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A very hard nut to digest

葡音軸痔研巧さ唱面師J

耶仇ef{加山転野斤舌癖s音佃て万-i前玩J [

(In Sanskrit taken from The Geeta, a holly book containing teachings of Lord

Xrishna to his disciple Arjuna, a great warrior ofMahabharata.)

"You haveright to work only, but never to the fruits thereof, you should not

have the fruits of your action as your goal? not let be there any desire for

inaction乃
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Fixed-Point ICA based Speech Signal
Separation and Enhancement with Generalized

Gaussian Model

Rajkishore Prasad

Abstract

Speech slgnal separation and enhancement under blind setup is one of the

challenglng areaS Of practical application･ Excellent solutions to tbese problems are

always required for the spoken communication between man and machine in the real

world･ The problem of speech separation arises in the presence of multiple speakers

and that of enhancement pertains to reduce the effect of noise and other interfering

slgnals･ In the real world applications these two problems are often occurring

simultaneously and their solutions are urgently required in the development of

full-fledged converBational interface･ The aims and scope of our work is also in the

same context･ Recently, Blind Signal Separation (BSS) based on the lndependent

ComponentAnalysis (ICA) has emerged as a potential engineering solution for

speech separation problem･ Such algorithms work with the assumption of statistical

independence of each sources and estimate original sources as the independent or

least dependent components･ This thesisalso addresses development and application

of ICA based algorithm for tbe blind separation of convoluted mixture of speecb,

observed by a two element linear microphone array, under the over-determined

situation･ The proposed ICA algorithm is based on the non-Gaussianization, by

negentropy maximization, of the Time-Frequency Series of Speech (TFSS) signal.

The functioning of ICA by non-Gaussianization is based on the heuristic idea of

Central Limit Theorem (CLT) under which it happens that the mixed speech signals

become more Gaussian tban tbe individual signal and thus by reversing tbe process

of non-Gaussianization individual signals can be estimated with arbitrary scale and

Permutation･ Under such a framework a costfunction is required to measure the
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degree of non･Gaussianization and maximally non･Gaussian slgnals are taken as the

independent components whicb are orlglnal sources. Tbere are variou･s measures

such as kurtosis, entropy, negentropy for measuring non-Gaussianization but

negentropy provides much better robustness to outlier and is widely used. However,

direct measure of negentropy lS Cumbersome and it is approximated in terms of

cumulants or non-1inear functions. In this thesis various approximations of

negentropy of TFSS by the higher order statistics of the non-1inear, non-quadratic

functions and their separation performances have also been investigated. The nature

of nonlinear function used to approximate negentropy of the data depends on its

statistieal characteristics of the data. The detailed study on tbe probability density

of TFSS has been presented to test七he relative proximity of underlying dis七ribution

of TFSS with that of Gaussian distribution, IJaPlacian distribution and Generalized

Gaussian Distribution (GGD). The results of different statistical tests such as

moment test, chi-square test, and Quantile･Quantile (QQ) plots have been found

to favour closeness of distribution of TFSSwith that of GGD. Accordingly, a GGD

function based non11inear function has been proposed for negentropy approximation

and its use in ICA algorithm. AIso, it has been found that the proposed non-1inear

function glVeS less error in approximation of the negentropy than the conventional

functions. The separation performances of conventional and proposed non-1inear

functions have also been studied with the fixed-point Frequency Domain

lndependent Component Analysis (FDICA) algorithm and have been found that GGI)

based non11inearfunction improves rate of convergence of the algorithm.

The problem of speech enhancement has also been addressed in the frequency

domain. The speech enhancement in the frequency domain is done by manlPulating

spectral component of the noISy Slgnal in accordance with noise suppression rule.

This tbesis also proposes the development of noise suppression rule based on the

Maximum A Posteriori (MAP) estimation. The proposed MAP estimator uses flexible

statistical models, based on GGD, for the TFSS ofthe speech as well as noise slgnals.

Thus the noise suppression rule is adaptive with the statistics of the noise and the

same can be used to reduce effect of different types of noise such as Gaussian and

super･Gaussian or spiky slgnals. The noise suppression characteristic of the
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estimator depends on the type of noise. In contrast to this, most of the conventional

methods such as Wiener filter show same noise suppression characteristics to

Gaussian and spiky noise signals. The statis七ics of the noise signal and clean speech

slgnal are also estimated from noISy Slgnal. First the statistics of noise slgnal is

estimated from the noise only segments of the noISy Slgnal and are used to estimate

statistics of the clean slgnal from the higher order statistics of the noisy slgnal and

noise slgnals. In order to demark noise-only portions oftbe noISy Slgnal, a novel voce

activity detector based on the organization meas11re Of the spectralcomponents has

been proposed. Again, negentropy has been used as the measure of organization of

the spectral components which is different for noise-only frames and noISy SPeeCh

frames｡ The experimental results of enhancement of speech contaminated by

different noise slgnals shows its s11Periority over the conventional Wiener filter. The

flexibility in the noise suppression characteristics of the proposed MAP estima七oT is

suitable for doing post processing of the speech slgnal separated by FDICA

algorithms. The problem is difficult in the sense that the residual noise is also

speech. The separated signals from an FI)ICA algorithm contain componen七s of

undesired sources in the residual form. Since these residual signals are speech like

noise, it can be further reduced using proposed MAP estimator by using one

separated component as the七arget speech while others as the source of the noise.

However, for the proposed post-processing the knowledge of the level of residual

noise present in the target speech is required and can be determined from the

information about noise reduction done by the FDICA algorithm. However, this

method is not blind as it requires orlglnal contribution of each source to each

microphone. The experimental results show that the post processing by the MAPS

estimator glVeS aPPreCiable improvements in the noise reduction.

Ⅹeywords: BSS, ICA, Speech SignalSeparation, Negentropy, speech Enhancement

*Doctoral Dissertation, Department of hformation Science, Graduate School of lnformation

Science, Nara lnstitute of Science and Teclmology, NAIST-IS-0261032, November, 2004.
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C血apter l

Introduction

"me血ower,血owledge aBd object of血owledge; tLese tAree motl･wBte aCtloB･ EveB SO the doer,

地e ozgaBS aBd acth71'tJ; theseま丘z,ee are tLe coDSdtuent of&cdoB "

一･･.･･･････Th'; Geeta,Peached by Lord Krishna , Chapter 18.

1･1･ Background and Problem

Recently･ researches on conversational interface [1] for intelligent

machines such as a robot and computer have received much research attention

because it renders facility to users to command and converse wit血macbines in a

very natural and easy way desplte huge intrinsic sophistication in the system.

The orlgln Of research goals in science and englneerlng tO develop such systems

that can listen･ understand and speak in a natural language are not new rather it is

rooted in antiquity 【2】, bowever, in t血e last two decades related researc血topics

have been movlng from fringe area to focus along with due modifications. In fact

the advancements in the artificial techniques for speech recognition and

developments of efficient Automatic Speech Recognizer (ASR) software, a

central module in conversational interface, have accelerated demand and

development of voice activated system･ of course valuable contributions加m

other very closely related areas such as dialog management, computational

linguistics, speec血synt血esis, etc･, can not be inevitably undervalued in也e

integrated system.

The concept of spoken comm血cation w地a mac血ine血as been inspired

by仙e speec血communication mec血anism in血umans･ However, t血e state of art in

tbis technology does not model and implement t血e auditory system in toto. T血e

establisbment of vocal communication between血uman and mac血ine seems easy

and enJOyable but the mathematical modeling and physical implementation of the

underlying myths have been proven to be one of the grand challenges for the
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modern computing technologleS･ One of the most important causes for this is that

the fundamentals of underlying processes of speech communication are still not

crystal clear orundiscovered･ However, efforts are underway but problems are

nu･merous･ Here only a surfacial touc血to some of tbem will be glVen While

focuslng On the problem of blind separation of speech in hot pursuit･

As said above an ASR plays central role in tbe conversational interface,

but only after fulfillment of many constraints its efficient use in the real world

applications is possible･ Tbe most important thing is tbe quality of speecb signal

being feed. If the slgnal being feed is clean and undistorted like trainlng data it is

tbe best case but as the quality of test signal degrades, dramatic degradation in

recognition accuracy of an ASR is well-known [3]･ The journey of speech from

mouth of a speaker to the speech pick-up device is not scot-free･ The chances of

getting it contaminated by background noise, or acoustic slgnals from other

sources or the refkcted and delayed version of itself are very common and are

always possible in real world applications･ It depends on血e characteristics su･cb

as availability of different sound sources or nose slgnals and reverberation of

acoustic environment shared by speaker and sensor･ In Figure l･1 some of tbe

most frequent aberrations, a speech signal may suffer have been depicted･ Any of

such possible aberration in speech slgnal becomes problematic to speech

recognlZer because such signals produce new acoustic patterns to the system for

wbich it is not trained and may lead to invalid recognition. Since every

subsequent processlng StePS Starting from speech slgnal pick-up and their

performance depend upon the quality of speech signal, it is important to pick-up

slgnal witb tbe best possible quality. Since the implnglng Of undesired signal on

the microphone can not be avoided completely t血ere is always need of algoritbms

for cleanlng the captured speech from noise slgnals, for minimlZlng the effect of

reverberation and for separating the speech from other speech in the

pre-processlng Stage Of recognition. In real world applications c血ances of

occurrence of tbese problems in alone are rare and tbeir sim山taneous appearance

is very common situation which makes the problem complicated and challenglng･

As said above the idea of equ･1pplng a maChine witb vocaﾄactivity is inspired by
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Figure l･1･ Degradation of speech in]ourney from speaker to ASR.

the natural system, it becomes important to implement special anthropomorphic

capabilities required for ordinary conversation･ The problem of speech signal

seParation arises in the multiple speaker environment where one is interested in

血earlng to a particular speaker for exaⅡlple hearlng ln CrOWd. Humans do it

easily ln eVeryday地･ In tbe englneerlng SenSe humans are able in steenng

仇由血earlng attention to a particular speaker! T血is antbropomorphic capability

bas been well-documented as Cocktail Party E-t in t血e scien雌c communlty

【4】･ T血is was recognized much before, bowever, still very little is known about

underlying processing of simultaneous speecb signals in buman brain [5】. In the

englneerlng SenSe prOblem is depicted in Figure l･2, where tbere are many

sources of acoustic slgnals and signalsfrom all of them glVe Very confused

mi紬re to microp血one･ The slgnal recorded by microp血on-nder suc血situation

is garbage, if feed as it is, for an ASR･ Thus in the artificial conversational

interface imitation and implementation of human like capability of steerlng

::二:!



Figure l･2･ Cock-Tail Party situation･ For humans it is not very difficult to pay

their hearlng attention to a particular speaker or sound･ But the speech signal

capt11red by micropbone is confusing fbr ASR･ T血e BSS problem is bow to

extract signal of interest from the slgnal observed at microphones without uslng

any other infbrmation (in very strict sense)･

hearlng attention is essential for its usefulness in real world applications

Whatever may be tbe slgnal representation in tbe buman brain for t血e perception

of individual speech signals from their hotchpotch [6][7], the engineering

translation of Cock Tail Part Effect is t血e separation or extraction of individual

slgnals from the cacophony of sounds. The problems becomes cha11englng and

complicated because in the real situation one has only access to mixed signals

observed by a micropbone, or many micropbones or by a micropbone array and

estimation of orlglnal sources under='such conditions seems magical･ However,

there have been development of many approaches for the same and can be

broadly categorized into two groups, namely, method based on slngle channel
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1nPut and those based on multichannel inputs･ =n the first category algorithms

like tracking of fbrmant struc加e 【8い血e organization tec血nique fbr血ierarc血ical

perceptual sounds [9], methods based on Computational Auditory scene

Analysis (CASA)【10】 bave been proposed｡ In t血e second category various

geometrical me仙ods exploiting spatial and temporal information provided by a

microphone array, have been proposed･ In such methods Direction of Arrival

(DOA) of the signal sources are estimated then separation system is computed by

adjusting directivity pattern of the microphone array e･g･ delay and sum (DS)

beamformer and Adaptive Beamformer (ABF)[11][12][13][14]. The most

important task in beamformlng algorithms is DOA estimation and the separation

pe血rmance deteriorate witb inaccuracy in DOA estimation･ In contrast to t血ese

source seParation techniques･ BSS algorithms do not need pnori information like

DOA･ It is based on t血e big血er order statistics of也e slgnal w血icb is used to

segregate slgnals by restoring their statistical independence,･ It is called blind in

tbe sense that t血ere is no access to mlXlng prOCeSS and estimation血as to start

from garbage (mixed signal)･ Thus it is process of estimation from nothing to

something･ In reality, the unlque estimation of orlglnalsignals is not possible

without some prlOrknowledge; however, with certain indeterminacies such as

scaling, permutation, and delay it is possible･ It is also, practically, not

problematic because in large number of applications･ except for applications

involving dynamical modeling, sucb arbitrariness in estimation are acceptable

b占cause useful information are available in the estimated waveform. In this

formulation the Cock tail party effect totally fits･ In general the BSS problem can

be formulated as estimation, subject to aforesaid indeterminacies, of R original

sources from their Mmied observations; from a MIMO system･ However, it

is not essential that the slgnal is comlngfrom M=MO system in special cases it

may be SIMO or SISO too･ Among the solutions to this pmblem lndependent

component Analysis (=CA) [17] based approaches are so much dominating, the

use ofterm ICA seems a synonym for the BSS, however, it is one ofthe powerfu1

tools for BSS･ The =CA based BSS algorithms estimates original sources as the

independent components of themied slgnalassumlng all sources are
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statistically independent[15][16]. Tbis is the only prior assumption imposed on

tbe sources, despite metbod is called blind. T血e details fbr di批rent ICA

algorithms will be discussed in tbe next cbapter･ ICA based algorithms for

separation of speecb signal have been developed both in time-domain and in

f陀quenCy domain. However, separation of the convoluted mixture is easier in

frequency domain because convolution is converted into multiplication and

mixlng in each frequency bin become instantaneous, but such ease is

accompanied by other problems of permutation and scaling which must be fixed

to get separated signal [18]. In this dissertation too, an ICA based BSS algorithm

based on non-Gaussianization of the mixed slgnal has been studied for its

application in separation of convoluted mixture of speech in frequency domain･

The non-Gaussianization based ICA algorithm works under the assumption of

Central Limit Tbeorem (CLT) w血icb states tbat if Ⅳ independent and identically

distributed standardized random variables xl,X2,__......XN Witharbitrary

Probability Density Function (PDF) are combined to form another variable z〃

glVenby

〃

zN -∑xN,
1

(1.1)

the distribution of zN COnVergeS tO Gaussian distribution. The effect is

reversible i.e. if血e resulting random variable z〃 is non-Gaussianized, addend

independent variables xl,X2,.-.....XN Can be estimated. This glVeS One Of the

backbone techniques fbr the estimation of independent components. In tbe

mlXlng prOCeSS the mixed signals gain Gaussianity in similar way and can be

separated by non-Gaussianization･ Different algorithms, based on this working

prlnCiple, have been developed uslng different measures such as kurtosis and

negentropy for the non-Gaussianization. Since negentropy based measure

provides better robustness to outliers in the data, its separation performance is

better tban that of tbe ku･rtosis based algoritbms 【19].

In this thesis we have used negentropy based measure for non-Gaussianity

measure, as proposed in 【27], and applied for tbe separation of convoluted
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mixture of speec血signal, captured by a two-element linear microp血one a汀ay

from two speakers･ The application of fixed-point =CA for speech slgnal

separation calls for many lmPOrtant POlntS SuCh as choice of non-1inear function

如negentropy approximation of Time Frequency Series of Speech (TFSS),

solution払r permutation and scaling problems, and removal of resi血al

interfering slgnal after separation by =CA･ The choice of non-1inear function

depends on the underlying PDF of the TFSS･ Here we have made study on the

statistical modeling of血e TFSS and accordingly propose a new non-1inear

function, based on Generalized Gaussian function, for speech signal separation

by fixed-point Frequency Domain ICA (FD=CA) algorithm･ The validity of basic

idea of CLT has also･ been checked in case of speech mlXlng PrOCeSS. The

combination of Null beamformlng and fixed-point ICA has been studied to

mitigate the effect of CLT non-compliance by TFSS･ This thesis also proposes a

novel me血od for denoISlng SpeeC血signal based on proposed statistical血odel.

The study on application of proposed noise suppression rule in speech

enhancement and in removal of interfering slgnal from separated signal has also

been discussed.

1･2･ Organization ofThesis

Rest of this dissertation is organized as follows:

In Chapter-2, the problem of blind signal separation has been defined under

generalframework･ It also describes functionlng and different approaches of ICA

based BSS algorithms･ Our main emphasis in this chapter is on the fundamental

of non-Gaussianization, by negentropy maximization, based =CA algorithm for
BSS.

c血apter･3 deals w地tbe application of ICA by negentropy

maximization, in frequency domain･ for the separation of convoluted mixture of

speec血observed by a linear microp血one array･ It rationalizes t血e application of

non-Gaussianization based ICA algorithm on the frequency sub-banded speech

data in the light of CLT･ It presents development of a deflationary learnlng rule

to extract independent components from mixed slgnal by the negentropy

7
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maximization･ The separation performances of t血e algorithm under

non-reverberant and reverberant conditions have been investigated. Tbis chapter

also explores how the non-compliance with the CLT by mixed speec血signal

affects tbe separation performance of the algorithm･

In C血apter･4, probabilistic modeling of TFSS血as been described･

Starting from Short-Time Fourier Transform (STFT) analysis, different

statistical tests such as moment test, Chi-Square(x2) test , have been performed

to check and compare closeness of the underlying PDF of the TFSS with

Laplacian, Gaussian and Generalized Gaussian Distribution (GGD) functions･

This chapter also deals witb the parameter estimation of GDD uslng

maximum-1ikelihood metbod･ Tbis chapter ends with tbe blind detection of CLT

disobeying bins uslng GGD modeling and its application in combining null

beamformer and fixed-point FDICA to mitigate the effect of CLT

non-compliance on slgnal separation･

The work presented in Chapter-5 have their bearlngS On Chapter-4･ A GGD

based non-1inear function bas been used to approximate negentropy of TFSS and

bas been compared witb tbe approximation by otber conventional non-1inear

function･ Accordingly, the same has been used in the FDICA algorithm and its

performances have been investigated wi血proper explanation for tbe

experimental outcomes.

In Chapter･6, a general method for speech enhancement based on the

GGD modeling of tbe speech and noise spectral components has been discussed･

A MAP estimator, uslng GGD a prlOri, for tbis purpose has been derived･ Tbe

experimental results for enhancement of speech, noised to different SNR levels

by Gaussian and s叩er-Gaussian noise slgnals, have been presented･ Tbe same

technique has beep applied to enhance output of FDICA and related results have

been presented.

C血apter･7 contains su皿mary Of tbe thesis and related toplCS for futu･re

research. This is followed by references and my publications related to this

tbesis.
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C血apter 2

Blind Signal Separation

2.1. Introduction

Blind Signal Separation (BSS), a very hot topic of research among

digital signal processlng grOuPS Since a decade, is the generil framework to

estimate slgnal contribution of latent sources only from their observed

mixtures without knowlng themi1ng PrOCeSS･ =n the BSS problem we are

glVen With the observation x(n) =[q(n),x2(n)････XM(n)]T at M sensors produced by

some unknown interaction function F among the R original sources

s(n) =[sl(n)･S2(n)･･･.･･SR(n)]T glVen aS

x(n) - F[s(n)], where n is time index.
(2.1)

The task of BSS is to estimate the optimalS-l, the inverse of the interaction

function, so that the underlying orlglnal sources can be optimally estimated, i.e,

s^(t) - 【s^l (n), S^2 (n)･･････STM (n)]T = PIx(n)]. (2.2)

The interaction function depends on the physical situation such as on the

geometry of sources and sensors, the number of sources and sensors, and the

source to sensor transfer function･ Hereafter, we will refer to interaction

functionF as the mlXlng matrix and inverse interaction function P-1 as the

demlXlng matrix･ For the simplest condition F can generate linear instantaneous

● ■

mixture･ However, in this dissertation we will consider for the convolutive
mixing system.

Because the method is blind and unsupervised in functioning [15], it has

gained wide areas of applicability such as in speech processlng'image

processing, bio-infbrmatics, cosmo-infbrmatics 【20], etc･ BSS tec血叫ues bave

9
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emerged as one of tbe potential sol血ons for the extraction or segregation of

hidden slgnals only from their observed mixtures･ =n the area of speech signal

separation it provides dne of tbe feasible solutions for the extraction of speech

slgnal from the cacophony of the sounds･

2.2. ICAbasedBSS

Tbe complete lack of a mlXlng prOCeSS in tbe estimation of the orlglnal

sources is compensated by pIVOting computation on the assumptlOn Of the

statistical independence of each latent source･ However, the obseⅣed mixtures

of signals are not statistically independent血e to the unknown mlXlng prOCeSS･

The prlnCiple of statistical independence is brought into play by looking for

either non-Gaussianity of or spectral dissimilarity amongthe sources [21]･ The

process of taking out血idden sources as tbe most independent components of tbe

mixed data is called lndependent Component Analysis (ICA) and tbere bave been

developments of numerous ICA-based BSS algorithms in the different areas of

practical applications involving multisensor slgnal processlng, SuCh as, speech

recognition and enhancement, biomedical signal analysis and classification･

source localization and tracking by RADAR and SONAR equlPmentS,

cosmological image classification, and data mining [19][22][23][20]･ The basic

functionlng Of the ICA based BSS algorithms are shown in Figure 2･l･ The

observed mixed signals x(n)-[x.(n),x2(n)･･････XR(n)]T =As(n) ･ where A is the

･mlXlng SyStem, are PaSSed through a tentative initial demlXlng SyStem W

(randomly chosen or based on some heuristic guess and subject to further

modification) and then the mutual independence among the estimated

independent component signals y(n) is evaluated by some cost function J(W･y)･

usua11y based on the statistics of the slgnal and candidate demixlng SyStem･ That

in turngoes on modifying demlXlng SyStem unless and until the cost function is

not optimized for the maximum mutual independence among the separated ICs･

so, paradigmatically'most of the known ICA-based 】∋SS algorithms exbibit such

functional similarities, but basic differences occur in the choice of the cost

function, the domain of operation and the process of optimization1

10



Figure 2･ 1 Block diagram showlng basic working prlnCiple of the ICA based

BSS algori血ms.

The cost function may be based on the joint distribution or the marginal

distribution of the slgnal･ The most popular example of the first category lS the

Kullback-Liebler Divergence (KLD) metric, which measures deviation between

the joint distribution of the slgnal and a pre-assumed source distributi.n. The

second category of cost functions exploit only statistical properties of the

marginal distribution and non-Gaussianity of the data･ The most important

examples of such cost functions are kurtosis and negentropy･ The method of

optimizations also differs, e･g･, gradient based algorithm, evolutionary

algorithms, fixed-point algorithms, etc･ These cost function requlre PrlOr

knowledge of the source distribution which is not always feasible, however,

some good approximations of血eir PDFs are used･ Tbe cos-nctions essentially

measures degree of independence obtained in tbe process of optimization and

tbere are many ways to measure血e statistical independence which in turn血as

led to development of many =CA algorithms･ Thus in an ICA based BSS

algo地m ICA algoritbm plays central role･An ICA process can be summarized
as fbllows:

11
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ICA Process= Objective function (Independence measure) +Optimization･

Here too l will give some elementary level description of well-known metbods

however ICA by non-Gaussianization and its application in speech slgnal

separatioh is focal theme of this thesis･

2.2.1. Statistical lndependence and tJncorrelatedness

As mentioned above tbe form of cost function depends叩On tbe fact how

independence is measured･ Thus it will be not out of place to present some

fundamentals of concept of statistical independence･ Uncorrelatedness and

independence are related terms b山distinct in the statistical sense･ Later is

known as orthogonality or linear independence･ Two random variables xl and

x2 are Said to be decorrelated if

cov(xl,X2) - E(xIX2‡-E(ろ‡E(x2) = 0 (2.3)

whereE(x‡is the expected value of x and cov(xi,X2) rePreSentS COVariance of

ろand x2･ In the case of correlated variables it becomes non-zero, may be

positive or negative depending on the fact ifろis increaslng With increase in

x2 0r decreasing･ It is symmetric relation as cov(xl,X2) = COV(x2,Xl) ･

In general decorrelation o-ncorrelateness does not imply independence

(except for Gaussian random variables)･The set of N variables xi are Said to be

statistically independent if

〃

p(xl,X2････XN) - nP(Xi)
L'=l

(2.4)

where p(x) represents PDF ofx･ The more tractable form of the above condition

is expressed in terms of non-1inear decorrelation of the involved random

variables･ Accordingly, two random variables xl and x2 are independent if
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Figure 2･2 These figures illustrate assumption of statistical independence

described in Eq･(2･4)･ The lOOO samples of random variables xl andx2from

exponential distribution with marginal density functions

Were used. Tbe

)Io†驚) is D｡wnt.jno,isnt bivar::p'xl,X2'-若exp 1-β

exponentialPDF in which p represents correlation coefficient between them

and xl,X2･Tl,r2 >0;0≦p-<1 and lo(LU) is modified Bessel function of LD Of first

kind･ Plots in first row show scatter plot, joint PDF and product of marglnal PDFs

for independent xl andx2 While plots in second row show the same when random

variablesxl andx2 are dependent, as is obvious from their scatter plot･
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Table 3.1 Measure of non-Gaussianity

N am e I)efinition

D iff erentialEntropy H (x)--Jp(x)1ogp(x)dx

K urto* s K(x)=E(x4)-3(E(x2i)2

N egentropy J(x)-H (xGG〃SS)-H (x)

M utua1Ⅰ血form ation I(x)=J(x)-∑;=1J(xi)

E‡g(xl)h(x2)i = E‡g(ろ)iE‡h(x2))･
(2.5)

where g(.) and f(･) are SOme nOn-1inear transformation over xl and x2･ It can

be imbued from Eq.(2.4) that extraction of independent components calls for a

non_1inear decorrelation of the variables such that variables are uncorrelated in

the transformed space too･ Thus the independence condition is stronger than the

simple uncorrelatedness or linear independence of the variables･

Tbe ICA algorithms separated independent components by looking for

sucb independence in tbe mixed observation･ There are several ways of

measurlng independence between set of random variables･ One of the most

straightforward methods is the use of Kullback-Leibler Divergence(KLD) as a

measure of distance between two PDF p(x) and p(y) given by

KLD(x ,, y, - Jp(x,log慧dx ･ '2●6'
use of definition of independence in Eq.(2･4) can lead to the KLD between the

joint distribution of x and product of its independent constituents xi glVen by

KLD(x" y) - I(x) - tp(x)log

14
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This is alsoknown as mutualinformation I(x) and is zero if the componentsxE

are mutually independent･ This requires knowledge ofp(x) which is very hard to

estimate and estimations are not fully reliable･ However, several computational

metbods suc血as approximation by polynomials involving cumulants for仙e

approximation ofp(x) have been developed and used in =CA algorithms [19]. In

the area of speech signal such algorithms has been applied and developed but are

computationally extensive and takes huge amount of iterations to learn

separation matrix.

2･2･2･ ICA by Non-Gaussianization

T血e o血er way of iden坤ing bidden independent components in the dala

is to look for maximally non-Gaussian components [19]. This is based on the

cLT wbich states tbat tbe mlXlng Of two or more non-Gaussian slgnals pus血es

the distribution ofmied signal towards Gaussian distribution. Thus reverse of

the same i･e･ non-Gaussianization of血e mixed signal can yield independent

components･ The different objective functions used to measure non-Gaussianlty

are s血own in tbe Table 3･1･Tbe non-Gaussianlty measures like kurtosis and

negentropy are based on仙e marglnal distribution of the slgnal, bowever,

negentropy is more robust to outlier than t血e kurtosis･ In仙is tbesis too

negentropy will be used as an objective function.

A lot of algorit血ms uslng S- cost functions血ave also been developed

and is main concern of血is paper･ Examples of algor地ms based on sucb cost

functions and non-Gaussianization of the slgnals are fixed-poln=CA by the

kurtosis or negentropy maximization 【19][23]【24】【25】･ Sucb an algor地m was

first developed and proposed in [26] for the separation of the instantaneous

mixture･ The key feature of this algorithm is that it converges faster than other

algorithms, e･g･･ natural gradient-based algorithms, with almost the same

seParation quality･ In [27] , the fixed-point algorithm of has been extended for

complex-valued signals; however, thisalgorithm has no strategy for solving the

problem of permutation and scaling arlSlng ln SPeeCh signal separation in the

frequency domain･ The fixed-polnt algorithm for audio source separation can be

found in [28][29]･ =n [28], authors have proposed the application of the

15
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fixed-point algorithm for speech slgnal separation with the

time-frequency-model-based likelihood ratio 3umP SCheme as a solution for

permutation･ In order to combine array slgnal processlng teChniques with

鮎ed-point ICA by negentropy maximization, we proposed in 【29] an algoritbm

for the audio source separation of convolutive mixtures uslng a

directivity-pattern-based technique [30] to solve the permutation and scaling

problem･ AIso, fixed-point-iteration-based ICA is very sensitive to the initial

value from which iteration starts. The fixed-point FDICA algorithm for audio

source separation works on the time-frequency series of speech (TFSS), and thus

assumes obeyance of CLT from the TFSS in each frequency bin･ However, in

[31] it bas been shown that TFSS of the mixed speec血signal fails to follow CLT

in every frequency bin and the separation performance of the algorithm too falls

in such frequency bins･ In general, any ICA algorithm based on the

non-Gaussianization of the slgnal in the light of CLT can face a similar adverse

situation and may fight to loose its performance in the same way because of

non-compliance wi血CLT by tbe TFSS｡ Such disobedience of CLT by tbe TFSS

pops up many hooked-up questions such as regarding suitability of negentropy

based method for speech signal separation･ why such failure occurs and how to

get rid of it? Tbese novel points will be discussed in comlng Cbapters･ The otber

important point in仙e marglnal statistics based cost function is tbe statistical

model used for marglnal PDF of the data･ In血e context of speec血signal

statistical modeling of its spectral components will be explored witb aim to use

its best approximation in the non-Gaussianization based FDICA algorithm･
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C血apter 3

Speec血Signal Separation by

non-Gaussianization based FDICA

3.1. Introduction

ln the previous c血apter血ow non-Gaussianization can be used in obtainlng

hidden independent componentsfrom the mixed data has been presented. This

chapter applies the same technique for separation of speech signal observed by a

linear microphone array･ =t is important to mention here that it is not necessary to

use microphone array ln multi-channel algorithm by BSS･ =t can be done by the

distributed microphones, not with a fixed geometry such as linear, and circular,

tbat can pick-up spatial variation of仇e slgnal･ However, in our approac血we

have combined array processlng teChnique with fixed-polnt FDICA to solve the

permutation and scaling problems･ AIso, it has been investigated in [29] the

fixed-polnt FD=CA algorithms is sensitive to initial separation matrix and better

separation can be obtained uslng SOme gOOd initial guess for separation matrix

such as null beamformer based initial separation matrix･ =n this regard use of

microphone array is beneficial over randomly distributed many microphones. In

this chapter the convolutive mixlng mOdel of the speech ･slgnal will be

considered and separation will be done in the frequency domain uslng

fixed-polnt =CA by negentropy maximization.

The orlgln Of the BSS technique in audio slgnal separation can be traced

back to the contributions of Cardoso [32] and Jutten [33] for practical signal
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separation algorithms based on血e aforementioned prlnCiple of statistical

independence of the sources [34]･ These algoritbms are based on bigher order

statistics of tbe slgnals mα山al independences measure among the independent

components (IC)･ Recently, tbere bave been development of many excellent

algorithms, in the time domain and in the frequency domain or mutualistically

combined in both wbile weighing tbeir pros and cons, for audio source separation

based on ICA [35] [36】[37】･ In fact, in the list of BSS methods for the audio

source separation, ICA-based BSS algorithms bave been dominatlng血e to tbe

emergence of several algorithms･ However, due to their computational

complexities and slow convergence there bardly exists any algoritbm that can

handle the general class of BSS problems for real world applications in real time

【38]?

3.2. SpeecII Signal Mixing and Demixing

ln the real recording environment, slgnals reacbing eacb micropbone are

not only direcﾄpatb signals, but also delayed and attenuated versions of the

source slgnals, which gives thought of existence of virtual or mirror sources, and
/

noise slgnals･ Therefore, in tbe real world mlXlng mOdel is best approximated by

the convolution of the source si(n) tO SenSOr tranSfer function and the source

slgnal components reacbing microphones･ Accordingly, tbe speech slgnals

picked up by a micropbone array witb 〟 micropbones are modeled as a linear

convolutive mixture of R implnglng SOurCe Slgnals s,･(h) SuCh that the

〟-dimensional signal vector picked-up by tbe array lS glVen by

RP

x,･(n) - ∑ ∑ h]･i(p)si(n-P+1)+di(n); (j =1,2,････M),
i-lp=l

(3.1)

where s.･(i)=[sl(t),S2(t),･････-･･SR(t)]T represents the orlglnal source slgnals, h)･z･ is the

p-point impulse response between the source i and the microphone j, di(n)is the

noise slgnal, and n is the time index･ T血e mlXlng mOdel given here is for the

arbitrary number of speakers and microphones, bowever, in this thesis we

consider the case of two microphones and two sources, i･e･, M=R=2, for
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Figure 3･1 Convo仙ve mixlng and demlXlng mOdels fbr speec血signal at the
● ●

two element linear microphone array･ Themied slgnals xl(n) and x2(n) at

microphones were obtained by adding the speech signals refll, ref12, ref21, and

ref22 reaChing each microphones from each source･ The speech signals refll, ref12,

ref21･ and rej22 reaching each microphone from each speaker are called as the

reference signals･ The right half ( after microphones Mland M2) of the figure

sbows demlXlng prOCeSS, a reVerSe Of t血e mlXlng prOCeSS.

simplicity and convenience and no noise condition･ For such a situation the

slgnal mlXlng and demlXlng mOdels are shown in Figtlre 3･1･ Accordingly, the

■ ■

observed signals xl(n) and x2(n) at the microphones are given by

[xA2'(nn',] - [芸:鮒ss:'(nn',] - [,reef;11.',reeff;22 ] '3 '2'
ﾅ

where refll=ql⑳sl(n);ref12=包2⑳s2(n); ref21=ち1⑳sl(n); ref22=h22⑳s2(n) are called

reference slgnals and ･ ⑳ , represents convolution operation.

3･3･1･ Frequency domain model

As stated earlier tbat an FDICA algor地m separates slgnal independently
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in each frequency bin･ The slgnal is decomposed into frequency bins by

time-frequency analysis･ The notion of time-frequency analysis, which has

been analogica11y developed from the concept of coherence states in quantum

mechanics [39][40], grew in the field of signal processing for the analysis of

speech signal･ The technique of time-frequency processlng Of signal, especially

suitable for tbe processlng Of non-stationary slgnals, captures botb血e static and

dynamic aspects of spectral information in a slngle feature vector･ Thus the

time-frequency series not only glVeS SPeCtral information but also reflects the

time dependence of tbe spectral components･ It has a wide range of applications

such as acoustic analysis, radar tracking, and adaptive filtering･ Since the speech

slgnal is also non-stationary'more accurate analysis of it is possible by means of

time-frequency processlng･ During the last 50 years there have been

developments of many powerful time-frequency analysis methods for speech

slgnal wi也comparable merits and demerits･ Details of some of these methods

can be found in 【40】【41]【42】【43]. Tbe two most widely used metbods; Sbort-time

Fourier Transform (STFT) and Linear Predictive Analysis (LPC) make tbe

implicit assumption that speecb signals are stationary over a very short time

interval called theanalysis window size･ This assumption leads to trade off

between the achievable frequency and time resolution due to uncertainty

prlnCiple･ The other metbods such as Coben's class of generalized time

frequency representation [40] and Winger distribution analysis [43] provide high

time-frequency resolution without any trade off but are complicated by the

inference terms [44]. We will consider in this study time frequency analysis of a

speech signal by也e STFT method for analysis in the joint domain of time and

frequency･ The whole process of STFT analysis is depicted in Figure 3･2･The

arbitrary speech signal x(n) is divided into M quasi-stationary frames by uslng

overlapping analysis windows (hanning/hamming) h(n) of the fixed length (say

20 ms), called as frame length such that

xw(n,1) - x(n)h(n-1c), A=1,2,･･･M;

20
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Tlme-Series of a甲e血al cmlPment

Figure 3･2 Process of the generation of time-series of speec血spectral

components by STFT analysis･

where l= is frame no･ and c is step size･ Then N-polnt DFT of each such

segment is taken to produce short-time spectrum

x(1,f) -[X(1,fo),X(1jl)･････,X(1,fN)] of Nfrequency components in which each is

glVenby

x(1,fk) - ∑xw(n,1)eTj3#,. ≦ k _< N.

〃-1

tz=0

(3.4)

The complex samples of the same frequency from each x(1j)are chosen and

stacked in time succession (in accordance with the frame no･ which corresponds

to time) to form a time series of spectral components or TFSS. Thus the time

series of the kthfrequency component (also known as frequency bin) is
eXpressed as

Z(jL) = 【Xl(l, jk), Xl(2,fk),･･･Xl(1, fk),････, Xl(M,fk)]T,

21
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The idea of uslng the short time spectra for the separation was first proposed in

[18] because the impulse response between source and microphone are assumed

to be stationary over short time due to which mlXlng PrOCeSS in each frequency

bin does not remain convolutive rather it can be assumed to be instantaneous･

Thus in the frequency domain formulation the mixing model in Eq･(3･l) can be

expressed by taking ltS STFT as follo耶

R

Xj(1,f) = ∑ Hji(Aj)Si(1,f)+Di(1･f); (j =1,2,･-M),
た=1

(3.6)

where symbols in capital represents STFT of the quantity represented by lower

case letters. For the case of two speakers and two micropbones mlXlng mOdel

under the clean condition ( no noise) is given as

[xx;'(ff',] - H(f,S(f, - [HH:'(ff', HH:'(ff',][sS:'(ff',]. (3･7,

Tbis equation revels tbat tbe mixed signal in any frequency bin is composition of

the contribution from each sound source. Thus under the light of CLT the

Gaussianity of either of mixed signal will exceed that of individual contribution

signal in any frequency bin (However, 1ater in this thesis it will be shown, of

course that is also a part of contribution of the thesis, that this is not always true

and is problematic for the ICA algoritbm)｡ T血is forms the basis for spectral

separation of the speech signal by ICA methods based on non-Gaussianization･

The FDICA separates the slgnal in each frequency bin independently, and this

separation process is glVen by

[豊'(ff',]-[YY;'(ff',]-W(f,X(f,-[wW;11'(ff', WW;22'(ff',][xX;'(ff',], (3･8,

22



where [yl(f), Y2(f)]T are ICs ; s(f)-[S^1(f) 31(f)],are estimated TFSS of the

sources, and w(f)= separation matrix infrequency bin f･ Any one row of the

separation matrix is called separation vector for a particular source.

3･3･ BSSAlgorithm for SpectralSeparation

FDICA algorithm works on the TFSS of themied speech data to sieve out TFSS

of the independent components in each frequency bin･ Fixed-polnt ICA was first

developed and proposed in [26] for the separation of the instantaneousmiture.

T血e key feature of this algoritbm is tbat it converges faster tban ot血er algor地ms,

1ike natural gradient-based algorithms, with almost same separation quality･

However,血e algorithm in 【22】【26] is not applicable to TFSS as tbese are

complex valued･ In [27][45]･ fixed-point =CA algorithm of [26] has been

extended for the complex-valued signals, however, this algorithm has no strategy

for solving the problem of permutation and scaling arlSlng in FD=CA for speech

signal separation･ The fixed-point =CA algorithm [22] is based on the heuristic

assumption t血at w血en tbe non-Gaussian slgnals get mixed it becomes more

Gaussian and伽s its non-Gaussianization can yield independent components.

The frequency domainmiing model for the speech signal in Eq.(3.7) revels that

the TFSS in any frequency bin is superposition of spectral contributions of each

source･ Thus, in the light of CLT,TFSS ofmied speech signal in any frequency
bin is more Gaussian than that of any independent source.

obviously, non-Gaussianization of TFSS can glVe TFSS of independent

sources from which original slgnals can be reconstructed･ The process of

non-Gaussianization consists of two-steps approaches, namely, pre-whitening or

sp血ering and rotation of the observation vector as s血own in Figure 3･3･ Spbering

is half of the ICA task and gives spatially decorrelated signals. The effect of

mixing, whitenlng and rotation on the data is shown in the scatter plots of Figure

3･4･ Whitening of the zero mean TFSS is done using Mahalanobis transform [46].

Accordingly, the whitened signal xw(f,t) in thejth frequency bin is obtained as
follows:
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Figure 3･3 Fbnctionlng Of the fixed-point FDICA for two lnPut Channels･

Figure 3.4 Scatter plots showlng effects of mlXlng, Whitening and ICA on the

speech data distribution.
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Xw(f,t) = Q(f)X(f,t), (3.9)

where Q(f)-^妄0･5vx is called whitening matrix; AJ -diag(1/Jq,1/Jq,..J/Jk) is the

diagonal matrix with positive eigen values 4 > 4 >........ > 1n of the covariance

matrix of x(fp･t) and Vx is the orthogonal matrix consistlng Of eigenvectors.

Tbe task remalnlng after wbitening involves rotating the w血itened slgnal

vector xw(f,t) by the separation matrix such that y(f)=W(f)Xw(f,t) equals

independent components･ T血e cost function used for measurlng血e

non-Gaussianity is negentropy･ The negentropy J(Y) of the TFSS of the candidate

IC, y(f,t) is given by (frequency index f and frame index t are dropped

血erea鮎r for clarity)

J(Y) - H(Ygauss) - H(Y) (3.10)

where H(･) is the differential entropy of (･) and yga,,ss is the Gaussian random

variable with the same covariance as of Y･ This definition of negentropy ensures

that it will be zero if y(f･t) is Gaussian and will be increaslng if y(f,t) is

tending towards non-Gaussianity･ Thus negentropy based contrast function can

be maximized to obtain optimally non-Gaussian component｡ Here we are placing

derivation of such a deflationary learnlng rule in which one separation vector w

(any one row of the separation matrix) at a time will be learned･ T血e negentropy

can be approximated in terms of non-quadratic non-1inear function G as follows

【19]:

J(y) - q[E(G(y) - E(G(ygaws))】2,

(3.11)

where q is a positive constant･ The performance of the fixed-point algorithm

depends on the used non-quadratic non11inear function G. The choice of the

non-1inear function G depends on the PDF of the data･ Some of the non-quadratic

氏m･ctions used for complex-valued signal separation are
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Gl(Y) - Jﾎす;a. - o･o1,

G2(Y) =log(a2 +Y);a2 = 0･Ol,

(3.12)

The most general formof non-1inearfunction that can be used for speech data

(assuming TFSS has super-Gaussian distribution) is G2(Y)･ Following findings in

[19], we will also use non-quadratic functionG2(Y), Whose first and 2nd-order

de,ivatives g2(Y) and g;(Y) , reSPeCtively, are given by

g2(y) =

(a2･Y2)

and g;(Y)=

0.5

(3.13)

The one unit algorithm for learning the separation matrix W(f) is obtained by

maximlZlng the negentropy based contrast function･ The speech signal is also

modeled as a spherically symmetric variable, and as pointed out in 【19】, for a

spberically symmetric variable, mod血s-based contrast function can be used to

measure non-Gaussianity･ Accordingly, we use the same contrast function as in

【19】 and is given by

J(Y) - E(G(I wHxw I2))

wbere w is an M-dimensional complex vector sucb tbat

EI･wHxw･2)-l⇒Iwl=1･

(3.14)

(3.15)

This contrast function may have M local or global optimum solutions wi (i=1,2,

..., M) for each source･ Thus learning each w calls for the maximization of

Eq.(3･14) under the constraint given in Eq･(3･15)･ The maxima of J(Y) can be

found by solving the Lagranglan function L(-H,1) of the above, glVen aS

L(w,wH,1) - E‡G(I wHxw 12)‡±1[E‡wHxw)-1),

26
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where lis Lagranglan multiplier･ In order to locate maxima of the contrast

function, the followlng Simultaneous equations must be solved.

旦-o濃-o; and芸-o∂w

These equations can be obtained from Eq･(3.16) as follows

aL

-=E†g(1wHxw.2)wHi+1wH -o,
∂w

叢-E{g'･wHxw ･2'xwHw}･1w -o,

芸jw･2-l-0,

(3.17)

(3.18)

(3.19)

(3.20)

From here, we proceedfurther in the light of following two theorems [47]:

T耽OREM l: Iffunction f(z,z*) is analytic with respect to z and z*, all

stationa7-Oints can be found by setting the derivative with respect to either
ZOrz*.

T耽OREM 2: Iff(z･z*) is a function of the complex-valued variable z and its

conJugate, then by treating z and z* independently･ the quantitydirecting the

maximum rate ofchange off(z,z*) is Vz*f(z)

Accordingly, the final solution uslng Newton,s iterative method is glVen by

-n- - w-[封捨〔剖-1 ･
which can be further simplified into
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wnew -w(E(g(1wHxw [2)+(IwHxw J2)g7(]wHxw I2)))-E(g(IwHxw l2)(Ⅹ芝w)Ⅹw). (3･22)

The stopplng Criterion for iteration is defined as 6-(lwo]d -W"w J)2, which becomes

very small near the convergence･ Since each update changes the norm of w, after

each iteration separation vector w for each source is normalized as follows to

maintain compliance witb Eq･(3･ 15)

wn- -嵩(3.23,
Asthis is a deflationary algorithm, independent sources are extracted one by one

■■

in the decreaslng Order of negentropy from the mixed signal･ Thus after each

iteration, it is also essential to decorrelate w to prevent its convergence to tbe

previously converged point･ In order to achieve this, Gram-Schmidt sequential

orthogonalization can be used, in which components of all previously obtained

separation vectors falling in the direction of tbe current vector are subtracted･

Accordingly, the orthogonalized separation vector wi for the ith source after jth

iteration is glVen by

i-1

wi -Wi -∑(W㌻wj)wj･
j=l

(3.24)

The update Eq.(3.22) is used to estimate separation vector w in each frequency

bin from whitened TFSS of mixed signal for each source in the deflationary

fashion and separation matrix WU) in any frequency binfis given by

W(∫) =

Wll(f) ･･ WIM(f)

WRl(f) ･･ WRM(f)

(3.25)

Each row of this separation matrix unlquely corresponds to a separation vector w
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for a particular source･ Because this separation matrix has been obtained uslng

whitened signals, its pre-multiplication with whitened signals in the frequency

domain glVeS the TFSS y(f･t)=[Yl(f,t)･Y2(f,t)"･･･-･･･YR(f･t)]T of the separated signal,

i.e.,

′ヽ

S(f,t) -Y(f,t) =W(f)Xw(f,t)･ (3.26)

3･4･ PermⅥtation and Scaling Problem

ln order to get separated signal co汀eCtly, tbe order of separation vectors

(position of rows) in W∽ must be same in each frequency bin･ The deflationary

algorithm separates orlglnal sources in血e decreaslng Order of negentropy･ But

t血e order of negentropy for t血e independent sources does not remain same, due to

change in contents, in allfrequtncy bins which in turn1eads to the

inter-exchange or flipping of rows of WU) in an unknown order. This is called

permutation problem･ T血e otber problem is related witb di批rent galn Values in

each frequency bin･ However, for the faithful reconstruction of the slgnal it

should be same･ This is called scaling problem･ =f these two problems are not

solved, Eq･(3･26)･ will give anotber mixed signals instead of separated

components･ T血ere血ave been developments of several met血ods to resolve tbese

two i血erent problems 【48]･ However, we will use血ere Directivity Pattern (DP)

based method using null beamformer [30] for the reason explained in the

followlng SeCtion･ The DP based method requlreS the DOA of each source to be

known･ In t血e totally blind setup, tbis cannot be known so it is estimated加m

the directivity pattern of the separation matrix･ The DP FR(f,C) of the

micropbone array in tbe - source direction is given by 【30】

FR (f, C) - kM==1WL]cA)(f)exp[j2Mdk Sin e/c],
(3.27)

where wR(k]C"(f) is an element of the separation matrix obtained in Eq.(3.25),

鮎1,2･ T血e DP of the separation matrix contains nulls in each source direction.
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However, the positions of the nulls vary ln eaCh frequency bin for the same

source direction･ Hence by calculating the null directions in each frequency bin,

the DOA of the Rth source can be estimated as

∧ 2

eR=有 "i2 cR (fp ),
p=l

(3.28)

where cR(fp) denotes the direction of nu11 in the pth frequency bin･ For the

present case of two sources, these are glVen by

cl(fp) -min[arg･nin [Fl(fp,e) ･, -g･増山Fl(fp,C) f],

c2(fp) -max[arg･Hin ,Fl(fp,C) ,, arg･Hin ･Fl(fp,e) r],

(3.29)

wheremin[u,v]and max[u,v] are defined to choose minimum and maximum,

respectively, from u and v･ Then the separation matrix in each frequency bin is

arranged in accordance with the directions of nulls, which sort-out the

permutation problem･ After estimating DOA, the galn Value in each frequency

bin is normalized in each source direction. The separation matrix normalized in

this way will have unit galn in the target source direction and negative galn in

the source direction to be jammed. However, it will bave adequate galn in other

directions which will be harmful in the reverberant conditions. Gain in the Rth

source direction in the pth frequency bin is glVen by

aR(fp) - ﾉヽ

FR(fp,CR)

(3.30)

where 6R is the estimated direction of the Rth source which can be obtained

from Eq.(3.28) or by the histogram of the directivity pattern, as proposed in [29].

Thus, de-permuted and scaled separation matrix is glVen by

30



W(fp) =

al(fp)0･･ 0

:: 0

0 0･･aR(fp ) l [wwill f(ffpp', ww:R f(ffpp ',1

(3.31)

This scaled and depermuted matrix is used to separate the slgnals in each

frequency bin･ Then by using overlap-add technique [49] time-domain signal is

reconstructed from the TFSS of each source･ However, in order to use w(f) of

Eq･(3･25) in t血e time domain to fbrm an FIR仙er, it is essential to de-w血iten

the separation filter as follows:

w(f) = W(f)(Q(f))~l. (3.32)

Then using de-whitened W(f), an FIR filter of length P can be formulated to

separate the slgnals directly in tbe time-domain as払1lows

P

y(n) - ∑w(r)x(n - r).
r=0

(3.33)

3･5･Algorithm initia)ization

T血e de鮎tionary leaming rule for w･ in Eq･(3･22) is sensitive to tbe initial

value of separation vector w･ =t can be initialized by a random value or some

heuristically chosen good guess values such as NBF-based initial value. NBF is a

geometrical technique for the speech signal separation in which the separation

filter depends on the DOA, frequency of the slgnal and the geometry of the used

microphone array･ NBF jams slgnals from the undesired directions by formlng

nulls in DP in that directions while setting look direction in the direction of

desired signal source･ Accordingly, DP in Eq･(3･27) for the NBF based

ss:p.ﾆadtisoa:is?yatt:iexfo71B.F;ﾆgfco.rn;?tei.:OsOk direction el and null direction a2

ﾉヽ
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ﾉヽ ′ヽ

Fl(f,el)=1 and Fl(f,C2)-0
(3.34)

These simultaneous equations can be solved to glVe the followlng SOlutions for

the elements of separation matrix wBF(f)

ﾉヽﾉヽ ′ヽﾉヽﾉヽ

wlfF (f) - -expﾄq. sin C2]×(-eXP[ql (Sin el｣- Sin e2)×eXP[q2(Sin el - Sin e2)] ‡~1 ,

and

′ヽ ′ヽ ′ヽﾉヽﾉヽ

wl芸F (f) - -expﾄq2 Sin C2]× ‡-eXP[ql(Sin el -Sin a2)×eXP[q2(Sin el -Sin C,)] ‡11･

(3.35)

(3.36)

similarly, for the look direction 62and null direction al followlng COnditions

are satisfied by the elements of separation matrixwBF(f)

′ヽﾉヽ

F2(f,el)=O and F2(f,e2)-1･
(3.37)

On solving these, the followlng SOlutions are obtained

w2T (f) - -exp[-ql Sin el]×卜exp[ql(Sin C2 -Sinel)] -eXP[q2(Sin e2 -Sin el)] i-l,

ﾉヽﾉヽﾉヽﾉヽ ′＼ (3.38)

and

w2T(f) - -exp[-q2 Sinel]×卜exp[ql(SinC2 -Sin Cl)卜exp[q2(SinC, -sin Cl)])~l (3･39)
′ヽﾉヽﾉヽ ′ヽ ′ヽ

where ql =j2ndlf/candq2 = j22Fdlf/c, c=velocity of sound in given environment.

The NBF based separation matrix is approximately optimal and is derived for

ideal far-field propagation of acoustic wave･ Ilowever, under the reverberant

condition, its separation performance degrades markedly･

3.6. TFSS and CentralLimit Theorem (CLT) Compliance

The most important thing from here that can be concluded about the PDF

of xi(f) is that it is convolution of PDF of s.･(f). From Eq.(3･7) the signal

received at ith microphone is glVen by
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xi(f) - Hil(f)Sl(f) +H,･2(f)S2(f) -耳1 (f)+Y･2(f). (3.40)

where y･1(O andYi2(f) represents respectively contribution of first and second

source in frequency binfat ith microphone･ For simplicity in writing if the PDF

of The PDF fxE(f)(xi) of X,･(f) isgiven by convolution of PDF of

Y;･1(f) and Y.･2(f) as follows

l⊃l⊃

fx,･'f,(x,･) - ]fy..1(f,(yil)fyi2(f, (yi2 - yil )dyil. (3･41)
=m

This simple addition of contribution of each signal in each frequency bin pushes

0.8

0

′一ヽ

f,o
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6
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4
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0 2 4 6 8 10 12
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Figure 3･5 Showlng effect of CLT by summlng lO strongly Laplacian

distributions (shown by dashed line with GGD (mean, scale, shape)). New PDFs

are obtained using Eq.(3.41).
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the nature of distribution towards the Gaussian distribution under the light of

cLT. It can also be imbued from here that if the slgnal contribution by any

speaker in any frequency bin is inslgnificant the movement towards Gaussianity

will be also inslgnificant and separation by non-Gaussianization will be poor･

For example, Figure 3･5 shows how the distribution of a strongly Laplacian

distribution with unit variance changes when added to itself･Asthe number of

addition increases tbe resulting distribution becomes more and more smooth･

The fixed point FDICA by negentropy maximizations extracts TFSS of

independent sources by the non-Gaussianization･ For the effective functionlng Of

the fixed-point FDICA it is essential that the TFSS of the mixed speech signal

s血ould be more Gaussian tban that of tbe independent components･ It is evident

from Eq.(3.7) that the TFSS of mixed signal in any frequency bin is a

s叩erpOSition of the spectral contributions of all mixlng Slgnals in the same

frequency bin･ This is the mathematical reason for the Gaussianization of the

mixed signal･ Thus the power, to separate ICs, comes in the algorithm due to the

validity of the払1lowlng logical fact

Gaussianity of ihe mixed speech signal> Gaussianity of the independeni speech signals･

If the above fact is not followed, it will be agalnSt tbe very basic working

prlnCiple of the algorithm and hamper the performances of algorithm as is shown

in 【31]. One of tbe easiest matbematical translations of the above logical

touchstone can be done in terms of kurtosis･ Accordingly, validity of CLT can be

checked by computing and comparlng the kurtosis of the TFSS of the mixed

slgnal and reference slgnals in each frequency bin･ The kurtosis of spectral

component in each frequency bin, denoted hereafter as spectral kurtosis (SK), is

glVen aS tbe ratio of the fourtb order central moment to tbe second order moment

[50][51]. Accordingly SK(f) in frequency bin f is given by

SK(f)=
C4(S*,S*,S*,S*i

[c2(S*,S*)]2 '
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where s*∈‡Ⅹ(f,t),ⅩH(f,t))･ This definition varies with the placement of

conjugates [52] but following [53][67] and assuming spectral component of

speech as complex con)ugate random variable simplified expression for SK is

glVenby

SK(f)=
E(J X(f) J4i-2E2(1X(f)J2)

[E(J X(f) 12I]2

(3.43)

Asin the fixed point algorithm, data are sphered so that Eq･(3.43) further
simplifies to

SK(f)=E(l X(f) J4I -2. (3.44)

The aforementioned condition for Gaussianlty Of the mixed data can be satisfied

by verifying the followlng COnditions in terms of SK

SKml (f) <min‡SK,4" (f), SK,ef12 (f)‡,

SKm2(f) <minISK,ef21 (f), SK,ef22 (f)‡, (3.45)

where sKmi=SK of mixed signal at the ith microphone.

using the expressions for SK in Eq･ (3･43) or(3･44), the validity of the

cLT can be tested in each frequency bin･ However, this method is not blind

because it r-1reS reference slgnals w血ic血are not available in tbe real

applications.

3･7･ Objective Evaluation Sc.re

ln order to evaluate tbe perfbrmance of the algoritbm Noise Reduction Rate

(NRR), Spectral NRR (SNRR), and Spectral Correlation Coefficient (SCRF) yU)

have been used･ NRR is defined as ratio of speech signal power (computed from

reference signal) to the noise power･ sNRR is given as NRR in any frequency

bin･ sNRR for the ith source (here M=R=2) in thejth frequency bin is given by
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SNRRi(f) - 10log10
Ei J叩. (f)rqfli (f) +叩2(f)ref,i (f) [2‡

E( I,Yi(f) -Wil(f)rqfli (f) +W:･2(f)ref2i(f) I2 ‡ '

SCRFbetweenICs yl(f) and y2(f)in a frequency binfis givenby

y(f)=

m

∑【†yl(f) -YT(f)‡ ‡Y2(f)-Y-2(f)1]
1

(3.46)

(3.47)

3.8. Experiments and Res廿Its

Tbe layout of experimental room is sbown in Figu･re 3･6･ The spaclng between

two microphone was kept at 4 cm･ Voices of two male and two female speakers,

at the distances of l.15 meters and from the directions of -30o and 40o were

used to generate 12 combinations of mixed signals xl and x2 under the described

convolutive mlXlng mOdel. Mixed signals at each microphone were obtained by

adding speech signals rejil, ref12, ref21, ref22･ The speech signals refll, ref12, ref21,

and ref22 reaChing each microphone from each speaker are used as the reference

slgnals. These speech signals were obtained by convolving seed speec血witb

room impulse response, recorded under different acoustic conditions, which are

characterized by a different Reverberation Time (RT), e･g･, RT=O ms, RT=150

ms and RT=300 ms. First of all STFT analysis of tbe mixed data is done to obtain

TFSS. The STFT analysis conditions are sbown in tbe Table 3.1. The TFSS data

in each frequency bin are whitened in accordance with Eq･(3･9) before being fed

into iterative ICA loop･ As explained in the previous sections whitening lS Only

half ICA, tbe whitened data are used to leam separation vector in accordance to

Eq･(3･22)･ At first the algorithm is initialized using random values of separation

vector w in each frequency bin. Algorithm learns separation vector in each

frequency bin. The algorithm begins to converge after 20 iterations(1ess for

RT=O ms) for RT=300 ms and stops when the stopping criterion is satisfied. The

convergence curves for RT=O ms and RT=300 ms are shown in figures (a) and

(b) respectively of Figure 3.8.
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Figure 3･6 Layout of the experimental setup･

The stopplng Criterion 8 was fixed at O･001･Using directivity-pattern-based

methods, DOAsofthe sources are estimated･ The DOAs of the lst source sl and

2nd sources- estimated using Eq･(3･28), are presented in Table 3･2 along with

true DOAs･ The histograms of Direction of Nulls (DON) formed by the

separation matrix are s血own in Figure 3･7･ It is evident加m tbere tbat in all

frequency bins DON are not in the same direction･ =n some frequency bins it is

swapped w地the DOA of o仙er sources indicating t血at separation matrix is

permuted, however, maximum no･ of nulls are occurrlng ln a particular source

direction, s血own as w血ite bar in F如e 3･7, and hence也is can also be used as

the DOA information･Using DOA information, the separation matrix is scaled

using Eq･(3･31)･ T血e DP of the separation matrix before and a- de-permutation

and scaling are shown in Figure 3･9･ That figure shows how the directional nulls

of the separation matrix get blurred with increaslng RT resulting in poor

separation･ A触solving t血e permutation and scaling problem tbe DP of

separation matrix s血o- unity galn in t血e look direction and nulls in tbe direction

of source to be re)ected.
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Table 3.1. Signal analysis conditions

Sam pling freq. 800O Hえ

Fram e Length 20 m s

Step Si之e 己
10 m s

W indow H annlng.

FFT leng.tb 512

8 0.001

In order to evaluate the performance of the algorithm with NBF based

initialization, the initial value of w is generated for every frequency bin uslng the

estimated DOA and Eq. (3.35)-(3.39). Using tbese initial values in each

frequency bin, ICA is performed･ The NRR results under both initializations are

shown in Figure 3･10･ There occurs severe degradation in the separation

performance witb tbe increaslng reVerberation time in bo血cases･ It is also

evident from Figure 3･10 that the NRR improvements for the non-reverberant

case are almost same for the both types of initializations･ However, for

reverberant conditions, NBF- based guess value shows better performance in the

NRR as well as in血e convergence speed, see Figure 3･11, over random

initialization. In order to stu･dy tbe e批ct of over-iteration on血e separation

performance, NRRs for the different number of iterations for both the NBF based

initialization and random value based initialization were observed under

different RTs. The average NRR versus

Table 3.2 DOA Estimation result

R t -} R T = O m s R T = 15 0m s R T = 30 0 m s

S ou.rces⇒ Sl S2 ∫l S2 Sl S2

E st.D O A -3 1.1 4 0 .0 -32 .2 39 .0 -2 8 .1 4 2 .1

T ru e

D O A

-30 4 0 -3 0 40 -30 4 0
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(a) (b)

Figure 3･7 Estimated DOAsfrom directivity patterns of the separation matrix.

These figures show histogram of DON in DP of the separation matrix for

male-female speaker combination･ Permutation can be observed as the DON

formed by separation vector are available in both source direction, however,

maximum no･ of nulls (shown as white bar) are available in a particular source

direction

number of iterations for RT=150 ms and RT=300 ms are shown in

Figure 3･12･ T血e maximum iteration limit was set at lOOO･ It is evident from that

figure that NRR performance is slightly changed by over-1earnlng and NBF

based initialization results in better performance than that of the random value
based

20 40

No. of iteration

(a)

60

ゝ0.16
Eg

£ o.14
0

&o･12
①

Z o.1
RT= 300 rTt; ,f=1.2 kHz

20 40

No. of iteraiion

(b)

60 80

Figure 3･8 Convergence of the algorithm for the source combination male and

female, f=1･2kHz,(a) RT=O ms (b), RT=300 ms.
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Figure 3･10 NRR improvement uslng

N肝based and random initial value for w

in different acoustic environment.

石､
芝
∝
∝
Z

ｰ▲･- _

Figure 3･11 Average no of iteration

consumed in extracting both sources under

NBF and random (RND) value based

initialization for different RT.
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initialization. In order to see the performance of the algorithms in each frequency

bins spectral NRR, defined in Eq･(3･46), and correlation coefficients between the

separated components, as defined in Eq･(3･47), were studies. Since the algorithm

separates the slgnals independently in each frequency bins, the separation

performance in each frequency bin is important. It has been found that the

separation quality ln eaCh frequency bin is not same, however, TFSS in each

frequency bin is assumed to be independent･ SNRR for the male female speaker

combinations for RT=O ms, RT=150 ms, and for RT=300ms are shown in

Figure 3･13? Figure 3･14? and Figure 3･15･ It is evident from these figures

that the separation performance in different frequency bins is unexpectedly

uneven･ In Figure 3･16 the spectral correlation coefficient between the separated

components is shown w血ich also indicates different degree of separation in each

frequency bin･ Since the TFSS in each frequency bin is assumed to be

independent such unevenness in performance is unexpected. Factor responsible

for this may be the difference in nature of data, as while the other experimental

conditions are same, in differentfrequency bins. Among the other statistics of

tbe TFSS Gau･ssianity of tbe TFSS of mixed data is important for血e proper

working of algorithm. This is discussed next along with more experimental

results. One of the possible causes of such behaviors in SNRR has been

discussed in next sub-section.

In order to study the effect of different DFT size and frame shift sizes,

further experiments were performed with random and NBF based initialization.

The analysis frame size was fixed at 20 ms, which contains 160 samples of data

at a sampling frequency of 8000 Hz, and the frame shift size has been varied

from lO% to 80% of the analysis frame size. The results of achieved NRR and

consumed computation power (number of iterations cons11med for fixed句are

shown in Figure 3.17. The obvious benefit of the NBF based initialization over

random value based initialization is rapid convergence. This is natural because

Newton-Raphson method is we11-knoyn for its sensitivity to initial value in

finding the solution and NBF provides one of the ideal or highly optimized

separation matrixes under no reverberation.
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Figure 3･13 SNRR for RT=O ms for male female speaker combination.
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Figure 3･14 SNRR for RT=150 ms for male female speaker combination.
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Figure 3･15 SNRR for RT=300 ms for male female speaker combination･
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Figure 3.16 SCRF for RT=300 ms for male female speaker combination.
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Experimental Results of CLT Compliance Test.･

The validity of CLT in TFSS of any frequency bin can be checked by verifying

the relationgiven in Eq･(3･45) for the CLT compliance test. That test was

performed for the speech data for the six combinations ofmied data for

different DFT sizes and RTs･ The related results are shown in Figure 3.18. It is

interesting to note that the TFSS does not follow the CLT in everyfrequency bin.

T血e percentage of CLT disobeying TFSS is almost independent of血e DFT size

60
∽⊂
･B
(8
540
-■
､5
LJ3

020

∈
=I
Z

Figure 3･17 NRR and number of iterations consumed by the FD=CA algorithm for

different values of the DFT size, frame size and frame shift size･ RND (NBF)

indicates random initial value (NBF based initial value) for w was used. (Result is

averaged for six speaker combinations).
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and there are no slgnificant changes with the change in reverberation time.

However, for the higher values of RT a slgnificant difference in the percentage

of CLT-failing sub-bands has been found, as shown in Figure 3･19 and

Figure 3･20, for both micropbones･ Tbis is indicative of tbe fact that the room

acoustics is also influential in the disobedience of CLT by the TFSS. As the DFT

size increases, tbe number of CLT-disobeying bins does increase, bowever, they

remain clustered. Tbis is sbown in Figure 3.21, and t血at is bappenlng血e to an

increase in the frequency resolution for higher DFT sizes･ In order to explain this

interestlng pbenomenon we take into consideration tbe contribution of eacb

signal source in the mixing process, as it is evidentfrom Eq･(3･7) that TFSS in

each frequency bin is a superimposition of spectral contribution from each

mlXlng SOurCe and this is tbe cause of Gaussianization･ For tbis tbe spectral

content of the mixed slgnal and reference slgnals were examined in the

CLT-disobeylng frequency bin and in the nearest CLT-obeying frequency bins･

In order to measure the spectral contribution, plots of the magnitude of the

spectral contribution from each of the reference slgnals and the mixed signal

were examined, and one of such plots is shown in the Figure 3.22. In that figure,

the temporal contribution of each source in a CLT non-complying frequency

些
=I

歪
ﾄ･
Iq
U

L-o

5e

256 512 1024

DFT Size

Figure 3. 18 CLT-disobeying bins for different DFT size and reverberation

time at Micl. Shown values are averagedfrom 6 mixed speech data.
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sub-band and the nearest cLT complying frequency bin are shown. It is evident

from this figure that in the shown CLT-failing frequency bin, the contribution

from the first speaker is not available at all instances, however, in the

cLT-obeylng frequency bin its temporal contribution is relatively better. It is

also evident tbat in tbe CLT obeylng bins botb sources make a ricb contribution

but in the CLT-disobeylng bin e抽er one make a very rare contribution or no

contribution, which in accordance with Eq･(3･7) results in amied signal with

content from either source･ The resulting TFSS thus in reality contains a slgnal

from slngle source and thus fails to comply with CLT･ It is, therefore, concluded

血at the sparseness in tbe spectrum has an important role in relation to the CLT

non-compliance･ It is also important to note tbat only spectral sparseness cannot

be considered to be tbe sole cause of CLT disobedience･ T血e role of otber caⅥses

sucb as room acoustics, natural pauses (t血is also results in spectral sparseness in

the temporal queue of TFSS) cannot be denied･ Since TFSS is generated by t血e

sTFT analysis it can be inferred that unless there are no long pauses in the

speec血, it cannot contribute a large number of dumb samples to t血e TFSS in any

frequency bin･ In the presence of moderate reverberation, the pause period may

be modified by the reflected speech･ Such reflected speech increases correlation

only among仙e samples of TFSS, and t血e spectral content of tbe slgnal remains

也e same even under big血reverberation, but if there is any role of pauses in tbe

cLT failure it wil"e modified by the reverberation･ However, such possibilities

are still unexplored and are left for further study･ =n order to show the effect of

the CLT disobedience by the TFSS on也e separation pe血rmance, spectral NRR

and SCRF were observed for different source combinations･ Such results for one

of t血e source combinations are s血own in Figure 3･23 to Figure 3.26. It is evident

from these figures that in the CLT-disobeying frequency bins SNRR is low and

scRF is high･ This occurs because TFSS in such frequency bins do not comply

with CLT･ It is interesting to note that there have been development of ICA

algorithm which exploits the temporal absence and existence of signal from

di恥rent speakers for the blind source separation 【55】 in tbe anechoic

environment, however･ spectral sparseness is problematic for FDICA based on
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Figure 3･19 CLT failure at both microphones for RT=O ms.
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Figure 3.20 CLr failure at bo血microphones for RT=300 ms.
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Figure 3･21 Clustering of CLT-disobeylng TFSS for different DFT sizes for

speecb signal picked up by Mic.1｡
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Figure 3･22 Role of spectral sparseness in CLT-disobedience. Plots in the left
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represent plots for spectral contributions from the first and second speakers,

respectively･
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Figure 3.23 SNRR with CLT-disobeylng frequency bins at Mic.1 for

RT=300ms. (Speakers male and female).
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Figure 3.24 SNRR with CIX-disobeylng frequency bins at Mic. 2 for

RT=300ms. (Speakers male and female).
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Figure 3･25 SCRF between separated ICs w･r･t CLT test for mixed signal

at Mic.1 (RT=300ms).
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Figure 3･26 SCRF between separated ICs w･r･t CLT test for mixed signal

at Mic･1 (RT=300ms, (Speakers both male, DFT size=512).

non-Gaussianization and to the best of ourknowledge its use in audio slgnal

separation in a realistic environment has not been reported yet･ Almost similar

results have been found for the other CLT-obeylng and disobeyingfrequency

bins･ Obviously, CLT compliance is of vital importance for =CA algorithm

working under the assumption of Gaussianization of themied data under the

cLT prlnCiple･ As也e cause, sparseness of spectrum of speec血signal, of CLT

failure by speech is inherent so its happenlng CannOt be stopped･ The only way lS

to use t血e algor地ms independent如m suc血constraints, or combine some other

methods such as NBF havlng nO SuCh problem in the CLT-failing frequency bins.

However, tbis r-1reS tbe blind detection of CLT obeying and disobeylng

frequency bins which has been presented in the next chapter along with

combination of NBF and FDICA algorithm.
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Chapter 4

Probabilistic Modeling of TFSS and lts

Application in BSS

4.1. Introd廿Ction

The statistical study of TFSS is important from many angles of thought for

FDICA algorithms in general･ The proposed fixed-point FDICA by negentropy

maximization has its functional bearlng On the compliance of CLT by the mixlng

process･ This implies that there should always be galn in Gaussianity of the

mixed signal over that of the unmixed signal･ However, if the density function of

the TFSS of individual speaker belongs to stable distribution the mlXlng PrOCeSS

will not res山t in galn in Gaussianity because sucb PDFs are closed under any

linear operations [19]･ It has been pointed out in the last Cbapter that the

performance of the described FDICA algoritbm is unexpectedly uneven in all

frequency bins desplte uSe Of same non-1inear functions. This is indicative of the

fact that statistical characteristics of the TFSS in each frequency bin are different

and are influential in separation process･ It has also been pointed out that the

choice of non-1inear function G for the approximation of negentropy of the data

depends on the PDF of the data･ The performance of the fixed-point algorithm

depends also on the used non-quadratic non-1inear function G･ It is desirable that

the function G should provide robustness toward outlier values in the data as

well as better approximation of true negentropy･ Better robustness to outliers can

be ensured by chooslng G with slow variation with respect to change in data and

at tbe same time very close approximation of negentropy can be expected if

statistical characteristics of G inherit PDF of the data･ The statistically efficient

and optimal G that can accommodate maximum information abo11t HOS of the

data is chosen as the function that can minimize trace of the asymptotic variance

of separation vector w and can be approximated by [19】
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G = cl logp(y)
(4.1)

where cl is an arbitrary constant and p(Y) represents pDF of Y. Thus

investigation of statistical nature of TFSS is essential w血icb血as been presented

in this c血apter along with some experimental results.

4･2･ Probability Density of TFSS

A statistical model of speec血is not only needed in BSS but also in many

statistical signal processlng applications of practical importance, e･g･'speecb

coding, speech recognition, speech enhancement, voice activity detection and so

forth The performance of such speech processlng SyStemS depends largely on the

used statistical model of speech･ Therefore, it is a matter of也e utmost

importance to iden坤and use the most exact or the best approximate statistical

model of tbe speec血in tbe domain of operation･ A speecb slgnal is a

non-stationary random slgnal･ Unfortunately, 1ike its inherent natural

non-stationarity･ its statistical modeling by different researchers has also been

inconsistent･ The artificial speech recognition group has mostly modeled the

speec血signal by Gaussian Distribution (GD) or a mixture of GD or in rarely seen

application by a generalized Laplacian 【56]･ In other applications it血as been

modeled by Laplacian Distribution (LD) or Gamma Distribution (岬). One of

the natural reasons for adopting speech PDF as the Gaussian is the conceptual

simplification in developlng algorithms･ The modeling of the speech probability

distribution was started in 1950 by Davenport [57]･ =n that paper Davenpom

reported tbat血e speec血data in血e time domain血as a岬･ In contrast to today,s

well-accepted LD model for speech, there has also been a research report that LD

preSents very poor and simpler approximation of tbe speec血probability

distribution [58]･ In [59], the probability density of a very short segment of band

limited speech has been modeled by multivariate GD with slowly time varylng

power･ There have been many differences among the research reports due to the

fact that the statistics of speech depends on its content (voice, silence, noise,

etc･)･ Inside the speech one can find quasi-stationary (voiced and fricatives) parts

as well as extremely non-stationary (explosion p血ase of stop consonants) part
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that makes overall nature of speech signal non-stationary･ The other equally

important issue bas been t血e duration of血e used speech signal because fbr short

time and long time speech data the PDFs differ･ More recent reports on the time

domain modeling of speech can be found in [60]. In that studies the authors

tested different statistical hypotheses on speech PDF･ The statistical modeling of

long time and short time segments of speech has been extensively studied and the

authors have emphasized t血at the speec血signal PDF can be best approximated by

the LD while negating tbe accuracy of approximation of tbe same by GD.

Experimental conclusions in [60], for different time lengths of speech, suggest

different PDFs such as speech signals have PDF similar to LD within time frame

longer than 5 ms, the GD is favored for time frame shorter than 2.5 ms, while

longer frames (>0･5 s) of speech shows y-D or GGD with the shape parameter

O･44･ These findings are important in understanding the PDF of speech segments

of different time lengths in any linear transform domain such as DFT domain.

Tbe statistical modeling of the spectral component of speecb bas also

been a controversy since last five decades. One of the earlier efforts to model the

spectral component of speech can be found in 【61][62]. In tbese studies the

authors have modeled galn nOrmalized cosine transform coefficients, which are

very mucb similar to tbe real part of tbe Fou･rier transform, of speech by tbe

Gaussian PDF. In another research reported in [63], the authors found that the

amplitude of the galn nOrmalized Fourier Transform follows y-D. However, in

that study long time segment of the speech was used so it cannot be accurate to

assign the same PDF to tbe DFT of small (20 ms - 40 ms) speecb segments.

Interestingly, in different applications researchers have assumed different PDF to

the spectral components of speech, e･g･, researchers have used the Gaussian PDF

as speech spectral PDF in order to develop speech enhancement algorithms

[64][65] and a voice-activity detection algorithm [66]. In such applications the

basic reason behind the adoption of the GD for the DFT coefficients of speech

have been the implication of the CLT because the DFT coefficients are ☆eighted

sum of the random data samples･ It is important to note that in all of these efforts

to model the DFT coe仇cients statistically, attention has been focused on也e
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DFT coe批ients (as spectral components) of either t血e s血o-r long segments of

speech rather than on the distribution of the time-series of particularfrequency
compOnentS.

The TFSS Z(D in Eq･(3･5) by STFT analysis in any arbitrary frequency

bin･ except the DC and NyqulSt frequency, represents a complex Random

variable (CRV)･These DFT coefficients are not mutually decorrelated. The

normalized correlation coefficient between different DFT coefficients depends

upon the frame length used･ It approaches to zero as frame length tends to - 【64].

However, in the STFT method of frequency sub-banding, the frame-1ength of

speech segment is deliberately confined between lOms to 40 ms in order to

introduce, artificially･ the concept of stationarity or quasi-stationarity･ Therefore,

the completely decorrelated DFT coe批ients cannot be pro血ced for tbe

time-series of speech spectral components･ Thus a certain degree of correlation

among DFT coefficients will exist even if we accept the assumption of complete

decorrelation･ Under the Cramer representation, the spectral components x(D

( frame index l is dropped for convenience) of the windowed signal xw(n) can

be represented by｡

1/2

xw(n)- I e棚dX(f).
-1/2

(4.2)

It can be found in [54] that for the stationaryxw(n) , the spectral components x(f)

are circular･ Thus血e DFT coe批ients of eacb qⅦasi-stationary segment may

also be supposed to如m a Complex Circular Random Variable (CCRV). Eac血

sample of the time-frequency series z(f)･ of a particular frequency, 1S taken from

the M set of such variables and is the ultimate representative, unlque in the case

of no overlapplng, Of time successive quasi-stationary speech segments. since

cross-segment stationarity in speech signal is not possible, at first glance the

existence of concept of circularity fbr z(′) seems illogical･ However, due to

overlapplng and arbitrariness in the analysis window･position, it seems natural to

expect circularity in multidimensional complex random variable z(f). A
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multidimensional complex random variable z(′) is said to be circular if its

probability density is independent of complex rotation, i.e.

p(z(f)) - p(Z(f)ejｸ), (4.3)

w血ere〆･)=probability density of (･) and ¢=angle of complex rotation. T血e

probability density function of the CRV z(f)=a+ib depends on the PDFs of the

real parts a and of imaglnary PartS b. Under the polar representation we have

for z(f)

Z(f)⇒Z(f)l∠0-〆C

where β = a2 +b2 = Magnitude,a - psinC;

(4.4)

b = pcose,e = a,ctan(-k) = phase. Thus,
α

the PDF of tbe CRV can also be expressed in terms of the PDF of polar

magnitude p and the phase C･ In the polar coordinate system the circularity

condition in Eq.(4･3) of仙e m山ti-dimensional CRV can be expressed as【67]

p(p,e) = p(p,e-p), (4.5)

whereや=angle ofcomplex rotation･ This implies that for circularity of z(f) its

PDF sho山d be independent of p血ase O which in turn means that O must bave a

uniform distribu･tion･ We discuss tbis issue further in tbe experiment section

where it wi11 be shown that the PDF of phase O is uniformly distributed･

Obviously, the PDF of the time-series of spectral components in each frequency

bin can be determined by looking into tbe PDFs of their real part, imaglnary part

or polar ampl血de and phase･ There have been developments of several ICA

algorithms for BSS that use PDF of the real part and imaglnary Part SeParately to

optimize cost functions 【18]. Similar algoritbms based on tbe distribution of tbe

magnitude of z(f) in the polar co-ordinate can be found in [68]. However, all

such algorithms approximate PDF by the same LD in all frequency bins. This is

one of tbe serious causes of mismatch between tbe real PDF and the model used.
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The PDF of z(f) in each frequency bin depends upon the content of speech and

may or may not be same in every frequency bin･ However, for a few neighboring

frequency bins there will be maximum similarity in the PDFs.

It was mentioned in the beginnlng Of this chapter that the statistical

modeling of the DFT coefficient of the windowed speech signal has been

described as a normal distribution･ A number of valid reasons, besides

computational and conceptual simplicity, behind仙is can be categorized as

follows･ First, the DFT is asymptotically Gaussian in accordance with the

followlng tWO theorems:

Theorem l: The joint distribution of any finite set of elements belonging to

N-point DFT of a block of length L from a stationaf"equence converges to

normal as L approaches infinity lf the elements of the sequence are strongly

mixing (i･e･ far separatedfrequency components are weakly dependent) and obey

the (Lyapunov) condition thatfor any 3>0･ the (6+2)th moment isfinite.

Theorem 2: The joint distribution ofany finite set of elements belonging to the

DFT of a block of length N from a sequence of independent, identically

distributed random variables of finite variances converges to normal as N

approaches infinity.

The proofs of these theorems can be found in [42]･ Secondly, the CLT

supports Gaussianlty Of the DFT coefficient, as DFT coefficients are weighted

sum of the random samples･ This is evident from Eq･(3･4)･ Thirdly, a

quasi-stationary segment of speech in the time domain is assumed to be Gaussian.

DFT is a linear tran-mation叩On SuC血segment, so tbe PDF of DFT

coefficients are also Gaussian･ However, it is known fact that PDF of a small

time segment of speec血varies with its time len紳and is not necessarily

Gaussian [60]･ =t is natural to consider that the PDF of the time-series of a

spectral component of a quasi-stationary speech segment is related with the

distribution of DFT of each segment and may be derived from it. Under such a

framework the problem of PDF determination of z(f) may be formulated asthe
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determination of the relation of PDF of z(f) with the PDF of M sets of DFT

coefficients, provided they are known, as obtained for each pseudo-stationary

segment･ However, such a derivation of relatedness among PDFs seems di仇cult

and may be complicated･ We adopt here a statistical hypothesis testlng apprOaCh

as well as unknown parameter estimation of tbe candidate血eoretical

distributions in order to find the suitable match for the PDF of z(f).

In order to check the PDF of zげ) we cboose GD, LD and GGD with

estimated parameters as the candidate theoretical PDF for the null-hypotheses for

the PDF of z(f). The choice of these theoretical density functions is not

arbitrary but is made on the basis of followlng tWO reaSOnS. First, different

researchers have used such PDFs to approximate the PDF of speech spectral

components･ Tbe second reason, wbicb is more convinclng, is the sbapes of the

histograms of the z(f) in different frequency bins are spiky as shown in Figure

4･1 for f=500 Hz. These histograms are very spiky, 1ike Laplacian distribution,

with variation in the peakedness in the different frequency bins. To follow this

variation in peakedness we have used the GGD. We present bere very brief

matbematical descrlptions, wbic血will be belpful in furtber discussion｡ Gaussian

PDF fG(z;P,q) of random variable z and Cumulative distribution function (CDF)

500

400

300

200

100

0

-1

(a)

500

400

300

200

100

0

-1 0 1

(b)

Figure 4･1 Histograms of (a) real parts, and (b) imaginary parts of time-series of

DFT ofmale speech at Micl.

FG(z) are glVen by

58



尤(z;p,q,-苗e畔
1 (4.6)

where p=mean and q=variance and CDF isgiven by error function (erfc) as
follows

FG(z, -壬e4c〔岩〕･

The PDF fL(z;P,a) and CDF FL(z) ofthe LD are glVenby

fL(z;P,a)-号e叫,a,o & --<z<-,

土eαzfo, z≦0
2

1ie-azfo, z,0.
2

and

(4.7)

(4.8)

(4.9)

The generalized Gaussian distribution is a nexible parametric distribution family

that incorporates various distribution shapes such as uniform, normal, Laplacian,

and even more highly peaked distributions with exponentially decaylng heavy

tails･ Accordingly it can be used to model data witb distributions symmetric at

mean w抽varylng degree of peakedness･ T血is distribution was introduced for

the first time in [69] in the development of the Bayesian inferential process.

However, that incorporates peakedness叩tO Laplacian only･ More detailed

descriptions for the wide range of distribution shapes can be found in [70].

The GGD family with the location parameter p, scale parameter a and shape
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parameter β is given by

fGG(z;a,P) =

and

2ar(yp)
exp(-[f z-/LVa]P) -

-Aexp(-[b l(z-p) J]P)

左-三席雷
=一-------････････････････････････････････-

bP

2r(yp)
exp(-[b l z-p I]P)

(4.10)

(4.11)

00

where r(x,- ]e-ttx-1dt- Ga--a distribution, and A-叢,-cQ≦z≦-, α,0, andP,0･O

The CDF of GGD function is given by屯(z;α,P,p) - IAe-(慧)pdz･

Z

-.1;lO

This integral can be solved numerically or can be solved in a few steps in terms

of incomplete gamma function Mnc aS follows

0･5 10･5yinc
(lz-〟l)β 1

αβ '万

FGGD(Z) = 0･5+0･5㍍｡
(Jz-pI)P l

αβ '万

〕

〕

,z-〟<0

,z-〝>0

0.5, z-〟>0

(4.12)

I

ふhere r･nc (x,6) -志:lt6~1e-tdt;6, 0･The shape para-eter β deter-ines the shape of

the distribution･ When -1<β<0, the distributions are short tailed and well-peaked

compared to normal; when P>0, it shows the opposite characteristic. Distribution

graphs are symmetrical about the mode at x=FE, and exponential power curves

approaches x-axis asymptotically at both extremes [71]. For P=1 the distribution

is Laplacian, for P=2 the distribution is Gaussianand distribution tends to

become uniform as βJ-･ The distribution shapes for different values of β are
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s血own in Figure 4.2.

4.3. GGD Parameter Estimation

ln order to fit the GGD distribution in the time-series of the speech spectral

component, GGD parameters p, a and P in each frequency bin are estimafed

加m血e speec血data･ For tbis purpose, Maximum Likeli血ood (ML) estimation

will be used･ However, the exact determination of GGD parameters by solving

the likelihood equation is cumbersome as tbese parameters are interdependent.

T血e location parameteり"an be estimated加m也e mean or median of the data

in eachfrequency bin･ The scaling parameter α depends on the variance of the

data and s血ape parameter β In tbe time domain it is assumed tbat long speec血

data･血as zero mean and unit variance, bowever, t血e same is not true for the

quasi-stationary segments of speecb tbat are too small･ W血en a quasi-stationary

segment xw(n) undergoes N-polnt DFT, its variance is rearranged over the

spectral components 【72]【73] suc血that

-1 o 1 2

Z

Figure 4･2 GGD distribution for different values of α and β.
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FL, = Z(jT.)/N,

6x2 -去筈･x(fk,,2 ･

(4.13)

(4.14)

Obviously, each complex sample of the time-series of a spectral component血as

different variance history and it is difficult to relate with the above equation･ In

order to test the suitability of mean言and median乏as an estimator for the

location parameter for the different values of P we define efficiency of the

estimator as the ratio of tbeir variances i.e.

q(P) -
var [f]

var[ z-]

(4.15)

All the odd order moments of GGD vanish and distribution is characterized by

even order moments･ The rth even order moment of GGD is glVen by
OO 1>〇

E[zr] - J zrAe-]bzPdz - 2AJzre-'bz'Pdz･

Now, with setting(bz)P - y , the above integrand can be solved to

E[zr, -蒜:ly晋~1e-ydy -訂
1

(4.16)

(4.17)

since E[z]=0; the var(f)=var(Z)=E[z2]･ putting r=2 in Eq･(4･Ⅰ7) we get,

E[z2] -
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4β6 8 10

Figure 4･3 Theoretical value of n for estimators of p.

The variance ofmedian z- is related to fGG(z;α'P) as follows [74]

var(z-) =

4fG2G (0;

1 b2p2
-･･ = _______こ._

a,P) 4A2 4r2(1/P)

From Eq･(4･15), (4･18) and (4･19), the value ofn is given as

q(P) --
r(3 / β)

r(1/β)r2(1+1/β)

(4.19)

(4.20)

This function is plotted in Figure 4･3 for different values of β･ The inner figure

s血ows a scaled-up y-axis for tbe血ig血er values of β･ It is evident如m血is grapb

that t血e mean is good estimator of location parameter for β>1･41 (sbown by `*,

in the inner figure)･ For the lower value of P (P<1.41), the median is better

estimate of the location parameter･ since neither var[f] nor var[z-] is a
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monotonic function of β, because they depends on gamma function of β, the

s山tability of both estimators worsen as βう0. Under this condition, ¶う-.

Therefore, for extremely low value of β neither can provide good estimation of

the location parameter. However, as βぅ-, it can be shown that nう1/3 and mean

provides a good estimation of the location parameter. Thus血e estimation of the

location parameter depends upon tbe β. However, in our experiment we will use

the mean as the estimator of the location parameter as the value of β for almost

all the frequency bins is not extremely low.

Now Maximum Likelibood (ML) approach is described for wbich has

also been used by other researchers to measure the scaling and shape parameters

of GGD 【75][76】. The ML estimator can provide a very accurate estimation of

the GGD parameters provided that β is not too small [77]. The ML function for

centered samples z=[z,z2,...,...ZM] in the frequency bin f can be glVen aS

〟

L(z･, a,P) = logn(zi; a, P).
QL-一臼

(4.21)

In accordance with [75], tbe likelihood equations having a unique root in

probability glVe maXimum likelihood estimator and can be obtained by partial

differentiation of the above function with respect to unknown parameters α and β

as follows

aL(z; a, P)

∂α
--三+∑
L.SP[ziLPaP
a7= a

and the partial derivative w.r.t. β is giv9n by

aL,(x; a, P)

∂β

where v(z,-%

--+L , LvVp)
ββ2

=0

一妄(T)p log(切- o,

(4.22)

(4.23)

represents diagamma function･ For β>O from Eq. (4.22) we

obtain an estimate of parameter α as follows
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･-[嘗i･zi ･P] (4.24)

using t血is estimate in Eq･(4･23), we get the following transcendental equation

如β (Since吉≠o)

(4.25)

]+ V(yp) _
β

1+些遡_
β

;fzi ･P

;･zi ･P †log ･ zi ･-ilog(fi･ zi ･P〕)
〟

∑JziJPlogJzil log
R:一‖

∑Jzi

∑Jzi JP

Eq･(4･26) can be fu地er expressed as

JP＼

g(β) =o,

＼

(4.26)

(4.27)

where g(p) represents RHS of the Eq･(4･26)･ The roots of Eq･(4･26) give the

value of the shape parameter･ T血is -a- can be solved numerically･ Tbe

solution uslng the Newton-Raphson iterative method is glVen by
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Pk.1 -Pk -浩
(4.28)

in which g'(P)represents first order derivative of g(P) w.r.t β and is given by

g.(β,-一些迎一欝+才-
1

β2

i･zi ･P

+

〟

∑[z.･ [p (logJzi J)
f=1

p;rzi ･P をzi ･P

(4.29)

The solution obtained by Eq･(4･28) is sensitive to initial value of β. The good

initial value can be obtained from the Generalized Gaussian Ratio (GGR),

denoted byr(P) and is defined as the ratio of mean of the absolute value to the

standardｰdeviation of the data[60】as follows

E[[zf]
γ= -ﾆT二

qz2 '(4.30)

In the context of GGD it can be s血own that tbe mean of absol山e value is glVen aS

E[･ zf]-了. z･ん(z)dz-了- z ･Ae-[b･z,,Pdz･ (4･31)

Since this integration is on the absolute value of the variable over tbe glVen limit･

It can be glVen by

00

E[I z J]-2 JAze-[bz'Pdz･
O

Now substituting (bz)P=y, above integral can be solved to
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E[･z･,-#y'i-1'e-ydy-#(yp,, for O<P･ '4'33'

using the values ofA and b from Eq･ (4･10) and (4･11) , respectively, Eq･(4.33)

can be simplified to

E2[lzl]=

E[1zJ]

､斉=

r (yp)

r(P) =

〟 〟

r2 (yp) ' (4.34)

(4.35)

二二!

E[J zf]-(1/M)∑1 zi l and qz2 -(1/M)∑zi2.
i=l i=1

(4.36)

Now the denominator and numerator of也e LHS of Eq･(4･35) can be computed

from thegiven data and good initial value βinitia1 0f the shape parameter,given
by

(4.37)

Using this as initial value of β in血e iterative Eq.(4.28), t血e血al value is

obtained in a few iterations.

4･4･ 0仙er Statistical Tests

4.4.1. Moment Test

The moment test is based on the fact that the value of the GRR function y

is distinctive and unique for each theoretical distribution defined by P. This test

statistics for different theoretical distributions, obtainable for different values of
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0 10 β 20 30

Figure 4.4 Plot of values of Genenaralized Gaussian Ratio function † versu･s β.

r(p, - I,:38

Laplacian; P-1

Gaussian; P=2

Unlfo7m; P>2.

(4.38)

P>O from the GGD, are given below. These test statistics canbe used to infer

nearness and relatedness of the glVen data distribution by comparlng the standard

values in Eq･(4･38) with the corresponding values calculated from the data using

Eq･(4･35) and (4･36)･ The theoretical variation in the value of γ as a function of β

is shown in Fig11re 4.4.T血e value of γ becomes almost constant as βぅ-.

4.4.2. Quantile-Quantile (QQ) Plot:

The acronym qq-plot stands for tbe quantile-quantile plot whicb is used to

cbeck similarity of血e unknown data distribution with standard PDF or to check

w血ether血e two data sets can be approximated by the same PDF [78】. S叩pOSing

the probability pe(0,1), the pth order quantile Q(p) of a distribution of a

random variqble Z(D=[zl,Z2,Z3,1..ZM] with distribution function F(z) refers to
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血at value zp ofZ for wbicb

Q(p)=zp =Pr(Z -< zp)5;p,

and

F(zp)-Pr(Z ≦ z,)= p,

W血ere pr(.)

t血e value of

(4.39)

(4.40)

rePreSentS PrObability of (･)･ It is evident that the quantiles are

z where its CDF crosses probabilities p･ Equations (4.39) and

(4･40) can be combined to give

F(Q(p))- p SQ(p) =F-1(p). (4.41)

Tbus tbe quantile (Percentile) Point Function (qPF or PPF) is computed as

inverse of CDF whic血implies that

Q(p)=‡zp ∈ R;p-<F(zp))･ (4.42)

In the qq-plot qPF of tbe血eoretical PDF is plotted against the sorted value

(order statistics) of the observed data･ The observed data in each frequency bin is

sorted in ascending order such thatfz(1) ≦z(2) ≦z(3)･･････≦z(M))･The ith order statistics

z'i, is the (i-0･5)/M quantile, i.e.,

z(i) - Q〔笥･ (4･43'

Asan indication of the good fit of the theoretical distribution to the glVen data

the plotted values fall onto a straight line･ AIso QQ-plot between the data of the

two frequency bins can be plotted to see the similarity ln their distribution.

supposing probabilitype (o･1), the QPFs QG(p), QL(p), and QGG(p) of the GD, LD and

GGD, respectively, are glVen aS the inverse of their CDF functions as follows:
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QG (p) = JiG edinv(2p)+Ll.

QL(p) =

log2p, p<0.5

0, p-0.5

-log2(1-p), p>0.5.

QGG(p) -

1

-GP+p, o≦p<o･5

1

GP+FE, 1≧p>0･5

where G=rl(pl,1/P,P) is the gamma function of pI With

parameters l/P and P and

Pl=
‡

1-2p, 0<p<0.5

1+2p, 1≧p>0.5.

(4.44)

(4.45)

(4.46)

(4.47)

The QPF for the Laplacianand Gaussian distribution can also be computed from

.Eq･(4･46) by putting P=1 and 2 respectively.

4.4.3. Chi･Sqtlare Goodness of Fit Test

The x2-test [79] does not require any parameter estimation. It is used to

compare data distribution with也e tbeoretical PDF. For this test data is divided

into B data bins and difference between observed and expected frequency (no. of

occurances) in each data-bin is obtained to calculate Chi-square score given by

.r2 -∑
B (Oi-Ei)2

i=1 Ei ' (4.48)

where o.･ =observed frequency ln ith bin and E.･ -expected frequency in the ith

bin･Tbe observed frequency lS COmputed by direct counting of the number of

samples falling ln the each bin while the expected frequency lS COmPuted as

follows
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E.･ = M[F(Bu) - F(BL)], (4.49)

where M=totalno･ofsamples;F= CDF of hypothesis distribution and

Bu (BL) = uPPer (lower) 1imits for bin i.

The x2-test is sensitive to bin width･ The bin width is selected such that the

expectedfrequency becomes more than 5 in each data-bin･ The most widely

accepted bin wid仙is calc山ated as

Bu -BL=0･3q, (4.50)

where q=Std･ deviation･The lower value of x21SCOre PrOVides better similarity

between hypothesized PDF and the PDF of the glVen data･ The x2 -test has been

used to check the goodness of fit of null-hypotheses for the real part, imaglnary

part and polar amplitude of the time series of speech spectral components zu) in

eachfrequency bin.

Nulﾄhypotheses

● Z(f) follows the Gaussian distributi｡n

'Z(f) follows the Laplacian distribution

● Z(f) follows t血e Generalized Gaussian distribution witb parameters

estimated from Z(f).

4･5･ Experiments and Results

Experimental Setup

ln tbe experiment, we used a two-element linear microp血one array with

inter-element spaclng Of 4 cm for the simulated speech data generation. The

direction of arrival (DOA) of two speech signal sources (male and female) were

fixed at 1300 and 400, assumlng Center Of the microphone as reference and

broadside on positions as the oo DOA･ The distances of the speakers were set at

of l･15 m from the center of the array･ The whole experimental setup can be seen

in Figure 3･6･ Two types of sentences spoken by a male and a female speaker, of

71

二二!



time length 32.5 sec (produced by concatenation), from the ASJ continuous

speecb corpus for血e researc血【80], were selected to seⅣe as dry sources Sl

and S2 for the generation of the mixed slgnals･ Mixed slgnals at each

microphone are obtained adding together the speech signals arrlVlng from each

source･ The contribution of each source at each microphone is obtained by

convolving t血e seed speecb samples witb tbe room impulse response between the

involved source and microphone, recorded in a real room witb reverberation time

RT=300 ms･ In this way the set of reference signals [ref.1,ref.2,ref21,ref22] , aS

indicated in Figure 3･1, as the contribution of each source at each microphone

were obtained･ T血e marglnal distribution of血ese reference slgnals can

approximate tbe distribution of the orlglnal sources Sl and S2. In order to do

further study these reference slgnals are subjected to STFT to generate TFSS.

The STFT signal analysis conditions were kept same as in Table 3･1･ The total

number of samples obtained in each frequency bin is sufficient to glVe gOOd

statistics of tbe data.

Results of Estimation of GGD PwametersI

The GGD parameters, namely, location parameter LL, SCaling parameter α and the

shape parameter β were calculated using the ML method, as discussed previously,

in each frequency bin for each reference slgnal･ The mean of the data has been

used in each frequency bin to estimate the location parameter･Asthe

computation of scaling parameter in Eq･(4.24) needs shape parameter, first

shape parameter was computed using Eq･(4･28)･ The initial value of the shape

parameter computation in Eq･(4･37) requires inversion of tbe GGR function for

different values of β･ It is computed from pre-computed look-up table. In the

case if exact value is not available in tbe table the nearest value is extrapolated

or interpolated･ It is tbe sbape parameter t血at determines tbe sbape of tbe PDF･

The shape parameters calculated fbr血e male and female reference

signals, ref21 and ref22 , reSPeCtively, at the second microphone are shown in Figure

4･5 and Figure 4･6･ For each speaker, β is shown for the real part, imaginary part,

polar magmitude and phase of the signal･ The value of β for very low frequency
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(<200 Hz) bins for both speakers have outlier values･ However, these

components are non-speecb signals･ T血e statistics of the s血ape parameters in

different frequency bins can be better conceived from the histograms shown in

Figure 4･7 and Figure 4･8 for the two speakers at the second microphone. The

shape parameters for both the real and imaglnary Part are less than O.5 in almost

frequency bins, which corresponds to a strong Laplacian distribution as defined

by GGD･ In a very small number offrequency bins β is very near to l. AIso, the

shapeparameter is different for eachfrequency bin, which shows that the

distribution of each frequency bin is different･ However, the shape parameters

for the neighboring frequency bins are almost same･ Thus the assumption of LD

for the imaginary part and the real part of the ZU) in any frequency bin lboks

loose and inapproprlate･ However, different =CA algorithms have been

developed with such assumption･ The shape parameter for the polar magnitude in

almost all frequency bins, except very low frequency bins, is very near to unity,

which corresponds to the Laplacian distribution･ However, it is not obvious why

tbe probability distribution of仇e polar magnitude is nearer to LD t血an to that of

the real or imaglnary parts of the same slgnal, however, on the on the basis of

cLT it can be urged血at polar magn血des are summation of squared real and

imaglnary PartS, Which are more spiky, so the polar magnitude should be less

spiky･ This fact may be one of the causes of the better performance of polar

co-ordinate based non-1inear function, as proposed in [68], over the Cartesian

co-ordinate based non-1inear function fbr tbe FDICA.

T血e s血ape parameter fbr the p血ase data is greater tban 15 for the bo血

speaker in almost all frequency bins･ This value of P corresponds to a uniform

distribution as defined by GGD･ This result agrees with the intuitive fact that the

phase of tbe samples in也e DFT coe托.cients depends on t血e analysis window

position, which is arbitrary･ Therefore, the phase of the DFT coefficients of each

quasi-stationary segment has uniform distribution･ The TFSS in each frequency

bin contains samples chosenfrom the DFT coemcients of speech segments, so

its p血ase distribution is als-nifo-･ Tbe uniformity in t血e p血ase distribution

ensures its neutrality for an arbitrary complex rotation which in turn means, in

73

ｰ-･- _



accordance with Eq･(4･3), that z(f) in each frequency bin is the CCRV. It is

also important to note that no major difference between the values of β for the

Z(f) for male and female speech was found. Almost similar results were found

for the reference slgnals refll and ref12 at the first microphones also. The fitting of

the GGD PDF wi血tbe estimated parameters in the histogram of z(′) at

f=300Hz is shown in Figure 4･9 for the male speaker. These figures also show

fitting of the Laplacian PDF･ For the polar representation GGD and LD have

almost same fittings however, for the real part, imaglnary Part Or Phase GGD

fitting lS muCh better than that of LD or GD.

Results ofMoment TestI

The moment test for the reference speech slgnals of each speaker at each

microphone was done･ Tbe cboice of reference slgnal gives clean slgnal captured

by both microphones from different speakers. The result of moment test for

speechfrom a male speaker received at the second microphone is shown in

Figu･re 4･10 ･ The moment ratio or the GGR function † is obtained in eac血

frequency bin using Eq.(4.35). The GGR functions for the four theoretical

distributions namely GD, LD, GGD and uniform are drawn as dashed vertical

lines･ T血e res山ts of moment test also favor the GGD for tbe real part and

imaglnary part･ For血e phase, agaln, the uniform distribution is favored. It is

interesting to note that the moment test results in most of the frequency bins for

polar magnitude do not favour LD･ ML estimation of β for the polar magnitude

supports nearness with LD while the statistics of y favors a strong

super-Gaussianity as defined by the GGD･ The cause of this slgnificant

difference申tween the results is the difference between the values of βinitial,

estimated by Eq･(4137) and that of βML eStimated by polishing βinitial uSing

Eq･(4･28) under the ML approach･ These values of β are also shown in Figure

4･5and Figure 4･6･ These two values of shape parameter do not differ by

handsome amount for real and imaglnary PartS･ These values are slgnificantly

different for the polar magnitude･ βML has been found to be higher in every

frequency bin for the polar magnitude for both the male and female speakers･

74



Female speaker at MJ･c2

■一
Reaー art - βML

Lq

m
島 _

■
/ ..

` ヽ

i 崇 ●

lJ～J .

d

r- . .-

+,, -.

1 000 2000 3000

Frequency (Hz)

5

4

也.3

2

1

0

r-em aJe SPeaJ{er at M ic2
PolarMagnitud

- βML

一.-... β舶

)
～ . . I

' } ' . . . . ,. . .

O IOOO 2000 3000 4000

Frequeney (Hz)

2

Jm a g ,

ｰ~ ~ｰ ｰ ■▼ｰ

a ｢【

I l. - I I t TI JJIV J-

- βM L

.5

ｰ

5

0

･..--. βin蜘

J.

● ■ ■一

50

40

亡ﾕ. 30

20

10

0

Fema[e speaker at Mic2

0 1000 2000 3000 4000

Frequency (Hz)

Fema[e speaker at MJ'c2

0 1000 2000 3000 4000

Frequeney (Hz)

Figure 4･5 Shape parameter β for the time-series of spectral components of

t血e female speech at tbe second microphone.

Ma)e speaker at Mic2

Realpart ■一
- .βML

･..... Pinida)

!

_J _ . _ ■一 . L J - - r _ 1 _ - _ - L . ｰ ▲

■-1000 2000 3000 4000
Frequency (Hz)

M a le s ea ke ra t M ic2

M
Pofar agn rtLJd βML

持ni8a1

■●
.-..-.
........./
●...■●一●一P+

1000 2000 3000 4000

FreqLJenCy (Hz)

Male speaker at Mjc2
5
Jm a g P a rt

rJ

- βM L

･..... Pin.n.a1

3

2

■

5

0
◆ー一▼■●一

0 1000 2000 3000 4000

Frequency (Hz)

Mafes eakerat Mic2

【0

lO

Phase

!!
- βML

--- 托n肘

易 妻.

㌶. -物砂妙蒜志 .

0
0 1000 2000 3000 4000

Frequen¢y (H≠)

Figure 4･6 Shape parameter β for the time-series of spectral components of

tbe male speech at the second microp血one.

75

二二!



Femab sFX!aker aE Mic2
u) 80
1=

芸
>60
O

忘

i･ 40
1llll

lL

ち20
d
=n

u)150
⊂
:石
>■
glOO

ｺ
ぎ

LL50
qlo
d
=_

Ss

R飽1押rt

0.5 1 1.5 2

β

F耶ab speaker al Mid≧

PoZar hJhgnitude

2 3

β

5

u) 100
1=

&80
>ヽ

O

転60
ｺ

ぎ40
l.L
LI
O20

d
Z n

の
】=

'B
>ヽ

O

忘
ｺ

ぎ
IL

-o

d

Z

150

100

50

Femab sFX!aker at Mi虚

frrng. part

0.5 1 1.5 2

β

Fcmab sFX!aker at MJ'c2

20 40 60

β

80

Figure 4･7 Histogram of shape parameter of different frequency bins for

the female speaker at the second microphone.

MaJe印eaker at Ⅳic2
竹150
E:

:岩

ぎ100
0
ｺ

訂
丘50

S
d
= n

u) 100
1=

JE) 80
>ヽ

O

忘60
:ｺ

ぎ40
LL
こ=

020

o.
= n

Real part

'2β3
Mak) speaker at Nic2

Pdar旭gm'tucb

2 3 4

β

o 300
1=

芸
>ヽ

岩200
ｺ

訂
丘100

S

d
= n

竹150
⊂

:岩
>ヽ

g lOO
ｺ

訂
丘50
S

d
= n

AbTe speaker at Rhc2

o1β2$45

Ahfe speaker at hhc2

1 0 20 30 40

β

Figure 4･8 Histogram of shape parameter of different frequency bin for the

male speaker at tbe second microphone･

76



x lO~5 MaJe甲eaker at Mic2

0 1 2

x lO5

8

6

4

2

eaker at Ahc2

Pdar旭gnJ'tu由
f=芸)6.88 Hz

5 10 15

x lO4

-2 0 2 4

Figure 4･9 Comparison of GGD (with estimated parameters) and Laplacian

(variance decided by the estimated α) PDF fitting in the histogram of Z(f),

f=296･88 Hz, of the male speech at the second microp申one.

For phase βinitial may be greater than the shown value because it is the highest

value of P included in the look-up table and have not been extrapolated.

Therefore, relying on the ML estimates of the shape parameter for polar

magnitudes it can be concluded that polar magnitude is nearer to LD than the real

or imaglnary Part･ =t is natural as the polar magnitude is summation of two less

Gaussian variables(real and imaginary parts) whic血makes polar magn血de to

move towards Gaussian (βぅ2) under t血e implication of CLT. Results f｡r ｡tb｡r

reference slgnals were also found to glVe Similar evidences.

Results of QQ･plois:

Tbe′ Qq-plots for the Z∽ of the speec血signals of t血e male speaker at血e

second microphone are shown in the Figure 4･1 1･ This figure contains QQ-plots
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Mic2.

for the real part, imaglnary Part, and polar magnitude in the frequency bin of

703･12 Hz･ QQ-plots are drawn for the quantiles of Z(乃, which are computed

using Eq･(4･43), and quantiles of theoretical distributions GD, LD and GGD with

the estimated parameters, computed by their respective QPF from Eq.(4.44)

-(4･47)･It can be found from plots for the real and imaginary parts that GGD..1

provides a superior linearity (regression line is sbown as dasbed line along tbe

plot) over也at of GD or LD･ For tbe polar amplitude GGD and LD botb provide a

78



comparable linearity in the plots for both speakers･ QQ-plots for other reference

signal also have same trend･ In Figure 4･12, the QQ-plots for Z(f) for two

different frequency bins show that data in different frequency bins do not

necessarily have the same distribution･ It also agrees with the value of the shape

parameter, wbic血is not same fbr all鮎quency bins･ Therefore, it is strange to

consider fix PDF for all frequency bins･ However, same pDF has been asslgned

to every frequency bin in maJOrity of FD=CA algorithms.

Results of Chi square TestI

T血e C血i-square test was performed separately on the real, imaglnary and polar

magnitude of the Z(0, in every frequency bin, for the speech signals of the two

speakers at the second microphone･ The results are shown in Figure 4.13 for

the speechfrom a male speaker at the second microphone･ The x2 -scores for the

GGD, in every case and in everyfrequency bin, have been found to be less than

those for the GD or LD･ However･ the nearness between the x2 -scores for GGD

and LD for the polar magnitude ofz(f) is more than that for the real or imaginary

parts･ Tbis c血aracteristic of score complies witb tbe previous results加m the

qQ-plots and tbe moment tests.

4･6. GGD Model based Blind Detection of CLT =)isobeying TFSS

The important requisition for CLT compliance by the TFSS of the speech

data is tbat the TFSS of eac血independent speech source s血ould not belong to a

stable statistical distribution, because such distributions are closed under linear

combination [54][81] and fortunately it is strongly LD and can be better

approximated by也e GGD whic血is parameterized by tbe mean, scale and sbape

parameter β･ The value of shape parameter β decides shape of the distribuiion.

GGD represents Gaussian PDF fbr β=2, Laplacian PDF for阿, and bigbly

parsimonious PDF fbr O<β<1･ Since the CLT obeyance or disobeyance is

logically related to t血e Gaussianization of t血e mixed signal, tbe c血ange in β and

sx of tbe TFSS can b-sed to detect CLT obeyance or disobeyance･ Tbe sbape

Parameter β and SK can be computed from data.
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Tbe thresbold value can be determined by looking lntO Change in Gaussianity of

the mixed signal･ The relation of β parameter and kurtosis K(P) of GGD is

given in Eq･(4･51)･ This relation is monotonic function of tbe sbape parameter

sucb tbat kurtosis is hig血for spiky signal (lower value of sbape parameter) and is

low for higher shape parameter･ Kurtosis becomes zero for Gaussian slgnal･ The

variation of kurtosis with the value of β is shown in the Figure 4･14. The change

80



N

ｺ=
EiF
i-

Cr)
⊂)

ﾄｰ

73

.～Fg

(8

て)
Lﾄ-

○

∽

.聖
■････J

【=

rﾛ

=I

O

N

=
Cu
~T~

Cr)

⊂)

ﾄｰ

芯

Lq
吋
て】

盲
∽

q)

一l･･･一

〈=

rd

:ｺ

O

2

0

2

x lO5 Q8Pfot for Rea佃rts(MaJe)

-4 -2

Q uant iJe5

xlO
5

P dar

0 2 4

of由ta d. 5,??･?OxH;.5__.__. _ _ｰ__ ±■_

QQuanlil去.旭?a a[ 5.8,o.Hz 4
x lO5

N

=
eU

▼~

m
⊂)

ﾄｰ

===J

d

B
吋
て)

ち
∽

=0
■････■

⊂

rﾛ

貞
ｺ:
CV
i i■■

5i:
⊂)

卜■

芯

～d

d
て)

TS

∽

=0
■･-･l

Fld

【8
ｺ

Cl

2

0

-2

2

0

-2

-4

x lO5 QQ-Pfot for Jmag･pans(Mafe)

~もuanti72es.他Pa a[ 508...Hz 4

QQ-P[ot for Phase(Mafe)X IO5

-4 -2 0 2
Quant'rl馬Of血ta at 500.00Hz

Figure 4･12 QQ-plot of z(f) in two different frequency bins.

in value ofkurtosis with P is very steep for super-Gaussian distributi.n.

K(P, - [r〔i) r(i)] [r(i)2]-l,

凸O

where r(x) - Ie-ttx-ldt-Gamma distribution.
0

81

(4.51)

二!■



art of male s eech at Mic2

●●`●● Gaussian

~-'Laplacian

■-･ GGDxlO

1 000 2000 3000

Frequency (Hz)

6

¢
■l■

0 4
く)
∽
rl

N2

15

巴10
0
O
の
I

rl

ﾎﾟ5

6

q〉
LI<

○

品4
⊂

-k

4

x lO rmag.part Of ma[e speech at Mic2

■●●■'Gau与Sian

~~~ J3PFacian

- GGDxIO

;..{.･･7iE轡 l

4000 1 000 2000 3000

F帽quenCy (Hz)
4

x lO ReaJ +lmag of ma)e speech at Mic2

●■一''Gaussian

1-A~ Laplacian

1- GGDxlO

･- '･-･.}. '･;. 4.''=

･:瑠･S_i久･･･: :!

f･:.･1･･L･!L･T=

1 000 2000 3000

FreqLJenCy (Hz)

4000

巴10
0
O
q)
｢

dN5

ｲ

xlO po[arMa . ofrna)e s

4000

eech at Mic2

●●●●- GaussiaTI

--- Lapradat)

~ GGD

1 000 2000 3000 4000

Frequency (Hz)

Figure 4.13 x2 -score for the real, imaglnary and polar magnitude of the male

speech at the second Microphone (x2 -score for GGD for real, imaginary and

(real +imaginary) part is scaled up by lO).

Thus if a TFSS of the mixed signal is fully Gaussian its SK will correspond to

sKG=K(2)=3 in Eq.(4.51), and ifit is not mixed signal, the speech will be at least

Laplacian or strongly Laplacian for which SK corresponds to sKL =K(2)=6_For the

strongly Laplacian case, which is more accurate as shown in[82], kurtosis will be

higher than 6･ The SK of TFSS can be directly computed using Eq.(3.43). Thus if

SK of TFSS, calculated from Eq･(3･43), 1ies above sKL it will represent a

Laplacian or strongly Laplacian slgnal and related TFSS will fail to comply CLT,

however, if SK is below sKL it means slgnal･has galned some Gaussianity due to

mlXlng With other speech signals and so it will comply with CLT･ Thus change in
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kurtosis can be related to血e change in the shape parameter β and s｡m｡ tbr｡sb｡1d

value of it can be used to detect CLT obeylng and disobeylng Sub-bands. The

acoustic c血annel too Gaussianizes speech signal, so血e Gaussinity of true speec血

is less tban也at of received by the micropbones･ However, mlXlng Of two-speech

slgnal is bigger effect than the Gaussianization by the channel. Thus the

threshold corresponding the o･5≦P≦1 can work well [83].

4･7･ Resu)ts of Combining Nul)･Beamformer and ICA

As t血e proposed cause, spectral sparseness of speec血signal, of CLT

non-compliance by speec血mlXlng, is in血erent weakness of speaker, its

happenlng CannOt be stopped･ Tbe only way lS tO uSe tbe algor地ms robust to it

or independent from such constraints, or combine some other methods such as

NBF having no such problem in the CLT-failing frequency bins･ However, this

requlreS the blind detection of CLT obeylng and disobeying frequency bins. As

discussed in sectio.n 4･6, a threshold value of SK or Pcan be dete,mined f.r lhe

blind detection of CLT disobeying bins･ The relation between CLT disobeylng

bins and SK can be observed in the right-hand side of Figure 4.14. The left-hand

side represents the variation of kurtosis of GGD with β and the right-hand side

shows CLT failing bins (gray colored vertical lines in the background) and a plot

of SK computed using Eq･(3･43). It is evident that SK is high for the

CLT-disobeying bins and is relatively low for the CLT-obeylng bins. The dashed

horizonta1 1ines across the plots in Figure 4･14 show different threshold values

for the different values of β･ As the signal is Gaussianized, the value of β shifts

towards 2 while for slngle unmixed speech it is around l. The blind detection

result and true detection result are s血own in Figure 4･15･ Tbe term true detection

rePreSentS the result obtained by the verification of the of conditions stated in

Eq'･(3･45) which needs reference signals from each speaker. However, in the real

application, t血ese reference slgnals are unavailable･ Tbe plots in Figure 4.15

show effect of different value of β on the detection accuracy of the blind method.

The plot with legend (Blind-true) represents the number of uncommon frequency

bins by the blindand true detection method･ This has minimum value for the

tbres血old aro-d β-o･6･Evidently, tbe blind met血od falsely detects some bins as
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the CLT failing, while glVlng Clean chit to a number of frequency bin, which

actually fail. However, for the threshold around P=0･6, 70-80 % of bins can be

correctly detected･.Asit is evident from plots for kurtosis and P in the same

figure that the slight change in Pproduces large change in SK, the slight change

in the threshold thus can slgnificantly affect the detection accuracy･

The advance information about CLT non-compliance in any bin can be

used to stop separation by ICA in such frequency bins and some other alternative

method can be used･ An experiment to examine such sub-band based

combination for NBF and fixed-point FDICA was carried out･ The combination

strategy for the ICA filter and the NBF filter is complex due to occurrence of

CLT-failure in different or same frequency bins at both microphones･ Thus there

are several ways to combine NBF witb ICA･ However, in our experiment we

replaced the ICA filter by that of NBF if CLT failure in any frequency bin is

occurrlng at either microphone･ The separation performance, averaged for four

sources, is shown in tbe Figure 4.16Error! Reference source not found- It is

evident from the figure that the combination shows a slgnificant improvement in

tbe NRR for RT=0, and fails to improve for RT=150 ms and RT=300 ms･ Tbe

reason for tbis can be explained with tbe help of Figu･re 4･17 and Figure 4･18･

These figures show, the spectral NRR under RT=O ms, RT=150 ms and RT=300

ms, respectively, for ICA only, NBF only and tbeir combinations･ It is evident

from these figures that the NBF has a better spectral performance under the

non-reverberant condition. The performance of NBF degrades as the

reverberation time is increased. Under tbe higb reverberation condition, tbe

spectral performance of the NBF is not better than tbat of tbe ICA･ The spectral

performance of both NBF and ICA follow the similar (not exactly same) trend

and the overall performance of NBF is worse than仙at of the ICA. Thus if NBF

has a poorer performance than ICA and if the separation filters are exchanged in

CLT-failing bins, t血eir combination cannot give any lmprOVement instead it may

further degrade the performance･ Thus the replacement of the ICA filter by the

NBF filter results in poor or unimproved performance. However, in some cases it

does improve and for in other cases its performance was found to be worse than
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tbat of ICA･ T血us combination is effective only under no reverberation or

moderate reverberation･ T血e important血ing in t血is context is that FDICA

algor地m has to be robust agalnSt SuCh pbenomena because spectral sparseness is

one of the natural characteristics of tbe speec血signal and its happenlng Can,t be
avoided.
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C血apter 5

GGD based Negentropy Approximation and

Application in Fixed-point FDICA

5.1. Introduction

ln the fixed-point ICA by negentropy maximization, negentropy of the data,

approximated using generalized Higber Order Statistics (HOS) of the

non-quadratic non-1inear function, is used as a measure of non-Gaussianity･ The

cboice of non-1inear function for negentropy approximation is a crucial task and

is血ig血1y dependent on仏e PDF of tbe TFSS of tbe data 【19】【36】･ In previous

c血apter it血as been s血own that tbe statistical distribution of TFSS in eac血

frequency bin is not same and can be better approximated by GGD function

agalnSt the most commonly used PDF of LD and GD functions･ Despite, many

general purpose non-1inear functions bave been proposed and bave been used in

speec血signal separation as discussed in Chapter 3 of t血e也esis. Based on tbe

study in Chapter 4, the issues of this chapter are focused on the novel research

questions such as can negentropy approximation by different non-1inear

functions influence the separation performance of the fixed-point FDICA

algorit血m and if GGD based function is better approximation of underlying PDF

of也e TFSS does a non-1inear function based on it s血ow superiority in separation

too? Accordingly, performance of the FDICA algorithm, based on negentropy

maximization, under仙e negentropy approximation of TFSS by conventional

non-quadratic non-1inear functions and a new non-1inear function based on the

PDF modeling of TFSS by血e GGD function will be examined.
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5.2. Approximation of Negentropy of TFSS:

As a measure of non-Gaussianity, negentropy provides better performance

than others such as kurtosis･ [19]･Asdefined in Chapter 3, the term negentropy

represents negative of entropy･ The negentropy J(y) of a random variable y, is

given by (reproduced from previous Chapter 3)

J(y) - H(y8auSS) -H(y), (5.1)

where H(･) is the differential entropy of (･) and ygD〟SS is the Gaussian random

variable with the same covariance as of y･Asamong the distributions of given

covariance a Gaussian distribution represents distribution of maximum entropy,

the definition of negentropy in Eq.(5.1) ensures that it will be zero (minimum) if

y is Gaussian and will be increaslng if γ is becomlng nOn-Gaussian･ Tbus

negentropy based contrast function can be maximized to obtain optimally

non-Gaussian components･ However, estimation of true negentropy, as in

Eq･(5･1), is difficult and it requires knowledge of probability density function of

the data･ However, it is possible to use some approximation of it and several

approximations for negentropy estimation have been proposed and used. The

moment based approximation of negentropy is given as 【17】【19】

J(y,-吉Efy3i2･去kun(y,2･孟E(y3)4-･･･････, (5'2)

where kurt(･) represents kurtosis of (.). But this is equivalent to kurtosis which is

very raw, loose and rougb approximation; however it is also extensively used as

a non-Gaussianization measure for ICA algorithm[17][19] [25]. The other more

accurate approximations have been based on the use of generalized HOS of some

non-1inear non-quadratic functions G(y). In terms of sucb a function the most

widely used approximation of negentropy is given in Eq.(3.11) whicb is

reproduced for convenience.
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J(y) = q[EfG(y)- EfG(ygauss))]2,

(5.3)

where q is a positive constant and ygauss is a Gaussian random variable with

same covariance as that of y･ In Chapter-3 based on such approximation of

negentropy a deflationary learnlng rule for the separation vector was derived in

Eq･(3･22) which involves derivatives of the first and 2nd order denoted,

respectively, by g(y) and g'(y)･ of the used non-1inear function G(y).

The separation performance of the fixed-polnt algorithm depends on the

used non-quadratic non11inear function G(y)･ It is desirable that the function G(y)

should provide robustness toward outlier values in the data and should provide

better approximation to true negentropy･ For tbe better robustness to outliers

G(y) should show slow variation with respect to change in data and at the

same time very close approximation of negentropy can be expected if statistical

characteristics of G(y) inherit PDF of the data･ The statistically emcient and

optimal G(y) that can accommodate maximum information about HOS of the data

is chosen as the function that can minimize trace of the asymptotic variahce of

w･ The trace of asymptotic variance of w for the estimation of source si is

glVenby

VG-C
E(g2 (si)卜(E(sig(si)I)2

(E(sig(si)-g'(si)I)2 '
(5.4)

w血ere constant c depends upon the mixing matrix･ As sbown in 【19】也e value of

VG is minimized if the chosen non-1inear function G is of the form

G(yi) = Cl logp(yi)+c2y,･2 +c3, (5.5)

where cl,C2,C3are arbitraryconstants･Again,from Eq･(5･5) a simplified form of

function G for TFSS can be taken as by truncating higher order term and can be

glVen as follows
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G(yi) - Cl logp(yi)
(5.6)

where cl is an arbitrary constant and p(yi) represents PDF of yi･ The optimal

function based on GGD, denoted byG,(y), can be obtained by uslng GGD

function of Eq.(4.10) for y⇒wHxwl2 and is given by (subscript i is dropped

bereafter)

G3(y)-a-P l yIP +logA･
(5.7)

Tbe statistical characteristics of血e function depend on the value of shape and

scale parameters. The non-1inear function in Eq.(5･7) bas been plotted in Fig11re

5･2 for different values of the shape parameter. The value of functions are

normalized. Its 3-D s血apes are plotted in Figure 5.2. Its smoothness cbanges with

change in the valu･e of s血ape parameter sucb tbat it is less smooth for lower

values of shape parameters.
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Figure 5.1 GGD based non-1inear functions for different values of the

shape parameterP･ For the lower values of P the non-1inear

behavior s血own by function is less smootb･
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T血e other functions bave also been proposed and one of them血as been used in

chapter 3･ Here, too, they are cited again for convenience and comparative study

of performance･ For the super-Gaussian slgnals followlng functions has been

recommended 【19] and血ave been used in tbe speecb signal separation 【28]【29】

Gl(Y) =log(al +Y);al - 0.Ol,

G2(Y) -応す;a2 -0.01.

5･3･ Error Estimation in Negentropy Approximation

ln order to judge the relative suitability of these non-1inear functions we

will evaluate tbeir performance fbr negentropy approximation and robustness to

outliers, and capacity of slgnal separation･ The statistical technique of

Jackkn血g can b-sed to evaluate relative error in tbe approximation of

negentroPy and robustness to outliers [84]･ Jackknife is one of the powerful tools

for the data partitionlng and can be used to estimate bias and standard error

occurrlng ln negentropy approximation by the non-1inear functions Gk(foTk -1,2,3)

from Jackknife replicates･ The Jackknife replicates for the negentropy are

obtained by approximating negentropy of Jackknife samples which are created

by omitting, in turn･ one data sample from the orlglnal TFSS. Let us consider the

TFSS in anyfrequency binfconsisting of U samples･ The ith Jackknife replicate

for negentropy approximation by function Gk is glVen by

Jk(-i)(f) =Gk([Y2(f,1),Y2(f,2)･･･Y2(f,i-1),y2(f,i+1)･･･Y2(f'U)]), (5.10)

and this is carried out independently in each frequency bin for each sample･ The

bias JkB(f)in the negentropy approximation byfunction Gk is glVen by

JkB(f) = (N-1)fJ-kT(f)-Jk(f)I, (5.1 1)

where J-kT(f, -去iJl-i'(f,･The standard error in negentr｡py appr｡ximati｡n
byGh is glVenby
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jkSE(f, - [苧i{J[E'(f, -J7(f,}2]0'5
(5.12)

This represents standard deviation of也e Jackknife replication, bowever, it is

unbiasedldue to the presence of factor (N-1)/N [85]. Since TFSS in each

frequency bins are assumed to be independent the above estimates for bias and

standard error can be averaged over the no. of frequency bins and can be glVen

by

J-kB-浄kB(f, and J-kSE-言浄kSE(f,. '5'13'

5.4. FDICAwith Flexible Non-1inearity

The most important thing for any contrast function is it separation capacity･

However, if tbe contrast function inberits maximum statistical information of tbe

data, it may provide better separation 【19】【34】. T血e separation performance of

each non-1inear functions will be judged uslng the deflationary learn1ngru1e

given in Eq･(3･22). Obviously, that requires first and second order derivatives of

the non-quadratic functions Gk(y) which are glVen by

gl(y) -(al 'y)-land gl'(y)--(al 'y)-2, (5･14)

g2(y)-0･5(a2.y)J･5 g;(y)--o･25(a2.y)-3/2, (5.15)

g3(y) - -PaTP [[ y IP-1 sign(y)], (5･16)

g3'(y) --Pa-P ['y JP-2.y2(β-2) 'y JP-4]･ (5.1,)

As a performance measure NRR, SCRF and number of iteration consumed by

algorithm to converge, under the glVen StOPPlng Criterion 6, will be used. The

number of iteration taken by the algorithm depends on the nature of convergence･

The nature of convergence depends upon chosen non-1inear function G(y) and on

existence of its higber order derivatives. It can be shown tbat tbe value of

diminisbing component of the separation vector, denoted by w. after one iteration,

is given by [19]
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w; -喜Efy.'IE(g･･(yl))wi2･土kun(,i)E(g-(yl))w.'............;f., i,1 (5118)6

This equation includes higher order derivatives of G(y) as the coefficient of error

terms･ It can be imbued that if the 3rd order derivative gn(y) of G(y) vanishes i.e.

E(g''(y)I-O the convergence becomes cubic and is governed by the value of 4th

order derivative g"(y) and so on･ The 3rd and 4th order derivatives of the used

non-1inear functions are glVen by

gl"(y) = 2(al + y)-3; gl&(y) = -6(al + y)4,

g2n(y) = ･38(al + y)-2･5;g2m(y) - -.95(al + y)-3･5,

(5.19)

(5.20)

g3"(y) - Kl ['y JP-3 ･2'y 'P~5 ･(β-4)y2 f y ･P-5]sgn(y),

g3m(y) -Kl[J ylP-4 +(p-4)yl yfP-5 sign(y)+2J yfP-6 +2y(P-6)- ylP-7 sign(y) (5･21)

+3(P-4)y2 J y lP-6 +(p-6)y3 [ y lP-7 sign(y)],

where Kl - -P(P- 2)a-P.
(5.22)

In order to avoid singularity of derivatives of G3(y) at y=0, it is replaced by very

small (10ｲ) number･ The parameters of GGD are estimated using maximum

likeli血ood approach as is described in Chapter-3･

5･5･ Experiments and resuJts

Experimental set叩WaS Same aS described in C血apter 3･ T血e experiments

were carried out in two parts separately for the jackknifing and blind separation.

The TFSS of the speech data were generated by doing STFT analysis of the

mixed signals under血e slgnal analysis conditions sbown in血e Table 3.1. In

order to estimate bias and standard error occurrlng ln negentropy approximation

by Gk(y) (k=1,2, 3) six unmixed speech signals from different speakers were used.

In this analysis unmied signal were used because in the separation algorithm

Gk(y) has to ultimately approximate negentropy of the separated signal which
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Figure 5･4 Normalized bias JkB(f) for different G(y) in different frequency

bins.

should be ideally clean and unmixed･ T血e bias and standard error in the

negentropy approximation by each of Gk(y) Were eStimated in･each frequency bin

using Eq･(5･1 1) and Eq･(5･12) for sequential delete-one Jackknife method. The

estimated standard e汀Or, aVeraged fbr six combinations of tbe mixed speecb

slgnals including male and female speakers, are compared in Figure 5.3 for

each Gk(y) ･The averaged bias estimate of JkB(f) , for different non-1inear

functions are shown in the Figure 5･4･ It is evident from these figures that the

standard error and bias is minimum for the GGD based non-1inear function whic血

implies也at its robustness and closeness to true negentropy of tbe TFSS signal

is better than that of approximated by Gl(y)and G2(y)･ =n the Jackknifing

PrOCeSS the value of shape parameter p was fixed at O･86 under the light of

results reported in [82L The separation performances of the fixed-point FDICA

withthe use of these three non-1ineantyfunctions were also studied under

different RTs･ The stopplng Criterion for algorithms was set at 6j w"w -wo)d l2< ･ooo1 ･

First the separation performance for different value of p with non11inear
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function of Eq.(5.7) were studied. The NRR, which is defined in Eq･(3･46) ,

SCRF r(f) of Eq.(3.47), and no. of iteration taken to converge up to

satisfaction of ∂ were used as the performance measures･ Tbe learnlng r山es of

was initialized uslng nu11-beam former based value of the separation vector･ The

results of NRR, r(f) , and no. of iterations, averaged for the six combinations of

rmixed speech data are shown in Figure 5･6, Figure 5･7 and Figure 5･8

respectively･ In Figure 5･6 the separation performance is found to be optimum

for P values between O.8 to O.98 for reverberant and non-reverberant acoustical

conditions, however, NRR is very low in tbe reverberant conditions･ Similar

trend can be observed in Figure 5･7 for SCRF graphs･ It is important to point out

that NRR and SCRF performance figures are good for those valuesPthat are

close or equal to values of shape parameters corresponding to PDF modeling of

TFSS. This is indicative and in supplementation of the fact tbat for the better

separation used non-1inear function sbould be in possession of maximum

statistical information about the data [119][34]. It is evidentfrom Figure 5･8 that

tbe no. of iteration too is varylng With tbe shape parameter･ For tbe very lower

values of shape parameter血e no･ of iterations taken increases highly but with

the increasing value of β , no. of consumed iterations decreases･ The result is

interesting in tbe sense that for tbe shape parameter value β=2, corresponds to

GD, no. of consumed iterations by algorithm is lower than that of for β values

representing tbe PDF of TFSS･ However, NRR is getting low･ T血e reason behind

this can be understood with help of Eq.(5.18) which shows how the fixed-point

algorithm converges to the optimum separation vector･ The coefficients of 2nd

and 3rd terms of Eq.(5.18) have been plotted in Figure 5･5 for different value of @

for non-1inear function as well as for data for w血icb s血ape parameter has been

denoted byP, ･ The used data were artificially generated by fitting GGD

parameters witb zero mean and unit variance･ It is evident tbat the annibilations

of tbird order and血igber order derivatives are starts earlier and is faster for the

higher value of shape parameters which ensures higher convergenc'e speed with

increasing values of β. In order to compare the separation performance of all

tbe three non-1inear functions anotber experiment was per払rmed by changlng
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Figure 5･5 Showlng nOrmalized mean of 3rd and 4th order derivatives of

non-1inear functionG3(y) ･ This shows how quickly these terms are vanishing for

different value of P which results in different convergence speed･ For p=2 the

PrOPOSed function G3(y) acts as a kurtosis and shows cubic convergence.
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Figure 5･6 Showlng aVeraged NRR for different RT for different value of

sbape parameter.
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bins.
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Figure 5･8 Average Number of iteration taken in separation in different

血℃quency bins.

tbe non-1inear functions in血e learnlng rule･ Tbe value of parameter of the GGD

function is estimated after each iteration, however, the shape parameter was

fixed to p=o･9 following the above results･ The algorithm was initialized by the

n仙beam former based initial values of the separation vectors･ T血e averaged

NRR and no･ of iterations consumed, for 6 combinations ofmixed signals, are

plotted in Figure 5･11and Figure 5･9 respectively･ =t is evidentfrom these figures

that there occurs no slgnificant difference in the achieved NRR, however,

slgnificant difference occurs in the number of iterations consumed by different

non-1inear functions･ In this respect, the GGD based non-1inear function

outperfbrms tbe otber two with血andsome marglnS fbr no. of consumed iterations

in both tbe reverberant and non-reverberant conditions. Tbe GGD based

functions shows higher convergence speed because the third order derivative and

4th order derivative for it are much less than that of for Gl(y) and G2(y). These

derivatives control quadratic and cubic convergence of the algorithm and are

shown in Figure 5･9 for all the three non-1inear functions with data with different

statistical distribution･ It is evident from there that G3(y)･ With β=0･90, has very

low value of these derivatives in comparison to that of for Gl(y) and G2(y).
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This conspICuOuS feature ensures higher convergence speed for it･ The proposed

non-1inear function based on the statistical modeling of TFSS by GGD function

is adaptive in the sense that it depends on the parameters of tbe data and

accordingly provides non-1inear behaviors. Favorable, results for the proposed

non-1inear functions for spectral separation shows effectiveness of statistical

o･4 0.6βyO･8 0･98 2

o･4 0･6βyO･8 0･98 2

Figure 5･9 These bar plots sbow nomalized mean of 3rd and 4tb order

derivatives Efg"(y)I and E(g･"(y)) reSPeCtively for different types of

synthetic data with different shape. TheP for GGD based G(y) is O.9.
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modeling of t血e TFSS by GGD function･ It can be concluded tbat as the GGD

function can better represent statistical model of TFSS, the GGD based
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non-1inear function can incorporates much information about HOS of the TFSS.

Due to this it provides better res山ts tban the conventional non-1inear

functions.
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Chapter･ 6

E血ancement or separated lndependent

Components

6.1. Introduction

ln tbis chapter a novel method for denoISlng SpeeCb signal in DFT

■ ●

domain is presented･ In general it is a speec血enbancement technique tbat can

work for noise with different statistical distributions･ The proposed denoISlng

me也od will be also applied to denoise separated independent components. The

idea of denoising ICs is based on tbe signal mi血g model of Eq･(3.7). Under no

background noise, it can be assumed t血at也e only source of noise in the

separated components is the residual speech ･signal from other sources which is

PreSent even after separation･ Under such circumstances one separated

independent component can be assumed to be cor叩ted by血e other. T血us fbr

one independent component･ other components are assumed to be source of noise

and accordingly a novel denoISlng algorit血will be presented uslng GGD based
statistical modeling of TFSS of bo血sources.

6･2･ Working Signal model

ln也is c血apter, too, tbe signal model of Eq･(3･7) will used , bowever, it

is essential to glVe SOme eXplanation in血e context of enbancement algor地m for

speech signal in t血e DFT domain･ The signal model of Eq･(3･7) expresses tbat the

mixed signal in frequency domain is )ust superposition of spectral contribution

of each source in every frequency bin･ The output of the FD=CA glVeS

independent components that contain interference from others in the residual

form which is only source of contamination･ This glVeS additive noise like model
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Figure 6.1 Showlng denoISlng SCheme for ICs obtained from FDICA･

for eacb. IC and it can be cleaned by slngle channel enhancement algorithm used

for removal of additive noise. Accordingly, we will start from here with speech

slgnal contaminated by additive noise and develop a noise suppression r山e for it

that will be applied to clean ICs. For the slngle channel signal capture, the

observed speech y(n) in the presence of additive noise d(n) is glVen by

y(n) - x(n) +d(n), (6.1)

where x(n) represents clean speech signal, n is the time-index, and random noise

d(n) is uncorrelated with the clean speech signal. The aim of the enhancement

technique is to estimate clean slgnalE(n) from the observed noISy Slgnal y(n). As

we said earlier that our aim is to do estimation in the DFT domain, wbere DFT

coe托cients of tbe clean speech are estimated. The observed speech signal is

subjected to STFT analysis, as depicted in Figure 3.2, to produce TFSS. The

TFSS 2;.(f)of the ith independent component in any frequency binf is supposed

to be composition of orlglnal contribution xi(f) and cross-channel interference

slgnal Dj(f),i* J'; and it can be represented as follows
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耳(f) = X.･(f)十D)･(f), for i * j･ (6.2)

The interference slgnal component D)･(f) is derived from the independent

comPOnent yj(n) by scaling down in accordance with the NRR achieved by the

FDICA and by doing STFT analysis･ This can be expressed as

DjJ, - sTFT[;yj], `6'3'
where q, -

qy,･

NRRi

J〃J〃 +J

In generating ･contaminating noise level like above it is assumed that t血e

independent component yjdoes not contain contribution of yibut practically it

is not so becausey)･ is also contaminated byyi depending upon its NRR

ensured by FDICA･ However, hereafter we will go further with such assumptions.

The aim of the enhancement algorithm is to make modification by some

function G(f) , known as a noise suppression rule･ to estimate the spectral

cOmPOnent Xi(f) of the clean speech i.e.

′ヽ

X(f) = G(f).Y(f). (6.4)

The modification functionG(f)is also called gain function. Its value lies between

O and l meanlng there by it produces more suppression for the lower SNR of the

lnPut and less suppression for the inputs with higher SNR･ Thus the problem of

enhancement of ICs in DFT domain is reduced to find a suitable functionG(f)

that can reduce tbe resi血al inte-ence slgnal available in any IC･ T血is problem

is not new･ This is one of tbe very old problems in the area of speec血

enhancement but still c血allenglng and chasing the state of art ASRs. T血is

problem has been addressed in many recent researcb repo托s and books 【49] 【86].

In the speech enhancement landscape, the basic assumption under such methods
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is■ that only contaminated signal is available to t血e enbancement system and tbus

a classical adaptive noise canceling techniques uslng reference noise are useless

[88][89] in such scenario･ There has been development of different algorithms

for tbe enb.ancement of speech signal, corrⅥpted by broadband noise, based on

the short-time analysis of the slgnal in the frequency domain･ Such algorithms

are able in accesslng and manlPulating each spectral component of very

short-segments of speech･ There have been developments of different algorithms

in the DFT domain to enhance the magnitude of spectral components･ The report

of pioneering effort in this direction appeared in [86]. After then there came

many algorithms for enhancement in the DFT domain as tbe variants of popularly

known technique of spbctral subtraction [90] [91] [92]. In the spectral subtraction

the Short-Time Spectral Amplitude (STSA) of clean signal is estimated from that

of noISy Slgnal and combined with the pbase of STSA of noISy Slgnal to get

spectral components of enhanced signal [87]. There have been developed speech

enbancement algoritbms uslng eStimation tecbniqu･es such as Maximum

Likelihood and MAP estimation [92】. Tbe otber most important algoritbms were

developed based on Gaussian statistical models for the magnitude of the DFT

coefficients of the speech [93][94][95][96][97]. The assumed PDF for the DFT

coe仇cients of speech and noise plays important role in tbe enbancement

algorithm･ T血e Gaussian PDF for speech spectral components was assumed

under the implication of the CLT as the DFT coefficients are weighted sum of

the random data samples･ Speech signal is naturally non-stationary, however,

statistical stationarity in speech signal is created artificially by dividing speech

slgnal into very sbort time segments, which are supposed to be quasi-stationary,

and then DFT of each segment is taken to represent signal in tbe血℃quency

domain･ In Cbapter-4 we bave described lots on the statistical modeling of TFSS

and GGD based model were proposed･ However, t血e statistical modeling of

spectral component of speech has been controversial since past and different

researchers have used different statistical models for the DFT components of

speec血whicb have been discu･ssed before in this thesis. However, in tbe context

of speech enhancement we place here some of such applications e･g･ authors in
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'nme domain FnF fittJ'ng for WGN

Tir陀domain円⊃F fitting for Babbk! Noise noJSe

Figure 6･2 Histogram of WGN (Top), Clapping (middle), and babble noise

(bottom)･ Tbe批ings of GD, LD, and GGD function are also shown in tbe

bistogram of血e noise･ GGD parameters (mean, scale, sbape) were estimated

uslng ML approacb and are also shown.

【61]【94]血ave used Gaussian model･ Recently'in 【98]【99】 Laplacian model

血as been used to derive speec血enhancement algorithms･ Similar, mismatcb

between actual and used statistical models for the noise slgnal also arises. In
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many algorithms for speech enhancement e.g. Wiener filtering, in [95], noise

and speech both bave been assumed to be Gaussian･ However, many real world

noise slgnals such as chair crack, clapplng, Object dropplng, babble noise etc･

are neither Gaussian nor exactly Laplacian [100]. For example PDFs of three

noise signals namely Wbite Gaussian Noise (WGN), babble and clapping noise

are shown in Figure 6･2･ These figures also contain fittings of the Gaussian,

Laplacian and GGD functions･ Inspired by these facts on statistics of the

spectral components of noise a flexible enhancement algorithm has been

proposed bere uslng GGD based statistical modeling･ Since GGD based

modeling for noise and spe.ech can capture wide range of noise, it can be used

to en血ance speech signal corrupted by speech like noise.

The denoISlng Situation of the output of FDCA is little bit different with that of

enhancement under noise. Under the no external background noise any IC

component is considered to be contaminated by scaled version, depending on tbe

achieved NRR by FDICA, of otber ICs whicb are roughly, not exactly, known･

Tbus in denoISlng One IC is taken as speech sou･rce while other is taken as

interference or noise contributing source. It is important to note that noise source

is also speecb. So here a general method for enbancement in DFT domain is

introduced by uslng GGD models for the TFSS of both ICs. An MAP estimator

for the STSA, for speech enhancement in the DFT domain uslng a flexible GGD

function as the prlOr PDF model for the DFT coefficients of speech will be

derived･ AIso, spectral components of the noise are modeled witb GGD.

6.3. Bayesia皿Estimation

Bayesian estimation is a classical metbod of statistical estimation tbat

will be used here to develdp denoISlng algoritbm for tbe ICs･ In the Bayesian

framework the estimate of unknown slgnal is obtained by minimizing Bayesrisk

B,which is glVen in terms of cost c(s,s^)

B,全E(C(蛸‡- E Ec(x,3)p(x,,)dxdy- E【c(x,3)p(x･,)dx]p(,)dy, (6･5)
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where y lS the observed data and x is the true value of data hidden in observation

y･ In the above equation p(y) is non-negative and thus the minimization of B,

puts constraint on selection of克which should be chosen such that for every

fixed value of y the bracket term in Eq.(6.5) becomes minimum. Thus the

minimization of error in estimation in Eq･(6･5) melts down to following

丘≠叫nE‡C(x,3) J y‡
X

(6.6)

T血e choice of cost function depends on t血e problem at band and leads to

different estimation techniques･ However, cost functions are chosen to satisfy

ones requlrementS aS Well as tractable formulation of the problem･ In general

the cost functions are chosen as the function of error xE-X一丘in estimation.

This makes task of minimlZlng COSt function easier as it becomes on slngle

variable function･ Usually'1inear, quadratic and uniform cost functions are used.

Such cost functions are shown in Figure 6･3･ These three cost gives different

estimators in terms of median, mean and mode of the posterior PDF as sbown in

Figure 6･4･ Linear cost function varies linearly with the absolute value of error

i･e･ c(xe)⇒x6J･ In the quadratic cost function the cost is taken as the function

of square or error i･e･ c(xc)-xc2 and estimate is known as Minmum Mean

Squared Error (MMSE) estimate 2m仰e and is given by

3MSe - Exp(xJ y)dx･
(6.7)

It is important to note that it is not possible to get tractable solution of the

above integral fbr a11 types of PDE

The other very lmPOrtant COSt function is uniform cost function. Such cost

function asslgnS ZerO COSt for all error less than some certain value and uniform

value for errors outside that limit･ Thus under such costfunction the estimation

is carried out for error lying between very small values±6/2. The cost function

is glVen aS

i! FI EJ
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O forxc ≦±6/2

C(xc) =

‡io forxc > ±6/2

Under such a situation Eq･(6.5) is givenby

(6.8)

E{C(x,;, , y,-_ EoC(x,3,p(x･y,dx-i[l-]31･66//22 p(xfy,dx]-1/6TP(2･y,･ '6'9'

This equation shows that for any fixed value of 6 the minimum ofEq.(6.6) can

be obtained by maximlZlng p(xJy). Such estimator is well-known as MAP

estimator and is glVen by

丘≠m?xp(xJ y) -m?Ⅹp(y/x)p(x)/p(y)･
X X

(6.10)

T血us t血e MAP estimator is glVen aS the mode of the posterior density which is

modified pr10r PDF in accordance with the observed data.

6.3.1. MAP Estimation Under GGD Prior

As said before, MAP estimation uses some prlOr knowledge about the quantity to

be estimated and updates仙at prlOr knowledge with the likelibood function that

contains information available in the new data･ As a pr10r knowledge, a prlOr

PDF, based on previous knowledge abou･t the event, is taken which is

2

･l･･一
の
O

O

5

1

5

-1 ErrorO

Quadratjc

-1 ErrorO

Figure 6.3 Different types of cost function used in Bayesian estimation.
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Figure 6･4 Generalized posterior PDF s血owlng di批rent Bayesian estimators

under linear, quadratic and uniform cost functions.

further modified, according to Bayes theorem, by the likelihood for the new

samples to form a new pDF called as也e Bayesian posterior･ T血e improved

posterior PDF contains all known info-ation, bo血old and new about the event.

The maximum of posterior PDF under the uniform cost function glVeS MAP

estimator that is also an optimal estimator 【101]･ MAP estimation for denoising

ICs is similar to MAP estimator of spectral components of the clean speech from

that of t血e observed noISy SpeeC血･ T血e problem of estimation of spectral

components in any frequency bin can either be formulated as the task of

estimating real part and imaglnary part or estimation of spectral magnitude and

related phase･ Here we will obtain joint estimator for magnitude and phase of the

time-frequency series of speech.

Let in the kth frequency binyk=RkeWk represents noISy Slgnal and

xk =akeiq* represents spectral components of clean slgnal in the polar form. Thus

the problem of estimating clean slgnal can be formulated in terms of estimation

of magnitude akand phase ak ･ Accordingly, MAP estimator of ak and

phaseakare glVen aS the mode of the posterior PDFp(ak,LYk lYk), Which can be
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obtained by maximlZlng the posterior PDF p(ak,ak lYk)･ The desired posterior

PDF is glVen by Bayes'theorem in terms of likelihood function p(yk fak,ak)

and a prlOr PDF p(ak,ak) as follows

p(ak,ak IYk)=P(Xk JYk)=
p(Yk J ak,ak)p(ak,ak)

p(Yk )

(6.11)

Since p(yk) is constant with respect to (w.r.t) spectral magnitudeakand phaseak ,

only numerator of Eq.(6.11) is significant in the optimization landscape and

denominator wi11 be dropped hereafter･ The natural logarithmic function of only

numerator is optimized, whicb is glVen by

J =1n[p(Yk [ ak,ak)p(ak,ak)].

The MAP estimators of magnitude ak and phase ak are glVen by

(6.12)

(ak,L2k) - arg･maX(J‡ -arg･max【1n(p(Yk J ak,ak)p(ak,ak)‡]･ (6･13)
(ak ,ak ) (ak ,ak )

Obviously, MAP estimation needs knowledge of conditional

probability p(yk ( ak,ak ) and prlOr PrObability p(ak,ak) of the spectral components of

clean speech for which GGD will be used bere. Tbe GGD model fbr tbe

magnitude of the DFT coefficients of the clean speech signal in the kth frequency

bin, is glVen by

p(ak, - IA.xe-[%]PJ , fe71;eO ≦ ak ≦ｦ

where bxis the scale parameter,px is shape parameter,
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Ax=
P, P,
_一一■二..二=====::=:::::=::===:･==･･=･･- ~~ :___∵

2b,r(1/P,) 2r(1/Px)

q, = Stdv･of clean speech=

(6.15)

(6.16)

Since the positions of analysis window in STFT analysis are arbitrary, the PDF

of phase ak , follows uniform distribution and is expressed as

p(ak) = Unlfo7m PDF=
⊥ for-n≦ak ≦方
22F

else

The joint PDF of the magnitudeakand phaseak is glVen aS

p'ak,ak'-豊e-[T]px ,
for O≦ak ≦00and-2T≦ak -<n.

(6.17)

(6.18)

The conditional probability p(yk fXk)of the observed data, glVen Clean slgnal

inberits randomness of noise and can be glVen aS tbe PDF of noise, wbich is also

modeled by GGD as follows

p(Yk J Xk)- P(Yk Jak,ak)=Noise PDF

= (AN/2n) e冊p" ,
jTor O-<rYk -Xk L<cc,-2t≦ Yk ≦2T

(6.19)

wherebnand Pn are scale and shape parameters, respectively, for the GGD

distribution for noise.spectral component in the frequency bin k, andyk is the
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corresponding pbase for noise･

Pn Pn
T= ｢二====丁~~==:~==~

2bnr(l/Pn) 2r(l/J?n)

qn = Stdv･ofnoise = E(fDk21I.

(6.20)

(6.21)

Now the desired posterior density in Eq･(6･11) can be given by 11Sing

Eq･(6･18) and Eq.(6.19) and dropping denominator as follows

p(ak,ak. Yk, Wk. ak,ak,p(ak,ak, =(ANAx/.方2)e-[甥揮]. (6･22,

Using Eq.(6.22) in Eq.(6.12) gives

IRkeWk -akelak JPn fak fPx , 1d ANAx

bnPn bxPx '山4方2

(6.23)

Now, in order to locate, say atLikand a^k, the highest of the posterior PDF,

differentiating Eq･(6･23) w･r･t･ phaseak and spectral amplitudeak , and equating

derivatives to zero glVeS

∂J/∂akfak=&k - B[Rk2.ak2 -2Rkak COS(vk -Lik)]β

【2Rkak Sin(vk - L2k)],

Equating it witb zero glVeS

sin(vk -L2k)=0⇒ &k =Vk,
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where B-0･54n/bf;p-o･5Pn-1･Eq･(6･24)gives MAP estimated phase ｡f the

spectral components of clean slgnal wbic血is same as that of that of the spectral

components of仙e noisy speecb･ Similar treatment of Eq･(6.23) w.r.t

spectral amplitudeakalong with use of Eq･(6･24) gives

aJ/aak Jak=ak = O

whichfurther glVeS

2B[Rk2 + ak2 - 2Rkak]P[-Rk + ak] - PxakA-1b;A [sign(ak )]Px - o, (6.25)

In order to avoid singularity when o<px<1,and ak-0,軒1in Eq.(6.25) is
replaced by akA-1.6, where 6 is very small ( '10→ ) number. Further

simplification of Eq･(6･25), results in the following radical (power) equation

PxakA-lb;Asign(ak)A = 2B(Rk - ak)2P･1

⇒ akPx-l = p(Rk -ak)Pn-1, (6.26)

where P-bfxAJbfnpx ･ It may be very difficult to find an analytical s｡1uli｡n ｡f

tbe Eq･(6･26),血owever, its numerical solution can be easily obtained by

Newton-Rapshon's met血od under wbicb numerical solution after tbe肋iteration

is glVen aS

i+1 ^

ak = la^k-

iakjLl -p(Rk - 1ak)Pn-1

(Px -1)iakA~2 +p(pn -1)(Rk - 1ak)Pn-2 (6.27)

This solution glVeS MAP estimator of t血e spectral magnitude which is furtber

combined with也e phase of a related noISy SpeCtral component to get a spectral

component of血e clean signal･ The solution in Eq･(6.27) is sensitive to the used

initial value･ Tbe good initial values can be obtained as tbe special case solutions

of the Eq.(6.26) as described below
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6.3.2. SpecialCases of GGD based MAP Estimator

Case･1 For P,=Pn -2, the spectral components of both the noise and speech

signal have Gaussian (assumption working under tbe conventional Wiener

filtering) PDF and solution of the Eq.(6.26) using Eq･(4･11) is given by

(6.28)

which is Wiener filter and can be used as the initial value for the iterative

solution in Eq.(6.27). Thus the MAP estimate under the Gaussian model for both

the noise and speech is equlValent to Wiener filterlng･ This is due to symmetry of

the posterior PDF, w血ich too is Gaussian, for which mean (Wiener solution) and

mode (MAP estimator) are equal.

Case 2. WhenA -1 i.e. the clean speech spectral component has Laplacian PDF

and tbat ofnoise is GGD, the solution to Eq.(6.26) is given by

ak -Rk -(去〕p"~1 -Rk -〔
1.41426Pn

6.r P,,
(6.29)

in wbich furtber if the PDF of noise spectral components is assumed to be

Gaussian, we have pn=2 and Eq.(6.29) can be simplified into

ak -Rk -1･4142立-Rk -1･4142号6x

(6.30)

where f=q,2/qn2 is the spectral SNR of the noisy speech signal.

For the other two special cases i.e. when Px=Pn =1, Eq.(6･26)) fails to give

solution for ak and it can be shown that under such condition it leads to

qx=q,,andfor Pn=1 estimatefor ak is givenby
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ak -(P,a -[(箸〕〔妨 (6.31)

which is independent of Rk ･ However, such all-special cases are not happenlng

wit血tbe speecb signal･ As sbown in 【82] tbe shape parameter of the spectral

magnitude is nearly equal to l(o･8<Px <1) and in the majority of the frequency

bins spectral amplitudes have strongly Laplacian distribution (GGD witb

Px <1 )･ The simultaneous happenings of Px =Pn =1 can be avoided by making

tbem slig血tly more or less tban l.

6･1･ Voice activity detection

The solutions of Eq･(6･26), require scale and shape parameters of clean speech

and noise slgnals･ The estimation of these parameters for general problem of

denoISlng SpeeC血signal under additive background noise and ICs en血ancement

will be a little bit different･ =n the speech enharlCemerlt PrObiem ciean slgnal

and noise slgnals are notknown･ However, they can be estimated from the

noISy data only･ The GGD parameters of noise can be estimated, uslng ML

aPPrOaCh as described before, from the noise only portion e･g･ a few samples

加m tbe beglnnlng Or Otber silent parts of血e noISy data can be taken uslng

voice activity detector･ Ⅶice activity detection in low SNR condition is

PrOblematic･ A VAD for this purpose based on negentropy measure of speech

slgnal is described below.

Detection of noise onlyframes and noISy SPeeCh frames is difficult, especially,

in a very low SNR condition･ In tbe very low SNR condition conventional energy

based VAD detector fails [102]･ It is also conceivable from Figure 6.5, which

shows how the energleS Of speech segments under different SNR conditions

c血ange･ we propose bere a statistical VAD detector based on the c血aos measure

of tbe spectral magnitude of quasi-stationary segments･ For a speec血signal,

sPeCtral components are well organized, however, for the noise slgnal it is not

well organized e･g･ spectrogram of White Gaussian Noise (WGN) and clean
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speech signal from the male speaker can be observed in Figure 6･6, to be imbued

with sucb differences in the spectral organization･ Accordingly, tbe observed

noISy SpeeCb data during t血e speech period in the slgnal is less cbaotic, as shown

in Figure 6･7, than during the noise-only frames and thus chaos-based measure

can discriminate noise-only and noISy SPeeCh frames･ For doing voice activity

detection based on t血e measure of sucb cbaotic cbaracteristic, we bave used

negentropy as a measure [19]. The benefit of using negentropy over others such

as entropy 【102][103] is tbat it is always positive and can be comp山ed in terms

of only shape parameters of the used GGD model･ The negentropy of each frame

in DFT domain is obtained in terms of Differential Entropy (DE) AH of the

magnitude of spectral components･ The DE of the any frame data

u=[yl,Y2.".._"...YN] is glVen by

AH(U) -一了p(u)log p(U)dU, (6.32)
==女

where p(u) represents PDF of the frame data U･ The PDF of magnitude of

spectral components of each frame is represented by GGD withmean pu =o

1

0.5

0

届0
>

-0.5

-l

0 0.5 1 1.5 2 2.5 3

11me

Figure 6･5 Energy of speech segments corrupted by WGN under different SNR

conditions.
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0･5 1 1lme l･5 2 2.5

O15 1 1lme l･5 2 2.5 3

0･5 1 ¶mel･5 2 2.5

Figure 6･6 Spectrograms of WGN (upper) and clean speech from

male speaker (lower and middle figures).

0 1 2 0 1 2 3

0 1 2 3 0 1 2 3

Figure 6･7 Spectrograms clean speech and noISy SpeeC血

degraded by WGN (First row clean and noisy waveforms,

Second row corresponding spectrograms).
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scale parameter au and shape parameter A, estimatedfrom the data･ Using

GGD model for p(u) in Eq.(6.32) it can be integrated to give

AH(U) - f(au,Ru) =log
2arl(1/Pu)

]+去, `6.33'

which depends on the scale and shape parameters･ The negentropy H(Pu) is

computed as the difference of DE of Gaussian RV, with same variance as of that

of spectral components of speecb, and DE of speech spectral components

modeled by the GGD fGG(0,a",Pu). Accordingly, negentropy H(Pu) is given by

H(J?u) - AH(ag,Pg = 2)-AH(au,Pu)

･〔o･5-去〕･ (6.34,

The tbeoretical variation of negentropy of GGD wi血sbape parameter is shown

in the Figure 6.8. It is obvious from there that the negentropy lS ZerO for the

Gaussian distribution and goes up in the positive direction for the spiky

distribution. Since the speech frames are more parsimonious than noise frames,

the noise-only frames will have lower negentropy while for the noISy SPeeCh

frames negentropy will be relatively high and thus a threshold value of the

negentropy can be chosen to demark noISy SPeeCh frames and noise-only frames.

The threshold value of negentropy can be decided on the basis of the global

statistics of the negentropy. The negentropy of the frames itself is a random

variable and its PDF represents joint probability of occurrence of noISy SpeeC血

frame and noise-only frames. The PDF of negentropy of each frame can also be

modeled by GGD with mean ph,SCale parameter ahand shape parameter phaS

follows
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Figure 6･8 Sbape parameter versus negentropy of the GGD. It is

zero for Gaussian distribution and positive for the spiky

distrib山ion (0<β<1).

py(H) - -[1H -p5h;. ]ph

(6.35)

where y=[speech, noise] to represent noisy speech frame and noise-only

frames respectively･ Since the occurrence of noiseand speech frame is

independent

pl,(H) = p(noise J H)p(speech [ H)
(6.36)

The threshold value HTH Of the negentropy lS eStimated under assumption that the

conditional probabilities of noise-only frame and noISy SPeeCh frames are same
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(say pl) at the threshold [104]. Accordingly, the threshold HTHis given by

HTH =Ph±
-ah log(2pl(l- pl)r(l/Ph))

]yRIl (6･37,

The similarity between the spectral bands of the estimated noise and orlglnal

noise can be measured by measurlng the Ku11back Leibler Divergence between

the PDF of their spectral bands.

6.5. GGD parameters for noise and speech

Using the threshold value in Eq.(6.37), total noise-only frames (say L) are

stacked togetber in tbe time succession and GGD parameters for noise spectral

components in each frequency bins are estimated from these data uslng ML

technique as described in Chapter 3. Due to unavailability of clean slgnal, tbe

GGD parameters for tbe clean speecb cannot be obtained directly as has been

done for the noise spectral components; however, they can be estimated uslng

GGD parameter岳of noise spectral components and higher order statistics of the

spectral components of the observed noISy data. T血e shape parameter of the

spectral magnitude of clean speech can be estimated from their kurtosisKx

uslng tbe followlng relation valid for the GGD function

Kx=
r(1/Px )r(5/Px )

I- (3/P, )2
-Ⅴ(A)･ (6.38)

where V is some function･ The sbape parameter can be estimated by inverting tbe

relation in Eq.(6.38) such tbat

Bx -v-1(Kx).
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It is difficult to find an analytical inverse function for V, however, it can be

easily done with the look-up table by storing values of shape parameter and

corresponding value of kurtosis･ The tbeoretical variation in the kurtosis witb β

is shown in Figure 6･9･ The estimation of shapeparameter using Eq.(6.39) needs

kurtosis of the clean slgnal which is not available, however, it can be estimated

from the higher order statistics of spectral components of the noISy SPeeCh

and estimated GGD parameters for noise･ Starting from Eq.(6.2) it can be shown

that the kurtosis of clean slgnal is related to kurtosis, skewness, variances and

means ofnoise and noISy data as follows

K,
[K,q,4 - 4Sxqx3pn - 4Snqn?FEx - 6q,2qn2 - (Kn - 6)qn4]

(q,2 - qn?)2

(6.40)

where Kz =Kurtosis of spectral components of slgnal z, sz =coefficient of

skewness of spectral components of signal z, ,qz and pz denotes standard

deviation and mean of the signal indicated by subscript z, arld z-(x,y,n)=(noisy

speec血, clean speec血, noise) signal. Tbe coe仇cient of skewness of the clean

speech signal is estimatedfrom the skewness and lower order statistics of the

noISy data and noise slgnal as follows

sx - skrness -蛭
(6,2 - qn2 )3/2

(6.41)

Tbe variance and means of the clean speecb signal are estimated as follows

6x2 - qy2 -qn2;

FL, =Px +FEn ⇒P, =FE, -Pn･

However, to pro血ibit α becomlng negative, it is approximated as
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6x2 - max(q,2 -qn?,o),

(6.44)

in which the subscripts n denotes noise and y denotes noISy SPeeCh signal･ The

scale parameter of the GGD for clean speech is then obtained using value of

qxand Px in Eq.(4･11)･ The whole process of the speech enhancement, as

described and derived above, in the DFT domain under the proposed framework,

is shown in Figure 6.10･

Performance Evaluation Score

ln the above described MAP estimation of the clean slgnal, the estimated

parameters for tbe noise and clean slgnal plays important role and tbe accuracy

of the estimation can be checked by measurlng tb･e distance between the PDFs of

the orlglnal spectrum and estimated
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Figure 6･10 Speecb e血ancement sc血eme used to estimate spectral

components of clean speec血in t血e DFT domain･ The phase of noISy data

is used to reconstruct the original signal･

spectrums of tbe related signals･ T血e similarity between the spectral bands of

the estimated noise and orlglnal noise can be measured by measurlng tbe

Kullback Leibler Divergence (KLD) between the PDF of their spectral bands.

Since tbe PDF of仙e spectral bands are modeled by tbe GGD, KLD between

them can be measured in terms of GGD parameters. The KLD between two

GGD functions defined by scale parameters ai,ajand shape parameters pupj

is glVen by

D.j =log
J?i ajr(1/Pj )

Pj air(1/Pi )

r((P]+1)/Pi) 1

r(l/Pi ) P)･
(6.45)

Further DFT coefficients in each frequency bin are assumed to be independent,

so血e overall distance between two noise spectrums can be glVen by averaglng

the distance calculated in Eq･(6･45) for each pair of the spectral bands of the

original(Org･) noise and estimated (Est.) noise as follows
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Davg･ -iiDl,･(fk,, ( i - Org･, j - Est･,･
(6.46)

The GGD parameter estimation for ICs enbancement is same as above except

the noise parameters were estimated from the TFSS of noise slgnal scaled from

a IC using Eq.(6.3). Then the clean signal parameters were estimated as

mentioned above.

In order to evaluate performance of tbe proposed denoISlng algorit血m

global SNR and segmental SNR of the estimated signal will be measured [88]･

The global SNR provides error measurement over time andfrequency and is

defined as

SNRdB - 10loglO
∑x2(t)
∑[x(t)-2(t)]2 '

(6.47)

In order to evaluate performance of the FDICA with MAP en血ancement the

NRR defined in Eq.(3.46) with and without MAP enhancement will be used･

Asa subjective test preference test for enhanced speech signal has been done･

6.6. Experimental Evidences

Tbe experiments in this cbapter are placed in tbree separate parts･ First

we place characteristics of noise suppression rule derived in Eq･(6･27) for the

MAP estimator･ Then speech enhancement experiment under different noise

conditions will be presented. Finally, enhancement experiments for separated

ICs will be placed. The cbaracteristics of noise suppression rule are s血own in

the Figure 6.11. These galn CurVeS Were Obtained for the 5000 samples of

random variables (RV) generated for given GGD parameters･ The β parameters

of GGD for RV corresponding to clean speech were beld constant at l.2. It was

done so, as the average value β forfx(f)1, speech amplitude was found around l,

but at exactly l Eq.(6.26) vanishes. Obviously, the shape of the gain function

depends on the GGD parameters of the clean speecb and noise slgnal･ Tbe

proposed noise suppression rule offers more noise suppression at the lower
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Figure 6･1 1 a) Characterestic of noise suppression rule for different

values of GGD parameters･ The shown curves were obtained from

artificially generated random variables with GGD parameters. (a)

shows plots for high1y spiky noise (b) shows plots for less spiky

noise･ Shape of the curve changes with the characteristic of noise.
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sNR and the amount of noise suppression decreases as血e slgnal's SNR level

goes叩Wbich means the clean slgnals are not cleaned further･ In tbe

experiments for the speecb enhancement we bave used four sentences, of time

length 3 sec･, sampling frequency 8 kHz and spoken by two male and two female

speakers, from the ASJ continuous speech corpus for the research[80] and noise

datafrom the NOISEX-92 databasefreely available at http://mi･eng･cam･ac･uk/

comp･speech/Sectionl/Data/noisex･btml･ The clapplng nOise was self-recorded･

Tbe e血ancement experiments bas been done with the speecb signals degraded to

different SNR levels e･g･ -5 db, O db, 5 db, 10 db, 15 db, and 20 db･ In the first

part of tbe experiment, statistical characteristics of the spectral components of

different noise were investigated･ The slgnal analysis conditions are kept same as

mentioned in Table･3･2･ Tbe GGD parameters for tbe spectral components of

WGN, babble (BAB) noise, and clapping noise were estimated using ML

approach･ It is the sbape parameter that decides shapes of tbe PDF, the value of

shape parameters for them are shown in Figure 6･12･ Upper subplot in that figure

shows sbape parameter β for the magnitude of spectral components of t血e WGN,

babble noise, and clapplng nOise･ Tbe bar plot in lower subplot of the same

figure shows values of shape parameters, averaged over the total number of

frequency bins, for the real part, imaglnary Part and the magnitude of the spectral

components of the same noise･ It is evidentfrom these figures that the spectral

components for WGN have Gaussian distribution but the babble JnOise and

clapplng nOise have relatively spiky distribution･ The PDF of the time domain

samples of all tbese three noise slgnals are already sbown in the Figure 6･2 with

fittings of Laplacian, Gaussian and GGD functions in which too, similar

differences in PDF can be observed. Thus it is very loose assumption to use

Gaussian model for all noise slgnals, as is done in the Wiener filtering and can

affect performance of tbe related speech enhancement algori血ms･ In Figure 6. 13,

PDFs of tbe spectral components of the WGN, clapplng and babble noise in

frequency bin f=688 Hz are shown. It is evident from there that GGD with

measured parameters provides better fitting in the PDF of the spectral

components. Similar results were observed for other frequency bins too. In
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Figure 6･14 the performance of energy based VAD and negentropy based VAD

has been shown under very low SNR condition･ It can be seen in that figure how

tbe energy based metbod fails to demark speech segments and noise-only

segments･ The result of negentropy based VAD for the speech signal, from male

speaker, degraded to Odb SNR level by WGN and clapplng nOise are sbown in

Figure 6･15･ In that figures, patterns in spectrograms of the noISy SPeeCh data

revel chaos of noISy SPeeCh and noise-only frames can be observed･ The upscaled

negentropy curve is also plotted to show how it tracks slgnal frames with

different chaotic conditions･ The negentropy of each frame is also plotted over

noISy and clean speec血waveforms･ In tbe case of lower SNR or bigher SNR

almost similar res山ts were found･ For tbe discrimination of the noISy SpeeCh

slgnal into noISy SPeeCh frames and noise-only frames, a threshold is required

which can be estimated using Eq･(6･37) and is shown irl Figure 6.16. That figure

sbows tbeoretical value of threshold as a function of the probability of

occurrence of a speech segment･ The shown threshold curves were estimated for

tbe speech signal degraded to O dB and 15 dB SNR levels by WGN and clapplng

noise･ It is evident血at tbere is a little variation in tbe negentropy value wbere

the probability of occurrence of each is assumed to be equal (=0.5). AIso, if the

probability of occurrence of speech frame is increased, threshold goes down and

chances of taking larger number of frames as noISy SPeeCh and less number of

frames as a noise-only frame increase･ In our experiments, the used value of

thresholds for WGN, babble and clapplng nOise were O.1, 0.2 and O.19

respectively･ A触r discriminating tbe noISy SpeeC血signal into noISy SpeeCh

frames and noise-only frames, the GGD parameters for noise were estimated.

The estimated noise parameters and statistics of the noISy SpeeCh signal were

used to estimate GGD parameters for tbe clean slgnal uslng Eq.(6.40)

-Eq･(6･43)･ The restimated parameters for the babble noise and clean speech

slgnal along with血e corresponding parameters for tbeir orlglnal versions are

shown in Figure 6･171 As it is evident from that figure that the parameter

estimation for t血e clean slgnal is not so much accurate,血owever, the estimated
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Ndse Type

Figure 6･12 Sb･ape parameters of tbe WGN, babble and clapplng nOise･

Upper figure shows shape parameters of magnitude of noise spectral

components and lower bar plot shows sbape parameters, averaged over

frequency bin, for real part, imaglnary Part and polar magnitude of the

WGN, babble and clapplng nOise.
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Figure 6･13 Fitting of GGD, Gaussian and Laplacian PDF in the bistograms of

magnitude of noise spectral components in frequency band f=688 Hz･ Figures in

the first column (1eft) of every row is for imaginary part, middle column is for the

real part and rightmost column is for the polar magnitude･ Each successive row from

top to bottom is for WGN, clapplng and babble noise respectively･ T血e GGD

ParameterS Shown in each figure represent (mean, scale, shape). (Legend indication

is same for each plot wbich血as been sbown in one plot for clarity)
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Figure 6･14 Perfomance of energy based VAD and negentropy based VAD･ The

clean speech signal is corrupted by speecb like babble noise to SNR level of

-5dB･ Subplots from top to bottom are noISy SPeeCh signal, noise slgnal, clean

speech signal, Spectrogram of noised speech and KLD between estimated and

orlglnal noise spectrum.

parameters for the noise are very near to tbat of the orlginal noise slgnals･ Next

we performed denoISlng eXperiments to estimate clean speecb spectral

components using Eq.(6.27). The four clean speech signals, twofrom male and

two from female speakers, were noised to the SNR levels of -5 db, O db, 5 db,

10 db, 15 db, and 20 db by WGN, babble noise and clapplng nOise. we used

Eq.(6.29) to initialize tbe iterative process of tbe Eq･(6･27)･ Use of血is initial

valu.e looks logically better than tbat of in Eq.(6.28) in the ligbt of PDF of tbe

speech spectral components･ However, comparative stu.dy on tbe appropriateness

of t血ese two initial values and tbeir in加ence on tbe overall performance is still
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Figure 6･15 Performance of negentropy based VAD under WGN (Left

column) and Clap noise (right column)･ SNR=O dB. Speec血signal is degraded

to Odb, very low SNR condition･ Negentropy of each frame is plotted over tbe

degraded speec血as well as clean speec血waveform and spectrogram of the

degraded speec血signal･ Negentropy values plotted over t血e spectrogram are

upscaled to fit into the plot

unexplored･ As a perfbrmance measure SNR level and segmental SNR were

measured in accordance w地Eq(6･47) for也e e血anced speecb signal. T血e

SNR levels of the degraded speech and denoised speech, averaged for all血e

four speech signals, are depicted in the figures of Figure 6･18. The same

figures also cohtain SNR improvement result obtained using Eq.(6.28) which

is a Wiener filter･ The performance of the proposed MAP estimator in the

loⅥ/er SNR conditions is better than tbat of in t血e bigber SNR conditions

w血ic血is indicative of the fact that algori血m provides stronger noise

suppression in the low SNR conditions･ The estimated segmental SNR for the
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Figure 6･16 Value of threshold for different types of noiseunder different

SNR conditions.

speech signals enbanced by Wiener filtering and MAP estimator are shown in

Figure 6･19 for the speech signal degraded by babble noise･ For different SNR

levels of the input signal, the difference in segmental SNR of both gets lessened

with increaslng lnPut SNR･ The spectrograms of the noISy Slgnals, under WGN,

estimated clean speech signals by Wiener filtering and proposed method are also

shown in.Tbe averaged segmental SNR and Euclidian distances of MFCC

. parameters of clean speech from that of noISy and enhanced signals under the

WGN and babble noise are shown in Figure 6.21and Figure 6.22. In the

denoISlng eXPeriments for the ICs from FDICA, the fixed-point obtain separated

sources. Then one separated source was used as source of noise or cross-channel

interference for otber and vice-versa. The residual noise golng With any

separated source was estimated using Eq･(6･3) which requires SNR of tbe signal

as a prlOri. Tbe ac血ieved NRR by FDICA algorithm for each separated
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Figure 6･17 Estimated and orlglnal parameters for the clean speecb and noise

from the noISy SPeeCh data degraded to O dB SNR by babble noise･ Subplots in

the le氏column show mean, standard deviation, scale and s血ape parameters fbr

the speech signal (from top to bottom) while subplots in right column show the

same for t血e noise slgnal.

source has been used as a prlOri SNR･ However, under the blind set叩it is not

permissible thus it is an ad血oc metbod for tbe experimental purpose･ T血en the

noise parameters obtained from estimated residual noise were used to estimate
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GGD parameters for tbe clean version of tbe separated source･ Tben FDICA

algoritbm described in Chapter-3 and Cbapter 4 were used to leam ICs and

MAP estimator was applied to estimate spectral components of clean slgnal･

As a performance measure the NRR before and after denoISlng Were eStimated

and are shown in Figure 6･23･ It is evident from that figure that the post

processlng Of outputs from FDICA results in cleanliness of the slgnal and

suppression of residual interfering components from other speakers･ Since

under non-reverberant conditions the output of the FDICA have SNR more

tban 20 dB thus post processlng glVeS nO improvement, however, for the

reverberant conditions tbe NRR achieved by FDICA is low and

post-processlng glVeS gOOd improvement･ Subjective test were also done to

compare performance of the proposed method and conventional Wiener

filterlng. The subjective test was planned to collect preference of the lO

subjects for the enhanced signals･ In the subjective test seventy-two utterances,

from male and female speakers, degraded to -5, 0, 5, 10, 15 and 20 db of SNR
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Figure 6･18 SNR of the denoised signal MAP estimation and Wiener filterlng Of

degraded signal by WGN (Fig. a), babble noise (Fig･b)･ Tbe SNR result is

averaged for four speakers (Two male and two female)･ Tbe clean speecb signal

was degradedto-5, 0, 5, 10, 15 and20 dB･

138



【亡
Z
∽

野
∽

【こ
Z
∽

d)
q)

∽

【⊂
Z
∽

tｺ)
¢
∽

【こ
Z
∽

l⊃)
0
∽

亡こ
Z
∽

tｺ)
0
0)

【こ
Z
∽

⊂》
4)

∽

50 1 00 1 50 200

Frame No.

0
250 300

Figure 6･19 Segmental SNR for tbe speech signal degraded by babble noise to

different SNR levels.

by WGN, BAB, AIBO's motor noise (motor noise reaching to the ear

microphone of t血e AIBO robot) were used. T血e statistical cbaracteristics ｡f

TFSS of AIBO's noise can be imbuedfrom Figure 6･24･ The shape parameter

for polar magnitude of this rLOise is between that of Gaussian and Laplacian

noise slgnals･ T血e degraded speec血signals were played in random manner

before subject and their preference were collected･ While playlng SPeeCh

slgnals the slgnal enhanced by MAP and Wiener filtering were played in

succession for each SNR level･ The averaged score collected from lO subjects
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Figure 6･20 Spectrograms of the noISy and enhanced speecb slgnals･ Tbe

subplots from top to bottom in any column correspond to SNR conditions -5db, 5

db, 15 db and 20 db･ Subplots in first column are for noised signals, subplots in

second column are for enhanced signals by Wiener filtering, and that of in the

tbird column are for the proposed MAP estimator･

are sbown in the Figure 6･25･ Tbe averaged score is called here Mean

Preference Score (MPS). The individual scoring by different subjects was

found to be depending upon their aural taste for residual noise in the enbanced

slgnal･ Similar test were also carried out for也e separated signal by tbe FDICA

algorithm and for posﾄprocessed separated signal by tbe MAP estimator as

described before･ For this experiment five mixed signals recorded for RT=Oms,

RT=150 ms and RT=300ms were first separated由by FDICA algorithm and

separated signals were post processed by MAP estimator･ In this way two set

of separated signals, consisting of 30 palrS, for ICA only and ICA with MAP
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Figure 6･23 NRR performance of FDICA with MAP estimator as血e

post-processlng enhancement schemp. Since under no reverberation ICs are at

hig血er SNR so it remains as it is･ With increaslng reVerberation enbancement is

effective･(Shown results are averaged for six combination of speakers).
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Figure 6･24 Motor noise from AIBO robot･ Subplots from top to bottom shows

wave form, histogram of time domain samples with GGD, GD and LD fittings,

shape parameter for the TFSS and shape parameters averaged over frequency

bins respectively･ The shape parameter for statistical distribution of TFSS lies

between tbat of for GD and LD.

were created. These signals (in pair) for the given RT were played in random

manner before the subjects. The MPS collected from lO subjects are shown in
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Figure 6･25 Mean Preference Score (MPS) for enhanced signal by proposed

MAP estimator and Wiener filter･ The used noise slgnals were WGN, speech like

babble noise and motor noise ofAIBO robot.

Figure 6･26･ Since for RT=O ms FDICA algorithm produces very clean slgnal

post processlng Sbows no improvement and tbu.s the MPS score under RT=O was

hard to differentiate for subjects. The MPS for RT=150ms and for RT=300ms

was found to be, more for post-processed separated slgnal which is

supplementing the results sbown in Figure 6･23･ Thus post processlng is

bene凸cial in case of reverberant conditions.

MPS for 60 separated signals scored by lO subjects

r1 ~I■
RT=1 50

Reverberation llme

RT=300

Figure 6･26 MPS (Mean Preference Score) for separated signal by ICA only and

ICA witb MAP estimator as preprocesslng Stage･
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Chapter ･7

Conclusions

uln research, the horizon recedes as we advance, and is no nearer at 60 than it

was at 20. As the power ofendurance weakens with age, the urgency ofpursuit

grows more intense･･････and research is always incomplete･ n Mark Pattison

(1$75).

uAn intelligentperson can choose one ofthe best objectives, but it can not be
●

achieved without perspiration ".......Indian saylng

In this tbesis we have addressed the problem of blind separation of

convoluted mixture of speech u･slng microphone array processlng teChnique with

ICA. The study in the thesis moves around the application of

non-Gaussianization based ICA as a tool for the speecb signal separation in血e

frequency domain. The choice of non-Gaussianization based ICA was

empbasized on tbe fact that in the mlXlng Of speecb signals the statistical

property of mixed signal is also governed by central limit theorem and it bas

been shown in血e Chapter-4 bow tbe dogma of CLT is instrumental in increaslng

Gaussianity in each frequency bin in the convolute mlXlng PrOCeSS. The measure

for non-Gaussianization was taken as negentropy and a fixed-polnt learnlng rule

for the separation vector was derived. AIso, the separation perfbrmance of the

algorithm under different acoustic conditions, characterized by different

reverberation time, was investlgated･ The performance of the algorithm drops

with increase in reverberation･ The effect of initialization of algorithm by

random value based initial separation vector and nulﾄbeam former based

separation vector was also studied to conclude the suitability of null beamformer

based initial value･ One of the interesting contributions of tbe thesis orlglnated
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from the study of spectral separation performance by observlng NRR･ =n every

frequency bin algorithm achieves slgnificantly varylng level of NRR. It should

not happen in the light of assumption that in each frequency bin TFSS are

assumed to be independent and tbus algor地m sbould s血ow matcbed level of

performance for each data set (of each frequency bin)･ The cause of significant

difference was investigated and it has been found that the mlXlng PrOCeSS Of

speech signal doesn't follow CLT in each frequency bin･ The cause of failure to

comply with the CLT has also been investigated to conclude tbat the spectral

sparseness i･e･ each speaker does not contribute slgnal in every frequency bin, of

the speech sources leads to disobedi-ence of CLT･ Such frequency bins presents

ill conditions to the FDICA algorithms based on non-Gaussianization because it

does not full-fill the basic prlnCiple of working of the algorithm･ A method based

on spectral kurtosis and PDF of the TFSS has been proposed to detect sldC11.1

frequency bins in advance･ The proposed method relies on information only from

the mixed signal and thus it is also blind. We also studied the combination of

nu11 beamformer and FDICA to overcome the effect of CLT non-compliance by

some frequency bins･ In the proposed combination the separation process in CLT

disobeying bins was switched over to null beamformer and it was found that

separation performance of combination increased in tbe non-reverberant

condition･ In the reverberant conditions, tbe combination did not glVe any

improvement, since tbe separation performance of null beam former is too poor･

Tbis thesis bas also contributed on tbe statistical modeling of TFSS･ However,

tbe statistical model for TFSS is a contradictory toplC Since long･ It was an

important study because in the proposed ICA algorithm the objective function is

based on the PDF of tbe TFSS･ We have compared tbe suitability of most widely

used Gaussian and Laplacian distribution functions agalnSt aflexible parametric

GGD function･ Statistically, tbe suitability of GGD function, wi血shape

parameter less than one, as a statistical model for TFSS was found more

aPPrOPrlate･ Further a GGD based approximation of negentropy and its effect on

the separation perfbrmance were investigated to found s叩eriority of tbe GGD

based non-1inear function over the conventional functions. It was also
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investigated how the change in the convergence nature of algorithm from

quadratic to cubic is faster in the case of GGD based non-1inear function that led

to overall faster convergence of the algorithm under血e negentropy

approximation by the GGD based function･

Tbe o血er contribution of tbe thesis was placed in Cbapter-6 where an

MAP estimator for the speech spectral component in DFT domain has been

presented･ Tbe proposed estimator can be applied in different noise slgnals･ It

uses GGD function as aflexible model for the spectral components of both the

noise and speech signals･ Thus the proposed estimator is useful under different

types of noise slgnals such as spiky noise and Gaussian noise slgnals･ It has also

been shown血ow tbe Wiener filter can be derived as the special case of tbe

proposed MAP estimator by imposlng Statistical assumptlOnS Of Wiener filtering

on it･ The proposed MAP estimator was derived with aim to use it as a

post-processlng Stage for the FDICA algorithms･ It has been applied with the

FDICA algoritbm witb assumption tbat tbe one IC pro血ces interference or noise

slgnal for otber and can be cleaned by MAP estimator･ Tbe method was found

effective in improvlng the separation performance of the FDICA algorithm･

The proposed MAP estimator can also be effectively used in speech enhancement

contaminated by non-speech and speech like noise･ However, this requlreS blind

estimation of involved parameters of noise and clean speech signal･ In order to

demark noise only parts from the noISy-SPeeCh signal a VAD algorithm based on

cbaos measure of slgnal by negentropy has been proposed･ Tbe proposed

algorithm is useful and work effectively ln Very low SNR conditions･ Some

experiments on denoISlng SPeeCh signal under spiky and Gaussian noise were
■ ●

also presented･ Tbe proposed MAP estimator is strict MAP estimator because

even the used prlOr mOdels for the clean slgnal are also estimated from the ob

served data.

Future Work

l started to work with a few aims and as an outcome l got a fewer results

with new problems and ideas in plural number･ However, some interesting and
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important issues clouding my space of thought are polnted here for future

researcb activities. The one of tbe important aims of tbe researcbes in blind

methods for speech signal separation is its implementation for artificial audition

systems such as in robot audition and in conversational interface for other

machines. Tbe main burdles standing in血e way are poor separation quality as

we11 as computational load. However, fixed-point FDICA algorithms are

computationally less expensive than tbe other algorithms such as gradient based

algorithms but the separation quality is a bit inferior･ The faster computability of

the fixed-polnt FDICA algorithm is very strong plus point for its implementation

in the real time application system if its separation capacity ln reVerberant

conditions is enhanced too acceptable level･ It can be furtber explored in this

direction･ Tbe separation capacity of algoritbm may be improved by changlng

non-1inear function or by initialization with good values. It has been found tbat

null beam former based initialization of the algorithm gave good quality of

separated signal but for the reverberant conditions null beamformer does not give

good initialization. Tbe natural gradient based FDICA algorithm shows better

separation performance, however, it takes buge amount of iterations and near

convergence tbe rate of convergence becomes sluggish. The combination of

fixed-point FDICA with natural gradient based FDICA_ can be combined

mutu･alistically･ Tbe very slow convergence of natural gradient algoritbm near

optimal solution can be enhanced by switching over to fixed-point FDICA with

initial separation vector learned by natural gradient based algorithm･

T血e otb･er avenue of for future work is in the area of ICA algoritbm. As

we血ave shown how the ICA by negentropy maximization is trapped into

problem due to non-compliance of CLT wbich occurs due to spectral sparseness

of tbe sources･ It can not be stopped to occur and algoritbm has to be robust

agalnSt this. Tbu･s some other method of non-Gaussianization can be used to

find independent components･Aswe have shown that the PDF of TFSS can be

betterl approximated by the GGD and that the mlXlng PrOCeSS increases the

Gaussianlty Of the mixed slgnal･ Accordingly, the shape parameters for the

underlyiI唱PDF also cbanges. In the context of GGD it sbifts towards 2 (for
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Oaussian distribution). Thus an ICA algorithm can be developed by creating

some contrast function as a function of the shape parameter of the underlying

distribution. Such a cost function can be used to reshape the PDF of mixed signal

from more_Gaussian to less Gaussian distribution. Such a cost function can be

developed uslng different distances e･ g･ KLD between the two GGD can be used,

bowever, the relation between s血ape parameter and data points for KLD is

enougb complex･ Tbe other possibility is to use statistical rank of tbe data for the

glVen GGD function･ But the relative suitability of tbese two options, of course

others also, need to be investigated before advanclng in tbis direction･ Such a

method of non-Gaussianization can ,be effective in the reverberant conditions

because its functionlng lS agalnSt the Gaussianization which is also enhanced in

the reverberant conditions due to presence and repeated addition of reflected and

delays components of the slgnal sources･ Since optimization landscape of such

cost function will be based on cbange in s血ape parameter, the problem of CLT

failure may not affect the performance of algorithm･

AIso, it will be not out of place to mention that the post-processlng

tecbnique introduced in previous chapter for speech signal enbancement in

generaland for ICs in particular uses fixed GGD parameters for the TFSS･

However, these parameters are not really fixed over time･ Shape parameter may

be丘Ⅹed to some global value b山scale parameter depends on local variance･ Tbe

fixed parameters may be highly effective in the case of stationary noise but is

rough assumption fbr non-stationary or speech like noise･ Here is血e scope for

further exploration in this direction too･ The algorithm with adaptive parameter

estimation over timeframes may lmPrOVe the enhancement results･
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