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Distributional Approaches to Natural Language

Processing ∗

Daichi Mochihashi

Abstract

Natural language is a complex and compound organization that structures

basic linguistic elements to represent various meanings. Therefore, to understand

the nature of natural language, we need a sophisticated treatment of the basic

elements as well as the insights about how these elements will be structured.

In the words of statistical natural language processing, we need a sophisticated

statistical model of the basic elements, such as words or phrases, to be combined

with the structural modeling such as syntactic parsing or dependency analysis.

Since the basic property of these elements is considered common over the whole

corpora, we need to model their distributional property over the corpora by a

statistical learning approach.

In this dissertation, I focus on the statistical learning approach to the dis-

tributional modeling of basic elements by considering two kinds of distributional

units, that is, static units and dynamic units. Along these two units, I propose

novel treatments of distributional units that are different from the methods used

in natural language processing so far.

In Chapter 2, I consider static units. Static units are the units we know a

priori to be effective for a specific kind of task in hand; for example, documents,

paragraphs, or sentences.

For the treatment of these units, specifically, measuring a distance between

two units, kernel methods have been adopted recently. However, not all the
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natural language processing tasks fall easily into kernelization. In these cases, an

Euclidean distance, known also as a cosine distance, has been used quite often

for many natural language processing tasks, such as information retrieval, text

segmentation, or candidate enumeration in Question Answering, with the tf.idf

feature weighting in a preprocessing stage.

In contrast, this chapter proposes an optimal metric distance in place of the

Euclidean distance from the cluster information we know beforehand as “similar”,

by a semi-supervised learning approach. This metric is computed analytically as

a solution to the quadratic optimization problem that minimizes the distortion of

data distribution in the clusters when measured by the metric distance we wish

to obtain.

Experimental results on the retrieval and clustering task for documents and

sentences showed consistent performance improvements over the Euclidean dis-

tance that has been used so far. As opposed to the similar method recently

proposed in machine learning, this method has an advantage in that it computes

the optimal metric using the whole data at once without any iterative optimiza-

tion.

In Chapter 3, I consider dynamic units. Lately, some probabilistic text models

for words and documents have been proposed. However, all of them model a

text as a bag-of-words, that is, assume a complete exchangeability of words in

a document. While these models have been also applied to context modeling in

a statistical long-distance language modeling recently, that assumption does not

hold true for dynamic context modeling or document modeling with long and

heterogeneous semantic content often met in the actual situation.

This chapter focuses on the context modeling to propose a novel Bayesian

long-distance statistical language model that makes an optimal prediction of next

word based on an online probabilistic inference of appropriate dynamic units of

semantic homogeneity, by an unsupervised learning approach.

First, we view context shift as a latent stochastic process to apply a Mean

shift model known in statistics. This model is essentially a nonlinear HMM that

cannot be decoded by traditional Baum-Welch algorithm or Kalman Filters. For

this purpose, we used a multinomial Particle Filter, a sequential Monte Carlo

method that has been used mainly in signal processing or robotics research, to
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estimate its states and parameters sequentially.

While this model is an extension to a DNA sequence modeling recently pro-

posed by Chen and Lai (2003) in statistics, näıve application to natural language

raises problems as to the extremely large number of symbols (words) and strong

semantic correlations between them. Therefore, we extended a multinomial Par-

ticle Filter by both LDA and DM, Bayesian text models recently proposed, to

incorporate semantic relationships between words and updates hyperparameters

that were assumed to be known and fixed in the original modeling. As a result,

we give two models, MSM-LDA and MSM-DM: the former tracks changes of

mixing distribution of a mixture model in a multinomial topic simplex, and the

latter tracks a unigram distribution directly in a word simplex. They recognize

topic shifts and their rate sequentially in a Bayesian fashion, to make an optimal

prediction of next word by a mixture of different lengths of context sampled by

each particle individually.

Experiments on the standard British National Corpus showed consistent per-

plexity improvements on simple context models that have been used thus far, to

give a Bayesian context model with the lowest perplexity in the current state of

art.

Though this model is a forward predictive language model, it can be ex-

tended in principle using a Monte Carlo forward-backward or to a collection of

documents, obviating a unit of “document” that has been assumed for a näıve

unit of semantic modeling in natural language processing.

Through the proposed methodological sophistications along the two kinds of

units, we expect a natural language processing that deal with distributional and

semantic aspects of language more naturally and flexibly.

Keywords:

Metric Learning, Language Model, Bayesian Learning, Unsupervised Learning,

Sequential Monte Carlo, Time Series Analysis
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Chapter 1

Introduction

Natural language is a compound and complex organization that human have been

developing for communication.

We notice here that the communication through natural language involves

a vast amount of hidden background knowledge behind a specific linguistic ex-

pression just uttered. Because natural language has huge amount of words or

phrasal chunks that have strong semantic correlations but also have subtle im-

portant differences, selecting one of them automatically implies many information

about the other words that were not in use but influenced the selection of that

word. We generally understand linguistic expressions considering whole such in-

formation: thus the description of these background knowledge is indispensable

to understand the nature of natural language.

However, enumerating whole such information by hand is practically impos-

sible because human intervention inevitably leads to subjective decisions and

limited coverage, owing to the large cost of its construction. Moreover, informa-

tive background knowledge is often needed about the new and specific words that

cannot be covered with the human work and static information.

Instead, we can approach to the background knowledge by a statistical in-

ference from corpora, because texts in the corpora will surely reflect these back-

ground knowledge in their generation. In fact, information extracted only from

the statistics of corpora is shown to match well with our intuition of semantic

knowledge (Griffiths and Steyvers, 2002; Landauer and Dumais, 1997). There-

fore, the objective of this research in natural language processing is to make a

3



sophisticated statistical inference of linguistic background knowledge that can be

integrated with the surface analyzes.

From the perspective of learning from corpora, these background knowledge of

words or phrasal chunks, henceforth referred simply as “words,” will be extracted

from their global distribution, that is, usage patterns of words over the whole

corpus because the background knowledge is considered the same and ubiquitous

to some extent.1 Since its property is determined through the global distribu-

tion over the whole data, we call this kind of model of background knowledge

a distributional model. On the other hand, hierarchical or sequential syntactic

structure builds on the local scope of language, such as sentences or phrases, to

organize the information from each word to constitute a complex meaning. Since

its property determines the structure of local scope of language, we call this kind

of model a structural model.

Generally, structural model of sentences or documents builds on the distribu-

tional model of words, though the connection still remains weak in the current

state of art. While “distribution” is partly determined by the units constrained

by the structural model thus the connection is reciprocal, we still note that the

distributional model is more fundamental to natural language and requires careful

modeling efforts. For example, an utterance “Tiger!” or “No.” has no syntactic

structure but has apparent meanings; moreover, complex structural meanings are

sometimes crystallized into a single word such as “unthinkable” (Sapir, 1921).

Therefore, distributional models must be explored first to be combined with

the structural models to make themselves adequate to represent meanings. The

relationship between the two models are shown graphically in Figure 1.1. Two

models are complementary devices to represent meanings.

Learning in Distributional models The advent of extensive computational

resources in 1990s opened up a statistical learning approach that enabled a robust

and complex modeling of natural language phenomena.

Particularly, we saw intensive explorations of structural models by statistical

1Of course, these background knowledge is different from person to person because of his

subjective view of language; however, this difference will never be complete that prevents effec-

tive communication. Here, we assume that such personal differences are concentrated on the

difference of the corpus that he will encounter.
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CHAPTER 1. INTRODUCTION

Structural model

(local)
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��	

Meanings

Figure 1.1. Distributional and Structural Models to Represent Meanings.

approaches, such as syntactic parsing, dependency analysis, phrase chunking,

and labeling problems like part-of-speech tagging as a fundamental technique on

which structural models build themselves.

However, statistical modeling of distributional models is yet in its dawn. In

fact, structural modelings mentioned above often use a deterministic approxima-

tions of distributional properties using such as dictionaries, thesauri, or even a

mere exact matching of words. Besides the problem of ingenious combination of

two models, we notice that the distributional models still have näıve and intuitive

assumptions that require more sophistication.

For example, LSI (Deerwester et al., 1990), PLSI (Hofmann, 1999), and LDA

(Blei et al., 2001) are considered such distributional approaches. However, they

all use a simple unit of “document” and make an assumption the the words were

generated independent and identically distributed (i.i.d.) given a document; for

long enough documents that we often encounter, apparently this assumption is

not always true. Moreover, the space where documents and words are embedded

in these models is often assumed to be isotropic and orthogonal. Of course this

is, again, a simplifying assumption that is to be investigated.

Because of such deficiencies of current distributional models, their approx-

imation error will influence structural models when combined and the other

upper-layered natural language processing tasks such as text classification, in-

formation retrieval, or candidates generation in Question Answering, that utilize

5



1.1. GOAL OF THIS DISSERTATION

distributional models often bypassing computationally intensive structural mod-

els. Therefore, as well as structural models, distributional models require more

elaboration that includes less assumptions and reflect data distributions more

precisely.

1.1. Goal of this dissertation

For this purpose, this dissertation first notices that there are two kinds of semantic

units in distributional models: (a) static units and (b) dynamic units; and propose

refinements along these units.

Static units are the units for a specified task where i.i.d. property within

the unit is given a priori; for example, documents, paragraphs, or sentences

suitable for the task at hand. Since the units are already given, here we will find

a more appropriate semantic treatment of these units: specifically, an effective

comparison method of two units beyond the conventional one combining with our

prior knowledge of “similarity” as a semi-supervised learning.

Dynamic units are the units that are recognized a posteriori as semantically

coherent through a strict statistical inference. This kind of units are considered to

be implicitly embedded in static units described above, though they are difficult

to find by a merely superficial analysis and requires intensive modeling efforts. I

attack this problem by introducing an explicit statistical model of natural lan-

guage that generates heterogeneous semantic content. I solve an online inference

problem to find the hidden units of partial exchangeability in the long-distance

language modeling framework to make an optimal prediction based on these units

by an unsupervised learning.

1.2. Technical Contributions and Outline of

Dissertation

Contributions and the outline of this dissertation are therefore as follows.

In Chapter 2, some preliminary constructions are discussed that are necessary

to understand the proposed method in Chapter 4.

In Chapter 3, static units are considered. Static units are the units we know a

priori to be effective for a specific kind of task in hand; for example, documents,

6



CHAPTER 1. INTRODUCTION

paragraphs, or sentences.

For the treatment of these units, specifically, measuring a distance between

two units, kernel methods have been adopted recently. However, not all the

natural language processing tasks fall easily into kernelization. In these cases, an

Euclidean distance, known also as a cosine distance, has been used quite often

for many natural language processing tasks, such as information retrieval, text

segmentation, or candidate enumeration in Question Answering, with the tf.idf

feature weighting in a preprocessing stage.

In contrast, this chapter proposes an optimal metric distance in place of the

Euclidean distance from the cluster information we know beforehand as “similar”,

by a semi-supervised learning approach. This metric is computed analytically as

a solution to the quadratic optimization problem that minimizes the distortion of

data distribution in the clusters when measured by the metric distance we wish

to obtain.

Experimental results on the retrieval and clustering task for documents and

sentences showed consistent performance improvements over the Euclidean dis-

tance that has been used so far. As opposed to the similar method recently

proposed in machine learning, this method has an advantage in that it computes

the optimal metric using the whole data at once without any iterative optimiza-

tion.

In Chapter 4, dynamic units are considered. Lately, some probabilistic text

models for words and documents have been proposed. However, all of them model

a text as a bag-of-words, that is, assume a complete exchangeability of words in

a document. While these models have been also applied to context modeling in

a statistical long-distance language modeling recently, that assumption does not

hold true for dynamic context modeling or document modeling with long and

heterogeneous semantic content often met in the actual situation.

This chapter focuses on the context modeling to propose a novel Bayesian

long-distance statistical language model that makes an optimal prediction of next

word based on an online probabilistic inference of appropriate dynamic units of

semantic homogeneity, by an unsupervised learning approach.

First, we view context shift as a latent stochastic process to apply a Mean

shift model known in statistics. This model is essentially a nonlinear HMM that

7



1.2. TECHNICAL CONTRIBUTIONS AND OUTLINE OF

DISSERTATION

cannot be decoded by traditional Baum-Welch algorithm or Kalman Filters. For

this purpose, we used a multinomial Particle Filter, a sequential Monte Carlo

method that has been used mainly in signal processing or robotics research, to

estimate its states and parameters sequentially.

While this model is an extension to a DNA sequence modeling recently pro-

posed by Chen and Lai (2003) in statistics, näıve application to natural language

raises problems as to the extremely large number of symbols (words) and strong

semantic correlations between them. Therefore, we extended a multinomial Par-

ticle Filter by both LDA and DM, Bayesian text models recently proposed, to

incorporate semantic relationships between words and updates hyperparameters

that were assumed to be known and fixed in the original modeling. As a result,

we give two models, MSM-LDA and MSM-DM: the former tracks changes of

mixing distribution of a mixture model in a multinomial topic simplex, and the

latter tracks a unigram distribution directly in a word simplex. They recognize

topic shifts and their rate sequentially in a Bayesian fashion, to make an optimal

prediction of next word by a mixture of different lengths of context sampled by

each particle individually.

Experiments on the standard British National Corpus showed consistent per-

plexity improvements on simple context models that have been used thus far, to

give a Bayesian context model with the lowest perplexity in the current state of

art.

Though this model is a forward predictive language model, it can be ex-

tended in principle using a Monte Carlo forward-backward or to a collection of

documents, obviating a unit of “document” that has been assumed for a näıve

unit of semantic modeling in natural language processing.

8



Chapter 2

Preliminaries

Before proceeding to the actual approaches, this chapter provides some prelimi-

nary theoretical constructions that are closely connected to the contents of Chap-

ter 4. This chapter is irrelevant for understanding Chapter 3; thus readers in haste

may skip this chapter and return here again when necessary. The outline of this

chapter is as follows.

First, we introduce the statistical language modeling framework in natural

language processing, with a special emphasis on the Bayesian n-gram smoothing

method that is closely related to the proposed method of context estimation in

Chapter 4.

Second, we introduce three probabilistic text modelings, PLSI, LDA, and DM,

and their parameter estimation schemes that lay the groundwork for our extension

of multinomial filtering with semantic correlations and also used by the online

hyperparameter updates of the proposed filtering algorithm.

Third, we briefly describe the Particle Filter, a sequential Monte Carlo method

for nonlinear Bayesian estimation. Using the general theory of Particle Filter, we

derive an online inference algorithm of context modeling in Chapter 4.

2.1. Statistical Language Modeling

Statistical language model in natural language processing is a general model that

gives a joint probability p(w) of the word sequence w = w1w2 · · ·wT .

9



2.1. STATISTICAL LANGUAGE MODELING

Here, we note that the actual definition of w is arbitrary: w may be a phrase,

sentence, documents, or even all of the huge sequence of training text stream.

Statistical language model is useful many situation; for example, speech recog-

nition, machine translation and information retrieval all utilize statistical lan-

guage models. Moreover, it is also necessary for human interfaces or OCR, and

has a close relationship to Shannon games, information theory and text com-

pression. Therefore, statistical language model constitutes a basic foundation in

natural language processing.

Approaches to statistical language model is practically tackled by two ap-

proaches: conditional modelings and “whole sentence” approaches.

Conditional modeling decomposes p(w) = p(w1 · · ·wT ) using Bayes’ formula:

p(w1 · · ·wt) =
T∏

t=1

p(wt|wt−1wt−2 · · ·w1) (2.1)

'
T∏

t=1

p(wt|wt−1 · · ·wt−(n−1)
︸ ︷︷ ︸

(n−1) words

) (2.2)

=







∏T
t=1 p(wt|wt−1, wt−2) : Trigram (n = 3)

∏T
t=1 p(wt|wt−1) : Bigram (n = 2)

∏T
t=1 p(wt) : Unigram (n = 1).

(2.3)

In expression (2.2), we make a simplifying assumption that the appearance of

a word only depends on its (n−1) precedents: with n = 3, 2, 1 frequently adopted,

this model is called a trigram, bigram, and unigram models, respectively. On the

other hand, “whole sentence” methods model p(w) directly often by a maximum

entropy (log-linear) models (Rosenfeld, 1996; Rosenfeld, 1997). However, these

methods usually have dependence of conditional models, namely, n-grams, that

provides a basic model to be further improved by the maximum entropy approach.

When we constrain ourselves to the n-gram models that is related to Chapter

4, the main difficulty of n-gram models is widely acknowledged to lie in the data

sparseness problem to be explained below.

10



CHAPTER 2. PRELIMINARIES

2.1.1 N-gram Model Smoothing

Let us consider only the bigrams for simplicity in the following arguments. When

we estimate the probability p(wt|wt−1), the maximum likelihood estimate

p̂(wt|wt−1) =
n(wt−1wt)

n(wt−1)
(2.4)

where n(x) means the count of occurrence of a sequence x, makes most of the

bigram probabilities zero or unreliable estimates. Since the possible space of

bigrams has a quadratic order of the number of the lexicon, that usually amounts

to some hundreds of millions at least, hat often prevents the näıve use of maximum

likelihood estimate. Therefore, some ingenious ways to smoothing is necessary

for n-gram modeling.

This problem of n-gram smoothing is widely known and has been extensively

investigated in natural language processing and speech recognition research. Cur-

rently, two kinds of smoothing methods are widely accepted and used: Good-

Turing smoothing (Good, 1953) and Kneser-Ney smoothing (Kneser and Ney,

1995). They both use some binning of n-grams based on its frequency to pro-

vide an intricate but better smoothing estimate than the maximum likelihood

estimate. However, the binning of n-grams used by these algorithms inevitably

discards some individual information of n-grams except for the binned frequencies

to leave some room for improvement.

2.1.2 Dirichlet Smoothing of N-gram

As opposed to these methods of binning, MacKay (1994) proposed a more theo-

retically sound smoothing formula by a hierarchical Bayesian method. Contrary

to the other smoothing algorithms that make a point estimate of n-gram proba-

bilities, MacKay introduced a probabilistic estimate of the n-gram as a posterior

Dirichlet distribution

p( · |wt−1) ∼ Dir(α+ n(wt−1 · )) , (2.5)

where α is a hyperparameter of the prior Dirichlet distribution that works as a

smoothing term for bigrams and can be optimized by a Newton-Raphson itera-

tion.

11
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Under this model, posterior estimate of the bigram probability is obtained by

taking an expectation of (2.5) that yields

E[p(wt|wt−1)] =
α(wt) + n(wt−1wt)

∑

w(α(w) + n(wt−1w))
(2.6)

=
n(wt−1)

α0 + n(wt−1)
p̂(wt|wt−1) +

α0

α0 + n(wt−1)
α(wt) (2.7)

(α0 =
∑

w

α(w)) .

Equation (2.7) shows that this Bayesian estimate is also considered an adap-

tive linear interpolation between the maximum likelihood estimate and the cor-

responding hyperparameter element that means a ‘prior count’ of Dirichlet dis-

tribution.

Although this estimate has not been widely used because of its theoretical

complexity of derivation of (2.6) and computational requirements of hyperparam-

eter optimization, some recent research show that this estimate really improves

former non-Bayesian modelings that have been adopted so far (Watanabe and

Hori, 2003; Chen and Goodman, 1996).

Recently, Dirichlet Mixture (Yamamoto et al., 2003) has been proposed as a

text modeling and it can be regarded as a natural extension of Dirichlet smoothing

using multiple hyperparameters to weigh them adaptively, as we will show in the

next section of text modelings.

2.2. Latent Variable Text Modeling

Lately, some probabilistic models for words and documents have been proposed.

While they all use a simple unigram assumption on word appearances, rather

they focus on a semantic aspects of words and documents, that is, modeling

probabilistic correlations between words that appeared in the same document.

Since we combine these models with dynamic methods in this dissertation, below

we describe three models, PLSI, LDA, and DM in this order, and their parameter

estimation algorithms that will be exploited in Chapter 4.

Before proceeding to actual modelings and parameter estimation formulae, we

introduce some common notations here to facilitate easy understanding because

12



CHAPTER 2. PRELIMINARIES

they have a common foundation (and in fact, a common training data structure

in practice) of “bag of words” assumption.

Notation

w, v

A word in the lexicon 1 . . . V .

z, t, m

Latent topic variables in 1 . . .M .

d

Document index (in PLSI). Range is 1 . . .D.

p

Multinomial unigram distribution which is itself considered as a random

variable of V dimensions.

λ, θ

Multinomial mixture distribution on M -dimensional latent topic variables,

2.2.1 Probabilistic Latent Semantic Indexing (PLSI)

Probabilistic Latent Semantic Indexing (PLSI) (Hofmann, 1999) is a innovative

probabilistic text model proposed in Information Retrieval to overcome inherent

vector space assumption (Papadimitriou et al., 1998) of Latent Semantic Indexing

(Deerwester et al., 1990) to render it into a solid statistical model of texts.

In fact, PLSI is not a strict Bayesian text model because it is based on a

maximum likelihood estimate, and lacks a generative property as to new texts.

However, it is important because it laid a probabilistic foundation for more strict

Bayesian text models as LDA and DM, which we will describe next.

PLSI assumes a following “generative” model for a document w = w1 . . . wN

and pseudo document index d (although these notations somewhat differs from

original introduction):

1. Draw d ∼ p(d).

2. For n = 1 . . . N ,

1. Draw z ∼ p(z|d).

2. Draw wn ∼ p(w|z).

13
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d z w

D
N

(a) Original model

d z w

D
N

(b) Equivalent model

Figure 2.1. Graphical Model of PLSI.

This process corresponds to a graphical model shown in Figure 2.1(a).

Mathematically, this process amounts to a pair of equations

p(d,w) = p(d)p(w|d) (2.8)

= p(d)
∏

n

p(wn|d) (2.9)

= p(d)
∏

n

∑

z

p(wn|d)p(z|d), (2.10)

where the number of latent variables M is assumed known.

When we are given a corpus W = w1 . . .wD and an index set D = 1 . . .D of

pseudo documents. the probability of W and D under PLSI is given as

p(W,D) =
∏

d

p(d,wd) (2.11)

=
∏

d

p(d)
∏

n

∑

z

p(wn|z)p(z|d). (2.12)

In practice, to avoid ancillary index probability p(d), (2.10) is rewritten into

equivalent form

p(d, w) =
∑

z

p(z)p(d|z)p(w|z) , (2.13)

which has a modified graphical model in Figure 2.1(b).

Under this equivalent form, the probability of corpus W and ancillary index

14
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set D is

p(W,D) =
∏

d

p(d,wd) (2.14)

=
∏

d

∏

n

p(d, wn) (2.15)

=
∏

d

∏

n

∑

z

p(z)p(d|z)p(wn|z) . (2.16)

That is, in log-likelihood form

log p(W,D) =
∑

d

∑

n

log

(
∑

z

p(z)p(d|z)p(wn|z)

)

. (2.17)

2.2.1.1 Parameter Estimation of PLSI

Maximization of log p(W,D) with respect to PLSI parameters p(z), p(d|z), p(w|z)

can be carried out by a standard procedure of EM algorithm.

Let us define a set of true latent variables Z for each word in each document,

and define a free energy F as

F =
〈

log p(W,D, Z)
〉

p(Z|W,D)
(2.18)

=
∑

d

∑

n

[
∑

z

p(zdn|d, wdn) [log p(zdn) + log p(d|zdn) + log p(wdn|zdn)]

]

. (2.19)

Then, by introducing Lagrangian λ to solve for p(z), for example,

δ

δp(z)

[

F + λ

(
∑

z

p(z) − 1

)]

= 0, (2.20)

we get

p(z) ∝
∑

d

∑

n

p(zdn|d, wdn) =
∑

d

∑

w

n(d, w)p(z|d, w) (2.21)

where n(d, w) denotes the number of occurrences word w in a document d.

For other parameters p(d|z), p(w|z) we can conduct the same procedure to

get an EM algorithm in Figure 2.2 to estimate p(z), p(d|z) and p(w|z) iteratively.

However, PLSI Language Model has a severe overfitting problem especially

when applied to a small training data, that is, näıve use of the EM algorithm in

Figure 2.2 usually falls into a overfitting of its parameters. To avoid this, Hofmann

(1999) proposed a Tempering EM approach where an inverse temparature β is
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E step

p(z|d, w) ∝ p(z)p(d|z)p(w|z) (2.22)

M step

p(w|z) ∝
∑

d

n(d, w)p(z|d, w) (2.23)

p(d|z) ∝
∑

z

∑

w

n(d, w)p(z|d, w) (2.24)

p(z) ∝
∑

d

∑

w

n(d, w)p(z|d, w) (2.25)

Figure 2.2. EM algorithm for PLSI.

introduced and set it gradually smaller (higher temparature) at a performance

degradation on a held out set, and new β is used thereafter to avoid overfitting.

Nevertheless, this procedure requires additional held out set besides training set,

and moreover, there is no theoretically verified way as to the size of held out data,

and a strategy to decrease β gradually.

Latent Dirichlet Allocation is such a probablistic text model that avoids the

overfitting problems mentioned above by a natural Bayesian regularization, and

has a further strict generative property as opposed to PLSI which requires a

pseudo index set D.

2.2.2 Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (Blei et al., 2001; Blei et al., 2003) is a Bayesian

extension of PLSI, and can be viewed as a strict generative model of corpora.

LDA also assumes latent topic variables z ∈ Z = {1 . . .M} to hypothesize

that the words w = w1 . . . wN in a document have been generated by a mixture

of unigrams β = {p(w|z)} (z ∈ Z) with a multinomial mixture distribution θ on

Z, that is,

p(w|β, θ) =
∏

n

∑

m

p(wn|zm)θm =
∏

n

∑

m

βmnθm (2.26)

where βnm = p(wn|m).
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β

α θ z wN
D

(a) Original

N
D

ψ

z w

γ

θ

(b) Variational Approximation

Figure 2.3. Graphical Models of LDA.

In LDA, multinomial θ itself is regarded as a random variable and endowed a

prior Dirichlet distribution p(θ) = Dir(θ|α).

Therefore, the probability of w given LDA parameters α,β is

p(w|α,β) =
∫

p(θ|α)p(w|θ,β)dθ (2.27)

=
∫

p(θ|α)
∏

n

∑

m

p(wn|zm)θmdθ (2.28)

=
Γ(
∑

m αm)
∏

z Γ(αm)

∫
(
∏

m

θαm−1
m

)(
∏

n

∑

m

∏

v

(θvβmv)
wv

n

)

dθ. (2.29)

where wv
n is an index variable that takes a value 1 when wn = v else 0. In other

words, LDA assumes a following process to generate w = w1 . . . wN :

1. Draw θ ∼ Dir(α).

2. For n = 1 . . . N ,

1. Draw z ∼ Mult(θ).

2. Draw wn ∼ Mult(βz).

This process has a graphical model shown in Figure 2.3(a).

Because for each document w there is a latent multinomial θ that is estimated

stochastically as a Dirichlet distribution p(θ|w) = Dir(θ|α), as a posterior view

LDA in fact “allocates” a Dirichlet distribution Dir(θ|α) to explain its generative

process from the latent topics.1

1This “allocation” is actually executed through a VB-EM algorithm which will be explained

in section 2.2.2.1.
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2.2.2.1 Parameter Estimation of LDA

For the corpus W = w1, . . . ,wD, LDA assumes exchangeability of each document

wd (d = 1 . . .D) 2 to give a joint probability

p(W |α,β) =
D∏

d=1

p(wd|α,β) (2.30)

or equivalently,

log p(W |α,β) =
D∑

d=1

log p(wd|α,β) . (2.31)

Thus we want to maximize the likelihood (2.31) with respect to α and β,

where p(wd|α,β) is given by (2.29).

However, exact estimation of the parameter α and β according to (2.29) and

(2.31) is intractable as opposed to PLSI because of the coupling of the latent

variables θ and z as shown in Figure 2.3(a).

One of the strategy to alleviate this problem is to use a variational approxi-

mation (Jordan et al., 1999). Using Jensen’s inequality, the likelihood (2.31) is

lower bounded by a variational distribution q as follows.

log p(W |α,β) =
∑

d

log p(wd|α, β) , (2.32)

log p(w|α,β) =
∫
∑

z

log p(w, z, θ|α,β) dθ (2.33)

=
∫
∑

z

log q(z, θ|w,γ,ψ)
p(w, z, θ|α,β)

q(z, θ|w,γ,ψ)
dθ (2.34)

≥
∫
∑

z

q(z, θ|w,γ,ψ) log
p(w, z, θ|α,β)

q(z, θ|w,γ,ψ)
dθ (2.35)

=
∫
∑

z

q(z, θ|w,γ,ψ)

[

log p(θ|α) +
∑

n

log p(zn|θ) (2.36)

+
∑

n

log p(wn|zn,β)

]

dθ ,

(2.37)

2This i.i.d. assumption has been relaxed recently through an introduction of hyperprior to

hyperparameter α (Yu et al., 2005); however, this extension is not our current concern, and we

do not persue it here.

18



CHAPTER 2. PRELIMINARIES

where q = q(z, θ|w,γ,ψ) is a variational approximation of p(w, z, θ|α,β).3

When we assume a factorial decomposition of q, dropping a connection between

θ and z as graphically shown in Figure 2.3(b), as

q(z, θ|w,γ,ψ) = q(θ|γ)
∏

n

q(zn|wn,ψ) , (2.38)

the variational likelihood (2.37) becomes

log p(w|α,β) ≥
〈

log p(θ|α)
〉

q(θ|γ)
+
∑

n

〈

log p(zn|θ)
〉

q(θ|γ), q(zn|wn,ψ)

+
∑

n

〈

log p(wn|zn, β)
〉

q(zn|wn,ψ)

+
〈

log q(θ|γ)
〉

q(θ|γ)
+
∑

n

〈

log q(zn|wn,ψ)
〉

q(zn|wn,ψ)
(2.39)

Thus we come to maximize the variational lower bound (2.39) with respect

to the parameters γ,ψ and afterwards α,β. Below, we describe the parameter

reestimation formulae of γ,ψ,β, and α, in this order.

(a) Maximization w.r.t. γ For a document w, we collect the terms contain-

ing γi from the variational likelihood:

L[γi] =
∑

i

(αi − 1)
[

Ψ(γi) − Ψ(
∑

i

γi)
]

+
∑

n

∑

i

ψni

[

Ψ(γi) − Ψ(
∑

i

γi)
]

− log Γ(
∑

i

γi) + log Γ(γi) −
∑

i

(γi − 1)
[

Ψ(γi) − Ψ(
∑

i

γi)
]

(2.40)

=
∑

i

[

Ψ(γi) − Ψ(
∑

i

γi)
][

αi − γi +
∑

n

ψni

]

− log Γ(
∑

i

γi) + log Γ(γi) .

(2.41)

Therefore, by differenciation

∂L

∂γi

= 0

⇐⇒ Ψ′(γi)
[

αi − γi +
∑

n

ψni

]

= Ψ′(
∑

i

γi)
∑

i

[

αi − γi +
∑

n

ψni

]

(2.42)

∴ γi = αi +
∑

n

ψni . � (2.43)

3Note that w is given for both p and q: therefore, both functions are the distributions over

the latent variables z and θ, given the respective parameters α,β and γ,ψ.
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VB-E step:

For a document d = 1 . . .D,

For a word n = 1 . . .Nd,

For a latent class i = 1 . . .M ,

ψdni ∝ p(wdn|zi) exp
(

Ψ(γi)
)

.

VB-M step:

p(v|zi) ∝
∑

d

∑

n

wv
dnψdni .

Figure 2.4. VB-EM algorithm for a document in LDA.

(b) Maximization w.r.t. ψ Similarly, collecting terms containing ψni and

adding a Lagrange multiplier λ gives

L[ψni] = ψni

[

Ψ(γi)−Ψ(
∑

i

γi)
]

+ψni log βni−ψni logψni +λ

(
∑

n

ψni − 1

)

(2.44)

By differenciation,

∂L

∂ψni
= Ψ(γi) − Ψ(

∑

i

γi) + log βni − (logψni + 1) + λ = 0 (2.45)

∴ ψni ∝ βni exp
[

Ψ(γi) − Ψ(
∑

i

γi)
]

(2.46)

∝ βni exp
[

Ψ(γi)
]

. � (2.47)

Since the parameter estimation formulae for γ and ψ are intertwined, actual

maximization is conducted via a Variational Bayes EM (VB-EM) algorithm of

Figure 2.4.

(c) Maximization w.r.t. β For a single document w, the likelihood term

that contains β is

L[βvi](w) =
∑

n

∑

v

∑

i

wv
nψvi log βvi . (2.48)

Therefore, joint likelihood term containing β is

L[βvi] =
∑

d

∑

v

∑

i

wv
dnψdni log βvi + λ

(∑

v

βvi − 1
)

, (2.49)
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giving

∂L

∂βvi
=
∑

d

∑

n

∑

v

wv
dn

ψdni

βvi
+ λ = 0 (2.50)

∴ βvi ∝
∑

d

∑

n

∑

v

wv
dnψdni . � (2.51)

(d) Maximization w.r.t. α

〈log p(θ|α)〉q(θ|w,γ) (2.52)

=
∫
(

log
Γ(α0)
∏

i Γ(αi)

∏

i

θαi−1
i

)

·
Γ(γ0)
∏

i Γ(γi)

∏

i

θγi−1
i dθ (2.53)

= log Γ(α0) −
∑

i

log Γ(αi) +
∫
∑

i

(αi−1) log θi ·
Γ(γ0)
∏

i Γ(γi)

∏

i

θγi−1
i dθ (2.54)

= log Γ(α0) −
∑

i

log Γ(αi) +
∑

i

(αi−1){Ψ(γi) − Ψ(γ0)} (2.55)

≡ Lαd
. (2.56)

Likelihood term w.r.t. α to maximize is

Lα =
∑

d

Lαd
(2.57)

=
∑

d

[

log Γ(α0) −
∑

i

log Γ(αi) +
∑

i

(αi−1){Ψ(γdi) − Ψ(γd0)}

]

(2.58)

to get

∂Lα

∂Lαk

= M (Ψ(α0) − Ψ(αk)) +
∑

d

(Ψ(γdk) − Ψ(γd0)) (2.59)

∂2Lα

∂αk∂αl

=







M(Ψ′(α0) − Ψ′(αk)) (k = l)

MΨ′(α0) (k 6= l)
(2.60)

Therefore, the Hessian H about α is written as

H = M

[

diag(−Ψ′(α)) + 1Ψ′(
∑

i

αi)1
T

]

. (2.61)

Because this Hessian H has a special form H = diag(h) + 1z1T , linear

order Newton-Raphson iteration exists to estimate H efficiently (Blei et al.,

2003)(Minka, 2000a).
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z wN
D

(a) Unigram Mixture (UM)

z wN
D

p

α

(b) Dirichlet Mixture (DM)

Figure 2.5. Graphical model of UM and DM.

2.2.3 Dirichlet Mixture (DM)

Dirichlet Mixture (Yamamoto et al., 2003) is a novel probabilistic text model that

is reported to have the lowest perplexity when being used as a context modeling.

DM is also a nonparametric mixture model that have ‘topic’ components;

however, as opposed to LDA and PLSI, each mixture component covers all the

word simplex as a prior Dirichlet distribution of multinomial unigram distribution

of words. Therefore, DM is able to model all region of the word simplex (i.e.

multinomial manifold) which is necessary for a flexible modeling of contextual

distribution.

Specifically, DM assumes a following generative model for a document w =

w1 . . . wN :

1. Draw m ∼ Mult(λ).

2. For n = 1 . . . N ,

1. Draw p ∼ Dir(αm)

2. Draw wn ∼ Mult(p).

where p is a V -dimensional unigram distribution and λ, α1 . . .αM =α are M -

dimensional multinomial and V -dimensional Dirichlet parameters, respectively.

This model is considered as a Bayesian extension of the Unigram Mixture (Nigam

et al., 2000) and has a graphical model shown in Figure 2.5.

Mathematically, probability of the corpus W = w1 . . .wD given the DM pa-
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rameters λ,αM
1 is

p(W|λ,α) =
D∏

d=1

p(wd|λ,α)

=
D∏

d=1

∫

p(wd|p)
M∑

m=1

λmDir(p|αm)dp

=
D∏

d=1

[
M∑

m=1

λm
Γ(
∑

v αmv)

Γ(
∑

v αmv+
∑

v ndv)

V∏

v=1

Γ(αmv+ndv)

Γ(αmv)

]

, (2.62)

where ndv is the number of occurrences of word v in a document d. Parameters

λ, α1 . . .αM can be iteratively estimated by a combination of EM algorithm and

a Newton-Raphson method, which is a straight extension to the estimation of

Polya mixture (Minka, 2000b).

2.2.3.1 Parameter Estimation of Dirichlet Mixture

As we derived above, the probability of wi given DM parameters λ,α is

p(wi|λ,α) =
M∑

m=1

λm
Γ(αm0)

Γ(αm0 + ni)

V∏

v=1

Γ(αmv + niv)

Γ(αmv)
. (2.63)

Therefore, the whole probability that we want to maximize is

L(W|λ,α) = log p(W|λ,α) =
∑

d

log p(wd|λ,α). (2.64)

This maximization can be done through an EM algorithm. Let the true that

generated wi be zi, and the set of zi (i = 1 .. D) be Z. We let pim = p(zi =

m|wi,λ,α). Then, by following a standard EM procedure, we must maximize

F =
∑

i

〈

log p(W, Z|λ,α)
〉

p(Z|W,λ,α)
(2.65)

=
∑

i

∑

m

pim log p(wi, zi = m|λ,α) (2.66)

=
∑

i

∑

m

pim log

[

λm
Γ(αm0)

Γ(αm0+ni)

∏

v

Γ(αmv+niv)

Γ(αmv)

]

(2.67)

=
∑

i

∑

m

pim log λm

︸ ︷︷ ︸

(a)

+
∑

i

∑

m

pim log

[

Γ(αm0)

Γ(αm0+ni)

∏

v

Γ(αmv+niv)

Γ(αmv)

]

︸ ︷︷ ︸

(b)

(2.68)
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Let the first and second term of (2.68) be (a) and (b), respectively. Therefore,

it is sufficient to maximize (a) and (b) iteratively in turn.

(a) Maximization w.r.t. λ To maximize F with respect to λ, we introduce

a Lagrangian µ to differenciate it as

∂

∂λm

[

(a) + µ

(
∑

m

λm − 1

)]

= 0 (2.69)

to get
∑

i

pim

λm
+ µ = 0. (2.70)

Therefore,

λm ∝
∑

i

pim =
∑

i

p(zi =m|wi,λ,α) (2.71)

(b) Maximization w.r.t. α Let (b) be L(α). Here, for efficiency we approx-

imate L(α) by a LOO (leave-one-out) approximation (Appendix A) as

L(α) =
∑

i

∑

m

pim log

[

Γ(αm0)

Γ(αm0+ni)

∏

v

Γ(αmv+niv)

Γ(αmv)

]

(2.72)

'
∑

i

∑

m

pim

∑

v

niv log
(
αmv + niv − 1

αm0 + ni − 1

)

(2.73)

=
∑

i

∑

m

pim

∑

v

niv log(αmv + niv − 1) −
∑

i

∑

m

pimni log(αm0 + ni − 1)

(2.74)

Here, we introduce two bounds about log(x+ n) and log(x):

log(x+ n) = log(q ·
x

q
+ (1 − q) ·

n

1 − q
) (2.75)

≥ q log x + (1 − q) logn−H(q) (2.76)

log x = log(x0) +
x− x0

x0

− O(x2
0) (2.77)

≤ ax− 1 − log a , (2.78)

where H(x) is an entropy function H(x) = x log x + (1 − x) log(1 − x), and

q = x/(x + n), a = 1/x. Proof is found in Appendix B.
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Using these bounds, we get

∑

i

∑

m

pim

∑

v

niv log(αmv + niv − 1) −
∑

i

∑

m

pimni log(αm0 + ni − 1) (2.79)

≥
∑

i

∑

m

pim

∑

v

niv

[

qiv logαmv + (1 − qiv) log(niv − 1) −H(qiv)
]

−
∑

i

∑

m

pimni

[

ai(αm0 + ni − 1) − 1 − log ai

]

(2.80)

=
∑

i

∑

m

pim

∑

v

nivqiv logαmv −
∑

i

∑

m

pimniai

(
∑

v

αmv + ni − 1

)

+ (const.)

(2.81)
≡ f(α).

Therefore, by differenciating f(α) w.r.t. αmv as

∂f(α)

∂αmv

=

∑

i pimnivqiv
αmv

−
∑

i

pimniai = 0, (2.82)

we get

αmv =

∑

i pimniv
αmv

αmv+niv−1
∑

i pim
ni

αm0+ni−1

(2.83)

=

∑

i pim
niv

αmv+niv−1
∑

i pim
ni

αm0+ni−1

· αmv. (2.84)

EM-Newton algorithm of DM

Finally, we need a calculation of pim = p(zi =m|wi,λ,α).

In fact,

pim = p(zi =m|wi,λ,α) (2.85)

∝ p(zi =m,wi|λ,α) (2.86)

= p(wi|zi =m,λ,α)p(zi =m|λ,α) (2.87)

= λm ·
Γ(αm0)

Γ(αm0 + ni)

∏

v

Γ(αmv + niv)

Γ(αmv)
(2.88)
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E step: Calculate pim by (2.89).

M step: λm ∝
∑

i pim.

For m = 1 . . .M ,

Maximize αm given λ and pim by (2.84).

Figure 2.6. EM-Newton algorithm of DM.

Therefore, we get

pim =

(

λm ·
Γ(αm0)

Γ(αm0 + ni)

∏

v

Γ(αmv + niv)

Γ(αmv)

)
/

∑

m

(

λm ·
Γ(αm0)

Γ(αm0 + ni)

∏

v

Γ(αmv + niv)

Γ(αmv)

)

. (2.89)

With this formula, we obtain a final EM-Newton algorithm in Figure 2.6.

2.3. Particle Filter

Particle Filter (also known as a sequential Monte Carlo method (SMC)) (Doucet

et al., 2001) is a Bayesian filtering algorithm to conduct a Monte Carlo method

sequentially.

The main advantage of SMC is that it can accurately track any nonlinear dy-

namics beyond Normal distributions and discrete distributions where traditional

Kalman filters and discrete HMMs have been applied respectively. Although it

has been used mainly in signal processing or robotics research lately with an in-

creasing computational resources, thanks to its nonparametric structure it can

be applied in principle to the natural language and Dirichlet distributions that

we treat in this dissertation.

Below, we briefly prepare the general theory of SMC that will be used in

Chapter 4.

Importance Sampling and Sequential Importance Sampling SMC can

be considered as an extension of Importance Sampling (for example, (Gilks et al.,

1996)), one of the basic algorithm of Monte Carlo methods. Generally, Impor-

tance Sampling is used to approximate an intractable integral often met in the
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Bayesian expectation E[f(x)] =
∫

p(x)f(x)dx of the function f(x) of a random

variable x, by a sampling as

E[f(x)] =
∫

p(x)f(x)dx (2.90)

=
∫

q(x)
p(x)

q(x)
f(x)dx (2.91)

'
1

N

N∑

i=1

p(x(i))

q(x(i))
f(x(i)) (x(i) ∼ q(x)) (2.92)

=
N∑

i=1

w(x(i))f(x(i)) ,

(

w(x(i)) =
1

N

p(x(i))

q(x(i))

)

(2.93)

where q(x) is called a proposal distribution that samples easier than p(x).

Equation (2.93) means that we can obtain E[f(x)] from the N Monte Carlo

samples x(i) ∼ q(x) (i = 1 . . . N), weighted accordingly by w(x(i)).

SMC is an extension of Importance Sampling to the time series of random

variables XT = x1 · · ·xT .

SMC assumes the following state space model for XT and observations YT =

y1 · · ·yT according to XT :






xt ∼ p(xt|xt−1) (transition equation)

yt ∼ p(yt|xt) (observation equation)
(2.94)

Equations in (2.94) are called a transition equation and an observation equa-

tion, respectively.

Generic Particle Filter algorithm Assuming this general model, SMC esti-

mates the function f(xt) of the current state xt of the system4 from the obser-

vation Yt = y1 · · ·yt up to time t, using N Monte Carlo samples called particles

x
(1)
t · · ·x

(N)
t :

E[f(xt)|Yt] =
∫

f(xt)p(xt|Yt)dxt (2.95)

'
N∑

i=1

f(x
(i)
t )w(x

(i)
t ) . (2.96)

4For simplification, we concentrate here only the filtering estimates of SMC that will be

treated in this dissertation, leaving other kind of estimates that can also be treated by SMC.
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Here, the following two properties are assumed:

• x
(i)
t is sampled from arbitrary proposal distribution q(xt|Xt−1,Yt) that sat-

isfies some weak conditions:

xt ∼ q(xt|Xt−1,Yt). (2.97)

• Weight of the i’th particle x(i), w(x
(i)
t ), is initialized at time 1 by 1/N , and

updated by the following recursive formula (Doucet et al., 2001) :

w(x
(i)
t ) ∝ w(x

(i)
t−1)

p(yt|x
(i)
t )p(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |Xt−1,Yt)

, (2.98)

where ∝ means a normalization to sum to 1 over i = 1 . . .N .

If we know the predictive distribution p(xt|Xt−1,Yt) exactly and use it as the

proposal distribution q(xt|Xt−1,Yt), (2.98) reduces simply (Doucet, 1998) :

w(x
(i)
t ) ∝ w(x

(i)
t−1) p(yt|x

(i)
t−1) . (2.99)

As we will see in Chapter 4, this is the case in our study because once we

know the previous hidden states by sampling, the predictive distribution of the

next word is obtained in a closed form.
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Chapter 3

Metric Learning Problem in

Vector Space Models

In this chapter, we treat a metric learning problem that describes the heterogene-

ity of the latent space where linguistic expressions reside.

Natural language processing involves many kinds of linguistic expressions such

as phrases, sentences, documents, and a collection of documents. Comparing

these expressions based on semantic proximity is a fundamental task and has

many application.

Generally, there are two basic approaches to compare two linguistic expres-

sions: (a) structural and (b) non-structural. Structural approaches make use of

syntactic parsing or similar method like dependency analysis to conduct a rig-

orous comparison of expressions, while nonstructural approaches use a vector

representation and provide a rough but fast comparison that is needed for search

or retrieval from vast amount of corpora.

Although structural approaches have become recently available in the kernel-

based method (Collins and Duffy, 2001; Suzuki et al., 2003), here we concentrate

on nonstructural comparison. This is not only because the nonstructural compar-

ison constitutes an integral part of structural methods as its atomic comparison

method in the leaves, but because it is frequently embedded in many application

where structural parsings are not available or computationally too expensive to

conduct for the whole data to compare.

For example, information retrieval usually deal with huge amount of data
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and a “bag-of-words” vectorial description has been used, owing to the data size

and also to a lack of scalable text segmentation algorithms. Meanwhile, text

segmentation algorithms themselves, such as TextTiling (Hearst, 1994) and its

recent successors using the inter-paragraph similarity matrix (Choi, 2000), all use

the nonstructural cosine similarity as a measure of semantic proximity between

the paragraphs.

However, the distance functions have been largely defined and used ad hoc,

usually a tf.idf weighting scheme and a simple cosine similarity that is equivalent

to an Euclidean dot product. This kind of distance functions have two severe

problems that have been ignored when applied in natural language processing.

3.1. Problems with Euclidean distances

When we address nonstructural comparison, linguistic expressions are often mod-

eled by a feature vector x = (x1, . . . , xn) ∈ R
n, where each element ui corresponds

to the number of occurrences of i’th feature. When the features are simply words,

this representation is called a “bag-of-words”; however, in general the features are

not restricted to words and thus we use a general term “feature” throughout this

chapter.

To measure a distance between the two vectors x,y, a dot product or Eu-

clidean distance1

d(x,y) = (x − y)T (x − y) (3.1)

=
n∑

i=1

(xi−yi)
2 (3.2)

(where T denotes a transposition) has been employed so far with a heuristic

feature weighting such as tf.idf in the preprocessing stage.

There are two main problems as to this distance:

(i) The correlations between the features are ignored.

1When we normalize the length of the vectors |x| = |y| = 1 as commonly adopted, (x −

y)T (x−y) = |x|2+ |y|2−2x ·y ∝ −x ·y = −cos(x,y); therefore, this includes a cosine similarity

(Manning and Schütze, 1999).
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(ii) Feature weightings are not optimal.

Problem (i) is especially important in natural language because linguistic fea-

tures (e.g. words) usually have strong correlations between them, such as colloca-

tions, syntactic constructions, and so on, as well as a prior semantic correlations

we may assume.

However, these correlations cannot be considered in equation (3.1). While it

is possible to address this by a specific kernel function like polynomials (Müller

et al., 2001), kernel-based approach is not available for many problems such as

information retrieval or question answering that do not fit for the classification,

the main outlet of kernel methods in current natural language processing.

Problem (ii) is more subtle but an inherent one: although tf.idf often works

well in practice, it has several free options, especially in tf such as using logs or

square roots. Nevertheless, we have no principle from which to choose because the

Euclidean distance with tf.idf has no theoretical basis that gives any optimality

as a distance function.

3.2. Related Work

The above problems of feature correlations and feature weightings can be sum-

marized as a problem of defining an appropriate metric in the feature space based

on the distribution of data. This problem has recently been highlighted in the

field of machine learning research. (Xing et al., 2002) has an objective that is

quite similar to that of this chapter and gives a metric matrix that resembles

ours using sample pairs of “similar points” as training data. (Bach and Jordan,

2003) and (Schultz and Joachims, 2003) seek to answer the same problem with

an additional scenario of spectral clustering and relative comparisons in Support

Vector Machines, respectively. In this aspect, our work is a straight successor of

(Xing et al., 2002) where its general usage in vector space is preserved. We offer

a discussion on the similarity to our method and our advantages in section 3.5.

We note that the Fisher kernel of (Jaakkola and Haussler, 1999) has the same

concept in that it gives an appropriate similarity of two data through the Fisher

information matrix obtained from the empirical distribution of data. However,
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the Fisher matrix is often approximated by a unit matrix because of its heavy

computational demand.

In the field of information retrieval, (Jiang and Berry, 1998) proposes a Rie-

mannian SVD (R-SVD) from the viewpoint of relevance feedback. This work is

close in spirit to our work, but is not aimed at defining a permanent distance

function and does not utilize cluster structures existent in the training data.

3.3. Defining an Optimal Metric

To solve the problems in section 3.1, we note the function that synonymous clus-

ters play. There are many levels of (more or less) synonymous clusters in linguistic

data: phrases, sentences, paragraphs, documents, and, in a web environment, the

site that contains the document. These kinds of clusters often can be attributed

to linguistic expressions because they nest in general so that each expression has

a parent cluster.

Since these clusters are synonymous, we can expect the vectors in each cluster

to concentrate in the ideal feature space. Based on this property, we can introduce

optimal weightings and correlations in a supervised fashion. We will describe this

method below.

3.3.1 The Basic Idea

As stated above, vectors in the same cluster must have a small distance between

each other in the ideal geometry. When we measure an L2-distance between x

and y by a Mahalanobis distance parameterized by M :

dM(x,y)2 = (x − y)TM(x − y) (3.3)

=
n∑

i=1

n∑

j=1

mij(xi − yi)(xj − yj),

where symmetric metric matrix M = [mij] gives both corresponding feature

weights and feature correlations. When we take M = I (unit matrix), we re-

cover the original Euclidean distance (3.1).
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xn

x1

x2
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variance

(a) Original space

x1

x2

xn

(b) Mapped space

Figure 3.1. Geometry of feature space.

Equation (3.3) can be rewritten as (3.4) because M is symmetric:

dM(x,y)2 = (M1/2(x − y))T (M1/2(x − y)). (3.4)

Therefore, this distance amounts to a Euclidean distance in the M 1/2-mapped

space (Xing et al., 2002).

Note that this distance is global, and different from the ordinary Mahalanobis

distance in pattern recognition (for example, (Duda et al., 2000)) that is defined

for each cluster one by one, using a cluster-specific covariance matrix. That type

of distance cannot be generalized to new kinds of data; therefore, it has been

used for local classifications. What we want is a global distance metric that is

generally useful, not a measure for classification to predefined clusters. In this

respect, (Xing et al., 2002) shares the same objective as ours.

Therefore, we require an optimization over all the clusters in the training data.

Generally, data in the clusters are distributed as in Figure 3.1(a), comprising

hyperellipsoidal forms that have high (co-)variances for some dimensions and low

(co-)variances for other dimensions. Further, the cluster is not usually aligned to

the axes of coordinates. When we find a global metric matrix M that minimizes

the cluster distortions, namely, one that reduces high variances and expands

low variances for the data to make a spherical form as good as possible in the

M1/2-mapped space (Figure 3.1(b)), we can expect it to capture necessary and

unnecessary variations and correlations on features, combining information from

many clusters to produce a more reliable metric that is not only locally optimal.

We will find this optimal M below.
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3.3.2 Global optimization over clusters

Suppose that each data (for example, sentences or documents) is expressed as a

vector x ∈ R
n, and the whole corpus can be divided into N clusters, X1 . . .XN .

That is, each vector has a dimension n, and the number of clusters is N . For

each cluster Xi, cluster centroid ci is computed as ci = 1/|Xi|
∑

x∈Xi
x, where

|X| denotes the number of data in X. When necessary, each element in xj or ci

is referenced as xjk or cik (k = 1 . . . n).

The basic idea above is formulated as follows. We seek the metric matrix M

that minimizes the metric distance between each data xj and the cluster centroid

ci, dM(xj, ci) for all clusters X1 . . .XN . Mathematically, this is formulated as a

quadratic minimization problem

M = arg min
M

N∑

i=1

∑

xj∈Xi

dM(xj, ci)
2

= arg min
M

N∑

i=1

∑

xj∈Xi

(xj − ci)
TM(xj − ci) (3.5)

under a scale constraint (| · | means determinant)

|M | = 1. (3.6)

This scale constraint is necessary for excluding a degenerate solution M =

O. 1 is an arbitrary constant: when we replace 1 by c, c2M becomes a new

solution. This minimization problem is an extension to the method of MindReader

(Ishikawa et al., 1998) to multiple clusters and has a unique solution below.

Theorem The matrix that solves the minimization problem (3.5,3.6) is

M = |A|1/nA−1, (3.7)

where A = [akl] is defined by

akl =
N∑

i=1

∑

xj∈Xi

(xjl − cil)(xjk − cik) . (3.8)
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Proof: We want to derive M that satisfies the condition

min
M

n∑

i=1

∑

xj∈Xi

(xj − ci)
TM(xj − ci) , (3.9)

under the constraint

|M | = 1. (3.10)

Expanding (3.9), we get

∑

i

∑

xj

[
n∑

k=1

n∑

l=1

(xjk − cik)mkl(xjl − cil)

]

, (3.11)

and from (3.10), for all k

n∑

l=1

(−1)k+lmkl|Mkl| = 1 .

Therefore

n∑

k=1

n∑

l=1

(−1)k+lmkl|Mkl| = n, (3.12)

where Mkl denotes an adjugate matrix of mkl.

Therefore, we come to minimize (3.11) under the constraint (3.12).

By introducing the Lagrange multiplier λ, we define

L =
N∑

i=1

∑

xj

[
∑

k

∑

l

(xjk − cik)mkl(xjl − cil)

]

− λ

[
∑

k

∑

l

(−1)k+lmkl|Mkl| − n

]

.

Differentiating by mkl and setting to zero, we obtain

∂L

∂mkl
=
∑

i

∑

xj

(xjk − cik)(xjl − cil)

− λ(−1)k+l|Mkl| = 0

⇔ |Mkl| =

∑

i

∑

xj
(xjk − cik)(xjl − cil)

λ(−1)k+l
. (3.13)
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Let us define M−1 = [m−1
kl ]. Then,

m−1
kl =

(−1)k+l|Mkl|

|M |

= (−1)k+l|Mkl| (∵ (3.10))

=

∑

i

∑

xj
(xjk − cik)(xjl − cil)

λ
(3.14)

(∵ (3.13))

Therefore, when we define

A = [akl] (3.15)

as akl =
N∑

i=1

∑

xj∈Xi

(xjl − cil)(xjk − cik) , (3.16)

from (3.14),

A = λM−1

⇔ |A| = λn|M−1| = λn

⇔ λ = |A|1/n ,

where A is defined by (3.15), (3.16). �

When A is singular, we can use as A−1 a Moore-Penrose matrix pseudoinverse

A+. Generally, A consists of linguistic features and therefore is very sparse and

often singular. Hence A+ is nearly always necessary for the above computation.

For details, see Appendix C.

3.3.3 Generalization

While we assumed through the above construction that each cluster is equally

important, this is not the case in general. For example, clusters with a small

number of data may be considered weak, and in the hierarchical clustering situ-

ation, a “grandmother” cluster may be weaker. If we have confidences ξ1 . . . ξN

for the strength of clustering for each cluster X1 . . .XN , this information can be

incorporated into (3.5) by a set of normalized cluster weights ξ∗i :

M = arg min
M

N∑

i=1

ξ∗i
∑

xj∈Xi

(xj − ci)
TM(xj − ci),
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where ξ∗i = ξi/
∑N

j=1 ξj , and we obtain a respectively weighted solution in (3.8).

Further, we note that when N = 1, this metric recovers the ordinary Maha-

lanobis distance in pattern recognition. However, because the number of data in

each cluster was approximately equal we used equal weights for the experiments

below.

3.4. Experiments

We evaluated the proposed metric distance on three tasks: synonymous sentence

retrieval, document retrieval, and the K-means clustering of general vectorial

data. Since the proposed method utilizes only the general property of vector

space, it should be effective on general vectorial datasets last mentioned.

The procedure of the experiments is as follows. First, the metric matrix is

computed from the cluster structure of training data. Second, in the retrieval

task, for each datum in the test set the distances to the other data are computed

and sorted in an ascending order. Within this sorted list of distances, the correct

answers are the data from the same original cluster as the datum in consideration

belongs to. These correct answers in the sorted list yield a precision-recall curve

and the R-precision (Baeza-Yates and Ribeiro-Neto, 1999). When we set R to

the number of data in the original cluster minus 1, R-precision equals 1 when the

first R data are totally from the original cluster and equals 0 when they do not

include data from the original cluster at all; thus R-precision means a precision

of original cluster recovery. The distribution below the first R data is expressed

as the precision-recall curve and its point summary, 11-point average precision.

We conducted this procedure for each datum in the test set: hence its com-

putational complexity is quadratic to the size of the test set. Precisions in the

clustering task is described in section 3.4.3.

For all the distance computation above, we compared the case using the metric

distance with the baseline case of Euclidean distance.

3.4.1 Synonymous sentence retrieval

Searching synonymous sentences from the corpus or the set of example sentences

constitutes a fundamental technology underlying some natural language process-
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ing tasks such as Example-based machine translation or candidate retrieval in

Question Answering.

3.4.1.1 Sentence cluster corpus

We used a paraphrasing corpus of travel conversations (Sugaya et al., 2002) for

sentence retrieval. This corpus consists of 33,723,164 Japanese translations, each

of which corresponds to one of the original English sentences. By way of this

correspondence, Japanese sentences are divided into 10,610 clusters. Therefore,

each cluster consists of Japanese sentences that are possible translations from the

same English seed sentence that the cluster corresponds to. From this corpus, we

constructed 10 sets of data. Each set contains random selection of 200 training

clusters and 50 test clusters, where each cluster consists of maximum 100 sen-

tences2. Experiments were conducted on these 10 datasets to yield an average

statistics, using each level of dimensionality reductions described below.

3.4.1.2 Features and dimensionality reduction

As the features of a sentence, we used unigrams of all words and bigrams of

functional words3 that consist of the sentence. This is because the concatenations

of functional words are considered important for comparison in the conversational

domain.

While the lexicon is limited for travel conversations, the number of the fea-

tures exceeds several thousands or more; that may prohibit the computation of

the metric matrix in its full form and produces unreliable metric matrix due

to its excessive sparseness. Therefore, we first compressed the features using

singular valude decomposition (SVD), the same method of Latent Semantic In-

dexing (Deerwester et al., 1990).

3.4.1.3 Sentence retrieval results

Qualitative results Figure 3.7 shows a sample result of synonymous sentence

retrieval. Sentences with (*) mark at their end are the correct answers, that is, the

2When the number of data in the cluster exceeds this limit, 100 sentences are randomly

sampled. All sampling are made without replacement.
3Using the provided part-of-speech information, here functional words are defined as the

words other than content words, that is, nouns, proper nouns, numerals, and main verbs.
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Figure 3.2. Precision-recall of sentence retrieval.
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Figure 3.3. 11-point average precision.

sentences that belong to the same cluster as the query. We see that the results

using the metric distance contain less noises than using a standard Euclidean

baseline with tf.idf weighting, achieving a high-precision retrieval in vector space.

Although in case of high rate of dimensionality reduction in Figure 3.8 shows a

performance degradation owing to the lower dimensional projection, the effects

of the metric distance are still apparent despite these bad circumstances.

Quantitative results Figure 3.2 shows the averaged precision-recall curves

of the retrieval and Figure 3.3 shows the 11-point average precisions for each

rate of dimensionality reduction. Clearly, the proposed method achieves higher

precision than the standard method and does not degrade much with the feature

compression (dimensionality reduction) unless we reduce dimensions too much,

i.e. less than 5%.
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Figure 3.4. A metric matrix obtained from synonymous clusters.
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Figure 3.5. Diagonal elements of the metric matrix.

3.4.1.4 Metric Matrix

Figure 3.4 shows a sample metric matrix obtained from the synonymous sentence

clusters. Features were first preprocessed by tf.idf and compressed to 200 dimen-

sions by SVD. Here, standard Euclidean (cosine) distance corresponds to a unit

matrix where only the diagonal elements from upper right to lower left equal to

1. Apparently, non-diagonal elements take many different values, representing

positive or negative correlations between the compressed features. Sum of the

absolute values of the diagonal elements occupied only 3.5% of the total sum over

the whole matrix elements.

Moreover, even the weight of diagonal elements are not uniform as shown in

Figure 3.5. This plot show that the tf.idf weights are further modified from the

synonymous cluster information in the training data.
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3.4.2 Document retrieval

As a method of tackling clusters of texts, the text classification task has re-

cently made great advances with a Näıve Bayes or SVM classifiers (for example,

(Joachims, 1998)). However, they all aim at classifying texts into a few prede-

fined clusters and cannot deal with a document that fits neither of these clus-

ters. For example, when we regard a website as a cluster of documents, possible

clusters are numerous and constantly increasing, which precludes classificatory

approaches. For these circumstances, document clustering or retrieval will bene-

fit from a global distance metric that exploits the multitude of cluster structures

themselves.

3.4.2.1 Newsgroup text dataset

For this purpose, we used the 20-Newsgroup dataset (Lang, 1995). This is a

standard text classification dataset that has a relatively large number of classes,

20. Among the 20 newsgroups, we selected 16 clusters of training data and

4 clusters of test data to perform a five-fold cross validation. The maximum

number of documents per cluster is 100; when it exceeds this limit, we made a

random sampling of 100 documents from the cluster in consideration.

Since the proposed metric is computed from the distribution of vectors in

high-dimensional feature space, it will not be meaningful when the norm of the

vector (largely proportional to document length) differs much from document to

document.4 Therefore, we conducted subsampling/oversampling for the training

document to be the median length (130 words). We used unigrams as features

and preprocessed them with tf.idf as a baseline method.

3.4.2.2 Results

Table 3.1 shows R-precision and 11-point average precision for the document

retrieval. Since the test data contains 4 clusters, the baseline of precisions is

0.25. We can see from both results that the metric distance attains a better

4Normalizing documents to unit length effectively maps them to a high-dimensional hy-

persphere; this proved to produce an unsatisfactory result. Defining metrics that work on a

hypersphere like spherical K-means (Dhillon and Modha, 2001) requires further research.
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Dim. R-precision 11-pt Avr. Prec.

Red. Metric Euclid Metric Euclid

0.5% 0.421 0.399 0.476 0.455

1% 0.388 0.368 0.450 0.430

2% 0.359 0.343 0.425 0.409

3% 0.344 0.330 0.411 0.399

4% 0.335 0.323 0.402 0.392

5% 0.329 0.318 0.397 0.388

10% 0.316 0.307 0.379 0.376

20% 0.343 0.297 0.397 0.365

Table 3.1. Newsgroup text retrieval results.

retrieval over tf.idf and dot product. However, precision refinements are certain

(average p = 0.0243) but subtle.

This can be considered the effect of the dimensionality reduction performed.

We first decompose data matrixX by SVD:X = USV −1 and build a k-dimensional

compressed representation Xk = VkX; where Vk denotes a k-largest submatrix

of V . From the equation (3.4), this means using an Euclidean distance between

the rows of M 1/2Xk = M1/2VkX. Therefore, Vk may subsume the effect of M

in a preprocessing stage. Close inspection of table 3.1 shows this effect as a

tradeoff between the metric effect and dimensionality reduction. To make the

most of metric distance, we should consider metric induction and dimensionality

reduction simultaneously or reconsider the problem in kernel Hilbert space.

3.4.3 K-means clustering and general vectorial data

Metric distance can also be used for clustering or general vectorial data. Figure 3.6

shows the K-means clustering result of applying the metric distance to some of the

UCI Machine Learning datasets (Blake and Merz, 1998). K-means clustering was

conducted 100 times with random starts, where K equals the known number of

classes in the data.5 Clustering precision was measured as an average probability

5Because of the small size of the dataset, we did not use cross-validation as in the other

experiments.
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Figure 3.6. K-means clustering of UCI Machine Learning dataset results. The

horizontal axis shows compressed dimensions (rightmost is original). The right

bar shows clustering precision using Metric distance and the left bar shows that

using Euclidean distance.

that a randomly picked pair of data will conform to the case of true clustering

(Xing et al., 2002).

We also conducted the same clustering for documents of the 20-Newsgroup

dataset to obtain a small increase in precision like the document retrieval exper-

iment in section 3.4.2.

3.5. Discussion

In this chapter, we proposed an optimal distance metric based on the idea of

minimum cluster distortion in training data. Although vector distances have

frequently been used in natural language processing, this is a rather neglected

but recently highlighted problem. Unlike recently proposed methods with spectral

methods or SVMs, our method assumes no such additional scenarios and can be
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considered as a straight successor to (Xing et al., 2002).

Their work has the same perspective as ours and they calculate a metric

matrix A that is similar to ours based on a set S of vector pairs (xi,xj) that can

be regarded as similar. They report that the effectiveness of A increases as the

number of the training pairs S increases; this requires O(n2) sample points from

n training data and must be optimized by a computationally expensive Newton-

Raphson iteration. On the other hand, our method uses only linear algebra and

can induce an ideal metric using all the training data at once. We believe this

metric can be useful for many vector-based language processing methods that

have been using cosine similarity.

There remains some future directions for research. First, as we stated in

section 3.3.3, the effect of a cluster weighted generalized metric must be inves-

tigated and optimal weighting must be induced. Second, as noted in section

3.4.2.1, the dimensionality reduction required for linguistic data may constrain

the performance of the metric distance. To alleviate this problem, simultaneous

dimensionality reduction and metric induction may be necessary, or the same idea

in a kernel-based approach is worth considering. The latter obviates the problem

of dimensionality, while it restricts the usage to situations where the kernel-based

approaches are available.

3.6. Summary

This chapter proposed a global metric distance that is useful for many natural

language processing tasks such as clustering or retrieval in place of the Euclidean

distance that has been used. This distance is optimal in the sense of quadratic

minimization over all the clusters in the training data. Experiments on sentence

retrieval, document retrieval and K-means clustering all showed improvements

over Euclidean distance, with a significant refinement with tight training clusters

in sentence retrieval.
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Query: “
���������
	�����

”

(‘How much is the total?’)

Metric distance:

distance synonymous sentence

0.2712 �������
������������� *

0.3444  "!$#��
������%��
0.3444 &('()*#��
���+�(%��
0.369 ,(-.!$#��
���+�(%��
0.4377 �������
���/��0$�213%�� *

0.4479 �������
���/��0$�213%��4�����+� *

0.4505 5.67���
������%�� *

0.4558 �������
���98�:<;=13%�� *

0.4602 �������
���98�:<;=13%��4�����+� *

0.4682 �������
���98�:?>@�4������� *

0.4729 �������
�����"13%�� *

0.4851 �������
�����"13%��4������� *

Euclidean distance:

distance synonymous sentence

0.1732 5.67���
�����(%�� *

1.781 �����.A��
�����(%.� *

1.902 B.C.DFE�G?�(%��
1.966  "!$#��
�����(%��
1.966 &('()*#��
�����(%.�
1.974 ,(-.!$#��
�����(%.�
1.983 5.67�.A��
�����(%.� *

2.283 H/I�:"J.K7�(%��
2.505 H/I�:2L(M7�(%��
2.65 A�N�OF�(%��
2.729 P.QR�(S?T.U*�=VW�+XFY2�
2.749 B.C.DFE�G?�(%.Z

(* denotes the right answers.)

Figure 3.7. Example of synonymous sentence retrieval.

Query: “ [
\^]`_ba$cdfe ��g�hi�W�kjmlWn�� ”

(‘I’d like some fruit for dessert.’)

Metric distance:

dist. synonymous sentence

0.3531 o�p�q4r2%Ws�8t�vu�:(�(�4�������
0.3709 w�x7yiz|{��=V3}.~4r��vuR13%.� *

0.596 o�p�q4r2%Ws�8t�vuR12��I.�
0.6104 �.�4r2%s+8t�vuR13%��
0.621 �.�4r2%s+8t�vuR13%��4�����+�
0.6255 A2���.q4r"%s�8t�vuR13%��
0.6295 �.�4r2%s+8t�vuR12��I.�4�������
0.6343 A2���.q4r"%s�8t�vuR12��I.�
0.6685 �.�4r2%s+8t�vu�:(�(�(%��
0.7966 w�x7yizv8(#|}.~4r��vu�:(�(��%�� *

Euclidean distance:

dist. synonymous sentence

1.036 o�p�q�r2%s�8t�vu�:(���4�������
1.421 �<�3#bI7r=6.�$8��RI.���F�/��:(�(�4�����+�
1.491 ���3����y?r2�bO(���vu?:(�(�4�������
1.499 ���3����y?r2�.��vu�:��(�4�������
1.535 �4r���u�:(�(�4�������
1.622 ����r/6.�$8��RI.�$�F����:(�(�4�������
1.622 ����r/6.�$8��RI.�$�F����:(�(�4�������
: :

2.787 w�x7yz|{(�=V3�7�3}.~�r��vu�:(�(�4�����+� *

2.854 �3���.r3�*�4�v8|�(���+XFY7�=:(�(�4�����+�
Figure 3.8. High level of dimensionarity reduction of features.
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Chapter 4

Statistical Language Modeling of

Contexts

4.1. Introduction

Contextual effect constitutes an essential part of linguistic phenomena, and its

estimation is also crucial for natural language processing. We infer context in

which we are involved to create an adaptive linguistic behavior based on the

appropriate model selection on that information.

Considering actual applications such as speech recognition, machine transla-

tion or robotics, they may benefit from the model to detect context shifts and

produce the most appropriate adaptive outputs for the current context.

In natural language processing terms, this issue can be considered a problem

of the adaptation of a long-distance language model beyond n-grams. While

“syntactic” probabilities such as trigrams are comparatively stable and unaffected

by context, “semantic” probabilities like unigrams are heavily affected by context,

thus dynamic adaptation to context is an important problem to be solved.

Long-distance language modeling began with a classic approach such as trig-

gers/caches (Jelinek, 1998), followed by a method using Latent Semantic Indexing

(LSI) that can capture word cooccurrences that are not necessarily present in a

training corpus (Bellegarda, 1998). This method was extended by a strict prob-

abilistic approach using Probabilistic Latent Semantic Indexing (PLSI), which

assumes hidden topic variables present in the current context to predict the next
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Figure 4.1. Example PLSI decomposition of 1,700 words text.

word (Gildea and Hofmann, 1999). Recently, this approach was further sophis-

ticated using Latent Dirichlet Allocation (LDA) (Blei et al., 2003) to produce a

lower perplexity thanks to Bayesian methods (Mishina and Yamamoto, 2004).

However, these models implicitly assumed stable context and do not consider

dynamic change of context or even topic shifts. Since these models are applica-

tion of bag-of-words text modelings, the history is simply a bag of words from the

beginning of the document or a pre-determined threshold like 1,000 words (Kuro-

hashi and Ori, 2000), totally ignoring the chronological order of the history. In

other words, so far long-distance language models are approaches that regard a

text as a stationary information source, no matter how long or heterogeneous it

is, to gradually improve the estimation of the static parameter as the data become

available as “context.”

Apparently, this is not a desirable approach but only an approximation. Fig-

ure 4.1 is a sample PLSI decomposition of a Mainichi newspaper article of about

1,700 words, segmented by each 100 words from the beginning of the text. Al-

though we recognize that the main topic of this article largely corresponds to 8th

topic, the proportion varies along time, giving some probability mass to the other

latent subtopic and representing the semantic heterogeneity of the text. Since the

actual number of latent topics is far larger than 10 here for explanation, this kind

of semantic random walk may be more apparent than this simple example in the

actual texts.
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In fact, TextTiling (Hearst, 1994) is an algorithm that divides a text into

subtopic segments by using such a text heterogeneity. Even in the language mod-

eling research, Bellegarda (1998) we mentioned above noticed a best “forgetting

coefficient” that produced the lowest perplexity for the corpus he used.

Contrary to previous models, in this chapter we view context shift as a latent

stochastic process and give an explicit probabilistic model that describes hidden

topic shifts in a text stream to estimate its state and parameters sequentially.

In words of signal processing or control theory, this approach amounts to

a filtering that estimates current state of a system along time, rather than a

simple averaging of past observations like the previous approaches. Based on

the filtering approach, we propose a novel long-distance language model that

can estimate subtopic changes and their rate online and automatically uses an

appropriate length of context.

Essentially, this model is a nonlinear HMM that cannot be decoded by a

traditional Baum-Welch algorithm or Kalman Filters. For this purpose, we used

a Particle Filter, a sequential Monte Carlo method described in Chapter 2 that

has been mainly used in signal processing and robotics research, to estimate the

nonlinear dynamics of context sequentially.

Our contribution in this chapter is threefold. First, we view a long-distance

language model a filtering problem to solve it by introducing an explicit generative

model that describes hidden topic shifts. Second, for this purpose we extended

the multinomial Particle Filter of DNA sequence recently proposed in statistics

to natural language, by combining it with LDA and DM described in Chapter 2.

Third, in this model we propose an online update of hyperparameter that was

assumed to be known and fixed in the original modeling.

4.2. Previous Work

Although “context” is a polysemous word that may mean some local syntac-

tic environment or global semantic environment as usually conceived, here we

concentrate on the latter as an optimal prediction problem utilizing the global

semantic environment. Hereafter, we use context modeling as a synonym for that

kind of language modeling.

49



4.2. PREVIOUS WORK

4.2.1 Ad Hoc Approaches to Context Modeling

Since n-gram language model (usually, trigrams or bigrams) only answers for

local regularities of natural language, long-distance modeling beyond n-grams

has attracted much research interests.

Long-distance language modeling began with a classic approach such as trig-

gers or caches (Jelinek, 1998) that boosts probabilities of the words themselves

or related words seen in the history considered. In the trigger approach, for each

word a set of “related” words are assigned with the relatedness and the length of

effect computed from corpora by typically a maximum entropy approach (Beefer-

man et al., 1997b).

However, there are two problems about this frequently used approach:

1. There are no guarantee that these “related” words are exhaustive. In fact,

complete enumeration of association pairs requires O(L2) spaces with the

lexicon of L words that needs some cut-off. However, such a cut-off may

cause performance degradation especially for low-frequency words that are

important for prediction but are often discarded by the cut-off.

2. Since the association pairs are used independently in the trigger models,

agglomerative effects are not considered. Many words have polysemy that

can be usually resolved through an interaction between the other words

in the history. For example, if ‘bank’ and ‘interest’ are both contained in

the history, only the probabilities of financial words should be increased.

However, in the trigger approach in this case, river-related probabilities are

also increased misguidedly.1

Therefore, we need a model that utilizes not only the surface appearances of

words but also hidden semantic community inferenced from the consisted words.

In statistical terms, we need latent structure introduced into the probabilistic

modeling, explicating in the next subsection.

As an approximation to the latent structure mentioned above, Bellegarda (1998)

first introduced a LSI language model using Latent Semantic Indexing (Deer-
1Of course, this deficiency can be avoided by introducing pairs of features like

‘(bank,interest)’ into the model. However, those augmented model inevitably suffers from data

sparseness and exponentially increase of the number of features, becoming virtually useless.
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wester et al., 1990). In LSI language model, the “centroid” of the previous words

represented as a K-dimensional vector in the reduced vector space, called Latent

Semantic Space, is computed to produce a unigram probability as the value of a

cosine distance between a word and the centroid, normalized to sum to 1.

Although this approach is important that introduces a hidden space other

than the surface appearances of words, it is not a strictly statistical method and

therefore requires many ad-hoc parameters and preprocessings.

Florian (1999) proposes another approach using hierarchical document clus-

tering conducted in advance. This approach first make a hiearchical clustering

of training documents and allocates a history regarded as a pseudo-document on

the one of the derived clusters to predict the next word.

This model is interesting in using hierarchical clustering of documents as op-

posed to the flat clustering usually adopted. However, it cannot escape from the

limitation we will relax in this study in the following sections.

4.2.2 Latent Variable Context Modeling

Contrary to the ad hoc methods mentioned above, strict probabilistic approach

based on mixture models have been proposed lately. Because the proposed

method is an orthogonal extension to these models, here we explain them some-

what closely.

4.2.2.1 PLSI Language Model

Gildea and Hofmann (1999) proposed a probabilistically sound context modeling

using the EM algorithm as opposed to previous modelings.

This method is a simple application of PLSI (Hofmann, 1999) described in

Chapter 2 using the EM algorithm, namely, maximum likelihood estimate.

When a history

h = w1w2 . . . wh (4.1)

is observed, PLSI language model first conducts the following EM algorithm to

compute a maximum likelihood estimate of the low-dimensional posterior topic

distribution p(t|h), while PLSI parameters p(w|z) and p(z) fixed:
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E step:

p(z|w,h) ∝ p(z)p(w|z)p(h|z) (4.2)

M step:

p(h|z) ∝
∑

w

∑

z

n(w)p(z|w,h) (4.3)

p(z) ∝
∑

d

∑

w

n(w)p(z|w,h) (4.4)

Figure 4.2. EM algorithm for PLSI Language Model.

Moreover, they also proposed an online EM algorithm based on (Neal and

Hinton, 1998). In this modeling, history h is regarded as a pseudo document of

bag-of-words. Threfore, sequential information in h has been discarded here.

Gildea and Hofmann (1999) reports experimental results in TDT-1 and WSJ

corpus with significant perplexity reduction using unigrams, and trigrams com-

bined with rescaled unigrams.

4.2.2.2 LDA Language Model

Since PLSI language model builds on a maximum likelihood estimate of λ =

{p(t|h)}M
t=1, it sometimes suffers from severe overfitting to provided history to

produce a poor prediction based on the overfitted topic estimate.

To alleviate this problem, Mishina and Yamamoto (2002) proposes to use a

Bayesian estimate instead of maximum likelihood estimate; namely, using Latent

Dirichlet Allocation (LDA) (Blei et al., 2001) described in Chapter 2 in place of

PLSI.

Specifically, when we assume that λ = {p(t|h)}M
t=1 have a prior Dirichlet

distribution

λ ∼ Dir(α) =
Γ(
∑

k αk)
∏

k Γ(αk)

K∏

k=1

λαk−1
k , (4.5)

the posterior distribution of λ given h, p(λ|h), is given by the following Varia-

tional Bayes EM (VB-EM) algorithm.

Here, α and p(w|t) are the LDA parameters computed in advance from a

collection of documents as a prior knowledge.
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VB-E step:

q(zt
i = 1|h) ∝ p(wi|t) exp(Ψ(αt + nt)) (4.6)

VB-M step:

q(λ|h) ∝
K∏

t=1

λαt+nt−1
t (4.7)

where nt =
h∑

i=1

q(zt
i = 1|h).

Figure 4.3. VB-EM algorithm for LDA Language Model.

q(λ|h) is a variational approximation of p(λ|h): using q(λ|h) instead of

p(λ|h), the probability of the next word y given h is

p(y|h) =
∫
∑

z

p(y, z, θ|h)dθ (4.8)

=
∫
∑

z

p(y|z)p(z, θ|h)dθ (Model assumption) (4.9)

'
∑

z

p(y|z)
∫

θzq(θ|h)dθ (Variational approximation) (4.10)

=
∑

z

p(y|z)〈θz〉q(θ|h) . (4.11)

That is, prediction in LDA language model is a mixture of unigrams, where the

mixing weights are the expectation of the variational posterior Dirichlet distribu-

tion of the mixture given the history.

Mishina and Yamamoto (2002) reports that this language model produces

lower perplexity as a context modeling by avoiding the overfitting problem seen

in the PLSI language model. Since in context modeling the available data are

usually small, this Bayesian estimate well suits for context modeling. In fact, this

chapter will extend the LDA and DM language model described below.

4.2.2.3 DM Language Model

While LDA language model provides robust estimation using a Bayesian inference

of topic decomposition of the history, it has a problem that it cannot model a

whole word simplex where the final predictive distribution reside.
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Figure 4.4. Word simplex and Topic subsimplex.

As shown in Figure 4.4, since the topic simplex is a lower-dimensional sub-

simplex of the word simplex, many regions outside the topic simplex cannot be

used in LDA language modeling.

Contrary to LDA, Dirichlet Mixture (DM) (Yamamoto et al., 2003; Sadamitsu

et al., 2004) is another Bayesian text model that works directly on the word

simplex. DM has two parameters, λ and αM
1 = α1 · · ·αM ; model details and the

parameter estimation are described in Chapter 2.

Under DM, the predictive probability p(y|h) is

p(y|h) =
M∑

m=1

p(y|m)p(m|h) (4.12)

=
M∑

m=1

(∫

p(y|p)p(p|αm)dp
)

· p(m|h)

=
M∑

m=1

Cm
αmy+ny

∑

y(αmy+ny)
, (4.13)

where

Cm = p(m|h,α,λ) (4.14)

=

(

λm

Γ(
∑

y αmy)
∏

y Γ(αmy)

∏

y

Γ(αmy + ny)

Γ(αmy)

)
/∑

m

(

λm

Γ(
∑

y αmy)
∏

y Γ(αmy)

∏

y

Γ(αmy + ny)

Γ(αmy)

)

.

(4.15)

and ny is the number of occurrences of y in h.

This prediction can also be considered an extension to Dirichlet smoothing
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(2.6) reproduced here for convenience:

p(y|h) =
αy + ny

∑

y(αy + ny)
(4.16)

with multiple hyperparameters αm to weigh them accordingly by Cm. Therefore,

(2.6) is a special case of (4.15) where the number of mixtures M = 1.

Yamamoto et al. (2003) reports a further perplexity reduction with DM than

LDA on the experiments using Japanese newspaper corpus.

4.2.3 Problem of Context Models So Far

Although long-distance language models have been sophisticated lately as de-

scribed above, they all share a critical deficiency as a context modeling. Because

all of them are applications of probabilistic text modelings such as PLSI, LDA,

and DM that use “bag-of-words” assumption of documents and words, all the la-

tent variable context modelings above regard a history as a simple bag-of-words,

totally dropping a chronological information that is crucial for context modeling.

In fact, Beeferman et al. (1997a) found that the semantic effect of context de-

creases exponentially with time, by investigating the intervals of self triggers (the

reappearance of the same word) found in a corpus.

Moreover, previous models also have problems when the context becomes long.

Because they use all the words from the beginning of a document as a context,

the estimation becomes slower and slower as it proceeds, as well as it gradually

becomes useless by averaging over all the sequence observed so far, approximating

a simple unigram.

Previously, Li and Yamanishi (2000) notices the same structure of text and

proposes a probabilistic clustering approach like PLSI. However, they provide no

generative process that accounts for context shifts, therefore rely on a heuristic

parameters such as a fixed length window and an ad hoc segmentation thresh-

old. Moreover, they are based on a maximum likelihood estimate as PLSI: that

may cause a severe overfitting problem especially in context modeling where the

amount of data available is generally small.

On the other hand, we propose a principled approach to this problem, using a

Bayesian method that avoids overfitting and without no such ad hoc thresholds.
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We use an explicit probabilistic generative model that describes the process of

latent context shifts. Below, we introduce this process called a Mean Shift Model.
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4.3. Mean Shift Model

4.3.1 HMM for Multinomial Distributions

The long-distance language models mentioned in section 2 all assume a hidden

multinomial distribution, such as a mixture distribution over latent topics, or

even a unigram distribution, to predict the next word by updating its estimate

according to the context provided. Therefore, to track context shifts, we need a

model that can describe the changes of multinomial distribution.

One model for this purpose is a multinomial extension of the Mean Shift model

(MSM) (Yao, 1984; Chen and Lai, 2003) proposed in statistics.

This is a kind of HMM, but note that it is different from ordinary discrete

HMMs. In discrete HMMs, the true state is one of M components and we es-

timate it stochastically as a multinomial distribution over the M components.

On the other hand, since the true state here is itself a multinomial over the M

components, we estimate it stochastically as a (possibly a mixture of) Dirichlet

distribution, a distribution of multinomial distribution on the (M−1)-simplex.

This HMM has some similarity with Factorial HMM (Ghahramani and Jordan,

1995) in that its true state is a multinomial over discrete variables. However, we

aim to track a multinomial random walk whose pattern is different from text to

text, not directly estimating a single fixed dynamics between components as in

FHMM.

Blei and Moreno (2001) approximate the posterior multinomial distribution

of PLSI by a single component with maximum probability and propose an As-

pect Hidden Markov Model by running a standard Baum-Welch algorithm to

distinguish different texts joined together like a newswire.

However, to detect changes of subtopics within a document, we need to model

the changes of whole multinomial distribution directly, because subtopic distri-

bution will be present over the components that do not usually have maximum

probability. From this point of view, this paper can be seen as a step toward an

exact generalization of Blei and Moreno (2001).2 Below, we introduce a mean

2Although in this chapter we propose a forward predictive language model, it is possible to

extend it by a Monte Carlo forward-backward algorithm (Chen and Lai, 2003). However, this

extension is beyond the scope of this chapter; it is a future work for us (section 6).
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shift model for multinomial distribution.

4.3.2 Multinomial Mean Shift Model

Mean shift model (MSM) is a generative model which describes the intermittent

changes of latent states and outputs according to them. Although there is a

corresponding counterpart using Normal distribution first introduced (Chernoff

and Zacks, 1964; Yao, 1984), here we concentrate on a multinomial extension of

MSM, following Chen and Lai (2003) for DNA sequence modeling.

In a multinomial MSM, we assume time-dependent true multinomials θt that

may change occasionally and the following generative model for discrete outputs

yT = y1y2 . . . yT (yt ∈ A;A is a set of alphabets).







θt ∼ Dir(α) with probability ρ

= θt−1 with probability (1 − ρ)

yt ∼ Mult(θt)

(4.17)

where Dir(α) and Mult(θ) are a Dirichlet and multinomial distribution with

parameters α and θ, respectively. Here, we assume that the hyperparameter α

is known and fixed, an assumption we will relax in section 4.

This model first draws a multinomial θ from Dir(α) and samples output y

according to θ for some interval. When a change point occurs with probability ρ,

new θ is sampled again from Dir(α), and subsequent y is sampled from the new

θ. This process continues recursively throughout which neither θt nor the change

points are known to us; all we know is output sequence yT .

For example, consider a T =100 sequence in Figure 1 where a set of alphabets

is A={a, b, c}. What is the next alphabet according to this sequence?

Apparently, this estimate depends on the last change point that is unknown

to us. Let a binary variable be It that represents whether a change has occurred

at time t: that is, It =1 means there was a change at time t (θt 6= θt−1), and It =0

means there was no change (θt = θt−1).

Case It = 1: According to the model (1), this case means θ = θt ∼ Dir(α)

is newly sampled and yt is output from θ as in Figure 4.6(a). Therefore, the
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acaacacacaacaaccccccaaacccccaacabcaabcaabbabbbbbbb\
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Figure 4.5. Observed alphabet sequence.
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Figure 4.6. Graphical Model of Mean Shifts.

probability of yt given yt−1 and It = 1 is computed as

p(yt|yt−1, It =1) =
∫

p(yt|θ)p(θ|α)dθ (4.18)

= αyt
/
∑

y αy . (4.19)

Case It =0: For this case, let the time of the last change be t = c (Ic = 1, Ic+1 =

· · ·=It−1 =0). As seen in Figure 4.6(b), this means θ = θc ∼ Dir(α) was sampled

at time c, and yt is sampled after yc · · · yt−1 has been sampled from θ. Therefore,

an estimate of yt based on those information is

p(yt|yt−1, It =0) =
∫

p(yt|θ)p(θ|yc · · · yt−1)dθ

=
∫

θyt
·Dir(θ|α+

t−1∑

t′=c

δ(yt′))dθ

=
αyt

+nyt
∑

y(αy+ny)
, (4.20)

where δ(y) is a Dirac delta function at point y and ny is the number of occurrences

of y in yc · · ·yt−1.

The above derivation shows that once we know where the change occurred,

predictive distribution for the next alphabet can be obtained in a closed form.

Therefore, the essence of this problem lies in how to detect a change point given

the data up to time t. In fact, this is a kind of change point problem common in

statistics (Lee, 1997).
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As we will see in the following sections, the change point estimate p(It =

1) at time t depends on the previous change point, and this dependency goes

recursively. Therefore, to solve this problem, we need at least a nonlinear dynamic

programming.

However, to calculate that estimate requires that the previous change point

be fixed deterministically. If we conduct a single sequence of Bernoulli trials

on change points, we will fall into severe overfitting, resulting in quite unstable

predictions. For this purpose, Sequential Monte Carlo method (Particle Filter)

described in Chapter 2 offers stable prediction and further advantages that we

will see.

For the Bayesian inference using parallel Bernoulli sampling through the Par-

ticle Filter, we must solve two subproblems. First, change point probability must

be computed. Second, the particle weights must be updated recursively. Below,

we describe the solutions to these problems in that order.

4.3.2.1 Change Point Detection by Particles

The first problem is to compute a change point probability at time t given the

current observation yt and the previous observations yt−1 and change points It−1

up to time (t− 1): p(It = 1|It−1,yt). Here, It−1 be a binary change point history

already sampled up to time t−1: It−1 = {I1 . . . It−1}.

Using Bayes’ theorem,

p(It|It−1,yt) ∝ p(It, yt|It−1,yt−1) (4.21)

= p(yt|yt−1, It, It−1)p(It|It−1,yt−1) (4.22)

' p(yt|yt−1, It, It−1)p(It|It−1) (4.23)

=







p(yt|yt−1, It−1, It =1)p(It =1|It−1) =: f(t)

p(yt|yt−1, It−1, It =0)p(It =0|It−1) =: g(t) ,
(4.24)

where we assumed in (4.23) that a prior probability of change only depends

on previous changes.
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Let two expressions in (4.24) be f(t) and g(t). Then






p(It =1|It−1,yt) = f(t) / (f(t) + g(t))

p(It =0|It−1,yt) = g(t) / (f(t) + g(t)) .
(4.25)

In the expression (4.24), the first term is a likelihood of observed output yt

when we know the change point, which can be calculated by (4.19) and (4.20).

The second term is a prior probability of the context change, which can be set

tentatively by constant ρ: thus f(t) and g(t) are obtained to give (4.25).

Actually, in a Particle Filter approach, each particle has a binary sequence of

change point history It−1, thus we can estimate ρ online on It−1.

Specifically, by considering ρ a random variable whose prior distribution is

a Beta distribution ρ ∼ Be(α, β), we get an estimate of ρt using the number

of 1’s and 0’s in It−1, nt−1(1) and nt−1(0), as an expectation of posterior Beta

distribution in a standard Bayesian method (Liu, 2001) :

E[ρt|It−1] =
∫

ρtp(ρt|It−1)dρt (4.26)

=
∫

ρt ·Be (ρt|α+ nt−1(1), β + nt−1(0)) dρt (4.27)

=
α+ nt−1(1)

α+ β + t− 1
. (4.28)

This means that we can estimate a “rate of topic shift” as time proceeds in a

Bayesian fashion. Throughout the following experiments, we used this online

estimate of ρ.

4.3.2.2 Particle Weight Updates

The second problem is to update particle weights wt from wt−1 by the general

formula (2.99), reproduced here convenience:

wt ∝ wt−1 · p(yt|xt−1) . (4.29)
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Here, since the general state xt−1 consists of a pair of variables (yt−1, It−1) in the

MSM, we get

p(yt|xt−1) = p(yt|yt−1, It−1) (4.30)

=
∑

It∈{0,1} p(yt, It|yt−1, It−1) (4.31)

=
∑

It∈{0,1} p(yt|It, It−1,yt−1)p(It|It−1) (4.32)

= f(t)+g(t) . (4.33)

Hence we can update particle weight easily using f(t) and g(t) calculated in

(4.24).

4.3.3 Multinomial Particle Filter

Now we have a Particle Filter algorithm for the multinomial MSM from the

derivations above, graphically displayed in Figure 4.12 (excluding prior updates):

1. For particles i = 1 . . .N ,

(a) Calculate f(t) and g(t) according to (4.24).

(b) Sample I
(i)
t ∼Bernoulli (f(t)/(f(t) + g(t))), and update I

(i)
t−1 to I

(i)
t .

(c) Update weight w
(i)
t = w

(i)
t−1 · (f(t) + g(t)).

2. Find a predictive distribution by (2.96), using w
(1)
t . . . w

(N)
t and I

(1)
t . . . I

(N)
t as

well as the data observed so far.

The above algorithm runs for each observation yt (t=1 . . . T ). If we observe

a “strange” word that is more predictable from the prior than the contextual

distribution, (4.24) may make f(t) larger than g(t), which leads to a higher

probability that It = 1 will be sampled in the Bernoulli trial of the algorithm

1(b).

Although this sampling of context change is probabilistic and also relaxed by

the N particles, it will occur somewhere during the subsequent observations if

they actually indicate latent changes.

Additionally, step 1(c) in fact includes a step called resampling when the

weights become too biased. It “kills” the infinitesimal weight particles and makes

“children” of the heavier particles to adapt to the observed data. This means that

in our case the process gradually selects particles that have appropriate Beta

62



CHAPTER 4. STATISTICAL LANGUAGE MODELING OF CONTEXTS

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
a
b
c

Figure 4.7. Particle Filter estimate of latent multinomial in Figure 4.5. Horizontal

lines show the true distribution.

distribution of context change from the data observed so far.3 For the criterion

of biasedness of particles weights, the coefficient of variation (CV) is known to

be useful (Doucet et al., 2001). In the following experiments, we used the CV

threshold 1 or 2 by preliminary investigations.

Figure 4.7 shows a Particle Filter estimate of latent multinomial θt that lies

in the example sequence of Figure 4.5. Note that this is a “forward” estimate

that utilizes only backward data y1 .. yt to estimate θt.

4.4. Mean shift model of Natural Language

Chen and Lai (2003) used this algorithm to analyze DNA sequences. However,

when extending this approach to natural language, i.e. word sequences, we meet

two serious problems.

The first problem is that in natural languages the number of words is ex-

tremely large. As opposed to DNAs that have only four alphabets of A/T/G/C,

a natural language usually has a minimum of some tens of thousands of words

as its alphabets, and they have strong positive and negative correlations between

them.

For example, if ‘nurse’ follows ‘hospital’ we believe that there has been no

3From this point of view, the Particle Filter algorithm has some similarity to a beam search

or a genetic algorithm.
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context shift: but if ‘university’ follows ‘hospital’, the context probably has been

shifted to a “medical school” subtopic, even though the two words are equally

distinct from ‘hospital.’ Of course, this is due to the semantic relationship we

can assume between these words. However, the original multinomial MSM cannot

capture this relationship because it treats the alphabets independently. There-

fore, in the original modeling, ‘hospital’ after ‘nurse’ may be erroneously inter-

preted as a sign of context change. To incorporate these relationship, we require

a probabilistic model that works as an extensive prior knowledge of words.

The second problem is that in model equation (4.17), the parameter α of prior

Dirichlet distribution of the latent multinomial is assumed to be known. In the

case of natural language, this means we know beforehand what words or topics

will be spoken for all of the texts. Apparently, this is not a natural assumption:

we need an online estimation of α as well when we want to extend MSM to

natural language.

To solve these problems, we extended a multinomial MSM using probabilistic

text models DM and LDA. Below we introduce MSM-DM and MSM-LDA, in this

order.

4.4.1 MSM-DM

When we combine the original MSM with the Dirichlet Mixture (DM) language

model described in section 4.2.2.3, we get a natural extension of MSM using a

mixture of Dirichlet distributions rather than a single Dirichlet distribution as a

prior distribution for the multinomials.

The problem of the original MSM lies in the simple prediction (4.20) and

(4.19) of each particle, reproduced here for convenience:

p(y|yt−1, It =1) = αy/
∑

y αy (4.34)

p(y|yt−1, It =0) =
αy+ny

∑

y(αy+ny)
. (4.35)

Especially for (4.35), this means that only the probabilities of words seen in

the history are increased. For the other words that have high relevancies with

the words in the history, their probabilities remain constant however related they
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1. Draw m ∼ Mult(λ).

2. For t = 1 · · ·T ,

(a) Draw c ∼ Binomial(ρ).

(b) If c = 0 then Set pt = pt−1.

If c = 1 then Draw pt ∼ Dir(αm).

(c) Draw yt ∼ Mult(pt).

Figure 4.8. Generative Model of MSM-DM.

d1 d2 dc

tt−1
?

· · ·

Figure 4.9. History segmented into “pseudo documents” by the change points.

are. When we replace (4.35) by a Dirichlet Mixture prediction (4.13):

p(y|yt−1, It = 0,λ,αM
1 ) =

M∑

m=1

Cm
αmy+ny

∑

y(αmy+ny)
, (4.36)

we get a flexible model MSM-DM that considers both the semantic correlations

and the dynamic mean shift property of natural language.

Combining MSM and DM, MSM-DM has the following generative model for

the discrete observations yT = y1 . . . yT .

First, this process selects a model m from the M hyperparameters.

Second, the mean shift process generates the observations yT = y1 . . . yT with

occasional resampling of latent unigram pt from the m’th Dirichlet distribution

with the probability ρ.

Since the model index m is drawn only once at first, we also need to infer

the posterior estimate of m, p(m) online rather than using a prior value λm.

Fortunately, a maximum likelihood estimate of p(m) can be inferenced in the

Particle Filter approach.

In the Particle Filter estimation, for each particle the history is segmented

into pseudo “documents” d1 . . . dc by the change points sampled so far (Figure

4.9).
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1. t = 0 : Initalize particles 1 .. N .

2. For t = 1 .. T − 1,

(a) For j = 1 . . .N ,

1. Compute f(t) and g(t) as the observation probability p(yt)

from DM posterior and DM prior.

2. Update particle weight w
(j)
t = w

(j)
t−1 · (f(t) + g(t)).

3. Draw c ∼ Bernoulli(f(t)/(f(t) + g(t))).

4. If c = 1 then

– Compute pim from the last change point;

– Update λ ∝
∑

m pim .

(b) Normalize particle weights.

(c) Predict p(yt+1) by the particles 1 .. N and weights w
(1)
t .. w

(N)
t .

(d) If weights w
(1)
t .. w

(N)
t are too biased, conduct resampling to

regenerate new particles.

Figure 4.10. Particle Filter algorithm of MSM-DM.

Since each “pseudo document” di (i = 1 . . . c) has a model posterior

p(m|di) ∝ λm
Γ(
∑

v αmv)

Γ(
∑

v αmv+|di|)

V∏

v=1

Γ(αmv+niv)

Γ(αmv)
, (4.37)

the maximum likelihood estimate of the common prior p(m|h) is given by a simple

summation

p(m|h) ∝
c∑

i=1

p(m|di) , (4.38)

the same formula used in the M step of the DM parameter estimation in Chapter

2. For this purpose, only the sufficient statistics p(m|di) (i = 1 . . . c) need to be

stored for each particle to render itself an online algorithm.

Using this online inference of the posterior estimate of the mixing parameter

λ, p(m|h), the final Particle Filter estimation algorithm of MSM-DM is depicted

in Figure 4.10.
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1. For t = 1 . . . T ,

(a) Draw c ∼ Binomial(ρ).

(b) If c = 0 then Set λt = λt−1.

If c = 1 then Draw λt ∼ Dir(α).

(c) Draw z ∼ Mult(λ).

(d) Draw wt ∼ Mult(βz).

Figure 4.11. Generative Model of MSM-LDA.

4.4.2 MSM-LDA

When we combine MSM with the Latent Dirichlet Allocation (LDA) (Blei et

al., 2001), we get another interesting model, MSM-LDA, that tracks latent topic

distribution other than the unigram distribution as MSM-DM.

As we have seen in section 4.2.2.2, given a history h = w1w2 · · ·wh the poste-

rior distribution of topic mixture λ = {p(t|h)}K
t=1, namely a Dirichlet distribution

p(λ|h) = Dir(λ|α), can be computed by the variational Bayes EM algorithm of

Figure 4.3. Therefore, regarding this λ as the latent multinomial θ in the general

mean shift model of (4.17), we get a model that tracks online the multinomial

mixing distribution λ of the latent topics. When the current estimate of λt,

q(λt|h) is obtained, predictive distribution of words can be computed by the

mixture of the class unigrams of LDA with the expectation of p(λt|h):

p(y|h,α,β) =
∫

p(y,λ|h,α,β)dλ (4.39)

=
K∑

t=1

p(y|t)〈λz〉q(λ|h) , (4.40)

as we also showed in (4.11).

MSM-LDA has the generative model of Figure 4.11 for the observations yT =

y1 · · · yT given the LDA parameters α and β = {βt}
K
t=1 = {p(w|t)}K

t=1. In the

step 1 of Figure 4.11, we assume c = 1 is always sampled at t = 1.

The remaining problem here is that the hyperparameter α in the Step 2

is assumed to be known and fixed. Because α governs the Dirichlet distribution
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representing topic mixture λ, assuming α to be known means that the same topic

mixture will be assumed a priori for all the texts to be processed. Apparently,

this is not a natural assumption: we also need to estimate the hyperparameter α

online.

Fortunately, also in this case a maximum likelihood online estimate of α can

be obtained in the Particle Filter approach. Since the history has been segmented

into “pseudo documents” d1 . . . dc by the change points as in MSM-DM, for each

di a posterior Dirichlet distribution q(λ|di) (i = 1 . . . c) can be computed. As

described in Chapter 2, we can infer the common Dirichlet prior Dir(λ|α) by a

linear-time Newton-Raphson method efficiently.

Specifically, given the parameters γ1 . . .γc of the Dirichlet posteriors p(λ|d1) . . . p(λ|dc),

α can be computed by a Newton-Raphson iteration

α′ = α−H−1g , (4.41)

where g and the Hessian H are

gi = M{Ψ(
∑

i

αi) − Ψ(αi)} +
M∑

d=1

{Ψ(γdi − Ψ(
∑

i

γdi)} , (4.42)

hi = −Ψ(αi) , (4.43)

z = Ψ′(
∑

i

αi) , (4.44)

H = diag(h) + 1z1T (4.45)

where H can be inverted in linear time. For the details of the derivation, see

Chapter 2.

Also in MSM-LDA, only the sufficient statistics p(λ|di) (i = 1 . . . c) must be

stored for each particle to make itself an efficient filtering algorithm.
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· · ·
Particle #1
Particle #2
Particle #3
Particle #4

Particle #N

Weight

:

yt+1

:

tt−1

︷ ︸︸ ︷ prior
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Figure 4.12. Proposed Particle Filter for Contexts, and Sequential Updates of

Priors.

4.5. Experiments

We conducted experiments using a British National Corpus (BNC) (Burnage and

Dunlop, 1992). BNC is a balanced corpus that has long texts on quite various

topics, appropriate for our experimental objectives. We randomly selected 100

files of BNC written texts as an evaluation set, and the remaining 2,943 files as

a training set for parameter estimation of LDA and DM.

4.5.1 Training and Evaluation Data

Training Data Since LDA and DM proved unable to be used for long texts

like BNC, we divided them into segments of a minimum of 10 sentences4 to create

pseudo documents for LDA/DM parameter estimation. Due to the huge size of

the BNC, we randomly selected a maximum of 20 pseudo documents from each of

the 2,943 files to produce a final corpus of 56,939 pseudo documents that consisted

of a total 11,032,233 words. This data amounts to a random 1/10 of the BNC

corpus as a whole. We used a lexicon of 52,846 words with a frequency ≥ 5.

Evaluation Data The proposed method is an algorithm that captures topic

shifts and their rate in a text to predict the next word. Therefore, we need

evaluation texts that have different topic shift rates.

For this purpose, we prepared four kinds of texts by sampling from the long

BNC texts. Specifically, we conducted sentence-based random sampling as fol-

4For the rest of this paper, we call a BNC segment divided by <s>..</s> a “sentence.”
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1. t = 0 : Initalize particles 1 .. N .

2. For t = 1 .. T − 1,

(a) For j = 1 . . .N ,

1. Compute f(t) and g(t) as the observation probability p(yt)

from LDA posterior and LDA prior via VB-EM.

2. Update particle weight w
(j)
t = w

(j)
t−1 · (f(t) + g(t)).

3. Draw c ∼ Bernoulli(f(t)/(f(t) + g(t))).

4. If c = 1 then

– Compute γim from the last change point via VB-EM.

– Update α using γim by a Newton-Raphson method

(4.41).

(b) Normalize particle weights.

(c) Predict p(yt+1) by the particles 1 .. N and weights w
(1)
t .. w

(N)
t :

Weight each particle’s prediction obtained via the VB-EM.

(d) If weights w
(1)
t .. w

(N)
t are too biased, conduct resampling to

generate new particles.

Figure 4.13. Particle Filter algorithm of MSM-LDA.

lows.

(1) Select a first sentence randomly for each text.

(2) Sample contiguous X sentences from that sentence.

(3) Skip Y sentences.

(4) Continue steps (2) and (3) until a desired length of text is obtained.

In the procedure above, X and Y are random variables that have uniform

distributions in Table 4.1. We sampled 100 sentences from each of the 100 files

by this procedure to create four types of evaluation text sets listed in the table.
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CHAPTER 4. STATISTICAL LANGUAGE MODELING OF CONTEXTS

Name Property

Raw X = 100, Y = 0

Slow 1 ≤ X ≤ 10, 1 ≤ Y ≤ 3

Fast 1 ≤ X ≤ 10, 1 ≤ Y ≤ 10

VeryFast X = 1, 1 ≤ Y ≤ 10

Table 4.1. Types of Evaluation Texts.

4.5.2 Parameter Settings

The number of latent classes in LDA and DM are set to 200 and 50, respectively.

Although this number was chosen mainly due to computational limitations, larger

parameters produced virtually the same performance in a preliminary experi-

ment.5 The number of particles was set to N=20. This figure is relatively small

because each particle can conduct an exact Bayesian prediction of multinomial

distribution, once previous change points have been sampled.

Beta prior distribution of context change can be initialized as a uniform dis-

tribution, (α, β)= (1, 1). However, based on a preliminary experiment we set it

to (α, β)= (1, 50): this means we initially assume a context change rate of once

every 50 words in average, which will be updated adaptively.

4.5.3 Experimental Results

Table 4.2 shows the unigram perplexity of contextual prediction for each type

of evaluation sets. While MSM-LDA slightly improves LDA due to the topic

space compression explained in section 4.1, MSM-DM produces a consistently bet-

ter prediction, and its performance is more significant for texts whose subtopics

change faster.

Figure 4.14 shows a plot of the actual improvements relative to DM, PPLMSM−

PPLDM. We can see that prediction improves for most documents by automat-

ically selecting appropriate contexts. The maximum improvement was –365 in

PPL for one of the evaluation texts.

5We deliberately chose a smaller number of mixtures in DM because it is reported to have

a better performance in small mixtures since it is essentially a unitopic model as opposed to

LDA.
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4.5. EXPERIMENTS

Text MSM-DM DM MSM-LDA LDA

Raw 870.06 (−6.02%) 925.83 1028.04 1037.42

Slow 893.06 (−8.31%) 974.04 1047.08 1060.56

Fast 898.34 (−9.10%) 988.26 1044.56 1061.01

VFast 960.26 (−7.57%) 1038.89 1065.15 1050.83

Table 4.2. Contextual Unigram Perplexities for Evaluation Texts.
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Figure 4.14. Perplexity reductions relative to DM.

However, since our method samples change points word by word, it is some-

times unstable to noisy word, which causes radically bad prediction infrequently.

To avoid this, we require the change points be sampled by sentences or by para-

graphs; however, because the underlying generative model assumes a word base

generation, this is not trivial. Even no systematic method are found in SMC that

can handle multiple observation at once (Kwok et al., 2002).

Finally, we show in Figure 4.15 a sequential plot of context change probabili-

ties p(i)(It =1) (i = 1..N, t = 1..T ) calculated by particles for the first 1,000 words

of one of the evaluation texts.

As seen in the figure, our method can also be considered a probabilistic variant

of TextTiling as an ancillary process to estimate topic segments online.
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Figure 4.15. Context change probabilities by Particles.

4.6. Summary and Future Directions

In this chapter, we gave a novel Bayesian statistical language model of context

that recognizes topic shifts and their rate on-line. It makes an optimal prediction

using a mixture of different length of histories sampled by a multinomial Particle

Filter.

The heart of our approach lies in twofold:

1) We view a context estimation as a multinomial filtering problem rather

than a simple averaging by introducing a latent state space model that is recently

proposed in the DNA sequence modeling to account for topic shifts, and solve it

by a sequential Monte Carlo method (Particle Filter).

2) We extend the original multinomial filter to incorporate an extremely large

number of symbols and strong semantic correlations between them by combining

the filter with Bayesian probabilistic text models LDA and DM, which give prior

semantic prior knowledge between the symbols.

As a result, we obtain a Bayesian long-distance language model that has the

lowest perplexity in the current state of art. Experiments on the standard British

National Corpus confirmed that the proposed model can track the contexts in real

data.

Moreover, proposed method is not only a model in natural language but also

useful for a filtering in similar high-dimensional discrete data domains that have
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high correlations between them, and a generic mixture modeling such as Gaussian

mixtures.

Although this thesis concentrates on a predictive language modeling, it can

be extended in several ways to model a textual heterogeneity more appropriately.

The first is a nonlinear forward-backward extension; this can be executed by a

similar Monte Carlo method, or an analytical approximation such as Expecta-

tion Propagation (Minka, 2001), for example. The second is an extension to a

collection of documents. Since probabilistic text models such as LDA and DM is

incapable to deal with a corpora of long texts, this extension opens up a new way

to handle long texts such as literary texts, ordinary books, and sequential speech

transcripts.

Through such extensions, we hope to find a more appropriate “semantic unit”

of texts statistically beyond a document that has been assumed näıvely for that

purpose, into a statistical interpretation of Saussurean “Paradigme” of meaning

(de Saussure, 1916).
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Chapter 5

Conclusion

5.1. Summary of this dissertation

The goal of this dissertation is to propose a more sophisticated treatment of distri-

butional models, specifically, along the two kinds of units of semantic processing:

1. Static Units. Since for a specified task the useful units for that objective are

often already given, we wish to use a more elaborated method of semantic

treatment for them by utilizing our prior knowledge of “similarity.”

2. Dynamic Units. The most natural units of semantic processing are often

hidden and embedded within the static units just described. We wish to re-

veal such units of semantic coherence by a statistical inference to be utilized

more effectively in natural language processing.

To achieve these goals, this dissertation proposed the following solutions in

Chapter 3 and Chapter 4, respectively.

In Chapter 3, we proposed a novel metric distance function between the static

units in place of the Euclidean distance extensively used in natural language

processing so far. This metric is derived from our prior knowledge of “similarity”

as cluster structures in the training data by a semi-supervised learning approach.

Contrary to the previously proposed method in the field other than in natural

language processing, this metric can be computed in closed form using the whole

data at once without any iterative optimization.
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We confirmed the effect of proposed metric distance function on the retrieval

and clustering task of documents and sentences, as well as on a general vectorial

dataset commonly used in Machine Learning research.

In Chapter 4, we relaxed the i.i.d. assumption of words in a text that has been

implicitly assumed for text modelings by introducing a Mean shift model known

in statistics. We extended a Multinomial Mean shift model to natural language

by combining it with LDA and DM, Bayesian text models recently proposed, to

propose two extensions of Multinomial Mean shift model to deal with the huge

number of symbols and their semantic correlations in natural language.

Essentially, this model is a nonlinear HMM. For an online inference, we used

a Bayesian nonlinear filtering algorithm called a Particle Filter to track hidden

changes of context dynamically in the long-distance statistical language modeling

framework. This model amounts to finding the units dynamically in text within

which i.i.d. property is considered preserved, and we make an optimal prediction

of next word based on these dynamic units inferenced on the fly. As a result, we

obtain a Bayesian long-distance statistical language model that has the lowest

perplexity in the current state of art. We confirmed the performance of proposed

model on various types of texts from the standard British National Corpus.

Through the proposed methodological sophistications along the two kinds of

units, we expect more natural, less fixed natural language processing that deal

with semantic aspects of language.

5.2. Future Work

Although we proposed the solutions to two kinds of units independently, ideally

they must be fused into a unified framework.

In the statistical language modeling problem in Chapter 4, we implicitly assu-

med that the simplical manifold, i.e. the word simplex and the topic subsimplex,

is isotropic without no prior information of actual data distribution within the

manifold. We expect to relax this assumption by a geometrical approach that

is similar in spirit to the metric learning problem in Chapter 2 by a Bayesian

learning method.

Besides an integration of two approaches, separate modelings also require
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CHAPTER 5. CONCLUSION

more sophistication.

In the metric learning problem in Chapter 3, we noticed the necessity of

an extension to kernel Hilbert space by the same objective of minimum cluster

distortions. By this extension, dimensionality reductions are not necessary and

the method can be extended to more general data structures, such as trees or

graphs, where appropriate kernels have been already defined.

In the statistical language modeling problem in Chapter 4, we focused on the

forward estimation in a language modeling framework. However, as mentioned

in the summary of Chapter 4, this process can be extended to forward-backward

estimation, or even to the learning from a collection of documents as a more

elaborated text modeling.

Through such extensions, we will obtain a clearer perspective of semantic

heterogeneities existent and essential to natural language.
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Appendix

A. LOO likelihood of Polya mixture

Here, we show

log p(w|α) = log

[

Γ(α)

Γ(α + n)

∏

v

Γ(αv + nv)

Γ(αv)

]

(5.1)

'
∑

v

nv log
(
nv + αv − 1

n + α− 1

)

(5.2)

for a document w and Dirichlet hyperparameter α, where nv is the count of

occurrence of word v in w and n =
∑

v nv , α =
∑

v αv .

Making a Leave-One-Out (LOO) approximation

p(w|α) '
∏

v

p(v|w\v,α)nv (5.3)

where

p(v|w\v,α) =
∫

p(v|p)p(p|w\v,α)dp (5.4)

=
∫

pvDir(α1 + n1, · · · , αv + nv − 1, · · · , αV + nV )dp (5.5)

=
αv + nv − 1

α + n− 1
, (5.6)

expression (5.2) follows immediately. �

B. Derivation of two bounds

Here, we derive two simple lower bounds that has been used in section 3.3.1 of

Dirichlet Mixture parameter estimation.

log(x + n) = log

(

q ·
x

q
+ (1 − q) ·

n

1 − q

)

(5.7)

≥ q log
x

q
+ (1 − q) log

n

1 − q
(5.8)

= q log x + (1 − q) logn−H(q), (5.9)

where H(q) = q log q + (1 − q) log(1 − q).
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C. MOORE-PENROSE MATRIX PSEUDOINVERSE

Equality holds at the point of contact between two curves:

∂

∂x
log(x+ n) =

∂

∂x
q log x (5.10)

∴ q =
x

x+ n
. � (5.11)

By a Taylor expansion at x = x0, we get

log x = log x0 +
x− x0

x0

− O(x2
0) (5.12)

≤ log x0 +
x

x0
− 1 = ax− 1 − log a, (5.13)

where a = 1/x is the point of contact. �

C. Moore-Penrose Matrix Pseudoinverse

The Moore-Penrose matrix pseudoinverse A+ of A is a unique matrix that has

a property of normal inverse in that x = A+y is a shortest length least squares

solution to Ax = y even if A is singular (Weisstein, 2004).

A+ can be calculated simply by a MATLAB function pinv. Or alternatively

(Ishikawa et al., 1998), we can decompose A as

A = UΣUT , (5.14)

where U is an orthonormal n× n matrix and Σ = diag(σ1, . . . , σR, 0, . . . , 0) (R =

rank(A)). Then, A+ is calculated as

A+ = UΣ+UT , (5.15)

where Σ+ = diag(1/σ1, . . . , 1/σR, 0, . . . , 0). Therefore,

M = (σ1σ2 · · ·σR)1/RA+. � (5.16)
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