科学研究費補助金研究成果報告書

平成23年6月6日現在

機関番号:14603 研究種目:若手研究(B) 研究期間:2009~2010

課題番号:21710196

研究課題名(和文) DNA メチル化を介したセンス·アンチセンス RNA 発現制御機構の解析

研究課題名(英文) Functional analyses of antisense transcripts in the epigenetic

regulation of gene expression

研究代表者

柴 博史 (SHIBA HIROSHI)

奈良先端科学技術大学院大学・バイオサイエンス研究科・助教

研究者番号: 20294283

研究成果の概要(和文):本研究では、筆者が明らかにした遺伝子コード領域内で見られるDNAメチル化(bodyメチル化)とセンス・アンチセンス対遺伝子の発現様態を詳細に調べ、bodyメチル化に連動して発現変動が見られる遺伝子の存在を複数明らかにした。また次世代シークエンサーを用いてsmall RNAの発現を解析し、当該遺伝子との関係を調べた。

研究成果の概要(英文): DNA methylation within the gene body is thought to impede transcriptional elongation, but the causal role of genic DNA methylation remains essentially unknown. In this research, I have generated DNA methylation profile (methylome) as well as sense and antisense transcription profiles (transcriptome), at 35-base pair resolution, of the wild-type and the loss-of DNA methyltransferase mutant of *Arabidopsis*. Combinational analyses of the methylomes and the transcriptomes have indicated that some sense/antisense transcripts are associated with body methylation. I also examined correlation between body methylation and small RNAs.

交付決定額

(金額単位:円)

	直接経費	間接経費	合 計
2009 年度	1, 900, 000	570, 000	2, 470, 000
2010 年度	1, 700, 000	510, 000	2, 210, 000
年度			
年度			
年度			
総 計	3, 600, 000	1, 080, 000	4, 680, 000

研究分野:複合新領域

科研費の分科・細目:ゲノム科学・ゲノム生物学

キーワード : DNAメチル化, アンチセンス転写産物, メチローム, ゲノムタイリングアレイ

1. 研究開始当初の背景

DNAメチル化は、エピジェネティックな遺伝子発現抑制機構の主原因として動植物を問わず広く知られている。遺伝子発現抑制に関わるDNAメチル化は、5°プロモーター領域周辺に限局しているものや、セントロメア周辺領域のようにリピート配列全体にわたって高頻度に分布していることが知られて

いるが、遺伝子コード領域内に存在するDNA メチル化(bodyメチル化)に関しては、転写 への影響を与える報告がいくつかなされて いるものの、その働きは未だ不明な点が多か った。

2. 研究の目的

筆者は、これまでシロイヌナズナゲノムタ

イリングアレイを用いたメチローム解析から数多くのbodyメチル化を見出してきた。またゲノムタイリングアレイを用いたトランスクリプトーム解析から、センス・アンチセンス対遺伝子が多数明らかにしてきた。本研究では、野生株とDNAメチル化酵素欠損株のメチロームおよびトランスクリプトーム情報を統合して、センス・アンチセンス対遺伝子の発現とbodyメチル化との関係を明らかにするとともに、bodyメチル化がどのようにしてアンチセンス転写産物の発現を抑制するかを明らかにする事を目指した。

3. 研究の方法

- (1)シロイヌナズナゲノムタイリングアレイと次世代シークエンサーを使って発生、分化に関わるDNAメチル化(メチローム)と遺伝子発現(トランスクリプトーム)を網羅的かつ包括的に解析した。上記メチロームおよびトランスクリプトームデータからbodyメチル化に連動して遺伝子発現の変動が見られた遺伝子を探索した。得られたデータベースからDNAメチル化の有無によって相反する発現変動を示すセンス・アンチセンス対遺伝子を探索し、定量PCRによる詳細な発現解析を進めた。
- (2) bodyメチル化とアンチセンス転写産物の発現抑制が重複するセンス・アンチセンス対遺伝子について、メチル化部位に相同なsmall RNAの存在を次世代シークエンサーで調べた。

4. 研究成果

メチロームおよびトランスクリプトーム データからbodyメチル化に連動して遺伝子 発現の変動が見られたセンス-アンチセンス 対遺伝子を複数見出した。これらはbodyメチ ル化が見られた遺伝子では、mRNAが恒常的 に発現している一方、DNAメチル化酵素欠損 株では、その発現が抑制されていた(図)。ま た上記センス-アンチセンス対遺伝子のアン チセンス鎖由来の転写産物(アンチセンス RNA)がmRNAの発現と相反してDNAメチ ル化酵素欠損株で発現が見られ、野生株では その発現が低下していた(図)。そこでその中 から1遺伝子に着目して詳細な解析を進めた。 当該遺伝子は、隣接するレトロトランスポゾ ン配列にbodyメチル化が見られる花序では、 その遺伝子発現が見られる一方、維持型DNA メチル化酵素欠損株であるmet1 変異株の花 序では、レトロトランスポゾンのメチル化が 見られず、当該遺伝子の発現も見られなかっ た。当該遺伝子とレトロトランスポゾン間の

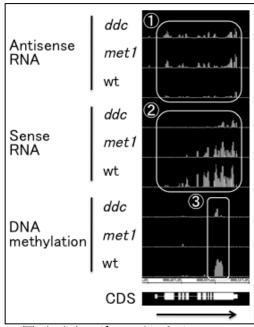


図. タイリングアレイによるbody メチル化とセンス-アンチセンス RNA発現の例

野生株(wt)では、3^{*} 側エキソンにDNAメチル 化が見られ、メチル化酵素欠損株(met I, ddc) ではほとんど見られない(白枠③)。また野生 株ではメチル化酵素欠損株に比べてセンス RNAの発現が高く(白枠②)、アンチセンスRNA の発現が抑制されている(白枠①)。

ゲノム領域由来の転写産物を定量PCRを用いて調べたところ、当該遺伝子のアンチセンス 鎖由来の転写産物が、met1変異株では野生株よりも多く発現していることが分かった。このことはトランスポゾン由来のnoncoding RNAが阻害されることで、その上流に存在する遺伝子のアンチセンスRNAが低減することにより、転写レベルが上昇するものと考えられ、DNAメチル化はnoncoding RNAの阻害に直接関わっているか、noncoding RNAの阻害の過程で見られる間接的な現象であると考えられた。

また花序組織におけるsmall RNAを次世代シークエンサーで解析したところ、10029 遺伝子に対してセンス方向、7739 遺伝子に対してアンチセンス方向に転写されているsmall RNAが存在した。そこで上記花序特異的なbodyメチル化に連動して遺伝子発現の変動が見られた1遺伝子におけるメチル化部位とsmall RNA配列との関連を調べたところ、メチル化部位と一致する配列が見つかった。当該遺伝子は、隣接するレトロトランスポゾン配列に花序特異的なbodyメチル化が見られることで、その遺伝子の発現が見られる一方、維持型DNAメチル化酵素欠損株であるmet1変

異株の花序では、レトロトランスポゾンのメチル化が見られず、当該遺伝子の発現も見られない。当該配列は、葯組織で発現している一方、実生組織由来のsmall RNAライブラリーからは検出されなかったことから、上記花序特異的なレトロトランスポゾンのbodyメチル化は、葯で発現するsmall RNAによって引き起こされている可能性が考えられた。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計2件)

- Yoshiaki Tarutani, <u>Hiroshi Shiba</u>, Megumi Iwano, Tomohiro Kakizaki, Go Suzuki, Masao Watanabe, Akira Isogai and Seiji Takayama, Trans-acting small RNA determines dominance relationships in *Brassica* self-incompatibility, *Nature* 466, 983-986, 2010, 查読有
- 2. <u>Hiroshi Shiba</u>, Yoshiaki Tarutani, and Seiji Takayama, Epigenetic control of dominance relationships among self-incompatibilityalleles by DNA methylation, *Plant Morphology* 22, 3-8, 2010, 查読無

〔学会発表〕(計16件)

- 1. 樽谷 芳明, 柴 博史, 岩野 恵, 柿 崎 智博, 鈴木 剛, 渡辺 正夫, 磯 貝 彰, 高山 誠司, トランス作用性 small RNA を介したアブラナ科植物で みられる優劣性の制御機構, 日本農芸 化学会, 2011.3.26, 京都 (震災の影響で大会は中止)
- 2. 木本 剛彰, 柴 博史, 岩野 恵, 藤 田 雅丈, 高橋 宏和, 倉田 のり, 中園 幹生, 磯貝 彰, 高山 誠司, レーザーマイクロダイセクションを利 用したシロイヌナズナ葯タペート組織 における遺伝子発現様態の網羅的解析, 日本植物生理学会, 2011.3.22, 仙台 (震災の影響で大会は中止)
- 3. 樽谷 芳明, <u>柴 博史</u>, 岩野 恵, 柿 崎 智博, 鈴木 剛, 渡辺 正夫, 磯 貝 彰, 高山 誠司, "トランス作用 性small RNA によるアブラナ科植物自 家不和合性における優劣性の制御", 日 本植物生理学会, 2011.3.20, 仙台(震 災の影響で大会は中止)
- 4. 樽谷 芳明, <u>柴 博史</u>, 岩野 恵, 柿 崎 智博, 鈴木 剛, 渡辺 正夫, 磯 貝 彰, 高山 誠司, アブラナ科植物 の自家不和合性対立遺伝子でみられる

- エピジェネティックな遺伝子発現制御, 第 33 回日本分子生物学会年会・第 83 回 日 本 生 化 学 会 大 会 合 同 大 会, 2010.12.8,神戸
- 5. Yoshiaki Tarutani, <u>Hiroshi Shiba</u>, Megumi Iwano, Tomohiro Kakizaki, Go Suzuki, Masao Watanabe, Akira Isogai, Seiji Takayama, Regulation of dominance relationships in *Brassica* self-incompatibility alleles, Cold Spring Harbor Asia Conference, 2010. 11. 2, Suzhou (China)
- 6. 樽谷 芳明, 柴 博史, 岩野 恵, 柿 崎 智博, 鈴木 剛, 渡辺 正夫, 磯 貝 彰, 高山 誠司, アブラナ科植物 の自家不和合性でみられるエピジェネティックな遺伝子発現制御, 日本遺伝学会, 2010.9.20, 札幌
- 7. <u>Hiroshi Shiba</u>, Taketo Kayabe, Kentaro Yanol, Junshi Yazaki, Huaming Chen, Yutaka Suzuki, Masahiro Fujita, Nori Kurata, Akira Isogai, Joseph R. Ecker, Seiji Takayama, Genome-wide analyses of allele-specific expression and DNA methylation in *Arabidopsis thaliana*, 21st International Conference on *Arabidopsis* Research, 2010.6.8, Yokohama
- 8. <u>柴</u> 博史, 栢部 健人, 樽谷 芳明, 藤田 雅丈, 倉田 のり, 矢崎 潤史, Joseph R. Ecker, 磯貝 彰, 高山 誠 司, シロイヌナズナ種内雑種を利用し た対立遺伝子間の優劣に関わるDNAメチ ル化機構の解析, 日本農芸化学会 2010 年度大会, 2010.3.28, 東京
- 9. <u>柴 博史</u>, アブラナの自他認識におけるDNAメチル化の役割, 第 18 回農芸化学Frontiersシンポジウム, 2010.3.27, 千葉
- 10. <u>柴 博史</u>, 栢部 健人, 樽谷 芳明, 藤田 雅丈, 倉田 のり, 矢崎 潤史, Joseph R. Ecker, 磯貝 彰, 高山 誠 司, 第 51 回日本植物生理学会, 2010.3.18, 熊本
- 11. Yoshiaki Tarutani, <u>Hiroshi Shiba</u>, Megumi Iwano, Tomohiro Kakizaki, Masao Watanabe, Akira Isogai, and Seiji Takayama, Regulation of dominance relationships between self-incompatibility alleles in *Brassica* via *de novo* DNA methylation, International Symposium of Cell-Cell Communication in Plant Reproduction, 2010. 3. 11, Nara
- 12. <u>Hiroshi Shiba</u>, Taketo Kayabe, Kentaro Yano, Junshi Yazaki, Huaming Chen, Akira Isogai, Jpseph R. Ecker, and

Seiji Takayama, Genome-wide analyses of allele-specific expression and DNA methylation in *Arabidopsis* species, Keystone Symposia on Molecular and Cellular Biology "RNA Silencing Mechanisms in Plants", 2010.2.22, Santa Fe

- 14. Yoshiaki Tarutani, <u>Hiroshi Shiba</u>, Megumi Iwano, Tomohiro Kakizaki, Masao Watanabe, Akira Isogai, and Seiji Takayama, Regulation of dominance relationships between self-incompatibility alleles via *de novo* DNA methylation, 9th International Plant Molecular Biology (IPMB), 2009. 10. 28, St. Louis
- 15. 柴 博史, 樽谷 芳明, 岩野 恵, 磯 貝 彰, 柿崎 智博, 渡辺 正夫, 高 山 誠司, シンポジウム「高等植物の生 殖および初期発生研究の最前線」 S対 立遺伝子の発現制御機構の解析からメ ンデルの優性の法則に迫る, 第73回日 本植物学会, 2009.9.19, 山形
- 16. <u>柴 博史</u>, 矢崎 潤史, 磯貝 彰, Joseph R Ecker, 高山 誠司, シロイヌ ナズナで見られる de novo DNAメチル化 の網羅的解析, 日本農芸化学会, 2009. 3. 29, 福岡

6. 研究組織

(1)研究代表者

柴 博史 (SHIBA HIROSHI)

奈良先端科学技術大学院大学・バイオサイ エンス研究科・助教

研究者番号: 20294283