ICA task and gives spatially decorrelated signals. The effect of
mixing, whitening and rotation on the data is shown in the scatter plots of Figure
3.4. Whitening of the zero mean TFSS is done using Mahalanobis transform [46].
Accordingly, the whitened signal x,(f,» in the Jth frequency bin is obtained as
follows:
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Figure 3.3 Functioning of the fixed-point FDICA for two input channels.

b A

Separated

Figure 3.4 Scatter plots showing effects of mixing, whitening and ICA on the

speech data distribution.
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X, (f.0)=0NHX(f.D), (3.9)

diagonal matrix with positive eigen values 4 >4 >....... > A, of the covariance
matrix of X(f,.n and V, is the orthogonal matrix consisting of eigenvectors.
The task remaining after whitening involves rotating the whitened signal
vector X, (f,) by the separation matrix such that Y(5)=w(f)X,(f,» equals
independent components. The cost function used for measuring the
non-Gaussianity is negentropy. The negentropy J(Y) of the TFSS of the candidate
IC, Y(f,» is given by (frequency index f and frame index ¢ are dropped
hereafter for clarity)

J(Y) = H(Ygauss) - H(Y) (3. 10)

where H(.) is the differential entropy of () and Y, is the Gaussian random

pauss
variable with the same covariance as of Y. This definition of negentropy ensures
that it will be zero if Y(f,» is Gaussian and will be increasing if Y(f,7 is
tending towards non-Gaussianity. Thus negentropy based contrast function can
be maximized to obtain optimally non-Gaussian component. Here we are placing
derivation of such a deflationary learning rule in which one separation vector w
(any one row of the separation matrix) at a time will be learned. The negentropy

can be approximated in terms of non-quadratic non-linear function G as follows
[19]:

5 (3.11)
J(7) = OLE(G() ~ F{G(5 e M1

where o is a positive constant. The performance of the fixed-point algorithm
depends on the used non-quadratic non-linear function G. The choice of the
non-linear function G depends on the PDF of the data. Some of the non-quadratic

functions used for complex-valued signal separation are
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G X) =,/al+Y ;a, =0.01, (3.12)
G,(Y) =log(a, +Y);a, =0.01, '

The most general form of non-linear function that can be used for speech data
(assuming TFSS has super-Gaussian distribution) is G,(¥). Following findings in
[19], we will also use non-quadratic functionG,®), whose first and 2nd-order

derivatives go(Y) and g;(¥), respectively, are given by

0.5

and g;(Y) = m

1
g&X)=—""n
2 (a2+Y2) (3.13)
The one unit algorithm for learning the separation matrix W(f) is obtained by
maximizing the negentropy based contrast function. The speech signal is also
modeled as a spherically symmetric variable, and as pointed out in [19], for a
spherically symme‘tr‘ic variable, modulus-based contrast function can be used to
measure non-Gaussianity. Accordingly, we use the same contrast function as in

[19] and is given by
3.14
I =EGIw X ) (3.14)

where w is an M-dimensional complex vector such that

Egw'X Py=1=|w|=1. (3.15)

This contrast function may have M local or global optimum solutions w, (i=1,2,
..., M) for each source. Thus learning each w calls for the maximization of

Eq.(3.14) under the constraint given in Eq.(3.15). The maxima of J(Y) can be
found by solving the Lagrangian function L(w,w"”,1)of the above, given as

Liw,w" 1) = E{G(w"X, P}t AE{w"X,}~1}, (3.16)




where Ais Lagrangian multiplier. In order to locate maxima of the contrast

function, the following simultaneous equations must be solved.

oL oL oL 3.17)
—=0; =0; and —=0
w  ow? a7

These equations can be obtained from Eq.(3.16) as follows

3.18
-a%=E{g(lW”XwI2)WH}+/1WH=O, (3.18)
W
3.1
aalji=E{g(leXWI2)Xffw}+ﬂw=O, (3.19)
W
2

From here, we proceed further in the light of following two theorems [47]:

THEOREM 1: If function Azz*) is analytic with respect to 7 and z* all
Stationary points can be found by setting the derivative with respect to either
Zor z¥

THEOREM 2: If f(z,z*) is a Junction of the complex-valued variable 7 and its
conjugate, then by treating 7 and z* independently, the quantity directing the
maximum rate of change of f(z,z*) is Vz'f(z)

Accordingly, the final solution using Newton’s iterative method is given by

oL Tar( oL \T*
which can be further simplified into
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W oew = w(E{g(w'X, P)+(w'X, P)g'(w'X, MY -E(gdw?X, HXZw)X,}. (3.22)
The stopping criterion for iteration is defined as §=(w,,-w,, )’, which becomes
very small near the convergence. Since each update changes the norm of w, after
each iteration separation vector w for each source is normalized as follows to

maintain compliance with Eq.(3.15)

W

new

W, | (3.23)
As this is a deflationary algorithm, independent sources are extracted one by one
in the decreaéing order of negentropy from the mixed signal. Thus after each
iteration, it is also essential to decorrelate w to prevent its convergence to the
previously converged point. In order to achieve this, Gram-Schmidt sequential
orthogonalization can be used, in which components of all previously obtained
separation vectors falling in the direction of the current vector are subtracted.
Accordingly, the orthogonalized separation vector w, for the ith source after jth
iteration is given by

il | (3.24)

_ T
W, —Wi-—Z(Wi W)W
j=1

The update Eq.(3.22) is used to estimate separation vector w in each frequency
bin from whitened TFSS of mixed signal for each source in the deflationary

fashion and separation matrix W(f) in any frequency bin fis given by

Wi | Wulf) - Wy ()

W(f)= (3.25)

We| [Wulf) - Wr ()
Each row of this separation matrix uniquely corresponds to a separation vector w
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for a particular source. Because this separation matrix has been obtained using
whitened signals, its pre-multiplication with whitened signals in the frequency
domain gives the TFSS Y(f D= (£.0.% (f.0h. Y (f,0] Of the separated signal,

ie.,

SU£.)=Y(f.0) =W ()X, (f,1). (3.26)

3.4. Permutation and Scaling Problem

In order to get separated signal correctly, the order of separation vectors
(position of rows) in W(f) must be same in each frequency bin. The deflationary
algorithm separates original sources in the decreasing order of negentropy. But
the order of negentropy for the independent sources does not remain same, due to
change in contents, in all frequency bins which in turn leads to the
inter-exchange or flipping of rows of W(f) in an unknown order. This is called
permutation problem. The other problem is related with different gain values in
- each frequency bin. However, for the faithful reconstruction of the signal it
should be same. This is called scaling problem. If these two problems are not
solved, Eq.(3.26) will give another mixed signals instead of separated
components. There have been developments of several methods to resolve theSe
two inherent problems [48]. However, we will use here Directivity Pattern (DP)
based method using null beamformer [30] for the reason explained in the
following section. The DP based method requires the DOA of each source to be
known. In the totally blind setup, this cannot be known so it is estimated from

the directivity pattern of the separation matrix. The DP F,(f,0) of the

microphone array in the Rth source direction is given by [30]

M . . 3.27
F.(f.0)= P Wi (f)expl j2zed, sin /], (3:27)

where wy®(r) is an element of the separation matrix obtained in Eq.(3.25),

R=1,2. The DP of the separation matrix contains nulls in each source direction.
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However, the positions of the nulls vary in each frequency bin for the same
source direction. Hence by calculating the null directions in each frequency bin,
the DOA of the Rth source can be estimated as

;2% (3.28)
0, = & ;&(fp),

where 6,(f,) denotes the direction of null in the pth frequency bin. For the

present case of two sources, these are given by

@(fp):min[arg.mein IE(f,.6)}, arg.min lﬁ(fp,e)q,

(3.29)
92(fp)=max[arg.mgn E(f,.6)\, arg.min IE(f,,6) q,

where min[u,v] and max[x,v] are defined to choose minimum and maximum,
respectively, from u and v. Then the separation matrix in each frequency bin is
arranged in accordance with the directions of nulls, which sort-out the
permutation problem. After estimating DOA, the gain value in each frequency
bin is normalized in each source direction. The separation matrix normalized in
this way will have unit gain in the target source direction and negative gain in
the source direction to be jammed. However, it will have adequate gain in other
directions which will be harmful in the reverberant conditions. Gain in the Rth

source direction in the pth frequency bin is given by

1 (3.30)

G(f)=——">=
P Fo(f,00))

where 4, is the estimated direction of the Rth source which can be obtained

from Eq.(3.28) or by the histogram of the directivity pattern, as proposed in [29].

Thus, de-permuted and scaled separation matrix is given by
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%(f,)0.. 0 Wiu(y) - Wi(f,)
W)= = :: 0 . . .
0 0.0 (f) || Wi(£,) - Wy(£,)

(3.31)

This scaled and depermuted matrix is used to separate the signals in each
frequency bin. Then by using overlap-add technique [49] time-domain signal is
reconstructed from the TFSS of each source. However, in order to use W(f) of
Eq.(3.25) in the time domain to form an FIR filter, it is essential to de-whiten

the separation filter as follows:

W) = WEQU) ™. (3.32)

Then uwsing de-whitened W(f), an FIR filter of length P can be formulated to

separate the signals directly in the time-domain as follows

. 3.33
() =3 w(r)x(n-r). 639

r=0

3.56.  Algorithm initialization

The deflationary learning rule for w in Eq.(3.22) is sensitive to the initial
value of separation vector w. It can be initialized by a random value or some
heuristically chosen good guess values such as NBF-based initial value. NBF is a
geometrical technique for the speech signal separation in which the separation
filter depends on the DOA, frequency of the signal and the geometry of the used
microphone array. NBF jams signals from the undesired directions by forming
nulls in DP in that directions while setting look direction in the direction of
desired signal source. Accordingly, DP in Eq.(3.27) for the NBF based
Separation matrix W*(f) for the look direction§ and  null direction 8,

should satisfy the following conditions
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~ ~ (3.34)
F(f.6)=1and F(f,6,)=0

These simultaneous equations can be solved to give the following solutions for

the elements of separation matrix w”'(f)

BF . A . A .oaA oA oA (3.35)
Wi (f)=~exp[—qlsmHz]x{—exp[ql(smé’l.—smﬁz)xexp[qz(sm91—-smHz)]} .

and

BF - A A <A s A A -1 (3'36)
Wy, (f)=-expl-g, sin8,]1x{-explq, (sin b, -sin 8,) Xexp[q, (sin  —sinH,)]} .

Similarly, for the look direction é,and null direction 4 following conditions
are satisfied by the elements of separation matrix W* (1)

n n (3.37)
F,(f.6)=0and Fy(f.4,)=1.
On solving these, the following solutions are obtained
(3.38)

W, (f) =—exp[—g, sin 49'\1]><{--exp[q1 (sin 8, —sin ,)]—explq, (sin 52 —sin él)] }_1,

and

W2 () =—expl—q, sin 6 1x{—explg,(sin 6, — sin §,)] - explq, (sin §, —sin g1}~ (3.39)

where g, = j2zd, f [c and g, = j2zd, f [c, c=velocity of sound in given environment.
The NBF based separation matrix is approximately optimal and is derived for
ideal far-field propagation of acoustic wave. However, under the reverberant

condition, its separation performance degrades markedly.

3.6. TFSS and Central Limit Theorem (CLT) Compliance

The most important thing from here that can be concluded about the PDF
of X,(f) is that it is convolution of PDF of S$,(f). From Eq.(3.7) the signal

received at ith microphone is given by
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X,(f) =Hi1(f)Sl(f)+Hi2(f)S2(f)=Yil(f)+Yiz(f)' ; (3.40)

where Y, (f)and Y, (f) represents respectively contribution of first and second

source in frequency bin f at ith microphone. For simplicity in writing if the PDF
of The PDF Frn(®) of X,(f) is given by convolution of PDF of

Y,(H)and Y,(f) as follows

= (3.41)
fx,.(f)(xi) = finl(f)(yil)fY,-z(f)(in = Vi )dy;-

This simple addition of contribution of each signal in each frequency bin pushes

GGD(2.5,0.6,0.88) —’
—&- Added-1 -
Added-2
Added-3 N
~ Added-4 '
Added-5
Added-6
Added-7
- Added-8
Added-9
Added-10 7

+

0.9

)

Figure 3.5 Showing effect of CLT by summing 10 strongly Laplacian
distributions (shown by dashed line with GGD (mean, scale, shape)). New PDFs
are obtained using Eq.(3.41).
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the nature of distribution towards the Gaussian distribution under the light of
CLT. It can also be imbued from here that if the signal contribution by any
speaker in any frequency bin is insignificant the movement towards Gaussianity
will be also insignificant and separation by non-Gaussianization will be poor.
For example, Figure 3.5 shows how the distribution of a strongly Laplacian
distribution with unit variance changes when added to itself. As the number of
addition increases the resulting distribution becomes more and more smooth.

The fixed point FDICA by hegentropy maximizations extracts TFSS of
independent sources by the non-Gaussianization. For the effective functioning of
the fixed-point FDICA it is essential that the TFSS of the mixed speech signal
should be more Gaussian than that of the independent components. It is evident
from Eq.(3.7) that the TFSS of mixed signal in any frequency bin is a
superposition of the spectral contributions of all mixing signals in the same
frequency bin. This is the mathematical reason for the Gaussianization of the
mixed signal. Thus the power, to separate ICs, comes in the algorithm due to the
validity of the following logical fact

Gaussianity of the mix'ed speech signal> Gaussianity of the independent speech signals.

If the above fact is not followed, it will be against the very basic working
principle of the algorithm and hamper the performances of algorithm as is shown
in [31]. One of the easiest mathematical translations of the above logical
touchstone can be done in terms of kurtosis. Accordingly, validity of CLT can be
checked by computing and comparing the kurtosis of the TFSS of the mixed
signal and reference signals in each frequency bin. The kurtosis of spectral
component in each frequency bin, denoted hereafter as spectral kurtosis (SK), is
given as the ratio of the fourth order central moment to the second order moment

[50][51]. Accordingly SK(f) in frequency bin f is given by

_C{8%,5%, 5% 5%}
[C,{S*,8*}]" (3.42)

SK(f)
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where S*e{X(f,5),X"(f,r)}. This definition varies with the placement of
conjugates [52] but following [53][67] and assuming spectral component of
speech as complex conjugate random variable simplified expression for SK is

given by

SK(f)'- E{l X(f) 14}‘2E2{|X(f) l2} (3.43)
- [E{1 X(f)P}T '

As in the fixed point algorithm, data are sphered so that Eq.(3.43) further

simplifies to
SK(f)=E{I X (f)I'}-2. (3.44)

The aforementioned condition for Gaussianity of the mixed data can be satisfied

by verifying the following conditions in terms of SK

SK,u(f) <min{SK,. (f),5K,,, ()},

SK,,(f) <min{SK,,, (£).5K,, (/)}, (3.45)

where SK,, =Sk of mixed signal at the ith microphone.

Using the expressions for SK in Eq. (3.43) or(3.44), the validity of the
CLT can be tested in each frequency bin. However, this method is not blind
because it requires reference signals which are not available in the real

applications.

3.7. Objective Evaluation Score

In order to evaluate the performance of the algorithm Noise Reduction Rate
(NRR), Spectral NRR (SNRR), and Spectral Correlation Coefficient (SCRF) y(f
have been used. NRR is defined as ratio of speech signal power (computed from
reference signal) to the noise power. SNRR is given as NRR in any frequency
bin. SNRR for the ith source (here M=R=2) in the fth frequency bin is given by

35



E{\W, (F)ref,, () + W, (f)ref,, ()P} (3.46)
° BQY, () -W, (fref,,(f)+ Wy (Frefy (F) P}

SNRR,(f)=10log

SCRF between ICs  %(f) and Y,(f)in a frequency bin fis given by

S UL -FOHGD-FHON

Y(H=—= . (3.47)
\&lYl(f)-Yl(f) F\/}m:ll’z(f)—z(f)lz

3.8. Experiments and Results

The layout of experimental room is shown in Figure 3.6. The spacing between
two microphone was kept at 4 cm. Voices of two male and two female speakers,
at the distances of 1.15 meters and from the directions of -30° and 40° were
used to generate 12 combinations of mixed signals x; and x; under the described
convolutive mixing model. Mixed signals at each microphone were obtained by
adding speech signals refi;, refia, refai, ref22. The speech signals refi;, refiz, refsi,
and ref; reaching each microphone from each speaker are used as the reference
signals. These speech signals were obtained by convolving seed speech with
rdom impulse response, recorded under different acoustic conditions, which are
characterized by a different Reverberation Time (RT), e.g., RT =0 ms, RT=150
ms and RT=300 ms. First of all STFT analysis of the mixed data is done to obtain
TFSS. The STFT analysis conditions are shown in the Table 3.1. The TFSS data
in each frequency bin are whitened in accordance with Eq.(3.9) before being fed
into iterative ICA loop. As explained in the previous sections whitening is only
half ICA, the whitened data are used to learn separation vector in accordance to
Eq.(3.22). At first the algorithm is initialized using random values of separation
vector w in each frequency bin. Algorithm learns separation vector in each
frequency bin. The algorithm begins to converge after 20 iterations(less for
RT=0 ms) for RT=300 ms and stops when the stopping criterion is satisfied. The
convergence curves for RT=0 ms and RT=300 ms are shown in figures (a) and

(b) respectively of Figure 3.8.
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Figure 3.6 Layout of the experimental setup.

The stopping criterion & was fixed at 0.001.Using directivity-pattern-based
methods, DOAs of the sources are estimated. The DOAs of the 1st source s, and

2nd sources,, estimated using Eq.(3.28), are presented in Table 3.2 along with
true DOAs. The histograms of Direction of Nulls (DON) formed by the
separation matrix are shown in Figure 3.7. It is evident from there that in all
frequency bins DON are not in the same direction. In some frequency bins it is
swapped with the DOA of other sources indicating that separation matrix is
permuted, however, maximum no. of nulls are occurring in a particular source
direction, shown as white bar in Figure 3.7, and hence this can also be used as
the DOA information.Using DOA information, the separation matrix is scaled
using Eq.(3.31). The DP of the separation matrix before and after de-permutation
and scaling are shown in Figure 3.9. That figure shows how the directional nulls
of the separation matrix get blurred with increasing RT resulting in poor
Separation. After solving the permutation and scaling problem the DP of
Separation matrix shows unity gain in the look direction and nulls in the direction

of source to be rejected.
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Table 3.1. Signal analysis conditions

Sampling freq. 8000 Hz
Frame Length 20 ms
Step Size € 10 ms
Window Hanning
FFT length 512

) ‘ 0.001

In order to evaluate the performance of the algorithm with NBF based
initialization, the initial value of w is generated for every frequency bin using the
estimated DOA and Eq. (3.35)-(3.39). Using these initial values in each
frequency bin, ICA is performed. The NRR results under both initializations are
shown in Figure 3.10. There occurs severe degradation in the separation
performance with the increasing reverberation time in both cases. It is also
evident from Figure 3.10 that the NRR improvements for the non-reverberant .
case are almost same for the both types of initializations. However, for
reverberant conditions, NBF- based guess value shows better performance in the
NRR as well as in the convergence speed, see Figure 3.11, over random
initialization. In order to study the effect of over-iteration on the separation
performance, NRRs for the different number of iterations for both the NBF based
initialization and random value based initialization were observed under

different RTs. The average NRR versus

Table 3.2 DOA Estimation result

RT-> RT= 0 ms RT=150ms | RT=300 ms
Sources—> | S 5, 5, 5, 5, 5
Est. DOA |[-31.1 |40.0 -32.2 139.0 |-28.1 |42.1
True -30 40 -30 40 -30 40
DOA
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(a) (b)
Figure 3.7 Estimated DOAs from directivity patterns of the separation matrix.
These figures show histogram of DON in DP of the separation matrix for

male-female speaker combination. Permutation can be observed as the DON

formed by separation vector are available in both source direction, however,

maximum no. of nulls (shown as white bar) are available in a particular source

direction

number of iterations for RT=150 ms and RT=300 ms are shown in
Figure 3.12. The maximum iteration limit was set at 1000. It is evident from that
figure that NRR performance is slightly changed by over-learning and NBF

based initialization results in better performance than that of the random value
based

0.25 —— T T T 0.18 " —’
. . 0.16 (\/_—_' ]
Q 0.2+ ] %
g 92 So.14 -
8 R1=0 ms,f=1.2kHz 2
@ @ 0.12
30.15 2
2 2 RT= 300 ms ,f=1.2kHz

0.1 0.08L- , . ,
0 20 40 60 80 0 20 40 60 80
No. of iteration No. of iteration
(a) (b)

Figure 3.8 Convergence of the algorithm for the source combination male and
female, f=1.2kHz,(a) RT=0 ms (b), RT=300 ms.
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Figure 3.9 DP of the ICA based separation matrix obtained under different
reverberation time. The left-hand side is unscaled and permuted and right-hand side
figures represent DP for the scaled and permuted separation matrix. Under no
reverberation nulls are sharp and clear resulting in good separation. For moderate or

high reverberation directional nulls are blurring which results in poor separation.
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Figure 3.10 NRR improvement using consumed in extracting both sources under
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Figure 3.12 Effect of over-iteration on the NRR performance.
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initialization. In order to see the performance of the algorithms in each frequency
bins spectral NRR, defined in Eq.(3.46), and correlation coefficients between the
~ separated components, as defined in Eq.(3.47), were studies. Since the algorithm
separates the signals independently in each frequency bins, the separation
performance in each frequency bin is important. It has been found that the
separation quality in each frequency bin is not same, however, TFSS in each
frequency bin is assumed to be independent. SNRR for the male female speaker
combinations for RT=0 ms, RT=150 ms, and for RT=300ms are shown in
Figure 3.13, Figure 3.14, and Figure 3.15. It is evident from these figures
that the separation performance in different frequency bins is unexpectedly
uneven. In Figure 3.16 the spectral correlation coefficient between the separated
components is shown which also indicates different degree of separation in each
frequency bin. Since the TFSS in each frequency bin is assumed to be
independent such unevenness in performance is unexpected. Factor responsible
for this may be the difference in nature of data, as while the other experimental
conditions are same, in different frequency bins. Among the other statistics of
the TFSS Gaussianity of the TFSS of mixed data is important for the proper
working of algorithm. This is discussed next along with more experimental
results. One of the possible causes of such behaviors in SNRR has been
discussed in next sub-section.

In order to study the effect of different DFT size and frame shift sizes,
further experiments were performed with random and NBF based initialization.
The analysis frame size was fixed at 20 ms, which contains 160 samples of data
at a sampling frequency of 8000 Hz, and the frame shift size has been varied
from 10% to 80% of the analysis frame size. The results of achieved NRR and
consumed computation power (number of iterations consumed for fixed J) are
shown in Figure 3.17. The obvious benefit of the NBF based initialization over
random value based initialization is rapid convergence. This is natural because
Newton-Raphson method is well-known for its sensitivity to initial value in
finding the solution and NBF provides one of the ideal or highly optimized

separation matrixes under no reverberation.
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Figure 3.14 SNRR for RT=150 ms for male female speaker combination.
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Experimental Results of CLT Compliance Test:

The validity of CLT in TFSS of any frequency bin can be checked by verifying
the relation given in Eq.(3.45) for the CLT compliance test. That test was
performed for the speech data for the six combinations of mixed data for
different DFT sizes and RTs. The related results are shown in Figure 3.18. It is
interesting to note that the TFSS does not follow the CLT in every frequency bin.
The percentage of CLT disobeying TFSS is almost independent of the DFT size

—©— NBF,DFT=1024
=*— BND,DFT=1024

@ 0 &,
S i
i
=z 5
0 . ’
10 20 30 40 50 60 70 80
Frame Shift (% of [Frame size=160 samples])
g 60 T T T T T T T T j
2
©
8
5 -
8 BF,DFT=1024
§ D,DFT=1024
b4 7] RND,DFT=512

10 20 30 0 5 e 70 80
Frame Shift (% of [ Frame size=160 samples])

Figure 3.17 NRR and number of iterations consumed by the FDICA algorithm for
different values of the DFT size, frame size and frame shift size. RND (NBF)
indicates random initial value (NBF based initial value) for w was used. (Result is

averaged for six speaker combinations).
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and there are no significant changes with the change in reverberation time.
However, for the higher values of RT a significant difference in the percentage
of CLT-failing sub-bands has been found, as shown in Figure 3.19 and
Figure 3.20, for both microphones. This is indicative of the fact that the room
acoustics is also influential in the disobedience of CLT by the TFSS. As the DFT
size increases, the number of CLT-disobeying bins does increase, however, they
remain clustered. This is shown in Figure 3.21, and that is happening due to an
increase in the frequency resolution for higher DFT sizes. In order to explain this
interesting phenomenon we take into conmsideration the contribution of each
signal source in the mixing process, as it is evident from Eq.(3.7) that TFSS in
each frequency bin is a superimposition of spectral contribution from each
mixing source and this is the cause of Gaussianization. For this the spectral
content of the mixed signal and reference signals were examined in the
CLT-disobeying frequency bin and ih the nearest CLT-obeying frequency bins.
In order to measure the spectral contribution, plots of the magnitude of the
spectral contribution from each of the reference signals and the mixed signal
were examined, and one of such plots is shown in the Figure 3.22. In that figure,

the temporal contribution of each source in a CLT non-complying frequency
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Figure 3.18 CLT-disobeying bins for different DFT size and reverberation

time at Micl. Shown values are averaged from 6 mixed speech data.




sub-band and the nearest CLT complying frequency bin are shown. It is evident
from this figure that in the shown CLT-failing frequency bin, the contribution
from the first speaker is not available at all instances, however, in the
CLT-obeying frequency bin its temporal contribution is relatively better. It is
also evident that in the CLT obeying bins both sources make a rich contribution
but in the CLT-disobeying bin either one make a very rare contribution or no
contribution, which in accordance with Eq.(3.7) results in a mixed signal with
content from either source. The resulting TFSS thus in reality contains a signal
from single source and thus fails to comply with CLT. It is, therefore, concluded
that the sparseness in the spectrum has an important role in relation to the CLT
non-compliance. It is also important to note that only spectral sparseness cannot
be considered to be the sole cause of CLT disobedience. The role of other causes
such as room acoustics, natural pauses (this also results in spectral Sparseness in
the temporal queue of TFSS) cannot be denied. Since TFSS is generated by the
STFT analysis it can be inferred that unless there are no long pauses in the
speech, it cannot contribute a large number of dumb samples to the TFSS in any
frequency bin. In the presence of moderate reverberation, the pause period may
be modified by the reflected speech. Such reflected speech increases correlation
only among the samples of TFSS, and the spectral content of the signal remains
the same even under high reverberation, but if there is any role of pauses in the
CLT failure it will be modified by the reverberation. However, such possibilities
are still unexplored and are left for further study. In order to show the effect of
the CLT disobedience by the TFSS on the separation performance, spectral NRR
and SCRF were observed for different source combinations. Such results for one
- of the source combinations are shown in Figure 3.23 to Figure 3.26. It is evident
from these figures that in the CLT-disobeying frequency bins SNRR is low and
SCREF is high. This occurs because TFSS in such frequency bins do not comply
with CLT. It is interesting to note that there have been development of ICA
algorithm which exploits the temporal absence and existence of signal from
different speakers for the blind source separation [55] in the anechoic

énvironment, however, spectral sparseness is problematic for FDICA based on
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Figure 3.23 SNRR with CLT-disobeying frequency bins at Mic.1 for
RT=300ms. (Speakers male and female).
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Figure 3.24 SNRR with CLT-disobeying frequency bins at Mic. 2 for
RT=300ms. (Speakers male and female).
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Figure 3.25 SCRF between separated ICs w.r.t CLT test for mixed signal
at Mic.1 (RT=300ms).
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Figure 3.26 SCRF between separated ICs w.r.t CLT test for mixed signal
at Mic.1 (RT=300ms, (Speakers both male, DFT size=512).

non-Gaussianization and to the best of our knowledge its use in audio signal
separation in a realistic environment has not been reported yet. Almost similar
results have been found . for the other CLT-obeying and disobeying frequency
bins. Obviously, CLT compliance is of vital importance for ICA algorithm
working under the assumption of Gaussianization of the mixed data under the
CLT principle. As the cause, sparseness of spectrum of speech signal, of CLT
failure by speech is inherent so its happening cannot be stopped. The only way is
to use the algorithms independent from such constraints, or combine some other
methods such as NBF having no such problem in the CLT-failing frequency bins.
However, this requires the blind detection of CLT obeying and disobeying
frequency bins which has been presented in the next Chapter along with
combination of NBF and FDICA algorithm.
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Chapter 4

Probabilistic Modeling of TFSS and Its
Application in BSS

4.1. Introduction

The statistical study of TFSS is important from many angles of thought for
FDICA algorithms in general. The proposed fixed-point FDICA by negentropy
maximization has its functional bearing on the compliance of CLT by the mixing
process. This implies that there should always be gain in Gaussianity of the
mixed signal over that of the unmixed signal. However, if the density function of
the TFSS of individual speaker belongs to stable distribution the mixing process
will not result in gain in Gaussianity because such PDFs are closed under any
linear operations [19]. It has been pointed out in the last Chapter that the
performance of the described FDICA algorithm is unexpectedly uneven in all
frequency bins despite use of same non-linear functions. This is indicative of the
fact that statistical characteristics of the TFSS in each frequency bin are different
and are influential in separation process. It has also been pointed out that the
choice of non-linear function G for the approximation of negentropy of the data
depends on the PDF of the data. The performance of the fixed-point algorithm
depends also on the used non-quadratic non-linear function G. It is desirable that
the function G should provide robustness toward outlier values in the data as
well as better approximation of true negentropy. Better robusiness to outliers can
be ensured by choosing G with slow variation with respect to change in data and
at the same time very close approximation of negentropy can be expected if
statistical characteristics of G inherit PDF of the data. The statistically efficient
and optimal G that can accommodate maximum information about HOS of the
data is chosen as the function that can minimize trace of the asymptotic variance

of separation vector w and can be approximated by [19]
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G=clogp®) (4.1)

where ¢ is an arbitrary constant and p(Y) represents PDF of Y. Thus
investigation of statistical nature of TFSS is essential which has been presented
in this chapter along with some experimental results.

4.2. Probability Density of TFSS

A statistical model of speech is not only needed in BSS but also in many
statistical signal processing applications of practical importance, e.g., speech
coding, speech recognition, speech enhancement, voice activity detection and so
forth. The performance of such speech processing systems depends largely on the
used statistical model of speech. Therefore, it is a matter of the utmost
importance to identify and use the most exact or the best approximate statistical
model of the speech in the domain of operation. A speech signal is a
non-stationary random signal. Unfortunately, like its inherent natural
non-stationarity, its statistical modeling by different researchers has also been
inconsistent. The artificial speech recognition group has mostly modeled the
speech signal by Gaussian Distribution (GD) or a mixture of GD or in‘rarely seen
application by a generalized Laplacian [56]. In other applications it has been
modeled by Laplacian Distribution (LD) or Gamma Distribution (y-D). One of
the natural reasons for adopting speech PDF as the Gaussian is the conceptual
Simplification in developing algorithms. The modeling of the speech probability
distribution was started in 1950 by Davenport [57]. In that paper Davenport
reported that the speech data in the time domain has a Y-D. In contrast to today’s
well-accepted LD model for speech, there has also been a research report that LD
presents very poor and simpler approximation of the speech probability
distribution [58]. In [59], the probability density of a very short segment of band
limited speech has been modeled by multivariate GD with slowly time varying
power. There have been many differences among the research reports due to the
fact that the statistics of speech depends on its content (voice, silence, noise,
etc.). Inside the speech one can find quasi-stationary (voiced and fricatives) parts

as well as extremely non-stationary (explosion phase of stop consonants) part
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that makes overall nature of speech signal non-stationary. The other equally
important issue has been the duration of the used speech signal because for short
time and long time speech data the PDFs differ. More recent reports on the time
domain modeling of speech can be found in [60]. In that studies the authors
tested different statistical hypotheses on speech PDF. The statistical modeling of
long time and short time segments of speech has been extensively studied and the
authors have emphasized that the speech signal PDF can be best approximated by
the LD while negating the accuracy of approximation of the same by GD.
Experimental conclusions in [60], for different time lengths of speech, suggest
different PDFs such as speech signals have PDF similar to LD within time frame
longer than 5 ms, the GD is favored for time frame shorter than 2.5 ms, while
longer frames (>0.5 s) of speech shows y-D or GGD with the shape parameter
0.44. These findings are important in understanding the PDF of speech segments
of different time lengths in any linear transform domain such as DFT domain.
The statistical modeling of the spectral component of speech has also
been a controversy since last five decades. One of the earlier efforts to model the
spectral component of speech can be found in [61][62]. In these studies the
authors have modeled gain normalized cosine transform coefficients, which are
very much similar to the real part of the Fourier transform, of speech by the
Gaussian PDF. In another research reported in [63], the authors found that the
amplitude of the gain normalized Fourier Transform follows y-D. However, in
that study long time segment of the speech was used so it cannot be accurate to
assign the same PDF to the DFT of small (20 ms - 40 ms) speech segments.
Interestingly, in different applications researchers have assumed different PDF to
the spectral components of speech, e.g., researchers have used the Gaussian PDF
as speech spectral PDF in order to develop speech enhancement algorithms
[64][65] and a voice-activity detection algorithm [66]. In such applications the
basic reason behind the adoption of the GD for the DFT coefficients of speech
have been the implication of the CLT because the DFT coefficients are weighted
sum of the random data samples. It is important to note that in all of these efforts

to model the DFT coefficients statistically, attention has been focused on the
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DFT coefficients (as spectral components) of either the short or long segments of
speech rather than on the distribution of the time-series of particular frequency
components.

The TFSS Z(f) in Eq.(3.5) by STFT analysis in any arbitrary frequency
bin, except the DC and Nyquist frequency, represents a Complex Random
Variable (CRV)fThese DFT coefficients are not mutually decorrelated. The

normalized correlation coefficient between different DFT coefficients depends

upon the frame length used. It approaches to zero as frame length tends to oo [64].

However, in the STFT method of frequency sub-banding, the frame-length of
speech segment is deliberately confined between 10ms 'to 40 ms in order to
introduce, artificially, the concept of stationarity or quasi-stationarity. Therefore,
the completely decorrelated DFT coefficients cannot be produced for the
time-series of speech spectral components. Thus a certain degree of correlation
among DFT coefficients will exist even if we accept the assumption of complete
decorrelation. Under the Cramer representation, the spectral components X(f)

( frame index 4 is dropped for convenience) of the windowed signal x,(n) can

be represented by

172
x,m= [ max(s). (4-2)

-1/2

It can be found in [54] that for the stationary x,(n), the spectral components X(f)
are circular. Thus the DFT coefficients of each quasi-stationary segment may
also be supposed to form a Complex Circular Random Variable (CCRYV). Each
sample of the time-frequency series Z(f), of a particular frequency, is taken from
the M set of such variables and is the ultimate representative, unique in the case
of no overlapping, of time successive quasi-stationary speech segments. Since
Cross-segment stationarity in speech signal is not possible, at first glance the
existence of concept of circularity for Z(f) seems illogical. However, due to
overlapping and arbitrariness in the analysis window position, it seems natural to
€Xpect circularity in multidimensional complex random variable (). A
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multidimensional complex random variable Z(f) is said to be circular if its

probability density is independent of complex rotation, i.e.

PZ(f)=pZ(f)e”), (4.3)

where p()=probability density of () and g=angle of complex rotation. The
probability density function of the CRV Z(f)=a+ib depends on the PDFs of the
real parts a and of imaginary parts b. Under the polar representation we have .
for Z(f)

() A L) £0=p28 (4.4)
where p =+/a” +b* = Magnitude,a = psin8; b= pcosf,0 = arctan(—é) = Phase. Thus,
a

the PDF of the CRV can also be expressed in terms of the PDF of polar
magnitude p and the phase 6. In the polar coordinate system the circularity

condition in Eq.(4.3) of the multi-dimensional CRV can be expressed as[67]

p(p,9)=p(p,9—¢), (4.5)

where ¢=angle of complex rotation. This implies that for circularity of Z(f) its
PDF should be independent of phase 6 which in turn means that © must have a
uniform distribution. We discuss this issue further in the experiment section
where it will be shown that the PDF of phase 0 is uniformly distributed.
Obviously, the PDF of the time-series of spectral components in each frequency
bin can be determined by looking into the PDFs of their real part, imaginary part
or polar amplitude and phase. There have been developments of several ICA
algorithms for BSS that use PDF of the real part and imaginary part separately to
optimize cost functions [18]. Similar algorithms based on the distribution of the
magnitude of Z(f) in the polar co-ordinate can be found in [68]. However, all
such algorithms approximate PDF by the same LD in all frequency bins. This is

one of the serious causes of mismatch between the real PDF and the model used.
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The PDF of Z(f) in each frequency bin depends upon the content of speech and
may or may not be same in every frequency bin. However, for a few neighboring
frequency bins there will be maximum similarity in the PDFs.

It was mentioned in the beginning of this chapter that the statistical
modeling of the DFT coefficient of the windowed speech signal has been
described as a normal distribution. A number of valid reasons, besides
computational and conceptual simplicity, behind this can be categorized as
follows. First, the DFT is asymptotically Gaussian in accordance with the
following two theorems: | _
Theorem 1: The joint distribution of any finite set of elements belonging to
N-point DFT of a block of length L from a stationary seqﬁence converges to
normal as L approaches infinity if the elements of the sequence are strongly
mixing (i.e. far separated frequehcy components are weakly dependent) and obey
the (Lyapunov) condition that for any 8>0, the (6+2)th moment is finite.

Theorem 2: The joint distribution of any finite set of elements belonging to the
DFT of a block of length N from a sequence of independent, identically
distributed random variables of finite variances converges to normal as N

approaches infinity.

The proofs of these theorems can be found in [42]. Secondly, the CLT
supports Gaussianity of the DFT coefficient, as DFT coefficients are weighted
sum of the random samples. This is evident from Eq.(3.4). Thirdly, a

quasi-stationary segment of speech in the time domain is assumed to be Gaussian.

DFT is a linear transformation upon such segment, so the PDF of DFT
coefficients are also Gaussian. However, it is known fact that PDF of a small
time segment of speech varies with its time length and is not necessarily
Gaussian [60]. It is natural to consider that the PDF of the time-series of a
Spectral component of a quasi-stationary speech segment is related with the
distribution of DFT of each segment and may be derived from it. Under such a
' framework the problem of PDF determination of Z(f) may be formulated as the
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determination of the relation of PDF of Z(f) with the PDF of M sets of DFT
coefficients, provided they are known, as obtained for each pseudo-stationary
segment. However, such a derivation of relatedness among PDFs seems difficult
and may be complicated. We adopt here a statistical hypothesis testing approach
as well as unknown parameter estimation of the candidate theoretical
distributions in order to find the suitable match for the PDF of Z(f).

In order to check the PDF of Z(f) we choose GD, LD and GGD with
estimated parameters as the candidate theoretical PDF for the null-hypotheses for
the PDF of Z(f). The choice of these theoretical density functions is not
arbitrary but is made on the basis of following two reasons. First, different
researchers have used such PDFs to approximate the PDF of speech spectral
components. The second reason, which is more convincing, is the shapes of the
histograms of the Z(f) in different frequency bins are spiky as shown in Figure
4.1 for =500 Hz. These histograms are very spiky, like Laplacian distribution,
with variation in the peakedness in the different frequency bins. To follow this
variation in peakedness we have used the GGD. We present here very brief
mathematical descriptions, which will be helpful in further discussion. Gaussian
PDF f.(z;p,0) of random variable z and Cumulative distribution function (CDF)

500 500
400 |f=500Hz | Real Part 400 | £=500Hz |} Imag.Part |
300 300
200 200
100 100 ! ki
0
0_ -1 0 1
(b)

Figure 4.1 Histograms of (a) real parts, and (b) imaginary parts of time-series of
DFT of male speech at Micl.
F;(z) are given by
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fG(Z;ﬂ’O-)z
o271

where y=mean and o =variance and CDF is given by error function (erfc) as

follows

_1 Z—H 4.7)
F;(2)= Ze#c(@].

The PDF f (z;u,) and CDF E.(z) of the LD are given by

Ly
f 5 s = ik N 0 00 < <°°,
Lz, a) 2e a>0 & V4 4.8)

and

1
—e™ for z<0
E (2)= 4.9)

1-=e™* for z>0.
2 Je

The generalized Gaussian distribution is a flexible parametric distribution family
that incorporates various distribution shapes such as uniform, normal, Laplacian,
and even more highly peaked distributions with exponentially decaying heavy
tails. Accordingly it can be used to model data with distributions symmetric at
mean with varying degree of peakedness. This distribution was introduced for
the first time in [69] in the development of the Bayesian inferential process.
However, that incorporates peakedness up to Laplacian only. More detailed
descriptions for the wide range of distribution shapes can be found in [70].

The GGD family with the location parameter L, scale parameter o and shape
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parameter 3 is given by

bp
2( )

_B
200 ()

= Aexp(-[b1(z- 1) I1P)

p=Lt_1 /M_) 4.11)
a o\Tra/p)

where I'(x) = J’g’t""dz: Gamma distribution, and A= zrl?(’j ) ;-0 < z< 00, @ >0, and £>0.
0 f:3

exp(-[b1z- 1 11)

Joc (232, B) = exp(—[lz-,u!/a]ﬁ)z

(4.10)

and

z _(1z=ptY
The CDF of GGD function is given by F,,(z;a,8,4)= f Ae [ “ ) dz.
This integral can be solved numerically or can be solved in a few steps in terms

of incomplete gamma function %, as follows

r

- s
0.5-0.57,, (-(I—Z—E‘;l—l)—,%}z—ﬂ<0

_ (z—plY 1
FGGD(Z) = 0.5"1'0.5}’1.,1C (—T,E ,Z—H >0
0.5, . z—u>0

(4.12)

2

where ¥,

nc

% J}"“e“'dt;é‘>0. The shape parameter f§ determines the shape of
0

(x.6)=
the distribution. When —1<f<0, the distributions are short tailed and well-peaked

compared to normal; when >0, it shows the opposite characteristic. Distribution |
graphs are symmetrical about the mode at x=4, and exponential power curves
approaches x-axis asymptotically at both extremes [71]. For f=1 the distribution
is Laplacian, for f=2 the distribution is Gaussian and distribution tends to

become uniform as f—eo. The distribution shapes for different values of S are
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shown in Figure 4.2.
4.3. GGD Parameter Estimation

In order to fit the GGD distribution in the time-series of the speech spectral
component, GGD parameters x4, o and B in each frequency bin are estimated
from the speech data. For this purpose, Maximum Likelihood (ML) estimation
will be used. However, the exact determination of GGD parameters by solving
the likelihood equation is cumbersome as these parameters are interdependent.
The location parameter 4 can be estimated from the mean or median of the data
in each frequency bin. The scaling parameter o depends on the variance of the
data and shape parameter £. In the time domain it is assumed that long speech
data has zero mean and unit variance, however, the same is not true for the
quasi-stationary segments of speech that are too small. When a quasi-st'ationary
segment x,(n) undergoes N-point DFT, its variance is rearranged over the

spectral components [72][73] such that

4 (X.=0.1,ﬁ=1 a=-09,ﬁ=0-5

Figure 4.2 GGD distribution for different values of o and B.
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1, =Z(f)/N, (4.13)

2 1 2
=—SIX(F)P.
O Nzkzq 2 (4.14)

Obviously, each complex sample of the time-series of a spectral component has
different variance history and it is difficult to relate with the above equation. In

order to test the suitability of mean 7 and median z as an estimator for the
location parameter for the different values of £ we define efficiency of the

estimator as the ratio of their variances i.e.

var[Z] 4.15)

var[Z]

n(p) =

All the odd order moments of GGD vanish and distribution is characterized by

even order moments. The rth even order moment of GGD is given by
E[Z']= j A dz=2A J. z’e_(b“ﬂdz.

' - 0 (4.16)

Now, with setting (bz)’ =y, the above integrand can be solved to

r+l1
1 F(Tj @.17)

b’ —F(__B_

Since E[z]=0; the var(z )=var(Z)=E[Z%]. Putting r=2 in Eq.(4.17) we get,

2A

E[Zr] = br-Hﬂ

oa (l’+1) 1
[y 7 evdy=
0

3
i)
gt ;}2_ B) (4.18)
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Figure 4.3 Theoretical value of 1 for estimators of K.

The variance of median 7 is related to Jec(za, B) as follows [74]

_ 1 _ 1 g (4.19)
CAfL O f) AAE ATPB)

var(z)

From Eq.(4.15), (4.18) and (4.19), the value of 1 is given as

r'(3/8) (4.20)
ra/pria+1/8)

(B =

This function is plotted in Figure 4.3 for different values of B. The inner figure
shows a scaled-up y-axis for the higher values of P. It is evident from this graph
that the mean is good estimator of location parameter for B>1.41 (shown by “*’
in the inner figure). For the lower value of S ( f<1.41), the median is better

estimate of the location parameter. Since neither var[Z ] nor var[ 7] is a
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monotonic function of B, because they depends on gamma function of B, the
suitability of both estimators worsen as f—0. Under this condition, M—es.
Therefore, for extremely low value of B neither can provide good estimation of
the location parameter. However, as f—eo, it can be shown that 1—>1/3 and mean
provides a good estimation of the location pérameter. Thus the estimation of the
location parameter depends upon the . However, in our experiment we will use
the mean as the estimator of the location parameter as the value of  for almost
all the frequency bins is not extremely low.

Now Maximum Likelihood (ML) approach is described for which has
also been used by other researchers to measure the scaling and shape parameters
of GGD [75][76]. The ML estimator can provide a very accurate estimation of

the GGD parameters provided that B is not too small [77]. The ML function for
centered samples z=[z,z,,......z,] in the frequency bin f can be given as

M 4.21)
L(za,p) =10gg(zi;a, B).
In accordance with [75], the likelihood equations having a unique root in
probability give maximum likelihood estimator and can be obtained by partial
differentiation of the above function with respect to unknown parameters o and 3

as follows

Lzap) _ L < Blz ¥ o o (4.22)
o o S a

and the partial derivative w.r.t. B is given by

; L L(1x 1Y : 4.23
xaf)_ L. r/f(Z%;)_Z(l_x,_l) 1og('_xz_'J=o, (4.23)
o p p =\ o o
Where W(Z)ZFT'((%T) represents diagamma function. For B>0 from Eq. (4.22) we
VA

obtain an estimate of parameter o as follows
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1B

a=[§fn . lﬂ] | (4.24)

i=1
Using this estimate in Eq.(4.23), we get the following transcendental equation

for B (Since —é— #0)

M 2
£+My/(,vﬂ)_z LG Iz,

> 7 7 |=0 4.25)
/4 7 i=1 E M /3 (
LZIZI' lﬂ -(_;ZZIZ" Iﬁ) J

i=1

i=1

( ilz- o
:% 1+¥/(7ﬂ)__ = : {loglzil——é—log(gilzi lﬁ)} =0

i=1

[ i Y
Dz P loglz | log(%zlzi 'ﬁ)
L 467)] i=1 =l =
= —| 14 - YA + - 0
B Dzl B
Since L #0
s
M M
1 lei ¥ loglz | log(ﬂ/LZIZi 'ﬂ)
v pn i=1 _ 4.26
1+ - T+ =0 (4.26)
B ZI z | /]
Eq.(4.26) can be further expressed as
g(p)=0, (4.27)

where g(f) represents RHS of the Eq.(4.26). The roots of Eq.(4.26) give the
value of the shape parameter. This equation can be solved numerically. The
solution using the N ewton-Raphson iterative method is given by
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&B (4.28)
gB

in which g'(p)represents first order derivative of g(f) w.r.t f and is given by

ﬁkﬂ =p, -

M M 2
>z ¥ (loglx, 1)’ [ZI 7,V loglz, |j

v v, 14 2
)% | g B ilzi 8 (lei lﬂ)Z

i' %V (loglz, 1) ) 10g("§2] Z, |ﬂ]

g'(B)=

+ i=1 i=1 (4 '29)

M M
Bz ¥ Dz ¥
i=1

i=1

The solution obtained by Eq.(4.28) is sensitive to initial value of B. The good
initial value can be obtained from the Generalized Gaussian Ratio (GGR),

denoted by #(f) and is defined as the ratio of mean of the absolute value to the

standard deviation of the data[60]as follows

E[Izl]
.

g, (4.30)

In the context of GGD it can be shown that the mean of absolute value is given as

El Zl]=°]'|Z|fGG(z)dz= ]'] 21 Ae P g, (4.31)

Since this integration is on the absolute value of the variable over the given limit.

It can be given by
Ellzll=2 | Aze ™ 4y (4.32)
0

Now substituting ( bz)ﬁ =y, above integral can be solved to
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" (4.33)
E[Izl]——lgaf ’dy=——1"(/ﬁ) for 0<p.

Using the values of A and b from Eq. (4.10) and (4.11) , respectively, Eq.(4.33)
can be simplified to

o VA (3]
T =i

) (4.35)
Hl_ i) - 7) ,
)
E[lzl]=(1/M)flz,. | and o7 =(1/M)§_‘,z,.2. (4.36)

i=1 =1

Now the d‘enominator and numerator of the LHS of Eq.(4.35) can be computed
from the given data and good initial value Binitiar of the shape parameter, given
by

o

z

L[ BNzl
Brsiar =¥ [ [zz]]- (4.37)

Using this as initial value of B in the iterative Eq.(4.28), the final value is
obtained in a few iterations.

4.4. Other Statistical Tests
4.4.1, Moment Test

The moment test is based on the fact that the value of the GRR function y
is distinctive and unique for each theoretical distribution defined by . This test
statistics for different theoretical distributions, obtainable for different values of

67



0.8} i
0.6 :
>~

0.4 1

0.2 1

0 10 B 20 30

0

Figure 4.4 Plot of values of Genenaralized Gaussian Ratio function 7 versus B.

0.7 Laplacian, p=1
(B)=4 0.8 Gaussian, [=2 (4.38)
>0.8 Uniform; f>2.

B>0 from the GGD, are given below. These test statistics can be used to infer
nearness and relatedness of the given data distribution by comparing the standard
values in Eq.(4.38) with the corresponding values calculated from the data using
Eq.(4.35) and (4.36). The theoretical variation in the value of y as a function of J

is shown in Figure 4.4.The value of Y becomes almost constant as f§—>co.
4.4.2, Quantile-Quantile (QQ) Plot:

The acronym QQ-plot stands for the quantile-quantile plot which is used to
check similarity of the unknown data distribution with standard PDF or to check
whether the two data sets can be approximated by the same PDF [78]. Supposing
the probability pe(0,1), the pth order quantile Q(p) of a distribution of a

random variable Z(f)=[z1,22,23,...2u] Wwith distribution function F(z) refers to
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that value z, of Z for which

O(p)=2z,=Pu(Z < z,)<p, (4.39)
and
F(z,)=Pr(Z < z,)= p, (4.40)

Where Pr() represents probability of (.). It is evident that the quantiles are
the value of Z where its CDF crosses probabilities p. Equations (4.39) and
(4.40) can be combined to give

F(p)=p=0(p)=F"(p). (4.41)

Thus the Quantile (Percentile) Point Function (QPF or PPF) is computed as
inverse of CDF which implies that

Q(p)={z,e R;p< F(z,)}. (4.42)

In the QQ-plot QPF of the theoretical PDF is plotted against the sorted value

(order statistics) of the observed data. The observed data i in each frequency bin is
sorted in ascendmg order such that{z, <z, <2 S 2, ). The ith order statistics

z, 1sthe (i-0.5/Mm quantile, i.e.,
i-0.5 (4.43)
weo 5P}

As an indication of the good fit of the theoretical distribution to the given data
the plotted values fall onto a straight line. Also QQ-plot between the data of the
two frequency bins can be plotted to see the similarity in their distribution.
Supposmg probability pe (0.1, the QPFs Qg (p), Q, (p), and Qus(@) of the GD, LD and

- GGD, respectively, are given as the inverse of their CDF functions as follows:
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4.44
05(p) =26 erfinv(2p)+p. (4.44)

log2p, <0.5
0g<p, P (4.45)
0,(p)= 0, p=0.5
—log2(1-p), p>0.5.
and
1
Py, 0<p<05 (4.46)
QGG(P) = i

GP+u, 12p>05

where G=I""(p,,1/8,8) is the gamma function of p, with

parameters 1/ and g and
1-2p, 0<p<0.5 (4.47)
pl={1+2p, 12p>05. :
The QPF for the Laplacian and Gaussian distribution can also be computed from
Eq.(4.46) by putting f=1 and 2 respectively.

4.4.3. Chi-Square Goodness of Fit Test

The x2-test [79] does not require any parameter estimation. It is used to
compare data distribution with the theoretical PDF. For this test data is divided
into B data bins and difference between observed and expected frequency (no. of

occurances) in each data-bin is obtained to calculate Chi-square score given by

2 _ B (Oi'Ei)Z
2= 2 E (4.48)

where 0, =observed frequency in ith bin and E, =expected frequency in the ith
bin.The observed frequency is computed by direct counting of the number of
samples falling in the each bin while the expected frequency is computed as

follows
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E=M [F(BU)—F(BLH, (4.49)

- where  M=total no. of samples; F= CDF of hypothesis  distribution and
B, (B,)=upper (lower) limits for bin i.

The y2-test is sensitive to bin width. The bin width is selected such that the
expected frequency becomes more than 5 in each data-bin. The most widely

accepted bin width is calculated as

B, - B,=0.30, (4.50)
where o=Std. deviation. The lower value of X2-score provides better similarity
between hypothesized PDF and the PDF of the given data. The %2 —test has been
used to check the goodness of fit of null-hypotheses for the real part, imaginary
part and polar amplitude of the time series of speech spectral components Z(f) in
each frequency bin.

Null-hypotheses

® Z(f) follows the Gaussian distribution
® Z(f) follows the Laplacian distribution

¢ Z(f) follows the Generalized Gaussian distribution with parameters
estimated from Z(f).

4.5. Experiments and Results

Experimental Setup

In the experiment, we used a two-element linear microphone array with
inter-element spacing of 4 cm for the simulated speech data generation. The
direction of arrival (DOA) of two speech signal sources (male and female) were
fixed at -30° and 40°, assuming center of the microphone as reference and
broadside on positions as the 0° DOA. The distances of the speakers were set at
of 1.15 m from the center of the array. The whole experimental setup can be seen

in Figure 3.6. Two types of sentences spoken by a male and a female speaker, of
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time length 32.5 sec (produced by concatenation), from the ASJ continuous
speech corpus for the research [80], were selected to serve as dry sources S;
and S, for the generation of the mixed signals. Mixed signals at each
microphone are obtained adding together the speech signals arriving from each
source. The contribution of each source at each microphone is obtained by
convolving the seed speech samples with the room impulse response between the
involved source and microphone, recorded in a real room with reverberation time
RT=300 ms. In this way the set of reference signals [ref,,ref,,ref,, ef,,], as
indicated in Figure 3.1, as the contribution of each source at each microphone
were obtained. The marginal distribution of these reference signals can
approximate the distribution of the original sources S; and S,;. In order to do
further study these reference signals are subjected to STFT to generate TFSS.
The STFT signal analysis conditions were kept same as in Table 3.1. The total
number of samples obtained in each frequency bin is sufficient to give good

statistics of the data.

Results of Estimation of GGD Parameters:

The GGD parameters, namely, location parameter [, scaling parameterv o and the
shape parameter f were calculated using the ML method, as discussed previously,
in each frequency bin for each reference signal. The mean of the data has been
used in each frequency bin to estimate the location parameter. As the
computation of scaling parameter in Eq.(4.24) needs shape parameter, first
shape parameter was computed using Eq.(4.28). The initial value of the shape
parameter computation in Eq.(4.37) requires inversion of the GGR function for
different values of B. It is computed from pre-computed look-up table. In the
case if exact value is not available in the table the nearest value is extrapolated
or interpolated. It is the shape parameter that determines the shape of the PDF.
The shape parameters calculated for the male and female reference
signals, ref, and ref,, , respectively, at the second microphone are shown in Figure
4.5 and Figure 4.6. For each speaker, B is shown for the real part, imaginary part,

polar magnitude and phase of the signal. The value of B for very low frequency }
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(<200 Hz) bins for both speakers have outlier values. However, these
components are non-speech signals. The statistics of the shape parameters in
different frequency bins can be better conceived from the histograms shown in
Figure 4.7 and Figure 4.8 for the two speakers at the second microphone. The
shape parameters for both the real and imaginary part are less than 0.5 in almost
frequency bins, which corresponds to a strong Laplacian distribution as defined
by GGD. In a very small number of frequency bins B is very near to 1. Also, the
shape parameter is different for each frequency bin, which shows that the
distribution of each frequency bin is different. However, the shape parameters
for the neighboring frequency bins are almost same. Thus the assumption of LD
for the imaginary part and the real part of the Z(f) in any frequency bin looks
loose  and inappropriate. However, different ICA algorithms have been
developed with such assumption. The shape parameter for the polar magnitude in
almost all frequency bins, except very low frequency bins, is very near to unity,
which corresponds to the Laplacian distribution. However, it is not obvious why
the probability distribution of the polar magnitude is nearer to LD than to that of
the real or imaginary parts of the same signal, however, on the on the basis of
CLT it can be urged that polar magnitudes are summation of squared real and
imaginary parts, which are more spiky, so the polar magnitude should be less
spiky. This fact may be one of the causes of the better performance of polar
co-ordinate based non-linear function, as proposed in [68], over the Cartesian
co-ordinate based non-linear function for the FDICA.

The shape parameter for the phase data is greater than 15 for the both

speaker in almost all frequency bins. This value of B corresponds to a uniform

distribution as defined by GGD. This result agrees with the intuitive fact that the
phase of the samples in the DFT coefficients depends on the analysis window
position, which is arbitrary. Therefore, the phase of the DFT coefficients of each
quasi-stationary segment has uniform distribution. The TFSS in each frequency
bin contains samples chosen from the DFT coefficients of speech segments, so
its phase distribution is also uniform. The uniformity in the phase distribution

€nsures its neutrality for an arbitrary complex rotation which in turn means, in
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accordance with Eq.(4.3), that Z(f) in each frequency bin is the CCRV. It is
also important to note that no major difference between the values of f for the
Z(f) for male and female speech was found. Almost similar results were found
for the reference signals ref,, and ref,, at the first microphones also. The fitting of
the GGD PDF with the estimated parameters in the histogram of zy) at
f=300Hz is shown in Figure 4.9 for the male speaker. These figures also show
fitting of the Laplacian PDF. For the polar representation GGD and LD have
almost same fittings however, for the real part, imaginary part or phase GGD
fitting is much better than that of LD or GD.

Results of Moment Test:

The moment test for the reference speech signals of each speaker at each
microphone was done. The choice of reference signal gives clean signal captured
by both microphones from different speakers. The result of moment test for
speech from a male speaker received at the second microphone is shown in
Figure 4.10 . The moment ratio or the GGR function 7y is obtained in each
frequency bin using Eq.(4.35). The GGR functions for the ‘four theoretical
distributions namely GD, LD, GGD and uniform are drawn as dashed vertical
lines. The results of moment test also favor the GGD for the real part and
imaginary part. For the phase, again, the uniform distribution is favored. It is
interesting to note that the moment test results in most of the frequency bins for
polar magnitude do not favour LD. ML estimation of §§ for the polar magnitude
supports nearness with LD while the statistics of 7y favors a strong
super-Gaussianity as defined by the GGD. The cause of this significant
difference between the results is the difference between the values of PBipjsal,
estimated by Eq.(4.37) and that of PBmy estimated by polishing Biga using
Eq.(4.28) under the ML approach. These values of p are also shown in Figure
4.5and Figure 4.6. These two values of shape parameter do not differ by
handsome amount for real and imaginary parts. These values are significantly
different for the polar magnitude. By has been found to be higher in every
frequency bin for the polar magnitude for both the male and female speakers.
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For phase Binitial may be greater than the Shown value because it is the highest
value of B included in the look-up table and have not been extrapolated.
Therefore, relying on the ML estimates of the shape parameter for polar
magnitudes it can be concluded that polar magnitude is nearer to LD than the real
or imaginary part. It is natural as the polar magnitude is summation of two less
Gaussian variables(real and imaginary parts) which makes polar magnitude to
move towards Gaussian ( f — 2) under the implication of CLT. Results for other

reference signals were also found to give similar evidences.

Results of QQ-plots:
The QQ-plots for the Z(f) of the speech signals of the male speaker at the
Second microphone are shown in the Figure 4.11. This figure contains QQ-plots
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for the real part, imaginary part, and polar magnitude in the frequency bin of
703.12 Hz. QQ-plots are drawn for the quantiles of Z(f), which are computed
using Eq.(4.43), and quantiles of theoretical distributions GD, LD and GGD with
the estimated parameters, computed by their respective QPF from Eq.(4.44)

-(4.47).1t can be found from plots for the real and imaginary parts that GGD .

provides a superior linearity (regression line is shown as dashed line along the
plot) over that of GD or LD. For the polar amplitude GGD and LD both provide a
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comparable linearity in the plots for both speakers. QQ-plots for other reference
signal also have same trend. In Figure 4.12, the QQ-plots for Z(f) for two
different frequency bins show that data in different frequency bins do not
necessarily have the same distribution. It also agrees with the value of the shape
parameter, which is not same for all frequency bins. Therefore, it is strange to
consider fix PDF for all frequency bins. However, same PDF has been assigned

to every frequency bin in majority of FDICA algorithms.

Results of Chi square Test:

The Chi-square test was performed separately on the real, imaginary and polar
magnitude of the Z(f), in every frequency bin, for the speech signals of the two
speakers at the second microphone. The results are shown in Figure 4.13 for
the speech from a male speaker at the second microphone. The %2 —scores for the
GGD, in every case and in every frequency bin, have been found to be less than
those for the GD or LD. However, the nearness between the 2 —scores for GGD
and LD for the polar magnitude of Z(f) is more than that for the real or imaginary
parts. This characteristic of score complies with the previous results from the

QQ-plots and the moment tests.

4.6. GGD Model based Blind Detection of CLT Disobeying TFSS

The important requisition for CLT compliance by the TFSS of the speech
data is that the TFSS of each independent speech source should not belong to a
stable statistical distribution, because such distributions are closed under linear
combination [54][81] and fortunately it is strongly LD and can be better
approximated by the GGD which is parameterized by the mean, scale and shape
parameter 3. The value of shape parameter B decides shape of the distribution.
GGD represents Gaussian PDF for p=2, Laplacian PDF for B=1, and highly
parsimonious PDF for 0<B<1. Since the CLT obeyance or disobeyance is
logically related to the Gaussianization of the mixed signal, the change in B and
SK of the TFSS can be used to detect CLT obeyance or disobeyance. The shape
Parameter § and SK can be computed from data.
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The threshold value can be determined by looking into change in Gaussianity of
the mixed signal. The relation of B parameter and kurtosis K(f) of GGD is
given in Eq.(4.51). This relation is monotonic function of the shape parameter
such that kurtosis is high for spiky signal (lower value of shape parameter) and is
low for higher shape parameter. Kurtosis becomes zero for Gaussian signal. The

variation of kurtosis with the value of B is shown in the Figure 4.14. The change
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in value of kurtosis with B is very steep for super-Gaussian distribution.

oG

where I'(x)= I e”'t" dt=Gamma distribution .
0

-1 (4.51)
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Figure 4.13 %2 —score for the real, imaginary and polar magnitude of the male
speech at the second Microphone (%2 —score for GGD for real, imaginary and

(real +imaginary) part is scaled up by 10).

Thus if a TFSS of the mixed signal is fully Gaussian its SK will correspond to
SK,=k(2)=3 in Eq.(4.51), and if it is not mixed signal, the speech will be at least
Laplacian or strongly Laplacian for which SK corresponds to sk, =k(2)=6.For the
strongly Laplacian case, which is more accurate as shown in[82], kurtosis will be
higher than 6. The SK of TFSS can be directly computed using Eq.(3.43). Thus if
SK of TFSS, calculated from Eq.(3.43), lies above sk, it will represent a

Laplacian or strongly Laplacian signal and related TFSS will fail to comply CLT,
however, if SK is below sk, it means signal has gained some Gaussianity due to

mixing with other speech signals and so it will comply with CLT. Thus change in
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kurtosis can be related to the change in the shape parameter § and some threshold
value of it can be used to detect CLT obeying and disobeying sub-bands. The
acoustic channel too Gaussianizes speech signal, so the Gaussinity of true speech
is less than that of received by the microphones. However, mixing of two-speech
signal is bigger effect than the Gaussianization by the channel. Thus the
threshold corresponding the 05<8<1 can work well [83].

4.7. Results of Combining Null-Beamformer and ICA

As the proposed cause, spectral sparseness of speech signal, of CLT
non-compliance by speech mixing, is inherent weakness of speaker, its
happening cannot be stopped. The only way is to use the algorithms robust to it
or independent from such constraints, or combine some other methods such as
NBF having no such'problem in the CLT-failing frequency bins. However, this
requires the blind detection of CLT obeying and disobeying frequency bins. As
discussed in section 4.6, a threshold value of SK or B can be determined for the
blind detection of CLT disobeying bins. The relation between CLT disobeying
bins and SK can be observed in the right-hand side of Figure 4.14. The left-hand
side represents the variation of kurtosis of GGD with B and the right-hand side
shows CLT failing bins (gray colored vertical lines in the background) and a plot
of SK computed using Eq.(3.43). It is evident that SK is high for the
CLT-disobeying bins and is relatively low for the CLT-obeying bins. The dashed
horizontal lines across the plots in Figure 4.14 show different threshold values
for the different values of B. As the signal is Gaussianized, the value of B shifts
towards 2 while for single unmixed speech it is around 1. The blind detection
result and true detection result are shown in Figure 4.15. The term true detection
represents the result obtained by the verification of the of conditions stated in
Eq.(3.45) which needs reference signals from each speaker. However, in the real
application, these reference signals are unavailable. The plots in Figure 4.15
show effect of different value of B on the detection accuracy of the blind method.
The plot with legend (Blind-true) represents the number of uncommon frequency
bins by the blind and true detection method. This has minimum value for the
threshold around B=0.6.Evidently, the blind method falsely detects some bins as
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the CLT failing, while giving clean chit to a number of frequency bin, which
actually fail. However, for the threshold around B=0.6, 70-80 % of bins can be
correctly detected. As it is evident from plots for kurtosis and P in the same
figure that the slight change in f produces large change in SK, the slight change
in the threshold thus can significantly affect the detection accuracy.

The advance information about CLT non-compliance in any bin can be
used to stop separation by ICA in such frequency bins and some other alternative
method can be used. An experiment to examine such sub-band based
combination for NBF and fixed-point FDICA was carried out. The combination
strategy for the ICA filter and the NBF filter is complex due to occurrence of
CLT-failure in different or same frequency bins at both microphones. Thus there
are several ways to combine NBF with ICA. However, in our experiment we
replaced the ICA filter by that of NBF if CLT failure in any frequency bin is
occurring at either microphone. The separation performance, averaged for four
sources, is shown in the Figure 4.16Error! Reference source not found.. It is
evident from the figure that the combination shows a significant improvement in
the NRR for RT=0, and fails to improve for RT=150 ms and RT=300 ms. The
reason for this can be explained with the help of Figure 4.17 and Figure 4.18.
These figures show, the spectral NRR under RT=0 ms, RT=150 ms and RT=300
ms, respectively, for ICA only, NBF only and their combinations. It is evident
from these figures that the NBF has a better spectral performance under the
non-reverberant condition. The performance of NBF degrades as the
reverberation time is increased. Under the high reverberation condition, the
spectral performance of the NBF is not better than that of the ICA. The spectral
performance of both NBF and ICA follow the similar (not exactly same) trend
and the overall performance of NBF is worse than that of the ICA. Thus if NBF
has a poorer performance than ICA and if the separation filters are exchanged in
CLT-failing bins, their combination cannot give any improvement instead it may
further degrade the performance. Thus the replacement of the ICA filter by the
NBF filter results in poor or unimproved performance. However, in some cases it

does improve and for in other cases its performance was found to be worse than
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(shown as gray vertical lines in the background). The dashed horizontal lines
across the two figures are threshold levels used to detect CLT complying and

non-complying frequency bins.

that of ICA. Thus combination is effective only under no reverberation or
moderate reverberation. The important thing in this context is that FDICA
algorithm has to be robust against such phenomena because spectral sparseness is
one of the natural characteristics of the speech signal and its happening can’t be

avoided.
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ICA only with CLT Failure bins at Mic2; RT=0 (Male and Female Speakers)
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Chapter 5

GGD based Negentropy Approximation and
Application in Fixed-point FDICA

5.1. Introduction

In the fixed-point ICA by negentropy maximization, negentropy of the data,
approximated using generalized Higher Order Statistics (HOS) of the
non-quadratic non-linear function, is used as a measure of non-Gaussianity. The
choice of non-linear function for negentropy approximation is a crucial task and
is highly dependent on the PDF of the TFSS of the data [19][36]. In previous
chapter it has been shown that the statistical distribution of TFSS in each
frequency bin is not same and can be better approximated by GGD function
against the most commonly used PDF of LD and GD functions. Despite, many
general purpose non-linear functions have been proposed and have been used in
speech signal separation as discussed in Chapter 3 of the thesis. Based on the
study in Chapter 4, the issues of this chapter are focused on the novel research
questions such as can negentropy approximation by different non-linear
functions influence the separation performance of the fixed-point FDICA
algorithm and if GGD based function is better approximation of underlying PDF
of the TFSS does a non-linear function based on it show superiority in separation
too? Accordingly, performance of the FDICA algorithm, based on negentropy
maximization, under the negentropy approximation of TFSS by conventional
non-quadratic non-linear functions and a new non-linear function based on the
PDF modeling of TFSS by the GGD function will be examined.
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5.2. Approximation of Negentropy of TFSS:

As a measure of non-Gaussianity, negentropy provides better performance
than others such as kurtosis. [19]. As defined in Chapter 3, the term negentropy
represents negative of entropy. The negentropy J(y) of a random variable y, is

given by (reproduced from previous Chapter 3)
J(¥) = H(Y g5 ) — H (), (5.1)

where H(.) is the differential entropy of (.) and y,_, is the Gaussian random

variable with the same covariance as of y. As among the distributions of given
covariance a Gaussian distribution represents distribution of maximum entropy,
the definition of negentropy in Eq.(5.1) ensures that it will be zero (minimum) if
y is Gaussian and will be increasing if y is becoming non-Gaussian. Thus
negentropy based contrast function can be maximized to obtain optimally
non-Gaussian components. However, estimation of true negentropy, as in
Eq.(5.1), is difficult and it requires knowledge of probability density function of
the data. However, it is possible to use some approximation of it and several
approximations for negentropy estimation have been proposed and used. The

moment based approximation of negentropy is given as [17][19]

1 1 7
=—E{y' VP +—kurt(y) > +—E{y*} —........
0= {y'} 75 11(y) 25 ('}

where kurt(.) represents kurtosis of (.). But this is equivalent to kurtosis which is
very raw, loose and rough approximation; however it is also extensively used as
a non-Gaussianization measure for ICA algorithm[17][19] [25]. The other more
accurate approximations have been based on the use of generalized HOS of some
non-linear non-quadratic functions G(y). In terms of such a function the most
widely used approximation of negentropy is given in Eq.(3.11) which is

reproduced for convenience.

90




2 (5.3)
T(3) = GLE{G () = E{G (¥ 555011 »

where o is a positive constant and Yeuss 18 @ Gaussian random variable with

same covariance as that of y. In Chapter-3 based on such approximation of
negentropy a deflationary learning rule for the separation vector was derived in
Eq.(3.22) which involves derivatives of the first and 2nd order denoted,
respectively, by g(y) and g’(y), of the used non-linear function G(y).

The separation performance of the fixed-point algorithm depends on the
used non-quadratic non-linear function G(y). It is desirable that the function G(y)
should provide robustness toward outlier values in the data and should provide
better approximation to true negentropy. For the better robustness to outliers
G(y) should show slow variation with respect to change in data and at the
same time very close approximation of negentropy can be expected if statistical
characteristics of G(y) inherit PDF of the data. The statistically efficient and
optimal G(y) that can accommodate maximum information about HOS of the data
is chosen as the function that can minimize trace of the asymptotic variance of

w. The trace of asymptotic variance of w for the estimation of source s; is

given by
E{” ()}~ (E{sg(s})’
(E{s,-g(si) - gl(si)})z

V,=C (5.4)

where constant C depends upon the mixing matrix. As shown in [19] the value of
Vs is minimized if the chosen non-linear function G is of the form

G(y)=c log p(3,)+c,y +c;, (5.5)

where ¢, c,, ¢, are arbitrary constants. Again, from Eq.(5.5) a simplified form of
function G for TFSS can be taken as by truncating higher order term and can be

given as follows
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(5.6)
G(y;)=c log p(,)
where ¢ is an arbitrary constant and p(y;) represents PDF of yi The optimal
function based on GGD, denoted byG,(y), can be obtained by using GGD
function of Eq.(4.10) for y=w”"X_ P and is given by (subscript i is dropped
hereafter)
- 5.7
G,(=a’lyV +log A. >-7)
The statistical characteristics of the function depend on the value of shape and
scale parameters. The non-linear function in Eq.(5.7) has been plotted in Figure
5.2 for different values of the shape parameter. The value of functions are
normalized. Its 3-D shapes are plotted in Figure 5.2. Its smoothness changes with
change in the value of shape parameter such that it is less smooth for lower

values of shape parameters.
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Figure 5.1 GGD based non-linear functions for different values of the
shape parameter . For the lower values of f the non-linear

behavior shown by function is less smooth.
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The other functions have also been proposed and one of them has been used in
Chapter 3. Here, too, they are cited again for convenience and comparative study
of performance. For the super-Gaussian signals following functions has been

recommended [19] and have been used in the speech signal separation [28][29]

G,(Y) =log(a, +Y);a, = 0.01, (5-8)
5.9
G,(Y)=la,+Y ;a,=0.01. (5-9)

5.3. Error Estimation in Negentropy Approximation

In order to judge the relative suitability of these non-linear functions we
will evaluate their performance for negentropy approximation and robustness to
outliers, and capacity of signal separation. The statistical technique of
Jackknifing can be used to evaluate relative error in the approximation of
negentropy and robustness to outliers [84]. Jackknife is one of the powerful tools
for the data partitioning and can be used to estimate bias and standard error
occurring in negentropy approximation by the non-linear functions G,(fork=1,2,3)
from Jackknife replicates. The Jackknife replicates for the negentropy are
obtained by approximating negentropy of Jackknife samples which are created
by omitting, in turn, one data sample from the original TFSS. Let us consider the
TESS in any frequency bin f consisting of U samples. The ith Jackknife replicate
for negentropy approximation by function G, is given by

TN =GV (f,1,Y(f,2)..Y(f,i-1), YL A+D YD), (5.10)

and this is carried out independently in each frequency bin for each sample. The
bias s2(r)in the negentropy approximation by function G, is given by

L= -D{T (f)-T.(H)}, (5.11)

— R -
where J.7( f):%z.llﬁ") (f).-The standard error in negentropy approximation

i=1

by G, is given by -
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WD S (719 =TE ()

05 (5.12)

f;fE(f)=[

This represents standard deviation of the Jackknife replication, however, it is
unbiased due to the presence of factor (N-1)/N [85]. Since TFSS in each
frequency bins are assumed to be independent the above estimates for bias and

standard error can be averaged over the no. of frequency bins and can be given

by

_ P/2 _ P2 513
TE=2 ) wd TE =225 O
i=1 i=1

5.4. FDICA with Flexible Non-linearity

The most important thing for any contrast function is it separation capacity.
However, if the contrast function inherits maximum statistical information of the
data, it may provide better separation [19][34]. The separation performance of
each non-linear functions will be judged using the deflationary learning rule
given in Eq.(3.22). Obviously, that requires first and second order derivatives of
the non-quadratic functions G,(y) which are given by

gl(y)=(a1+y)_1and 81’()’)2—(611+y)_2, (5.14)

£:(1)=05(a,+y)"" () =-025(0,+y)”", (515

g;(y) =—,3a’"'3 [l yIﬁ'1 sign(y):l, (5.16)
“(VY=—Ba™” B2 4 203 -4

8 ==Ba [IyP?+y*(B-2)1yP*]. i

As a performance measure NRR, SCRF and number of iteration consumed by
algorithm to converge, under the given stopping criterion &, will be used. The
number of iteration taken by the algorithm depends on the nature of convergence.
The nature of convergence depends upon chosen non-linear function G(y) and on
existence of its higher order derivatives. It can be shown that the value of
diminishing component of the separation vector, denoted by w* after one iteration,

is given by [19]
94




L1 ) 1 . . (5.18)
W, =5E{yi3}E(g (yl)}wi2+'6‘k”"t(yi)E(g )W + . ;for i>1

This equation includes higher order derivatives of G(y) as the coefficient of error
_terms. It can be imbued that if the 3rd order derivative g’(y») of G(y) vanishes i.e.
E(g"(»}=0 the convergence becomes cubic and is governed by the value of 4th
order derivative g”(y) and so on. The 3rd and 4th order derivatives of the used

non-linear functions are given by

8 =2(a,+y)>;g1y) =—6(a, + y)™*, (5.19)
8:(¥)=38(a, + y)™**; g7(y) =—95(a, + y) %, (5.20)
sN=K 1y 21 yP3 +(B-4)y* | y P .

M=K, [1yP7 21yF +(5-4)y’ 1y Jsen(») 52

&M =Kl y V™ HB~4)y1 y V'~ sign(y)+21y ¥ +2y(B—6)1 y P sign(y)
+3B=Dy 1y +(B-6)y’ 1y P sign(y), (5.22)
where K, =-f(f~-2)a " .

In order to avoid singularity of derivatives of 6,(y) at y=0, it is replaced by very
small (10*) number. The parameters of GGD are estimated using maximum

likelihood approach as is described in Chapter-3.
. 5.5. Experiments and results

Experimental setup was same as described in Chapter 3. The experiments
were carried out in two parts separately for the jackknifing and blind separation.
The TFSS of the speech data were generated by doing STFT analysis of the
mixed signals under the signal analysis conditions shown in the Table 3.1. In
order to estimate bias and standard error occurring in negentropy approximation
by 6,y (k=1,2, 3) six unmixed speech signals from different speakers were used.
In this analysis unmixed signal were used because in the separation algorithm
G.(») has to ultimately apprdximate negentropy of the separated signal which
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should be ideally clean and unmixed. The bias and standard error in the
negentropy approximation by each of G,(y) were estimated in-each frequency bin
using Eq.(5.11) and Eq.(5.12) for sequential delete—one Jackknife method. The
estimated standard error, averaged for six combinations of the mixed speech
signals including male and female speakers, are compared in Figure 5.3 for
each G,(y) .The averaged bias estimate of J.(f) , for different non-linear
functions are shown in the Figure 5.4. It is evident from these figures that the
standard error and bias is minimum for the GGD based non-linear function which
implies that its robustness and closeness to true negentropy of the TFSS signal
is better than that of approximated by G,(y)and G,(y). In the Jackknifing
process the value of shape parameter g was fixed at 0.86 under the light of
results reported in [82]. The separation performances of the fixed-point FDICA

with the use of these three non-linearity functions were also studied under
different RTs. The stopping criterion for algorithms was set at 5=l w,,, —w,, <.0001.

First the separation performance for different value of B with non-linear
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function of Eq.(5.7) were studied. The NRR, which is defined in Eq.(3.46) ,
SCRF nf) of Eq.(3.47), and no. of iteration taken to converge up to
satisfaction of & were used as the performance measures. The learning rules of
was initialized using null-beam former based value of the separation vector. The
results of NRR, #(f), and no. of iterations, averaged for the six combinations of '
‘mixed speech data are shown in Figure 5.6, Figure 5.7 and Figure 5.8
respectively. In Figure 5.6 the separation performance is found to be optimum
for B values between 0.8 to 0.98 for reverberant and non-reverberant acoustical
conditions, however, NRR is very low in the reverberant conditions. Similar
trend can be observed in Figure 5.7 for SCRF graphs. It is important to point out
that NRR and SCRF performance figures are good for those values fthat are
close or equal to values of shape parameters corresponding to PDF modeling of
TFSS. This is indicative and in supplementation of the fact that for the better
separation used non-linear function should be in possession of maximum
statistical information about the data [19][34]. It is evident from Figure 5.8 that
the no. of iteration too is varying with the shape parameter. For the very lower
values of shape parameter the no. of iterations taken increases highly but with
the increasing value of § , no. of consumed iterations decreases. The result is
interesting in the sense that for the shape parameter value =2, corresponds to
GD, no. of consumed iterations by algorithm is lower than that of for 8 values
representing the PDF of TFSS. However, NRR is getting low. The reason behind
this can be understood with help of Eq.(5.18) which shows how the fixed-point
algorithm converges to the optimum separation vector. The coefficients of 2nd
and 3rd terms of Eq.(5.18) have been plotted in Figure 5.5 for different value of g
for non-linear function as well as for data for which shape parameter has been
denoted by B,. The used data were artificially generated by fitting GGD
parameters with zero mean and unit variance. It is evident that the annihilations
of third order and higher order derivatives are starts earlier and is faster for the
. higher value of shape parameters which ensures higher convergence speed with
increasing values of g. In order to compare the separation performance of all

the three non-linear functions another experiment was performed by changing

98




g =~

Figure 5.5 Showing normalized mean of 3rd and 4th order derivatives of
non-linear functionG,(y) . This shows how quickly these terms are vanishing for
different value of B which results in different convergence speed. For g=2 the

Proposed function G,(y) acts as a kurtosis and shows cubic convergence.
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the non-linear functions in the learning rule. The value of parameter of the GGD
function is estimated after each iteration, however, the shape parameter was
fixed to =09 following the above results. The algorithm was initialized by the
null-beam former based initial values of the separation vectors. The averaged
NRR and no. of iterations consumed, for 6 combinations of mixed signals, are
plotted in Figure 5.11and Figure 5.9 respectively. It is evident from these figures
that there occurs no significant difference in the achieved NRR, however,
significant difference occurs in the number of iterations consumed by different
non-linear functions. In this respect, the GGD based non-linear function
outperforms the other two with handsome margins for no. of consumed iterations
in both the reverberant and non-reverberant conditions. The GGD based
functions shows higher convergence speed because the third order derivative and
4th order derivative for it are much less than that of for G;(y) and Gy(y). These
derivatives control quadratic and cubic convergence of the algorithm and are
shown in Figure 5.9 for all the three non-linear functions with data with different
Statistical distribution. It is evident from there that Gs(y), with p=0.90, has very

low value of these derivatives in comparison to that of for G;(y) and Ga(y).
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This conspicuous feature ensures higher convergence speed for it. The proposed
non-linear function based on the statistical modeling of TFSS by GGD function
is adaptive in the sense that it depends on the parameters of the data and
accordingly provides non-linear behaviors. Favorable, results for the proposed

non-linear functions for spectral separation shows effectiveness of statistical

Elg"(y)]

Elg"(y)]

0.4 0.6 B 0.8 0.98 2
y

Figure 5.9 These bar plots show normalized mean of 3rd and 4th order
derivatives Ef{g"(y)} and E{g"(y»)} respectively for different types of
synthetic data with different shape. The # for GGD based G(y) is 0.9.
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Figure 5.11 Averaged (for 6 pairs) NRR for different G(y) under
different RT.

modeling of the TFSS by GGD function. It can be concluded that as the GGD
function can better represent statistical model of TFSS, the GGD based
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non-linear function can incorporates much information about HOS of the TFSS.
Due to this it provides better results than the conventional non-linear

functions.
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Chapter-6

Enhancement of Separated Independent
Components

6.1. Introduction

In this chapter a novel method for denoising speech signal in DFT
domain is presented. In general it is a speech enhancement technique that can
work for noise with different statistical distributions. The proposed denoising
method will be also applied to denoise separated independent components. The
idea of denoising ICs is based on the signal mixing model of Eq.(3.7). Under no
background noise, it can be assumed that the only source of noise in the
separated components is the residual speech signal from other sources which is
present even after separation. Under such circumstances one sepérated
independent component can be assumed to be corrupted by the other. Thus for
one independent component, other components are assumed to be source of noise
‘and accordingly a novel denoising algorithm will be presented using GGD based
statistical modeling of TFSS of both sources.

6.2. Working Signal model

In this chapter, too, the signal model of Eq.(3.7) will used , however, it
is essential to give some explanation in the context of enhancement algorithm for
speech signal in the DFT domain. The signal model of Eq.(3.7) expresses that the
mixed signal in frequency domain is just superposition of spectral contribution
of each source in every frequency bin. The output of the FDICA gives
independent components that contain interference from others in the residual

form which is only source of contamination. This gives additive noise like model
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Figure 6.1 Showing denoising scheme for ICs obtained from FDICA.

for each IC and it can be cleaned by single channel enhancement algorithm used
for removal of additive noise. Accordingly, we will start from here with speech
signal contaminated by additive noise and develop a noise suppression rule for it

that will be applied to clean ICs. For the single channel signal capture, the
observed speech y(n) in the presence of additive noise d(n) is given by

y(n) = x(n)+d(n), (6.1)

where x(n) represents clean speech signal, » is the time-index, and random noise
d(n) is uncorrelated with the clean speech signal. The aim of the enhancement
technique is to estimate clean signal #(n) from the observed noisy signal y(n). As
we said earlier that our aim is to do estimation in the DFT domain, where DFT
coefficients of the clean speech are estimated. The observed speech signal is
subjected to STFT analysis, as depicted in Figure 3.2, to produce TFSS. The
TFSS 7,(f)of the ith independent component in any frequency bin f is supposed
to be composition of original contribution X,(f) and cross-channel interference

signal D,(f).i# j; and it can be represented as follows
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Y(f)=X(f)+D;(f), for i # j. (6.2)

The interference signal component D,(f) is derived from the independent

component y,(n) by scaling down in accordance with the NRR achieved by the

FDICA and by doing STFT analysis. This can be expressed as

| : (6.3)
D,(f)=STFT| 2=y, |,

Yi

O-}'i
NRR,

109 +1

where o, =

In generating contaminating noise level like above it is assumed that the
independent component y;does not contain contribution of y, but practically it

is not so because y; s also contaminated by y, depending upon its NRR
ensured by FDICA. However, hereafter we will go further with such assumptions.
The aim of the enhancement algorithm is to make modification by some
function 6(r), known as a noise suppression rule, to estimate the spectral
component X,(f)of the clean speech. i.e.

X(f)=GHY(S). ' (6.4)

The modification function G( £)is also called gain function. Its value lies between
0 and 1 meaning there by it produces more suppression for the lower SNR of the
input and less suppression for the inputs with higher SNR. Thus the problem of
enhancement of ICs in DFT domain is reduced to find a suitable function G(f)
that can reduce the residual interference signal available in any IC. This problem
is not new. This is one of the very old problems in the area of speech
enhancement but still challenging and chasing the state of art ASRs. This
problem has been addressed in many recent research reports and books [49] [86].

In the speech enhancement landscape, the basic assumption under such methods
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is that only contaminated signal is available to the enhancement system and thus
a classical adaptive noise canceling techniques using reference noise are useless
[88]1[89] in such scenario. There has been developrhent of different algorithms
for the enhancement of speech signal, corrupted by broadband noise, based on
the short-time analysis of the signal in the frequency domain. Such algorithms
are able in accessing and manipulating each spectral component of very
short-segments of speech. There have been developments of different algorithms
in the DFT domain to enhance the magnitude of spectral components. The report
of pioneering effort in this direction appeared in [86]. After then there came
many algorithms for enhancement in the DFT domain as the variants of popularly-
known technique of spectral subtraction [90][91][92]. In the spectral subtraction
the Short-Time Spectral Amplitude (STSA) of clean signal is estimated from that
of noisy signal and combined with the phase of STSA of noisy signal to get
spectral components of enhanced signal [87]. There have been developed speech
enhancement algorithms using estimation techniques such as Maximum
Likelihood and MAP estimation [92]. The other most important algorithms were
developed based on Gaussian statistical models for the magnitude of the DFT
coefficients of the speech [93][94][95]1[96][97]. The assumed PDF for the DFT
coefficients of speech and noise plays important role in the enhancement
algorithm. The Gaussian PDF for speech spectral components was assumed
under the implication of the CLT as the DFT coefficients are weighted sum of
the random data samples. Speech signal is naturally non-stationary, however,
statistical stationarity in speech signal is created artificially by dividing speech
signal into very short time segments, which are supposed to be quasi-stationary,
and then DFT of each segment is taken to represent signal in the frequency
domain. In Chapter-4 we have described lots on the statistical modeling of TFSS
and GGD based model were proposed. However, the statistical modeling of
spectral component of speech has been controversial since past and different
researchers have used different statistical models for the DFT components of
speech which have been discussed before in this thesis. However, in the context

of speech enhancement we place here some of such applications e.g. authors in
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Figure 6.2 Histogram of WGN (Top), Clapping (middle), and babble noise
(bottom). The fittings of GD, LD, and GGD function are also shown in the
histogram of the noise. GGD parameters (mean, scale, shape) were estimated

using ML approach and are also shown.

[61][94] have used Gaussian model. Recently, in [98][99] Laplacian model
has been used to derive speech enhancement algorithms. Similar, mismatch

between actual and used statistical models for the noise signal also arises. In
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many algorithms for speech enhancement e.g. Wiener filtering, in [95], noise
and speech both have been assumed to be Gaussian. However, many real world
noise signals such as chair crack, clapping, object dropping, babble noise etc.
are neither Gaussian nor exactly Laplacian [100]. For example PDFs of three
noise signals namely White Gaussian Noise (WGN), babble and clapping noise
are shown in Figure 6.2. These figures also contain fittings of the Gaussian,
Laplacian and GGD functions. Inspired by these facts on statistics of the
spectral components of noise a flexible enhancement algorithm has been
proposed here using GGD based statistical modeling. Since GGD based
modeling for noise and speech can capture wide range of noise, it can be used
to enhance speech signal corrupted by speech like noise.

The denoising situation of the output of FDCA is little bit different with that of

enhancement under noise. Under the no external background noise any IC

component is considered to be contaminated by scaled version, depending on the
achieved NRR by FDICA, of other ICs which are roughly, not exactly, known.
Thus in denoising one IC is taken as speech source while other is taken as
interference or noise contributing source. It is important to note that noise source
is also speech. So here a general method for enhancement in DFT domain is
introduced by using GGD models for the TFSS of both ICs. An MAP estimator
for the STSA, for speech enhancement in the DFT domain using a flexible GGD
function as the prior PDF model for the DFT coefficients of speech will be

derived. Also, spectral components of the noise are modeled with GGD.

6.3. Bayesian Estimation

Bayesian estimation is a classical method of statistical estimation that
will be used here to develop denoising algorithm for the ICs. In the Bayesian
framework the estimate of unknown signal is obtained by minimizing Bayes risk
B, which is given in terms of cost C(s,5)

a A A " 6.5
B, £ B(C(x. D) = [ [ COnRp(, y)dsdy = [ [Cox %) p(x 1 y)dslptinay, O
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where y is the observed data and x is the true value of data hidden in observation
y- In the above equation p(y) is non-negative and thus the minimization of B
puts constraint on selection of % which should be chosen such that for every
fixed value of y the bracket term in Eq.(6.5) becomes minimum. Thus the

minimization of error in estimation in Eq.(6.5) melts down to following

% & min E{C(x,3)] y) (6.6)
The choice of cost function depends on the problem at hand and leads to
different estimation techniques. However, cost functions are chosen to satisfy
ones requirements as well as tractable formulation of the problem. In general
the cost functions are chosen as the function of error x,=x—% in estimation.
This makes task of minimizing cost function easier as it becomes on sihgle
variable function. Usually, linear, quadratic and uniform cost functions are used.
Such cost functions are shown in Figure 6.3. These three cost gives different
estimators in terms of median, mean and mode of the posterior PDF as shown in
Figure 6.4. Linear cost function varies linearly with the absolute value of error
i.e. C(x)=x. In the quadratic cost function the cost is taken as the function
of square or error i.e. C(x,)=x’ and estimate is known as Minmum Mean
Squared Error (MMSE) estimate % _ and is given by

mmse

£, = Exp(xly)dx. ©.7)

It is important to note that it is not possible to get tractable solution of the
above integral for all types of PDF.

The other very important cost function is uniform cost function. Such cost
function assigns zero cost for all error less than some certain value and uniform
value for errors outside that limit. Thus under such cost function the estimation
is carried out for e'rror lying between very small values+d/2. The cost function

is given as
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(0 forx, <+6/2 (6.8)

C(x,)= :
(%) éforx£>i5/2

Under such a situation Eq.(6.5) is given by

. . . . 6.9
E{C(x, D) y}=[".C(x,%) p(xl y)dx=~(1§[1— ol p(xly)dx]=1/§— p(aly). ©.9)

This equation shows that for any fixed value of & the minimum of Eq.(6.6) can
be obtained by maximizing p(xly). Such estimator is well-known as MAP

estimator and is given by

2 V) - 6.10
% &= max p(x1 y) =max p(y/ 9)p(x)/ p(3). (6.10)
Thus the MAP estimator is given as the mode of the posterior density which is

modified prior PDF in accordance with the observed data.
6.3.1. MAP Estimation Under GGD Prior

As said before, MAP estimation uses some prior knowledge about the quantity to
be estimated and updates that prior knowledge with the likelihood function that
contains information available in the new data. As a prior knowledge, a prior

PDF, based on previous knowledge about the event, is taken which is
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Figure 6.3 Different types of cost function used in Bayesian estimation.
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Figure 6.4 Generalized posterior PDF showing different Bayesian estimators

under linear, quadratic and uniform cost functions.

further modified, according to Bayes theorem, by the likelihood for the new
samples to form a new PDF called as the Bayesian posterior. The improved
posterior PDF contains all known information, both old and new about the event.
The maximum of posterior PDF under the uniform cost function gives MAP
estimator that is also an optimal estimator [101]. MAP estimation for denoising
ICs is similar to MAP estimator of spectral components of the clean speech from
that of the observed noisy speech. The problem of estimation of spectral
components in any frequency bin can either be formulated as the task of
estimating real part and imaginary part or estimation of spectral magnitude and
related phase. Here we will obtain joint estimator for magnitude and phase of the
time-frequency series of speech. |

Let in the kth frequenéy bin ¥, =R.e™ represents noisy signal and
X, =a,e" represents spectral components of clean signal in the polar form. Thus
the problem of estimating clean signal can be formulated in terms of estimation
of magnitude 4, and phase o, . Accordingly, MAP estimator of a, and
phase ¢, are given as the mode of the posterior  PDF p(a,,e, 1¥,), which can be
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obtained by maximizing the posterior PDF p(q,,c, 1Y,). The desired posterior
PDF is given by Bayes’ theorem in terms of likelihood function p(¥, la,,a,)

and a prior PDF p(a,,e,) as follows

Yla,o)p(a,, ) (6.11)
P(ak’“k”’k)=p(Xk|Yk)=p(k 2 %) P4, %) ‘
r%)
Since p(¥,) is constant with respect to (w.r.t) spectral magnitude ¢, and phase o, ,
only numerator of Eq.(6.11) is significant in the optimization landscape and
denominator will be dropped hereafter. The natural logarithmic function of only

numerator is optimized, which is given by
J—_-IH[P(Yklak,ak)P(ﬂk,ak)]- (612)
The MAP estimators of magnitude a, and phase , are given by

(4,,4,) =arg.max{J} = arg.max[In{ p(¥, | a,, &, ) p(a,, @,)}]. (6.13)

(a, ,a;) (a,.2)

Obviously, =~ MAP  estimation needs knowledge of conditional
probability p(¥, |a,,e,) and prior probability p(a,,a,) of the spectral components of
clean speech for which GGD will be used here. The GGD model for the
magnitude of the DFT coefficients of the clean speech signal in the kth frequency
bin, is given by

la, I
pla,)= Axew Jor 0sa;, <eo (6.14)
0 else ,

where b,is the scale parameter, g, is shape parameter,
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1
4= B __ B 1 [TGIB). (6.15)
26T/ B) 2T/ B) o, \TAIB)’

O, =Stdv.of clean speech=y/E{a?} . (6.16)

Since the positions of analysis window in STFT analysis are arbitrary, the PDF
of phase g, , follows uniform distribution and is expressed as

1
—for-7<e, <7

p(&,)=Uniform PDF=<2r (6.17)
0 else
The joint PDF of the magnitude 4, and phase e, is given as
Il x
4, 12 (6.18)
a,,o)= X el , .
r(a, o) -

Jor 0<g, <wand-z<q, <.

The conditional probability p(, 1x,)of the observed data, given clean signal

inherits randomness of noise and can be given as the PDF of noise, which is also
modeled by GGD as follows

pQ 1X,)=p, la, )= Noise PDF

_[l}’k—-X,‘!]ﬂ"
=(4y/27)e " " ©, (6.19)
for 09Y, - X, [Koo,—7 <y, <x

where 5, and g, are scale and shape parameters, respectively, for the GGD

distribution for noise .spectral component in the frequency bin k, andy, is the

115




corresponding phase for noise.

6.20
Ao B _ B 1 [TG/B) (6.20)
YT 2pT(/B) 20/ B) o, \TWB)

and :
' (6.21)
o, =Stdv.of noise =/E{I D} 1} .

Now the desired posterior density in Eq.(6.11) can be given by using
Eq.(6.18) and Eq.(6.19) and dropping denominator as follows

- [ -X, lﬂ" }_Pak lﬂx }
ﬁﬂ ﬁx
p(ak’akIYk)(xp(Yklak’ak)p(akaak)=(ANAx/47[2)€[ % o] (6.22)

Using Eq.(6.22) in Eq.(6.12) gives

_IRkeivk —a,e P g & tIn A A,

J=
b’ b’ A7?

(6.23)

Now, in order to locate, say at@ and 4,, the highest of the posterior PDF,
differentiating Eq.(6.23) w.r.t. phasea, and spectral amplitudeq,, and equating

derivatives to zero gives

oJ/da;,| _. =BIR;+a; —2R,a, cos(v, - &)V’

[2R,a, sin(v, — &, )],

Equating it with zero gives
sin(v, —&,)=0=> &, =v,, (6.24)
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where B=054,/b/;=054,-1. Eq.(6.24) gives MAP estimated phase of the
spectral components of clean signal which is same as that of that of the spectral

components of the noisy speech. Similar treatment of Eq.(6.23) w.r.t
spectral amplitude a, along with use of Eq.(6.24) gives

dJ/da, 1, _, =0
which further gives
2B[R; +a; ~2R,a,V'[-R, +&,1- B.4," b [sign(a, )1 =0, (6.25)

In order to avoid singularity when 0< B.<1,and a,=0, 4*7in Eq.(6.25) is
replaced by a"+5, where & is very small ( <10* ) number.  Further

simplification of Eq.(6.25), results in the following radical (power) equation

B.a/70 P sign(a, Y =2B(R, - a,)***"
=4 =P(R,-4,)", (6.26)

where P= bfx B, / bf" B, . It may be very difficult to find an analytical solution of
the Eq.(6.26), however, its numerical solution can be casily obtained by
Newton-Rapshon’s method under which numerical solution after the ith iteration

is given as

a7 PR, -6, ) _
B ~D'a"7+P(B,-1)R, -5, ) (6.27)

i+l A

—is
a4 = 4

This solution gives MAP estimator of the spectral magnitude which is further
combined with the phase of a related noisy spectral component to get a spectral
component of the clean signal. The solution in Eq.(6.27) is sensitive to the used
initial value. The good initial values can be obtained as the special case solutions
of the Eq.(6.26) as described below
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6.3.2. Special Cases of GGD based MAP Estimator

Case-1 For g =pf =2, the spectral components of both the noise and speech
signal have Gaussian (assumption working under the conventional Wiener
filtering) PDF and solution of the Eq.(6.26) using Eq.(4.11) is given by

n b’ o’ (6.28)

a, = R = I R,
R

which is Wiener filter and can be used as the initial value for the iterative
solution in Eq.(6.27). Thus the MAP estimate under the Gaussian model for both
the noise and speech is equivalent to Wiener filtering. This is due to symmetry of
the posterior PDF, which too is Gaussian, for which mean (Wiener solution) and
mode (MAP estimator) are equal.

Case 2. When g, =1 i.e. the clean speech spectral component has Laplacian PDF
and that of noise is GGD, the solution to Eq.(6.26) is given by

058,
Pl

1

s R _(l)ij R _(1.41420'”",1}??1 M
: T\ Ten r( %) (6.29)

P
in which further if the PDF of noise spectral components is assumed to be
Gaussian, we have g =2 and Eq.(6.29) can be simplified into

2
O R, -14142% (6.30)
o g

X

4, =R, —1.4142

where £=02/o? is the spectral SNR of the noisy speech signal.
For the other two special cases i.e. when B =p,=1, Eq.(6.26)) fails to give
solution for 4, and it can be shown that under such condition it leads to

o,=0,,and for B =1 estimate for g, is given by
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(Y 1\
ak=(P)ﬁx—1=lIbn J(Fﬂ , (631)

which is independent of R,. However, such all-special cases are not happening
with the speech signal. As shown in [82] the shape parameter of the spectral
magnitude is nearly equal to 1(0.8<f,<1) and in the majority of the frequency
bins spectral amplitudes have strongly Laplacian distribution (GGD with
B, <1 ). The simultaneous happenings of B, =8 =1 can be avoided by making

them slightly more or less than 1.
6.4. Voice activity detection

The solutions of Eq.(6.26), require scale and shape parameters of clean speech
and noise signals. The estimation of these parameters for general problem of
denoising speech signal under additive background noise and ICs enhancement
will be a little bit different. In the speech enhancement problem clean signal
and noise signals are not known. However, they can be estimated from the
noisy data only. The GGD parameters of noise can be estimated, using ML
approach as described before, from the noise only portion e.g. a few samples
from the beginning or other silent parts of the noisy data can be taken using
voice activity detector. Voice activity detection in low SNR condition is
problematic. A VAD for this purpose based on negentropy measure of speech
signal is described below.

Detection of noise only frames and noisy speech frames is difficult, especially,
in a very low SNR condition. In the very low SNR condition conventional energy
based VAD detector fails [102]. It is also conceivable from Figure 6.5, which
shows how the energies of speech segments under different SNR conditions
change. We propose here a statistical VAD detector based on the chaos measure
of the spectral magnitude of quasi-stationary segments. For a speech signal,
spectral components are well organized, however, for the noise signal it is not

well organized e.g. spectrogram of White Gaussian Noise (WGN) and clean
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speech signal from the male speaker can be observed in Figure 6.6, to be imbued
with such differences in the spectral organization. Accordingly, the observed
noisy speech data during the speech period in the signal is less chaotic, as shown
in Figure 6.7, than during the noise-only frames and thus chaos-based measure
can discriminate noise-only and noisy speech frames.  For doing voice activity
detection based on the measure of such chaotic characteristic, we have used
negentropy as a measure [19]. The benefit of using negentropy over others such
as entropy [102][103] is that it is always positive and can be computed in terms
of only shape parameters of the used GGD model. The negentropy of each frame
in DFT domain is obtained in terms of Differential Entropy (DE) AH of the
magnitude of spectral components. The DE of the any frame data
U=[Y, e ¥,1 is given by

iy 6.32
AH(U) =~ | pU)log p@)dU, (6-32)

‘where pw) represents PDF of the frame data U. The PDF of magnitude of

spectral components of each frame is represented by GGD with mean x4, =0

Value

Figure 6.5 Energy of speech segments corrupted by WGN under different SNR

conditions.
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Figure 6.6 Spectrograms of WGN (upper) and clean speech from

male speaker (lower and middle figures).

2000

Figure 6.7 Spectrograms clean speech and noisy speech
degraded by WGN (First row clean and noisy waveforms,

Second row corresponding spectrograms).
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scale parameter o, and shape parameter f,, estimated from the data. Using

GGD model for p@) in Eq.(6.32) it can be integrated to give

2a F(l/ﬂ”)]+ 1 (6.33)

AH(U)=f(au,ﬁu)=log[ 5 2

B’
which depends on the scale and shape parameters. The negentropy H(f,) is

computed as the difference of DE of Gaussian RV, with same variance as of that

of spectral components of speech, and DE of speech spectral components
modeled by the GGD £,,(0,,.8,). Accordingly, negentropy H(f,) is given by

H(B,)=AH(a,, B, =2)-AH(a,, 5,)

= log A

(6.34)

The theoretical variation of negentropy of GGD with shape parameter is shown
in the Figure 6.8. It is obvious from there that the negentropy is zero for the
Gaussian distribution and goes up in the positive direction for the spiky
distribution. Since the speech frames are more parsimonious than noise frames,
the noise-only frames will have lower negentropy while for the noisy speech
frames negentropy will be relatively high and thus a threshold value of the
negentropy can be chosen to demark noisy speech frames and noise-only frames.
The threshold value of negentropy can be decided on the basis of the global
statistics of the negentropy. The negentropy of the frames itself is a random
variable and its PDF represents joint probability of occurrence of noisy speech
frame and noise-only frames. The PDF of negentropy of each frame can also be

modeled by GGD with mean g,,scale parameter o,and shape parameter g,as

follows
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Figure 6.8 Shape parameter versus negentropy of the GGD. It is
zero for Gaussian distribution and positive for the spiky
distribution (0<p<1).

H=p,1/ T
N0 pe— — 1)

Mhr( %fh) (6.35)

where v =[speech, noise] to represent noisy speech frame and noise-only
frames respectively. Since the occurrence of noise and speech frame is

independent

(6.36)
Py, (H) = p(noise | H) p(speech | H)

The threshold value H,,of the negentropy is estimated under assumption that the

conditional probabilities of noise-only frame and noisy speech frames are same
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(say p,) at the threshold [104]. Accordingly, the threshold H,,is given by

—a,log(2p, (- p)T'(1/,)) /h

(6.37)
B,

Hpyy =44, %

The similarity between the spectral bands of the estimated noise and original
noise can be measured by measuring the Kullback Leibler Divergence between
the PDF of their spectral bands.

6.5. GGD parameters for noise and speech

Using the threshold value in Eq.(6.37), total noise-only frames (say L) are
stacked together in the time succession and GGD parameters for noise spectral
components in each frequency bins are estimated from these data using ML
technique as described in Chapter 3. Due to unavailabilify of clean signal, the
GGD parameters for the clean speech cannot be obtained directly as has been
done for the noise spectral components; however, they can be estimated using
GGD parameters of noise spectral components and higher order statistics of the
spectral components of the observed noisy data. The shape parameter of the
spectral magnitude of clean speech can be estimated from their kurtosisk,

using the following relation valid for the GGD function

o _TWAIT(5/A)
X~ 2
T'(3/8)
where V is some function. The shape parameter can be estimated by inverting the
relation in Eq.(6.38) such that

=V(B,). (6.38)

(6.39)

A

B.=V7(K,).
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It is difficult to find an analytical inverse function for V, however, it can be
easily done with the look-up table by storing values of Shape parameter and
corresponding value of kurtosis. The theoretical variation in the kurtosis with B
is shown in Figure 6.9. The estimation of shape parameter using Eq.(6.39) needs
kurtosis of the clean signal which is not available, however, it can be estimated
from the higher order statistics of spectral components of the noisy speech
and estimated GGD parameters for noise. Starting from Eq.(6.2) it can be shown
that the kurtosis of clean signal is related to kurtosis, skewness, variances and

means of noise and noisy data as follows

(6.40)

X

< | K0! 48,021, - 48,071, — 605207 (K, -6)0; |

2 212
(o,-0,)

where k, =Kurtosis of spectral components of signal z, s, =coefficient of
skewness of spectral components of signal z, ,o, and g denotes standard
deviation and mean of the signal indicated by subscript z, and z=(x,y,n)=(noisy
speech, clean speech, noise) signal. The coefficient of skewness of the clean
speech signal is estimated from the skewness and lower order statistics of the

noisy data and noise signal as follows

[Syo-j =3(0; =), =3, — 1, )07 — S, 07 ]
' (o2 _02)3/2 ) (6.41)

n

S, = Skewness =

The variance and means of the clean speech signal are estimated as follows

fr , (6.42)
é; =0’ -0
ﬂy=ﬂx +ﬂn :>ﬂx=ﬂy —ﬂn' (6‘43)

However, to prohibit ¢ becoming negative, it is approximated as
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(6.44)

6?7 =max (0> -02,0),
in which the subscripts n denotes noise and y denotes noisy speech signal. The
scale parameter of the GGD for clean speech is then obtained using value of
o,and B, in Eq.(4.11). The whole process of the speech enhancement, as
described and derived above, in the DFT domain under the proposed framework,

is shown in Figure 6.10.

Performance Evaluation Score

In the above described MAP estimation of the clean signal, the estimated
parameters for the noise and clean signal plays important role and the accuracy
of the estimation can be checked by measuring the distance between the PDFs of

the original spectrum and estimated
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Figure 6.9 Theoretical variation of kurtosis of GGD with shape

parameter.
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Figure 6.10 Speech enhancement scheme used to estimate spectral
components of clean speech in the DFT domain. The phase of noisy data

is used to reconstruct the original signal.

spectrums of the related signals. The similarity between the spectral bands of

the estimated noise and original noise can be measured by measuring the
Kullback Leibler Divergence (KLD) between the PDF of their spectral bands.
Since the PDF of the spectral bands are modeled by the GGD, KLD between

them can be measured in terms of GGD parameters. The KLD between two
GGD functions defined by scale parameters @.2;and shape parameters £,

is given by
B,
Bal/B)) (e« |'TWB+D/B) 1
D;=log| ——"—= 4| L | L W 6.45
‘ °g(ﬂja,ra/ﬁ,.>)+(a,) B B (€42

Further DFT coefficients in each frequency bin are assumed to be independent,
so the overall distance between two noise spectrums can be given by averaging
the distance calculated in Eq.(6.45) for each pair of the spectral bands of the

original(Org.) noise and estimated (Est.) noise as follows
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L& ey o . (6.46)
D, =N; D,(f,), (i=0Org., j=Est).

The GGD parameter estimation for ICs enhancement is same as above except
the noise parameters were estimated from the TFSS of noise signal scaled from
a IC using Eq.(6.3). Then the clean signal parameters were estimated as
mentioned above.
In order to evaluate performance of the proposed denoising algorithm

global SNR and segmental SNR of the estimated signal will be measured [38].
The global SNR provides error measurement over time and frequency and is
defined as

DX () -~ (6.47)
> @O -20F

SNR , =10log,,

In order to evaluate performance of the FDICA with MAP enhancement the
NRR defined in Eq.(3.46) with and without MAP enhancement will be used.

As a subjective test preference test for enhanced speech signal has been done.
6.6. Experimental Evidences

The experiments in this chapter are placed in three separate parts. First
we place characteristics of noise suppression rule derived in Eq.(6.27) for the
MAP estimator. Then speech enhancement experiment under different noise
conditions will be presented. Finally, enhancement experiments for separated
ICs will be placed. The characteristics of noise suppression rule are shown in
the Figure 6.11. These gain curves were obtained for the 5000 samples of
random variables (RV) generated for given GGD parameters. The B parameters
of GGD for RV corresponding to clean speech were held constant at 1.2. It was
done so, as the average value 8 for|x(s)|, speech amplitude was found around 1,
but at exactly 1 Eq.(6.26) vanishes. Obviously, the shape of the gain function
depends on the GGD parameters of the clean speech and noise signal. The

proposed noise suppression rule offers more noise suppression at the lower
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Figure 6.11 a) Characterestic of noise suppression rule for different
values of GGD parameters. The shown curves were obtained from
artificially generated random variables with GGD parameters. (a)
shows plots for highly spiky noise (b) shows plots for less spiky

noise. Shape of the curve changes with the characteristic of noise.
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SNR and the amount of noise suppression decreases as the signal’s SNR level
goes up which means the clean signals are not cleaned further. In the
experiments for the speech enhancement we have used four sentences, of time
length 3 sec., sampling frequency 8 kHz and spoken by two male and two female
speakers, from the ASJ continuous speech corpus for the research[80] and noise
data from the NOISEX-92 database freely available at http://mi.eng.cam.ac.uk/
comp.speech/Sectionl/Data/noisex.html. The clapping noise was self-recorded.
The enhancement experiments has been done with the speech signals degraded to
different SNR levels e.g. =5 db, 0 db, 5 db, 10 db, 15 db, and 20 db. In the first
part of the experiment, statistical characteristics of the spectral components of
different noise were investigated. The signal analysis conditions are kept same as
mentioned in Table.3.2. The GGD parameters for the spectral components of
WGN, babble (BAB) noise, and clapping noise were estimated using ML
approach. It is the shape parameter that decides shapes of the PDF, the value of
shape parameters for them are shown in Figure 6.12. Upper subplot in that figure
shows shape parameter B for the magnitude of spectral components of the WGN,
babble noise, and clapping noise. The bar plot in lower subplot of the same
figure shows values of shape parameters, averaged over the total number of
frequency bins, for the real part, imaginary part and the magnitude of the spectral
components of the same noise. It is evident from these figures that the spectral
components for WGN have Gaussian distribution but the babble noise and
clapping noise have relatively spiky distribution. The PDF of the time domain
samples of all these three noise signals are already shown in the Figure 6.2 with
fittings of Laplacian, Gaussian and GGD functions in which too, similar
differences in PDF can be observed. Thus it is very loose assumption to use
Gaussian model for all noise signals, as is done in the Wiener filtering and can
affect performance of the related speech enhancement algorithms. In Figure 6.13,
PDFs of the spectral components of the WGN, clapping and babble noise in
frequency bin f=688 Hz are shown. It is evident from there that GGD with
measured parameters provides better fitting in the PDF of the spectral

components. Similar results were observed for other frequency bins too. In
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Figure 6.14 the performance of energy based VAD and negentropy based VAD
has been shown under very low SNR condition. It can be seen in that figure how
the energy based method fails to demark speech segments and noise-only
segments. The result of negentropy based VAD for the speech signal, from male
speaker, degraded to 0db SNR level by WGN and clapping noise are shown in
Figure 6.15. In that figures, patterns in spectrograms of the noisy speech data
revel chaos of noisy speech and noise-only frames can be observed. The upscaled
negentropy curve is also plotted to show how it tracks signal frames with
different chaotic conditions. The negentropy of each frame is also plotted over
noisy and clean speech waveforms. In the case of lower SNR or higher SNR
almost similar results were found. For the discrimination of the noisy speech
signal into noisy speech frames and noise-only frames, a threshold is required
which can be estimated using Eq.(6.37) and is shown in Figure 6.16. That figure
shows theoretical value of threshold as a function of the probability of
occurrence of a speech segment. The shown threshold curves were estimated for
the speech signal degraded to 0 dB and 15 dB SNR levels by WGN and clapping
noise. It is evident that there is a little variation in the negentropy value where

the probability of occurrence of each is assumed to be equal (=0.5). Also, if the

probability of occurrence of speech frame is increased, threshold goes down and

chances of taking larger number of frames as noisy speech and less number of
frames as a noise-only frame increase. In our experiments, the used value of
thresholds for WGN, babble and clapping noise were 0.1, 0.2 and 0.19
respectively. After discriminating the noisy speech signal into noisy speech
frames and noise-only frames, the GGD parameters for noise were estimated.
The estimated noise parameters and statistics of the noisy speech signal were
used to estimate GGD parameters for the clean signal using Eq.(6.40)
-Eq.(6.43). The estimated parameters for the babble noise and clean speech
signal along with the corresponding parameters for their original versions are
shown in Figure 6.17. As it is evident from that figure that the parameter

estimation for the clean signal is not so much accurate, however, the estimated
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Noise Type

Figure 6.12 Shape parameters of the WGN, babble and clapping noise.
Upper figure shows shape parameters of magnitude of noise spectral
components and lower bar plot shows shape parameters, averaged over
frequency bin, for real part, imaginary part and polar magnitude of the

WGN, babble and clapping noise.
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Figure 6.13 Fitting of GGD, Gaussian and Laplacian PDF in the histograms of
magnitude of noise spectral components
the first column (left) of every row is for imaginary part, middle column is for the
real part and rightmost column is for the polar magnitude. Each successive row from

top to bottom is for WGN, clapping and babble noise respectively. The GGD

is same for each plot which has been shown in one plot for clarity)
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Figure 6.14 Performance of energy based VAD and negentropy based VAD. The
clean speech signal is corrupted by speech like babble noise to SNR level of
-5dB. Subplots from top to bottom are noisy speech signal, noise signal, clean
speech signal, Spectrogram of noised speech and KLD between estimated and

original noise spectrum.

parameters for the noise are very near to that of the original noise signals. Next
we performed denoising experiments to estimate clean speech spectral
components using Eq.(6.27). The four clean speech signals, two from male and
two from female speakers, were noised to the SNR levels of -5 db, 0 db, 5 db,
10 db, 15 db, and 20 db by WGN, babble noise and clapping noise. we used
Eq.(6.29) to initialize the iterative process of the Eq.(6.27). Use of this initial
value looks logically better than that of in Eq.(6.28) in the light of PDF of the
speech spectral components. However, comparative study on the appropriateness

of these two initial values and their influence on the overall performance is still
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Figure 6.15 Performance of negentropy based VAD under WGN (Left
column) and Clap noise (right column). SNR=0 dB. Speech signal is degraded
to Odb, very low SNR condition. Negentropy of each frame is plotted over the
degraded speech as well as clean speech waveform and spectrogram of the -
degraded speech signal. Negentropy values plotted over the spectrogram are

upscaled to fit into the plot

unexplored. As a performance measure SNR level and segmental SNR were
measured in accordance with Eq(6.47) for the enhanced speech signal. The
SNR levels of the degraded speech and denoised speech, averaged for all the
four speech signals, are depicted in the figures of Figure 6.18. The same
figures also contain SNR improvement result obtained using Eq.(6.28) which
is a Wiener filter. The performance of the proposed MAP estimator in the
lower SNR conditions is better than that of in the higher SNR conditions
which is indicative of the fact that algorithm provides stronger noise

suppression in the low SNR conditions. The estimated segmental SNR for the
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Figure 6.16 Value of threshold for different types of noise under different
SNR conditions.

speech signals enhanced by Wiener filtering and MAP estimator are shown in
Figure 6.19 for the speech signal degraded by babble noise. For different SNR
levels of the input signal, the difference in segmental SNR of both gets lessened
with increasing input SNR. The spectrograms of the noisy signals, under WGN,
estimated clean speech signals by Wiener filtering and proposed method are also
shown in .The averaged segmental SNR and Euclidian distances of MFCC
. parameters of clean speech from that of noisy and enhanced signals under the
WGN and babble noise are shown in Figure 6.21and Figure 6.22. In the
denoising experiments for the ICs from FDICA, the fixed-point obtain separated
sources. Then one separated source was used as source of noise or cross-channel
interference for other and vice-versa. The residual noise going with any
separated source was estimated using Eq.(6.3) which requires SNR of the signal
as a priori. The achieved NRR by FDICA algorithm for each separated
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Figure 6.17 Estimated and original parameters for the clean speech and noise
from the noisy speech data degraded to 0 dB SNR by babble noise. Subplots in
the left column show mean, standard deviation, scale and shape parameters for
the speech signal (from top to bottom) while subplots in right column show the

same for the noise signal.

source has been used as a priori SNR. However, under the blind setup it is not
permissible thus it is an ad hoc method for the experimental purpose. Then the

noise parameters obtained from estimated residual noise were used to estimate
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GGD parameters for the clean version of the separated source. Then FDICA
algorithm described in Chapter-3 and Chapter 4 were used to learn ICs and
MAP estimator was applied to estimate spectral components of clean signal.
As a performance measure the NRR before and after denoising were estimated
and are shown in Figure 6.23. It is evident from that figure that the post
processing of outputs from FDICA results in cleanliness of the signal and
suppression of residual interfering components from other speakers. Since
under non-reverberant conditions the output of the FDICA have SNR more
than 20 dB thus post processing gives no improvement, however, for the
reverberant conditions the NRR achieved by FDICA is low and
post-processing gives good improvement. Subjective test were also done to
compare performance of the proposed method and conventional Wiener
filtering. The subjective test was planned to collect preference of the 10
subjects for the enhanced signals. In the subjective test seventy-two utterances,
from male and female speakers, degraded to -5, 0, 5, 10, 15 and 20 db of SNR
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! ' [~o- Bayesan | ! ! ! | | &~ Bayesian
! ' |-~ Wiener | | ? ! ' ! =~ Wiener
1 1 ] 1 1 I D
20f---~ et T - > 4 20~ — - - R et B I ¥
I 1 I | |
. ! 1 ] 1 1 |
[) I I L =) 1 [ 1
25p - - - - P e Y g -~ = %15 ————— e e A
3 ] t I 1 1] i
(Zﬂ ] 1 ] % ! | 1
5 ' [ 1 =1 1 | 1
210t ---- - e = o ---- Lo m e =
o i 1 i le) i | I
1 ] [ | 1
! I I i t 1
5 (0 | e = — — 5 —— = = | R | AU —
i 1 | 1 1
I i | < I | | |
[ | 1 b 1 I 1 |
0 1 ] 1 0 1 1 1
-5 0 5 -5 0 5 1 1 2
150wt snr (d5) 15 2 150wt SNR () 5 0
(a) (b)

Figure 6.18 SNR of the denoised signal MAP estimation and Wiener filtering of
degraded signal by WGN (Fig. a), babble noise (Fig.b). The SNR result is
averaged for four speakers (Two male and two female). The clean speech signal
was degraded to -5, 0, 5, 10, 15 and 20 dB.
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Figure 6.19 Segmental SNR for the speech signal degraded by babble noise to
different SNR levels.

by WGN, BAB, AIBO’s motor noise (motor noise reaching to the ear
microphone of the AIBO robot) were used. The statistical characteristics of
TFSS of AIBO’s noise can be imbued from Figure 6.24. The shape parameter
for polar magnitude of this noise is between that of Gaussian and Laplacian
noise signals. The degraded speech signals were played in random manner
before subject and their preference were collected. While playing speech
signals the signal enhanced by MAP and Wiener filtering were played in

succession for each SNR level. The averaged score collected from 10 subjects
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Figure 6.20 Spectrograms of the noisy and enhanced speech signals. The
subplots from top to bottom in any column correspond to SNR conditions —~5db, 5
db, 15 db and 20 db. Subplots in first column are for noised signals, subplots in
second column are for enhanced signals by Wiener filtering, and that of in the

third column are for the proposed MAP estimator.

are shown in the Figure 6.25. The averaged score is called here Mean
Preference Score (MPS). The individual scoring by different subjects was
found to be depending upon their aural taste for residual noise in the enhanced
signal. Similar test were also carried out for the separated signal by the FDICA
algorithm and for post-processed separated signal by the MAP estimator as
described before. For this experiment five mixed signals recorded for RT=0ms,
RT=150 ms and RT=300ms were first separated' by FDICA algorithm and
separated signals were post processed by MAP estimator. In this way two set

of separated signals, consisting of 30 pairs, for ICA only and ICA with MAP
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Figure 6.23 NRR performance of FDICA with MAP estimator as the
post-processing enhancement scheme. Since under no reverberation ICs are at
higher SNR so it remains as it is. With increasing reverberation enhancement is

effective.(Shown results are averaged for six combination of speakers).
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Figure 6.24 Motor noise from AIBO robot. Subplots from top to bottom shows

wave form, histogram of time domain samples with GGD, GD and LD fittings,

shape parameter for the TFSS and shape parameters averaged over frequency

bins respectively. The shape parameter for statistical distribution of TFSS lies

between that of for GD and LD.

were created. These signals (in pair) for the given RT were played in random

manner before the subjects. The MPS collected from 10 subjects are shown in

142



MPS for 72 denoised signals scored by 10 subjects

MPS(%)

Wiener

SNR(dB)

Figure 6.25 Mean Preference Score (MPS) for enhanced signal by proposed
MAP estimator and Wiener filter. The used noise signals were WGN, speech like

babble noise and motor noise of AIBO robot.

Figure 6.26. Since for RT=0 ms FDICA algorithm produces very clean signal
post processing shows no improvement and thus the MPS score under RT=0 was
hard to differentiate for subjects. The MPS for RT=150ms and for RT=300ms
was found to be more for post-processed separated signal which is
supplementing the results shown in Figure 6.23. Thus post prdcessing is

beneficial in case of reverberant conditions.

MPS for 60 separated signals scored by 10 subjects

60
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Figure 6.26 MPS (Mean Preference Score) for separated signal by ICA only and
ICA with MAP estimator as preprocessing stage.
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Chapter -7

Conclusions

“In research, the horizon recedes as we advance, and is no nearer at 60 than it
was at 20. As the power of endurance weakens with age, the urgency of pursuit
grows more intense...... and research is always incomplete.” Mark Pattison
(1875).

“An intelligent person can choose one of the best objectives, but it can not be

achieved without perspiration”.......Indian saying

In this thesis we have addressed the problem of blind separation of
convoluted mixture of speech using microphone array processing technique with
ICA. The 'study in the thesis moves around the application of
non-Gaussianization based ICA as a tool for the speech signal separation in the
frequency domain. The choice of non-Gaussianization based ICA was
emphasized on the fact that in the mixing of speech signals the statistical
property of mixed signal is also governed by central limit theorem and it has
been shown in the Chapter-4 how the dogma of CLT is instrumental in increasing
Gaussianity in each frequency bin in the convolute mixing process. The measure
for non-Gaussianization was taken as negentropy and a fixed—point learning rule
for the separation vector was derived. Also, the separation performance of the
algorithm wunder different acoustic conditions, characterized by different
reverberation time, was investigated. The performance of the algorithm drops
with increase in reverberation. The effect of initialization of algorithm by
random value based initial separation vector and null-beam former based
separation vector was also studied to conclude the suitability of null beamformer

based initial value. One of the interesting contributions of the thesis originated
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from the study of spectral separation performance by observing NRR. In every
frequency bin algorithm achieves significantly varying level of NRR. It should
not happen in the light of assumption that in each frequency bin TFSS are
assumed to be independent and thus algorithm should show matched level of
performance for each data set (of each frequency bin). The cause of significant
difference was investigated and it has been found that the mixing process of
speech signal doesn’t follow CLT in each frequency bin. The cause of failure to
comply with the CLT has also been investigated to conclude that the spectral
sparseness i.e. each speaker does not contribute signal in every frequency bin, of
the speech sources leads to disobedience of CLT. Such frequency bins presents
ill conditions to the FDICA algorithms based on non-Gaussianization because it
does not full-fill the basic principle of working of the algorithm. A method based
on spectral kurtosis and PDF of the TFSS has been proposed to detect such
frequency bins in advance. The proposed method relies on information only from
the mixed signal and thus it is also blind. We also studied the combination of
null beamformer and FDICA to overcome the effect of CLT non-compliance by
some frequency bins. In the proposed combination the separation process in CLT
disobeying bins was switched over to null beamformer and it was found that
separation performance of combination increased in the non-reverberant
condition. In the reverberant conditions, the combination did not give any
improvement, since the separation performance of null beam former is too poor.

This thesis has also contributed on the statistical modeling of TFSS. However,
the statistical model for TFSS is a contradictory topic since long. It was an
important study because in the proposed ICA algorithm the objective function is
based on the PDF of the TFSS. We have compared the suitability of most widely
used Gaussian and Laplacian distribution functions against a flexible parametric
GGD function. Statistically, the suitability of GGD function, with shape
parameter less than one, as a statistical model for TFSS was found more
appropriate. Further a GGD based approximation of negentropy and its effect on
the separation performance were investigated to found superiority of the GGD

based non-linear function over the conventional functions. It was also
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investigated how the change in the convergence nature of algorithm from
quadratic to cubic is faster in the éase of GGD based non-linear function that led
to overall faster convergence of the algorithm under the negentropy
approximation by the GGD based function.

The other contribution of the thesis was placed in Chapter-6 where an
MAP estimator for the speech spectral component in DFT domain has been
presented. The proposed estimator can be applied in different noise signais. It
uses GGD function as a flexible model for the spectral components of both the
noise and speech signals. Thus the proposed estimator is useful under different
types of noise signals such as spiky noise and Gaussian noise signals. It has also
been shown how the Wiener filter can be derived as the special case of the
proposed MAP estimator by imposing statistical assumptions of Wiener filtering
on it. The proposed MAP estimator was derived with aim to use it as a
post-processing stage for the FDICA algorithms. It has been applied with the
FDICA algorithm with assumption that the one IC produces interference or noise
signal for other and can be cleaned by MAP estimator. The method was found
effective in improving the separation performance of the FDICA algorithm.
The proposed MAP estimator can also be effectively used in speech envhancement
contaminated by non-speech and speech like noise. However, this requires blind
estimation of involved parameters of noise and clean speech signal. In order to
demark noise only parts from the noisy-speech signal a VAD algorithm based on
chaos measure of signal by negentropy has been proposed. The proposed
algorithm is useful and work effectively in very low SNR conditions. Some
experiments on denoising speech signal under spiky and Gaussian noise were
also presented. The proposed MAP estimator is strict MAP estimator because
even the used prior models for the clean signal are also estimated from the ob

served data.

Future Work
I started to work with a few aims and as an outcome I got a fewer results

with new problems and ideas in plural number. However, some interesting and
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important issues clouding my space of thought are pointed here for future
research activities. The one of the important aims of the researches in blind
methods for speech signal separation is its implementation for artificial audition
systems such as in robot audition and in conversational interface for other
machines. The main hurdles standing in the way are poor separation quality as
well as computational load. However, fixed-point FDICA algorithms are
computationally.less expensive than the other algorithms such as gradient based
algorithms but the separation quality is a bit inferior. The faster computability of
the fixed-point FDICA algorithm is very strong plus point for its implementation
in the real time application system if its separation capacity in reverberant
conditions is enhanced too acceptable level. It can be further explored in this
direction. The separation capacity of algorithm may be improved by changing
non-linear function or by initialization with good values. It has been found that
null beam former based initialization of the algorithm gave good quality of
separated signal but for the reverberant conditions null beamformer does not give
gdod initialization. The natural gradient based FDICA algorithm shows better
separation performance, however, it takes huge amount of iterations and near
convergence the rate of convergence becomes sluggish. The combination of
fixed-point FDICA with natural gradient based FDICA can be combined
mutualistically. The very slow convergence of natural gradient algorithm near
optimal solution can be enhanced by switching over to fixed-poiht FDICA with
initial separation vector learned by natural gradient based algorithm.

The other avenue of for future work is in the area of ICA algorithm. .As
we have shown how the ICA by negentropy maximization is trapped into
problem due to non-compliance of CLT which occurs due to spectral sparseness
of the sources. It can not be stopped to occur and algorithm has to be robust
against this. Thus some other method of non-Gaussianization can be used to
find independent components. As we have shown that the PDF of TFSS can be
better approximated by the GGD and that the mixing process increases the
Gaussianity of the mixed signal. Accordingly, the shape parameters for the
underlying PDF also changes. In the context of GGD it shifts towards 2 (for
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Gaussian distribution). Thus an ICA algorithm can be developed by creating

some contrast function as a function of the shape parameter of the underlying

distribution. Such a cost function can be used to reshape the PDF of mixed signal

from more-Gaussian to less Gaussian distribution. Such a cost function can be

developed using different distances e. g. KLD between the two GGD can be used,
however, the relation between shape parameter and data points for KLD is

enough complex. The other possibility is to use statistical rank of the data for the

given GGD function. But the relative suitability of these two options, of course

others also, need to be investigated before advancing in this direction. Such a

method of non-Gaussianization can be effective in the reverberant conditions

because its functioning is against the Gaussianization which is also enhanced in
the reverberant conditions due to presence and repeated addition of reflected and

delays components of the signal sources. Since optimization landscape of such

cost function will be based on change in shape parameter, the problem of CLT

failure may not affect the performance of algorithm.

Also, it will be not out of place to mention that the post-processing
technique introduced in previous chapter for speech signal enhancement in
general and for ICs in particular uses fixed GGD parameters for the TFSS.
However, these parameters are not really fixed over time. Shape parameter may
be fixed to some global value but scale parameter depends on local variance. The
fixed parameters may be highly effective in the case of stationary noise but is
rough assumption for non-stationary or speech like noise. Here is the scope for
further exploration in this direction too. The algorithm with adaptive parameter

estimation over time frames may improve the enhancement results.
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